Science.gov

Sample records for aluminum weld strength

  1. U-Groove aluminum weld strength improvement

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1996-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe peaking, which induces bending under uniaxial loading. The filler strain-hardening decreased with increasing filler pass sequence, producing the weakest welds on the last pass side. Current welding schedules unknowingly compound these effects which reduce the weld strength. A depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve depeaking in the welding process. The intent is to combine the strongest weld pass side with the peaking induced bending tension to provide a more uniform stress and stronger weld under axial tensile loading.

  2. U-groove aluminum weld strength improvement

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1995-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe peaking which induces bending under uniaxial loading. The filler strain-hardening deceased with increasing filler pass sequence, producing the weakest welds on the last pass side. Current welding schedules unknowingly compound these effects which reduce the weld strength. A de-peaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve de-peaking in the welding process. Intent is to combine the strongest weld pass side with the peaking induced bending tension to provide a more uniform stress and stronger weld under axial tensile loading.

  3. U-Groove Aluminum Weld Strength Improvement

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1997-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. One is the source of peaking in which the extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe angular distortion that induces bending under uniaxial loading. The other is the filler strain hardening decreasing with increasing filler pass sequences, producing the weakest welds on the last weld pass side. Both phenomena are governed by weld pass sequences. Many industrial welding schedules unknowingly compound these effects, which reduce the weld strength. A depeaking index model was developed to select filler pass thickness, pass numbers, and sequences to improve depeaking in the welding process. The result was to select the number and sequence of weld passes to reverse the peaking angle such as to combine the strongest weld pass side with the peaking induced bending tension component side to provide a more uniform stress and stronger weld under axial tensile loading.

  4. Weld geometry strength effect in 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.

    1981-01-01

    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

  5. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  6. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    NASA Astrophysics Data System (ADS)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  7. The Strength and Characteristics of VPPA Welded 2219-T87 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Jemian, W. A.

    1985-01-01

    A study of the variable polarity plasma arc (VPPA) welding process and those factors that control the structure and properties of VPPA welded aluminum alloy 2219-T87 was conducted. The importance of joint preparation, alignment of parts and welding process variables are already established. Internal weld defects have been eliminated. However, a variation of properties was found to be due to the size variation of interdendritic particles in the fusion zone. These particles contribute to the void formation process, which controls the ultimate tensile strength of the welded alloy. A variation of 150 microns in particle size correlated with a 10 ksi variation of ultimate tensile strength. It was found that all fracture surfaces were of the dimple rupture type, with fracture initiating within the fusion zone.

  8. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  9. Weld bead reinforcement removal: A method of improving the strength and ductility of peaked welds in 2219-T87 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1979-01-01

    The results of a study to determine the degree to which the ductility and tensile properties of peaked welds could be enhanced by removing the reinforcing bead and fairing the weld nugget into the adjacent parent metal are presented. The study employed 2219-T87 aluminum alloy plate, tungsten inert gas (TIG) welding, and 2319 filler wire. The study concluded that significant improvements in peak weld, ultimate strength, and ductility can be obtained through removal and fairing of the weld reinforcing bead. The specimens so treated and tested in this program exhibited ultimate strength improvements of 2 to 3 percent for peak angles of 5.8 to 10 degrees and 10 to 22 percent for welds with peak angles of 11.7 to 16.9 degrees. It was also determined that removal of the weld bead enhanced the ability of peaked welds to straighten when exposed to cyclic loading at stress levels above the yield strength.

  10. Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  11. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Li, Yuanxing; Zhang, Mingyue; Hui, Chen

    2015-03-01

    7003-T5 Aluminum (Al) alloy plates with a thickness of 5 mm are welded by gas metal arc welding (GMAW) method in this work. In order to investigate the influence of stress concentration introduced by weld reinforcement on fatigue strength, the stress concentration factor of the butt joint is calculated. Microscopic and X-ray techniques were utilized to make sure there are no weld defects with large size in butt weld, which can induce extra stress concentration. The cyclic stress - number of cycles to failure (S-N) curves of the joints with and without the welder were obtained by fatigue testing, and the results show that the fatigue strength of 7003-T5 Al alloy butt joints with the weld reinforcement is 50 MPa, which is only 45% of the joints without the weld reinforcement. Fracture surface observation indicated that the fatigue source and propagation are dissimilar for the specimens with and without the welder due to the stress concentration at the weld root. The stress concentration with a factor of 1.7 has great effect on the fatigue strength, but little influence on the tensile strength.

  12. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  13. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    SciTech Connect

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.

  14. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly preparedmore » joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.« less

  15. Ultrasonic Spot Welding of Aluminum to High-Strength Low-Alloy Steel: Microstructure, Tensile and Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Patel, V. K.; Bhole, S. D.; Chen, D. L.

    2014-04-01

    The structural applications of lightweight aluminum alloys inevitably involve dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change, lap shear tensile load, and fatigue resistance of dissimilar ultrasonic spot-welded joints of aluminum-to-galvanized high-strength low-alloy (HSLA) steel. Two non-uniform layers were identified in between Al and HSLA steel via SEM/EDS and XRD. One was an Al-Zn eutectic layer and the other was a thin (<2 μm) layer of intermetallic compound (IMC) of Al and Fe in the nugget zone. The lap shear tensile testing gave a maximum load of 3.7 kN and the sample failed initially in between the Al-Zn eutectic film and Al-Fe IMC, and afterward from the region containing Al on both matching fracture surfaces. The fatigue test results showed a fatigue limit of about 0.5 kN (at 1 × 107 cycles). The maximum cyclic stress at which transition of the fatigue fracture from transverse through-thickness crack growth mode to the interfacial failure mode occurs increases with increasing energy input.

  16. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  17. Shear strength of fillet welds in aluminum alloy 2219. [for use on the solid rocket motor and external tank

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1978-01-01

    Fillet size is discussed in terms of theoretical or design dimensions versus as-welded dimensions, drawing attention to the inherent conservatism in the design load sustaining capabilities of fillet welds. Emphasis is placed on components for the solid rocket motor, external tank, and other aerospace applications. Problems associated with inspection of fillet welds are addresses and a comparison is drawn between defect counts obtained by radiographic inspection and by visual examination of the fracture plane. Fillet weld quality is related linearly to ultimate shear strength. Correlation coefficients are obtained by simple straight line regression analysis between the variables of ultimate shear strength and accumulative discontinuity summation. Shear strength allowables are found to be equivalent to 57 percent of butt weld A allowables (F sub tu.)

  18. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  19. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    NASA Astrophysics Data System (ADS)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  20. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    NASA Astrophysics Data System (ADS)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within

  1. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  2. Small-scale explosive welding of aluminum

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    Welding technique uses very small quantities of explosive ribbon to accomplish small-scale lap-welding of aluminum plates. Technique can perform small controlled welding with no length limitations and requires minimal protective shielding.

  3. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  4. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr.

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  5. Theoretical Model of the Effect of Crack Tip Blunting on the Ultimate Tensile Strength of Welds in 2219-T87 Aluminum

    NASA Technical Reports Server (NTRS)

    Beil, R. J.

    1982-01-01

    A theoretical model representing blunting of a crack tip radius through diffusion of vacancies is presented. The model serves as the basis for a computer program which calculates changes, due to successive weld heat passes, in the ultimate tensile strength of 2219-T81 aluminum. In order for the model to yield changes of the same order in the ultimate tensile strength as that observed experimentally, a crack tip radius of the order of .001 microns is required. Such sharp cracks could arise in the fusion zone of a weld from shrinkage cavities or decohered phase boundaries between dendrites and the eutectic phase, or, possibly, from plastic deformation due to thermal stresses encountered during the welding process. Microstructural observations up to X2000 (resolution of about .1 micron) did not, in the fusion zone, show structural details which changed significantly under the influence of a heat pass, with the exception of possible small changes in the configuration of the interdendritic eutectic and in porosity build-up in the remelt zone.

  6. Effect of Weld Characteristic on Mechanical Strength of Laser-Arc, Hybrid-Welded Al-Mg-Si-Mn Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Gao, Ming; Jiang, Ming; Zeng, Xiaoyan

    2016-08-01

    Laser-arc hybrid welding (LAHW) was employed to improve the tensile properties of the joints of 8-mm-thick Al-Mg-Si-Mn alloy (AA6082) using Al-5Mg filler wire. The weld microstructures were examined by scanning electron microscope, electron backscattered diffraction, and transmission electron microscopy in detail. The LAHW joints with pore-free and high-tensile performances were obtained. The strength enhancement of the fusion zone and heat-affected zone in the LAHW joint was mainly attributed to the grain refinement strengthening and the precipitation strengthening, respectively. The microstructure characteristics were related to the effects of laser-arc interaction on the energy transfer within the molten pool. The arc caused the majority of laser energy to dissipate out of the keyhole, and then it reduced the heat input. The lower heat input refined the grain size, weakened the overaging effect, and thus improved the tensile strength.

  7. Effect of Weld Characteristic on Mechanical Strength of Laser-Arc Hybrid-Welded Al-Mg-Si-Mn Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Gao, Ming; Jiang, Ming; Zeng, Xiaoyan

    2016-11-01

    Laser-arc hybrid welding (LAHW) was employed to improve the tensile properties of the joints of 8-mm-thick Al-Mg-Si-Mn alloy (AA6082) using Al-5Mg filler wire. The weld microstructures were examined by scanning electron microscope, electron backscattered diffraction, and transmission electron microscopy in detail. The LAHW joints with pore-free and high-tensile performances were obtained. The strength enhancement of the fusion zone and heat-affected zone in the LAHW joint was mainly attributed to the grain refinement strengthening and the precipitation strengthening, respectively. The microstructure characteristics were related to the effects of laser-arc interaction on the energy transfer within the molten pool. The arc caused the majority of laser energy to dissipate out of the keyhole, and then it reduced the heat input. The lower heat input refined the grain size, weakened the overaging effect, and thus improved the tensile strength.

  8. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  9. Microstructure analysis in friction welding of copper and aluminum

    NASA Astrophysics Data System (ADS)

    Wibowo, A. G. Wahyu; Ismail, Rifky; Jamari, J.

    2016-04-01

    The Friction welding is a welding method with utilizing heat generated due to friction. Surfaces of two materials to be joined, one rotates the other being idle, is contacted by a pressure force. Friction on the second contact surface is done continuously so that the heat generated by the continuous friction will continue to rise. With the heat and the pressure force on the second surface to the second meeting of the material reaches its melting temperature then there is the process of welding. This paper examines the influence of the pressure force, rotational speed and contact time on friction welding of Aluminum (Al) and Copper (Cu) to the quality of welded joints. Friction welding process is performed on a friction welding machine that is equipped with the loading mechanism. The parameters used are the pressure force, rotational speed and friction time. Determination of the quality of welding is done by testing the tensile strength, hardness, and micro structure on the weld joint areas. The results showed that the friction welding quality is very good, this is evidenced by the results of a tensile strength test where the fault occurs outside the weld joint and increased violence in the weld joint. On the results visually cuts the welding area did not reveal any porosity so that it can be concluded that each metal contacts have melted perfectly and produce a connection with good quality.

  10. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    NASA Astrophysics Data System (ADS)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  11. Friction-Stir Welding of Aluminum For the Space Program

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.

  12. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  13. Microstructure and mechanical properties of the welding joint filled with microalloying 5183 aluminum welding wires

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Zhao, Zhi-hao; Wang, Gao-song; Zhang, Chao; Cui, Jian-zhong

    2014-06-01

    In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.

  14. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  15. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens.

    PubMed

    Tsujino, Jiromaru; Hidai, Kazuaki; Hasegawa, Atsushi; Kanai, Ryoichi; Matsuura, Hisanori; Matsushima, Kaoru; Ueoka, Tetsugi

    2002-05-01

    Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration.

  16. Explosive Welding of Aluminum to Aluminum: Analysis, Computations and Experiments

    NASA Astrophysics Data System (ADS)

    Grignon, F.; Benson, D.; Vecchio, K. S.; Meyers, M. A.

    2004-07-01

    6061 T0 aluminum alloy was joined to 6061 T0 aluminum alloy by explosive welding. This is a process in which the controlled energy of a detonating explosive is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored to produce both wavy and straight interfaces. A three-pronged study was used to establish the conditions for straight weld formation: (a) analytical calculation of the domain of weldability; (b) characterization of the explosive welding experiments carried out under different conditions, and (c) 2D finite differences simulation of these tests using the explicit Eulerian hydrocode Raven with a Johnson-Cook constitutive equation for the Al alloy. The numerical simulation and the analytical calculations confirm the experimental results and explain the difficulties met for obtaining a continuous straight interface along the entire weld.

  17. Weld repair method for aluminum lithium seam

    NASA Technical Reports Server (NTRS)

    McGee, William Floyd (Inventor); Rybicki, Daniel John (Inventor)

    1998-01-01

    Aluminum-lithium plates are butt-welded by juxtaposing the plates and making a preliminary weld from the rear or root side of the seam. An initial weld is then made from the face side of the seam, which may cause a defect in the root portion. A full-size X-ray is made and overlain over the seam to identify the defects. The defect is removed from the root side, and rewelded. Material is then removed from the face side, and the cavity is rewelded. The procedure repeats, alternating from the root side to the face side, until the weld is sound.

  18. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  19. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  20. Laser-welded Dissimilar Steel-aluminum Seams for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Schimek, M.; Springer, A.; Kaierle, S.; Kracht, D.; Wesling, V.

    By reducing vehicle weight, a significant increase in fuel efficiency and consequently a reduction in CO 2 emissions can be achieved. Currently a high interest in the production of hybrid weld seams between steel and aluminum exists. Previous methods as laser brazing are possible only by using fluxes and additional materials. Laser welding can be used to join steel and aluminum without the use of additives. With a low penetration depth increases in tensile strength can be achieved. Recent results from laser welded overlap seams show that there is no compromise in strength by decreasing penetration depth in the aluminum.

  1. Microhardness Testing of Aluminum Alloy Welds

    NASA Technical Reports Server (NTRS)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  2. A study on friction stir welding of 12mm thick aluminum alloy plates

    NASA Astrophysics Data System (ADS)

    Kumar, Deepati Anil; Biswas, Pankaj; Tikader, Sujoy; Mahapatra, M. M.; Mandal, N. R.

    2013-12-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  3. Modeling aluminum-lithium alloy welding characteristics

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  4. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  5. Explosive welding technique for joining aluminum and steel tubes

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.

    1975-01-01

    Silver sheet is wrapped around aluminum portion of joint. Mylar powder box is wrapped over silver sheet. Explosion welds silver to aluminum. Stainless-steel tube is placed over silver-aluminum interface. Mylar powder box, covered with Mylar tape, is wrapped around steel member. Explosion welds steel to silver-aluminum interface.

  6. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    SciTech Connect

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.; Simmons, Kevin L.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribe welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.

  7. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  8. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  9. An investigation into geometry and microstructural effects upon the ultimate tensile strengths of butt welds

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.

    1992-01-01

    A mathematical theory was evaluated empirically. This theory predicts weld ultimate tensile strength based on material properties and fusion line angles, mismatch, peaking, and weld widths. Welds were made on 1/4 and 1/2 in. aluminum 2219-T87, their geometries were measured, they were tensile tested, and these results were compared to theoretical predictions. Statistical analysis of results was performed to evaluate correlation of theory to results for many different categories of weld geometries.

  10. Linear Anomaly in Welded 2219-T87 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Jemian, Wartan A.

    1987-01-01

    Study of causes and significance of two types of linear anomalies sometimes appearing in radiographs of welds described in preliminary report. Manifested as light or dark linear features parallel to weld line in radiograph of weld. Contains diagrams and descriptions of phenomena occurring during welding process. Includes microdensitometer traces from x-radiographs of actual welds and from computer simulations based calculation of x-ray transmission through assumed weld structures. Concludes anomalies not unique to 2219-T87 aluminum alloy.

  11. Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.

    2016-01-01

    The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.

  12. Exposure assessment of aluminum arc welding radiation.

    PubMed

    Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong

    2007-10-01

    The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.

  13. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  14. Aluminum U-groove weld enhancement based on experimental stress analyses

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1995-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures because of their sealing and assembly integrity and general elastic performance; their inelastic mechanics are generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the tab thickness between the grooves produce severe peaking, which induces bending moment under uniaxial loading. The filler strain hardening decreased with increasing filler pass sequence. These combined effects reduce the weld strength, and a depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve the welding process results over the current normal weld schedule.

  15. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  16. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  17. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. PMID:23948441

  18. Effect of Welding Speeds on Mechanical Properties of Level Compensation Friction Stir Welded 6061-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Quan; Yue, Yumei; Ji, Shude; Li, Zhengwei; Gao, Shuangsheng

    2016-04-01

    In order to eliminate the flash, arc corrugation and concave in weld zone, level compensation friction stir welding (LCFSW) was put forward and successfully applied to weld 6061-T6 aluminum alloy with varied welding speed at a constant tool rotational speed of 1,800 rpm in the present study. The glossy joint with equal thickness of base material can be attained, and the shoulder affected zone (SAZ) was obviously reduced. The results of transverse tensile test indicate that the tensile strength and elongation reach the maximum values of 248 MPa and 7.1% when the welding speed is 600 mm/min. The microhardness of weld nugget (WN) is lower than that of base material. The tensile fracture position locates at the heat affected zone (HAZ) of the advancing side (AS), where the microhardness is the minimum. The fracture surface morphology represents the typical ductile fracture.

  19. Study of inertia welding: the sensitivity of weld configuration and strength to variations in welding parameters

    SciTech Connect

    Mote, M.W.

    1981-12-01

    An experiment is described which is designed to demonstrate the forgiveness of inertia welding, that is, the relative insensitivity of weld strength to variations in energy (rotational speed of parts) and axial force. Although easily observed variations in the welding parameters produced easily observed changes in weldment configuration and changes in dimension (upset), only extremes in parameters produced changes in weld strength. Consequently, process monitoring and product inspection would be sufficient for quality assurance in a production environment.

  20. Fatigue performance of welded aluminum deck structures

    SciTech Connect

    Haagensen, P.J.; Ranes, M.; Kluken, A.O.; Kvale, I.

    1996-12-01

    Aluminum alloys are used increasingly in load carrying structures where low weight and low maintenance costs are at a premium. Helicopter decks, structures for living quarters and personnel transfer bridges between platforms are examples of offshore applications. While these structures are not usually subjected to high fatigue loads, the increasing use of aluminum in high speed ships, and more recently in highway bridge structures, makes the question of fatigue performance more important. In this paper the fatigue properties of small scale weldments in an AA6005 alloy are compared with the results of fatigue tests on full scale sections of welded extrusions in the same material, which were used in an aluminum bridge deck structure. The fatigue performance is also compared with the fatigue clauses in the new British design code BS8118 for aluminium structures and the proposed Eurocode 9. The prospects of using a new joining technique, friction stir welding (FSW), in the production of large scale panels for deck and ship hull structures is discussed. The FSW process is described briefly, and some fatigue test data are presented.

  1. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  2. Strength of Shocked Aluminum Oxynitride

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Feng, R.; Dandekar, D. P.

    2009-06-01

    Aluminum oxynitride (AlON) is a polycrystalline and transparent ceramic. An accurate characterization of its shock response is critically important for its applications as transparent armor. Shock wave profiles measured in a series of plate impact experiments on AlON [Thornhill, et al., SCCM-2005, 143-146 (2006)] have been reanalyzed using finite element wave propagation simulations and considering an effective strength behavior that is pressure- and time-dependent. The results show a stiffer shock response than that calculated previously using the jump conditions. The material has a Hugoniot elastic limit of 10.37 GPa and sustains a maximum shear stress of 4.38 GPa for shock compressions up to a shock stress of 96 GPa. The mean stress response determined from the simulations displays no sign of phase transformation and corresponds to a linear shock speed-particle velocity relation with a slope of 0.857. These results have been successfully summarized into an AlON material model consisting of compression-dependent nonlinear elasticity, pressure-dependent equilibrium strength, and over-stress relaxation. The wave profiles simulated with the model show very good agreement with the experimental measurements.

  3. Integration of NASA-sponsored studies on aluminum welding

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.

    1972-01-01

    The results are presented of numerous studies relating to aluminum alloy welding. The subjects covered include: (1) effects of porosity on weld joint performance, (2) sources of porosity, (3) weld thermal effects, (4) residual stresses and distortion, and (5) manufacturing process system control.

  4. Visual sensing and intelligent control of weld pool dynamics in aluminum alloy pulsed MIG welding process

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Fan, Ding; Huang, An; Wu, Mingliang

    2005-12-01

    Based on Fuzzy controller and expert system (ES), a real-time control system is proposed for improving the stability of the weld pool width in aluminum alloy metal inert gas (MIG) welding. A vision sensing system for taking the image of pool of aluminum alloy has been setup and corresponding image-processing algorithm has been developed to acquire characteristic parameters of the weld pool. The experiments show that the real-time and precision requirements for detecting and control of weld pool width of aluminum alloy MIG welding process could be satisfied by the established system.

  5. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    PubMed

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  6. Metallurgical and mechanical properties of laser welded high strength low alloy steel

    PubMed Central

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-01-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  7. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    PubMed

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure.

