Sample records for aluminum test sample

  1. Determination of dissolved aluminum in water samples

    USGS Publications Warehouse

    Afifi, A.A.

    1983-01-01

    A technique has been modified for determination of a wide range of concentrations of dissolved aluminum (Al) in water and has been tested. In this technique, aluminum is complexed with 8-hydroxyquinoline at pH 8.3 to minimize interferences, then extracted with methyl isobutyl ketone (MIBK). The extract is analyzed colorimetrically at 395 nm. This technique is used to analyze two forms of monomeric Al, nonlabile (organic complexes) and labile (free, Al, Al sulfate, fluoride and hydroxide complexes). A detection limit 2 ug/L is possible with 25-ml samples and 10-ml extracts. The detection limit can be decreased by increasing the volume of the sample and (or) decreasing the volume of the methyl isobutyl ketone extract. The analytical uncertainty of this method is approximately + or - 5 percent. The standard addition technique provides a recovery test for this technique and ensures precision in samples of low Al concentrations. The average percentage recovery of the added Al plus the amount originally present was 99 percent. Data obtained from analyses of filtered standard solutions indicated that Al is adsorbed on various types of filters. However, the relationship between Al concentrations and adsorption remains linear. A test on standard solutions also indicated that Al is not adsorbed on nitric acid-washed polyethylene and polypropylene bottle wells. (USGS)

  2. Organic Adsorption Capacity of Aluminum for Potential Mars Sample Return Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Skoog, E. J.; Tuite, M. L., Jr.; Williford, K. H.

    2017-12-01

    The NASA Mars 2020 rover will sample martian rock and regolith as it searches for biosignatures and chemical potential for life. Possible contamination of martian samples by Earth-derived organic and inorganic materials poses a challenge to the ultimate goal of determining whether features detected within samples are of martian origin. To address this issue, Mars 2020 will implement a contamination knowledge strategy that includes "witness blanks": special sample tubes that contain multiple "getter" materials designed to witness any ambient contamination in the environment during sampling events on Mars. One getter material being considered for use inside witness tubes is aluminum foil. Here we present data from a series of experiments to evaluate the capacity of aluminum foil to adsorb organics and release them by solvent extraction. Strips of clean aluminum foil were suspended in closed vials containing 0.15 mg of pyrene and heated to 50°C to provide a bounding case for ambient pyrene concentration. Another set of foil strips in vials was stored at -20°C to better simulate martian conditions. After ten weeks, these foil strips were exposed to pyrene at additive 15 minute increments to test the time dependence of pyrene adsorption at -20°C. Foil strips were removed from vials and subjected to solvent extraction gas chromatography mass spectrometry. Preliminary results suggest that the pyrene adsorption capacity of aluminum at 50°C is 1-10 ng/cm2 after 24 hours. Further research will test the adsorption capacity of aluminum at varying temperatures, varying times, and varying organic compositions.

  3. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    NASA Technical Reports Server (NTRS)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  4. Improvement of the mechanical properties of reinforced aluminum foam samples

    NASA Astrophysics Data System (ADS)

    Formisano, A.; Barone, A.; Carrino, L.; De Fazio, D.; Langella, A.; Viscusi, A.; Durante, M.

    2018-05-01

    Closed-cell aluminum foam has attracted increasing attention due to its very interesting properties, thanks to which it is expected to be used as both structural and functional material. A research challenge is the improvement of the mechanical properties of foam-based structures adopting a reinforced approach that does not compromise their lightness. Consequently, the aim of this research is the fabrication of enhanced aluminum foam samples without significantly increasing their original weight. In this regard, cylindrical samples with a core of closed-cell aluminum foam and a skin of fabrics and grids of different materials were fabricated in a one step process and were mechanically characterized, in order to investigate their behaviour and to compare their mechanical properties to the ones of the traditional foam.

  5. Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Lovato, M. L.; Clarke, K. D.

    We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.

  6. Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture

    DOE PAGES

    Liu, C.; Lovato, M. L.; Clarke, K. D.; ...

    2017-10-13

    We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.

  7. An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  8. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  9. Test fixture design for boron-aluminum and beryllium test panels

    NASA Technical Reports Server (NTRS)

    Breaux, C. G.

    1973-01-01

    A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system.

  10. FY 1993 report on aluminum-nitrate testing at the ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, M.D.D.; Wise, M.D.

    1993-09-30

    This report summarizes the progress of the Aluminum Nitrate Nonhydrate (ANN) testing program at the F/H-Area Effluent Treatment Facility (ETF) for Fiscal Year 1993. Three tests were conducted in the months of February, April, and September. The tests yielded data that validated earlier conclusions that the addition of ANN to non-routine feed has a positive effect on the performance of ETF`s submicron filtration unit. Performance was observed to increase from 30--309%, depending on the season. The data also supports SRTC`s earlier conclusion that an optimal aluminum concentration exists in the range of 30--40 ppm, and concentrations above this range beginmore » to retard filtration performance. A rudimentary mathematical model that would predict Stage 1 flux was also developed during FY93. The model allowed for a more concise comparison of filter test runs, as well as increase the efficiency of the testing program by allowing shorter test runs to be conducted. It is postulated that the model can be further optimized to include aluminum concentration and time of year as independent variables that determine Stage 1 flux. Such a model should unequivocally prove the merits of pretreating ETF`s wastewater with aluminum nitrate. To proceed with the development of the model, further testing is proposed with stringent control of the aluminum concentration in the feed. In order to account for seasonal effects, one test should be conducted each month for Fiscal Year 1994. High Level Waste Engineering requests permission to conduct these test runs according to the following schedule: conduct tests in even numbered months beginning with October with routine influent as it is collected from normal process sewer influents and conduct tests in odd numbered months beginning with November with non-routine feed from H-Retention Basin.« less

  11. Oceanic corrosion test of bare and zinc-protected aluminum alloys for seawater heat exchangers

    NASA Technical Reports Server (NTRS)

    Sasscer, D. S.; Morgan, T. O.; Rivera, C.; Ernst, R.; Scott, A. C.; Summerson, T. J.

    1982-01-01

    Bare 3004 tubes, 7072 Alclad 3004 tubes, and bare and zinc diffusion treated 3003 extrusions from a brazed aluminum, plate-fin heat exchanger were exposed to 1.8 m/sec flowing seawater aboard an open ocean test facility moored 3.4 km off the southeast coast of Puerto Rico. After six months exposure, the average corrosion rates for most varieties of aluminum materials converged to a low value of 0.015 mm/yr (0.6 mils/yr). Pitting did not occur in bare 3003 and 3004 samples during the six month test. Pitting did occur to varying degrees in the Alclad and zinc diffusion treated material, but did not penetrate to the base metal. Biofouling countermeasures (intermittent chlorination and brushing) did not affect the corrosion rates to any significant extent. Intermittent chlorination at a level of 0.5 ppm for 28 minutes daily controlled microbiofouling of the samples but did not prevent the development of a macrobiofouling community in areas of the plumbing with low flow.

  12. Comments on the origin of acoustic emission in fatigue testing of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.

    The size of acoustic emission (AE) signals expected from inclusion fracture during fatigue testing of 7075 aluminum has been estimated on the basis of previous measurements of AE produced by the fracture of boron particles incorporated into 2219 aluminum. The AF signal size expected from deformation in the plastic zone ahead of the fatigue crack was estimated from the results of tensile tests on 7075 aluminum. The signals predicted from both processes are near or below the noise level in the fatigue experiments and are therefore far too small to account for the signals actually observed. Nearly simultaneous fracture of multiple inclusions could produce signals as large as those observed in fatigue tests of 7075 aluminum, however, fatigue tests of 7050 aluminum produced signals as large or larger than in 7075. Since 7050 has substantially fewer inclusions than 7075, the simultaneous failure of multiple inclusions is unlikely to be a major AE source in fatigue testing of either aluminum alloy. Thus, the most probable source of acoustic emission during fatigue testing of 7075 and 7050 aluminum is the crack advance itself. The measured crack advance per cycle is large enough to release sufficient elastic energy to account for the AE signals observed.

  13. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  14. Secondary aluminum industry final emissions test report: Culp Aluminum Alloys, Steele, Alabama. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this testing program was to obtain emissions data for uncontrolled and controlled hydrochloric acid (HCl), particulate matter (PM) and speciated hydrocarbon Hazardous Air Pollutants (HAPs) from a secondary aluminum processing plant to support a national emission standard for hazardous air pollutants (NESHAP).

  15. Finite element analysis of the upsetting of a 5056 aluminum alloy sample with consideration of its microstructure

    NASA Astrophysics Data System (ADS)

    Voronin, S. V.; Chaplygin, K. K.

    2017-12-01

    Computer simulation of upsetting the finite element models (FEMs) of an isotropic 5056 aluminum alloy sample and a 5056 aluminum alloy sample with consideration of microstructure is carried out. The stress and strain distribution patterns at different process stages are obtained. The strain required for the deformation of the FEMs of 5056 alloy samples is determined. The influence of the material microstructure on the stress-strain behavior and technological parameters are demonstrated.

  16. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    NASA Technical Reports Server (NTRS)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  17. A study of tensile test on open-cell aluminum foam sandwich

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  18. Mechanical impact tests of materials in oxygen effects of contamination. [Teflon, stainless steel, and aluminum

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1980-01-01

    The effect of contaminants on the mechanical impact sensitivity of Teflon, stainless steel, and aluminum in a high-pressure oxygen environment was investigated. Uncontaminated Teflon did not ignite under the test conditions. The liquid contaminants - cutting oil, motor lubricating oil, and toolmaker dye - caused Teflon to ignite. Raising the temperature lowered the impact energy required for ignition. Stainless steel was insensitive to ignition under the test conditions with the contaminants used. Aluminum appeared to react without contaminants under certain test conditions; however, contamination with cutting oil, motor lubricating oil, and toolmakers dye increased the sensitivity of aluminum to mechanical impact. The grit contaminants silicon dioxide and copper powder did not conclusively affect the sensitivity of aluminum.

  19. Flotation-separation of aluminum from some water samples using powdered marble waste and oleic acid.

    PubMed

    Ghazy, Shaban el-Sayed; Samra, Salem el-Sayed; Mahdy, Abd el-Fattah Mohammed; el-Morsy, Sherin Mohammed

    2003-10-01

    Bench-scale experiments were conducted in the laboratory, aiming to remove aluminum from water. They were based on the use of powdered marble wastes (PMW), which are inexpensive and produced in large quantity, and thus potentially cause environmental problems, as an effective inorganic sorbent and oleic acid (HOL) as surfactant. The main parameters (solution pHs, sorbent, surfactant and aluminum concentrations, shaking time, ionic strength and the presence of foreign ions) that influence the sorptive-flotation process were examined. Good results were obtained under the optimum conditions, for which nearly 100% of aluminum at pH 7 and at room temperature (approximately 25 degrees C) was removed. The procedure was successfully applied to the recovery of aluminum spiked to some natural water samples. Moreover, a sorption and flotation mechanism is suggested.

  20. SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core

    ScienceCinema

    None

    2018-01-16

    SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.

  1. Summary of aluminum nitrate tests at the F/H-ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.J.; Wiggins, A.W.

    1992-05-01

    Biofouling of the Norton ceramic filters in the F/H Effluent Treatment Facility (ETF) has been minimized by bacterial control strategies on the influent streams. However, enough bacteria still exists in the routine influent to impact the filter performance. One method of remediating biofouling in routine influent, initially observed in laboratory tests on simulant solutions, involves addition of aluminum nitrate to the influent wastewater. Tests on actual feed at the ETF using aluminum nitrate showed significantly improved performance, with increases in filter permeability of up to four-fold compared to the baseline case. These improvements were only realized after modifications to themore » pH adjustment system were completed which minimized upsets in the pH of the feed solutions.« less

  2. Oxidation of aluminum alloy cladding for research and test reactor fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Snelgrove, J. L.; Hanan, N.

    2008-08-01

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  3. Biaxial deformation in high purity aluminum

    DOE PAGES

    Livescu, V.; Bingert, J. F.; Liu, C.; ...

    2015-09-25

    The convergence of multiple characterization tools has been applied to investigate the relationship of microstructure on damage evolution in high purity aluminum. The extremely coarse grain size of the disc-shaped sample provided a quasi-two dimensional structure from which the location of surface-measured features could be inferred. In particular, the role of pre-existing defects on damage growth was accessible due to the presence of casting porosity in the aluminum. Micro tomography, electron backscatter diffraction, and digital image correlation were applied to interrogate the sample in three dimensions. Recently micro-bulge testing apparatus was used to deform the pre-characterized disc of aluminum inmore » biaxial tension, and related analysis techniques were applied to map local strain fields. Subsequent post-mortem characterization of the failed sample was performed to correlate structure to damaged regions. We determined that strain localization and associated damage was most strongly correlated with grain boundary intersections and plastic anisotropy gradients between grains. Pre-existing voids played less of an apparent role than was perhaps initially expected. Finally, these combined techniques provide insight to the mechanism of damage initiation, propagation, and failure, along with a test bed for predictive damage models incorporating anisotropic microstructural effects.« less

  4. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  5. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-10-01

    We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  6. Improving the Explosive Performance of Aluminum Nanoparticles with Aluminum Iodate Hexahydrate (AIH).

    PubMed

    Gottfried, Jennifer L; Smith, Dylan K; Wu, Chi-Chin; Pantoya, Michelle L

    2018-05-23

    A new synthesis approach for aluminum particles enables an aluminum core to be passivated by an oxidizing salt: aluminum iodate hexahydrate (AIH). Transmission electron microscopy (TEM) images show that AIH replaces the Al 2 O 3 passivation layer on Al particles that limits Al oxidation. The new core-shell particle reactivity was characterized using laser-induced air shock from energetic materials (LASEM) and results for two different Al-AIH core-shell samples that vary in the AIH concentration demonstrate their potential use for explosive enhancement on both fast (detonation velocity) and slow (blast effects) timescales. Estimates of the detonation velocity for TNT-AIH composites suggest an enhancement of up to 30% may be achievable over pure TNT detonation velocities. Replacement of Al 2 O 3 with AIH allows Al to react on similar timescales as detonation waves. The AIH mixtures tested here have relatively low concentrations of AIH (15 wt. % and 6 wt. %) compared to previously reported samples (57.8 wt. %) and still increase TNT performance by up to 30%. Further optimization of AIH synthesis could result in additional increases in explosive performance.

  7. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  8. Fracture Testing of Large-Scale Thin-Sheet Aluminum Alloy (MS Word file)

    DOT National Transportation Integrated Search

    1996-02-01

    Word Document; A series of fracture tests on large-scale, precracked, aluminum alloy panels were carried out to examine and characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were special...

  9. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  10. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...

  11. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  12. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    DOE PAGES

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; ...

    2015-06-29

    In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al 2O 3 targets. However, Al 2O 3 is not an ideal source material because it does not form a prolific beam of Al - required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al 2O 3), aluminum nitride (AlN), mixed Al 2O 3–AlN as well as aluminum fluoride (AlF 3) weremore » tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al 2O 3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al 2O 3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.« less

  13. Determination of Minor and Trace Metals in Aluminum and Aluminum Alloys by ICP-AES; Evaluation of the Uncertainty and Limit of Quantitation from Interlaboratory Testing.

    PubMed

    Uemoto, Michihisa; Makino, Masanori; Ota, Yuji; Sakaguchi, Hiromi; Shimizu, Yukari; Sato, Kazuhiro

    2018-01-01

    Minor and trace metals in aluminum and aluminum alloys have been determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) as an interlaboratory testing toward standardization. The trueness of the measured data was successfully investigated to improve the analytical protocols, using certified reference materials of aluminum. Their precision could also be evaluated, feasible to estimate the uncertainties separately. The accuracy (trueness and precision) of the data were finally in good agreement with the certified values and assigned uncertainties. Repeated measurements of aluminum solutions with different concentrations of the analytes revealed the relative standard deviations of the measurements with concentrations, thus enabling their limits of quantitation. They differed separately and also showed slightly higher values with an aluminum matrix than those without one. In addition, the upper limit of the detectable concentration of silicon with simple acid digestion was estimated to be 0.03 % in the mass fraction.

  14. Behavior of Aluminum in Solid Propellant Combustion

    DTIC Science & Technology

    1982-06-01

    dry pressing 30% Valley Met H- 30 aluminum, 7% carnauba wax , and 63% 100 P AP. One sample was prepared using as received H-30, a second sample used pre...34propellant" formulations. The formulations included dry pressed AP/AI, and AP/AI/ Wax samples. Sandwiches were also prepared consisting of an aluminum...Binder flame instead of by aluminum exposure during accumulate break-up. Combustion of AP/AI/ Wax Samples A set of propellant samples were prepared by

  15. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  16. Sensitization of Naturally Aged Aluminum 5083 Armor Plate

    DTIC Science & Technology

    2015-07-29

    susceptibility to intergranular corrosion of 5XXX series aluminum alloys by mass loss after exposure to nitric acid (NAMLT Test)”, ASTM G-67-04. [6...67 nitric acid mass-loss values were 19 to 25 mg/cm2. The transmission electron microscopy microstructure of the sample was found to be consistent...5XXX Series Aluminum Alloys by Mass Loss after Exposure to Nitric Acid “ was used as an assessment of the degree of sensitization (DOS) of the alloy.[5

  17. Mechanical properties of anodized coatings over molten aluminum alloy

    DOE PAGES

    Grillet, Anne M.; Gorby, Allen D.; Trujillo, Steven M.; ...

    2007-10-22

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. In this study, we have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen ormore » argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Lastly, machining marks were not found to significantly affect the strength.« less

  18. Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum

    NASA Astrophysics Data System (ADS)

    Hsu, Fu-Yuan

    2016-06-01

    In aluminum gravity casting, as liquid aluminum fell through a vertical sprue and impacted on the horizontal flat surface, a phenomenon known as hydraulic jump ( i.e., flow transition from super-critical to sub-critical flows) was observed. As the jump was transformed, a reverse eddy motion on the surface of the jump was created. This motion entrained aluminum oxide film from the surface into aluminum melt. This folded film (so-called "bifilm" defect) was engulfed by the melt and caused its quality to deteriorate. To understand this phenomenon, aluminum casting experiments and computational modeling were conducted. In the casting experiment, a radius ( R j) to the point where the circular hydraulic jump occurred was measured. This is the circular region of `irregular surface feature', a rough oxidized surface texture near the center area of the castings. To quantify contents of the bifilm defects in the outer region of the jump, the samples in this region were sectioned and re-melted for doing re-melted reduced pressure test (re-melt RPT). An "area-normalized" bifilm index map was plotted to analyze bifilms' population in the samples. The flow transition in the hydraulic jump of liquid aluminum depended on three pressure heads: inertial, gravitational, and surface-tension pressures. A new theoretical equation containing surface tension for describing the flow transition of liquid metal was proposed.

  19. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  20. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  1. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  2. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  3. Aluminum structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, G.

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology thatmore » is particularly suited to the vehicle and its market.« less

  4. Characterization of B4C-composite-reinforced aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  5. Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad

    NASA Astrophysics Data System (ADS)

    Manurung, Charles SP; Napitupulu, Richard AM

    2017-09-01

    Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.

  6. Brazilian female crack users show elevated serum aluminum levels.

    PubMed

    Pechansky, Flavio; Kessler, Felix Henrique Paim; Diemen, Lisia von; Bumaguin, Daniela Benzano; Surratt, Hilary L; Inciardi, James A

    2007-03-01

    There is no information in the literature on the impact of crack smoking using crushed aluminum cans as makeshift pipes, a common form of crack use in Brazil. Since aluminum intake is associated with neurological damage, we measured serum aluminum levels in crack smokers. The objective of this study was to ascertain the levels of aluminum in crack users who smoke on makeshift aluminum pipes. 71 female crack smokers, their mean age being 28.0 (+/- 7.7), provided information about their drug use, and had blood samples tested for serum aluminum level. 56 (79%) subjects smoked crack from crushed can pipes, while 15 (21%) smoked from other containers. Fifty-two (73.2%) out of the 71 subjects presented a serum aluminum level of 2 microg/l and 13 (18.3%) had a serum aluminum level of 6 microg/l cut-off point, which is above the reference value. When compared to non-drug users matched by their mean age and gender, they had similar median values and interquartile ranges for serum aluminum level [3 (2-4.6) for crack smokers; 2.9 (1.6-4.1) for controls], but with different means and standard deviations (4.7 +/- 4.9 and 2.9 +/- 1.7, respectively). Crack smokers have high serum aluminum level, but we are unsure of its complete association with aluminum cans. Further studies are needed. If such association is proven true in future research, further issues will be raised in dealing with this important disorder, including proper planning and evaluation of public health policies in this area.

  7. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    PubMed

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  8. Experimental studies of glued Aluminum-glass joints

    NASA Astrophysics Data System (ADS)

    Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.

    2018-04-01

    Glued steel-glass or aluminum-glass joints are to be found, among other things, in vehicles (cars, buses, trains, trams) as windscreen assembly pieces for the supporting structure. For the purposes of the experiments, samples were made in which the top beam was made of the AW-2017A aluminum alloy and the bottom beam was made of thermally reinforced soda-lime glass whereas the glued joints were made of one-component polyurethane glue Körapur 175. The tests were performed under four-point bending conditions at monotonic incremental bending moment values on the Instron 5965 durability machine. The experimental study of the durability of glued joints under four-point bending conditions with the monotonic incremental bending moment allows to determine the values of stresses, whose value is related to initiation of damage of the tested joint.

  9. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Pal, Hemant; Sharma, Vimal

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased bymore » 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.« less

  10. Analysis and Test of Deep Flaws in Thin Sheets of Aluminum and Titanium. Volume 2: Crack Opening Displacement and Stress-Strain Data

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1978-01-01

    Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.

  11. Analysis and test of low profile aluminum aerospace tank dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Wilhelm, J. M.

    1993-01-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  12. Analysis and test of low profile aluminum aerospace tank dome

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Wilhelm, J. M.

    1993-12-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  13. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  14. Elasticity and anelasticity of microcrystalline aluminum samples having various deformation and thermal histories

    NASA Astrophysics Data System (ADS)

    Betekhtin, V. I.; Kadomtsev, A. G.; Kardashev, B. K.

    2006-08-01

    The effect of the amplitude of vibrational deformation on the elastic modulus and internal friction of microcrystalline aluminum samples produced by equal-channel angular pressing was studied. The samples have various deformation and thermal histories. The elastic and inelastic (microplastic) properties of the samples are investigated. As the degree of plastic deformation increases, the Young’s modulus E, the amplitude-independent decrement δi, and the microplastic flow stress σ increase. As the annealing temperature increases, the quantities δi and σ decrease noticeably and the modulus E exhibits a more complex behavior. The experimental data are discussed under the assumption that the dislocation mobility depends on both the spectrum of point defects and the internal stresses, whose level is determined by the degree of plastic deformation and the temperature of subsequent annealing. The concept of internal stresses is also used to analyze the data on the effect of the degree of deformation and annealing on the rupture strength of the samples.

  15. Evaluation of Aluminum Participation in the Development of Reactive Waves in Shock Compressed HMX

    NASA Astrophysics Data System (ADS)

    Pahl, R. J.; Trott, W. M.; Snedigar, S.; Castañeda, J. N.

    2006-07-01

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300μm) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-μm and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.

  16. Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres

    PubMed Central

    2014-01-01

    Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils. PMID:25136275

  17. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry

    NASA Astrophysics Data System (ADS)

    Sun, Lanxiang; Yu, Haibin; Cong, Zhibo; Lu, Hui; Cao, Bin; Zeng, Peng; Dong, Wei; Li, Yang

    2018-04-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and corrosive conditions. Monitoring the molten aluminum and electrolyte components is very important for controlling the chemical reaction process. Due to the lack of fast methods to monitor the components, controlling aluminum reduction cells is difficult. In this work, laser-induced breakdown spectroscopy (LIBS) was applied to aluminum electrolysis. A new method for calculating the molecular ratio, which is an important control parameter that represents the acidity of the electrolyte, was proposed. Experiments were first performed on solid electrolyte samples to test the performance of the proposed method. Using this method, the average relative standard deviation (RSD) of the molecular ratio measurement was 0.39%, and the average root mean square error (RMSE) was 0.0236. These results prove that LIBS can accurately measure the molecular ratio. Then, in situ measurements of the molten aluminum and electrolyte were performed in industrial aluminum induction cells using the developed LIBS equipment. The spectra of the molten electrolyte were successfully obtained and were consistent with the spectra of the solid electrolyte.

  18. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  19. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress that may relieve and distort mirror figure to unacceptable levels at cryogenic operating temperatures unless relieved during fabrication. Cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(TM) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  20. Sensitivity Testing of RDX/Aluminum Powdered Explosive Mixtures for the Improved Dispersed Explosives (IDX) Project

    DTIC Science & Technology

    1993-04-01

    perpendicular to the pipe axis. During assembly, the threads are lubricated and Teflon tape is used for sealing. Aluminum witness plates (25.4 mm thick...3.3 Electrostatic Discharge ( ESD ) ................................. 7 4. INTERMEDIATE-SCALE SENSITIVITY TESTING ..................... 8 4.1 Card Gap...tests include the DWIT, friction, and electrostatic discharge ( ESD ) tests. The purpose of these tests is to enable the researcher to ensure that the

  1. [Determination of Arsenic in Food Package Aluminum by Ultrasound Assisted Solid Phase Extraction/ICP-AES].

    PubMed

    Qin, Wen-xia; Gong, Qi; Li, Min; Deng, Li-xin; Mo, Li-shu; Li, Yan-lin

    2015-04-01

    Determination of arsenic in pure aluminum by inductively coupled plasma atomic emission spectrometry was interfered by aluminum matrix. The experiment showed that when the mass concentration of Al was greater than or equal to 5 000 times the As in the test solution, the measurement error was greater than 5%. In order to eliminate the interference, strong acid cation exchange fiber (SACEF) was used as solid phase extraction agent to adsorb Al(3+). The extraction conditions included amount of SACEF, extraction time, temperature and pH were investigated. The optimal extraction conditions were that 0.9000 g SACEF was used to extract the aluminum from the sample solution of pH 2.0 at 55 °C for 5 min with the ultrasonic assist, and in this case, the arsenic in the form of arsenic acid was not extracted and left in the solution for the determination. The results showed that after treating 10. 00 mL test solution containing 1.00 µg arsenic and 20.0 mg aluminum, arsenic did not lose. The mass concentration of residual aluminum in the raffinate was about 2,000 times the As, which had not interfered the determination of arsenic. The detection limit (3 s) was 0.027 µg · mL(-1) and quantification limit (10 s) was 0.0091 µg · mL(-1). The proposed method was successfully applied to the separation and determination of arsenic in the synthetic samples, the aluminum cans and the barbecue aluminum foil. Recovery was in the range of 98.3%-105% and RSD (n = 3) was in the range of 0.1%-4.3%. The results showed that the content of arsenic in the aluminum cans and the aluminum barbecue foil was below the limited value of national standard (GB/T 3190-2008).