  8. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    PubMed

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. PMID:24981209

  9. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  10. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  11. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Chen, Hui; Qiu, Peixian; Zhu, Zongtao

    2016-09-01

    A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

  12. Diode laser welding of aluminum to steel

    SciTech Connect

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  13. The feasibility of producing aluminum-lithium structures for cryogenic tankage applications by laser beam welding

    NASA Technical Reports Server (NTRS)

    Martukanitz, R. P.; Lysher, K. G.

    1993-01-01

    Aluminum-lithium alloys exhibit high strength, high elastic modulus, and low density as well as excellent cryogenic mechanical properties making them ideal material candidates for cryogenic tanks. NASA has proposed the use of 'built-up' structure for panels fabricated into cryogenic tanks replacing current conventional machining. Superplastically formed stiffeners would be joined to sheet (tank skin) that had been roll formed to the radius of the tank in order to produce panels. Aluminum-lithium alloys of interest for producing the built-up structure include alloy 2095-T6 stiffeners to 2095-T8 sheet and alloy 8090-T6 stiffeners to 2090-T83 sheet. Laser welding, with comparable joint properties, offers the following advantages over conventional welding: higher production rates, minimal degradation within the heat affected zones, and full process automation. This study established process parameters for laser beam welding, mechanical property determinations, metallographic characterization, and fabrication of prototype panels. Tensile tests representing partial penetration of the skin alloys provided joint efficiencies between 65 and 77 percent, depending upon alloy and degree of penetration. Results of tension shear tests of lap welds indicated that the combination of 2095-T6 to 2090-T8 exhibited significantly higher weld shear strength at the interface in comparison to welds of 8090-T6 to 2090-T83. The increased shear strength associated with 2095 is believed to be due to the alloy's ability to precipitation strengthening (naturally age) after welding.

  14. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  15. Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds

    SciTech Connect

    DebRoy, T.

    2000-11-17

    The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

  16. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  17. Renewal of corrosion protection of coated aluminum after welding

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1969-01-01

    Effectiveness of conversion coatings designed to protect aluminum alloys against atmospheric corrosion is reduced after exposure to high temperature or welding. Damaged coating should be manually stripped six inches from the weld and then recoated by sponge or spray with the original solution.

  18. Heat treatment stabilizes welded aluminum jigs and tool structures

    NASA Technical Reports Server (NTRS)

    Mehnert, R. S.

    1966-01-01

    Heat treatment processes, applied after welding but before machining, imparts above normal stability to welded aluminum jigs and tool structures. Weight saving will not be realized in these tools if rigidity equal to that of a comparable steel tool is required.

  19. Optimization of parameters in hybrid welding of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Jokinen, Tommi; Jernstroem, Petteri; Karhu, Miikka; Vanttaja, Ilkka; Kujanpaeae, Veli

    2003-03-01

    Numerous advantages of hybrid welding, in which laser beam and arc has combined, over autogenous laser welding has been reported. Especially in case of inaccurate joint preparation or fixturing of the plates to be welded because of the filler metal added to the process through MIG-welding. Also additional heat, coming from the arc to the process, enables higher welding speed and deeper penetration. Aluminum alloy (AlMg3) was used in the experiments. Welding was carried out by using the hybrid process (combination of Nd:YAG- and MIG-welding) in the flat position. The joint preparation was carried out as shear cut and different gap widths were used. Welding experiments were made systematically using a statistical experiment procedure called TAGUCHI-method. Parameters, for example alignment of point of arc and laser, varied in experiments. Also characteristic parameters of both welding methods were changed according to the experimental procedure. In this paper results of welding experiments are reported as well as parameters used. A phenomenona of the hybrid process with aluminum is discussed and also reasons for weld defects occurred are pointed out.

  20. Gas Contamination In Plasma-Arc-Welded Aluminum

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Torres, Martin R.; Gurevitch, Alan C.; Newman, Robert A.

    1992-01-01

    Document describes experimental investigation on visible and tactile effects of gaseous contaminants in variable-polarity plasma arc (VPPA) welding of 2219 T-87 aluminum alloy. Contaminant gases (nitrogen, methane, oxygen, and hydrogen) introduced in argon arc and in helium shield gas in various controlled concentrations. Report represents results of experiments in form of photographs of fronts, backs, polished cross sections, and etched cross sections of welds made with various contaminants at various concentrations. Provides detailed discussion of conditions under which welds made.

  1. An inelastic analysis of a welded aluminum joint

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    1994-01-01

    Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.

  2. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  3. Aluminum Tailor-Welded Blanks for High Volume Automotive Applications

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Pilli, Siva Prasad; Carlson, Blair; Carsley, John; Hartfield-Wunsch, Susan; Eisenmenger, Mark

    2014-02-04

    A Design of Experiment based approach is used to systematically investigate relationships between 8 different welding factors (4 related to tool geometry, 4 related to weld process control) and resulting weld properties including strength, elongation and formability in 1.2mm-2mm thick friction stir welding of AA5182-O for TWB application. The factors that result in most significant effects are elucidated. The interactions between several key factors like plunge depth, tool tilt, pin feature and pin length on the overall weld quality is discussed. Appropriate levels of factors that lead to excellent weld properties are also identified.

  4. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    NASA Astrophysics Data System (ADS)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-08-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow.

  5. Drawn arc stud welding: Crossing over from steel to aluminum

    SciTech Connect

    Ramasamy, S.

    2000-01-01

    In their quest to reduce vehicle weights, car manufacturers are exploring further use of aluminum, including more aluminum components in body construction. To acquire a better understanding of aluminum stud welding, auto manufacturers worldwide have formed a task force to conduct research on aluminum joining methods. Currently, Emhart Fastening Teknologies is working with this group in development programs such as Earthing studs, WELDFAST and Self-Pierce Rivet (SPR). The global automotive industry is clearly committed to the increased use of aluminum in cars and trucks. This presents enormous challenges and responsibilities for assembly systems suppliers, particularly those specializing in welding processes. Continuing strides in the technological sophistication of DASW is bringing this process to the forefront in advancing the use of aluminum in vehicles throughout the world.

  6. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-05-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  7. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  8. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  9. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  10. Yield detection in aluminum welded joints using photostress

    NASA Technical Reports Server (NTRS)

    Gambrell, S. C., Jr.; Kavikondala, K.

    1994-01-01

    Previous work using photostress to analyze behavior of aluminum welded joints was useful to determine mechanical properties of the weld and parent materials along the centerline of the joint. It was shown that significant differences exist in the stress-strain characteristics at points beginning at the centerline of the weld and extending for a distance of one inch to either side of the weld. Because of the highly variable behavior detected in the previous work, it was decided to extend the work to investigate behavior of joints 1/8, 1/2, and 1.40 inches thick.

  11. Weld peaking on heavy aluminum structures

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Poorman, R.; Sexton, J.

    1978-01-01

    Weld peaking is usually undesirable in any welded structure. In heavy structures, the forces involved in the welding process become very large and difficult to handle. With the shuttle's solid rocket booster, the weld peaking resulted in two major problems: (1) reduced mechanical properties across the weld joint, and (2) fit-up difficulties in subsequent assembly operation. Peaking from the weld shrinkage forces can be fairly well predicted in simple structures; however, in welding complicated assemblies, the amount of peaking is unpredictable because of unknown stresses from machining and forming, stresses induced by the fixturing, and stresses from welds in other parts of the assembly. When excessive peaking is encountered, it can be corrected using the shrinkage forces resulting from the welding process. Application of these forces is discussed in this report.

  12. Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Yaduwanshi, D. K.; Bag, S.; Pal, S.

    2014-10-01

    The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.

  13. Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xuesong; Lu, Yan; Zheng, Feiyan; Chen, Bin

    2015-11-01

    This paper is aimed to investigate the microstructure of 7005 aluminum sheets joined by friction-stir welding as well as their mechanical properties. Specimens with ten different sets of welding parameters were studied. Tensile test and fracture analysis determined that the joint of the best quality was obtained at the rotation speed of 1000 rpm matching with the travel speed of 200 mm/min, and the travel speed has more impact on the ultimate tensile strength. Optical microscope observation was applied to this high-quality specimen and gave evidence to explaining the formation of the onion ring structure. Electron back-scattered diffraction (EBSD) technique was employed to characterize the textures and revealed the evolution of microstructures during friction stir processing. The EBSD results showed that the grains maintain their original orientations at relatively low deformation while the orientations rotate under increasing strain. Accumulated rotation will turn the textures into mixed shear components, which finally results in grain refinement and contributes to the high quality of the joint.

  14. Experimental Study of Stationary Shoulder Friction Stir Welded 7N01-T4 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ji, S. D.; Meng, X. C.; Li, Z. W.; Ma, L.; Gao, S. S.

    2016-03-01

    Stationary shoulder friction stir welding (SSFSW) was successfully used to weld 7N01-T4 aluminum alloy with the thickness of 4 mm. Effects of welding speed on formations, microstructures, and mechanical properties of SSFSW joint were investigated in detail. Under a constant rotational velocity of 2000 rpm, defect-free joints with smooth surface and small flashes are attained using welding speeds of 20 and 30 mm/min. Macrostructure of nugget zone in cross section presents kettle shape. For 7N01-T4 aluminum alloy with low thermal conductivity, decreasing welding speed is beneficial to surface formation of joint. With the increase of welding speed, mechanical properties of joints firstly increase and then decrease. When the welding speed is 30 mm/min, the tensile strength and elongation of joint reach the maximum values of 379 MPa and 7.9%, equivalent to 84.2 and 52% of base material, respectively. Fracture surface morphology exhibits typical ductile fracture. In addition, the minimum hardness value of joint appears in the heat affected zone.

  15. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  16. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  17. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  18. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 4E welded aluminum cylinders. 178.68... FOR PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water...

  19. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  20. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  1. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  2. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  3. Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Glorioso, S. V.; Medlock, J. D.

    1973-01-01

    Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.

  4. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    NASA Astrophysics Data System (ADS)

    Florea, Radu Stefanel

    and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.

  5. Vertical Compensation Friction Stir Welding of 6061-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Meng, Xiangchen; Xing, Jingwei; Ma, Lin; Gao, Shuangsheng

    2016-09-01

    Vertical compensation friction stir welding (VCFSW) was proposed in order to solve the adverse effect caused by a big gap at the interface between two welded workpieces. VCFSW was successfully applied to weld 6061-T6 aluminum alloy with the thickness of 4 mm, while 2024-T4 aluminum alloy was selected as a rational compensation material. The results show that VCFSW is difficult to get a sound joint when the width of strip is no less than 1.5 mm. Decreasing the welding speed is beneficial to break compensation strip into pieces and then get higher quality joint. When the width of strip is 1 mm, the tensile strength and elongation of joint at the welding speed of 50 mm/min and rotational velocity of 1,800 rpm reach the maximum values of 203 MPa and 5.2%, respectively. Moreover, the addition of 2024-T4 alloy plays a strengthening effect on weld zone (WZ) of VCFSW joint. The fracture surface morphology of joint consisting of amounts of dimples exhibits ductile fracture.

  6. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  7. Molten pool characterization of laser lap welded copper and aluminum

    NASA Astrophysics Data System (ADS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  8. Mechanical and microstructural characterization of single and double pass Aluminum AA6061 friction stir weld joints

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Shah, L. H.; Ishak, M.

    2015-12-01

    This study focuses on the effect of single pass (SP), double sided pass (DSP) and normal double pass (NDP) method on friction stir welding of aluminum AA6061. Two pieces of AA6061 alloy with thickness of 6 mm were friction stir welded by using conventional milling machine. The rotational speeds that were used in this study were 800 rpm, 1000 rpm and 1200 rpm, respectively. The welding speed is fixed to 100 mm/min. Microstructure observation of welded area was studied by using optical microscope. Tensile test and Vickers hardness test were used to evaluate the mechanical properties of this specimen. Mechanical property analysis results indicate that at low rotational speeds, defects such as surface lack of fill and tunneling in the welded area can be observed. Vickers hardness of specimens however did not vary much when rotational speed is varied. Welded specimens using single pass method shows higher tensile strength and hardness value compared to both double pass methods up to 180.61 MPa. Moreover, DSP showed better tensile test and hardness test compared to NDP method. The optimum parameters were found to be single pass method with 1200 rpm of rotational speed. Therefore economically sound to only perform SP method to obtain maximum tensile strength for AA6061 FSW with thickness of 6 mm.

  9. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  10. Neural Network Modeling of Weld Pool Shape in Pulsed-Laser Aluminum Welds

    SciTech Connect

    Iskander, Y.S.; Oblow, E.M.; Vitek, J.M.

    1998-11-16

    A neural network model was developed to predict the weld pool shape for pulsed-laser aluminum welds. Several different network architectures were examined and the optimum architecture was identified. The neural network was then trained and, in spite of the small size of the training data set, the network accurately predicted the weld pool shape profiles. The neural network output was in the form of four weld pool shape parameters (depth, width, half-width, and area) and these were converted into predicted weld pool profiles with the use of the actual experimental poo1 profiles as templates. It was also shown that the neural network model could reliably predict the change from conduction-mode type shapes to keyhole-mode shapes.

  11. Microstructural and Mechanical Characteristics of Aluminum Alloy AA5754 Friction Stir Spot Welds

    NASA Astrophysics Data System (ADS)

    Mahmoud, T. S.; Khalifa, T. A.

    2014-03-01

    In the present investigation, friction stir spot welding on annealed aluminum alloy AA5754 sheets was performed. The influences of the tool rotational speed and tool stirring (dwell) time on the weld structure and static strength of welds were evaluated. The results revealed that the width of the completely metallurgical-bonded region increases with the increasing tool rotational speed and/or the dwell time up to certain levels. Increasing such parameters beyond these levels slightly reduces the width of the bonding region. The stirred zone exhibited higher microhardness than that of the base material. The tensile-shear force was found to increase with the increasing tool rotational speed and/or dwell time up to a certain level (9s). Higher tool rotational speeds and/or prolonged dwell times slightly reduce(s) the tensile-shear force.

  12. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  13. Welding Phenomenon and Removal Mechanism of Aluminum-Oxide Films by Space GHTA Welding Process in Vacuum

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Ekuni, Tomohide; Kamei, Misa; Tsukuda, Yoshiyuki; Terajima, Noboru; Yamashita, Masahiro; Imagawa, Kichiro; Masubuchi, Koichi

    Aluminum alloys have been widely used in constructing various space structures including the ISS (International Space Station) and launch vehicles. In order to apply the welding technology in space, welding experiments on aluminum alloy were performed using by the GHTA (Gas Hollow Tungsten Arc) welding processes using an inverter controlled DC/AC GTA welding machine in vacuum. We observed the removal mechanism of aluminum-oxide films on molten metal in detail during the welding using a high-speed video camera. As a result, it is clarified that the impact arc pressure produced by pulsed current mechanically crushes and removes aluminum-oxide films on the molten pool. This removal mechanism of aluminum-oxide films is completely different from a removal mechanism by cleaning action.

  14. Effect of welding structure on high-cycle and low-cycle fatigue properties for MIG welded A5083 aluminum alloys at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2001-07-01

    High-cycle and low-cycle fatigue properties of aluminum alloy A5083 base and A5183 weld metals and the effect of welding structure on their fatigue properties have been investigated at cryogenic temperatures in order to evaluate the long-life reliability and safety of the structural materials used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. In the high-cycle fatigue tests, the S-N curves of A5083 base and A5183 weld metals shifted to higher stress levels, i.e., the longer life side at lower test temperatures. The ratios of 10 6-cycles fatigue strength (FS) to tensile strength (TS) for A5183 weld metals were slightly lower than those of A5083 base metals at each test temperature. Although the ratios of FS to TS for austenitic stainless steels weld metals at 4 K decreased substantially to about 0.4, that of A5183 weld metal was 0.65 even at 4 K and it indicated an excellent high-cycle fatigue property. Fatigue crack initiation sites in A5183 weld metals were occurred from the blowholes if the blowholes were located in the vicinity of the specimen surfaces. However, effects of the blowholes on high-cycle fatigue properties are not clear or significant. In the low-cycle fatigue tests, the fatigue lives of A5183 weld metals were slightly shorter than those of A5083 base metals at cryogenic temperatures. However, the fatigue lives of A5183 weld metals at 4 K were superior to that of conventional A5083 weld metals. The deterioration of low-cycle fatigue properties of A5183 weld metals at cryogenic temperatures were due to the intergranular fracture surface observed in fatigue crack propagation regions.

  15. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints

    SciTech Connect

    Zhang, C.Q. Robson, J.D.; Ciuca, O.; Prangnell, P.B.

    2014-11-15

    Aluminum alloy AA6111 and TiAl6V4 dissimilar alloys were successfully welded by high power ultrasonic spot welding. No visible intermetallic reaction layer was detected in as-welded AA6111/TiAl6V4 welds, even when transmission electron microscopy was used. The effects of welding time and natural aging on peak load and fracture energy were investigated. The peak load and fracture energy of welds increased with an increase in welding time and then reached a plateau. The lap shear strength (peak load) can reach the same level as that of similar Al–Al joints. After natural aging, the fracture mode of welds transferred from ductile fracture of the softened aluminum to interfacial failure due to the strength recovery of AA6111. - Highlights: • Dissimilar Al/Ti welds were produced by high power ultrasonic spot welding. • No visible intermetallic reaction layer was detected on weld interface. • The lap shear strength can reach the same level as that of similar Al–Al joints. • The fracture mode becomes interfacial failure after natural aging.

  16. Impact Welding of Aluminum to Copper and Stainless Steel by Vaporizing Foil Actuator: Effect of Heat Treatment Cycles on Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Vivek, Anupam; Hansen, Steven; Benzing, Jake; He, Mei; Daehn, Glenn

    2015-10-01

    This work studies the mechanical property effect of microstructure on impact welds of aluminum alloy AA6061 with both copper alloy Cu 110 and stainless steel AISI 304. AA6061-T6 and T4 temper aluminum sheets of 1 mm thickness were launched toward copper and stainless steel targets using the vaporizing foil actuator technique. Flyer plate velocities, measured via photonic Doppler velocimetry, were observed to be approximately 800 m/s. The welded aluminum-copper samples were subjected to instrumented peel testing, microhardness testing, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The welded joints exhibited cracks through their continuous intermetallic layers. The cracks were impeded upon encountering a ductile metallic wave. The welds created with T6 temper flyer sheets were found to have smaller intermetallic-free and wavy interface regions as compared to those created with T4 temper flyer sheets. Peel strength tests of the two weld combinations resulted in failure along the interface in the case of the T6 flyer welds, while the failure generally occurred in the parent aluminum for the T4 temper flyer welds. Half of the T4 flyer welds were subjected to aging for 18 h at 433 K (160 °C) to convert the aluminum sheet to the T6 condition. Although the aged flyer material did not attain the hardness of the as-received T6 material, it was found to be significantly stronger than the T4 material. These welds retained their strength after the aging process, and diffusion across the interface was minimal. The welded aluminum-stainless steel samples were analyzed on a more basic level than aluminum-copper samples, but were found to exhibit similar results.

  17. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  18. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    NASA Technical Reports Server (NTRS)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  19. Aluminum Rayleigh Taylor Strength Measurements and Calculations

    SciTech Connect

    Lindquist, M J; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Raevsky, V A

    2007-01-10

    A traditional approach to the study of material strength has been revitalized at the Russian Federal Nuclear Center (VNIIEF). Rayleigh Taylor strength experiments have long been utilized to measure the material response of metals at high pressure and strain rates. A modulated (sinusoidal or sawtooth perturbation) surface is shocklessly (quasi-isentropically) accelerated by a high explosive (HE) driver, and radiography is used to measure the perturbation amplitude as a function of time. The Aluminum T-6061 targets are designed with several sets of two-dimensional sawtooth perturbations machined on the loading surface. The HE driver was designed to reach peak pressures in the range of 200 to 300 kbar and strain rates in the range of 10{sup 4} - 10{sup 6} s{sup -1}. The standard constitutive strength models, Steinberg-Guinan (SG) [1], Steinberg-Lund (SL) [2], Preston-Tonks-Wallace (PTW) [3], Johnson-Cooke (JC) [4], and Mechanical Threshold Stress (MTS) [5], have been calibrated by traditional techniques: (Hopkinson-Bar, Taylor impact, flyer plate/shock-driven experiments). The VNIIEF experimental series accesses a strain rate regime not attainable using traditional methods. We have performed a detailed numerical study with a two-dimensional Arbitrary Lagrangian Eulerian hydrodynamics computer code containing several constitutive strength models to predict the perturbation growth. Results show that the capabilities of the computational methodology predict the amplitude growth to within 5 percent of the measured data, thus validating both the code and the strength models under the given conditions and setting the stage for credible future design work using different materials.

  20. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  1. Comparison on welding mode characteristics of arc heat source for heat input control in hybrid welding of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan

    2015-03-01

    Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.

  2. Strength analysis of laser welded lap joint for ultra high strength steel

    NASA Astrophysics Data System (ADS)

    Jeong, Young Cheol; Kim, Cheol Hee; Cho, Young Tae; Jung, Yoon Gyo

    2013-12-01

    Several industries including the automotive industry have recently applied the process of welding high strength steel. High strength steel is steel that is harder than normal high strength steel, making it much stronger and stiffer. HSS can be formed in pieces that can be up to 10 to 15 percent thinner than normal steel without sacrificing strength, which enables weight reduction and improved fuel economy. Furthermore, HSS can be formed into complex shapes that can be welded into structural areas. This study is based on previous experiments and is aimed at establishing the stress distribution for laser welded high strength steel. Research on the stress distribution for laser welded high strength steel is conducted by using Solid Works, a program that analyzes the stress of a virtual model. In conclusion, we found that the stress distribution is changed depending on the shape of welded lap joint. In addition, the Influence of the stress distribution on welded high strength steel can be used to standard for high energy welding of high strength steel, and we can also predict the region in welded high strength steel that may cracked.

  3. Structure-property relationships of dissimilar friction stir welded aluminum alloys

    NASA Astrophysics Data System (ADS)

    Quinones, Rogie Irwin Rodriguez

    In this work, the relationship between microstructure and mechanical properties of dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys were evaluated. Experimental results from this study revealed that static strength increased with the tool rotational speed and was correlated with the material intermixing. Fully-reversed low cycle fatigue experimental results showed an increase in the strain hardening properties as well as the number of cycles-to-failure as the tool rotational speed was increased. Furthermore, under both static and cyclic loading, fracture of the joint was dominated by the AA6061 alloy side of the weld. In addition, inspection of the fatigue surfaces revealed that cracks initiated from intermetallic particles located near the surface. In order to determine the corrosion resistance of the dissimilar joint, corrosion defects were produced on the crown surface of the weld by static immersion in 3.5% NaCl for various exposure times. Results revealed localized corrosion damage in the thermo-mechanically affected and heat affected zones. Results demonstrated a decrease in the fatigue life, with evidence of crack initiation at the corrosion defects; however, the fatigue life was nearly independent of the exposure time. This can be attributed to total fatigue life dominated by incubation time. Furthermore, two types of failure were observed: fatigue crack initiation in the AA6061 side at high strain amplitudes (>0.3%); and fatigue crack initiation in the AA7050 side at low strain amplitudes (<0.2%). Lastly, a microstructure-sensitive model based on a multi-stage fatigue damage concept was extended to the dissimilar friction stir welded joints in order to capture the crack initiation and propagation in as-welded and pre-corroded conditions. Good correlation between experimental fatigue results and the model was achieved based on the variation in the initial defect size, microstructure, and mechanical properties of the dissimilar friction stir

  4. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    SciTech Connect

    Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L.

    2015-01-15

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.

  5. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    NASA Technical Reports Server (NTRS)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  6. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    SciTech Connect

    Talia, G.E.

    1996-02-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. (1) In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  7. Effects of neutron irradiation on strength of fusion reactor materials and their electron beam welded joints

    NASA Astrophysics Data System (ADS)

    Kaga, S.; Tamura, T.; Yoshida, H.; Miyata, K.

    1991-03-01

    Several aluminum alloys (A7N01, A5083 and A6061) and a ferritic martensitic steel (JFMS) were used in the present study of the effects of neutron irradiation on the strength of base materials and their electron beam welded joints. Neutron irradiation tests were performed using the core irradiation facility at Kyoto University Reactor (KUR). Neutron fluences were 2.0 × 10 22 9.1 × 10 22 and 1.7 × 10 23n/ m2 ( E > 0.1 MeV). Tensile tests were performed at 4.2, 77 and 293 K on miniature specimens prepared from both the base and welded materials. Aluminum alloys exhibit serrations in the nominal stress-nominal strain curve at 4.2 K. Little effect of neutron irradiation on the serration is observed. The ductility decrease of base metal and welded joints of aluminum alloys by neutron irradiation is smaller than that of JFMS. JFMS, especially welded joints, showed strong radiation embrittlement at cryogenic temperatures.

  8. Ultrasonic assessment of tension shear strength in resistance spot welding

    NASA Astrophysics Data System (ADS)

    Moghanizadeh, Abbas

    2015-05-01

    Resistance spot welding is extensively used to join sheet steel in the automotive industry. Ultrasonic non-destructive techniques for evaluation of the mechanical properties of resistance spot welding are presented. The aim of this study is to develop the capability of the ultrasonic techniques as an efficient tool in the assessment of the welding characterization. Previous researches have indicated that the measurements of ultrasonic attenuation are sensitive to grain- size variations in an extensive range of metallic alloys. Other researchers have frequently described grain sizes which are able to have significant effects on the physical characteristics of the material. This research provides a novel method to estimate the tension-shear strengths of the resistance spot welding directly from the ultrasonic attenuation measurements. The effects of spot welding parameters on the ultrasonic waves are further investigated. The results confirm that it is possible to determine the spot welding parameters for individual quality by using ultrasonic test.

  9. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin

    SciTech Connect

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid

    2012-09-15

    Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: Black-Right-Pointing-Pointer FSW with cutting pin was successfully employed to form Al/Ti lap joint. Black-Right-Pointing-Pointer Swirl-like structures formed due to mechanical mixing were found at the interface. Black-Right-Pointing-Pointer High-strength joints fractured at Al suffered thermal cycle were produced.

  10. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  11. Laser Overlap Welding of Zinc-coated Steel on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kashani, Hamed Tasalloti; Kah, Paul; Martikainen, Jukka

    Local reinforcement of aluminum with laser welded patches of zinc-coated steel can effectively contribute to crashworthiness, durability and weight reduction of car body. However, the weld between Zn-coated steel and aluminum is commonly susceptible to defects such as spatter, cavity and crack. The vaporization of Zn is commonly known as the main source of instability in the weld pool and cavity formation, especially in a lap joint configuration. Cracks are mainly due to the brittle intermetallic compounds growing at the weld interface of aluminum and steel. This study provides a review on the main metallurgical and mechanical concerns regarding laser overlap welding of Zn-coated steel on Al-alloy and the methods used by researchers to avoid the weld defects related to the vaporization of Zn and the poor metallurgical compatibility between steel and aluminum.

  12. Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    NASA Technical Reports Server (NTRS)

    Larssen, P. A.; Miller, E. L.

    1968-01-01

    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.

  13. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  14. Strength of Welded Joints in Tubular Members for Aircraft

    NASA Technical Reports Server (NTRS)

    Whittemore, H L; Brueggeman, W C

    1931-01-01

    The object of this investigation is to make available to the aircraft industry authoritative information on the strength, weight, and cost of a number of types of welded joints. This information will, also, assist the aeronautics branch in its work of licensing planes by providing data from which the strength of a given joint may be estimated. As very little material on the strength of aircraft welds has been published, it is believed that such tests made by a disinterested governmental laboratory should be of considerable value to the aircraft industry. Forty joints were welded under procedure specifications and tested to determine their strengths. The weight and time required to fabricate were also measured for each joint.

  15. On the weldability, composition, and hardness of pulsed and continuous Nd:YAG laser welds in aluminum alloys 6061,5456, and 5086

    NASA Astrophysics Data System (ADS)

    Cieslak, M. J.; Fuerschbach, P. W.

    1988-04-01

    The effect of Nd:YAG laser welding aluminum alloys 6061, 5456, and 5086 was studied from a perspective of alloying element vaporization, hot cracking susceptibility, and resultant mechanical properties. Both continuous wave and pulsed Nd.YAG laser welds were investigated. It was found that Mg was vaporized during welding, the extent of which was a function of the weld travel speed. Calculations based upon evaporation theory, and assuming a regular solution model, resulted in an estimation of weld pool surface temperatures from 1080 to 1970 K for the continuous wave welds. Pulsed Nd:YAG laser welds were observed to be extremely susceptible to weld metal hot cracking whereas continuous wave Nd:YAG laser welds were crack-free. The hardness of 6061 welds was affected by the Mg vaporization such that base metal strengths could not be achieved by subsequent re-heat treatment to the T6 condition. This loss in hardness was attributed to a reduced ability of the alloy to precipitation harden due to a lower Mg concentration. In the cases of 5456 and 5086, when samples containing welds were processed to the O condition, the weld metal had reduced hardness relative to the base metal. This loss of hardness was also attributed to the loss of Mg in these welds, resulting in reduced solid solution strengthening.

  16. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  17. Investigation of Strength Recovery in Welds of NUCu-140 Steel Through Multipass Welding and Isothermal Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Bono, Jason T.; DuPont, John N.; Jain, Divya; Baik, Sung-Il; Seidman, David N.

    2015-11-01

    NUCu-140 is a ferritic copper precipitation-strengthened steel that is a candidate material for use in many naval and structural applications. Previous work has shown that the heat-affected zone (HAZ) and fusion zone (FZ) of NUCu-140 exhibit softening that is due to dissolution of the copper-rich precipitates. This study aims to recover the FZ and HAZ strength by re-precipitation of the copper-rich precipitates through either multiple weld passes or an isothermal post-weld heat treatment (PWHT). The potential use of multiple thermal cycles was investigated with HAZ simulations using a Gleeble thermo-mechanical simulator. The HAZ simulations represented two weld thermal cycles with different combinations of peak temperatures during the initial and secondary weld passes. To investigate the potential for a PWHT for strength recovery, gas tungsten arc weld samples were isothermally heated for various times and temperatures. Microhardness measurements revealed no strength recovery in the multipass HAZ samples. The time-dependent precipitate characteristics were modeled under the HAZ thermal cycle conditions, and the results showed that the lack of strength recovery could be attributed to insufficient time for re-precipitation during the secondary weld pass. Conversely, full strength recovery in the HAZ was observed in the isothermally heat treated samples. Atom probe tomography analysis correlated this strength recovery to re-precipitation of the copper-rich precipitates during the isothermal PWHT.

  18. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    SciTech Connect

    Tarasov, Sergei Yu. Kolubaev, Evgeny A.; Rubtsov, Valery E.

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  19. Process for optimizing titanium and zirconium additions to aluminum welding consumables

    SciTech Connect

    Dvornak, M.J.; Frost, R.H.

    1992-04-14

    This patent describes a process for manufacturing an aluminum welding consumable. It comprises: creating an aluminum melt; adding to the aluminum melt solid pieces of a master alloy, comprising aluminum and a weld-enhancing additive to form a mixture, wherein the weld-enhancing additive being a material selected from the group consisting of titanium and zirconium, so that the weld-enhancing additive exists in the alloy prior to addition to the melt in the form of intermetallic particles relatively large in size and small in number, and after addition to the melt the weld-enhancing additive exists in the form of fractured intermetallic particles of refined size having dissolved fractured interfaces, casting the mixture into a chill mold to form an ingot; reducing the ingot to rods of rough wire dimension by cold rolling; annealing the reduced rods; and drawing the rods into wire.

  20. The Strength of the Metal. Aluminum Oxide Interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1984-01-01

    The strength of the interface between metals and aluminum oxide is an important factor in the successful operation of devices found throughout modern technology. One finds the interface in machine tools, jet engines, and microelectronic integrated circuits. The strength of the interface, however, should be strong or weak depending on the application. The diverse technological demands have led to some general ideas concerning the origin of the interfacial strength, and have stimulated fundamental research on the problem. Present status of our understanding of the source of the strength of the metal - aluminum oxide interface in terms of interatomic bonds are reviewed. Some future directions for research are suggested.

  1. Laser-multi-pass-narrow-gap-welding of Hot Crack Sensitive Thick Aluminum Plates

    NASA Astrophysics Data System (ADS)

    Dittrich, D.; Schedewy, R.; Brenner, B.; Standfuß, J.

    Although the current process limitations for laser beam welding of thick aluminum plates (>10 mm) have been overcome by high brilliant multi-kilowatt laser, there are still difficulties resulting from the material physical properties, e.g. the high heat conductivity, the large heat capacity and the high thermal expansion coefficient of aluminum. Especially for very deep weld seams, insufficient dilution of filler wire material in the root of the weld seam and the danger of hot cracks increases. With a new welding technology, the Laser-Multi-Pass-Narrow-Gap-Welding, a innovative approach has been developed to weld thick aluminum plates with highest beam quality lasers and remarkably reduced laser power.

  2. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Güler, Hande

    2014-09-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  3. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  4. INFLUENCE OF JOINING LOCATIONS AND PLATE WIDTH ON ULTIMATE STRENGTH OF ALUMINUM ALLOY PLATES IN IN-PLANE BENDING

    NASA Astrophysics Data System (ADS)

    Okura, Ichiro; Ogasahara, Koji

    The ultimate strength of aluminum alloy plates in in-plane bending is investigated considering joining locations and plate width by the elastic-plastic large deflection analysis with FEM. The aluminum alloys taken into account are heat-treated A6061-T6 and A6005C-T5 and non-heat-treated A5083-O. The softening of material and the residual stresses caused by the friction stir welding (FSW) and the MIG welding are introduced in the analysis. It is shown that the joining locations and the width of plate have a great influence on the ultimate strength. The formula which gives the curves for the ultimate strength of plates in in-plane bending considering joining locations and plate width are proposed, based on the results of the FEM analysis.

  5. Effect of welding position on porosity formation in aluminum alloy welds

    NASA Technical Reports Server (NTRS)

    Haryung, J.; Wroth, R. S.

    1967-01-01

    Program investigates the effects of varied welding positions on weld qualities. Progressive changes in bead geometry occur as the weld plane angle is varied from upslope to downslope. The gravitational effect on the weld puddle varies greatly with welding position.

  6. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding

    NASA Astrophysics Data System (ADS)

    Pérez, Javier Serrano; Ambriz, Ricardo Rafael; López, Francisco Fernando Curiel; Vigueras, David Jaramillo

    2016-07-01

    The dilution effects in welds of a 6061-T6 (Al-Si-Mg) alloy obtained by the modified indirect electric arc (MIEA), using an ER4043 filler metal (Al-Si), and postweld heat treatment (PWHT) were analyzed. The soft zone (55 to 70 HV0.1) formed by the microstructural transformation in the heat-affected zone (HAZ) was eliminated. The hardness measurements were presented on a traditional microhardness profile and mapping representation. A hardening effect of the fusion zone was observed; the hardness values were above 120 HV0.1 and tended to be uniform. This behavior could be attributed to the chemical composition of the filler metal, the Mg migration from the base to the weld metal, and the reversible process of the PWHT, which promotes precipitation hardening. Improvement for yield (260 MPa) and tensile strength (310 MPa) of the MIEA joints was observed; these values were similar to those obtained for the base metal. However, the presence of porosity in the fusion zone limits the ductility of the joints (4.3 pct). Even though the yield and tensile strengths of the base metal and welded joints were similar, the stress concentration due to porosity in the weld metal generated data dispersion in fatigue life. As a consequence, the high-cycle fatigue life decreases with respect to the base metal. In contrast, when the crack propagates under elastic conditions, the crack-tip singularity is affected by the porosity in the weld metal (stress liberator). This aspect, in conjunction with the hardening effect in joints subjected to PWHT, improves the fatigue crack growth rate when compared to the as-welded condition.

  7. Preventive strength training improves working ergonomics during welding.

    PubMed

    Krüger, Karsten; Petermann, Carmen; Pilat, Christian; Schubert, Emil; Pons-Kühnemann, Jörn; Mooren, Frank C

    2015-01-01

    To investigate the effect of a preventive strength training program on cardiovascular, metabolic and muscular strains during welding. Welders are one of the occupation groups which typically have to work in extended forced postures which are known to be an important reason for musculoskeletal disorders. Subjects (exercise group) accomplished a 12-week strength training program, while another group served as controls (control group). Pre and post training examinations included the measurements of the one repetition maximum and an experimental welding test. Local muscle activities were analysed by surface electromyography. Furthermore, heart rate, blood pressure, lactate and rating of perceived exertion were examined. In the exercise group, strength training lead to a significant increase of one repetition maximum in all examined muscles (p<.05). During the experimental welding test muscle activities of trunk and shoulder muscles and arm muscles were significantly reduced in the exercise group after intervention (p<.05). While no changes of neither cardiovascular nor metabolic parameters were found, subjects of the exercise group rated a significantly decreased rate of perceived exertion welding (p<.05). Effects of strength training can be translated in an improved working ergonomics and tolerance against the exposure to high physical demands at work. PMID:26323773

  8. Preventive strength training improves working ergonomics during welding.

    PubMed

    Krüger, Karsten; Petermann, Carmen; Pilat, Christian; Schubert, Emil; Pons-Kühnemann, Jörn; Mooren, Frank C

    2015-01-01

    To investigate the effect of a preventive strength training program on cardiovascular, metabolic and muscular strains during welding. Welders are one of the occupation groups which typically have to work in extended forced postures which are known to be an important reason for musculoskeletal disorders. Subjects (exercise group) accomplished a 12-week strength training program, while another group served as controls (control group). Pre and post training examinations included the measurements of the one repetition maximum and an experimental welding test. Local muscle activities were analysed by surface electromyography. Furthermore, heart rate, blood pressure, lactate and rating of perceived exertion were examined. In the exercise group, strength training lead to a significant increase of one repetition maximum in all examined muscles (p<.05). During the experimental welding test muscle activities of trunk and shoulder muscles and arm muscles were significantly reduced in the exercise group after intervention (p<.05). While no changes of neither cardiovascular nor metabolic parameters were found, subjects of the exercise group rated a significantly decreased rate of perceived exertion welding (p<.05). Effects of strength training can be translated in an improved working ergonomics and tolerance against the exposure to high physical demands at work.

  9. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  10. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  11. The effect of impurity gasses on variable polarity plasma arc welded 2219 aluminum

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Torres, Martin R.; Gurevitch, Alan C.; Newman, Robert A.

    1989-01-01

    Variable polarity plasma arc (VPPA) welding has been used with considerable success by NASA for the welds on the Space Shuttle External Tank as well as by others concerned with high quality welded structures. The effects of gaseous contaminants on the appearance of VPPA welds on 2219 aluminum are examined so that a welder can recognize that such contamination is present and take corrective measures. There are many possible sources of such contamination including, contaminated gas bottles, leaks in the gas plumbing, inadequate shield gas flow, condensed moisture in the gas lines or torch body, or excessive contaminants on the workpiece. The gasses chosen for study in the program were nitrogen, oxygen, methane, and hydrogen. Welds were made in a carefully controlled environment and comparisons were made between welds with various levels of these contaminants and welds made with research purity (99.9999 percent) gasses. Photographs of the weld front and backside as well as polished and etched cross sections are presented.

  12. Ultrasonic girth weld evaluation for aluminum substrate of spherical Kevlar-epoxy test specimens

    SciTech Connect

    Brosey, W.D.; Dews, T.W.

    1984-08-28

    An ultrasonic weld inspection has been developed for the girth weld of the aluminum substrate for a Kevlar-epoxy filament wound test specimen. The filament wound spheres are test coupons in a study to evaluate NDE techniques on a composite material with enclosed geometry. The girth weld of the aluminum substrate has been examined to ensure the weld is not a weak point in the coupon in which failure will initiate. Analog and B-scan data are combined to determine the presence of lack of penetration, suckback, protrusion, or porosity in the weld. The data are calibrated with a standard and then plotted as analog, B-scan, or color contour data as a function of angular position around the weld.

  13. The microstructure of aluminum A5083 butt joint by friction stir welding

    SciTech Connect

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  14. The microstructure of aluminum A5083 butt joint by friction stir welding

    NASA Astrophysics Data System (ADS)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-05-01

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  15. Optimal welding parameters for very high power ultrasonic additive manufacturing of smart structures with aluminum 6061 matrix

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.; Hehr, Adam; Dapino, Marcelo J.

    2014-03-01

    Ultrasonic additive manufacturing (UAM) is a recent solid state manufacturing process that combines ad- ditive joining of thin metal tapes with subtractive milling operations to generate near net shape metallic parts. Due to the minimal heating during the process, UAM is a proven method of embedding Ni-Ti, Fe-Ga, and PVDF to create active metal matrix composites. Recently, advances in the UAM process utilizing 9 kW very high power (VHP) welding has improved bonding properties, enabling joining of high strength materials previously unweldable with 1 kW low power UAM. Consequently, a design of experiments study was conducted to optimize welding conditions for aluminum 6061 components. This understanding is critical in the design of UAM parts containing smart materials. Build parameters, including weld force, weld speed, amplitude, and temperature were varied based on a Taguchi experimental design matrix and tested for me- chanical strength. Optimal weld parameters were identi ed with statistical methods including a generalized linear model for analysis of variance (ANOVA), mean e ects plots, and interaction e ects plots.

  16. Relationship between apposition pressure during welding and tensile strength of the acute weld

    NASA Astrophysics Data System (ADS)

    Wu, Paul J.; Walsh, Joseph T., Jr.

    2001-05-01

    Dye-assisted photothermal welding is a technique used to close wounds by thermally cross-linking collagen across apposed tissue edges. For a successful weld, not only do laser parameters have to be optimized, but also apposition of the incision has to be consistent and controlled. The objective of this study was to quantify the relationship between the applied apposition pressure (i.e., the compressive force holding the wound closed during the welding procedure divided by the area of the skin-to-skin interface) and the tensile strength of the wound following the welding procedure. By using a clamping device made of two complementary pieces, each 3 cm wide with a row of 10 equally spaced blunt wire mesh tips, the apposition pressure along a 2-cm-long incision in each albino guinea pig was quantified using a 127-micrometers -thick load cell and varied from 0-1.8 kgf/cm2. A continuous wave, Nd:YAG laser emitting 10.0 W of 1.06-micrometers radiation from a 600-micrometers -diameter fiber irradiating a 5-mm-diameter spot size was scanned across the incision in order to deliver 300 J of total energy. As the apposition pressure of the incisions was increased, the resulting tensile strength of welded skin increased in a sigmoidal manner. For this welding technique, an apposition pressure of at least 1.2 kgf/cm2 is necessary to obtain maximum weld strength of the skin (2.56+/- 0.36 kg/cm2).