  2. Chemical forms of tritium on the release from aluminum

    NASA Astrophysics Data System (ADS)

    Yokoyama, A.; Nakashima, M.; Tachikawa, E.

    1981-10-01

    The release-behavior of tritium from aluminum, where tritium has been injected into aluminum samples through 6Li(n,α)T transmutation reaction, has been investigated. When the aluminum samples were dissolved in NaOH/D 2O solutions, a majority of T has appeared as DT but a small fraction as HT, T 2 and DTO. It has been concluded that both HT and T 2 were formed inside of the aluminum. Their formations compete each other and their relative yields are correlated with the impurity content of protium in the sample. The time-profiles of the release rate of tritium on heating the sample have been compared with the results calculated with an appropriate assumption. A little difference between them can be reasonably ascribed to the presence of thin oxide film covering the sample surface.

  3. Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints

    NASA Astrophysics Data System (ADS)

    Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.

    2017-03-01

    Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  4. Measurements of degree of sensitization (DoS) in aluminum alloys using EMAT ultrasound.

    PubMed

    Li, Fang; Xiang, Dan; Qin, Yexian; Pond, Robert B; Slusarski, Kyle

    2011-07-01

    Sensitization in 5XXX aluminum alloys is an insidious problem characterized by the gradual formation and growth of beta phase (Mg(2)Al(3)) at grain boundaries, which increases the susceptibility of alloys to intergranular corrosion (IGC) and intergranular stress-corrosion cracking (IGSCC). The degree of sensitization (DoS) is currently quantified by the ASTM G67 Nitric Acid Mass Loss Test, which is destructive and time consuming. A fast, reliable, and non-destructive method for rapid detection and the assessment of the condition of DoS in AA5XXX aluminum alloys in the field is highly desirable. In this paper, we describe a non-destructive method for measurements of DoS in aluminum alloys with an electromagnetic acoustic transducer (EMAT). AA5083 aluminum alloy samples were sensitized at 100°C with processing times varying from 7days to 30days. The DoS of sensitized samples was first quantified with the ASTM 67 test in the laboratory. Both ultrasonic velocity and attenuation in sensitized specimens were then measured using EMAT and the results were correlated with the DoS data. We found that the longitudinal wave velocity was almost a constant, independent of the sensitization, which suggests that the longitudinal wave can be used to determine the sample thickness. The shear wave velocity and especially the shear wave attenuation are sensitive to DoS. Relationships between DoS and the shear velocity, as well as the shear attenuation have been established. Finally, we performed the data mining to evaluate and improve the accuracy in the measurements of DoS in aluminum alloys with EMAT. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Rinne revisited: steel versus aluminum tuning forks.

    PubMed

    MacKechnie, Cheryl A; Greenberg, Jesse J; Gerkin, Richard C; McCall, Andrew A; Hirsch, Barry E; Durrant, John D; Raz, Yael

    2013-12-01

    (1) Determine whether tuning fork material (aluminum vs stainless steel) affects Rinne testing in the clinical assessment of conductive hearing loss (CHL). (2) Determine the relative acoustic and mechanical outputs of 512-Hz tuning forks made of aluminum and stainless steel. Prospective, observational. Outpatient otology clinic. Fifty subjects presenting May 2011 to May 2012 with negative or equivocal Rinne in at least 1 ear and same-day audiometry. Rinne test results using aluminum and steel forks were compared and correlated with the audiometric air-bone gap. Bench top measurements using sound-level meter, microphone, and artificial mastoid. Patients with CHL were more likely to produce a negative Rinne test with a steel fork than with an aluminum fork. Logistic regression revealed that the probability of a negative Rinne reached 50% at a 19 dB air-bone gap for stainless steel versus 27 dB with aluminum. Bench top testing revealed that steel forks demonstrate, in effect, more comparable air and bone conduction efficiencies while aluminum forks have relatively lower bone conduction efficiency. We have found that steel tuning forks can detect a lesser air-bone gap compared to aluminum tuning forks. This is substantiated by observations of clear differences in the relative acoustic versus mechanical outputs of steel and aluminum forks, reflecting underlying inevitable differences in acoustic versus mechanical impedances of these devices, and thus efficiency of coupling sound/vibratory energy to the auditory system. These findings have clinical implications for using tuning forks to determine candidacy for stapes surgery.

  6. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  7. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  8. Higher aluminum concentration in Alzheimer's disease after Box-Cox data transformation.

    PubMed

    Rusina, Robert; Matěj, Radoslav; Kašparová, Lucie; Kukal, Jaromír; Urban, Pavel

    2011-11-01

    Evidence regarding the role of mercury and aluminum in the pathogenesis of Alzheimer's disease (AD) remains controversial. The aims of our project were to investigate the content of the selected metals in brain tissue samples and the use of a specific mathematical transform to eliminate the disadvantage of a strong positive skew in the original data distribution. In this study, we used atomic absorption spectrophotometry to determine mercury and aluminum concentrations in the hippocampus and associative visual cortex of 29 neuropathologically confirmed AD and 27 age-matched controls. The Box-Cox data transformation was used for statistical evaluation. AD brains had higher mean aluminum concentrations in the hippocampus than controls (0.357 vs. 0.090 μg/g; P = 0.039) after data transformation. Results for mercury were not significant. Original data regarding microelement concentrations are heavily skewed and do not pass the normality test in general. A Box-Cox transformation can eliminate this disadvantage and allow parametric testing.

  9. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  10. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined formore » the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.« less

  11. Advantages of Oxide Films as Bases for Aluminum Pigmented Surface Coatings for Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Buzzard, R W; Mutchler, W H

    1931-01-01

    Both laboratory and weather-exposure corrosion tests showed conclusively that the protection afforded by aluminum pigmented spar varnish coatings applied to previously anodized aluminum surfaces was greatly superior to that afforded by the same coatings applied to surfaces which had simply been cleaned free from grease and not anodized.

  12. Torsion Tests of 24S-T Aluminum-alloy Noncircular Bar and Tubing

    NASA Technical Reports Server (NTRS)

    Moore, R L; Paul, D A

    1943-01-01

    Tests of 24S-T aluminum alloy have been made to determine the yield and ultimate strengths in torsion of noncircular bar and tubing. An approximate basis for predicting these torsional strength characteristics has been indicated. The results show that the torsional stiffness and maximum shearing stresses within the elastic range may be computed quite closely by means of existing formulas based on mathematical analysis and the membrane analogy.

  13. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  14. Molybdate Coatings for Protecting Aluminum Against Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  15. [Dissolved aluminum and organic carbon in soil solution under six tree stands in Lushan forest ecosystems].

    PubMed

    Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing

    2003-10-01

    Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.

  16. Crystallization of aluminum hydroxide in the aluminum-air battery: Literature review, crystallizer design and results of integrated system tests

    NASA Astrophysics Data System (ADS)

    Maimoni, A.

    1988-03-01

    The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.

  17. Chrome - Free Aluminum Coating System

    NASA Technical Reports Server (NTRS)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  18. Enhanced degradation of aluminum metal in the presence of selected microorganisms. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tennyson, J. M.

    1972-01-01

    Experiments were conducted to determine the effects of microorganisms, substrates, pressures, humidities, and oxygen concentrations upon aluminum corrosion. In addition, the effects of microbes upon coated and treated aluminum were examined and an attempt to correlate aluminum in solution with degradation of the samples was undertaken. The organisms, humidities, oxygen levels, and substrates all played a major role in the corrosion of aluminum. Quantitation of aluminum losses indicated that the total metal losses from inoculated samples were significantly greater than those of the uninoculated samples.

  19. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  20. [Effects of aluminum on neurobehavioral function and metabolism of monoamine neurotransmitter].

    PubMed

    Yang, H; Zheng, Y; Liang, Y

    1998-03-01

    To evaluate the effects of occupational exposure to aluminum on neurobahavioral function and metabolism of monoamine neurotransmitter. Thirty-three workers exposed to aluminum and 40 controls were studied. Air aluminum concentrations in workplace environment were detected with an atomic absorption spectrophotometer, homovanillic acid (HVA) and vanilylmandellic acid (VMA) in urine and aluminum in serum and urine were detected with high perfolmance liquid chromatography. Neurobehavioral function was tested with Neurobehavioral Core Test Battery recommended by WHO. Geometric time-weighted average of aluminum in workplace environment was 0.95 mg/m3, ranging from 0.31 to 4.12 mg/m3, and urine aluminum levels in workers exposed to aluminum averaged 12.25 micrograms/L, significantly higher than that in controls (5.78 micrograms/L). There was no significant difference in serum aluminum between the exposed and controls. Both urine VMA and HVA levels were higher in the workers exposed to aluminum, and urine VMA level in the exposed was significantly higher than that in controls. There was significant difference in neurobehavioral test, including Santa Ana, digit symbol and Benton tests between the exposed and control workers. It suggests that occupational exposure to low level of aluminum can affect the neurobehavioral function and metabolism of monoamine neurotransmitter.

  1. Optical scattering from rough-rolled aluminum surfaces.

    PubMed

    Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E

    2001-05-01

    Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.

  2. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  3. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  4. Aluminum and Fenton reaction: how can the reaction be modulated by speciation? A computational study using citrate as a test case.

    PubMed

    Mujika, Jon I; Dalla Torre, Gabriele; Lopez, Xabier

    2018-06-13

    The pro-oxidant ability of aluminum is behind many of the potential toxic effects of this exogenous element in the human organism. Although the overall process is still far from being understood at the molecular level, the well known ability of aluminum to promote the Fenton reaction is mediated through the formation of stable aluminum-superoxide radical complexes. However, the properties of metal complexes are highly influenced by the speciation of the metal. In this paper, we investigate the effect that speciation could have on the pro-oxidant activity of aluminum. We choose citrate as a test case, because it is the main low-molecular-mass chelator of aluminum in blood serum, forming very stable aluminum-citrate complexes. The influence of citrate in the interaction of aluminum with the superoxide radical is investigated, determining how the formation of aluminum-citrate complexes affects the promotion of the Fenton reaction. The results indicate that citrate increases the stability of the aluminum-superoxide complexes through the formation of ternary compounds, and that the Fenton reaction is even more favorable when aluminum is chelated to citrate. Nevertheless, our results demonstrate that overall, citrate may prevent the pro-oxidant activity of aluminum: on one hand, in an excess of citrate, the formation of 1 : 2 aluminum-citrate complexes is expected. On the other hand, the chelation of iron by citrate makes the reduction of iron thermodynamically unfavorable. In summary, the results suggest that citrate can have both a promotion and protective role, depending on subtle factors, such as initial concentration, non-equilibrium behavior and the exchange rate of ligands in the first shell of the metals.

  5. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  6. Conductive aluminum line formation on aluminum nitride surface by infrared nanosecond laser

    NASA Astrophysics Data System (ADS)

    Kozioł, Paweł E.; Antończak, Arkadiusz J.; Szymczyk, Patrycja; Stępak, Bogusz; Abramski, Krzysztof M.

    2013-12-01

    In this paper the fabrication of conductive aluminum paths on AlN ceramic's surface due to the interaction of laser radiation Nd:YAG (1.064 μm) is presented. The metallization process produces an appropriate power value on the ceramics surface to ensure the correct temperature (2200 °C) for which aluminum and nitrogen bonds are broken. Studies have been undertaken on creating low-ohmic structures depending on the parameters such as radiation power, scanning speed, the coverage of subsequent pulses and the environmental impact of the process (air, nitrogen, argon). Furthermore, with regards to the application of this method, it was significant to determine the thickness of the functional layer. A structure of the resistivity of ρ = 0.64 × 10-6 Ω m and aluminum layer thickness of 10 μm was achieved for the process carried out on the inert gas, argon. In addition, a quantitative analysis of nitrogen and aluminum for laser-treated structures was conducted. The performed tests confirmed that the highest amount of aluminum was produced on the surface treated by laser radiation in the environment of the process gas, argon.

  7. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  8. Measurement of fracture stress for 6000-series extruded aluminum alloy tube using multiaxial tube expansion testing method

    NASA Astrophysics Data System (ADS)

    Nagai, Keisuke; Kuwabara, Toshihiko; Ilinich, Andrey; Luckey, George

    2018-05-01

    A servo-controlled tension-internal pressure testing machine with an optical 3D digital image correlation system (DIC) is used to measure the multiaxial deformation behavior of an extruded aluminum alloy tube for a strain range from initial yield to fracture. The outer diameter of the test sample is 50.8 mm and wall thickness 2.8 mm. Nine linear stress paths are applied to the specimens: σɸ (axial true stress component) : σθ (circumferential true stress component) = 1:0, 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, 1:4, and 0:1. The equivalent strain rate is approximately 5 × 10-4 s-1 constant. The forming limit curve (FLC) and forming limit stress curve (FLSC) are also measured. Moreover, the average true stress components inside a localized necking area are determined for each specimen from the thickness strain data for the localized necking area and the geometry of the fracture surface.

  9. Laser-induced breakdown spectroscopy for identification and characterization of aluminum

    NASA Astrophysics Data System (ADS)

    Dimas Prasetya, Oki; Maulana, Trisna; Khumaeni, Ali

    2018-05-01

    Identification of aluminum is required to evaluate the quality of metallic products in industry. In this study, identification and characterization of aluminum has been carried out by using Laser Induced Breakdown Spectroscopy (LIBS). LIBS can be analyzed elements in metal rapidly and does not require more sample preparation, and is a low-cost compared to other conventional methods. The samples used in this study were pure aluminum plate and Indonesian currency coin. Experimentally, a pulse neodymium yttrium aluminum garnet (Nd:YAG laser, 1064 nm) was irradiated on a metal sample surface at a reduced pressure of air to produce a luminous plasma. The plasma was then detected by optical multichannel analyzer to get emission spectrum. Emission spectrum of neutral and ionic aluminum (Al) lines of Al I (309,28 nm), Al II (359,75 nm), Al I (396,15 nm), Al II (448,98 nm), Al II (561,32 nm), Al II (660,96 nm), Al II (781,23 nm) was clearly detected from the pure aluminum plate. The same spectrum of Al was also detected from the Indonesian currency coin. However, the emission intensity of Al is lower for Indonesian currency coin.

  10. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  11. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  12. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces weremore » subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.« less

  13. Design, process development, manufacture, test and evaluation of boron-aluminum for space shuttle components

    NASA Technical Reports Server (NTRS)

    Garrett, R. A.; Niemann, J. T.; Otto, O. R.; Brown, N. M.; Heinrich, R. E.

    1973-01-01

    A multi phase boron-aluminum design and evaluation program for space shuttle components was conducted, culminating in the fabrication of a 1.22 m (48 inch) x 1.83 m (72 inch) boron-aluminum compression panel capable of distributing a point load of 1555 kN (350,000 lbs) into a uniform running load at a temperature of 589 K (600 F). This panel was of the skin-stringer construction with two intermediate frame supports; seven unidirectional stringers varied in thickness from 5 plies to 52 plies and the skin was contoured to thicknesses ranging from 10 plies to 62 plies. Both the stringers and the skin incorporated Ti-6Al-4V titanium interleaves to increase bearing and in-plane shear strength. The discrete program phases were materials evaluation, design studies, process technology development, fabrication and assembly, and test and evaluation.

  14. Investigation of strength characteristics of aluminum alloy under dynamic tension

    NASA Astrophysics Data System (ADS)

    Evstifeev, A. D.

    2018-04-01

    The study presents the results of experimental-theoretical analysis for aluminum alloy subjected to static and dynamic tension on samples of different types. The material was tested under initial coarse-grained (CG) and in ultrafine-grained (UFG) condition. The time dependence of the tensile strength is calculated using an incubation time fracture criterion based on a set of fixed constants of the material.

  15. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...

  16. Metal exposures from aluminum cookware: An unrecognized public health risk in developing countries.

    PubMed

    Weidenhamer, Jeffrey D; Fitzpatrick, Meghann P; Biro, Alison M; Kobunski, Peter A; Hudson, Michael R; Corbin, Rebecca W; Gottesfeld, Perry

    2017-02-01

    Removing lead from gasoline has resulted in decreases in blood lead levels in most of the world, but blood lead levels remain elevated in low and middle-income countries compared to more developed countries. Several reasons for this difference have been investigated, but few studies have examined the potential contribution from locally-made aluminum cookware. In a previous study of cookware from a single African country, Cameroon, artisanal aluminum cookware that is made from scrap metal released significant quantities of lead. In this study, 42 intact aluminum cookware items from ten developing countries were tested for their potential to release lead and other metals during cooking. Fifteen items released ≥1 microgram of lead per serving (250mL) when tested by boiling with dilute acetic acid for 2h. One pot, from Viet Nam, released 33, 1126 and 1426 micrograms per serving in successive tests. Ten samples released >1 microgram of cadmium per serving, and fifteen items released >1 microgram of arsenic per serving. The mean exposure estimate for aluminum was 125mg per serving, more than six times the World Health Organization's Provisional Tolerable Weekly Intake of 20mg/day for a 70kg adult, and 40 of 42 items tested exceeded this level. We conducted preliminary assessments of three potential methods to reduce metal leaching from this cookware. Coating the cookware reduced aluminum exposure per serving by >98%, and similar reductions were seen for other metals as well. Potential exposure to metals by corrosion during cooking may pose a significant and largely unrecognized public health risk which deserves urgent attention. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Boron/aluminum skins for the DC-10 aft pylon

    NASA Technical Reports Server (NTRS)

    Elliott, S. Y.

    1975-01-01

    Boron/aluminum pylon boat tail skins were designed and fabricated and installed on the DC-10 aircraft for a 5-year flight service demonstration test. Inspection and tests of the exposed skins will establish the ability of the boron/aluminum composite to withstand long time flight service conditions, which include exposure to high temperatures, sonic fatigue, and flutter. The results of a preliminary testing program yield room temperature and elevated temperature data on the tension, compression, in-plane shear, interlaminar shear, bolt bearing, and tension fatigue properties of the boron/aluminum laminates. Present technology was used in the fabrication of the skins. Although maximum weight saving was not sought, weight of the constant thickness boron/aluminum skin is 26% less than the chemically milled titanium skin.

  18. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  19. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  20. Effect of grain orientation on aluminum relocation at incipient melt conditions

    DOE PAGES

    Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; ...

    2015-09-01

    Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore,more » compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminum’s strength and mode of failure.« less

  1. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David (Donghang)

    2010-01-01

    Conductive polymer aluminum capacitor (PA capacitor) is an evolution of traditional wet electrolyte aluminum capacitors by replacing liquid electrolyte with a solid, highly conductive polymer. On the other hand, the cathode construction in polymer aluminum capacitors with coating of carbon and silver epoxy for terminal connection is more like a combination of the technique that solid tantalum capacitor utilizes. This evolution and combination result in the development of several competing capacitor construction technologies in manufacturing polymer aluminum capacitors. The driving force of this research on characterization of polymer aluminum capacitors is the rapid progress in IC technology. With the microprocessor speeds exceeding a gigahertz and CPU current demands of 80 amps and more, the demand for capacitors with higher peak current and faster repetition rates bring conducting polymer capacitors to the center o( focus. This is because this type of capacitors has been known for its ultra-low ESR and high capacitance. Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were obtained and tested. The construction analysis of the capacitors revealed three different constructions: conventional rolled foil, the multilayer stacking V-shape, and a dual-layer sandwich structure. The capacitor structure and its impact on the electrical characteristics has been revealed and evaluated. A destructive test with massive current over stress to fail the polymer aluminum capacitors reveals that all polymer aluminum capacitors failed in a benign mode without ignition, combustion, or any other catastrophic failures. The extraordinary low ESR (as low as 3 mOMEGA), superior frequency independence reported for polymer aluminum capacitors have been confirmed. For the applications of polymer aluminum capacitors in space programs, a thermal vacuum cycle test was performed. The results, as expected, show no

  2. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    NASA Technical Reports Server (NTRS)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    multiple craters. Samples were obtained from the HST largest craters for examination by electron microscope equipped with x-ray spectrometers to determine impactor source (micrometeoroid or orbital debris). In an attempt to estimate the MMOD particle diameters that produced these craters, this paper will present equations for spall diameter, crater depth and crater diameter in Z93 coated aluminum. The equations will be based on hypervelocity impact tests of Z93 painted aluminum at the NASA White Sands Test Facility. Equations inputs for velocities beyond the testable regime are expected from hydrocode simulations of Z93 coated aluminum using CTH and ANSYS AUTODYN.

  3. Experimental study of void formation during aluminum solidification in reduced gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis Paul, III

    1993-01-01

    Void formation due to volumetric shrinkage and liquid/vapor reorientation during aluminum solidification was observed in real time by using a radiographic viewing system in normal and reduced gravity. An end-chill directional solidification furnace with water quench was designed and constructed to solidify aluminum samples during the approximately 16 sec of reduced gravity (+/-0.02g) achieved by flying an aircraft through a parabolic trajectory. In the first series of tests the aluminum was contained in a vacuum sealed, pyrolytic boron nitride crucible. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and the crucible lid. The void formation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case during reduced gravity surface tension caused two voids to form in the top corners of the crucible, but during normal gravity only one large void formed across the top. In the second series of tests the aluminum was contained in a pyrolytic boron nitride crucible that was placed in a stainless steel container and sealed in an environment of argon plus 4 percent hydrogen. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and one side wall and the lid. The void for nation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible, although the meniscus became more convex in reduced gravity. In the wetting case the aluminum did not climb up the corners in 1g, and one large symmetric void resulted at the top when the aluminum had solidified. In the wetting case during reduced gravity the molten aluminum was drawn up the wetted wall and partially across the lid by a

  4. Influence of Impurities and Filling Protocol on the Aluminum Fixed Point

    NASA Astrophysics Data System (ADS)

    Renaot, E.; Valin, M. H.; Elgourdou, M.

    2008-06-01

    To improve the uncertainty of the aluminum fixed point, a study was launched by LNE-INM/CNAM in the framework of the EUROMET Project 732 “Toward more accurate temperature fixed points” (Coordinating laboratory: LNE-INM/CNAM, 17 partner countries). A new open cell was filled with aluminum of 99.99995% purity. A French laboratory carried out elemental analysis of the sample using glow discharge-mass spectrometry (GD-MS). The values of the equilibrium distribution coefficient k and of the derivative {δ T_{{l}}/δ ci_{{l}}} of the temperature of the liquidus line with respect to the concentration of impurity i will be obtained through collaboration with a French physical and chemical laboratory. In the past, some aluminum cells were opened after several melts and freezes. The aluminum ingot was sticking to the graphite crucible, indicating that physicochemical reactions had likely occurred between Al and C. To avoid this reaction, an effort was made to draw benefit from the Al2O3 film that appears immediately on the surface of the aluminum ingot when it is exposed to oxygen. The open aluminum cell was tested in different furnaces and with different thermal insulator arrangements inside the fixed-point assembly. The observed drifts of the plateaux were always larger than the expected values. The cell was opened to inspect the aluminum ingot. The ingot was extracted easily, since no sticking to the crucible had occurred. The aluminum showed a very bright surface, but the presence of many “craters” throughout the thickness of the ingot was surprising. In some cases, the thermometer well was even apparent.

  5. Secondary Aluminum Processing Waste: Salt Cake ...

    EPA Pesticide Factsheets

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leachable metal content may still pose a contamination concern and potential human and ecological exposure if uncontrollably released to the environment. As a result, salt cake should always be managed at facilities that utilize synthetic liner systems with leachate collection (the salt content of the leachate will increase the hydraulic conductivity of clay liners within a few years of installation). The mineral phase analysis showed that various species of aluminum are present in the salt cake samples with a large degree of variability. The relative abundance of various aluminum species was evaluated but it is noted that the method used is a semi-quantitative method and as a result there is a limitation for the data use. The analysis only showed a few aluminum species present in salt cake which does not exclude the presence of other crystalline species especially in light of the variability observed in the samples. Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of salt cake in MSW landfills. From the end-of-life management perspective, data presented here suggest that salt cake should not be size reduce

  6. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  7. Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba.

    PubMed

    Yi, Min; Yi, Huilan; Li, Honghai; Wu, Lihua

    2010-04-01

    Aluminum (Al) exists naturally in air, water, and soil, and also in our diet. Al can be absorbed into the human body and accumulates in different tissues, which has been linked to the occurrence of Alzheimer's disease and various neurological disorders. By using Vicia cytogenetic tests, which are commonly used to monitor the genotoxicity of environmental pollutants, cytogenetic effects of aluminum (AlCl(3)) were investigated in this study. Present results showed that Al caused significant increases in the frequencies of micronuclei (MN) and anaphase chromosome aberrations in Vicia faba root tips exposed to Al over a concentration-tested range of 0.01-10 mM for 12 h. The frequency of micronucleated cells was higher in Al-treated groups at pH 4.5 than that at pH 5.8. Similarly, AlCl(3) treatment caused a decrease in the number of mitotic cells in a dose- and pH-dependent manner. The number of cells in each mitotic phase changed in Al-treated samples. Mitotic indices (MI) decreased with the increases of pycnotic cells. Our results demonstrate that aluminum chloride is a clear clastogenic/genotoxic and cytotoxic agent in Vicia root cells. The V. faba cytogenetic test could be used for the genotoxicity monitoring of aluminum water contamination.

  8. Tests Of Polyurethane And Dichromate Coats On Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report describes experiments to determine relative effectiveness of new polyurethane and more-conventional dichromate coat in helping to retard corrosion of anodized 6061-T6 aluminum. Concludes by suggesting greater protection against corrosion achieved by combining polyurethane-sealing method with hard-anodizing method and by increasing thickness of coat.