  17. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  18. Coaxial hybrid CO2-MIG welding system and its application in welding of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Chen, Wuzhu; Shuang, Yuanqing; Wang, Kangjian

    2005-01-01

    Hybrid laser-arc welding is becoming one of the most significant laser welding technologies in industry due to its higher welding efficiency, higher tolerance to gaps between plates, and adjustment of composition and microstructure of the weld metal. Comparing with common off axis hybrid laser-arc welding, coaxially combined laser beam and arc can provide a symmetrical circular thermal source on the workpiece surface, which is convenient for 3-D welding. This paper introduces a coaxial hybrid CO2 laser-pulsed MIG welding system and conducts experiments of welding Al-Mg alloy plates under different welding conditions. The basic physical phenomena during welding are observed and the weld bead shape (penetration depth, weld width) are measured. The results show that hybrid laser-MIG can stabilize the arc, remarkably increase the total welding efficiency and improve the quality of weld bead formation. In addition, process and control techniques for hybrid laser-MIG welding are also proposed.

  19. Summary of Results of Tests Made by Aluminum Research Laboratories of Spot-welded Joints and Structural Elements

    NASA Technical Reports Server (NTRS)

    HARTMANN E C; Stickley, G W

    1942-01-01

    Available information concerning spot welding as a means of joining aluminum-alloy parts has been summarized and comparisons have been made of the relative merits of spot-welded and riveted aluminum-alloy structural elements. The results indicated that spot welding was as satisfactory as riveting insofar as resistance to static loads is concerned. Spot welds showed slightly lower resistance to impact loads but definitely lower resistance to repeated loads than rivets.

  20. Cleavage fracture in high strength low alloy weld metal

    SciTech Connect

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructural analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.

  1. A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz M.

    2005-01-01

    The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.

  2. Ultrasonic-assisted friction stir welding on V95AT1 (7075) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. Ye.; Kolubaev, E. A.; Ivanov, A. N.; Fortuna, S. V.; Eliseev, A. A.

    2015-10-01

    Ultrasonic-assisted friction stir butt welding on aluminum alloy V95AT1 (7075) has been carried out. Samples have been characterized using metallography, microhardness and XRD. As shown, ultrasonic treatment during welding provides extra plasticizing of metal and better stirring efficiency. The latter serves for elimination of defects, such as root flaw and grain refining in the stir zone. The stress state in the welded joint is characterized by tensile stress in the direction of the weld seam centerline and compression in the transversal direction. The ultrasonic treatment was shown to increase the compression stress and relieve the tensile one.

  3. Fatigue Strength and Related Characteristics of Aircraft Joints I : Comparison of Spot-Weld and Rivet Patterns in 24s-t Alclad and 75s-t Alclad

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include: (1) fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24s-t. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage. (2) Fatigue tests on spot-welded alclad 75s-t spot-welded lap-joint specimens of alclad 75s-t were not any stronger in fatigue than similar specimens of alclad 24s-t. (3) Fatigue tests on lap-joint specimens spot -welded after various surface preparations--these included ac welding wire-brushed surfaces, dc welding wire-brushed surfaces, and dc welding chemically cleaned surfaces. While the ac welds were strongest statically, the dc welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison. (4) Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range. (author)

  4. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  5. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations. PMID:24474361

  6. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  7. Microstructure and Fatigue Properties of Ultrasonic Spot Welded Joints of Aluminum 5754 Alloy

    NASA Astrophysics Data System (ADS)

    Mirza, F. A.; Macwan, A.; Bhole, S. D.; Chen, D. L.

    2016-05-01

    The purpose of this investigation was to evaluate the microstructural change, lap shear tensile load, and fatigue resistance of ultrasonic spot welded joints of aluminum 5754 alloy for automotive applications. A unique "necklace"-type structure with very fine equiaxed grains was observed to form along the weld line due to the mechanical interlocking coupled with the occurrence of dynamic recrystallization. The maximum lap shear tensile strength of 85 MPa and the fatigue limit of about 0.5 kN (at 1 × 107 cycles) were achieved. The tensile fracture occurred at the Al/Al interface in the case of lower energy inputs, and at the edge of nugget zone in the case of higher energy inputs. The maximum cyclic stress for the transition of fatigue fracture mode from the transverse through-thickness crack growth to the interfacial failure increased with increasing energy input. Fatigue crack propagation was mainly characterized by the formation of fatigue striations, which usually appeared perpendicular to the fatigue crack propagation.

  8. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  9. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  10. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    SciTech Connect

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended service. This

  11. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    PubMed

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.

  12. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  13. Friction Stir Welding for Aluminum Metal Matrix Composites (MMC's) (Center Director's Discretionary Fund, Project No. 98-09)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Carter, R. W.; Ding, J.

    1999-01-01

    This technical memorandum describes an investigation of using friction stir welding (FSW) process for joining a variety of aluminum metal matrix composites (MMC's) reinforced with discontinuous silicon-carbide (SiC) particulate and functional gradient materials. Preliminary results show that FSW is feasible to weld aluminum MMC to MMC or to aluminum-lithium 2195 if the SiC reinforcement is <25 percent by volume fraction. However, a softening in the heat-affected zone was observed and is known to be one of the major limiting factors for joint strength. The pin tool's material is made from a low-cost steel tool H-13 material, and the pin tool's wear was excessive such that the pin tool length has to be manually adjusted for every 5 ft of weldment. Initially, boron-carbide coating was developed for pin tools, but it did not show a significant improvement in wear resistance. Basically, FSW is applicable mainly for butt joining of flat plates. Therefore, FSW of cylindrical articles such as a flange to a duct with practical diameters ranging from 2-5 in. must be fully demonstrated and compared with other proven MMC joining techniques for cylindrical articles.

  14. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yi, D.; Mironov, S.; Sato, Y. S.; Kokawa, H.

    2016-06-01

    In this work, the microstructural changes occurring during cooling of friction-stir welded aluminum alloy AA1100 were evaluated. To this end, friction-stir welding (FSW) was performed in a wide range of cooling rates of 20-62 K/s and the evolved microstructures were studied by using electron backscatter diffraction. Below 0.6 Tm (Tm being the melting point), the stir zone material was found to experience no significant changes during cooling. At higher FSW temperatures, however, notable changes occurred in the welded material, including grain growth, sharpening of texture, reduction of the fraction of high-angle boundaries and material softening.

  15. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    SciTech Connect

    Schempp, Philipp; Tang, Z.; Cross, Carl E.; Seefeld, T.; Pittner, A.; Rethmeier, M.

    2012-06-28

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  16. Transverse texture and microstructure gradients in friction-stir welded 2519 aluminum.

    SciTech Connect

    Bingert, J. F.; Fonda, R. W.

    2003-01-01

    Friction-stir welding produces severe thermomechanical transients that generate crystallographic texture evolution throughout the weld-affected microstructure . In this study, a friction stir weld in a coarse-grained 2519 aluminum plate was investigated in order to resolve the influence of these thermal and deformation effects on texture and microstructure development . Automated electron backscatter diffraction (EBSD) was applied to spatially resolve orientations in the base metal, weld nugget, and thermomechanical and heat-affected zones. Results show a gradient demarcated by an alteration in boundary character, texture, and precipitate distribution between the thermomechanical affected zone and the recrystallized weld nugget . EBSD scans and microstructural characterizations reveal substructure evolution from the base plate to the nugget indicative of dynamic recovery and recrystallization processes . Experimental results of texture evolution, however, did not directly follow from considerations of simplified deformation gradients and resultant simple shear textures resulting from restricted glide .

  17. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys.

    PubMed

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10-0.91 mW/cm(2) at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3-33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc.

  18. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys.

    PubMed

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10-0.91 mW/cm(2) at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3-33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc. PMID:26632121

  19. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys

    PubMed Central

    NAKASHIMA, Hitoshi; UTSUNOMIYA, Akihiro; FUJII, Nobuyuki; OKUNO, Tsutomu

    2015-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10–0.91 mW/cm2 at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3–33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc. PMID:26632121

  20. Synchrotron X-ray measurement and finite element analysis of residual strain in tungsten inert gas welded aluminum alloy 2024

    NASA Astrophysics Data System (ADS)

    Preston, R. V.; Shercliff, H. R.; Withers, P. J.; Hughes, D. J.; Smith, S. D.; Webster, P. J.

    2006-12-01

    Residual strains have been measured in a tungsten inert gas (TIG) butt-welded 2024 aluminum alloy plate using synchrotron X-ray diffraction. Novel two-dimensional strain maps spanning the entire plate reveal steep gradients in residual stress and provide detailed validation data for finite element (FE) analysis. Two variants of a FE model have been used to predict the residual strain distributions, incorporating different levels of plate constraint. The model uses decoupled thermal and elastic-plastic mechanical analyses and successfully predicts the longitudinal and transverse residual strain field over the entire weld. For butt weld geometries, the degree of transverse constraint is shown to be a significant boundary condition, compared to simpler bead-on-plate analyses. The importance of transverse residual strains for detailed model validation is highlighted, together with the need for care in selecting the location for line scans. The residual stress is largest in the heat-affected zone (HAZ), being equal to the local postweld yield stress, though the strength increases subsequently by natural aging. In addition, a halving of the diffraction line width has been observed local to the weld, and this correlates with the microstructural changes in the region.

  1. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    PubMed

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere. PMID:20698419

  2. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  3. Low-Temperature Friction-Stir Welding of 2024 Aluminum

    NASA Technical Reports Server (NTRS)

    Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.

    1998-01-01

    Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This

  4. Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Wang, T.; Zhou, W. L.; Li, Z. Y.; Huang, Y. X.; Feng, J. C.

    2016-06-01

    The ultra-high-strength Al-Zn-Mg-Cu alloy, 7050-T7451, was friction stir welded at a constant tool rotation speed of 600 rpm. Defect-free welds were successfully obtained at a welding speed of 100 mm/min, but lack-of-penetration defect was formed at a welding speed of 400 mm/min. The as-received material was mainly composed of coarse-deformed grains with some fine recrystallized grains. Fine equiaxed, dynamic, recrystallized grains were developed in the stir zone, and elongated grains were formed in the thermomechanically affected zone with dynamic recovered subgrains. Grain sizes in different regions of friction stir-welded joints varied depending on the welding speed. The sizes and distributions of precipitates changed in different regions of the joint, and wider precipitation free zone was developed in the heat-affected zone compared to that in the base material. Hardness of the heat-affected zone was obviously lower than that of the base material, and the softening region width was related to the welding speed. The tensile strength of the defect-free joints increased with the increasing welding speed, while the lack-of-penetration defect greatly reduced the tensile strength. The tensile fracture path was significantly influenced by the position and orientation of lack-of-penetration defect.

  5. Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength

    SciTech Connect

    Cvecek, K.; Miyamoto, I.; Strauss, J.; Wolf, M.; Frick, T.; Schmidt, M.

    2011-05-01

    Glass welding by ultrashort laser pulses allows joining without the need of an absorber or a preheating and postheating process. However, cracks generated during the welding process substantially impair the joining strength of the welding seams. In this paper a sample preparation method is described that prevents the formation of cracks. The measured joining strength of samples prepared by this method is substantially higher than previously reported values.

  6. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  7. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, L.; Malone, T.

    2001-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  8. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, Lynn; Malone, Tina; Gentz, Steven J. (Technical Monitor)

    2000-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  9. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  10. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    NASA Astrophysics Data System (ADS)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  11. Effects of tool geometry and welding rates on the tool wear behavior and shape optimization in friction stir welding of aluminum alloy 6061 + 20% aluminum oxide MMC

    NASA Astrophysics Data System (ADS)

    Prado, Rafael Arcangel

    FSW is a new solid-state process currently being investigated for joining aluminum alloys that are difficult to weld, where there is no perceptible wear of the pin tool throughout the experiment. The present report investigates and examines tool wear in the friction-stir welding of Al 6061-T6 and Al 6061-T6 containing 20% (volume) Al2O3 particles, a metal matrix composite (MMC), in order to compare wear optimized tool geometries and corresponding parameters. The weld tool, referred to as pin tool or nib, did not exhibit any measurable wear in the FSW of the 6061 Al alloy even after traversing tens of meters of material. However, the pin tool geometry changed during the FSW of the Al 6061-T6 containing 20% (volume) Al2O3 particles. Tool wear was measured in relation to the original tool by weighing the photograph of the tool and comparing the percentage change relative to the original tool photograph. The maximum wear rate was roughly 0.64 %/cm at 1000 rpm for the MMC at 1 mm/s traverse speed. The best performance involving the least wear for MMC FSW was observed at a tool rotational speed of 500 rpm and a traverse speed of 3 mm/s; where the corresponding wear rate was 0.13 %/cm. Optical, scanning and transmission microscopy were used to characterize the microstructures of the base material and weld zone for the MMC confirming the solid phase nature of the technique. The microstructure of the friction stir weld zone shows a characteristic dynamic recrystallization phenomenon that acts as a mechanism to accommodate the super-plastic deformation and facilitates the bonding. Rockwell E hardness profiles for both aluminum alloys were measured from the base metals through the FSW zone near the through-thickness mid-section. In the FSW of Al 6061 containing 20% (volume) Al2O3 particles, tool wear has been shown to depend primarily on rotational and traverse speeds, with optimum wear occurring at 1000 rpm. However, as the traverse or actual weld speed is increased from 1

  12. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  13. Structure and Hardness of 01570 Aluminum Alloy Friction Stir Welds Processed Under Different Conditions

    NASA Astrophysics Data System (ADS)

    Il'yasov, R. R.; Avtokratova, E. V.; Markushev, M. V.; Predko, P. Yu.; Konkevich, V. Yu.

    2015-10-01

    Structure and hardness of the 01570 aluminum alloy joints processed by friction stir welding at various speeds are investigated. It is shown that increasing the traverse tool speed lowers the probability of macrodefect formation in the nugget zone; however, this can lead to anomalous grain growth in the zone of contact with the tool shoulder. Typical "onion-like" structure of the weld consisting of rings that differ by optical contrast is formed for all examined welding regimes. It is demonstrated that this contrast is caused by the difference in the grain sizes in the rings rather than by their chemical or phase composition. Mechanisms of transformation of the alloy structure during friction stir welding are discussed.

  14. Fatigue strength improvement of MIG-welded joint by shot peening

    NASA Astrophysics Data System (ADS)

    Azida Che Lah, Nur; Ali, Aidy

    2011-02-01

    In this study, the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel MIG-welded joint has been studied quantitatively. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity and inclusions found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 63% on MIG-welded samples.

  15. Microstructural analysis of the 2195 aluminum-lithium alloy welds

    NASA Technical Reports Server (NTRS)

    Talia, George E.

    1993-01-01

    The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.

  16. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    NASA Technical Reports Server (NTRS)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  17. Evaluation of Tensile Strength of Partial Penetration Butt Welded Joints by Ultrasonic Testing

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroshi; Kaji, Atsushi

    Partial penetration butt welded joints are widely used because they require relatively less weld metal for fabrication. However, incomplete penetration acts as a crack-like flaw. When the size of flaw in a material is known, the tensile strength of the material can be evaluated using fracture mechanics. This paper deals with a practical method of estimating the size of flaw (the incomplete penetration of a partial penetration butt welded joint) by ultrasonic testing (UT). The refraction angle of the probe and the method of UT are discussed. In addition, tensile strengths of welded joints are evaluated using fracture mechanics, and are found to be in good agreement with experimental results.

  18. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  19. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    NASA Astrophysics Data System (ADS)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  20. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  1. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation

  2. Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi

    2016-06-01

    Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.

  3. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  4. Tensile strength of simulated and welded butt joints in W-Cu composite sheet

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Watson, Gordon K.

    1994-01-01

    The weldability of W-Cu composite sheet was investigated using simulated and welded joints. The welded joints were produced in a vacuum hot press. Tensile test results showed that simulated joints can provide strength and failure mode data which can be used in joint design for actual weldments. Although all of the welded joints had flaws, a number of these joints were as strong as the W-Cu composite base material.

  5. Effects of fabrication and joining processes on compressive strength of boron/aluminum and borsic/aluminum structural panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Wiant, H. R.; Mcwithey, R. R.

    1978-01-01

    Processes for forming and joining boron/aluminum and borsic/aluminum to themselves and to titanium alloys were studied. Composite skin and titanium skin panels were joined to composite stringers by high strength bolts, by spotwelding, by diffusion bonding, by adhesive bonding, or by brazing. The effects of the fabrication and joining processes on panel compressive strengths were discussed. Predicted buckling loads were compared with experimental data.

  6. Transient thermal analysis and mechanical strength testing of pulsed laser welded ribbons to feedthru joints

    NASA Astrophysics Data System (ADS)

    Lin, Yaomin; Jiang, Guangqiang

    2012-03-01

    In this work, a laser welding process for attaching conducting ribbons to a miniaturized feedthru is introduced. A pulsed 1064nm Nd:YAG laser was used as an example in this study. A numerical simulation by means of finite element method (FEM) for the prediction of temperatures in the feedthru assembly is presented. The approach used was intended to solve the energy balance equation with appropriate initial and boundary conditions. A laser weld joint strength test was conducted using a Mechanical Strength Tester. The influence of processing parameters, such as laser power and pulse duration, on the temperature distribution and the weld joint strength are investigated and discussed.

  7. Laser-assisted friction stir welding of aluminum alloy lap joints: microstructural and microhardness characterizations

    NASA Astrophysics Data System (ADS)

    Casalino, Giuseppe; Campanelli, Sabina L.; Contuzzi, Nicola; Angelastro, Andrea; Ludovico, Antonio D.

    2014-02-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. The laser Assisted Friction Stir Welding (LAFSW) combines a Friction Stir Welding machine and a laser system. Laser power is used to preheat and to plasticize the volume of the workpiece ahead of the rotating tool; the workpiece is then joined in the same way as in the conventional FSW process. In this work an Ytterbium fiber laser with maximum power of 4 kW and a commercial FSW machine were coupled. Both FSW and LAFSW tests were conducted on 3 mm thick 5754H111 aluminum alloy plates in lap joint configuration with a constant tool rotation rate and with different feed rates. The two processes were compared and evaluated in terms of differences in the microstructure and in the micro-hardness profile.

  8. Influence of Joint Configuration on the Strength of Laser Welded Presshardened Steel

    NASA Astrophysics Data System (ADS)

    Kügler, H.; Mittelstädt, C.; Vollertsen, F.

    Presshardened steel is used in nowadays automotive production. Due to its high strength, sheet thicknesses can be reduced which results in decreasing weight of car body components. However, because of microstructure softening and coating agglomerations in the seam, welding is still a challenge. In this paper laser beam welding of 22MnB5 with varying energy input per irradiated area is presented. It is found that increasing energy input per seam length reduces tensile strength. Using a small spot size of 200 μm, tensile strength of 1434 N/mm2 can be reached in bead on plate welds. In lap welds tensile strength is limited because of coating particles agglomerating at the melt pool border line. However, the resulting strength is higher when using several small weld seams than using one seam with the same total seam width. With three weld seams, each 0.5mm in width, tensile strength of 911N/mm2 is reached in lap welding.

  9. Diffusion-controlled wear of steel friction stir welding tools used on aluminum alloys

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Kalashnikova, T. A.; Kalashnikov, K. N.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.

    2015-10-01

    The worn surfaces of steel instruments used for friction stir welding on AMg5M aluminum alloy have been examined. An adhesion transfer layer resulted on the steel tool surface from welding the aluminum-magnesium alloy. Diffusion between this layer and steel base metal resulted in formation of an intermetallic Fe-Al layer (IMC). The hardness of the IMC has been measured using a nanohardness tester. It was found that the IMC layers maximum hardness changed from 998 to 1698 HV. The continuous IMC layers may serve as a wear-resistant coating, however, the IMC were also found in the shape of spikes directed into the tool's body, which created conditions for wear particle formation by fracture.

  10. Dye penetrant indications caused by superficial surface defects in 2014 aluminum alloy welds.

    NASA Technical Reports Server (NTRS)

    Hocker, R. G.; Wilson, K. R.

    1971-01-01

    Demonstration that dye penetrant indications on the heat-affected zone of 2014-T6 aluminum GMA weldments are frequently caused by superficial surface conditions and are less than 0.007 in. deep. The following methods are suggested for minimization of these surface defects: stabilization of the arc, application of dc ?GTA' welding procedures, reduction of the caustic etch time, and use of fine grain materials.

  11. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    SciTech Connect

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient at the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.

  12. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    NASA Astrophysics Data System (ADS)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  13. Complex vibration ultrasonic welding systems with large area welding tips.

    PubMed

    Tsujino, Jiromaru; Sano, Tsutomu; Ogata, Hayato; Tanaka, Soichi; Harada, Yoshiki

    2002-05-01

    Vibration and welding characteristics of complex vibration ultrasonic welding systems of 27 and 40 kHz were studied. Complex vibration systems, which have elliptical to circular or rectangular to square locus, are effective for ultrasonic welding of various specimens including the same and different metal specimens, and for direct welding of semiconductor tips and packaging of various electronic devices without solder. The complex vibration systems consist of a one-dimensional longitudinal-torsional vibration converter with slitted part, a stepped horn and a longitudinal vibration transducer as a driving source. The complex vibration welding tips of 27 and 40 kHz have enough area of 6-8 mm square for various welding specimens. Aluminum plate specimens of 0.3-1.0 mm thickness were successfully joined with weld strengths almost equal to aluminum specimen strength, and independent to the specimen direction. Required vibration amplitude of 40 kHz is smaller than that of 27 kHz.

  14. 49 CFR 587.15 - Verification of aluminum honeycomb crush strength.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Verification of aluminum honeycomb crush strength. 587.15 Section 587.15 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Deformable Barrier § 587.15 Verification of aluminum honeycomb crush strength. The following procedure...

  15. 49 CFR 587.15 - Verification of aluminum honeycomb crush strength.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Verification of aluminum honeycomb crush strength. 587.15 Section 587.15 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Deformable Barrier § 587.15 Verification of aluminum honeycomb crush strength. The following procedure...

  16. 49 CFR 587.15 - Verification of aluminum honeycomb crush strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Verification of aluminum honeycomb crush strength. 587.15 Section 587.15 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Deformable Barrier § 587.15 Verification of aluminum honeycomb crush strength. The following procedure...

  17. 49 CFR 587.15 - Verification of aluminum honeycomb crush strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Verification of aluminum honeycomb crush strength. 587.15 Section 587.15 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Deformable Barrier § 587.15 Verification of aluminum honeycomb crush strength. The following procedure...

  18. 49 CFR 587.15 - Verification of aluminum honeycomb crush strength.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Verification of aluminum honeycomb crush strength. 587.15 Section 587.15 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Deformable Barrier § 587.15 Verification of aluminum honeycomb crush strength. The following procedure...

  19. Formability Analysis of Diode-Laser-Welded Tailored Blanks of Advanced High-Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Baltazar Hernandez, V. H.; Kuntz, M. L.; Zhou, Y.

    2009-08-01

    Currently, advances due to tailored blanking can be enhanced by the development of new grades of advanced high-strength steels (HSSs), for the further weight reduction and structural improvement of automotive components. In the present work, diode laser welds of three different grades of advanced high-strength dual-phase (DP) steel sheets (with tensile strengths of 980, 800, and 450 MPa) to high-strength low-alloy (HSLA) material were fabricated by applying the proper welding parameters. Formability in terms of Hecker’s limiting dome height (LDH), the strain distribution on the hemispherical dome surface, the weld line movement during deformation, and the load-bearing capacity during the stretch forming of these different laser-welded blanks were compared. Finite element (FE) analysis of the LDH tests of both the parent metals and laser-welded blanks was done using the commercially available software package LS-DYNA (Livermore Software Technology Corporation, Livermore, CA); the results compared well with the experimental data. It was also found that the LDH was not affected by the soft zone or weld zone properties; it decreased, however, with an increase in a nondimensional parameter, the “strength ratio” (SR). The weld line movement during stretch forming is an indication of nonuniform deformation resulting in a decrease in the LDH. In all the dissimilar weldments, fracture took place on the HSLA side, but the fracture location shifted to near the weld line (at the pole) in tailor-welded blanks (TWBs) of a higher strength ratio.

  20. Helium-tight Laser Beam Welding of Aluminum with Brillant Laser Beam Radiation

    NASA Astrophysics Data System (ADS)

    Heinen, Paul; Wu, Hao; Olowinsky, Alexander; Gillner, Arnold

    The substitution of steel as base metal for casings and packaging applications has increased during the last years. Especially aluminum with advantages in weight and machining effort has become a versatile solution for applications in fine mechanics (e.g. sensor housings) and automotive applications. Joining of aluminum components is more critical due to possible crack formation in the joining seam and uneven seam geometry. With the high intensity of brillant laser beam sources the specific challenges of aluminum welding can be overcome. Due to its hydrogen affinity and high degree of reflection for laser radiation at a wavelength of 1 μm (95%) aluminum needs to be welded with proper shielding gas support and high beam quality in order to avoid seam defects. Cracks and pores can lead to non-sufficient tightness for sensor applications and early failure. Housing components have been joined to form a functioning unit in order to seal electrical or measuring components, which are helium-tight for these applications.

  1. Comparative analysis of the friction stir welded aluminum-magnesium alloy joint grain structure

    NASA Astrophysics Data System (ADS)

    Zaikina, A. A.; Sizova, O. V.; Novitskaya, O. S.

    2015-10-01

    A comparative test of the friction stir welded aluminum-magnesium alloy joint microstructure for plates of a different thickness was carried out. Finding out the structuring regularities in the weld nugget zone, that is the strongest zone of the weld, the effects of temperature-deformational conditions on the promotion of a metal structure refinement mechanism under friction stir welding can be determined. In this research friction stir welded rolled plates of an AMg5M alloy; 5 and 8 mm thick were investigated. Material fine structure pictures of the nugget zone were used to identify and measure subgrain and to define a second phase location. By means of optical microscopy it was shown that the fine-grained structure developed in the nugget zone. The grain size was 5 flm despite the thickness of the plates. In the sample 5.0 mm thick grains were coaxial, while in the sample 8.0 mm thick grains were elongate at a certain angle to the tool travel direction.

  2. Technology Of MIG-MAG Welds Strength Enhancement

    NASA Astrophysics Data System (ADS)

    Solodskiy, S. A.; Saraev, Yu N.; Malchik, A. G.; Korotkov, S. E.

    2016-08-01

    A new technology of MIG MAG welding control is developed. Authors introduce use of power AC and pulse feed of welding wire in the arc zone, that downsizes the heat affected zone, stabilizes formation of electrode metal droplets, as external magnetic field's effect on the arc is reduced. Principal criteria for electrode metal transfer control, when powered by AC sources, are specified.

  3. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  4. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

    PubMed Central

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10–20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  5. FRACTURE STRENGTH OF DIFFERENT SOLDERED AND WELDED ORTHODONTIC JOINING CONFIGURATIONS WITH AND WITHOUT FILLING MATERIAL

    PubMed Central

    Bock, Jens Johannes; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-01-01

    The aim of this study was to compare the mechanical strength of different joints made by conventional brazing, TIG and laser welding with and without filling material. Five standardized joining configurations of orthodontic wire in spring hard quality were used: round, cross, 3 mm length, 9 mm length and 7 mm to orthodontic band. The joints were made by five different methods: brazing, tungsten inert gas (TIG) and laser welding with and without filling material. For the original orthodontic wire and for each kind of joint configuration or connecting method 10 specimens were carefully produced, totalizing 240. The fracture strengths were measured with a universal testing machine (Zwick 005). Data were analyzed by ANOVA (p=0.05) and Bonferroni post hoc test (p=0.05). In all cases, brazing joints were ruptured on a low level of fracture strength (186-407 N). Significant differences between brazing and TIG or laser welding (p<0.05, Bonferroni post hoc test) were found in each joint configuration. The highest fracture strength means were observed for laser welding with filling material and 3 mm joint length (998 N). Using filling materials, there was a clear tendency to higher mean values of fracture strength in TIG and laser welding. However, statistically significant differences were found only in the 9-mm long joints (p<0.05, Bonferroni post hoc test). In conclusion, the fracture strength of welded joints was positively influenced by the additional use of filling material. TIG welding was comparable to laser welding except for the impossibility of joining orthodontic wire with orthodontic band. PMID:19089229

  6. Fracture strength of different soldered and welded orthodontic joining configurations with and without filling material.

    PubMed

    Bock, Jens Johannes; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-01-01

    The aim of this study was to compare the mechanical strength of different joints made by conventional brazing, TIG and laser welding with and without filling material. Five standardized joining configurations of orthodontic wire in spring hard quality were used: round, cross, 3 mm length, 9 mm length and 7 mm to orthodontic band. The joints were made by five different methods: brazing, tungsten inert gas (TIG) and laser welding with and without filling material. For the original orthodontic wire and for each kind of joint configuration or connecting method 10 specimens were carefully produced, totalizing 240. The fracture strengths were measured with a universal testing machine (Zwick 005). Data were analyzed by ANOVA (p=0.05) and Bonferroni post hoc test (p=0.05). In all cases, brazing joints were ruptured on a low level of fracture strength (186-407 N). Significant differences between brazing and TIG or laser welding (p<0.05, Bonferroni post hoc test) were found in each joint configuration. The highest fracture strength means were observed for laser welding with filling material and 3 mm joint length (998 N). Using filling materials, there was a clear tendency to higher mean values of fracture strength in TIG and laser welding. However, statistically significant differences were found only in the 9-mm long joints (p<0.05, Bonferroni post hoc test). In conclusion, the fracture strength of welded joints was positively influenced by the additional use of filling material. TIG welding was comparable to laser welding except for the impossibility of joining orthodontic wire with orthodontic band. PMID:19089229

  7. Joint strength in high speed friction stir spot welded DP 980 steel

    SciTech Connect

    Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

    2014-05-01

    High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm – 102 mm per minute, while the range of spindle speeds was 2500 – 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 – 8.2 kN and lap shear tension failure loads of 8.9 – 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

  8. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  9. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  10. Effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO 2 laser-MIG hybrid welding

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Zeng, Xiaoyan; Gao, Ming; Lai, Jian; Lin, Tianxiao

    2009-05-01

    This paper represented the effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO 2 laser-metal inter gas (MIG) hybrid welding. Plates of 2A12 aluminum alloy were welded by ER4043 and ER2319 welding wires, respectively. Full penetration joints without any defects were produced. The X-ray diffraction was used to analyze the phase composition, while the scanning electron microscopy (SEM) was conducted to study the microstructure, segregation behaviors of major alloying elements and the eutectics formed at dendrite boundaries in the joints. The results showed that silicon and copper were concentrated at the dendrite boundaries and α-Al + Si + Al 2Cu + Mg 2Si eutectic was formed if the ER4043 welding wire was used. However, only copper was concentrated at the dendrite boundaries and α-Al + θ eutectic was formed by ER2319 welding wire. Finally, the tensile tests were performed and the fracture surfaces were analyzed. The results showed that the joint efficiency by ER2319 and ER4043 welding wires reached up to 78% and 69%, respectively. Coarse dimples and voids had been observed in the fractographs. The joints showed a transgranular type failure.

  11. Preliminary Study on the Formability of a Laser-Welded Superplastic Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sorgente, D.; Corizzo, O.; Brandizzi, M.; Tricarico, L.

    2014-11-01

    In this work, the effect of the laser-material interaction on the formability of a superplastic aluminum alloy was investigated. In applications such as Tailor-Welded Blanks and in the manufacturing of very large components with a complex shape, laser welding combined with superplastic forming may be a very fitting industrial tool. Bead on plate tests were carried out in order to simulate the laser-welding process and then, free inflation tests were performed to evaluate the compatibility of these two processing techniques. The Al-Mg alloy used in this work has a very small grain size which ensures the superplastic behavior. With the aim of preserving this peculiarity, the following aspects on the formability were investigated: (i) the surface condition of the bead before the forming test (with and without the removal of the excess of metal); (ii) the effect of the travel speed of the laser source on the mean grain size; (iii) the introduction of a refiner, commonly used in aluminum casts, in the molten pool in order to further reduce the mean grain size.

  12. Cathodic cleaning and heat input in variable polarity plasma arc welding of aluminum

    SciTech Connect

    Fuerschbach, P.W.

    1998-02-01

    For variable polarity plasma arc welding (VPPAW) of 1,100 Al, it was found that the net heat input to the aluminum workpiece did not decrease as independent changes in polarity balance enabled the tungsten electrode to become the predominant anode in the alternating current arc. For the thin sheet edge welds made in this study, the independent parameters used to vary the arc current polarity balance were very effective in delivering a wide range of actual arc power polarity balance. The ratio of electrode positive polarity arc energy to the total arc energy ranged from as little as 0.03 to as high as 0.99. Despite this pronounced difference in arc polarity, no significant variation in the average arc efficiency (net heat input/arc energy) of 0.51 was found. Substantial heating of the workpiece during electrode positive polarity was attributed to field type emission of electrons from the low boiling point aluminum cathode. Unlike thermionic emission at the tungsten, field emission electrons do not cool the cathode. While the actual arc efficiency were relatively constant, there were significant differences in the measured heat input, the weld size, and the effectiveness of the cathodic cleaning.

  13. Effect of plasma welding parameters on the flexural strength of Ti-6Al-4V alloy.

    PubMed

    Lyra e Silva, João Paulo; Fernandes Neto, Alfredo Júlio; Raposo, Luís Henrique Araújo; Novais, Veridiana Resende; de Araujo, Cleudmar Amaral; Cavalcante, Luisa de Andrade Lima; Simamoto Júnior, Paulo Cezar

    2012-01-01

    The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (p<0.001), with higher flexural strength for the control group (p<0.05). No significant differences was observed among the plasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks. PMID:23338261

  14. Prospects of increasing the strength of aluminum by reinforcing it with stainless steel wire (a review)

    NASA Technical Reports Server (NTRS)

    Botvina, L. R.; Ivanova, V. S.; Kopev, I. M.

    1982-01-01

    The theoretical and experimental strength of aluminum reinforced with stainless steel wire is analyzed. Various methods of producing the composite material and it's static and cyclical strengths are considered. The reinforcement of aluminum with stainless steel wire was accomplished from the perspective of increasing the specific strength of aluminum and it's alloys, increasing the strength of the material with respect to high and low temperatures, as well as increasing the cyclical strength. The production of the composite aluminum-stainless steel wire material with approximated or calculated strengthening is possible by any of the considered methods. The selection of the proper production technology depends on precise details and conditions of application of the material.

  15. Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Yulong; Zhang, Hua; Guo, Wei; Weckman, David; Zhou, Norman

    2015-11-01

    A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.

  16. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  17. A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Hamilton, Carter; Kopyściański, Mateusz; Węglowska, Aleksandra; Dymek, Stanisław; Pietras, Adam

    2016-09-01

    Dissimilar aluminum alloy sheets of 2017A-T451 and 7075-T651 (6 mm thickness) were friction stir welded in a butt weld configuration. A numerical simulation of the joining process was developed to visualize the material flow patterns and temperature distribution and to correlate the microstructure to the hardness behavior. Due to the complementary downward flow of surface material into the workpiece thickness and upward flow of mid-plane and bottom-plane material, the weld nugget is composed of alternating layers of 7075 and 2017A. These layers have unique temperature histories depending on the material's initial location within the cross section; therefore, they also have distinctive precipitate distributions. Supersaturated surface material flows into the process zone and forms a core in which GP zones reprecipitate upon cooling. Mid-plane and bottom-plane material flow toward the workpiece surface and encompass the surface material core. Within this region, the weld temperatures overage the equilibrium θ phase in 2017A, decreasing the hardness, and at the same time, dissolve the equilibrium η/ T phase in the 7075, leading to reprecipitation of GP zones upon cooling and a hardness recovery.

  18. Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates

    NASA Astrophysics Data System (ADS)

    Vaira Vignesh, R.; Padmanaban, R.; Arivarasu, M.; Thirumalini, S.; Gokulachandran, J.; Sai Ram, Mutyala Sesha Satya

    2016-09-01

    Friction stir welding (FSW) is a solid state welding process with potential to join materials that are non weldable by conventional fusion welding techniques. The study of heat transfer in FSW aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSW of aluminum alloy AA6061-T6 was simulated using finite element modelling. The model was used to predict the peak temperature and analyse the thermal history during FSW. The effect of process parameters namely tool rotation speed, tool traverse speed (welding speed), shoulder diameter and pin diameter of tool on the temperature distribution was investigated using two level factorial design. The model results were validated using the experimental results from the published literature. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed. The effect of pin diameter on peak temperature was found to be trivial.

  19. Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, M.; Nikodinovski, M.; Chenier, P.; Ma, J.; Liu, W.; Kovacevic, R.

    2014-07-01

    In the present investigation, a numerical finite element model was developed to simulate the hybrid laser arc welding of different aluminum alloys, namely 5××× to 6××× series. The numerical simulation has been considered two double-ellipsoidal heat sources for the gas metal arc welding and laser welding. The offset distance of the metal arc welding and laser showed a significant effect on the molten pool geometry, the heat distribution and penetration depth during the welding process. It was confirmed that when the offset distance is within the critical distance the laser and arc share the molten pool and specific amount of penetration and dilution can be achieved. The models and experiments show that the off-distance between the two heat sources and shoulder width have considerable influence on the penetration depth and appearance of the weld beads. The experiments also indicate that the laser power, arc voltage and type of the filler metal can effectively determine the final properties of the bonds, specifically the bead appearance and microhardness of the joints. The experiments verified the numerical simulation as the thermocouples assist to comprehend the amount of heat distribution on the T-joint coupons. The role of the welding parameters on the mechanism of the hybrid laser welding of the aluminum alloys was also discussed.

  20. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony P.

    2015-05-01

    Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

  1. On the Critical Technological Issues of Friction Stir Welding T-Joints of Dissimilar Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Scala, A.; Prisco, A.

    2012-08-01

    In this article, friction stir welded T-joints of innovative dissimilar aluminum alloys have been produced and tested with the aim to investigate the feasibility of using this joining technique, in this configuration, in the aerospace field with the final aim to save weight. The introduction of both this new welding technique and innovative alloys, such as AA 2198 and AA 6056, could allow making lighter and stronger structures. Some experiments, carried out previously, have shown that the fixturing device, the tool geometry, and the tilt angle play a significant role in the joint soundness. A wide experimental characterization has been carried out on FSW T-joints of AA 6056 T4 extrudes to AA 2198 T3 rolled plates. The results attained allow to put in evidence some critical issues on the investigated configuration and can be considered as a further acquired knowledge in the understanding and the design of friction stir processes.

  2. Weldability aspects in the design and fabrication of aluminium structures subjected to fatigue loads. Part 2: Weldability of aluminium alloys using advanced MIG and TIG techniques. Effect of the weld bead geometrical factors on the fatigue behavior of the welded joint

    NASA Astrophysics Data System (ADS)

    Nevasmaa, Pekka; Peltonen, Jorma; Kuitunen, Risto; Rahka, Klaus

    1993-05-01

    The project explored experimentally the weldability of high-strength aluminum alloys and suitable welding techniques. Part 2 of the report will examine welding procedures suitable for high-strength 5xxx (AlMg) and 6xxx (AlSiMg) series aluminum alloys using advanced MIG and TIG techniques and evaluate the weldability of these alloys, as well as the importance of the shape of the weld bead for fatigue strength of the welded joint.

  3. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  4. Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process

    NASA Astrophysics Data System (ADS)

    Kesharwani, R. K.; Panda, S. K.; Pal, S. K.

    2015-02-01

    In the present work, tailor friction stir welded blanks (TFSWBs) were fabricated successfully using 2.0-mm-thick AA5754-H22 and AA5052-H32 sheet metals with optimized tool design and process parameters. Taguchi L9 orthogonal array has been used to design the friction stir welding experiments, and the Grey relational analysis has been applied for the multi objective optimization in order to maximize the weld strength and total elongation reducing the surface roughness and energy consumption. The formability of the TFSWBs and parent materials was evaluated and compared in terms of limiting drawing ratio (LDR) using a conventional circular die. It was found that the formability of the TFSWBs was comparable with that of both the parent materials without failure in the weldment. A modified conical tractrix die (MCTD) was proposed to enhance the LDR of the TFSWBs. It was found that the formability was improved by 27% using the MCTD.

  5. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  6. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned

  7. Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates

    NASA Astrophysics Data System (ADS)

    Datta, R.; Mukerjee, D.; Jha, S.; Narasimhan, K.; Veeraraghavan, R.

    2002-02-01

    High strength, quench and tempered (Q&T) plates having yield strength of a minimum of 670 MPa and conforming to SA 517 Gr. F specification were successfully developed at Rourkela Steel Plant in plates up to 40 mm thickness. The plates are used extensively for the fabrication of impellers, penstocks, excavators, dumpers, and raw material handling devices, where welding is an important processing step. SA 517 Gr. F plates, characterized by a relatively high carbon equivalent (CE: ˜0.6) and alloyed with Ni, Cr, Mo, Cu, and V, are susceptible to a crack-sensitive microstructure and cold cracking during welding. In view of the above, the present study investigated the weldability properties of 20 mm thick plates using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were carried out to assess the cold cracking resistance of the weld joint under different welding conditions. Preheat of 100 °C, partial or full rebake, and a heat input of 14.9 to 15.4 KJ/cm resulted in static fatigue limit (SFL) values well in excess of the minimum specified yield strength (MSYS) of 670 MPa and a critical restraint intensity (K cr) value of 34,650 MPa, indicating adequate cold cracking resistance. Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 9.7 to 14.4 KJ/cm and weld restraint loads (WRL) of 510 to 685 MPa showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. The weld joint, based on optimized welding parameters, exhibited adequate tensile strength (812.4 MPa) and low temperature impact toughness 88.3 and 63.4 J (9.2 and 6.6 kg-m) at -40 °C for weld metal (WM), and heat-affected zone (HAZ) properties, respectively. The crack tip opening displacement (CTOD) values of WM and HAZ (0.40 and 0.36 mm, respectively) were superior to that of the parent metal (0.29 mm), indicating adequate resistance of weld joint to brittle fracture. It was concluded that

  8. Ultrasonic inspection of MC2893 strength member assembly weld

    SciTech Connect

    Dudley, W.A.