  9. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  10. Study of laser interaction with aluminum contaminant on fused silica

    NASA Astrophysics Data System (ADS)

    Palmier, S.; Tovena, I.; Lamaignère, L.; Rullier, J. L.; Capoulade, J.; Bertussi, B.; Natoli, J. Y.; Servant, L.

    2005-12-01

    One of the major issues met in the operating of high power lasers concerns the cleanliness of laser components. In this context, in order to assess laser-induced damage in presence of metallic particulate contamination, we study the behaviour of aluminum on a silica substrate. Model samples containing calibrated aluminum square dots of 50 x 50 μ2 have been deposited by photolithography on a silica substrate. The sample was irradiated by a Nd:YAG laser at 1064 nm with different fluences and also different numbers of shots on each dot. Then the initial aluminum dot zone and the surrounding silica were analyzed using Nomarski microscopy, profilometry and photothermal microscopy. Laser fluence is revealed to be a very important parameter for the behaviour of aluminum dots. For example, it is possible to find a fluence of irradiation where aluminum dots are blown off the substrate and only small modifications occur to silica. In this case, increasing the number of shots doesn't significantly affect the silica surface.

  11. Monitoring the integrity of massive aluminum structures using PZT transducers and the technique of impedance

    NASA Astrophysics Data System (ADS)

    da Costa, Rosalba; Maia, Joaquim M.; Assef, Amauri A.; Pichorim, Sergio F.; Costa, Eduardo T.; L. S. N. Button, Vera

    2015-04-01

    Safety, performance, economy and durability are essential items to qualify materials for the manufacturing of structures used in different areas. Generally, the materials used for this purpose are formed by composites and sometimes they can present failure during the manufacturing process. Such failures can also occur during use due to fatigue and wear, causing damage often difficult to be visually detected. In these cases, the use of non destructive testing (NDT) has proven to be a good choice for assessing the materials quality. The objective of this work was the electromechanical impedance evaluation of massive aluminum structures using ultrasonic transducers to detect discontinuities in the material. The tests have been done using an impedance analyzer (Agilent 4294A), an ultrasound transducer (1.6 MHz of central frequency), two types of PZT ceramics (0.267 mm and 1 mm thickness) and four aluminum samples (250 x 50 x 50 mm) with the transducer placed at three different regions. One sample was kept intact (reference) and the others were drilled in three positions with different sizes of holes (5 mm. 8 mm and 11 mm). The electromechanical impedance was recorded for each sample. The root mean square deviation index (RMSD) between the impedance magnitude of the reference and damaged samples was calculated and it was observed an increase in the RMSD due to the increase of the diameter of the holes (failures) in the samples completely drilled. The results show that the proposed methodology is suitable for monitoring the integrity of aluminum samples. The technique may be evaluated in characterizing other materials to be used in the construction of prostheses and orthoses.

  12. Development and testing of aluminum micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Kumaraguruparan, G.; Sornakumar, T.

    2010-06-01

    Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.

  13. Mechanical behavior of shock-wave consolidated nano and micron-sized aluminum/silicon carbide and aluminum/aluminum oxide two-phase systems characterized by light and electron metallography

    NASA Astrophysics Data System (ADS)

    Alba-Baena, Noe Gaudencio

    This dissertation reports the results of the exploratory study of two-phase systems consisting of 150 microm diameter aluminum powder mechanically mixed with 30 nm and 30 microm diameter SiC and Al2O3 powders (in volume fractions of 2, 4, and 21 percent). Powders were mechanically mixed and green compacted to ˜80% theorical density in a series of cylindrical fixtures (steel tubes). The compacted arrangements were explosively consolidated using ammonium nitrate-fuel oil (ANFO) to form stacks of two-phase systems. As result, successfully consolidated cylindrical monoliths of 50 mm (height) x 32 mm (in diameter) were obtained. By taking advantage of the use of SWC (shock wave consolidation) and WEDM (wire-electric discharge machining), the heterogeneous systems were machined in a highly efficiency rate. The sample cuts used for characterization and mechanical properties testing, require the use of less that 10cc of each monolith, in consequence there was preserved an average of 60% of the obtained system monoliths. Consolidated test cylinders of the pure Al and two-phase composites were characterized by optical metallography and TEM. The light micrographs for the five explosively consolidated regimes: aluminum powder, nano and micron-sized Al/Al2O3 systems, and the nano and micron-sized Al/SiC systems exhibit similar ductility in the aluminum grains. Low volume fraction systems exhibit small agglomerations at the grain boundaries for the Al/Al2O3 system and the Al/SiC system reveal a well distributed phase at the grain boundaries. Large and partially bonded agglomerations were observable in the nano-sized high volume fraction (21%) systems, while the micron-sized Al/ceramic systems exhibit homogeneous distribution along the aluminum phase grains. TEM images showed the shock-induced dislocation cell structure, which has partially recrystallized to form a nano grain structure in the consolidated aluminum powder. Furthermore, the SiC nano-agglomerates appeared to have

  14. Structure-composition-property relationships in 5xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.

    Al-Mg alloys are well suited for marine applications due to their low density, ease of fabrication, structural durability, and most notably resistance to corrosion. The purpose of this study is to investigate the effects of alloying additions, mechanical processing and heat treatments on the development of grain boundary phases that have an effect on intergranular corrosion (IGC). Cu, Zn, and Si modified compositions of AA5083 were produced that were subjected to a low and high degree of cold work and various heat treatments. ASTM G67 (NAMLT) intergranular corrosion testing and detailed microstructural characterization for various alloys was carried out. An optimal composition and processing condition that yielded the best intergranular corrosion resistant material was identified based on the ASTM G67 test screening. Further, the outstanding modified AA5083 was selected for further microstructural analysis. This particular alloy with has a magnesium level high enough to make it susceptible to intergranular corrosion is very resistant to IGC. It was found that development of the appropriate sub-structure with some Cu, Si and Zn resulted in a material very resistant to IGC. Formation of many sinks, provided by sub-boundaries, within microstructure is very beneficial since it produces a relatively uniform distribution of Mg in the grain interiors, and this can suppress sensitization of this alloy very successfully. This is a very promising rote for the production of high-strength, and corrosion resistant aluminum alloys. Additionally in this study, TEM sample preparation become very crucial step in grain boundary phase investigation. Focus Ion Beam (FIB) milling was used as a primary TEM sample preparation technique because it enables to extract the samples from desired and very specific locations without dissolving grain boundary phases as it was in conventional electropolishing method. However, other issues specifically relevant to FIB milling of aluminum alloys

  15. Occupational exposure to aluminum and its biomonitoring in perspective.

    PubMed

    Riihimäki, Vesa; Aitio, Antero

    2012-11-01

    Exposure to aluminum at work is widespread, and people are exposed to several species of aluminum, which differ markedly as to the kinetics and toxicity. Especially welding of aluminum is widely applied and continuously expanding. Inhalation of fine particles of sparsely soluble aluminum results in the retention of deposited particles in the lungs. From the lungs, aluminum is released to the blood and distributed to bones and the brain, and excreted to urine. Soluble aluminum compounds are not accumulated in the lungs. Neurotoxicity is the critical effect of exposure to sparsely soluble aluminum compounds. Studies on workers exposed to aluminum welding fumes have revealed disturbances of cognitive processes, memory and concentration, and changes in mood and EEG. Early pulmonary effects have been observed among aluminum powder-production workers using high-resolution computed tomography. The primary objective of aluminum biomonitoring (BM) is to help prevent the formation of aluminum burden in the lungs and thereby to prevent harmful accumulation of aluminum in target organs. BM of aluminum can be effectively used for this purpose in the production/use of aluminum powders, aluminum welding, as well as plasma cutting, grinding, polishing and thermal spraying of aluminum. BM of aluminum may also be similarly useful in the smelting of aluminum and probably in the production of corundum. BM can help identify exposed individuals and roughly quantitate transient exposure but cannot predict health effects in the production/use of soluble aluminum salts. For urinary aluminum (U-Al) we propose an action limit of 3 µmol/L, corrected to a relative density of 1.021, in a sample collected preshift after two days without occupational exposure, and without use of aluminum-containing drugs. This value corresponds roughly to 2.3 µmol/g creatinine. Compliance with this limit is expected to protect the worker against the critical effect of aluminum in exposure to sparsely soluble

  16. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  17. Stability of an aluminum salt-adjuvanted protein D-conjugated pneumococcal vaccine after exposure to subzero temperatures

    PubMed Central

    Fortpied, Juliette; Wauters, Florence; Rochart, Christelle; Hermand, Philippe; Hoet, Bernard; Moniotte, Nicolas; Vojtek, Ivo

    2018-01-01

    ABSTRACT Accidental exposure of a vaccine containing an aluminum-salt adjuvant to temperatures below 0°C in the cold chain can lead to freeze damage. Our study evaluated the potential for freeze damage in a licensed aluminum-salt-containing protein-D-conjugated pneumococcal vaccine (PHiD-CV; Synflorix, GSK) in conditions that included static storage, single subzero-temperature excursions, and simulated air-freight transportation. Several parameters were assessed including freezing at subzero temperatures, aluminum-salt-particle size, antigen integrity and immunogenicity in the mouse. The suitability of the WHO's shake test for identifying freeze-damaged vaccines was also assessed. During subzero-temperature excursions, the mean temperatures at which PHiD-CV froze (−16.7°C to −18.1°C) appeared unaffected by the type of vaccine container (two-dose or four-dose vial, or single-dose syringe), vaccine batch, rotational agitation, or the rate of temperature decline (−0.5 to −10°C/hour). At constant subzero temperature and in simulated air-freight transportation, the freezing of PHiD-CV appeared to be promoted by vibration. At −5°C, no PHiD-CV sample froze in static storage (>1 month), whereas when subjected to vibration, a minority of samples froze (7/21, 33%) within 18 hours. At −8°C with vibration, nearly all (5/6, 83%) samples froze. In these vibration regimes, the shake test identified most samples that froze (10/12, 93%) except two in the −5°C regime. Nevertheless, PHiD-CV-antigen integrity appeared unaffected by freezing up to −20°C or by vibration. And although aluminum-salt-particle size was increased only by freezing at −20°C, PHiD-CV immunogenicity appeared only marginally affected by freezing at −20°C. Therefore, our study supports the use of the shake test to exclude freeze-damaged PHiD-CV in the field. PMID:29337646

  18. Microstructure, Friction and Wear of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2018-06-01

    MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.

  19. Powdered aluminum and oxygen rocket propellants: Subscale combustion experiments

    NASA Technical Reports Server (NTRS)

    Meyer, Mike L.

    1993-01-01

    Aluminum combined with oxygen has been proposed as a potential lunar in situ propellant for ascent/descent and return missions for future lunar exploration. Engine concepts proposed to use this propellant have not previously been demonstrated, and the impact on performance from combustion and two-phase flow losses could only be estimated. Therefore, combustion tests were performed for aluminum and aluminum/magnesium alloy powders with oxygen in subscale heat-sink rocket engine hardware. The metal powder was pneumatically injected, with a small amount of nitrogen, through the center orifice of a single element O-F-O triplet injector. Gaseous oxygen impinged on the fuel stream. Hot-fire tests of aluminum/oxygen were performed over a mixture ratio range of 0.5 to 3.0, and at a chamber pressure of approximately 480 kPa (70 psia). The theoretical performance of the propellants was analyzed over a mixture ratio range of 0.5 to 5.0. In the theoretical predictions the ideal one-dimensional equilibrium rocket performance was reduced by loss mechanisms including finite rate kinetics, two-dimensional divergence losses, and boundary layer losses. Lower than predicted characteristic velocity and specific impulse performance efficiencies were achieved in the hot-fire tests, and this was attributed to poor mixing of the propellants and two-phase flow effects. Several tests with aluminum/9.8 percent magnesium alloy powder did not indicate any advantage over the pure aluminum fuel.

  20. Be-10 in terrestrial bauxite and industrial aluminum: An LDEF fallout

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Harmon, B. A.; Parnell, T. A.

    1995-01-01

    Work has continued on the search for Be-10 on metals other than aluminum flown on LDEF. Much time-consuming extractive chemistry has been performed at Rutgers University on turnings obtained from the ends of two stainless steel trunnions from LDEF and the prepared samples will be run on the University of Pennsylvania accelerator mass spectrometer. We have continued to investigate our discovery of naturally-occurring Be-10 contamination in bauxite and industrial aluminums from different sources. Measurements of Be-10 in ores from three different sites, and from four different samples of commercial aluminum have been made. Our investigators indicate that the contamination in commercial aluminum metal originates in its principal ore, bauxite. The levels in some bauxite samples were much greater than the maximum possible for in situ production by cosmic ray secondaries. Absorption of atmospheric Be-10 by surface ores exposed to rainfall is a reasonable explanation.

  1. Replacement of steel parts with extruded aluminum alloys in an automobile

    NASA Astrophysics Data System (ADS)

    Daggula, Manikantha Reddy

    Over the past years, vehicle emissions have shown a negative impact on environment and human health. A new strategy has been used by automakers to reduce a vehicle's weight which significantly reduce fuel consumption and C02 emissions. A very light car consumes very less fuel as it needs to overcome less inertia, decreasing the required power to movie the vehicle. Reducing weight is the easiest way to increase fuel economy and making it by just 10% can increase its efficiency 6 to 8 percent. For a normal scale 80% of vehicles weight is shared among chassis, power train and other exterior components. Almost 60% of the vehicles weight is comprised of steel and the remaining is with cast and extruded aluminum and magnesium alloys. Our main aim is to look for the parts like Fuel tank holder, Fuel filler neck, Turbo inlet assembly, and Brake lines, Dash board frame which are made from steel and replace them with extruded aluminum alloys, to analyze a conventional rear wheel aluminum drive shaft and replace it with a new design and with a new aluminum alloy. The current project involves dismantling an automobile and looking for feasible steel parts and making samples, analyzing the hardness of the samples. These parts are optimally analyzed using Ansys Finite element analysis tool, these parts are subjected to the constraints such as three-point bending, tensile testing, hydrostatic pressure and also torsional stress action on the drive shaft, the deformation and stress are observed in these parts. The results show the current steel parts can be replaced with 3000 series aluminum alloy and the drive shaft can be replaced with new design with 6061-T6 Al-alloy which decreases 25% of the shaft weight.

  2. Optimization of the Mechanical Properties and Residual Stresses in 2024 Aluminum Alloy Through Heat Treatment

    NASA Astrophysics Data System (ADS)

    Araghchi, M.; Mansouri, H.; Vafaei, R.; Guo, Y.

    2018-05-01

    Residual stresses induced during quenching of aluminum alloys cause dimensional instability and distortion. In this study, the effects of different concentrations of polyalkylene glycol (PAG) quenchants on residual stresses and mechanical properties of 2024 aluminum alloy were investigated. Surface residual stresses were measured by using hole-drilling strain-gauge method. Also, mechanical properties and microstructure of the heat-treated samples were analyzed using hardness measurements, tensile tests, and transmission electron microscopy. Results showed that quenching into a 15% polymeric solution and aging at 190 °C for 12 h cause 50% reduction in residual stress as compared with quenching in water at 20 °C and naturally aging. Moreover, tensile strength decreased by 104 MPa ( 20%) in compared with the T6 sample.

  3. Aluminum and chromium ion particle studies for enhancement of surface properties

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An experimental project was undertaken which produced ion plated coatings on steel substrates. About twenty tensile samples of 4340 steel were ion plated in the Denton system with aluminum using resistance heating evaporation boats. In the V.T.A. 7375 system, ten samples were chromium ion plated; four on 4340 steel disks and the other six onto 440-C stainless steel rods for roller bearing wear improvement testing. Each of the samples was plated on a separate run to correlate the film parameters with the run parameters. Some of the chromium literature was reviewed, and improvements to the vacuum system were made.

  4. Strain distribution in hot rolled aluminum by photoplastic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyinlola, Adeyinka Kofoworola

    1974-10-01

    A previously developed photomechanic material, Larninac, which excellently simulates the behavior of aluminum in tension has been investigated intensively as a possible modeling material for hot-rolled aluminum billets. Photoplasticity techniques combined with the Moire method have been used to study the behavior of the Laminac mixture in compression. Photoplastic analysis revealed that a Laminac mixture of 60% flexible and 40% rigid resins, compressed or rolled at 40°C, showed the phenomenon of double bulging which has been observed in hot-rolled aluminum billets. The potentiality of the 60:40 Laminac mixture as a possible Simulating material at 40°C is further enhanced by themore » fact that the true stress-true strain curves of cylindrical samples compressed at 40°C correlated very well with true stresstrue strain of identical cylindrical samples of aluminum compressed. at 300°C, 425PC and 500°c.« less

  5. Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials

    DTIC Science & Technology

    2011-12-01

    compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon

  6. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  7. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Huanjun; Zorba, Serkan; Gao Yongli

    2006-12-01

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlO{sub x}/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlO{sub x} interlayer.

  8. The Solubility of Aluminum in Cryolite-Based Electrolyte-Containing KF

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Yu, Jiangyu; Gao, Bingliang; Liu, Yibai; Hu, Xianwei; Shi, Zhongning; Wang, Zhaowen

    2016-04-01

    The solubility of aluminum in NaF-AlF3-CaF2-KF-A12O3 electrolyte system at 1253 K (980 °C) has been measured by the analysis of quenched samples saturated with aluminum. The content of the dissolved metal in the quenched melt was determined by collecting the volume of hydrogen gas when a finely crushed sample is treated with HCl. Addition of 0 to 5 pct KF has no obvious effect on the solubility of aluminum in cryolite-based melts with molar ratio of NaF/AlF3 (cryolite ratio) ranging from 2.2 to 3.0. The solubility of aluminum increases from 0.015 to 0.026 wt pct with cryolite ratio increases from 2.2 to 4.0 in the NaF-AlF3-5 wt pct CaF2-3 wt pct A12O3 electrolyte at 1253 K (980 °C). Aluminum solubility was affected by both chemical replacement reaction of Al + 3NaF = AlF3 + 3Na and physical dissolution.

  9. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    NASA Technical Reports Server (NTRS)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  10. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  11. Maintenance and testing of anodized aluminum mirrors on the Whipple 10 m Whipple Telescope

    NASA Astrophysics Data System (ADS)

    Badran, H. M.; Weekes, T. C.

    2001-08-01

    Threshold energy sensitivity depends not only on the high reflectivity of the mirrors used in atmospheric Cherenkov telescopes but also on the maintenance of this reflectivity over months/years. The successful application of a mirror maintenance technique depends on the type of mirror coating and the contamination that must be removed. The uncovered mirrors in use on the 10-m Whipple gamma-ray telescope are anodized aluminum mirrors. A standard cleaning technique for such mirrors is not available. With the aim of extending the life of the aluminum coating exposed to the Mt ˙Hopkins environment, several cleaning procedures were tested on mirrors that had been exposed for three years. Evaluation of the most effective cleaners is presented. Preliminary results are also presented from a long-term experiment using newly coated mirrors at the proposed VERITAS site and at the current 10 m site. This experiment is designed to reveal the rates at which the reflectance degrades as a function of time, depth of anodization, storage direction, degree of covering, and maintenance procedures.

  12. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  13. The effect of aluminum nanoparticles on the structure, mechanical properties and failure of aluminum processed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Ivanov, K. V.; Fortuna, S. V.; Kalashnikova, T. A.; Rodkevich, N. G.

    2017-12-01

    The microstructure, mechanical properties, and fracture type of aluminum with and without aluminum nanoparticles processed by accumulative roll bonding (ARB) have been studied using transmission and scanning electron microscopy, microhardness measurements, and tensile tests. It is shown that the injection of aluminum nanoparticles increases the structure refinement rate during ARB due to the increasing tendency for dynamic recrystallization. It has a different effect on different mechanical characteristics. The different effect of nanoparticles on different structural features is the reason for the different effect on different mechanical properties related with these features. The fracture mechanism is shown to change from ductile in aluminum to mixed ductile-brittle in the composite with a 1.5-fold decrease in ductility as a result of nanoparticle injection.

  14. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  15. Carbide coated fibers in graphites-aluminum composites. [(fabrication of metal matrix composites)

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1976-01-01

    Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown.

  16. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    NASA Astrophysics Data System (ADS)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  17. Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds

    NASA Astrophysics Data System (ADS)

    Jung, Jeki; Oak, Jeong-Jung; Kim, Yong-Hwan; Cho, Yi Je; Park, Yong Ho

    2017-11-01

    The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.

  18. Passivated aluminum nanohole arrays for label-free biosensing applications.

    PubMed

    Canalejas-Tejero, Víctor; Herranz, Sonia; Bellingham, Alyssa; Moreno-Bondi, María Cruz; Barrios, Carlos Angulo

    2014-01-22

    We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.

  19. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  20. Studies of the Use of Electrochemical Impedance Spectroscopy to Characterize and Assess the Performance of Lacquers Used to Protect Aluminum Sheet and Can Ends

    NASA Astrophysics Data System (ADS)

    Ali, Mohammad

    This study involved investigating the feasibility of using Electrochemical Impedance Spectroscopy to assess the performance of coatings used to protect aluminum in beverage containers, and developing an accelerated testing procedure. In the preliminary investigation, tests were performed to ensure that the EIS systems at hand are capable, functional and consistent. This was followed by EIS testing of kitchen-aluminum foil and high-impedance epoxy polymer as a baseline for chemically-active and chemically-inert systems. The ability of EIS to differentiate between intact and flawed coatings was tested by investigating deliberately damaged coatings. The effects of varying the pH and oxygen content on the performance of the coated aluminum samples were also tested. From this investigation, it has been concluded that EIS can be used to differentiate between intact and flawed coatings and detect corrosion before it is visually observable. Signatures of corrosion have been recorded and a preliminary testing procedure has been drawn.

  1. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    DTIC Science & Technology

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions

  2. Deposition of aluminum coatings on bio-composite laminates

    NASA Astrophysics Data System (ADS)

    Boccarusso, L.; Viscusi, A.; Durante, M.; Astarita, A.; De Fazio, D.; Sansone, R.; Caraviello, A.; Carrino, L.

    2018-05-01

    As a result of the increasing environmental awareness, the concern for environmental sustainability and the growing global waste problem, the interest of bio-composites materials is growing rapidly in the last years in order to use them in various engineering fields. Tremendous advantages and opportunities are associated with the use of these materials. On the other hand, some issues are related to the superficial properties of the bio-laminates, in particular the wear properties, the flame resistance and the aesthetic appearance have to be improved in order to extend the application fields of these materials. Aiming to these goals this paper deals with the study of the deposition of aluminum coating through cold spray process on hemp/PLA bio-composites manufactured by using the compression molding technique. Therefore, SEM observations, roughness analyses, bending tests, pin on disk and scratch tests were carried out in order to study the feasibility of the process and to investigate on the properties of the coated samples. The experimental results proved that when the process parameters of the deposition process are properly set, no damages are induced in the composite panel and that the aluminum coating, under specific load conditions, resulted to be able to protect the substrate.

  3. Analysis and characterization of aluminum chlorohydrate oligocations by capillary electrophoresis.

    PubMed

    Ouadah, Nesrine; Moire, Claudine; Kuntz, Jean-François; Brothier, Fabien; Cottet, Hervé

    2017-04-07

    Aluminum chlorohydrates (ACH) are the active ingredients used in most antiperspirant products. ACH is a water soluble aluminum complex which contains several oligomeric polycations of aluminum with degrees of polymerization up to Al 13 or Al 30 . The characterization and quantification of ACH oligo-cations remain a challenging issue of primary interest for developing structure/antiperspirant activity correlations, and for controlling the ACH ingredients. In this work, highly repeatable capillary electrophoresis (CE) separation of A l3 + , Al 13 and Al 30 oligomers contained in ACH samples was obtained at pH 4.8, owing to a careful choice of the background electrolyte counter-ion and chromophore, capillary I.D. and capillary coating. This is the first reported separation of Al 13 and Al 30 oligomers in conditions that are compatible with the aluminum speciation in ACH solution or in conditions of antiperspirant application/formulation. Al 13 and Al 30 effective charge numbers were also determined from the sensitivity of detection in indirect UV detection mode. The relative mass proportion of Al 13 compared to Al 13 +Al 30 could be determined in different aluminum chlorohydrate samples. Due to its simplicity, repeatability/reproducibility, minimal sample preparation and mild analytical conditions, CE appears to be a promising analytical separation technique for the characterization of ACH materials and for the study of structure/antiperspirant activity correlations. Copyright © 2017. Published by Elsevier B.V.

  4. Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride.

    PubMed

    Sharma, Shweta; Sharma, K P; Sharma, Subhasini

    2016-12-01

    Aluminum is ingested through foods, water, air, and even drugs. Its intake is potentiated further through foods and tea prepared in aluminum utensils and Al salt added in the drinking water for removal of suspended impurities and also fluoride in the affected areas. The ameliorating role of a blue green alga Spirulina is well documented to various pollutants in the animal models. We, therefore, examined its protective role (230 mg/kg body weight) on the hematology of male Swiss albino mice treated with aluminum (sub-acute = 78.4 mg/kg body weight for 7 days, sub-chronic = 7.8 mg/kg body weight for 90 days) and aluminum fluoride (sub-acute = 103 mg/kg body weight, sub-chronic = 21 mg/kg body weight), along with their recovery after 90 days of sub-chronic exposure. This study revealed significant reduction in the values of RBC (5-18 %), Hb (15-17 %), PCV (8-14 %), and platelets (26-36 %), and increase in WBC (54-124 %) in the treated mice, particularly after sub-acute exposure. Aluminum fluoride was comparatively more toxic than aluminum. Further, Spirulina supplement not only alleviated toxicity of test chemicals in Swiss albino mice but also led to their better recovery after withdrawal.

  5. The application of water coupled nonlinear ultrasonics to quantify the dislocation density in aluminum 1100

    NASA Astrophysics Data System (ADS)

    Mostavi, Amir; Tehrani, N.; Kamali, N.; Ozevin, D.; Chi, S. W.; Indacochea, J. E.

    2017-02-01

    This article investigates water coupled nonlinear ultrasonic method to measure the dislocation density in aluminum 1100 specimens. The different levels of dislocation densities are introduced to the samples by applying different levels of plastic strains by tensile loading. The ultrasonic testing includes 2.25 MHz transducer as transmitter and 5.0 MHz transducer as receiver in an immersion tank. The results of immersion experiments are compared with oil-coupled experiments. While water has significant nonlinearity within itself, the immersion ultrasound results agree with the literature of oil coupled ultrasound results of the specimens that the nonlinearity coefficient increases with the increase of dislocation density in aluminum.