    1984-02-17

    An ultrasonic technique developed at Mound to nondestructively inspect an assembly weld critical to the fabrication and production of MC2893 heat sources is described. Prior to transferring the assembly technology to Los Alamos National Laboratory (LANL), the ultrasonic technique was used at Mound as a 100% in-line inspection tool.

  9. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  10. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    NASA Technical Reports Server (NTRS)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  11. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    NASA Astrophysics Data System (ADS)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  12. Evaluation of Bending Strength in Friction Welded Alumina/mild Steel Joints by Applying Factorial Technique

    NASA Astrophysics Data System (ADS)

    Jesudoss Hynes, N. Rajesh; Nagaraj, P.; Vivek Prabhu, M.

    Joining of metal with ceramics has become significant in many applications, because they combine properties like ductility with high hardness and wear resistance. By friction welding technique, alumina can be joined to mild steel with AA1100 sheet of 1mm thickness as interlayer. In the present work, investigation of the effect of friction time on interlayer thickness reduction and bending strength is carried out by factorial design. By using ANOVA, a statistical tool, regression modeling is done. The regression model predicts the bending strength of welded ceramic/metal joints accurately with ± 2% deviation from the experimental values.

  13. Some Tribological Influences on the Electrode-Worksheet Interface During Resistance Spot Welding of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Rashid, M.

    2011-04-01

    In this study, the effect of worksheet surface characteristics on the electrical contact resistance of electrode-worksheet interface during resistance spot welding of aluminum alloy (AA5182) was discussed. The electrical contact resistance was influenced by both the oxide layer and surface roughness of the worksheet. However, the effect of oxide layer was more dominant, and the effect of surface roughness was likely to be linked with the damaging of oxide layer and not the contact area. The oxide layer on AA5182 was non-uniform with Mg-rich small spots dispersed on the surface. Grinding and scratching the worksheet surface was effective in reducing the oxide layer thickness and, hence, reduced the electrical contact resistance. It was observed that the surfaces with higher electrical contact resistances at this interface showed faster pitting rate of electrode. The study also suggested that the static electrical contact resistance measured before resistance spot welding could be useful for predicting materials likely behavior during the actual resistance spot welding process of AA5182.

  14. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  15. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  16. Effect of Welding Parameters on the Microstructure and Strength of Friction Stir Weld Joints in Twin Roll Cast EN AW Al-Mn1Cu Plates

    NASA Astrophysics Data System (ADS)

    Birol, Yucel; Kasman, Sefika

    2013-10-01

    Twin roll cast EN AW Al-Mn1Cu plates were butt welded with the friction stir welding process which employed a non-consumable tool, tilted by 1.5° and 3° with respect to the plate normal, rotated in a clockwise direction at 400 and 800 rpm, while traversing at a fixed rate of 80 mm/min along the weld line. Microstructural observations and microhardness tests were performed on sections perpendicular to the tool traverse direction. Tensile tests were carried out at room temperature on samples cut perpendicular to the weld line. The ultimate tensile strength of the welded EN AW Al-Mn1Cu plates improved with increasing tool rotation speed and decreasing tool tilt angle. This marked improvement in ultimate tensile strength is attributed to the increase in the heat input owing to an increased frictional heat generation. There appears to be a perfect correlation between the ultimate tensile strength and the size of the weld zone. The fracture surfaces of the base plate and the welded plates are distinctly different. The former is dominated by dimples typical of ductile fractures. A vast majority of the intermetallic particles inside the weld zones are too small to generate dimples during a tensile test. The fracture surface of the welded plates is thus characterized by occasional dimples that are elongated in the same direction suggesting a tensile tearing mechanism.

  17. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  18. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  19. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    SciTech Connect

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtained when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.

  20. Mechanical Property Analysis in the Retracted Pin-Tool (RPT) Region of Friction Stir Welded (FSW) Aluminum Lithium 2195

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Oelgoetz, Peter A.

    1999-01-01

    The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.

  1. Optimization of tensile strength of ferritic/austenitic laser-welded components

    NASA Astrophysics Data System (ADS)

    Anawa, E. M.; Olabi, A. G.

    2008-08-01

    Ferritic/austenitic (F/A) joints are a popular dissimilar metal combination used in many applications. F/A joints are usually produced using conventional processes. Laser beam welding (LBW) has recently been successfully used for the production of F/A joints with suitable mechanical properties. In this study, a statistical design of experiment (DOE) was used to optimize selected LBW parameters (laser power, welding speed and focus length). Taguchi approach was used for the selected factors, each having five levels (L-25; 5×3). Joint strength was determined using the notched-tensile strength (NTS) method. The results were analysed using analyses of variance (ANOVA) and the signal-to-noise (S/N) ratios for the optimal parameters, and then compared with the base material. The experimental results indicate that the F/A laser-welded joints are improved effectively by optimizing the input parameters using the Taguchi approach.

  2. The effect of weld porosity on the cryogenic fatigue strength of ELI grade Ti-5Al-2.5Sn

    NASA Technical Reports Server (NTRS)

    Rogers, P. R.; Lambdin, R. C.; Fox, D. E.

    1992-01-01

    The effect of weld porosity on the fatigue strength of ELI grade Ti-5Al-2.5Sn at cryogenic temperature was determined. A series of high cycle fatigue (HCF) and tensile tests were performed at -320 F on specimens made from welded sheets of the material. All specimens were tested with weld beads intact and some amount of weld offset. Specimens containing porosity and control specimens containing no porosity were tested. Results indicate that for the weld configuration tested, the fatigue life of the material is not affected by the presence of spherical embedded pores.

  3. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    NASA Astrophysics Data System (ADS)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  4. The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar

    2006-01-01

    Peening techniques like laser peening and shot peening were used to modify the surface of friction stir welded 7075-T7351 Aluminum Alloy specimens. The tensile coupons were machined such as the loading was applied in a direction perpendicular to the weld direction. The peening effects on the global and local mechanical properties through the different regions of the weld were characterized and assessed. The surface hardness levels resulting from various peening techniques were also investigated for both sides of the welds. Shot peening resulted in an increase to surface hardness levels, but no improvement was noticed on the mechanical properties. In contrast, mechanical properties were improved by laser peening when compared to the unpeened material.

  5. Hot press and roll welding of titanium-6-percent-aluminum-4-percent-vanadium bar and sheet with auto-vacuum cleaning

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1972-01-01

    Hot press butt welds were made in 0.5 in. diameter bar, and roll lap welds were made in 0.060 in. thick sheet of Ti-6A1-4V. For hot press welds made after auto-vacuum cleaning at 1800 F for 2 hours, weld strength and ductility equaled the parent metal properties. Only 5 minutes of pressing time were needed at 1800 F and 200 psi to make the hot press welds. Roll welds were made in sheet at 1750 F with only 10 percent deformation. The welds in the bar and sheet were metallurgically indistinguishable from the parent material.

  6. Prediction and Verification of Ductile Crack Growth from Simulated Defects in Strength Overmatched Butt Welds

    NASA Technical Reports Server (NTRS)

    Nishioka, Owen S.

    1997-01-01

    Defects that develop in welds during the fabrication process are frequently manifested as embedded flaws from lack of fusion or lack of penetration. Fracture analyses of welded structures must be able to assess the effect of such defects on the structural integrity of weldments; however, the transferability of R-curves measured in laboratory specimens to defective structural welds has not been fully examined. In the current study, the fracture behavior of an overmatched butt weld containing a simulated buried, lack-of-penetration defect is studied. A specimen designed to simulate pressure vessel butt welds is considered; namely, a center crack panel specimen, of 1.25 inch by 1.25 inch cross section, loaded in tension. The stress-relieved double-V weld has a yield strength 50% higher than that of the plate material, and displays upper shelf fracture behavior at room temperature. Specimens are precracked, loaded monotonically while load-CMOD measurements are made, then stopped and heat tinted to mark the extent of ductile crack growth. These measurements are compared to predictions made using finite element analysis of the specimens using the fracture mechanics code Warp3D, which models void growth using the Gurson-Tvergaard dilitant plasticity formulation within fixed sized computational cells ahead of the crack front. Calibrating data for the finite element analyses, namely cell size and initial material porosities are obtained by matching computational predictions to experimental results from tests of welded compact tension specimens. The R-curves measured in compact tension specimens are compared to those obtained from multi-specimen weld tests, and conclusions as to the transferability of R-curves is discussed.

  7. Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding

    2014-09-01

    Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme

  8. Evaluation of occupational exposure to toxic metals released in the process of aluminum welding.

    PubMed

    Matczak, Wanda; Gromiec, Jan

    2002-04-01

    The objective of this study was to evaluate occupational exposure to welding fumes and its elements on aluminum welders in Polish industry. The study included 52 MIG/Al fume samples and 18 TIG/Al samples in 3 plants. Air samples were collected in the breathing zone of welders (total and respirable dust). Dust concentration was determined gravimetrically, and the elements in the collected dust were determined by AAS. Mean time-weighted average (TWA) concentrations of the welding dusts/fumes and their components in the breathing zone obtained for different welding processes were, in mg/m3: MIG/Al fumes mean 6.0 (0.8-17.8), Al 2.1 (0.1-7.7), Mg 0.2 (< 0.1-0.9), Mn 0.014 (0.002-0.049), Cu 0.011 (0.002-0.092), Zn 0.016 (0.002-0.14), Pb 0.009 (0.005-0.025), Cr 0.003 (0.002-0.007), and TIG/Al fumes 0.7 (0.3-1.4), Al 0.17 (0.07-0.50). A correlation has been found between the concentration of the main components and the fume/dust concentrations in MIG/Al and TIG/Al fumes. Mean percentages of the individual components in MIG/Al fumes/dusts were Al: 30 (9-56) percent; Mg: 3 (1-5.6) percent; Mn: 0.2 (0.1-0.3) percent; Cu: 0.2 (< 0.1-1.8) percent; Zn: 0.2 (< 0.1-0.8) percent; Pb: 0.2 (< 0.1-1) percent; Cr: < 0.1 percent. The proportion of the respirable fraction in the fumes and their constituents varied between 10 percent and 100 percent. The results showed that MIG/Al fumes concentration was 1.2 times higher than the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV), and the index of the combined exposure to the determined agents was 2.3 (0.4-8.0), mostly because of high Al2O3 contribution. The background concentrations of the components (ca. 5-10 times lower than those in the breathing zone of the welders) did not exceed the Polish MAC value. The elemental composition of total and respirable fume/dust may differ considerably depending on welding methods, the nature of welding-related operations, and work environment conditions.

  9. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Chen, P. S.

    2004-01-01

    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  10. EFFECT OF TOOL FEATURE ON THE JOINT STRENGTH OF DISSIMILAR FRICTION STIR LAP WELDS

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.; Mattlin, Karl F.

    2011-04-25

    Several variations of friction stir tools were used to investigate the effects on the joint strengths of dissimilar friction stir lap welds. In the present lap weld configuration the top sheet was a 2.32 mm thick Mg (AZ 31) alloy. The bottom sheet consisted of two different steels, a (i) 0.8 mm thick electro-galvanized (EG) mild steel, or a (ii) 1.5 mm thick hot dip galvanized (HDG) high strength low alloy (HSLA) steel. Initially the tool shape was modified to accommodate the material, at which point the tool geometry was fixed. With a fixed tool geometry an additional feature was added to the pin bottom on one of the tools by incorporating a short hard insert, which would act as a stronger bottom sheet cutter. The effects of such modification on the unguided lap shear strength, and associated microstructural changes are discussed in this study.

  11. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  12. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  13. Effect of Welding Parameters on Microstructure, Thermal, and Mechanical Properties of Friction-Stir Welded Joints of AA7075-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Lotfi, Amir Hossein; Nourouzi, Salman

    2014-06-01

    A high-strength Al-Zn-Mg-Cu alloy AA7075-T6 was friction-stir welded with various process parameter combinations incorporating the design of the experiment to investigate the effect of welding parameters on the microstructure and mechanical properties. A three-factors, five-level central composition design (CCD) has been used to minimize the number of experimental conditions. The friction-stir welding parameters have significant influence on the heat input and temperature profile, which in turn regulates the microstructural and mechanical properties of the joints. The weld thermal cycles and transverse distribution of microhardness of the weld joints were measured, and the tensile properties were tested. The fracture surfaces of tensile specimens were observed by a scanning electron microscope (SEM), and the formation of friction-stir processing zone has been analyzed macroscopically. Also, an equation was derived to predict the final microhardness and tensile properties of the joints, and statistical tools are used to develop the relationships. The results show that the peak temperature during welding of all the joints was up to 713 K (440 °C), which indicates the key role of the tool shoulder diameter in deciding the maximum temperature. From this investigation, it was found that the joint fabricated at a rotational speed of 1050 rpm, welding speed of 100 mm/min, and shoulder diameter of 14 mm exhibited higher mechanical properties compared to the other fabricated joints.

  14. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  15. GMA-laser Hybrid Welding of High-strength Fine-grain Structural Steel with an Inductive Preheating

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Seffer, Oliver; Springer, André; Kaierle, Stefan; Overmeyer, Ludger

    The industrial useof GMA-laser hybrid welding has increased in the last 10 years, due to the brilliant quality of the laser beam radiation, and higher laser output powers. GMA-laser hybrid welding processes operate in a common molten pool. The combination of the laser beam and the arc results in improved welding speed, penetration depth, heat affected zone and gap bridgeability. Single-layer, GMA-laser hybrid welding processes have been developed for high-strength fine-grain structural steels with a grade of S690QL and a thickness of 15 mm and 20 mm. In addition, the welding process is assisted by an integrated, inductive preheating process to improve the mechanical properties of the welding seam. By using the determined parameters regarding the energy per unit length, and the preheating temperature, welding seams with high quality can be achieved.

  16. Influence of the Strength Mismatch of a Narrow Gap Welded Joint of SA508 on the Plastic η Factor

    NASA Astrophysics Data System (ADS)

    Koo, J. M.; Huh, Y.; Seok, C. S.

    2012-11-01

    In this article, the influence of the strength mismatch of a narrow gap welded joint of SA508 on the η factor was evaluated. The η factor is the principal parameter that determines the plastic portion of the J-integral. The specimens for tensile and hardness tests were collected from piping with narrow gap welding and the stress-strain curve and hardness were obtained from those. From these results, the Ramberg-Osgood (R-O) constant was obtained. Also, the finite element analysis was performed with variations in the strength mismatch and the weld width. The η factor equation considering the strength mismatch and the weld width of a narrow gap welded joint was suggested.

  17. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    NASA Astrophysics Data System (ADS)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  18. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    NASA Astrophysics Data System (ADS)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  19. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  20. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    NASA Astrophysics Data System (ADS)

    Zhang, H. S.; Yan, M.; Wang, H. Y.; Shen, L. T.; Dai, L. H.

    2016-04-01

    A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa), the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  1. Microstructural and Mechanical Properties of Friction Stir Welded Nickel-Aluminum Bronze (NAB) Alloy

    NASA Astrophysics Data System (ADS)

    Küçükömeroğlu, T.; Şentürk, E.; Kara, L.; İpekoğlu, G.; Çam, G.

    2016-01-01

    In this study, the applicability of friction stir welding to cast NAB alloy (i.e., C95800) with a thickness of 9 mm has been investigated. The joint performance was determined by conducting optical microscopy, microhardness measurements, and mechanical testing (e.g., tensile and Charpy impact tests). The effect of stir intensity on joint performance was also determined. A grain refinement (equiaxed fine grain structure) as well as evolution of a Widmanstätten structure was achieved within the stir zone of all the joints produced. Thus, all of the joints produced exhibited higher proof stress (i.e., between 512 and 616 MPa) than that of the base material, i.e., 397 MPa. On the other hand, only half of the specimens exhibited higher tensile strength values than that of the base plate (i.e., 794 MPa), whereas the other specimens displayed lower tensile strength than the base plate due to the existence of weld defects, namely cold bonding and/or tunnel defect.

  2. Characterization of a Friction Stir Weld in Aluminum Alloy 7055 Using Microhardness, Electrical Conductivity, and Differential Scanning Calorimetry (DSC)

    NASA Astrophysics Data System (ADS)

    Bush, Ralph; Kiyota, Michelle; Kiyota, Catherine

    2016-07-01

    Optical microscopy, microhardness, electrical conductivity, and differential scanning calorimetry (DSC) were used to characterize the microstructure, hardness, and precipitate structure as a function of position in a friction stir weld, naturally aged for 10 years, in aluminum alloy 7055. Results are shown for the as-welded/naturally aged condition and for a weld that was post-aged using a -T76 regimen. The grain structure and microhardness results reveal the expected central recrystallized region, a thermo-mechanical affected zone (TMAZ), and heat-affected zone (HAZ) with typical changes in microhardness. DSC scans for the as-welded/naturally aged condition indicate a precipitate structure similar to that of a naturally aged condition in the central recrystallized region. Maximum precipitate coarsening and overaging occurs near the TMAZ/HAZ boundary with reduced precipitate dissolution and coarsening as the distance from the weld increases. The post-weld aging resulted in the transformation of GP zones to more stable precipitates plus coarsening of the more stable η' and η precipitates. A combination of DSC testing and CALPHAD calculations allowed calculation of precipitate volume fraction in the HAZ. The precipitate volume fraction decreased monotonically from 0.052 in the baseline material to 0.044 at the TMAZ/HAZ interface.

  3. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  4. Influence of different brazing and welding methods on tensile strength and microhardness of orthodontic stainless steel wire.

    PubMed

    Bock, Jens Johannes; Fraenzel, Wolfgang; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-08-01

    The aim of this study was to compare the mechanical strength and microhardness of joints made by conventional brazing and tungsten inert gas (TIG) and laser welding. A standardized end-to-end joint configuration of the orthodontic wire material in spring hard quality was used. The joints were made using five different methods: brazing (soldering > 450 degrees C) with universal silver solder, two TIG, and two laser welders. Laser parameters and welding conditions were used according to the manufacturers' guidance. The tensile strengths were measured with a universal testing machine (Zwick 005). The microhardness measurements were carried out with a hardness tester (Zwick 3202). Data were analysed using one-way analysis of variance and Bonferroni's post hoc correction (P < 0.05). In all cases, brazing joints ruptured at low levels of tensile strength (198 +/- 146 MPa). Significant differences (P < 0.001) between brazing and TIG or laser welding were found. The highest means were observed for TIG welding (699-754 MPa). Laser welding showed a significantly lower mean tensile strength (369-520 MPa) compared with TIG welding. Significant differences (P < 0.001) were found between the original orthodontic wire and the mean microhardness at the centre of the welded area. The mean microhardness differed significantly between brazing (1.99 GPa), TIG (2.22-2.39 GPa) and laser welding (2.21-2.68 GPa). For orthodontic purposes, laser and TIG welding are solder-free alternatives to joining metal. TIG welding with a lower investment cost is comparable with laser welding. However, while expensive, the laser technique is a sophisticated and simple method. PMID:18617503

  5. Increasing the Strength of Aluminum-alloy Columns by Prestressing

    NASA Technical Reports Server (NTRS)

    Holt, M; Hartman, E C

    1937-01-01

    A series of tests was made in which the column strength of 17ST tubing was increased as much as 50 percent by prestressing the tubing to 40,000 pounds per square inch in compression under conditions of support that prevented column failure at this stress. This prestressing achieves it's beneficial effects entirely by improving the compressive properties of the material, principally the proportional limit.

  6. Development of Appropriate Spot Welding Practice for Advanced High Strength Steels (TRP 0114)

    SciTech Connect

    Brian Girvin; Warren Peterson; Jerry Gould

    2004-09-17

    This program evaluated the effects of common manufacturing variables on spike-tempering effectiveness. The investigation used design-of-experiment (DOE) techniques, and examined both dual-phase and martensitic grades of high-strength steels (HSS). The specific grades chosen for this project were: Dual-phase (DP) 600, galvannealed (GA), 1.55 mm (DP) 600; Dual-phase (DP) 980 (uncoated), 1.55 mm (DP) 980; and Martensitic (M) 1300, 1.55 mm (M) 1300. Common manufacturing conditions of interest included tempering practice (quench and temper time), button size, simulated part fitup (sheet angular misalignment and fitup), and electrode wear (increased electrode face diameter). All of these conditions were evaluated against mechanical performance (static and dynamic tensile shear). Weld hardness data was also used to examine correlations between mechanical performance and the degree of tempering. Mechanical performance data was used to develop empirical models. The models were used to examine the robustness of weld strength and toughness to the selected processing conditions. This was done using standard EWI techniques. Graphical representations of robustness were then coupled with metallographic data to relate mechanical properties to the effectiveness of spike tempering. Mechanical properties for all three materials were relatively robust to variation in tempering. Major deviations in mechanical properties were caused by degradation of the weld itself. This was supported by a lack of correlation between hardness data and mechanical results. Small button sizes and large electrode face diameters (worn electrodes) produced large reductions in both static and dynamic strength levels when compared to standard production setups. Dynamic strength was further degraded by edge-located welds.

  7. Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Qin, Hai-long; Zhang, Hua; Sun, Da-tong; Zhuang, Qian-yu

    2015-06-01

    The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion (EXCO) solution. Electrochemical measurements (open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase (Al2Cu) after 2 h of immersion in EXCO solution.

  8. Grain refinement control in gas-shielded arc welding of aluminum tubing

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L.