  6. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material

  7. 30 CFR 15.5 - Test samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test samples. 15.5 Section 15.5 Mineral... § 15.5 Test samples. (a) Submission of test samples. (1) The applicant shall not submit explosives or... magazine for at least 30 days before gallery tests are conducted. ...

  8. 30 CFR 15.5 - Test samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test samples. 15.5 Section 15.5 Mineral... § 15.5 Test samples. (a) Submission of test samples. (1) The applicant shall not submit explosives or... magazine for at least 30 days before gallery tests are conducted. ...

  9. 30 CFR 15.5 - Test samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test samples. 15.5 Section 15.5 Mineral... § 15.5 Test samples. (a) Submission of test samples. (1) The applicant shall not submit explosives or... magazine for at least 30 days before gallery tests are conducted. ...

  10. Weldability of extruded aluminum-alumina composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gedeon, S.A.; Lane, C.; Altshuller, B.

    1994-12-31

    Acceptable procedure were developed for welding the following types of aluminum particle-reinforced aluminum: 6061/Al{sub 2}O{sub 3}/10p-T6, 6061/Al{sub x}/O{sub 3}20p-T6, and 7005Al{sub 2}O{sub 3}/10p-T6,. Automated and manual procedures were developed and using both gas tungsten arc welding (GTAW), with a cold wire feed, and gas metal arc welding (GMAW). The effect of welding procedures on porosity, reinforcing particulate distribution, and mechanical properties was determined. Postweld heat treatment and microhardness testing were used to understand the effect of the welded microstructure on the strength and ductility of the joint. Fracture surfaces and transverse microsections of mechanical test specimens were examined to determinemore » the origins and mechanisms of failure. Cleanliness of the joint and weld wire were found to be essential to eliminate porosity. Based on these experimentally determined data, general guidelines for welding aluminum oxide particle-reinforced aluminum composites are proposed. Discussion includes proper selection of weld joint geometry, filler metals, travel speed, voltage, and current ranges. These parameters are compared to those used in an actual production environment for composite products. Distinctions between welding these composites and others produced via powder metallurgy or with silicon carbide reinforcements are also discussed.« less

  11. On two-sample McNemar test.

    PubMed

    Xiang, Jim X

    2016-01-01

    Measuring a change in the existence of disease symptoms before and after a treatment is examined for statistical significance by means of the McNemar test. When comparing two treatments, Feuer and Kessler (1989) proposed a two-sample McNemar test. In this article, we show that this test usually inflates the type I error in the hypothesis testing, and propose a new two-sample McNemar test that is superior in terms of preserving type I error. We also make the connection between the two-sample McNemar test and the test statistic for the equal residual effects in a 2 × 2 crossover design. The limitations of the two-sample McNemar test are also discussed.

  12. Nuclear Magnetic Resonance Observations of Octahedral Aluminum in Forsterite, Clinoenstatite and Periclase.

    NASA Astrophysics Data System (ADS)

    McCarty, R. J.; Stebbins, J. F.

    2015-12-01

    This research seeks to constrain the crystallographic site preferences of aluminum in forsterite, clinoenstatite and periclase, mantle minerals in which this element is only found at low concentrations. Improved site preference information will help constrain thermodynamic descriptions of the substitution mechanisms, making them more useful to geobarometric and geothermometric techniques. Using high field magic angle spinning nuclear magnetic resonance (NMR) and electron probe microanalysis (EPMA), we constrain the site preferences of minor and trace amounts (2000 to 400 mol ppm) of aluminum in extremely pure synthetic forsterite, clinoenstatite and periclase. The primary challenge of this research is determining how much of each of the aluminum species observed by NMR in the bulk sample (abundances and coordinations) resides in the major synthesized mineral. In our samples, the aluminum partitions between small amounts (often <1%) of impurity phases with high aluminum concentrations, such as glass and accessory crystals, and the major, intended phase with low aluminum concentrations. We use EPMA composition maps to locate scarce impurity phases and EPMA point analyses to determine the aluminum concentrations in both the intended major phase and in the impurity phases. Long NMR acquisitions (several days) and careful subtraction of rotor background signals (present in even 'low-Al' zirconia rotor materials) are required to obtain adequate signal-to-noise ratios at such low concentrations. Ordered octahedral aluminum has been identified in forsterite, clinoenstatite, and periclase. Disordered 4, 5 and 6 coordinated aluminum species have also been observed, but it is still unclear if the disordered species are in the major mineral phases, the impurity phases or both.

  13. Screen Cage Ion Plating (SCIP) and scratch testing of polycrystalline aluminum oxide

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1992-01-01

    A screen cage ion plating (SCIP) technique was developed to apply silver films on electrically nonconducting aluminum oxide. It is shown that SCIP has remarkable throwing power; surfaces to be coated need not be in direct line of sight with the evaporation source. Scratch tests, employing a diamond stylus with a 200 micro m radius tip, were performed on uncoated and on silver coated alumina. Subsequent surface analysis show that a significant amount of silver remains on the scratched surfaces, even in areas where high stylus load produced severe crack patterns in the ceramic. Friction coefficients were lowered during the scratch tests on the coated alumina indicating that this modification of the ion planting process should be useful for applying lubricating films of soft metals to electrical insulating materials. The very good throwing power of SCIP also strongly suggests general applicability of this process in other areas of technology, e.g., electronics, in addition to tribology.

  14. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    PubMed

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  15. Proof test criteria for thin-walled 2219 aluminum pressure vessels. Volume 1: Program summary and data analysis

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1976-01-01

    This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.

  16. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  17. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  18. Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production

    PubMed Central

    2014-01-01

    Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728

  19. Environmental effects on aluminum fracture

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Shepic, J. A.

    1976-01-01

    The sustained load stress corrosion cracking (SCC) threshold for aluminum alloy 214 was determined using smooth (sigma sub TH) and precracked (K sub ISCC) specimens, and cyclic load growth behavior in 3.5% NaCl salt solution was studied. The relationship between K sub ISCC and sigma sub TH was also studied. The work showed that 2124-T851 aluminum alloy in plate gage has a moderately high resistance to stress corrosion attack. Experimental results showed that no SCC occurred in the longitudinal and long transverse directions in any of the tests. Some SCC was found by smooth tests in the short transverse direction, and the data were confirmed by two test methods-sigma sub TH = 275 MN/sq m (40 ksi). No SCC was found from compact specimen tests in any direction: surface flaw and center notch specimens evaluated in the short transverse direction exhibited SCC. The data indicate that stress corrosion behavior is defect, size, and stress dependent, but not entirely in accordance with a stress intensity controlled mechanism.

  20. Microhardness Testing of Aluminum Alloy Welds

    NASA Technical Reports Server (NTRS)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  1. Aluminum Target Dissolution in Support of the Pu-238 Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These datamore » have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  2. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.

  3. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  4. Modeling the ignition of a copper oxide aluminum thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  5. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    PubMed

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  6. Influence of fluoride on aluminum toxicity to Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Hamilton, Steven J.; Haines, Terry A.

    1995-01-01

    Atlantic salmon (Salmo salar) alevins were exposed to various aluminum (0–4700 μg/L) and four fluoride (0–500 μg/L) concentrations at two pH values (5.5 and 6.5) for 4- and 30-d periods. In the 4-d tests, aluminum with fluoride was less toxic at pH 6.5 than at pH 5.5, whereas without fluoride, pH had no effect. In the 30-d test, mortality in all treatments was 17–21% at pH 5.5, but only 3–7% at pH 6.5. Fish length and weight after 30 d were reduced in all fluoride–aluminum treatments at pH 5.5, but only in the 200-μg/L aluminum without fluoride treatment at pH 6.5. At pH 5.5 and 6.5 without aluminum, histomorphological examinations revealed no abnormalities in gill tissue. However, in aluminum exposure with no fluoride, gill filaments and secondary lamellae were swollen and thickened. Addition of fluoride at pH 6.5 alleviated some gill damage. At pH 5.5 and 200 μg/L aluminum, addition of 100 μg/L fluoride reduced swelling of gill lamellae, but 200 μg/L fluoride did not reduce swelling. Low fluoride concentrations (< 100 μg/L) may reduce gill morphological damage in fish exposed to aluminum in acidic waters, whereas high fluoride concentrations (> 100 μg/L) may not reduce aluminum-induced effects.

  7. NMR of samples containing metal foils.

    PubMed

    Xiong, J; Lock, H; Tao, T; Keeler, C; Maciel, G E

    1999-07-01

    By using spool configurations of a sample containing aluminum foil, in which the axis of the spool is collinear with the RF coil axis, one can obtain high-quality 13C NMR spectra of static samples of organic material attached to the aluminum foil. By combining such a spool configuration (or, alternatively, analogous samples containing equivalent amounts of fine aluminum powder) with the magic-angle hopping (MAH) technique, one can achieve a high degree of isotropic averaging of the 13C spectrum. This opens to NMR techniques the study of a variety of samples containing macroscopic pieces of metal foils, e.g., thin films deposited on metal foils and electrochemical systems with species adsorbed on metal-foil electrodes.

  8. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances.Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium and zinc). Radionuclide activities and stable isotope (5 values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample.Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance

  9. Air Sampling Filter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.

  10. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    PubMed

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with <200 μg/L in plastic container-packaged calcium gluconate. A concern about plastic packaging is leaching of plasticizers, including phthalates, which have the potential to cause endocrine (male reproductive system) disruption and neurotoxicity. Aluminum was quantified in samples collected periodically for more than 2 years from 3 calcium gluconate sources used to prepare parenteral nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  11. Ultra-Gradient Test Cavity for Testing SRF Wafer Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.J. Pogue, P.M. McIntyre, A.I. Sattarov, C. Reece

    2010-11-01

    A 1.3 GHz test cavity has been designed to test wafer samples of superconducting materials. This mushroom shaped cavity, operating in TE01 mode, creates a unique distribution of surface fields. The surface magnetic field on the sample wafer is 3.75 times greater than elsewhere on the Niobium cavity surface. This field design is made possible through dielectrically loading the cavity by locating a hemisphere of ultra-pure sapphire just above the sample wafer. The sapphire pulls the fields away from the walls so the maximum field the Nb surface sees is 25% of the surface field on the sample. In thismore » manner, it should be possible to drive the sample wafer well beyond the BCS limit for Niobium while still maintaining a respectable Q. The sapphire's purity must be tested for its loss tangent and dielectric constant to finalize the design of the mushroom test cavity. A sapphire loaded CEBAF cavity has been constructed and tested. The results on the dielectric constant and loss tangent will be presented« less

  12. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  13. Aluminum-oxygen batteries for space applications

    NASA Technical Reports Server (NTRS)

    Niksa, Marilyn J.; Wheeler, Douglas J.

    1987-01-01

    An aluminum oxygen fuel cell is under development. Several highly efficient cell designs were constructed and tested. Air cathodes catalyzed with cobalt tetramethoxy porphorin have demonstrated more than 2000 cycles in intermittant use conditions. Aluminum alloys have operated at 4.2 kWH/kg at 200 mA/sq cm. A novel separator device, an impeller fluidizer was coupled with the battery to remove the solid hydrargillite discharge product. A 60 kW, 720 kWH battery system is projected to weigh about 2200 lbs., for an energy density of 327 WH lb.

  14. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the

  15. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  16. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  17. The mobilization of aluminum in a natural soil system: Effects of hydrologic pathways

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Herman, Janet S.; Parnell, Roderic A.

    1987-01-01

    A two-component soil water flow model was used in conjunction with an equilibrium speciation model WATEQF to study aluminum mobility in soils of a forested watershed, White Oak Run, in the Shenandoah National Park, Virginia. Soil solution samples, taken from the O, E, B, C1, and C2horizons, were collected from zero-tension lysimeters designed to collect faster gravitational macropore flow and tension lysimeters designed to collect slower capillary micropore flow. Dissolved aluminum was fractionated into acid-soluble, inorganic monomeric, and organic monomeric aluminum. Soil water aluminum concentrations decreased with depth indicating that the deep soil is a sink for aluminum. All waters contained significant concentrations of acid-soluble aluminum and exhibited a negative correlation between pH and the inorganic monomeric aluminum concentrations. Water in the shallow soil showed distinctly different chemical compositions for the two flow types, while C horizon micropore and macropore waters were more similar. Because of its shorter residence time, water flowing in deep soil macropores underwent less extensive neutralization and immobilization of aqueous aluminum than micropore water. The O horizon macropore waters were undersaturated for all hydroxide, silicate, and sulfate mineral phases considered. The C horizon samples from both flow types were near equilibrium with respect to kaolinite and synthetic gibbsite, indicating that mineral solubility controls water chemistry in the deep soil, while organic substances are the key control in the shallow macropore waters.

  18. [Psychological and neurobehavioral effects of aluminum on exposed workers].

    PubMed

    Guo, G; Ma, H; Wang, X

    1998-09-01

    To explore neurotoxicity and the changes in psychological and neurobehavioral functions in workers exposed to aluminum. Psychological status and neurobehavioral functions of 103 exposed workers and 64 controls were examined with Neurobehavioral Core Test Battery recommended by World Health Organization (WHO), and meanwhile, air concentrations of aluminum in the workplaces and urine levels of aluminum in the exposed workers were determined. Urine levels of aluminum in the exposed workers were markedly higher than those in non-exposed controls, with a statistical significance. Scores for tension, depression, anger, fatigue and confusion in the workers exposed to aluminum for more than ten years were significantly more than those in non-exposed controls. Scores of the performance of Santa Ana, digit symbol and pursuit aiming in the former were significantly lower, and no other changes in psychological and behavioral functions was found in workers exposed for less than ten years, except for their scores of pursuit aiming. Obvious changes in psychological status, neuromotor speed and their accuracy were observed in workers exposed to aluminum for a long term.

  19. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    NASA Astrophysics Data System (ADS)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  20. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  1. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass..

  2. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  3. Red-emitting manganese-doped aluminum nitride phosphor

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.

    2016-04-01

    We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.

  4. Extreme ultraviolet reflection efficiencies of diamond-turned aluminum, polished nickel, and evaporated gold surfaces. [for telescope mirrors

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Cash, W.

    1978-01-01

    Measured reflection efficiencies are presented for flat samples of diamond-turned aluminum, nickel, and evaporated gold surfaces fabricated by techniques suited for EUV telescopes. The aluminum samples were 6.2-cm-diameter disks of 6061-T6, the electroless nickel samples were formed by plating beryllium disks with 7.5-microns of Kanigen. Gold samples were produced by coating the aluminum and nickel samples with 5 strips of evaporated gold. Reflection efficiencies are given for grazing angles in the 5-75 degree range. The results indicate that for wavelengths over about 100 A, the gold-coated nickel samples yield highest efficiencies. For shorter wavelengths, the nickel samples yield better efficiencies. 500 A is found to be the optimal gold thickness.

  5. Membrane Purification Cell for Aluminum Recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications includemore » producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition

  6. Measurements of induced radioactivity in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Reedy, R. C.

    1992-01-01

    Twenty-six stainless steel trunnion samples, five aluminum end support retainer plate samples, two aluminum keel plate samples, and two titanium clips were analyzed. The shielded high purity germanium detectors used had efficiencies of 33, 54, and 80 percent at 1332 keV. Detector efficiencies as a function of energy and corrections for self-absorption in the samples were determined with calibrated sources and unactivated control samples. Several measurements were made on most samples. In the trunnion samples, Mn-54 and Co-57 were seen and limits were obtained for other isotopes. The results agree well with 1-D activation calculations for an anisotropic trapped proton model. In the aluminum and titanium samples, Na-22 was detected. Other results are presented.

  7. Measurements of induced radioactivity in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Reedy, R. C.

    1991-01-01

    Twenty-six stainless steel trunnion samples, five aluminum end support retainer plate samples, two aluminum keel plate samples, and two titanium clips were analyzed. The shielded high purity germanium detectors used had efficiencies of 33, 54, and 80 pcts. at 1332 keV. Detector efficiencies as a function of energy and corrections for self absorption in the samples were determined with calibrated sources, unactivated control samples, and calculations. Several measurements were made on most samples. In the trunnion samples, Mn-54 and Co-57 were seen and limits were obtained for other isotopes. The results agree well with 1-D activation calculations for an anisotropic trapped proton model. In the aluminum samples, Na-22 and Be-7 were seen. Other results are presented.

  8. The Column Strength of Two Extruded Aluminum-Alloy H-Sections

    NASA Technical Reports Server (NTRS)

    Osgood, William R; Holt, Marshall

    1939-01-01

    Extruded aluminum-alloy members of various cross sections are used in aircraft as compression members either singly or as stiffeners for aluminum-alloy sheet. In order to design such members, it is necessary to know their column strength or, in the case of stiffeners, the value of the double modulus, which is best obtained for practical purposes from column tests. Column tests made on two extruded h-sections are described, and column formulas and formulas for the ratio of the double modulus to Young's modulus, based on the tests, are given.

  9. Critical assessment of precracked specimen configuration and experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Domack, M. S.

    1985-01-01

    A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.

  10. Microstructural Evaluation of Inductively Sintered Aluminum Matrix Nanocomposites Reinforced with Silicon Carbide and/or Graphene Nanoplatelets for Tribological Applications

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib

    2018-04-01

    Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.

  11. Microstructural Evaluation of Inductively Sintered Aluminum Matrix Nanocomposites Reinforced with Silicon Carbide and/or Graphene Nanoplatelets for Tribological Applications

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib

    2018-07-01

    Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.

  12. Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook

    2016-09-01

    The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.

  13. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  14. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    PubMed

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  16. The effects of aluminum oxide on inertial welding of aluminum in space applications

    NASA Astrophysics Data System (ADS)

    Smith, Michael H.

    1992-05-01

    Inertial friction welding of 2219 aluminum alloy studs to 2219 aluminum alloy plates is investigated in air and in an argon atmosphere to determine the effects of an intact oxide layer on weld quality. Scratch-brushing of plates and studs was performed in an argon atmosphere to break up the oxide layer and prevent reformation prior to testing. Argon was used to simulate the near-oxygen free space environment. Weld quality was determined by a bend test and by measurement of the fraction of the weld surface area that was dimpled in appearance following fracture of the weld. The fundamental theories of friction and wear that are applicable to friction welding are reviewed. A brief survey of current welding methods that may have application in space is presented, as well as a discussion of their feasibility and limitations. Characteristics of the space station are discussed as well as their consequences on welding in space. A qualitative model of the process of inertial friction welding based on the theories of friction and observations of welds and weld fractures is developed and presented.

  17. The effect of zinc on the aluminum anode of the aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  18. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    PubMed Central

    Marrero, Raúl; Li, Xiaochun; Choi, Hongseok

    2018-01-01

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding. PMID:29534441

  19. Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Lashkov, V. A.; Valiev, R. Z.; Bondarenko, A. S.

    2016-09-01

    This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.

  20. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    PubMed Central

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  1. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  2. 30 CFR 14.5 - Test samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test samples. 14.5 Section 14.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Test samples. Upon request by MSHA, the applicant must submit 3 precut, unrolled, flat conveyor belt...

  3. 30 CFR 14.5 - Test samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test samples. 14.5 Section 14.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Test samples. Upon request by MSHA, the applicant must submit 3 precut, unrolled, flat conveyor belt...

  4. 30 CFR 14.5 - Test samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test samples. 14.5 Section 14.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Test samples. Upon request by MSHA, the applicant must submit 3 precut, unrolled, flat conveyor belt...

  5. Neurobehavioral, autonomic nervous function and lymphocyte subsets among aluminum electrolytic workers.

    PubMed

    He, S C; Qiao, N; Sheng, W

    2003-01-01

    The purpose of our study is to determine the alteration of neurobehavioral parameters, autonomic nervous function and lymphocyte subsets in aluminum electrolytic workers of long-term aluminum exposure. 33 men who were 35.16 +/- 2.95 (mean +/- S.D) years old occupationally exposed to aluminum for 14.91 +/- 6.31 (mean +/- S.D) years. Air Al level and urinary aluminum concentration was measured by means of graphite furnace atomic absorption spectrophotometer. Normal reference group were selected from a flour plant. Neurobehavioral core test battery (NCTB) recommended by WHO was utilized. Autonomic nervous function test battery recommended by Ewing DJ was conducted on subjects. FAC SCAN was used to measure the lymphocyte subsets of peripheral blood. The mean air aluminum level in the workshop was 6.36 mg/m3, ranged from 2.90 to 11.38 mg/m3. Urinary aluminum of the Al electrolytic workers (40.08 +/- 9.36 microgram/mg.cre) was obviously higher than that of control group (26.84 +/- 8.93 m/mg.cre). Neurobehavioral results showed that the scores of DSY, PAC and PA in Al electrolytic workers were significantly lower than those of control group, The score of POMSC, POMSF and SRT among Al exposed workers were significantly augmented in relation to those of control group. Autonomic nervous function test results showed that R-R interval variability of maximum ratio of immediately standing up in Al electrolytic workers were decreased compare with the control group, while the BP-IS, HR-V, HR-DB, R30:15 had no significant change. Peripheral blood lymphocyte subsets test showed that CD4-CD8+ T lymphocyte in Al electrolytic workers increased. This study suggests that Al exposure exerts adverse effects on neurobehavioral performance, especially movement coordination and negative mood, and parasympathetic nervous function; moreover it increase CD4-CD8+ T lymphocyte subsets.

  6. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  7. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  8. Violent oxidation of lithium-containing aluminum alloys in liquid oxygen

    NASA Astrophysics Data System (ADS)

    Dalins, Ilmars; Karimi, Majid; Ila, Daryush

    1991-06-01

    A strong exothermic and quite well known thermite reaction involving aluminum, oxygen and transition metals (Fe, Cr, Ni, etc.) has apparently been initiated during impact testing of Alcoa aluminum alloy #2090 in liquid oxygen at NASA-MSFC. In some instances, this reaction, essentially an oxidation process, has been so intense that the Inconel 718 cup containing the aluminum alloy disk and associated impacter has melted raising certain safety concerns in the use of this alloy. Reaction products as well as the test specimen surfaces have been studied with surface science techniques like XPS/ESCA, SIMS and AES. Typically, in order to initiate the thermite reaction a temperature of approximately 1000°C is necessary. The mechanism responsible for this oxidation is of great interest. The analysis of the reaction products together with a theoretical analysis, including digital modeling has been pursued. There is strong evidence that the large relaxation energy of the aluminum oxide coating, formed during the aluminum alloy cleaning process, is causing a highly localized energy release during fracture or lattice deformation which is enhancing the oxidation process to a runaway condition. The presence of alkali atoms (Li) enhances the likelihood and intensity of the oxidation reaction. The details of the surface studies will be discussed.

  9. Hydrogeology and physical characteristics of water samples at the Red River aluminum site, Stamps, Arkansas, April 2001

    USGS Publications Warehouse

    Czarnecki, John B.; Stanton, Gregory P.; Freiwald, David A.

    2001-01-01

    The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site

  10. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Crowther, B.; Gubbels, G.; Senden, R.

    2013-09-01

    Aluminum mirrors and telescopes can be built to perform well if the material is processed correctly and can be relatively low cost and short schedule. However, the difficulty of making high quality aluminum telescopes increases as the size increases, starting with uniform heat treatment through the thickness of large mirror substrates. A risk reduction effort was started to build and test a ½ meter diameter super polished aluminum mirror. Material selection, the heat treatment process and stabilization are the first critical steps to building a successful mirror. In this study, large aluminum blanks of both conventional AA-6061 per AMS-A-22771 and RSA AA-6061 were built, heat treated and stress relieved. Both blanks were destructively tested with a cut through the thickness. Hardness measurements and tensile tests were completed. We present our results in this paper and make suggestions for modification of procedures and future work.

  11. Mechanical evaluation of aluminum alloy ring fixator.

    PubMed

    Tosborvorn, Somboon; Cheechareon, Sukrom; Ruttanuchun, Kittiput; Sirivedin, Suparerk; Rhienumporn, Chaitawat

    2006-11-01

    To test the homemade ring fixator as a tool for correction of bony deformity. The authors developed an aluminum alloy ring fixator and tested it to find out the accuracy of manufacturing and strength of the ring systems under axial load with the Roundness Testing Machine and Lloyd Universal Testing Machine. The mean diameter of the twenty five-drill holes was 6.5843872 +/- 0.0521594 mm (mean +/- SD). Distance between particular drill holes, which reflected the precision of drilling, had a high accuracy with standard deviation from 0.1138 to 0.1870 mm. The roundness of the rings was 0.2421376 +/- 0.12437977 mm (mean +/- SD). The system structure had minimal permanent deformity at breaking point, mean yield strength of the system was 4786.9 +/- 14.353 N (mean +/- SD). This was caused by the failure of the wire. Mean stiffness of the system was 127 N./mm. The aluminum alloy ring fixator was strong enough and well tolerated for clinical usage

  12. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  13. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  14. FRET enhancement in aluminum zero-mode waveguides.

    PubMed

    de Torres, Juan; Ghenuche, Petru; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérôme

    2015-03-16

    Zero-mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single-molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor-acceptor fluorophore pairs that diffuse into aluminum zero-mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single-molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single-molecule FRET at physiological concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microstructural investigation of aluminum-graphene nano platelets composites prepared by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Sreearravind, M.; Peddavarapu, Sreehari; Raghuraman, S.

    2018-04-01

    Recently, Graphene has attracted a large variety of scientific communities due to its inimitable properties. Typically, Graphene Nanoplatelets (GNPs) are ideal reinforcements for the production of nanocomposites due to its excellent mechanical properties for strength enhancement. This paper reports the Aluminum-Graphene Nanoplatelets (Al/GNPs) composites synthesized through powder metallurgy method. The microstructural investigation was carried out to study the GNPs integration on the Al matrix. For this study, the samples Al-2wt% GNPs, Al-3wt% GNPs and Al- 4wt% GNPs are high-energy ball milled at 200rpm and sintered at 500°C,550°C, and 600°C. Microstructural characterization is carried out with optical microscopy, Scanning electron microscopy. Rockwell hardness test is conducted to evaluate the hardness behavior in Al/GNPs. Microstructural analysis revealed the homogeneous dispersion of GNPs in the Al matrix in all the samples. It is observed that the existence of the graphene nanoparticles and the rise of their concentrations in the aluminum matrix (2 wt.% to 4 wt.%) as reinforcement in addition to rising the sintering temperature (450°C to 600°C) greatly improve the mechanical properties of Al/GNPs composites.

  16. Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2017-07-01

    This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.

  17. Elevated temperature properties of boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Sullivan, P. G.

    1978-01-01

    The high temperature properties of boron/aluminum composites, fabricated by an air diffusion bonding technique utilizing vacuum-bonded monolayer tape are reported. Seventeen different combinations of matrix alloy, reinforcement diameter, reinforcement volume percent, angle-ply and matrix enhancement (i.e. titanium cladding and interleaves) were fabricated, inspected, and tested. It is shown that good to excellent mechanical properties could be obtained for air-bonded boron/aluminum composites and that these properties did not decrease significantly up to a test temperature of at least 260 C. Composites made with 8 mil B/W fiber show a much greater longitudinal strength dependence on volume percent fiber than composites made with 5.6 mil fiber. The addition of titanium caused difficulties in composite bonding and yielded composites with reduced strength.

  18. Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(III)-aluminum precipitates.

    PubMed

    Violante, Antonio; Pigna, Massimo; Del Gaudio, Stefania; Cozzolino, Vincenza; Banerjee, Dipanjan

    2009-03-01

    Coprecipitation involving arsenic with aluminum or iron has been studied because this technique is considered particularly efficient for removal of this toxic element from polluted waters. Coprecipitation of arsenic with mixed iron-aluminum solutions has received scant attention. In this work we studied (i)the mineralogy, surface properties, and chemical composition of mixed iron-aluminum oxides formed at initial Fe/Al molar ratio of 1.0 in the absence or presence of arsenate [As/ Fe+Al molar ratio (R) of 0, 0.01, or 0.1] and at pH 4.0, 7.0, and 10.0 and aged for 30 and 210 days at 50 degrees C and (ii) the removal of arsenate from the coprecipitates after addition of phosphate. The amounts of short-range ordered precipitates (ferrihydrite, aluminous ferrihydrite and/or poorly crystalline boehmite) were greater than those found in iron and aluminum systems (studied in previous works), due to the capacity of both aluminum and arsenate to retard or inhibitthe transformation of the initially formed precipitates into well-crystallized oxides (gibbsite, bayerite, and hematite). As a consequence, the surface areas of the iron-aluminum oxides formed in the absence or presence of arsenate were usually much larger than those of aluminum or iron oxides formed under the same conditions. Arsenate was found to be associated mainly into short-range ordered materials. Chemical composition of all samples was affected by pH, initial R, and aging. Phosphate sorption was facilitated by the presence of short-range ordered materials, mainly those richer in aluminum, but was inhibited by arsenate present in the samples. The quantities of arsenate replaced by phosphate, expressed as percentages of its total amount present in the samples, were particularly low, ranging from 10% to 26%. A comparison of the desorption of arsenate by phosphate from aluminum-arsenate and iron-arsenate (studied in previous works) and iron-aluminum-arsenate coprecipitates evidenced that phosphate has a greater

  19. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  20. Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Edwards, P. R.

    1988-01-01

    An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.

  1. Polyacrylonitrile Separator for High-Performance Aluminum Batteries with Improved Interface Stability.

    PubMed

    Elia, Giuseppe Antonio; Ducros, Jean-Baptiste; Sotta, Dane; Delhorbe, Virginie; Brun, Agnès; Marquardt, Krystan; Hahn, Robert

    2017-11-08

    Herein we report, for the first time, an overall evaluation of commercially available battery separators to be used for aluminum batteries, revealing that most of them are not stable in the highly reactive 1-ethyl-3-methylimidazolium chloride:aluminum trichloride (EMIMCl:AlCl 3 ) electrolyte conventionally employed in rechargeable aluminum batteries. Subsequently, a novel highly stable polyacrylonitrile (PAN) separator obtained by the electrospinning technique for application in high-performance aluminum batteries has been prepared. The developed PAN separator has been fully characterized in terms of morphology, thermal stability, and air permeability, revealing its suitability as a separator for battery applications. Furthermore, extremely good compatibility and improved aluminum interface stability in the highly reactive EMIMCl:AlCl 3 electrolyte were discovered. The use of the PAN separator strongly affects the aluminum dissolution/deposition process, leading to a quite homogeneous deposition compared to that of a glass fiber separator. Finally, the applicability of the PAN separator has been demonstrated in aluminum/graphite cells. The electrochemical tests evidence the full compatibility of the PAN separator in aluminum cells. Furthermore, the aluminum/graphite cells employing the PAN separator are characterized by a slightly higher delivered capacity compared to those employing glass fiber separators, confirming the superior characteristics of the PAN separator as a more reliable separator for the emerging aluminum battery technology.

  2. Chromic acid anodizing of aluminum foil

    NASA Technical Reports Server (NTRS)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  3. Study on combined polishing process of aspherical aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Deng, Jinqiu; Peng, Xiaoqiang; Hu, Hao; Ge, Kunpeng

    2017-10-01

    The aluminum mirrors are widely used as important optical components in some vital fields such as astronomical instruments or military installations due to the unique advantages of aluminum alloy. In order to simplify the structure of optical system and improve the performance at the same time, it's a tendency that the optics will be designed to aspherical or other freeform shapes. However, the traditional techniques are falling to have adequate abilities to deal with the increasing demands of aluminum optics. For example, the tool marks leaved on the surface from single point diamond turning (SPDT) has obvious adverse effects to optical system. The deterministic and sub-aperture polishing process has showed the potential to fabricate complex shapes over the few years. But it's still recognized as a problem to polish bare aluminum directly because of its soft surface and active chemical characteristics. Therefore, a combination of magnetorheological finishing (MRF) and small tool polishing (STP) is applied to obtain high performance aluminum optics in this paper. A paraboloid aluminum mirror was polished with this proposed method, and the results showed that the surface texture of the sample is restrained from rms 0.409λ (λ=632.8nm) to rms 0.025λ, and the surface roughness is improved from average Ra 6 7nm to Ra 3 4nm.

  4. Sample Holder for Cryogenic Adhesive Shear Test

    NASA Technical Reports Server (NTRS)

    Ledbetter, F. E.; Clemons, J. M.; White, W. T.; Penn, B.; Semmel, M. L.

    1983-01-01

    Five samples tested in one cooldown. Holder mounted in testing machine. Submerged in cryogenic liquid held in cryostat. Movable crosshead of testing machine moves gradually downward. Samples placed under tension, one after another, starting with top one; each sample fails in turn before next is stressed.

  5. Ion implantation and diamond-like coatings of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Malaczynski, G. W.; Hamdi, A. H.; Elmoursi, A. A.; Qiu, X.

    1997-04-01

    In an attempt to increase the wear resistance of some key automotive components, General Motors Research and Development Center initiated a study to determine the potential of surface modification as a means of improving the tribological properties of automotive parts, and to investigate the feasibility of mass producing such parts. This paper describes the plasma immersion ion implantation system that was designed for the study of various options for surface treatment, and it discusses bench testing procedures used for evaluating the surface-treated samples. In particular, both tribological and microstructural analyses are discussed for nitrogen implants and diamond-like hydrocarbon coatings of some aluminum alloys.

  6. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    DOE PAGES

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; ...

    2018-02-13

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, a laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising of copper and aluminum alloys and data were collected from the samples’ surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectramore » were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument’s ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in-situ, as a starting point for undertaking future complex material characterization work.« less

  7. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, a laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising of copper and aluminum alloys and data were collected from the samples’ surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectramore » were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument’s ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in-situ, as a starting point for undertaking future complex material characterization work.« less

  8. Impact Deformation of Thin-Walled Circular Tube Filled with Aluminum Foam in Lateral Compression

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Hori, Masahiro

    In this study, the impact deformation of thin-walled circular tubes filled with aluminum foam in lateral compression was investigated using a special load cell for long time measurement and a high-speed video camera to check the displacement of specimens. It was found that the absorbed energy up to the deformation of 60% of the specimen diameter obtained from impact tests is greater than that obtained in static tests, because of strain rate dependency of aluminum foam. The loaddisplacement curve of circular tubes with aluminum foam just inserted was consistent with the sum of the curves individually obtained. In both dynamic and static tests, however, the load of the tube with the foam inserted and glued by adhesive resin became larger than the sum of the individual loads, because of the interaction between circular tubes and aluminum foam cores.

  9. Degradation Mechanisms in Aluminum Matrix Composites: Alumina/Aluminum and Boron/Aluminum. Ph.D. Thesis - North Carolina State Univ. at Raleigh

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.

    1981-01-01

    The effects of fabrication and long term thermal exposure (up to 10,000 hours at 590 K) on two types of aluminum matrix composites were examined. An alumina/aluminum composite, was made of continuous alpha Al2O3 fibers in a matrix of commercially pure aluminum alloyed with 2.8% lithium. The mechanical properties of the material, the effect of isothermal exposure, cyclic thermal exposure, and fatigue are presented. Two degradation mechanisms are identified. One was caused by formation of a nonstoichiometric alumina during fabrication, the other by a loss of lithium to a surface reaction during long term thermal exposure. The other composite, boron/aluminum, made of boron fibers in an aluminum matrix, was investigated using five different aluminum alloys for the matrices. The mechanical properties of each material and the effect of isothermal and cyclic thermal exposure are presented. The effects of each alloy constituent on the degradation mechanisms are discussed. The effects of several reactions between alloy constituents and boron fibers on the composite properties are discussed.

  10. Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

    NASA Astrophysics Data System (ADS)

    Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.

    2018-02-01

    Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x- t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

  11. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  12. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Ren, Fei; Wang, Hsin

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  13. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  14. Directly polished lightweight aluminum mirror

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan

    2017-11-01

    During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting [1][2] for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness ( 1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions. Recent discussions indicate possible extensions of the extreme light weight technology to alternative materials such as Zerodur or Silicon Carbide.

  15. Measurement of tortuosity in aluminum foams using airborne ultrasound.

    PubMed

    Le, Lawrence H; Zhang, Chan; Ta, Dean; Lou, Edmond

    2010-01-01

    The slow compressional wave in air-saturated aluminum foams was studied by means of ultrasonic transverse transmission method over a frequency range from 0.2 MHz to 0.8 MHz. The samples investigated have three different cell sizes or pores per inch (5, 10 and 20 ppi) and each size has three aluminum volume fractions (5%, 8% and 12% AVF). Phase velocities show minor dispersion at low frequencies but remain constant after 0.7 MHz. Pulse broadening and amplitude attenuation are obvious and increase with increasing ppi. Attenuation increases considerably with AVF for 20 ppi foams. Tortuosity ranges from 1.003 to 1.032 and increases with AVF and ppi. However, the increase of tortuosity with AVF is very small for 10 and 20 ppi samples.

  16. A comparative study of aluminum and steel culverts : progress report no. 4.

    DOT National Transportation Integrated Search

    1971-01-01

    The results of a comparative study of aluminum and steel culverts at six test sites throughout Virginia indicate that satisfactory durability can be expected of aluminum pipe under exposure to most of the soil and water conditions in the state. The p...

  17. Characterization of polycyclic aromatic hydrocarbons in soil close to secondary copper and aluminum smelters.

    PubMed

    Hu, Jicheng; Wu, Jing; Zha, Xiaoshuo; Yang, Chen; Hua, Ying; Wang, Ying; Jin, Jun

    2017-04-01

    A total of 35 surface soil samples around two secondary copper smelters and one secondary aluminum smelter were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The concentrations of PAHs were highest when the soil sample sites were closest to the secondary copper smelters. And, a level gradient of PAHs was observed in soil samples according to the distance from two secondary copper smelters, respectively. The results suggested that PAH concentrations in surrounding soils may be influenced by secondary copper smelters investigated, whereas no such gradient was observed in soils around the secondary aluminum smelter. Further analysis revealed that PAH patterns in soil samples also showed some difference between secondary copper and aluminum smelter, which may be attributed to the difference in their fuel and smelting process. PAH patterns and diagnostic ratios indicated that biomass burning may be also an important source of PAHs in the surrounding soil in addition to the emissions from the plants investigated.

  18. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    PubMed

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  19. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  20. Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters.

    PubMed

    Li, Bin; Li, Jiancheng; Liu, Rui; Zhu, Hongping; Roesky, Herbert W

    2017-03-20

    Heterobimetallic aluminum-copper and aluminum-zinc clusters were prepared from the reaction of LAl(SeH) 2 [1; L = HC(CMeNAr) 2 and Ar = 2,6-iPr 2 C 6 H 3 ] with (MesCu) 4 and ZnEt 2 , respectively. The resulting clusters with the core structures of Al 2 Se 4 Cu 4 and Al 2 Se 4 Zn 3 exhibit unique metal-organic frameworks. This is a novel pathway for the synthesis of aluminum-copper and aluminum-zinc selenides. The products have been characterized by spectroscopic methods and single-crystal X-ray structural characterization.

  1. Investigation of Coatings Which Prevent Molten Aluminum/Water Explosions

    NASA Astrophysics Data System (ADS)

    León, D. D.; Richter, R. T.; Levendusky, T. L.

    The Aluminum Association contracted Alcoa in 1995 to identify and test new protective coatings for casting pits as a replacement for Porter International's 7001 (Tarset Standard). Three new coatings have been identified through a series of selection criteria including: 1) A standardized splash test used to evaluate personal protective clothing, 2) An industry-standard molten metal explosion test, 3) A multiple-exposure test to measure durability, and 4) An external shock impact test. The results of this program will be reviewed. This study only tested protective coatings at the "in-service cure time", as defined by the manufacturer. These curing times can be excessive for a production casting facility. The Aluminum Association has contracted Alcoa in a second program to investigate the effect of reduced cure times on adhesion and their effectiveness in preventing molten metal/water explosions. A status update of this new two year program is provided.

  2. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  3. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  4. The Effects of micro Aluminum fillers In Epoxy resin on the thermal conductivity

    NASA Astrophysics Data System (ADS)

    Jasim, Kareem A.; Fadhil, Rihab N.

    2018-05-01

    A hand lay-up molding method was used to prepare Epoxy / Aluminum composites. As a matrix used Epoxy resin (EP) with reinforced by Aluminum particles. The preparation technique includes preparing carousel mold with different weight percentage of fillers (0, 0.05, 0.15, 0.25, 0.35, and 0.45). Standard specimens (in 30 mm diameter) were prepared to the thermal conductivity tests. The result of experimental thermal conductivity (k), for EP/Aluminum composites show that, k increase with increasing Aluminums percentage and it have maximum values of (1.4595 W/m.K).

  5. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  6. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism.

    PubMed

    Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed

    2015-01-01

    The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism.

  7. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism

    PubMed Central

    Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed

    2015-01-01

    Background and Aims. The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. Methods. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. Results. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Conclusion. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism. PMID:26508811

  8. The apparent solubility of aluminum (III) in Hanford high-level waste.

    PubMed

    Reynolds, Jacob G

    2012-01-01

    The solubility of aluminum in Hanford nuclear waste impacts on the processability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono-, di- and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH)(4)-H(2)O system, and the NaOH-NaAl(OH)(4)-NaCl-H(2)O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than 2M. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above 2M. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  9. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  10. Tribological Properties of CrAlN and TiN Coatings Tested in Nano- and Micro-scale Laboratory Wear Tests

    NASA Astrophysics Data System (ADS)

    Hong, Ling; Bian, Guangdong; Hu, Shugen; Wang, Linlin; Dacosta, Herbert

    2015-07-01

    We investigated the tribological properties of CrAlN and TiN coatings produced by electron beam plasma-assisted physical vapor deposition by nano- and micro-scale wear tests. For comparison, we also conducted nano-indentation, nano-scanning wear tests, and pin-on-disk tribotests on uncoated M2 steel. The results indicate that, after nano-scale sliding tests against diamond indenter and pin-on-disk tests against ceramic alumina counterface pins, the CrAlN coating presents superior abrasive wear resistance compared to the TiN-coated and uncoated M2 steel samples. Against aluminum counterface, aluminum is more prone to attach on the CrAlN coating surface compared to TiN coating, but no apparent adhesive wear was observed, which has occurred on the TiN coating.

  11. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  12. Aluminum Carbothermic Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stagesmore » 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  13. SRB Materials and Processes Assessment from Laboratory and Ocean Environmental Tests

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Materials and Processes Laboratory evaluation of Solid Rocket Boosters (SRB) and Solid Rocket Motors (SRM) candidate material, both in-house and with ocean exposure tests at Panama City and Kennedy Space Center (KSC), Florida is presented. Early sample tests showed excellent seawater corrosion resistance for inconel 718 and titanium 6A1-4V alloys. Considerable corrosion and biofouling occurred with bare 2219-T87 aluminum. Subsequent tests conclusively demonstrated that epoxy coatings prevented corrosion of 2219-T87 aluminum as long as the coatings stays intact. The results and assessment of the series of ocean environmental tests that were conducted are also presented.

  14. Analysis of “Favorable Growth Element” Based on Rare Earth-aluminum Composite Mechanism of Compound Process

    NASA Astrophysics Data System (ADS)

    Hao, Baohong; Zeng, Qihui; Zhao, Jin

    2018-01-01

    Under the background that failure resulted in by high temperature once only aluminum oxide is used as the gasoline additive. This paper, with the purpose to solve this problem, is to synthesize AcAl oxide for gasoline additive. In order to get the rare-earth-aluminum oxide, first, a complex model of rare earth oxide based on theories about ion coordination is established. Then, by the complex model, the type of “compound growth unit” when rare earth elements join the hydrothermal conditions and the inclination that “diversification” might probably happen are deduced. Depending on the results got by complex model, this paper introduces the type of compound and its existence conditions of “Compound growth unit” owned by stable rare-earth-aluminum oxide. By adjusting the compositions of modifier, compound materials of rare earth-aluminum oxide used for gasoline additive is made. By XRD test, aperture test, adsorption test and desorption test, the theoretical deduction is proved to be right. From the experiment, it is concluded that: a dense environment is the pre-condition to form rare-earth-aluminum polymer, which is also an essential condition for the polymer to update to a favorable growth unit and produce mesoporous rare-earth-aluminum oxide with high activity.

  15. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  16. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  17. Effect of iron-intermetallics and porosity on tensile and impact properties of aluminum-silicon-copper and aluminum-silicon-magnesium cast alloys

    NASA Astrophysics Data System (ADS)

    Ma, Zheyuan

    Aluminum-silicon (Al-Si) alloys are an important class of materials that constitute the majority of aluminum cast parts produced, due to their superior properties and excellent casting characteristics. Within this family of alloys, Al-Si-Cu and Al-Si-Mg cast alloys are frequently employed in automotive applications. The commercially popular 319 and 356 alloys, representing these two alloy systems, were selected for study in the present work, with the aim of investigating the effect of iron intermetallics and porosity on the alloy performance. This was carried out through a study of the tensile and impact properties, these being two of the important mechanical properties used in design calculations. Iron, through the precipitation of second phase intermetallic constituents, in particular the platelike beta-Al5FeSi phase, is harmful to the alloy properties. Likewise, gas- or shrinkage porosity in castings is also detrimental to the mechanical properties. By determining the optimum alloying, melt processing and solidification parameters (viz., Fe content, Sr modification and cooling rate) required to minimize the harmful effects of porosity and iron intermetallics, and studying their role on the fracture behavior, the fracture mechanism in the alloys could be determined. Castings were prepared from both industrial and experimental 319.2, B319.2 and A356.2 alloy melts, containing Fe levels of 0.2--1.0 wt%. Sr-modified (˜200 ppm) melts were also prepared for each alloy Fe level. The end-chilled refractory mold used provided directional solidification and a range of cooling rates (or dendrite arm spacings, DAS) within the same casting. Tensile and impact test samples machined from specimen blanks sectioned from the castings at various heights above the chill end provided DASs of 23--85mum. All samples were T6-heat-treated before testing. Tests were carried out employing Instron Universal and Instrumented Charpy testing machines. Optical microscopy, image analysis, SEM

  18. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  19. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  20. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  1. Development of deep drawn aluminum piston tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  2. The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2004-11-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10; Valimet H-20; and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulk-forming process.« less

  3. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  4. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  5. Gluten and Aluminum Content in Synthroid® (Levothyroxine Sodium Tablets).

    PubMed

    Espaillat, Ramon; Jarvis, Michael F; Torkelson, Cory; Sinclair, Brent

    2017-07-01

    Inquiries from healthcare providers and patients about the gluten and aluminum content of Synthroid ® (levothyroxine sodium tablets) have increased. The objective of this study was to measure and evaluate the gluten content of the raw materials used in the manufacturing of Synthroid. Additionally, this study determined the aluminum content in different strengths of Synthroid tablets by estimating the amount of aluminum in the raw materials used in the manufacturing of Synthroid. Gluten levels of three lots of the active pharmaceutical ingredient (API) and one lot of each excipient from different vendors were examined. The ingredients in all current Synthroid formulations (strengths) were evaluated for their quantity of aluminum. Gluten concentrations were below the lowest limit of detection (<3.0 ppm) for all tested lots of the API and excipients of Synthroid tablets. Aluminum content varied across tablet strengths (range 19-137 µg/tablet). Gluten levels of the API and excipients were found to be below the lowest level of detection and are considered gluten-free based on the US Food and Drug Administration (FDA) definition for food products. Across the various tablet strengths of Synthroid, the maximum aluminum levels were well below the FDA-determined minimal risk level for chronic oral aluminum exposure (1 mg/kg/day). These data demonstrate that Synthroid tablets are not a source for dietary gluten and are a minimal source of aluminum. AbbVie Inc.

  6. Study of aluminum content in a welding metal by thermoelectric measurements

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  7. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  8. Dietary intake of aluminum in a Spanish population (Canary Islands).

    PubMed

    González-Weller, Dailos; Gutiérrez, Angel José; Rubio, Carmen; Revert, Consuelo; Hardisson, Arturo

    2010-10-13

    The aim of this study was to analyze the aluminum content in foods and beverages most commonly consumed by the Canary Island population to determine the dietary intake of this metal throughout the Canary Islands as a whole and in each of the seven islands (Gran Canaria, Lanzarote, Fuerteventura, Tenerife, La Palma, La Gomera, and El Hierro). Four hundred and forty samples were analyzed by ICP-OES. Estimated total intake of aluminum for the Canary population was 10.171 mg/day, slightly higher than the provisional tolerable weekly intake (PTWI; 10 mg/day for a person weighing 70 kg). Aluminum intake by age and sex of the Canary Island population was also determined and compared values from other populations, both national and international.

  9. Determination of micro amounts of iron, aluminum, and alkaline earth metals in silicon carbide

    NASA Technical Reports Server (NTRS)

    Hirata, H.; Arai, M.

    1978-01-01

    A colorimetric method for analysis of micro components in silicon carbide used as the raw material for varistors is described. The microcomponents analyzed included iron soluble in hydrochloric acid, iron, aluminum, calcium and magnesium. Samples were analyzed by the method, and the results for iron and aluminum agreed well with the N.B.S. standard values and the values obtained by the other company. The method can therefore be applied to the analysis of actual samples.

  10. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    NASA Astrophysics Data System (ADS)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  11. Sample Size Determination for One- and Two-Sample Trimmed Mean Tests

    ERIC Educational Resources Information Center

    Luh, Wei-Ming; Olejnik, Stephen; Guo, Jiin-Huarng

    2008-01-01

    Formulas to determine the necessary sample sizes for parametric tests of group comparisons are available from several sources and appropriate when population distributions are normal. However, in the context of nonnormal population distributions, researchers recommend Yuen's trimmed mean test, but formulas to determine sample sizes have not been…

  12. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing

    PubMed Central

    Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane

    2017-01-01

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434

  13. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing.

    PubMed

    Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane

    2017-09-14

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.

  14. Aluminum electroplating on steel from a fused bromide electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating inmore » preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.« less

  15. Friction and wear behavior of aluminum and composite airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1984-01-01

    Friction and wear behavior was determined for small skin specimens under abrasive loading conditions typical of those occurring on the underside of a transport airplane during emergency belly landing. A test apparatus consisting of a standard belt sander provided the sliding surface. Small test specimens constructed of aluminum, standard graphite-epoxy composite, aramid-epoxy composite, and toughened-resin composites were tested undar a range of pressures, belt velocities, and belt-surface textures. The effects of these test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. The effect of fiber orientation in the composite materials on wear rate was also investigated. In addition, tests were performed in which thermocouples were imbedded into the various test specimens to obtain temperature-time histories during abrasion.

  16. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  17. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  18. Damage to metallic samples produced by measured lightning currents

    NASA Technical Reports Server (NTRS)

    Fisher, Richard J.; Schnetzer, George H.

    1991-01-01

    A total of 10 sample disks of 2024-T3 aluminum and 4130 ferrous steel were exposed to rocket-triggered lightning currents at the Kennedy Space Center test site. The experimental configuration was arranged so that the samples were not exposed to the preliminary streamer, wire-burn, or following currents that are associated with an upward-initiated rocket-triggered flash but which are atypical of naturally initiated lightning. Return-stroke currents and continuing currents actually attaching to the sample were measured, augmented by close-up video recordings of approximately 3 feet of the channel above the sample and by 16-mm movies with 5-ms resolution. From these data it was possible to correlate individual damage spots with streamer, return-stroke, and continuing currents that produced them. Substantial penetration of 80-mil aluminum was produced by a continuing current of submedian amplitude and duration, and full penetration of a 35-mil steel sample occurred under an eightieth percentile continuing current. The primary purpose of the data acquired in these experiments is for use in improving and quantifying the fidelity of laboratory simulations of lightning burnthrough.