    1974-01-01

    When sections are being welded, operator varies pulse rate of power supply and simultaneously monitors signal on oscilloscope until rate is found which produces maximum arc gas voltage. Remainder of welding is performed with power supply set at this pulse rate, producing desired maximum weld puddle agitation and fine uniform weld of grain structure.

  9. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2016-06-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  10. Weldability of Advanced High Strength Steels using Ytterbium:Yttrium Aluminium Garnet high power laser for Tailor-Welded Blank applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rajashekhar Shivaram

    transverse direction were evaluated. Metallographic examinations determined that most of the fusion zone is martensitic with small regions of bainite and ferrite. High microhardness values of the order of 550--600 Hv were noted in most joints, which are attributed to high alloy content of the fusion zone as well as high rates of cooling typical of laser welds. During tensile, fatigue and formability tests, no fractures in the fusion or heat affected zones were observed. Geometric variability evaluations indicated that coatings such as aluminum (in the case of USIBOR) and galvanized zinc (TRIP780) can affect the variability of the weld zone and the surface roughness on the top of the weld. Excessive variability in the form of weld concavity in the weld zones can lead to fractures in the weld region, even though higher hardness can, to some extent, compensate for these surface irregularities. The 2-factor design of experiments further confirmed that coatings adversely affect the surface roughness on the top of the welds. Although thickness differentials alone do not make a significant impact on surface roughness, together with coatings, they can have an adverse effect on roughness. Tensile tests in the direction of rolling as well as in the transverse direction indicate that TRIP780 seems weaker in the direction of rolling when compared to transverse direction while mild steel is stronger in the direction of rolling. Weldability analyses revealed that the typical melting efficiency is on the order of 50--70% for full penetration welding. Formability tests showed that TR/MS joints fractured in a direction parallel to the weld line when tested with the loads perpendicular to the weld line. Tests have also confirmed that weld speed and power have no impact on the outcome of formability results. Overall, this work conclusively proves that high power Yb:YAG lasers can effectively join high strength materials such as DP980, TRIP780, USIBOR, as well as mild steel, for use in tailor-welded

  11. YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Ludtka, Gerard Michael; Skszek, Timothy; Niu, X

    2013-01-01

    A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

  12. Effect of polymer coatings on fatigue strength of aluminum alloy 2024 box beams

    NASA Technical Reports Server (NTRS)

    Nordmark, G. E.; Kelsey, R. A.

    1972-01-01

    Previous investigators have shown that polymer coatings raise the fatigue strength of metals tested in air to about the same level as that of uncoated specimens tested in vacuum. The results are given of tests to determine if a polymer coating would improve the fatigue strength of built-up aluminum alloy members simulating aircraft construction. Aluminum alloy 2024-T4 riveted box beams were subjected to constant amplitude fatigue tests in air as well as in salt water fog. The coating did not improve the fatigue strength of beams tested in either environment. This is believed to result from the fact that most failures originated at rivet holes, which were isolated from both the coating and the environment.

  13. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  14. Impact of tool wear on joint strength in friction stir spot welding of DP 980 steel

    SciTech Connect

    Miles, Michael; Ridges, Chris; Hovanski, Yuri; Peterson, Jeremy; Santella, M. L.; Steel, Russel

    2011-09-14

    Friction stir spot welding has been shown to be a viable method of joining ultra high strength steel (UHSS), both in terms of joint strength and process cycle time. However, the cost of tooling must be reasonable in order for this method to be adopted as an industrial process. Recently a new tool alloy has been developed, using a blend of PCBN and tungsten rhenium (W-Re) in order to improve the toughness of the tool. Wear testing results are presented for two of these alloys: one with a composition of 60% PCBN and 40% W-Re, and one with 70% PCBN and 30% W-Re. The sheet material used for all wear testing was 1.4 mm DP 980. Lap shear testing was used to show the relationship between tool wear and joint strength. The Q70 tool provided the best combination of wear resistance and joint strength.

  15. Effect of friction stir welding parameters on defect formation

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.

    2015-10-01

    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  16. Numerical analysis of static performance comparison of friction stir welded versus riveted 2024-T3 aluminum alloy stiffened panels

    NASA Astrophysics Data System (ADS)

    Shao, Qing; He, Yuting; Zhang, Teng; Wu, Liming

    2014-07-01

    Most researches on the static performance of stiffened panel joined by friction stir welding(FSW) mainly focus on the compression stability rather than shear stability. To evaluate the potential of FSW as a replacement for traditional rivet fastening for stiffened panel assembly in aviation application, finite element method(FEM) is applied to compare compression and shear stability performances of FSW stiffened panels with stability performances of riveted stiffened panels. FEMs of 2024-T3 aluminum alloy FSW and riveted stiffened panels are developed and nonlinear static analysis method is applied to obtain buckling pattern, buckling load and load carrying capability of each panel model. The accuracy of each FEM of FSW stiffened panel is evaluated by stability experiment of FSW stiffened panel specimens with identical geometry and boundary condition and the accuracy of each FEM of riveted stiffened panel is evaluated by semi-empirical calculation formulas. It is found that FEMs without considering weld-induced initial imperfections notably overestimate the static strengths of FSW stiffened panels. FEM results show that, buckling patterns of both FSW and riveted compression stiffened panels represent local buckling of plate between stiffeners. The initial buckling waves of FSW stiffened panel emerge uniformly in each plate between stiffeners while those of riveted panel mainly emerge in the mid-plate. Buckling patterns of both FSW and riveted shear stiffened panels represent local buckling of plate close to the loading corner. FEM results indicate that, shear buckling of FSW stiffened panel is less sensitive to the initial imperfections than compression buckling. Load carrying capability of FSW stiffened panel is less sensitive to the initial imperfections than initial buckling. It can be concluded that buckling loads of FSW panels are a bit lower than those of riveted panels whereas carrying capabilities of FSW panels are almost equivalent to those of riveted

  17. Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds

    NASA Astrophysics Data System (ADS)

    Kang, Yongjoon; Jeong, Seonghoon; Kang, Joo-Hee; Lee, Changhee

    2016-06-01

    Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength weld metals were investigated and the contribution of each factor was qualitatively evaluated. Two kinds of weld metals with different hardenabilities were prepared, in both, MnTi2O4-rich spinel formed as the predominant inclusion phase. To evaluate the factors determining the inclusion potency, the inclusion characteristics of size, phase distribution in the multiphase inclusion, orientation relationship with ferrite, and Mn distribution near the inclusion were analyzed. Three factors affecting the ferrite nucleation potency of inclusions were evaluated: the Baker-Nutting (B-N) orientation relationship between ferrite and the inclusion; the formation of an Mn-depleted zone (MDZ) near the inclusion; and the strain energy around the inclusion. Among these, the first two factors were found to be the most important. In addition, it was concluded that the increased chemical driving force brought about by the formation of an MDZ contributed more to the formation of acicular ferrite in higher-strength weld metals, because the B-N orientation relationship between ferrite and the inclusion was less likely to form as the transformation temperature decreased.

  18. Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys

    NASA Technical Reports Server (NTRS)

    Ibrahim, Ahmed

    2002-01-01

    This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.

  19. Effects of thermal aging on fracture toughness and charpy-impact strength of stainless steel pipe welds.

    SciTech Connect

    Gavenda, D. J.; Michaud, W. F.; Galvin, T. M.; Burke, W. F.; Chopra, O. K.; Energy Technology

    1996-06-05

    The degradation of fracture toughness, tensile, and Charpy-impact properties of Type 308 stainless steel (SS) pipe welds due to thermal aging has been characterized at room temperature and 290 C. Thermal aging of SS welds results in moderate decreases in Charpy-impact strength and fracture toughness. For the various welds in this study, upper-shelf energy decreased by 50-80 J/cm{sup 2}. The decrease in fracture toughness J-R curve or JIC is relatively small. Thermal aging had little or no effect on the tensile strength of the welds. Fracture properties of SS welds are controlled by the distribution and morphology of second-phase particles. Failure occurs by the formation and growth of microvoids near hard inclusions; such processes are relatively insensitive to thermal aging. The ferrite phase has little or no effect on the fracture properties of the welds. Differences in fracture resistance of the welds arise from differences in the density and size of inclusions. Mechanical-property data from the present study are consistent with results from other investigations. The existing data have been used to establish minimum expected fracture properties for SS welds.

  20. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  1. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  2. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  3. On Residual Stresses in Resistance Spot-Welded Aluminum Alloy 6061-T6: Experimental and Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Afshari, D.; Sedighi, M.; Karimi, M. R.; Barsoum, Z.

    2013-12-01

    In this study, an electro-thermal-structural-coupled finite element (FE) model and x-ray diffraction residual stress measurements have been utilized to analyze distribution of residual stresses in an aluminum alloy 6061-T6 resistance spot-welded joint with 2-mm-thickness sheet. Increasing the aluminum sheet thickness to more than 1 mm leads to creating difficulty in spot-welding process and increases the complexity of the FE model. The electrical and thermal contact conductances, as mandatory factors are applied in contact areas of electrode-workpiece and workpiece-workpiece to resolve the complexity of the FE model. The physical and mechanical properties of the material are defined as thermal dependent to improve the accuracy of the model. Furthermore, the electrodes are removed after the holding cycle using the birth-and-death elements method. The results have a good agreement with experimental data obtained from x-ray diffraction residual stress measurements. However, the highest internal tensile residual stress occurs in the center of the nugget zone and decreases toward nugget edge; surface residual stress increases toward the edge of the welding zone and afterward, the area decreases slightly.

  4. Column and Plate Compressive Strengths of Aircraft Structural Materials: Extruded 24S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Heimerl, George J.; Roy, J Albert

    1945-01-01

    Column and plate compressive strengths of extruded 24S-T aluminum alloy were determined both within and beyond the elastic range from tests of thin-strip columns and local-instability tests of H-, Z-,and channel-section columns. These tests are part of an extensive research investigation to provide data on the' structural strength of various aircraft materials. The results are presented in the form of curves and charts that are suitable for use in the design and analysis of aircraft structures.

  5. Effect of Travel Speed on the Stress Corrosion Behavior of Friction Stir Welded 2024-T4 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Li, Tianqi; Wang, Kuaishe; Cai, Jun; Qiao, Ke

    2016-05-01

    The effect of travel speed on stress corrosion cracking (SCC) behavior of friction stir welded 2024-T4 aluminum alloy was investigated by slow strain rate tensile test. Microstructure and microhardness of the welded joint were studied. The results showed that the size of second phase particles increased with increasing travel speed, and the distribution of second phase particles was much more homogeneous at lower travel speed. The minimum microhardness was located at the boundary of nugget zone and thermomechanically affected zone. In addition, the SCC susceptibility of the friction stir welded joint increased with the increase of travel speed, owing to the size and distribution of second phase particles in the welds. The anodic applied potentials of -700, -650, -600 mV, and cathodic applied potential of -1200 mV facilitated SCC while the cathodic applied potential of -1000 mV improved the SCC resistance. The SCC behavior was mainly controlled by the metal anodic dissolution at the open circuit potential, and hydrogen accelerated metal embrittlement.

  6. Effects of thermal aging on fracture toughness and Charpy-impact strength of stainless steel pipe welds

    SciTech Connect

    Gavenda, D.J.; Michaud, W.F.; Galvin, T.M.; Burke, W.F.; Chopra, O.K.

    1996-05-01

    Degradation of fracture toughness, tensile, and Charpy-impact properties of Type 304 and 304/308 SS pipe welds due to thermal aging was studied at room temperature and 290 C. Thermal aging of SS welds results in moderate decreases in charpy-impact strength and fracture toughness. Upper-shelf energy decreased by 50-80 J/cm{sup 2}. Decrease in fracture toughness J-R curve or J{sub IC} is relatively small. Thermal aging had no or little effect on tensile strength of the welds. Fracture properties of SS welds are controlled by the distribution and morphology of second-phase particles. Failure occurs by formation and growth of microvoids near hard inclusions; such processes are relatively insensitive to thermal aging. The ferrite phase has little or no effect on fracture properties of the welds. Differences in fracture resistance of the welds arise from differences in the density and size of inclusions. Mechanical-property data from the present study are consistent with results from other investigations. The existing data have been used to establish minimum expected fracture properties for SS welds.

  7. The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Tukeev, M. S.; Chumlyakov, Yu. I.

    2007-10-01

    The role of aluminum alloying on strength properties and deformation mechanisms (slip, twinning) of <123> single crystals of Hadfield steel under tensile loading at T = 300 K is demonstrated. It is found out that aluminum alloying suppresses twinning deformation in the <123> single crystals and, during slip, results in a dislocation structure change from a uniform dislocation distribution to a planar dislocation structure.

  8. Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum

    PubMed Central

    Pfefferkorn, Frank E.; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; Mccarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M. Abbas; Gruetzmacher, George; Hoover, Mark D.

    2010-01-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 μm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 μm) with 1-s resolution, lung deposited surface areas, and PM2.5 concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 μm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at ∼30 and ∼550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at ∼4.0 × 105 particles cm−3, whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm−3, depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10–100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) μg m−3; the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial

  9. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    PubMed

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may

  10. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    SciTech Connect

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  11. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  12. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  13. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    SciTech Connect

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  14. Understanding pH and ionic strength effects on aluminum sulfate-induced microalgae flocculation.

    PubMed

    Cui, Y; Yuan, W; Cheng, J

    2014-08-01

    The objective of this study was to understand the effect of pH and ionic strength of aluminum sulfate on the flocculation of microalgae. It was found that changing pH and ionic strength influenced algal flocculation by changing the zeta potential of cells, which was described by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). For both algal species of Scenedesmus dimorphus and Nannochloropsis oculata, cells with lower total DLVO interaction energy had higher flocculation efficiency, indicating that the DLVO model was qualitatively accurate in predicting the flocculation of the two algae. However, the two algae responded differently to changing pH and ionic strength. The flocculation of N. oculata increased with increasing aluminum sulfate concentration and favored either low (pH 5) or high (pH 10) pH where cells had relatively low negative surface charges. For S. dimorphus, the highest flocculation was achieved at low ionic strength (1 μM) or moderate pH (pH 7.5) where cell surface charges were fully neutralized (zero zeta potential).

  15. Strength advantages of chemically polished boron fibers before and after reaction with aluminum

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Smith, R. J.

    1982-01-01

    In order to determine their strength potential, the fracture properties of different types of commercial boron fibers were measured before and after application of secondary strengthening treatments. The principal treatments employed were a slight chemical polish, which removed low strength surface flaws, and a heat treatment in oxygen, which contracted the fibers and thereby compressed intrinsic bulk flaws. Those fiber types most significantly strengthened were 200 to 400 micrometers (8 to 16 mil) diameter boron on tungsten fibers produced in a single chemical vapor deposition reactor. The slight polish increased average tensile strenghts from 3.4 to 4.4 CN/m2 (500 to 640 ksi) and reduced coefficients of variation from about 15 to 3 percent. The oxygen heat treatment plus slight polish further improved average strengths to 5.5 GN/m2 (800 ksi) with coefficients near 3 percent. To ascertain whether these excellent properties could be retained after fabrication of B/Al composites, as produced and polished 203 micrometers (8 mil) fibers were thinly coated with aluminum, heat treated at B/Al fabrication temperatures, and then tested in tension and flexure at room temperature. The pre-polished fibers were observed to retain their superior strengths to higher temperatures than the as-produced fibers even though both were subjected to the same detrimental reaction with aluminum.

  16. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  17. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  18. Modeling of the mechanical behavior of aluminum alloys with friction stir welds

    NASA Astrophysics Data System (ADS)

    Balokhonov, Ruslan R.; Romanova, Varvara A.; Batukhtina, Ekaterina E.

    2015-10-01

    The deformation and fracture of a macroscopic duralumin sample with a friction stir weld are investigated numerically under compressive loading applied to the sample surface. A boundary-value problem is solved using a dynamic plane strain approximation. The weld zone structure corresponds to that observed experimentally and is taken into account explicitly in calculations. The mechanisms of the plastic strain localization and crack propagation operating in different zones of the weld are examined.

  19. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys. PMID:16721459

  20. Compressive strength of titanium alloy skin-stringer panels selectively reinforced with boron-aluminum composite.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.; Carri, R. L.

    1972-01-01

    Description of a method of selectively reinforcing conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing which has been successfully demonstrated based on compression tests of short skin-stringer panels. Improvements in structural performance exceeded 25% on an equivalent weight basis over the range from room temperature to 800 F, both in terms of initial buckling and maximum strengths. Room-temperature performance was not affected by prior exposure at 600 F for 1000 hours in air, or by 400 cycles between -65 and 600 F. The experimental results were generally predictable on the basis of existing analytical procedures. No evidence of failure was observed in the braze bond between the boron-aluminum composite and the titanium alloy.

  1. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  2. Experimental and numerical investigation of laser shock synchronous welding and forming of Copper/Aluminum

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Hongfeng; Shen, Zongbao; Li, Jianwen; Qian, Qing; Liu, Huixia

    2016-11-01

    A novel laser shock synchronous welding and forming method is introduced, which utilizes laser-induced shock waves to accelerate the flyer plate towards the base plate to achieve the joining of dissimilar metals and forming in a specific shape of mold. The samples were obtained with different laser energies and standoff distances. The surface morphology and roughness of the samples were greatly affected by the laser energy and standoff distances. Fittability was investigated to examine the forming accuracy. The results showed that the samples replicate the mold features well. Straight and wavy interfaces with un-bonded regions in the center were observed through metallographic analysis. Moreover, Energy Disperse Spectroscopy analysis was conducted on the welding interface, and the results indicated that a short-distance elemental diffusion emerged in the welding interface. The nanoindentation hardness of the welding regions was measured to evaluate the welding interface. In addition, the Smoothed Particle Hydrodynamics method was employed to simulate the welding and forming process. It was shown that different standoff distances significantly affected the size of the welding regions and interface waveform characteristics. The numerical analysis results indicated that the opposite shear stress direction and effective plastic strain above a certain threshold are essential to successfully obtain welding and forming workpiece.

  3. Galvanic corrosion of beryllium welds

    SciTech Connect

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-12-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl{sup {minus}} solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed.

  4. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    obtained with unreinforced 356 aluminum casting. Good strength can be obtained with a sound die casting without any defects produced by squeeze casting. The use of higher pressure to produce the squeeze casting has been shown to increase the strength of a hemispherical dome casting. This dome shape casting has been produced both with and without reinforcement and tested to determine its pressure resistance under internal pressure of water. Only a slight improvement in strength could be determined because of water leaks at the seal between hemispherical dome and its flat supporting side. However, when the ability of the casting was tested under the compressive force of a plunger, the strengthening effect of wire mesh or sheet was evident. Higher loads to failure were obtained because of the reinforcement of the stainless steel wire and punched sheet. Rather than a sudden failure occurring, the reinforcement of the stainless steel wire or the punched hard stainless steel sheet held the material together and prevented any loss of the fractured casting to the surroundings. Unalloyed steel did not have the required strength or mechanical properties to increase the properties of the casting.

  5. Influence of the temperature and strain rate on the structure and fracture mode of high-strength steels upon the simulation of the thermal cycle of welding and post-welding tempering

    NASA Astrophysics Data System (ADS)

    Pazilova, U. A.; Il'in, A. V.; Kruglova, A. A.; Motovilina, G. D.; Khlusova, E. I.

    2015-06-01

    Structural changes and the main features of the fracture of the base metal and the coarse-grained region of the heat-affected zone of the welded joints of high-strength steels have been studied by simulating the thermal cycle of welding and post-welding heat treatment. The effects of the simultaneous action of heating for high-temperature tempering and of deformation allowing the estimation of the impact of residual welding stresses have been studied. The probable reasons of the formation of cracks in welds upon the postwelding tempering have been determined.

  6. Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Woods, Walter

    1946-01-01

    Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.

  7. Studies of localized corrosion in welded aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Nunes, A. C.

    1995-01-01

    Localized corrosion in welded samples of 2219-T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leads to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

  8. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    SciTech Connect

    Claussen, Bjorn; Woo, Wanchuck; Zhili, Feng; Edward, Kenik; Ungar, Tamas

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  9. The effects of low temperature fatigue on the RRR and strength of pure aluminum

    SciTech Connect

    Hartwig, K.T.; Lehmann, P.; Yuan, G.S.

    1985-03-01

    Low temperature fatigue effects on residual resistivity ratio (RRR = /rho/ /sub 273K/ //rho/ /sub 4.2K/ ) and strength of 30 and 1000 RRR aluminum are reported. The objective of this investigation is to select the best initial purity for the stabilizer aluminum used in energy storage magnets. Monolythic centimeter diameter specimens were fatigued at 4.2 K to strains (epsilon) reaching 0.3 percent. The resistivity ratio rapidly decreases during the first 100 cycles and approaches saturation (RRR/sub f/) after about 1000 cycles for all strains tested. The RRR/sub f/ values are different for different initial resistivity ratio (RRR/sub i/) values, but all tend to come together at 0.3% strain independent of RRR/sub i/. The maximum specimen stress (sigma/sub max/) is reached after about 1000 cycles also, and approaches a common value (sigma/sub max/ = epsilonE/2, where epsilon is the strain range and E the elastic modulus) independent of RRR/sub i/. Thus high purity aluminum becomes ''fully hard'' at equilibrium and behaves elastically. The impact of fatigue damage on conductor design and choice of stabilizer purity is considered.