  19. Ion Flux in Roots of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) under Aluminum Stress

    PubMed Central

    Ma, Zhihui; Huang, Binlong; Xu, Shanshan; Chen, Yu; Cao, Guangqiu; Ding, Guochang; Lin, Sizu

    2016-01-01

    Chinese fir is a tall, fast-growing species that is unique to southern China. In Chinese fir plantations, successive plantings have led to a decline in soil fertility, and aluminum toxicity is thought to be one of the main reasons for this decline. In this study, Non-invasive Micro-test Technology was used to study the effect of aluminum stress on the absorption of 4 different ions in the roots of the Chinese fir clone FS01. The results are as follows: with increased aluminum concentration and longer periods of aluminum stress, the H+ ion flow gradually changed from influx into efflux; there was a large variation in the K+ efflux, which gradually decreased with increasing duration of aluminum stress; and 1 h of aluminum stress uniformly resulted in Ca2+ influx, but it changed from influx to efflux after a longer period of aluminum stress. Changes in the different concentrations of aluminum had the largest influence on Mg2+. PMID:27270726

  20. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  1. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  2. Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.

    PubMed

    Thakkar, Sachin G; Cui, Zhengrong

    2017-01-01

    Many human vaccines contain certain insoluble aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate as vaccine adjuvants to boost the immunogenicity of the vaccines. Aluminum salts have been used as vaccine adjuvants for decades and have an established, favorable safety profile. However, preparing aluminum salts and aluminum salt-adjuvanted vaccines in a consistent manner remains challenging. This chapter discusses methods to prepare aluminum salts and aluminum salt-adjuvanted vaccines, factors to consider during preparation, and methods to characterize the vaccines after preparation.

  3. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    This production route has demonstrated that aluminum alloys with yield strengths in excess of 690 MPa with good elongation (reportedly 8%) are...series of aluminum alloys have poor-to-fair general corrosion resistance and poor-to-good stress corrosion cracking resistance. Wrought 2519...aluminum alloy has good strength, good ballistic performance, good stress corrosion cracking resistance but only fair general corrosion resistance

  4. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.

    PubMed

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka

    2013-04-15

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations <0.02 mg/L were attained by tailoring PACl properties (Ala percentage ≤0.5%, basicity ≥85%). The dissolved residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Acute effects of aluminum and acidity upon nine stream insects. Technical completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.; Haney, J.

    1984-09-01

    The effects of increased aluminum concentrations and decreased pH upon the larval stages of five caddisflies, two mayflies, a stonefly, and a beetle were tested. These insects were removed from two riffle habitats in southern New Hampshire, placed into artificial streams and subjected to additions of aluminum salts and sulfuric acid for a three-day period. Acute mortality and the drifting behavior over the three-day period were then analyzed using multiple linear regression. Aluminum additions caused increased mortality in the stonefly Nemoura nigratta and the caddisfly Macronema spp.; aluminum additions also increased the drift of the caddisfly Potamyia flava, but themore » response was small and likely due to the increased salinities in aluminum treatments.« less

  6. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  7. Utilization of Drinking Water Treatment Slurry to Produce Aluminum Sulfate Coagulant.

    PubMed

    Fouad, Mahmoud M; Razek, Taha M A; Elgendy, Ahmed S

    2017-02-01

      In Egypt, water treatment consumes about 365 000 tons of aluminum sulfate and produces more than 100 million tons of sludge per year. The common disposal system of sludge in Egypt is to discharge it into natural waterways. Toxicity of aluminum, environmental regulations and costs of chemicals used in water treatment and sludge treatment processes led to an evaluation of coagulant recovery and subsequent reuse. The present work aimed at aluminum recovery from sludge of El-Shiekh Zayd water treatment plant (WTP) to produce aluminum sulfate coagulant. Sludge was characterized and the effect of five variables was tested and the process efficiency was evaluated at different operating conditions. Maximum recovery is 94.2% at acid concentration 1.5 N, sludge weight 5 g, mixing speed 60 rpm, temperature 60 °C and leaching time 40 min. Then optimum conditions were applied to get maximum recovery for aluminum sulfate and compared to commercial coagulant on raw water of El-Shiekh Zayd (WTP).

  8. Stress Corrosion Cracking of Certain Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  9. Fatigue behavior in rheocast aluminum 357 suspension arms using the SEED process

    NASA Astrophysics Data System (ADS)

    Samuel, Ehab; Zheng, Chang-Qing; Bouaicha, Amine; Bouazara, Mohamed

    Extensive studies have been devoted to the use of aluminum alloys in the automotive industry, by virtue of the favourable mechanical properties that can be attained. Moreover, the aluminum casting method employed has also been the subject of scrutiny, given the multitude of casting options available. The present work serves to illustrate the advancements made in the area of rheocasting, using the SEED method, as carried out at the National Research Council Canada — Aluminum Technology Centre. The SEED (Swirled Enthalpy Equilibration Device) process, which relies on heat extraction of the liquid aluminum alloy via mechanical agitation in a confined cylinder to form the semi-solid billet, has already proven successful in producing sound aluminum castings having an excellent combination of strength and ductility. Moreover, fatigue testing on the cast alloy parts has shown enormous potential for this emerging technology.

  10. Determination of stress responses induced by aluminum in maize (Zea mays).

    PubMed

    Vardar, Filiz; Ismailoğlu, Işil; Inan, Deniz; Unal, Meral

    2011-06-01

    To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yıldızı) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.

  11. Crack Growth Testing of an Aluminum Oxynitride (AlON) for International Space Station Kick Panes

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2017-01-01

    The mechanical properties of an aluminum oxynitride supplied as ground beams and disks were measured using ASTM International (formerly American Society for Testing and Materials) standard test methods. The slow crack growth tests were complicated by a "short" finish that increased strength scatter. Refining of the finish by more material removal in the second stage of grinding or the use of uniaxial grinding as specified in ASTM C1499 might have avoided the issue. The structural design parameters are an elastic modulus of E = 319 GPa, Poisson's ratio of v = 0.26, a fracture toughness of KIvb(A) = 2.18 MPa/m, slow crack growth (SCG) parameter n = 36, and SCG parameter A = 1.96 x 10-11 m/s.(MPa/m)n. For a ground finish, the Weibull parameters are a mean modulus of m = 14.0 and characteristic strength of ?sigma theta = 250.2 MPa. The 2015 vintage material exhibits similar mechanical properties to a 2010 vintage billet. Indentation flaws were not sensitive to the inherent crack growth mechanisms of this material and produced misleading results.

  12. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  13. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  14. Analytical solution for the effect of the permittivity of coating layer on eddy current generated in an aluminum sample by EMAT

    NASA Astrophysics Data System (ADS)

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang

    2016-02-01

    In order to improve the ultrasonic wave amplitude excited by electromagnetic acoustic transducers (EMATs), many researchers have proposed models. But they always ignored displacement current or the effect of the permittivity of the air or the metal sample during modeling, due to its low permittivity. However, more durable dielectric materials are replacing or coating with metals in many applications which have a much higher permittivity than air or metal sample so that the effect of permittivity cannot be ignored. Based on an analytical model, the effect of the permittivity of coating layer on the eddy current generated in an aluminum sample by EMAT has been studied. The analytical analysis indicates that the eddy current density excited by the spiral coil of EMAT slowly increases in the beginning and then decreases rapidly while the permittivity increases, and it has much relation to the thickness of the coating layer and the exciting frequency, which is verified by the simulation result.

  15. Hybrid Aluminum and Natural Fiber Composite Structure for Crash Safety Improvement

    NASA Astrophysics Data System (ADS)

    Helaili, S.; Chafra, M.; Chevalier, Y.

    There is a growing interest on pedestrian's protection in automotive safety standards. Pedestrians head impact is one of the most important tests. In this paper, a hybrid composite structure made from natural fiber and aluminum, which improve the head protection when impact is taken place, is presented. The structure is made from a honeycomb composite made from unidirectional and woven composites and a thin aluminum layer. A head impact model is developed. The number of hexagonal layers is fixed and the thickness of the aluminum layer of the honeycomb structure is varied. The specific absorption energy is then calculated.

  16. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  17. Loblolly pine and slash pine responses to acute aluminum and acid exposures

    Treesearch

    Jaroslaw Nowak; Alexander L. Friend

    2006-01-01

    In response to concerns about aluminum and HCl exposure associated with rocket motor testing and launches, survival and growth of full-sib families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were evaluated in a nursery bed experiment. Each species was exposed to a single soil application of aluminum...

  18. Using optical techniques to measure aluminum burning in post-detonation explosive fireballs

    NASA Astrophysics Data System (ADS)

    Peuker, Jennifer Mott

    The objectives of the current study are twofold: (1) to further the understanding of aluminum combustion in an explosive fireball, specifically where, when, and with what the aluminum is reacting; and (2) to characterize AlO emission measurements from aluminized explosive fireballs in order to determine when and how AlO emission can be used as an indicator of aluminum combustion. Experiments were completed in six different environments using four distinct aluminized charges of varying aluminum particle size---3 microm, 10 microm and 40 microm---and loading amount---20 and 50 percent by mass---to determine with what the aluminum is reacting. In addition, a charge containing 20 percent aluminum oxide (Al2O3) was used as an inert comparison. The effect of the aluminum particle location with respect to the explosive material was tested by using end-loaded charges, and by placing a layer of grease on the aluminized charge tip. Time-resolved overpressure measurements are used to determine when the aluminum is burning. Experiments employing an air-gap between the explosive charge and aluminum powder aid in determining how and when aluminum is activated and combusted in the initial blast wave and the subsequent fireball containing high pressure and high temperature detonation products. Tests in four environments show that even when AlO emission intensity is lower by 90 percent in N2 or CO2 than it is in air for a charge, it is possible to have significant---60 to 70 percent---aluminum particle oxidation. In addition, substantial AlO emission was measured in the absence of unburned aluminum---almost half of the peak AlO emission measured when unburned aluminum was present. Results show that AlO emission intensity measurements are skewed to higher AlO intensities by high transient temperatures within the first 30 micros when the peak AlO emission is usually measured. The aluminum particle location also affects the amount of AlO emission measured such that when more particles

  19. Impact resistant boron/aluminum composites for large fan blades

    NASA Technical Reports Server (NTRS)

    Oller, T. L.; Salemme, C. T.; Bowden, J. H.; Doble, G. S.; Melnyk, P.

    1977-01-01

    Blade-like specimens were subjected to static ballistic impact testing to determine their relative FOD impact resistance levels. It was determined that a plus or minus 15 deg layup exhibited good impact resistance. The design of a large solid boron/aluminum fan blade was conducted based on the FOD test results. The CF6 fan blade was used as a baseline for these design studies. The solid boron/aluminum fan blade design was used to fabricate two blades. This effort enabled the assessment of the scale up of existing blade manufacturing details for the fabrication of a large B/Al fan blade. Existing CF6 fan blade tooling was modified for use in fabricating these blades.

  20. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  1. 40 CFR 133.104 - Sampling and test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Sampling and test procedures. 133.104 Section 133.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.104 Sampling and test procedures. (a) Sampling and test procedures for...

  2. 40 CFR 133.104 - Sampling and test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Sampling and test procedures. 133.104 Section 133.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.104 Sampling and test procedures. (a) Sampling and test procedures for...

  3. 40 CFR 133.104 - Sampling and test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Sampling and test procedures. 133.104 Section 133.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.104 Sampling and test procedures. (a) Sampling and test procedures for...

  4. Quasi-Static Tensile Stress-Strain Curves. 1, 2024-T3510 Aluminum Alloy

    DTIC Science & Technology

    1976-02-01

    herein were conducted as part of the Core Materials Program of the Solid Mechanics Branch of the Terminal Ballistics Laboratory. The objective of this...describing the results of the Core Materials Program, covers quasi-static terVsile tests of 2024-T3510 aluminum E’lloy. The results include Young’s...11.31 4 580.6 9.94 TABLE II MATERIAL PROPERTIES OF 2024-T3510 ALUMINUM ALLOYa Results of Results of Results of Tensileb Compres ion Sonic Testing

  5. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  6. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  7. FT-IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates.

    PubMed

    Castro-Suarez, John R; Pacheco-Londoño, Leonardo C; Vélez-Reyes, Miguel; Diem, Max; Tague, Thomas J; Hernandez-Rivera, Samuel P

    2013-02-01

    A standoff detection system was assembled by coupling a reflecting telescope to a Fourier transform infrared spectrometer equipped with a cryo-cooled mercury cadmium telluride detector and used for detection of solid-phase samples deposited on substrates. Samples of highly energetic materials were deposited on aluminum substrates and detected at several collector-target distances by performing passive-mode, remote, infrared detection measurements on the heated analytes. Aluminum plates were used as support material, and 2,4,6-Trinitrotoluene (TNT) was used as the target. For standoff detection experiments, the samples were placed at different distances (4 to 55 m). Several target surface temperatures were investigated. Partial least squares regression analysis was applied to the analysis of the intensities of the spectra obtained. Overall, standoff detection in passive mode was useful for quantifying TNT deposited on the aluminum plates with high confidence up to target-collector distances of 55 m.

  8. The effect of brazing parameters on corrosion behavior of brazed aluminum joints

    NASA Astrophysics Data System (ADS)

    Ghasimakbari, Farzam; Hadian, Ali Mohammad; Ershadrad, Soheil; Omidazad, Amir Mansour

    2018-01-01

    Fluid transmission pipes made of aluminum are widely used in petrochemical industries. For many applications, they have to be brazed to each other. The brazed joints, in many cases, are encountered with corrosive medias. This paper reports a part of a work to investigate the corrosion behavior of brazed AA6061 using AA4047 as filler metal with and without the use of flux under different brazing atmospheres. The samples brazed under air, vacuum, argon, and hydrogen atmospheres. The interfacial area of the joints was examined to ensure being free of any defects. The sides of each test piece were covered with an insulator and the surface of the joint was encountered to polarization test. The results revealed a significant difference of corrosion resistance. The samples that brazed under argon and hydrogen atmospheres had better corrosion resistance than other samples. The microstructure of the corroded joints revealed that the presence of defects, impurities due to use of flux and depth of filter metal penetration in base metal are crucial variables on the corrosion resistance of the joints.

  9. Decarbonization process for carbothermically produced aluminum

    DOEpatents

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  10. Drosophila melanogaster as a model system of aluminum toxicity and aging.

    PubMed

    Kijak, Ewelina; Rosato, Ezio; Knapczyk, Katarzyna; Pyza, Elżbieta

    2014-04-01

    The aim of this study was to investigate the toxic effects of aluminum (Al) on the model organism-Drosophila melanogaster. The study is especially concerned with the effects of aluminum on the fruit fly's development, life span, and circadian rhythm in rest and activity. Flies were exposed to aluminum in concentrations from 40 to 280 mg/kg in rearing media or the flies were raised on control medium. Moreover, the life span of insects exposed to aluminum containing 40, 120, or 240 mg/kg of Al in the medium, only during their larval development, during the whole life cycle and only in their adult life was tested. To check if aluminum and aging cause changes in D. melanogaster behavior, the locomotor activity of flies at different ages was recorded. Results showed that aluminum is toxic in concentrations above 160 mg/kg in the rearing medium. Depending on Al concentration and time of exposure, the life span of the flies was shortened. At intermediate concentrations (120 mg/kg), however, Al had a stimulating effect on males increasing their life span and level of locomotor activity. At higher concentration the aluminum exposure increased or decreased the level of locomotor activity of D. melanogaster depending on age of flies. In addition, in the oldest insects reared on aluminum supplemented media and in mid-aged flies reared on the highest concentration of Al the daily rhythm of activity was disrupted. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  11. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    . Advancements of this nonaqueous aluminum plating process have the potential to lead to a novel and competitive commercial aluminum deposition process. In this investigation aluminum electrodeposition from ionic liquid based electrolytes onto steel, copper and magnesium substrates without conversion coatings or strike layers was evaluated in six different ionic liquid based electrolytes in two technical setups. Three of which are commercially available aluminum plating electrolytes, three of which, discussed in literature were created on site by research personnel in the laboratory. The three commercially available electrolytes were: 1-Butyl-3-methylimidazolium chloride ([BMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, 1-Ethyl-3-methylimidazolium chloride ([EMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, and BasionicsTM AL-02, an aluminum plating electrolyte containing [EMIm]Cl * 1.5 AlCl3 with additives from BASF. The three electrolytes created on site were based on the 1-ethyl-3-methylimidazolium chloride ionic liquid with added 1.5 AlCl3 and one with added sodium dodecyl sulfate. Small scale plating tests in a 25-mL plating cell were conducted to provide a comparative analysis of the six different electrolytes considered. From these investigations, two were chosen to be evaluated in a larger 1-liter plating cell; designed and constructed to provide a more realistic evaluation of plating parameters with selected electrolytes to better portray industrial electroplating conditions. The effect of current density (10-40 mA/cm 2), temperature (30-90° Celsius) and plating bath agitation on current efficiency, corrosion resistance by the ASTM B117 method, adhesion, microstructure, and chemical composition (evaluated with energy-dispersive x-ray spectroscopy) of the plated Al-layer was explored in both the 25-mL and 1-L plating cell investigations. In addition development of pre- and post-treatment processes for the metal substrates was attempted. While

  12. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  13. The apparent solubility of aluminum (III) in Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.

    2012-12-01

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity.more » Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.« less

  14. Validation of numerical simulations for nano-aluminum composite solid propellants

    NASA Astrophysics Data System (ADS)

    Yan, Allen H.

    2011-12-01

    Nano-aluminum is of interest as an energetic additive in composite solid propellant formulations for its demonstrated ability to increase combustion efficiency and burning rate. However, due to the current cost of nano-aluminum and the associated safety risks associated with propellant testing, it may not always be practical to spend the time and effort to mix, cast, and thoroughly evaluate the burning rate of a new formulation. To provide an alternative method of determining this parameter, numerical methods have been developed to predict the performance of nano-aluminum composite propellants, but these codes still require thorough validation before application. For this purpose, six propellant compositions were formulated, fully characterized, and burn rates were measured at several pressures between 34.0 and 129.3 atmospheres at room temperature, 20°C, and at an elevated temperature of 71.1°C in order to test the code's ability to predict pressure dependent burn rate and temperature sensitivity. To ensure the most accurate model possible, special emphasis was placed on characterizing the size distribution of the constituent nano-aluminum and ammonium perchlorate powders through optical diffraction or optical imaging techniques. Experimental burn rate is compared to the propellant combustion model and shows excellent agreement within 5% for a range of formulations and pressures, however under other conditions the model deviates by as much as 21%. An analysis of the results suggests that the current framework of the numerical model is unable to accurately simulate all the combustion physics of high aluminum content propellants, and suggestions for improvements are identified.

  15. Serum aluminum levels in dialysis patients after sclerotherapy of internal hemorrhoids with aluminum potassium sulfate and tannic acid.

    PubMed

    Tsunoda, Akira; Nakagi, Masafumi; Kano, Nobuyasu; Mizutani, Masahiko; Yamaguchi, Kenji

    2014-12-01

    Aluminum potassium sulfate and tannic acid (ALTA) is an effective sclerosing agent for internal hemorrhoids. However, it is contraindicated for patients with chronic renal failure on dialysis, because the aluminum in ALTA can cause aluminum encephalopathy when it is not excreted effectively. We conducted this study to measure the serum aluminum concentrations and observe for symptoms relating to aluminum encephalopathy in dialysis patients after ALTA therapy. Ten dialysis patients underwent ALTA therapy for hemorrhoids. We measured their serum aluminum concentrations and observed them for possible symptoms of aluminum encephalopathy. The total injection volume of ALTA solution was 31 mL (24-37). The median serum aluminum concentration before ALTA therapy was 9 μg/L, which increased to 741, 377, and 103 μg/L, respectively, 1 h, 1 day, and 1 week after ALTA therapy. These levels decreased rapidly, to 33 μg/L by 1 month and 11 μg/L by 3 months after ALTA therapy. No patient suffered symptoms related to aluminum encephalopathy. Although the aluminum concentrations increased temporarily after ALTA therapy, dialysis patients with levels below 150 μg/L by 1 week and thereafter are considered to be at low risk of the development of aluminum encephalopathy.

  16. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  17. PERFORMANCE OF AN AIR CLASSIFIER TO REMOVE LIGHT ORGANIC CONTAMINATION FROM ALUMINUM RECOVERED FROM MUNICIPAL WASTE BY EDDY CURRENT SEPARATION. TEST NO. 5.03, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    The report describes a test in which aluminum cans recovered from municipal waste, together with known amounts of contaminant, were processed by a 'zig-zag' vertical air classifier to remove aerodynamically light contaminant. Twelve test runs were conducted; the proportions of co...

  18. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  19. Effect of Silicon on Desulfurization of Aluminum-killed Steels

    NASA Astrophysics Data System (ADS)

    Roy, Debdutta

    Recent reports have suggested that silicon has a beneficial effect on the rate of desulfurization of Al-killed steel. This effect is difficult to understand looking at the overall desulfurization reaction which does not include silicon. However an explanation is proposed by taking into account the (SiO2)/[Si] equilibrium in which some Al reaching the slag-metal interface is used in reducing the SiO2 in the slag. This reaction can be suppressed to some extent if the silicon content of the metal is increased and in doing so, more Al will be available at the slag-metal interface for the desulfurization reaction and this would increase the rate of the desulfurization reaction. A model was developed, assuming the rates are controlled by mass transfer, taking into account the coupled reactions of the reduction of silica, and other unstable oxides, namely iron oxide and manganese oxide, in the slag and desulfurization reaction in the steel by aluminum. The model predicts that increasing silicon increases the rate and extent of desulfurization. Plant data was analyzed to obtain rough estimates of ladle desulfurization rates and also used to validate the model predictions. Experiments have been conducted on a kilogram scale of material in an induction furnace to test the hypothesis. The major conclusions of the study are as follows: The rate and extent of desulfurization improve with increasing initial silicon content in the steel; the effect diminishes at silicon contents higher than approximately 0.2% and with increasing slag basicity. This was confirmed with kilogram-scale laboratory experiments. The effects of the silicon content in the steel (and of initial FeO and MnO in the slag) largely arise from the dominant effects of these reactions on the equilibrium aluminum content of the steel: as far as aluminum consumption or pick-up is concerned, the Si/SiO2 reaction dominates, and desulfurization has only a minor effect on aluminum consumption. The rate is primarily

  20. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  1. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  2. Synthesis and Characterization of Heterobimetallic Iridium-Aluminum and Rhodium-Aluminum Complexes.

    PubMed

    Brewster, Timothy P; Nguyen, Tan H; Li, Zhongjing; Eckenhoff, William T; Schley, Nathan D; DeYonker, Nathan J

    2018-02-05

    We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.

  3. 75 FR 22114 - Aluminum Extrusions from the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... sampling method. Section 771(4)(A) of the Act defines the ``industry'' as the producers as a whole of a... the PRC. At this time, given the unique nature of the alleged subsidy and the complex methodological... process, such as aluminum products produced by a method of casting. Cast aluminum products are properly...

  4. Advances on aluminum first-surface solar reflectors

    NASA Astrophysics Data System (ADS)

    Almanza, Rafael; Chen, Jiefeng; Mazari, Marcos

    1992-11-01

    Aluminum first surface mirrors have some advantages over second surface mirrors as has been discussed. At this stage of development some advantages are obtained: the first advantage was using two electron guns, one for aluminum evaporation permitting us to eliminate or to minimize the pinholes and the other to allow the evaporation of SiO without any mirror contamination as it was before due to the air when the chamber was opened to introduce the SiO, despite having only one e-gun in the laboratory. The second advantage was a better adherence between the aluminum film and the Si2O3, this last substance obtained with an oxidation of SiO with some oxygen inside the evaporation chamber (10-4 Torr). This improvement was due to the use of two e-guns that permit us not to open the chamber. These mirrors are actually under test in the environmental chamber for accelerated weather evaluations. One important aspect is the cleaning of the glass substrate. The chromic mixture cleaning is one of the most effective.

  5. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for April 1 to June 30, 1999, and July 1 to September 30, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-10-15

    Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less

  6. Equation of State of Aluminum-Iron Oxide-Epoxy Composite

    DTIC Science & Technology

    2007-07-01

    which case shock velocities were measured in the samples and aluminum, copper, or polymethyl methacrylate PMMA donor material, using piezoelectric pins...which piezoelectric polyvinylidene fluoride PVDF stress gauges were used to measure the input and propagated stress wave profiles in the sample and...instrumented with Bauer piezoelectric polyvinylidene fluoride PVDF stress gauges6 obtained from Ktech Corporation, Albuquerque, NM. The gauges were mounted on

  7. Micron-Resolution X-ray Structural Microscopy Studies of 3-D Grain Growth in Polycrystalline Aluminum

    NASA Astrophysics Data System (ADS)

    Budai, J. D.; Yang, W.; Tischler, J. Z.; Liu, W.; Larson, B. C.; Ice, G. E.

    2004-03-01

    We describe a new polychromatic x-ray microdiffraction technique providing 3D measurements of lattice structure, orientation and strain with submicron point-to-point spatial resolution. The instrument is located on the UNI-CAT II undulator beamline at the Advanced Photon Source and uses Kirkpatrick-Baez focusing mirrors, differential aperture CCD measurements and automated analysis of spatially-resolved Laue patterns. 3D x-ray structural microscopy is applicable to a wide range of materials investigations and here we describe 3D thermal grain growth studies in polycrystalline aluminum ( ˜1% Fe,Si) from Alcoa. The morphology and orientations of the grains in a hot-rolled aluminum sample were initially mapped. The sample was then annealed to induce grain growth, cooled to room temperature, and the same volume region was re-mapped to determine the thermal migration of all grain boundaries. Significant grain growth was observed after annealing above ˜350^oC where both low-angle and high-angle boundaries were mobile. These measurements will provide the detailed 3D experimental input needed for testing theories and computer models of 3D grain growth in bulk materials.

  8. Approximate sample size formulas for the two-sample trimmed mean test with unequal variances.

    PubMed

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2007-05-01

    Yuen's two-sample trimmed mean test statistic is one of the most robust methods to apply when variances are heterogeneous. The present study develops formulas for the sample size required for the test. The formulas are applicable for the cases of unequal variances, non-normality and unequal sample sizes. Given the specified alpha and the power (1-beta), the minimum sample size needed by the proposed formulas under various conditions is less than is given by the conventional formulas. Moreover, given a specified size of sample calculated by the proposed formulas, simulation results show that Yuen's test can achieve statistical power which is generally superior to that of the approximate t test. A numerical example is provided.

  9. Orbital fabrication of aluminum foam and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2010-01-01

    A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.

  10. Mineral resource of the month: aluminum

    USGS Publications Warehouse

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  11. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    NASA Astrophysics Data System (ADS)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S.

    2013-11-01

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  12. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi

    2013-11-27

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between Junemore » and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by p

  13. Warm Temperature Deformation Behavior and Processing Maps of 5182 and 7075 Aluminum Alloy Sheets with Fine Grains

    NASA Astrophysics Data System (ADS)

    Jang, D. H.; Kim, W. J.

    2018-05-01

    The tensile deformation behavior and processing maps of commercial 5182 and 7075 aluminum alloy sheets with similarly fine grain sizes (about 8 μm) were examined and compared over the temperature range of 423-723 K. The 5182 aluminum alloy with equiaxed grains exhibited larger strain rate sensitivity exponent ( m) values than the 7075 aluminum alloy with elongated grains under most of the testing conditions. The fracture strain behaviors of the two alloys as a function of strain rate and temperature followed the trend in their m values. In the processing maps, the power dissipation parameter values of the 5182 aluminum alloy were larger than those of the 7075 aluminum alloy and the instability domains of the 5182 aluminum alloy were smaller compared to that of the 7075 aluminum alloy, implying that the 5182 aluminum alloy had a better hot workability than the 7075 aluminum alloy.

  14. Development and study of aluminum-air electrochemical generator and its main components

    NASA Astrophysics Data System (ADS)

    Ilyukhina, A. V.; Kleymenov, B. V.; Zhuk, A. Z.

    2017-02-01

    Aluminum-air power sources are receiving increased attention for applications in portable electronic devices, transportation, and energy systems. This study reports on the development of an aluminum-air electrochemical generator (AA ECG) and provides a technical foundation for the selection of its components, i.e., aluminum anode, gas diffusion cathode, and alkaline electrolyte. A prototype 1.5 kW AA ECG with specific energy of 270 Wh kg-1 is built and tested. The results of this study demonstrate the feasibility of AA ECGs as portable reserve and emergency power sources, as well as power sources for electric vehicles.

  15. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  16. A Virtual Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  17. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    PubMed

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  18. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  19. 7 CFR 28.952 - Testing of samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Testing of samples. 28.952 Section 28.952 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... processing tests of the properties of cotton samples and report the results thereof to the persons from whom...

  20. A new organofunctional ethoxysilane self-assembly monolayer for promoting adhesion of rubber to aluminum.

    PubMed

    Wang, Fang; Xu, Juan; Luo, Heyi; Wang, Jinggang; Wang, Qian

    2009-10-12

    Practical adhesion of rubber to aluminum is measured for various aluminum silanization treatments. In this study, 6-(3-triethoxysilylpropylamino)-1,3,5-triazine-2,4-dithiol (TES) was used as the coupling agent for preparing self-assembly monolayers (SAMs) on an aluminum surface. The structure and chemical composition of the SAMs were analyzed using Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The changes in the surface features of the aluminum surface due to TES treatment were investigated by atomic force microscopy (AFM). The adhesive properties of the silanized aluminum surface and EPDM rubber have been evaluated by a T-peel strength test. The results suggested that the Si-O-Al bonding at aluminum TES interface existed and a TES self-assembly monolayer was formed on the aluminum surface. More than 6.0 KN/m adhesion strength is obtained when the aluminum is silanized with 2.5 mmol/dm(3) TES, cured at 160 degrees C and vulcanized with EPDM rubber at 160 degrees C for 30 min. It is suggested that the TES self-assembly monolayer is bound to aluminum through its ethoxysilyl functional group, and the thiol function group is strongly crosslinked to EPDM rubber, respectively.

  1. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  2. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  3. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  4. Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System

    NASA Technical Reports Server (NTRS)

    Moskito, John

    1996-01-01

    This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.

  5. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false OTC test sample collection systems for drugs of... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  6. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  7. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Fretting Wear-Resistant, Micro-Arc Oxidation Coatings for Aluminum and Titanium Alloy Bearings (Preprint)

    DTIC Science & Technology

    2007-03-01

    Cushman, Infoscitex Corporation, 303 Bear Hill Road, Waltham, MA 02451 Aluminum and titanium alloys are used as replacements for steel in gear...assess the susceptibility of selected substrates to wear. Initial testing utilized M50 steel rings as the counter surface to uncoated aluminum and...were recorded and plotted over the 4500 cycles, as shown in the right of Figure 3, depicting results of the best performing test substrate, M50 Steel

  9. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  10. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei; Xiao, Xinke; Guo, Zitao

    2011-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. Detailed computational results were provided to understand the deformation and failure mechanisms of the aluminum alloy plates.

  11. Reactivity and Fragmentation of Aluminum-based Structural Energetic Materials under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Glumac, Nick; Clemenson, Michael; Guadarrama, Jose; Krier, Herman

    2015-06-01

    Aluminum-cased warheads have been observed to generate enhanced blast and target damage due to reactivity of the aluminum fragments with ambient air. This effect can more than double the output of a conventional warhead. The mechanism by which the aluminum reacts under these conditions remains poorly understood. We undertake a highly controlled experimental study to investigate the phenomenon of aluminum reaction under explosive loading. Experiments are conducted with Al 6061 casings and PBX-N9 explosive with a fixed charge to case mass ratio of 1:2. Results are compared to inert casings (steel), as well as to tests performed in nitrogen environments to isolate aerobic and anaerobic effects. Padded walls are used in some tests to isolate the effects of impact-induced reactions, which are found to be non-negligible. Finally, blast wave measurements and quasi-static pressure measurements are used to isolate the fraction of case reaction that is fast enough to drive the primary blast wave from the later time reaction that generates temperature and overpressure only in the late-time fireball. Fragment size distributions, including those in the micron-scale range, are collected and quantified.

  12. High energy density aluminum battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Gilbert M.; Parans Paranthaman, Mariappan; Dai, Sheng

    Compositions and methods of making are provided for a high energy density lithium-aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a lithium metal oxide. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of lithium at the cathode.

  13. Variation in aluminum, iron, and particle concentrations in oxic ground-water samples collected by use of tangential-flow ultrafiltration with low-flow sampling

    USGS Publications Warehouse

    Szabo, Z.; Oden, J.H.; Gibs, J.; Rice, D.E.; Ding, Y.; ,

    2001-01-01

    . Variations in concentrations aluminum and iron (1 -74 and 1-199 ug/L (micrograms per liter), respectively), common indicators of the presence of particulate-borne trace elements, were greatest in sample sets from individual wells with the greatest variations in turbidity and particle concentration. Differences in trace-element concentrations in sequentially collected unfiltered samples with variable turbidity were 5 to 10 times as great as those in concurrently collected samples that were passed through various filters. These results indicate that turbidity must be both reduced and stabilized even when low-flow sample-collection techniques are used in order to obtain water samples that do not contain considerable particulate artifacts. Currently (2001) available techniques need to be refined to ensure that the measured trace-element concentrations are representative of those that are mobile in the aquifer water.

  14. 40 CFR 205.57-2 - Test vehicle sample selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Test vehicle sample selection. 205.57... vehicle sample selection. (a) Vehicles comprising the batch sample which are required to be tested... test request from a batch of vehicles of the category or configuration specified in the test request...

  15. Summary of Results of Tests Made by Aluminum Research Laboratories of Spot-welded Joints and Structural Elements

    NASA Technical Reports Server (NTRS)

    HARTMANN E C; Stickley, G W

    1942-01-01

    Available information concerning spot welding as a means of joining aluminum-alloy parts has been summarized and comparisons have been made of the relative merits of spot-welded and riveted aluminum-alloy structural elements. The results indicated that spot welding was as satisfactory as riveting insofar as resistance to static loads is concerned. Spot welds showed slightly lower resistance to impact loads but definitely lower resistance to repeated loads than rivets.

  16. Gut: An underestimated target organ for Aluminum.

    PubMed

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    EPA Science Inventory

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  18. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant.

    PubMed

    Li, Jinping; Gan, Jinhua; Li, Xianwang

    2009-07-30

    This paper presents a new way of recycling aluminum and iron in boiler slag derived from coal combustion plants, which integrates efficient extraction and reuse of the leached pellets together. The boiler slag was pelletized together with washed coal and lime prior to sintering and then was sintered at 800-1200 degrees C for different periods to produce sintered pellets for the leaching test. An elemental analysis of aqueous solutions leached by sulfuric acid was determined by EDTA-Na(2)-ZnCl(2) titration method. The components and microstructures of the samples, sintered pellets and leached residue were examined by means of XRF, XRD and SEM. XRD analysis indicates that predominate minerals such as kaolinite, quartz, calcium silicide, hematate and metakoalin exist in the boiler slag. An aluminum extraction efficiency of 86.50% was achieved. The maximum extraction efficiency of Fe was 94.60% in the same conditions of that for the maximum extraction efficiency of Al. The extraction efficiencies of Al and Fe increased with an increase in temperature, leaching time and acidity. High Al extraction efficiency was obtained for pellets with high CaO content. The final product of alumina would be used directly for the production of metallic aluminum.

  19. A laboratory means to produce tough aluminum sheet from powder

    NASA Technical Reports Server (NTRS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    1990-01-01

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  20. Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.

    1993-01-01

    Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.

  1. Emperical Tests of Acceptance Sampling Plans

    NASA Technical Reports Server (NTRS)

    White, K. Preston, Jr.; Johnson, Kenneth L.

    2012-01-01

    Acceptance sampling is a quality control procedure applied as an alternative to 100% inspection. A random sample of items is drawn from a lot to determine the fraction of items which have a required quality characteristic. Both the number of items to be inspected and the criterion for determining conformance of the lot to the requirement are given by an appropriate sampling plan with specified risks of Type I and Type II sampling errors. In this paper, we present the results of empirical tests of the accuracy of selected sampling plans reported in the literature. These plans are for measureable quality characteristics which are known have either binomial, exponential, normal, gamma, Weibull, inverse Gaussian, or Poisson distributions. In the main, results support the accepted wisdom that variables acceptance plans are superior to attributes (binomial) acceptance plans, in the sense that these provide comparable protection against risks at reduced sampling cost. For the Gaussian and Weibull plans, however, there are ranges of the shape parameters for which the required sample sizes are in fact larger than the corresponding attributes plans, dramatically so for instances of large skew. Tests further confirm that the published inverse-Gaussian (IG) plan is flawed, as reported by White and Johnson (2011).

  2. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  3. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling: Subsystem Design and Test Challenges

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2010-01-01

    The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing

  4. Partially melted zone in aluminum welds

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Che

    The partially melted zone (PMZ) is a region immediately outside the weld metal where grain boundary (GB) liquation can occur and cause intergranular cracking. Aluminum alloys are known to be susceptible to liquation and liquation cracking. The PMZ of alloy 2219 (essentially Al-6.3Cu) was studied. Liquation is initiated eutectically. Solidification of the GB liquid was directional---upward and toward the weld as a result of the temperature gradients across the PMZ. The liquated material solidifies with severe segregation into a low-strength, low-ductility structure consisting of a solute-depleted ductile phase and a solute-rich brittle eutectic. In tensile testing the maximum load and displacement before failure were both far below those of the base metal. The GB eutectic fractured while the adjacent Cu-depleted a deformed readily under tension. The solidification mode of the grain boundary liquid was mostly planar. However, cellular solidification was also observed near the bottom of partial-penetration welds, where temperature gradients were lowest. The liquation mechanisms in wrought multicomponent aluminum alloys during welding were also studied. Three mechanisms were identified. They cover most, if not all, wrought aluminum alloys. Liquation cracking in the PMZ was investigated in full-penetration aluminum welds. Liquation cracking occurs because the solidifying PMZ is pulled by a solidifying and thus contracting weld metal that is stronger than the PMZ. Liquation cracking can occur if there is significant liquation in the PMZ, if there is no solidification cracking in the adjacent weld metal, and if the PMZ becomes lower in solid fraction (and hence strength) during its terminal solidification than the solidifying weld metal. Liquation cracking in the PMZ was also investigated in partial-penetration aluminum welds. The papillary (nipple) type penetration common in welding with spray transfer of the filler wire actually oscillates along the weld and promotes

  5. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    NASA Astrophysics Data System (ADS)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  6. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  7. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat... wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of this section to...

  8. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat... wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of this section to...

  9. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  10. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    USGS Publications Warehouse

    Burns, Douglas A.

    1989-01-01

    In a small watershed in the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. Available chemical evidence indicates that acidic soil water was the primary source of dissolved aluminum. As flow increased, the Al(OH)3 saturation index in the stream water increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3− at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. A soil water/stream water mixing model was developed based on measured changes of stream water alkalinity, silica concentration, and charge imbalance during the rain events. Model results indicate that a small amount of soil water (3–11%) was present in the stream at peak stage.

  11. A Quick Test for the Highly Colored Ions of the Aluminum-Nickel Group.

    ERIC Educational Resources Information Center

    Grenda, Stanley C.

    1986-01-01

    Presents a technique for eliminating errors in the analysis of the nickel subgroup of the aluminum-nickel group cations. Describes the process of color and chemical changes that occur in this group as a result of ligand and coordination number changes. Discusses opportunities for student observations. (TW)

  12. Fracture mechanics correlation of boron/aluminum coupons containing stress risers

    NASA Technical Reports Server (NTRS)

    Adsit, N. R.; Waszczak, J. P.

    1975-01-01

    The mechanical behavior of boron/aluminum near stress risers has been studied and reported. This effort was directed toward defining the tensile behavior of both unidirectional and (0/ plus or minus 45) boron/aluminum using linear elastic fracture mechanics (LEFM). The material used was 5.6-mil boron in 6061 aluminum, consolidated using conventional diffusion bonding techniques. Mechanical properties are reported for both unidirectional and (0/ plus or minus 45) boron/aluminum, which serve as control data for the fracture mechanics predictions. Three different flawed specimen types were studied. In each case the series of specimens remained geometrically similar to eliminate variations in finite size correction factors. The fracture data from these tests were reduced using two techniques. They both used conventional LEFM methods, but the existence of a characteristic flaw was assumed in one case and not the other. Both the data and the physical behavior of the specimens support the characteristic flaw hypothesis. Cracks were observed growing slowly in the (0/ plus or minus 45) laminates, until a critical crack length was reached at which time catastrophic failure occurred.

  13. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  14. Fabrication of angleply carbon-aluminum composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1974-01-01

    A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.

  15. Assessment of Accelerated Tests Compared to Beachfront Test and Proposed Evaluation Method

    DTIC Science & Technology

    2009-09-03

    Certification Program (ESTCP) funded project entitled “Non-Chromate Aluminum Pretreatments” ( NCAP ) – Funding began in 2000, ended 2004 for Phase I...corrosion tests to beachfront test NCAP Data Assessment Data set includes: – 4 aluminum alloys: 2024, 7075, 2219, 5083 – 9 conversion coatings

  16. Aluminum runway surface as possible aid to aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.; Pinkel, I. I.

    1973-01-01

    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.

  17. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  18. The behavior of ZrO2/20%Y2O3 and Al2O3 coatings deposited on aluminum alloys at high temperature regime

    NASA Astrophysics Data System (ADS)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.

    2015-10-01

    Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  19. Functionalizing aluminum substrata by quaternary ammonium for antifouling performances

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Suo, Xinkun; Bai, Xiuqin; Yuan, Chengqing; Li, Hua

    2018-05-01

    Due to the great loss induced by biofouling, developing new strategies for combating biofouling has attracted extensive attention. Quaternary ammonium salts are potent cationic antimicrobials used in consumer products and their use for surface immobilization could create a contact-active antimicrobial layer. Here we report the facile preparation of a contact-active antifouling coating by tethering polyethyleneimine (PEI) onto flat/nanostructured aluminum surface by hydrogen bonding between PEI and AlOOH. Quaternized PEI (QPEI) is obtained through quaternization reactions. Biofouling testing suggests excellent antifouling performances of the samples by declining the adhesion of 95% Phaeodactylum tricornutum and 98% of Chlorella pyrenoidosa. The antifouling properties of PEI/QPEI are attributed predominately to their hydrophilic and antimicrobial nature. The technical route of PEI/QPEI surface grafting shows great potential for modifying marine infrastructures for enhanced antifouling performances.

  20. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  1. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  2. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  3. X-ray studies of aluminum alloy of the Al-Mg-Si system subjected to SPD processing

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Murashkin, M. Yu; Khasanov, M. R.; Kasatkin, I. A.; Chizhov, P. S.; Bobruk, E. V.

    2014-08-01

    Recently it has been established that during high pressure torsion dynamic aging takes place in aluminum Al-Mg-Si alloys resulting in formation of nanosized particles of strengthening phases in the aluminum matrix, which greatly improves the electrical conductivity and strength properties. In the present paper structural characterization of ultrafine-grained (UFG) samples of aluminum 6201 alloy produced by severe plastic deformation (SPD) was performed using X-ray diffraction analysis. As a result, structure features (lattice parameter, size of coherent scattering domains) after dynamic aging of UFG samples were determined. The size and distribution of second- phase particles in the Al matrix were assessed with regard to HPT regimes. Impact of the size and distribution of the formed secondary phases on the strength, ductility and electrical conductivity is discussed.

  4. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an

  5. Development of a double beam process for joining aluminum and steel

    NASA Astrophysics Data System (ADS)

    Frank, Sascha

    2014-02-01

    Multi-material structures pose an attractive option for overcoming some of the central challenges in lightweight design. An exceptionally high potential for creating cost-effective lightweight solutions is attributed to the combination of steel and aluminum. However, these materials are also particularly difficult to join due to their tendency to form intermetallic compounds (IMCs). The growth of these compounds is facilitated by high temperatures and long process times. Due to their high brittleness, IMCs can severely weaken a joint. Thus, it is only possible to create durable steel-aluminum joints when the formation of IMCs can be limited to a non-critical level. To meet this goal, a new joining method has been designed. The method is based on the combination of a continuous wave (pw) and a pulsed laser (pw) source. Laser beams from both sources are superimposed in a common process zone. This makes it possible to apply the advantages of laser brazing to mixed-metal joints without requiring the use of chemical fluxes. The double beam technology was first tested in bead-on-plate experiments using different filler wire materials. Based on the results of these tests, a process for joining steel and aluminum in a double-flanged configuration is now being developed. The double flanged seams are joined using zinc- or aluminum-based filler wires. Microsections of selected seams show that it is possible to achieve good base material wetting while limiting the growth of IMCs to acceptable measures. In addition, the results of tensile tests show that high joint strengths can be achieved.

  6. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    DOEpatents

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  7. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  8. Casting Characteristics of High Cerium Content Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D; Rios, O R; Sims, Z C

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less

  9. Acute toxic tests of rainwater samples using Daphnia magna.

    PubMed

    Sakai, Manabu

    2006-06-01

    Rainwater samples were collected at Isogo Ward of Yokohama City, Japan, from 23 June to 31 July 2003. The toxic potency of pollutants present in 13 rainwater samples was tested using Daphnia magna. Most test animals died within 48 h in five test solutions that were prepared from rainwater samples. On the other hand, when nonpolar compounds such as pesticides were removed from rainwater samples before the toxic tests, mortalities in all test solutions were less than 10%. Eight kinds of pesticides were detected in rainwater samples. The highest concentration was of dichlorvos, at 0.74 microg/L. Results indicated that insecticides in rainwater sometimes lethally affected D. magna and that toxic potency of insecticides that are present in rainwater constitutes an important problem for environmental protection.

  10. New prior sampling methods for nested sampling - Development and testing

    NASA Astrophysics Data System (ADS)

    Stokes, Barrie; Tuyl, Frank; Hudson, Irene

    2017-06-01

    Nested Sampling is a powerful algorithm for fitting models to data in the Bayesian setting, introduced by Skilling [1]. The nested sampling algorithm proceeds by carrying out a series of compressive steps, involving successively nested iso-likelihood boundaries, starting with the full prior distribution of the problem parameters. The "central problem" of nested sampling is to draw at each step a sample from the prior distribution whose likelihood is greater than the current likelihood threshold, i.e., a sample falling inside the current likelihood-restricted region. For both flat and informative priors this ultimately requires uniform sampling restricted to the likelihood-restricted region. We present two new methods of carrying out this sampling step, and illustrate their use with the lighthouse problem [2], a bivariate likelihood used by Gregory [3] and a trivariate Gaussian mixture likelihood. All the algorithm development and testing reported here has been done with Mathematica® [4].

  11. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  12. Low velocity impact of 6082-T6 aluminum plates

    NASA Astrophysics Data System (ADS)

    Mocian, Oana Alexandra; Constantinescu, Dan Mihai; Sandu, Marin; Sorohan, Ştefan

    2018-02-01

    The low velocity domain covers vehicle impacts, ship collisions and even accidentally tool drops. Even though more and more research is needed into these fields, most of the papers concerning impact problems focus on impact at medium and high velocities. Understanding the behavior of structures subjected to low velocity impact is of major importance when referring to impact resistance and damage tolerance. The paper presents an experimental and numerical investigation on the low velocity behavior of 6082-T6 aluminum plates. Impact tests were performed using an Instron Ceast 9340 drop-weight testing machine. In the experimental procedure, square plates were mounted on a circular support, fixed with a pneumatic clamping system and impacted with a hemispherical steel projectile. Specimens were impacted at constant weight and different impact velocities. The effect of different impact energies was investigated. The impact event was then simulated using the nonlinear finite element code LS_DYNA in order to determine the effect of strain rate upon the mechanical behavior of the aluminum plates. Moreover, in order to capture the exact behavior of the material, a special attention has been given to the selection of the correct material model and its parameters, which, in large extent, depend on the observed behavior of the aluminum plate during the test and the actual response of the plate under simulation. The numerical predictions are compared with the experimental observations and the applicability of the numerical model for further researches is analyzed.

  13. The substitution of aluminum for cobalt in nanostructured bainitic steels

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Qiu, Hui; Xu, Pudong; Yu, Hui; Wang, Yuchen

    2018-06-01

    Two kinds of new steels are designed, in which the only difference is the use of the alloy element aluminum instead of cobalt. The effect of cobalt and aluminum addition on the microstructure and mechanical properties of high-carbon nanostructured bainitic steels was studied. The microstructure and mechanical properties achieved by a low temperature au tempering treatment were investigated by optical microscopy, X-ray diffraction, scanning and transmission electron microscopy and hardness, tension, impact tests. The experimental results show that better mechanical properties were achieved in the high-carbon Al-contained steel.

  14. Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Duan, Yingliang

    2017-06-01

    Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.

  15. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    PubMed Central

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  16. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection.

    PubMed

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-10-09

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink's base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  17. Scientific Background for Processing of Aluminum Waste

    NASA Astrophysics Data System (ADS)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  18. 46 CFR 160.035-6 - Construction of aluminum oar-, hand-, and motor-propelled lifeboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is to be heat-treated and checked by X-ray to assure a satisfactory weld. When using 5086-H 112 aluminum, the welded area is to be checked by a nondestructive test method such as X-ray, ultrasonic waves...) Dissimilar metals. (1) Where in the construction of aluminum lifeboats the use of dissimilar metals are...

  19. 46 CFR 160.035-6 - Construction of aluminum oar-, hand-, and motor-propelled lifeboats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is to be heat-treated and checked by X-ray to assure a satisfactory weld. When using 5086-H 112 aluminum, the welded area is to be checked by a nondestructive test method such as X-ray, ultrasonic waves...) Dissimilar metals. (1) Where in the construction of aluminum lifeboats the use of dissimilar metals are...

  20. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  1. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  2. Gleeble Testing of Tungsten Samples

    DTIC Science & Technology

    2013-02-01

    as a diffusion barrier to prevent the tungsten samples from fusing to the tungsten carbide inserts at elevated temperatures. After the anvils were...anvils with removable tungsten carbide inserts. The inserts were 19.05 mm (0.75 in) in diameter and 25.4 mm (1 in) long; they were purchased from...rhenium are shown in tables 6 and 7 and figure 7. The sample tested at 1300 °C, T4, partially embedded into the tungsten carbide (WC) inserts during

  3. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  4. Evaluation of several corrosion protective coating systems on aluminum

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  5. Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery.

    PubMed

    Lee, Danbi; Lee, Gibaek; Tak, Yongsug

    2018-06-19

    Aluminum-ion batteries are considered to be a promising post lithium-ion battery system in energy storage devices because aluminum is earth-abundant, has a high theoretical capacity, and is of low cost. We report on the chemical activities and stabilities of chloroaluminate anions [Al n Cl n+1 ] - with aluminum metal using a different mole ratio of AlCl 3 and 1-ethyl-3-methylimidazolium chloride. The morphological changes in the Al metal surface are investigated as a function of dipping time in electrolyte, revealing that the Al metal surface is locally attacked by chloroaluminate anions followed by the formation of a new Al oxide layer with a specific lattice plane and a craterlike surface around the cracking site. The aluminum-ion battery exhibits outstanding cycle life and capacity even at the high C-rate of 3 A g -1 , with a high energy efficiency of 98%, regardless of the differences in the size of chloroaluminate anions.

  6. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  7. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  8. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  9. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  10. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  12. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  14. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  15. Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André

    2018-02-01

    An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.

  16. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, Terry D.; Beller, Laurence S.; Clark, Michael L.; Klingler, Kerry M.

    1997-01-01

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus are also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container.

  17. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, T.D.; Beller, L.S.; Clark, M.L.; Klingler, K.M.

    1997-10-14

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: (a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; (b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; (c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and (d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus is also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container. 8 figs.

  18. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  19. Apparatus for testing skin samples or the like

    DOEpatents

    Holland, J.M.

    1982-08-31

    An apparatus for testing the permeability of living skin samples has a flat base with a plurality of sample-holding cavities formed in its upper surface, the samples being placed in counterbores in the cavities with the epidermis uppermost. O-rings of Teflon washers are respectively placed on the samples and a flat cover is connected to the base to press the rings against the upper surfaces of the samples. Media to maintain tissue viability and recovery of metabolites is introduced into the lower portion of the sample-holding cavities through passages in the base. Test materials are introduced through holes in the cover plate after assembly of the chamber.

  20. Body burden of aluminum in relation to central nervous system function among metal inert-gas welders.

    PubMed

    Riihimäki, V; Hänninen, H; Akila, R; Kovala, T; Kuosma, E; Paakkulainen, H; Valkonen, S; Engström, B

    2000-04-01

    The relationship between elevated internal aluminum loads and central nervous system function was studied among aluminum welders, and the threshold level for adverse effect was defined. For 65 aluminum welders and 25 current mild steel welders body burden was estimated, and the aluminum concentrations in serum (S-Al) and urine (U-Al) were analyzed with graphite furnace atomic absorption spectrometry with Zeeman background correction. Referents and low-exposure and high-exposure groups were defined according to an aggregated measure of aluminum body burden, the group median S-Al levels being 0.08, 0.14, and 0.46 micromol/l, respectively, and the corresponding values for U-Al being 0.4, 1.8, and 7.1 micromol/l. Central nervous system functions were assessed with a neuropsychological test battery, symptom and mood questionnaires, a visual and quantitative analysis of electroencephalography (EEG), and P3 event-related potentials with pitch and duration paradigms. Subjective symptoms showed exposure-related increases in fatigue, mild depression, and memory and concentration problems. Neuropsychological testing revealed a circumscribed effect of aluminum, mainly in tasks demanding complex attention and the processing of information in the working memory system and in the analysis and recall of abstract visual patterns. The visual EEG analysis revealed pathological findings only for aluminum welders. Mild, diffuse abnormalities were found in 17% of the low-exposure group and 27% of the high-exposure group, and mild to moderate epileptiform abnormalities at a frequency of 7% and 17%, respectively. Both objective neurophysiological and neuropsychological measures and subjective symptomatology indicated mild but unequivocal findings dose-dependently associated with increased aluminum body burden. The study indicates that the body burden threshold for adverse effect approximates an U-Al value of 4-6 micromol/l and an S-Al value of 0.25-0.35 micromol/l among aluminum welders.

  1. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  2. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  3. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  4. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  5. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  6. Light weight and high strength materials made of recycled steel and aluminum

    NASA Astrophysics Data System (ADS)

    Nounezi, Thomas

    Recycling has proven not only to address today's economical, environmental and social issues, but also to be imperative for the sustainability of human technology. The current thesis has investigated the feasibility of a new philosophy for Recycling (Alloying-Recycling) using steel 1020 and aluminum 6061T6. The study was limited to the metallurgical aspects only and has highlighted the potential of recycled alloys made of recycled aluminum and steel to exhibit substantially increased wear resistance and strength-to-weight ratio as compared to initial primary materials. Three alloy-mixtures are considered: TN3 (5wt% 1020 +95wt% 6061T6); TN5 (0.7wt% 1020 + 99.3wt% 6061T6); and TN4 (10wt% 6061T6 + 90wt% 1020). A Tucker induction power supply system (3kW; 135-400 kHz) is used to melt the alloy mixtures for casting in graphite crucibles. Heat treatment of the cast samples is done using a radiation box furnace. Microscopy, Vickers hardness and pin-on-disc abrasive wear tests are performed. Casting destroyed the initial microstructures of the alloys leading to a hardness reduction in the as-cast and solution heat-treated aluminum rich samples to 60 Hv from 140 Hv. Ageing slightly increased the hardness of the cast samples and provided a wear resistance two times higher than that of the initial 6061T6 material. On the steel rich side, the hardness of the as-cast TN4 was 480 Hv, which is more than twice as high as the initial hardness of steel 1020 of 202 Hv; this hints to strong internal and residual stress, probably martensite formation during fast cooling following casting. Solution heat treatment lowered the hardness to the original value of steel 1020, but provided about ten (10) times higher wear resistance; this suggests higher ductility and toughness of normalised TN4 as compared to 1020. In addition, TN4 exhibits about 25% weight reduction as compared to 1020. The actual recycling process and the effect of non-metallic impurities shall be investigated in future

  7. High intensity acoustic tests of a thermally stressed aluminum plate in TAFA

    NASA Technical Reports Server (NTRS)

    Ng, Chung Fai; Clevenson, Sherman A.

    1989-01-01

    An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.

  8. Dietary protein restriction causes modification in aluminum-induced alteration in glutamate and GABA system of rat brain

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2003-01-01

    Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166

  9. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera

    NASA Astrophysics Data System (ADS)

    Mohamed, Walid Tawfik Y.

    2008-02-01

    Laser-induced breakdown spectroscopy (LIBS) is a laser-based technique that can provide non-intrusive, qualitative and quantitative measurement of metals in various environments. LIBS uses the plasma generated by a high-energy laser beam to prepare and excite the sample in one step. In the present work, LIBS has been applied to perform elemental analysis of six trace elements simultaneously in aluminum alloy targets. The plasma is generated by focusing a pulsed Nd:YAG laser on the target in air at atmospheric pressure. LIBS limit of detection (LOD) is affected by many experimental parameters such as interferences, self-absorption, spectral overlap and matrix effect. We aimed to improve the LIBS LOD by optimizing these experimental parameters as possible. In doing so, a portable Echelle spectrometer with intensified CCD camera was used to detect the LIBS plasma emission. This advanced Echelle spectrometer provides a constant spectral resolution (CSR) of 7500 corresponding to 4 pixels FWHM over a wavelength range 200-1000 nm displayable in a single spectrum. Then, the calibration curves for iron, beryllium, magnesium, silicon, manganese and copper as minor elements were achieved with linear regression coefficients between 98-99% on average in aluminum standard sample alloys. New LOD values were achieved in the ppm range with high precision (RSD 3-8%). From the application view point, improving LIBS LOD is very important in the on-line industrial process control to follow-up multi-elements for the correct alloying in metals.

  10. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  11. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.

    PubMed

    Morgan, Dane V; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  12. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  13. Hydrotalcite-derived cobalt-aluminum mixed oxide catalysts for toluene combustion

    NASA Astrophysics Data System (ADS)

    Białas, Anna; Mazur, Michal; Natkański, Piotr; Dudek, Barbara; Kozak, Marek; Wach, Anna; Kuśtrowski, Piotr

    2016-01-01

    Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  14. Structure-Property Relationships in Aluminum-Copper alloys using Transmission X-Ray Microscopy (TXM) and Micromechanical Testing

    NASA Astrophysics Data System (ADS)

    Kaira, Chandrashekara Shashank

    that effect, in situ tests were conducted at the synchrotron (Advanced Photon Source) using Transmission X-Ray Microscopy as well as in a scanning electron microscope (SEM) to study real-time damage evolution in such alloys. Findings of precipitate size-dependent transition in deformation behavior from these tests have inspired a novel resilient aluminum alloy design.

  15. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    PubMed

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  16. Testing and Evaluation of Multifunctional Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial and formulated coatings to test the functionality imparted on the coating by the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart coatings.

  17. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  18. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  19. Phoenix Test Sample Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  1. Aluminum space frame technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, S.

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  2. The Effect of Surface Coatings on the Fatigue Strength of Aluminum Alloys

    DTIC Science & Technology

    1981-09-01

    Satec Models SF-2U-144 and -145 fatigue testing machines. The abrasion (wear) resistance, the thickness, and the corrosion resistance of the specimens...former coupons; therefore, sharp ed-, es should be finished or rounded by shot peening or sandblasting in order to diminish the possibility of crack...propagation. "Anodic Coatings for Aluminum and Aluminum Alloys%" Military Specification MIL-A-8625C. 6 Satec Systems, Inc.;Grove City, PA 16127. 3 41: I! ,I

  3. Estimation of sample size and testing power (part 5).

    PubMed

    Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo

    2012-02-01

    Estimation of sample size and testing power is an important component of research design. This article introduced methods for sample size and testing power estimation of difference test for quantitative and qualitative data with the single-group design, the paired design or the crossover design. To be specific, this article introduced formulas for sample size and testing power estimation of difference test for quantitative and qualitative data with the above three designs, the realization based on the formulas and the POWER procedure of SAS software and elaborated it with examples, which will benefit researchers for implementing the repetition principle.

  4. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Where: S = wall stress in psi; P = minimum test pressure prescribed for water jacket test; D = outside... and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity (nominal... stress at twice service pressure may not exceed the lesser value of either of the following: (i) 20,000...

  5. Aluminum automotive space frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    Design of aluminum structures is to a new topic. Aircraft makers have successfully solved difficult structural problems with a high degree of understanding and reliability. Other transportation modes such as trucks, trailers, and railcars have faced structural problems with some emphasis on high- and low-cycle fatigue of welded aluminum structures. However, the automotive market places stringent engineering demands on materials and superimposes demanding cost constraints. A project was instituted at Reynolds Metals Co. to investigate the opportunities for the cost-effective application of aluminum to automotive spaceframes. Several areas were recognized as key to the success of this application. They were:more » equivalent or superior structural stiffness of the assembly to existing steel unibody and/or steel spaceframe vehicles; effective joining of spaceframe members; equivalent or superior crashworthiness of the assembly; weight savings; flexibility; and low-cost approach aimed at effective manufacturing. To gain experience with the key aspects in a practical environment, the experience of current builders of steel tube frame chassis was explored. These chassis are typically used in low-volume vehicles requiring torsional stiffness, excellent crashworthiness, and exterior body-style flexibility. A model was developed using finite element methods that accurately predicts mass and stiffness of frames. An effective aluminum space frame was generated which was 7.5% stiffer and more than 20% lighter than the steel frame, with stresses kept below the fatigue limit for aluminum welds.« less

  6. Friction-Stir Welding of Aluminum For the Space Program

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.

  7. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  8. Protective Performance of Polyaniline-Sulfosalicylic Acid/Epoxy Coating for 5083 Aluminum

    PubMed Central

    Liu, Suyun; Liu, Li; Meng, Fandi; Li, Ying; Wang, Fuhui

    2018-01-01

    Epoxy coatings incorporating different content of sulfosalicylic acid doped polyaniline (PANI-SSA) have been investigated for corrosion protection of 5083 aluminum alloy in 3.5% NaCl solution. The performance of the coatings is studied using a combination of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), gravimetric tests, adhesion tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the content of PANI-SSA not only affects the coating compactness and the transportation of aggressive medium, but also has a significant influence on the-based aluminum. The coating with 2 wt. % PANI-SSA exhibits the best corrosion inhibition due to its good protective properties and the formation of a complete PANI-SSA induced oxide layer. PMID:29438304

  9. Highly porous micro-roughened structures developed on aluminum surface using the jet of rotating arc discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Asadollahi, Siavash; Farzaneh, Masoud; Stafford, Luc

    2018-02-01

    Aluminum 6061 samples were exposed to the jet of an atmospheric pressure rotating arc discharge operated in either nitrogen or air. After multiple passes of treatment with an air-based plasma jet at very short source-to-substrate distances, scanning electron microscopy combined with x-ray photoelectron spectroscopy revealed a highly porous micro-roughened alumina-based structure on the surface of aluminum. Based on optical emission spectroscopy and high-speed optical imaging of the jet interacting with aluminum samples, it was found that the process is mainly driven by the energy transfer from the plasma source to the surface through transient plasma-transferred arcs. The occurrence of multiple arc discharges over very short time scales can induce rapid phase transformations of aluminum with characteristics similar to the ones usually observed during laser ablation of materials with femto- to nanosecond laser pulses or during the formation of cathode spots on the surface of metals.

  10. Fatigue Crack-Growth Resistance of Aluminum Alloys Under Spectrum Loading. Volume 2. Aluminum Lithium Alloys.

    DTIC Science & Technology

    1985-12-01

    Effects on Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy ," Eng. Frac. Mech, * Vol. 8, 1976, p. 657...Retardation Behavior of 7075 * and 2024 Aluminum Alloys ," ASTNI STP 631, 1977. 89 hill". .A•, - . 34. Chanani, G.R., "Investigation of Effects of Saltwater...1.0 9,අ &M Ma ki-L6 &Ŗ &- La 06 lin "Ll Ull 1.25 "A Lm Wit Rtlc()FIV WtklLl’-"- ll*A FATIGUE CRACK-GROWTH RESISTANCE OF ALUMINUM ALLOYS

  11. Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints

    NASA Astrophysics Data System (ADS)

    Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav

    2018-04-01

    Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.

  12. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei

    2013-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~ 170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. National Natural Science Foundation of China (No.: 11072072).

  13. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo

    2015-12-01

    Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.

  14. REGENERATION OF CHROMATED ALUMINUM DEOXIDIZERS. IMPROVED DIAPHRAGM FABRICATION AND PERFORMANCE

    EPA Science Inventory

    In the metal finishing industry highly concentrated hexavalent chromium solutions are used extensively to deoxidize aluminum surfaces prior to anodizing, conversion coatings, prepaint preparation, welding and adhesive bonding. A regeneration process was conceived and tested to re...

  15. Aluminum Shear Panels for Seismic Protection of Framed Structures: Review of Recent Experimental Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Matteis, G.; Brando, G.; Panico, S.

    An important experimental campaign on pure aluminum shear panels, to develop new devices for the seismic passive protection of buildings, has been recently carried out at the University of Naples 'Federico II' in cooperation with the University 'G. d'Annunzio' of Chieti/Pescara. In particular, several pure aluminum shear panels, suitably reinforced by ribs in order to delay shear buckling in the plastic deformation field, have been tested under cyclic loads. The choice pure aluminium, which is really innovative in the field of civil engineering, is justified by both the nominal low yield strength and the high ductility of such a material,more » which have been further improved through a proper heat treatment. Two different testing layouts have been adopted. In the former, six 'full bay' pure aluminum shear panels, having in-plane dimensions 1500x1000 mm and thickness of 5 mm, have been taken in consideration. In the latter, four 5 mm thick stiffened bracing type pure aluminum shear panels (BTPASPs) with a square shape of 500 mm side length have been cyclically tested under diagonal load. In the whole several plate slenderness ratios have been considered, allowing the evaluation of the most influential factors on the cyclic performance of system. In the current paper a review of the most important results of these recent experimental activities is provided and discussed.« less

  16. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  17. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: HD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  18. Antimicrobial effects of an antiperspirant formulation containing aqueous aluminum chloride hexahydrate.

    PubMed

    Hölzle, E; Neubert, U

    1982-01-01

    To document deodorant efficacy the antimicrobial activity of a gelatinous antiperspirant formulation of aqueous aluminum chloride hexahydrate was investigated. In vitro assays demonstrated highly bactericidal activity on microorganisms comprising the resident axillary skin flora, including micrococcaceae and aerobic diphtheroid bacteria. Gram-negative bacteria and yeast were partially inhibited. In vivo experiments utilizing occlusive patches on forearm skin and bacterial sampling of the axilla showed pronounced bacteriostasis and persistence of aluminum chloride on the skin. Inhibition of microbial growth lasted more than 3 days after a single treatment of the axilla. Following repeated open applications to the volar aspect of the forearm, the skin remained virtually sterile for 3 days.

  19. 75 FR 80527 - Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  20. The Delayed Fracture of Aluminum Alloys.

    DTIC Science & Technology

    1981-01-01

    Cracking of a Maraging Steel ," Corrosion NACE, 1971, vol. 27, no. 10, pp. 429-433. 42. H.R. Smith and D.E. Piper: "Stress- Corrosion Testing with Pre...Sivaramakrishman, and R. Kumar: "Influence of Processing Variables on the Stress Corrosion Characteristics of Weldable Al-Zn-Mg Alloys," Light Met. Age , 1979...if necessary and Identify by block number) aluminum alloys, stress- corrosion cracking, oxide film, Auger electron spectroscopy, Auger depth profiling

  1. Evaluation of laminated aluminum plate for shuttle applications

    NASA Technical Reports Server (NTRS)

    Martin, M. J.

    1973-01-01

    Flaw growth behavior in roll diffusion bonded and adhesive bonded 2219-T87 aluminum alloy was compared to that in monolothic 2219-T87. Based on tests at 40 KSI cyclic stress, for equivalent cyclic life, a .004 interlayer laminate can tolerate a surface flaw twice as wide as in monolithic material, or provide an 8% weight saving by operating at higher stress for the same initial flaw. Roll diffusion bonded material with three structural plies of 2219-T87 and two interlayers of 1100 aluminum was prepared with interlayer thicknesses of .004, .007 and .010 in. Total laminate thickness was .130 in. The .004 interlayer laminate was most effective and gave better results than monolithic material at 40 and 48 ksi. Adhesive bonded specimens were fabricated of three sheets of 2219-T87 aluminum alloy bonded with METLBOND 329 adhesive. Adhesive bonded specimens gave longer lives to failure than diffusion bonded specimens at 40 ksi the diffusion bonded material was superior. Flaws initiated in one ply of the laminate grew to the edges of the specimen in that ply but did not propagate into adjacent plies.

  2. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum... tolerance when used in accordance with good agricultural practices as stabilizers in formulations of the...

  3. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum... tolerance when used in accordance with good agricultural practices as stabilizers in formulations of the...

  4. The effect of surface oxide layer on the rate of hydrogen emission from aluminum and its alloys in a high vacuum

    NASA Technical Reports Server (NTRS)

    Makarova, V. I.; Zyabrev, A. A.

    1979-01-01

    The influence of surface oxide layers on the kinetics of hydrogen emission at the high vacuum of 10 to the minus 8th power torr was investigated at temperatures from 20 to 450 C using samples of pure AB00 aluminum and the cast alloy AMg. Cast and deformed samples of AMts alloy were used to study the effect of oxide film thickness on the rate of hydrogen emission. Thermodynamic calculations of the reactions of the generation and dissociation of aluminum oxide show that degasification at elevated temperatures (up to 600 C) and high vacuum will not reduce the thickness of artificially-generated surface oxide layers on aluminum and its alloys.

  5. 49 CFR 178.505 - Standards for aluminum drums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum...

  6. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  7. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  8. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  9. Optimal aluminum/zirconium: Protein interactions for predicting antiperspirant efficacy using zeta potential measurements.

    PubMed

    Yuan, Shaotang; Vaughn, John; Pappas, Iraklis; Fitzgerald, Michael; Masters, James G; Pan, Long

    2015-01-01

    The interactions between commercial antiperspirant (AP) salts [aluminum chlorohydrate (ACH), activated ACH, aluminum sesquichlorohydrate (ASCH), zirconium aluminum glycine (ZAG), activated ZAG), pure aluminum polyoxocations (Al13-mer, Al30-mer), and the zirconium(IV)-glycine complex Zr6 (O)4 (OH)4 (H2O)8 (Gly)8]12+(-) (CP-2 or ZG) with Bovine serum albumin (BSA) were studied using zeta potential and turbidity measurements. The maximal turbidity, which revealed the optimal interactions between protein and metal salts, for all protein-metal salt samples was observed at the isoelectric point (IEP), where the zeta potential of the solution was zero. Efficacy of AP salts was determined via three parameters: the amount of salt required to flocculate BSA to reach IEP, the turbidity of solution at the IEP, and the pH range over which the turbidity of the solution remains sufficiently high. By comparing active salt performance from this work to traditional prescreening methods, this methodology was able to provide a consistent efficacy assessment for metal actives in APs or in water treatment.

  10. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  11. 46 CFR 160.055-7 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Sampling, tests, and inspections. 160.055-7 Section 160.055-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... and Child, for Merchant Vessels § 160.055-7 Sampling, tests, and inspections. (a) Production tests and...

  12. 46 CFR 160.055-7 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sampling, tests, and inspections. 160.055-7 Section 160.055-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... and Child, for Merchant Vessels § 160.055-7 Sampling, tests, and inspections. (a) Production tests and...

  13. 46 CFR 160.002-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Sampling, tests, and inspections. 160.002-5 Section 160.002-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... Type), Models 3 and 5 § 160.002-5 Sampling, tests, and inspections. (a) Production tests and...

  14. 46 CFR 160.002-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sampling, tests, and inspections. 160.002-5 Section 160.002-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... Type), Models 3 and 5 § 160.002-5 Sampling, tests, and inspections. (a) Production tests and...

  15. Temperature-dependent tensile and shear response of graphite/aluminum

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Pindera, M. J.; Herakovich, C. T.

    1987-01-01

    The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.

  16. Low-Temperature Plasma Coating for Aluminum

    DTIC Science & Technology

    2001-03-01

    AFRL-ML-WP-TR-2001-4104 LOW-TEMPERATURE PLASMA COATING FOR ALUMINUM DR. HIROTSUGU YASUDA CENTER FOR SURFACE SCIENCE & PLASMA TECHNOLOGY...Date 00032001 Report Type N/A Dates Covered (from... to) - Title and Subtitle Low-Temperature Plasma Coating for Aluminum Contract Number...REPORT TYPE AND DATES COVERED Final, 6/29/1996 - 3/31/2001 4. TITLE AND SUBTITLE LOW-TEMPERATURE PLASMA COATING FOR ALUMINUM 5. FUNDING NUMBERS C

  17. Homogenization of sample absorption for the imaging of large and dense fossils with synchrotron microtomography.

    PubMed

    Sanchez, Sophie; Fernandez, Vincent; Pierce, Stephanie E; Tafforeau, Paul

    2013-09-01

    Propagation phase-contrast synchrotron radiation microtomography (PPC-SRμCT) has proved to be very successful for examining fossils. Because fossils range widely in taphonomic preservation, size, shape and density, X-ray computed tomography protocols are constantly being developed and refined. Here we present a 1-h procedure that combines a filtered high-energy polychromatic beam with long-distance PPC-SRμCT (sample to detector: 4-16 m) and an attenuation protocol normalizing the absorption profile (tested on 13-cm-thick and 5.242 g cm(-3) locally dense samples but applicable to 20-cm-thick samples). This approach provides high-quality imaging results, which show marked improvement relative to results from images obtained without the attenuation protocol in apparent transmission, contrast and signal-to-noise ratio. The attenuation protocol involves immersing samples in a tube filled with aluminum or glass balls in association with a U-shaped aluminum profiler. This technique therefore provides access to a larger dynamic range of the detector used for tomographic reconstruction. This protocol homogenizes beam-hardening artifacts, thereby rendering it effective for use with conventional μCT scanners.

  18. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  19. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  20. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  1. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  2. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This...

  3. Study of the wear resistance of ion-plasma coatings based on titanium and aluminum and obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-05-01

    The paper presents the results of metallographic researches and erosion tests of ion-plasma coatings (based on titanium, aluminum and their nitrides), which were formed on samples of 12Kh13 and EI961 blade steels. Erosion tests and studies of characteristics of obtained by magnetron sputtering coatings were carried out by using a set of research equipment UNU “Erosion-M” NRU “MPEI”. It was found that the formed Ti/Al-TiN/AlN coatings increase the duration of blade steels erosion wear incubation period by at least in 1.5 times and have a layered structure with thicknesses of nitride layers 1.3-1.6 μm and intermediate metallic layers 0.3-0.5 μm, with a total thickness of coatings of 10-14 μm for 12Kh13steel samples and 19-21 μm for EI961 steel samples.

  4. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  5. Aluminum in erythropoietin formulations: lyophilized versus liquid forms.

    PubMed

    Veiga, Marlei; Bohrer, Denise; Noremberg, Simone; Mattiazzi, Patricia; do Nascimento, Paulo C; de Carvalho, Leandro M

    2013-01-01

    Erythropoietin (EPO) formulations may comprise aluminum (Al) as a contaminant. Due to the toxicity of Al in chronic kidney disease patients, possible sources of Al were investigated. Since EPO formulations are stored in container-closure systems made of glass and rubber, and both contain Al, formulation ingredients may enable its leaching into the solution during shelf-life. Individual solutions of formulation ingredients were stored in new glass vials and in contact with the rubber stopper and kept at 4 ± 2 °C. For 12 months, aliquots of each solution were collected for analysis. Fifteen commercial samples of EPO were analyzed for their Al content. Aluminum was determined by atomic absorption spectrometry. Glass and rubber are sources of Al for EPO formulations. Storage assay showed that citrate and phosphate (used as buffers) extracted high amounts of Al from the container/closure parts. The most important difference, however, was found when comparing liquid and lyophilized samples. While in liquid forms the Al level reached 943 μg/L, in lyophilized forms the level did not exceed 20 μg/L. The container system was also confirmed as a source of Al in reconstituted lyophilized samples. Al in reconstituted samples stored in their own vials increased 19-fold in 12 months. Lyophilized powders stored for 2 years in glass vials contained less Al than in 1 month after dissolution. The difference in the Al measured in liquid forms of EPO and in lyophilized powders suggests that the latter would be the best pharmaceutical form for CKD patients.

  6. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  7. Use of low-cost aluminum in electric energy production

    NASA Astrophysics Data System (ADS)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  8. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  9. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    NASA Astrophysics Data System (ADS)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  10. 46 CFR 160.005-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sampling, tests, and inspections. 160.005-5 Section 160.005-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... (Jacket Type), Models 52 and 56 § 160.005-5 Sampling, tests, and inspections. (a) Production tests and...

  11. 46 CFR 160.005-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Sampling, tests, and inspections. 160.005-5 Section 160.005-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... (Jacket Type), Models 52 and 56 § 160.005-5 Sampling, tests, and inspections. (a) Production tests and...

  12. 43 CFR 3162.4-2 - Samples, tests, and surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Samples, tests, and surveys. 3162.4-2... for Operating Rights Owners and Operators § 3162.4-2 Samples, tests, and surveys. (a) During the... tests, run logs, and make other surveys reasonably necessary to determine the presence, quantity, and...

  13. 43 CFR 3162.4-2 - Samples, tests, and surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Samples, tests, and surveys. 3162.4-2... for Operating Rights Owners and Operators § 3162.4-2 Samples, tests, and surveys. (a) During the... tests, run logs, and make other surveys reasonably necessary to determine the presence, quantity, and...

  14. 43 CFR 3162.4-2 - Samples, tests, and surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Samples, tests, and surveys. 3162.4-2... for Operating Rights Owners and Operators § 3162.4-2 Samples, tests, and surveys. (a) During the... tests, run logs, and make other surveys reasonably necessary to determine the presence, quantity, and...

  15. Development of lightweight aluminum hollowcore solar cell array technology

    NASA Technical Reports Server (NTRS)

    Carlson, J. A.

    1971-01-01

    A baseline configuration for a three section folding array, with retraction capability, was developed which would utilize electroformed aluminum hollowcore substrates and beryllium frames. The three section array was not fabricated because of difficulties with impurities in the aluminum electroforming bath. A procedure was developed for etching the copper mandrel from virtually any size of aluminum hollowcore panel in approximately one hour. Procedures were developed for analyzing the content of peroxide, water, total aluminum, and lithium-aluminum-hydride in an aluminum electroforming solution.

  16. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  17. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  18. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  19. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  20. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...