  10. Mechanical Properties of Aluminum-Based Dissimilar Alloy Joints by Power Beams, Arc and FSW Processes

    NASA Astrophysics Data System (ADS)

    Okubo, Michinori; Kon, Tomokuni; Abe, Nobuyuki

    Dissimilar smart joints are useful. In this research, welded quality of dissimilar aluminum alloys of 3 mm thickness by various welding processes and process parameters have been investigated by hardness and tensile tests, and observation of imperfection and microstructure. Base metals used in this study are A1050-H24, A2017-T3, A5083-O, A6061-T6 and A7075-T651. Welding processes used are YAG laser beam, electron beam, metal inert gas arc, tungsten inert gas arc and friction stir welding. The properties of weld zones are affected by welding processes, welding parameters and combination of base metals. Properties of high strength aluminum alloy joints are improved by friction stir welding.

  11. FE Simulation Models for Hot Stamping an Automobile Component with Tailor-Welded High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun

    2016-05-01

    Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.

  12. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance.

    PubMed

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-01-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.

  13. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    NASA Astrophysics Data System (ADS)

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-06-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.

  14. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    PubMed Central

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-01-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding. PMID:26067176

  15. Investigations Into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, K.; Panda, S. K.; Saha, P.

    2014-04-01

    In this study, two different dual phase steel grades DP980 and DP600, and IFHS steel sheets were laser welded by a 2-kW fiber laser. The weld quality of these three different LWBs was assessed with the help of microstructure, micro-hardness and transverse tensile tests. Tensile testing of longitudinal and miniature samples was performed to evaluate the mechanical properties of the weld zone. Formability of parent materials and LWBs were assessed in bi-axial stretch forming condition by Erichsen cupping test. To validate the weld zone properties, 3-D finite element models of Erichsen cupping test of LWBs was developed, and the failures in the deformed cups were predicted using two theoretical forming limit diagrams. It was observed that hardness of the fusion zone and HAZ in laser welded DP600 and IFHS steels was more compared to the respective parent metal. However, 29% reduction in hardness was observed at the outer HAZ of DP980 steel weldments due to tempering of martensite. Reduction of formability was observed for all the LWBs with two distinct failure patterns, and the maximum reduction in formability was observed in the case of DP980 LWBs. The presence of the soft zone is detrimental in forming of welded DP steels.

  16. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Keun; Chun, Kwang-San; Park, Sang-Hyeon; Kang, Chung-Yun

    2015-07-01

    Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  17. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  18. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  19. Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate strength while minimizing residual stresses and machining distortion.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    This report provides strategies for minimizing machining distortion in future designs of aluminum alloy satellite boxes, based in part on key findings from this investigation. The report outlines types of aluminum alloys and how they are heat treated, how residual stresses develop during heat treatment of age hardening alloys, ways residual stresses can be minimized, and the design of machining approaches to minimize distortion in parts that contain residual stresses. Specific recommendations are made regarding alloy selection, heat treatment, stress relieving, and machining procedures for boxes requiring various strength levels with emphasis on 6061 and 7075 aluminum alloys.

  20. Effect of low-velocity or ballistic impact damage on the strength of thin composite and aluminum shear panels

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1985-01-01

    Impact tests were conducted on shear panels fabricated from 6061-T6 aluminum and from woven fabric prepreg of Du Pont Kevlara fiber/epoxy resin and graphite fiber/epoxy resin. The shear panels consisted of three different composite laminates and one aluminum material configuration. Three panel aspect ratios were evaluated for each material configuration. Composite panels were impacted with a 1.27-cm (0.05-in) diameter aluminum sphere at low velocities of 46 m/sec (150 ft/sec) and 67 m/sec (220 ft/sec). Ballistic impact conditions consisted of a tumbled 0.50-caliber projectile impacting loaded composite and aluminum shear panels. The results of these tests indicate that ballistic threshold load (the lowest load which will result in immediate failure upon penetration by the projectile) varied between 0.44 and 0.61 of the average failure load of undamaged panels. The residual strengths of the panels after ballistic impact varied between 0.55 and 0.75 of the average failure strength of the undamaged panels. The low velocity impacts at 67 m/sec (220 ft/sec) caused a 15 to 20 percent reduction in strength, whereas the impacts at 46 m/sec (150 ft/sec) resulted in negligible strength loss. Good agreement was obtained between the experimental failure strengths and the predicted strength with the point stress failure criterion.

  1. Effect of Pulsed Waterjet Surface Preparation on the Adhesion Strength of Cold Gas Dynamic Sprayed Aluminum Coatings

    NASA Astrophysics Data System (ADS)

    Samson, T.; MacDonald, D.; Fernández, R.; Jodoin, B.

    2015-08-01

    It has been observed that the method of substrate surface preparation can have a profound effect on the adhesion strength of cold-sprayed metallic coatings. In this investigation, pure aluminum powder was sprayed onto aluminum alloy substrates using cold spray. The substrates used in this work had undergone a variety of surface preparations to impart varying degrees of surface roughness. The pulsed waterjet technique was used to increase the substrates' surface roughness beyond what can be achieved using traditional grit blasting procedures. Surfaces prepared using pulsed waterjet resulted in substantial increases in the pure aluminum coating adhesion strength. This increase may be the result of increased mechanical anchoring sites available as well as their favorable geometries. It is hypothesized that compressive residual stress may also contribute to increased adhesion strength.

  2. Microstructure and Strengthening Mechanism of Fiber Laser-Welded High-Strength Mg-Gd-Y-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Lyuyuan; Huang, Jian; Li, Zhuguo; Dong, Jie; Wu, Yixiong

    2016-08-01

    The microstructure and mechanical properties of laser-welded high-strength Mg-Gd-Y-Zr alloy in T6 condition were investigated. The network-distributed precipitates at grain boundaries were identified as the Mg24(Gd,Y)5. No significant grain coarsening was observed in the heat-affected zone. The deterioration of mechanical properties was attributed to the dissolution of precipitates in the heat-affected zone during laser welding. For the weakest part of the heat-affected zone, solid solution strengthening was the most important strengthening factor.

  3. Microstructure and Strengthening Mechanism of Fiber Laser-Welded High-Strength Mg-Gd-Y-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Lyuyuan; Huang, Jian; Li, Zhuguo; Dong, Jie; Wu, Yixiong

    2016-10-01

    The microstructure and mechanical properties of laser-welded high-strength Mg-Gd-Y-Zr alloy in T6 condition were investigated. The network-distributed precipitates at grain boundaries were identified as the Mg24(Gd,Y)5. No significant grain coarsening was observed in the heat-affected zone. The deterioration of mechanical properties was attributed to the dissolution of precipitates in the heat-affected zone during laser welding. For the weakest part of the heat-affected zone, solid solution strengthening was the most important strengthening factor.

  4. High Temperature Plasticity of Bimetallic Magnesium and Aluminum Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Regev, Michael; El Mehtedi, Mohamad; Cabibbo, Marcello; Quercetti, Giovanni; Ciccarelli, Daniele; Spigarelli, Stefano

    2014-02-01

    The high temperature deformation of a bimetallic AZ31/AA6061 Friction Stir Welded joint was investigated in the present study by constant load creep experiments carried out at 473 K (200 °C). The microstructural analysis revealed the strongly inhomogeneous nature of the weld, which was characterized by an extremely fine grain size in the magnesium-rich zones and by the extensive presence of intermetallic phases. In the high stress regime, the creep strain was concentrated in the refined and particle-rich microstructure of the weld zone, while the AA6061 base metal remained undeformed. In the low stress regime, deformation became more homogeneously distributed between the AZ31 base metal and the weld zone. The creep behavior of the weld was found to obey the constitutive equation describing the minimum creep rate dependence on applied stress for the base AZ31, slightly modified to take into account the finer microstructure and the role of secondary phase particles, i.e., the retardation of grain growth and the obstruction of grain boundary sliding.

  5. Hybrid laser-MIG welding of aluminum alloys: The influence of shielding gases

    NASA Astrophysics Data System (ADS)

    Campana, G.; Ascari, A.; Fortunato, A.; Tani, G.

    2009-03-01

    In this paper, laser-GMAW hybrid welding technologies of light metals are investigated by focusing particularly on shielding gas related problems such as distribution on the welding zone, mixtures and flow. In particular, a Computational Fluid Dynamics (CFD) software was used with the aim to investigate the effect on gas distribution and contamination of the adoption of an isolation chamber surrounding the welding zone. In particular, the turbulent flow model adopted was a standard k- ɛ one. A simple parallelepipedal geometry for the isolation chamber was adopted whose width and depth were fixed, while the height was set as a variable. A simulation activity was carried out in order to evaluate the relationship among chamber height, flow rates and inlet angle inclinations. The simulated welding environment was simplified without considering the presence and the effect of the laser induced plasma plume and of the electric arc. The main results concern the influence of isolation chamber height, gas flow rate and gas inlet inclination on the shielding gas contamination and distribution in a zone near the heat sources-material interaction zone. These results underline that there are particular values of the chosen variables which optimize the gas distribution around the welding zone allowing to achieve an even and reliable shielding effect.

  6. Welding rework data acquisition and automation

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1996-01-01

    Aluminum-Lithium is a modern material that NASA MSFC is evaluating as an option for the aluminum alloys and other aerospace metals presently in use. The importance of aluminum-lithium is in it's superior weight to strength characteristics. However, aluminum-lithium has produced many challenges in regards to manufacturing and maintenance. The solution to these problems are vital to the future uses of the shuttle for delivering larger payloads into earth orbit and are equally important to future commercial applications of aluminum-lithium. The Metals Processes Branch at MSFC is conducting extensive tests on aluminum-lithium which includes the collection of large amounts of data. This report discusses the automation and data acquisition for two processes: the initial weld and the repair. The new approach reduces the time required to collect the data, increases the accuracy of the data, and eliminates several types of human errors during data collection and entry. The same material properties that enhance the weight to strength characteristics of aluminum-lithium contribute to the problems with cracks occurring during welding, especially during the repair/rework process. The repairs are required to remove flaws or defects discovered in the initial weld, either discovered by x-ray, visual inspection, or some other type of nondestructive evaluation. It has been observed that cracks typically appear as a result of or beyond the second repair. MSFC scientists have determined that residual mechanical stress introduced by the welding process is a primary cause of the cracking. Two obvious solutions are to either prevent or minimize the stress introduced during the welding process, or remove or reduce the stress after the welding process and MSFC is investigating both of these.

  7. Residual strength of five boron/aluminum laminates with crack-like notches after fatigue loading

    NASA Technical Reports Server (NTRS)

    Simonds, R. A.

    1984-01-01

    Boron/aluminum specimens were made with crack-like slits in the center and with various proportions of 0 and + or - 45 deg plies. They were fatigue loaded and then fractured to determine their residual strengths. The fatigue loads were generally in the range of 60 to 80 percent of the static tensile strength of the specimen as determined from a previous study, and the stress ratio was .05. For virtually all of the specimens the fatigue loading was continued for 100,000 cycles. The specimens were radiographed after the fatigue loading to determine the nature of the fatigue damage. A few specimens were sectioned and examined in a scanning electron microscope after being radiographed in order to verify the interpretation of the radiographs and also to get a better insight into the nature of the fatigue damage. The results indicate that the fatiguing does not significantly affect the strength of the specimens tested. The results of the radiography and of the scanning electron microscopy indicate that the 45 deg plies suffer extensive damage in the form of split and broken fibers and matrix cracking in the vicinity of the ends of the split. By contrast, the only significant damage to the 0 deg plies was a single 0 deg matric crack growing from the ends of the slit and between the 0 deg fibers.

  8. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  9. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  10. A Nondestructive Evaluation Method: Measuring the Fixed Strength of Spot-Welded Joint Points by Surface Electrical Resistivity.

    PubMed

    Shimamoto, Akira; Yamashita, Keitaro; Inoue, Hirofumi; Yang, Sung-Mo; Iwata, Masahiro; Ike, Natsuko

    2013-04-01

    Destructive tests are generally applied to evaluate the fixed strength of spot-welding nuggets of zinc-plated steel (which is a widely used primary structural material for automobiles). These destructive tests, however, are expensive and time-consuming. This paper proposes a nondestructive method for evaluating the fixed strength of the welded joints using surface electrical resistance. A direct current nugget-tester and probes have been developed by the authors for this purpose. The proposed nondestructive method uses the relative decrease in surface electrical resistance, α. The proposed method also considers the effect of the corona bond. The nugget diameter is estimated by two factors: R Quota, which is calculated from variation of resistance, and a constant that represents the area of the corona bond. Since the maximum tensile strength is correlated with the nugget diameter, it can be inferred from the estimated nugget diameter. When appropriate measuring conditions for the surface electrical resistance are chosen, the proposed method can effectively evaluate the fixed strength of the spot-welded joints even if the steel sheet is zinc-plated.

  11. Welding.

    ERIC Educational Resources Information Center

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  12. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  13. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  14. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    PubMed Central

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  15. Optimizing Friction Stir Welding via Statistical Design of Tool Geometry and Process Parameters

    NASA Astrophysics Data System (ADS)

    Blignault, C.; Hattingh, D. G.; James, M. N.

    2012-06-01

    This article considers optimization procedures for friction stir welding (FSW) in 5083-H321 aluminum alloy, via control of weld process parameters and tool design modifications. It demonstrates the potential utility of the "force footprint" (FF) diagram in providing a real-time graphical user interface (GUI) for process optimization of FSW. Multiple force, torque, and temperature responses were recorded during FS welding using 24 different tool pin geometries, and these data were statistically analyzed to determine the relative influence of a number of combinations of important process and tool geometry parameters on tensile strength. Desirability profile charts are presented, which show the influence of seven key combinations of weld process variables on tensile strength. The model developed in this study allows the weld tensile strength to be predicted for other combinations of tool geometry and process parameters to fall within an average error of 13%. General guidelines for tool profile selection and the likelihood of influencing weld tensile strength are also provided.

  16. Light weight and high strength materials made of recycled steel and aluminum

    NASA Astrophysics Data System (ADS)

    Nounezi, Thomas

    Recycling has proven not only to address today's economical, environmental and social issues, but also to be imperative for the sustainability of human technology. The current thesis has investigated the feasibility of a new philosophy for Recycling (Alloying-Recycling) using steel 1020 and aluminum 6061T6. The study was limited to the metallurgical aspects only and has highlighted the potential of recycled alloys made of recycled aluminum and steel to exhibit substantially increased wear resistance and strength-to-weight ratio as compared to initial primary materials. Three alloy-mixtures are considered: TN3 (5wt% 1020 +95wt% 6061T6); TN5 (0.7wt% 1020 + 99.3wt% 6061T6); and TN4 (10wt% 6061T6 + 90wt% 1020). A Tucker induction power supply system (3kW; 135-400 kHz) is used to melt the alloy mixtures for casting in graphite crucibles. Heat treatment of the cast samples is done using a radiation box furnace. Microscopy, Vickers hardness and pin-on-disc abrasive wear tests are performed. Casting destroyed the initial microstructures of the alloys leading to a hardness reduction in the as-cast and solution heat-treated aluminum rich samples to 60 Hv from 140 Hv. Ageing slightly increased the hardness of the cast samples and provided a wear resistance two times higher than that of the initial 6061T6 material. On the steel rich side, the hardness of the as-cast TN4 was 480 Hv, which is more than twice as high as the initial hardness of steel 1020 of 202 Hv; this hints to strong internal and residual stress, probably martensite formation during fast cooling following casting. Solution heat treatment lowered the hardness to the original value of steel 1020, but provided about ten (10) times higher wear resistance; this suggests higher ductility and toughness of normalised TN4 as compared to 1020. In addition, TN4 exhibits about 25% weight reduction as compared to 1020. The actual recycling process and the effect of non-metallic impurities shall be investigated in future

  17. Avoidance of stress corrosion susceptibility in high strength aluminum alloys by control of grain boundary and matrix microstructure

    NASA Technical Reports Server (NTRS)

    Adler, P.; Deiasi, R.

    1974-01-01

    The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.

  18. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  19. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  20. Gravitational effects on weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding on 304 stainless steel, nickel, and aluminum-4 wt.% copper alloy

    NASA Astrophysics Data System (ADS)

    Kang, Namhyun

    The objective of the present work was to investigate effects of gravitational (acceleration) level and orientation on Ni 200 alloy (99.5% Ni purity), 304 stainless steel, and Al-4 wt.% Cu alloy during gas tungsten arc welding (GTAW) and laser beam welding (LBW). Main characterization was focused on the weld pool shape, microstructure, and solute distribution as a function of gravitational level and orientation. The welds were divided into two classes, i.e., 'stable' and 'unstable' welds, in view of the variation of weld pool shape as a function of gravitational level and orientation. In general, higher arc current and translational GTAW produced more significant effects of gravitational orientation on the weld pool shape than the case of lower arc current and spot welding. Cross-sectional area (CSA) was a secondary factor in determining the stability of weld pool shape. For the 'stable' weld of 304 stainless steel GTAW, the II-U weld showed less convexity in the pool bottom and more depression of the free surface, therefore producing deeper penetration (10--20%) than the case of II-D weld. The II-D weld of 304 stainless steel showed 31% deeper penetration, 28% narrower width, and more hemispherical shape of the weld pool than the case of II-U weld. For GTAW on 304 stainless steel, gravitational level variation from low gravity (LG ≈ 1.2 go) to high gravity (HG ≈ 1.8 go) caused 10% increase in width and 10% decrease in depth while maintaining the overall weld pool volume. Furthermore, LBW on 304 stainless steels showed mostly constant shape of weld pool as a function of gravitational orientation. GTAW on Ni showed similar trends of weld pool shape compared with GTAW on 304 stainless steel, i.e., the weld pool became unstable by showing more penetration in the II-D weld for slower arc translational velocity (V a) and larger weld pool size. However, the Ni weld pool shape had greater stability of the weld pool shape with respect to the gravitational orientation

  1. Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1987-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.

  2. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Yen, C.-F.; Cheeseman, B. A.

    2011-10-01

    A fully coupled thermo-mechanical finite-element analysis of the friction-stir welding (FSW) process developed in our previous work is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys selected are AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy) and AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure-evolution processes taking place during FSW are extensive plastic deformation and dynamic re-crystallization of highly deformed material subjected to elevated temperatures approaching the melting temperature. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution, and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness throughout the various FSW zones of the two alloys. The computed results are found to be in reasonably good agreement with their experimental counterparts.

  3. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  4. Development of an Explosive Bonding Process for Producing High Strength Bonds between Niobium and 6061-T651 Aluminum

    SciTech Connect

    Palmer, T A; Elmer, J W; Brasher, D; Butler, D; Riddle, R

    2005-09-23

    An explosive bonding procedure for joining 9.5 mm thick niobium plate to 203 mm thick 6061-T651 Al plate has been developed in order to maximize the bond tensile and impact strengths and the amount of bonded material across the surface of the plate. This procedure improves upon previous efforts, in which the 9.5 mm thick niobium plate is bonded directly to 6061-T4 Al plate. In this improved procedure, thin Nb and Al interlayers are explosively clad between the thicker niobium and aluminum plates. Bonds produced using these optimized parameters display a tensile strength of approximately 255 MPa and an impact strength per unit area of approximately 0.148 J/mm{sup 2}. Specialized mechanical testing geometries and procedures are required to measure these bond properties because of the unique bond geometry. In order to ensure that differences in the thermal expansion coefficients of aluminum and niobium do not adversely affect the bond strength, the effects of thermal cycling at temperatures between -22 C and 45 C on the mechanical properties of these bonds have also been investigated by testing samples in both the as-received and thermal cycled conditions. Based on the results obtained from this series of mechanical tests, thermal cycling is shown to have no adverse effect on the resulting tensile and impact strengths of the bonds produced using the optimized bonding parameters.

  5. Investigation of the Compressive Strength and Creep Lifetime of 2024-T3 Aluminum-Alloy Plates at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E; Deveikis, William D

    1957-01-01

    The results of elevated-temperature compressive strength and creep tests of 2024-t3 (formerly 24s-t3) aluminum alloy plates supported in v-grooves are presented. The strength-test results indicate that a relation previously developed for predicting plate compressive strength for plates of all materials at room temperature is also satisfactory for determining elevated-temperature strength. Creep-lifetime results are presented for plates in the form of master creep-lifetime curves by using a time-temperature parameter that is convenient for summarizing tensile creep-rupture data. A comparison is made between tensile and compressive creep lifetime for the plates and a method that made use of isochronous stress-strain curves for predicting plate-creep failure stresses is investigated.

  6. Picosecond laser welding of optical to metal components

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  7. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed

    NASA Astrophysics Data System (ADS)

    Panda, Biranchi; Garg, A.; Jian, Zhang; Heidarzadeh, Akbar; Gao, Liang

    2016-09-01

    Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

  8. Investigation on the explosive welding mechanism of corrosion-resisting aluminum and stainless steel tubes through finite element simulation and experiments

    NASA Astrophysics Data System (ADS)

    Sui, Guo-Fa; Li, Jin-Shan; Li, Hong-Wei; Sun, Feng; Zhang, Tie-Bang; Fu, Heng-Zhi

    2012-02-01

    To solve the difficulty in the explosive welding of corrosion-resistant aluminum and stainless steel tubes, three technologies were proposed after investigating the forming mechanism through experiments. Then, a 3D finite element model was established for systematic simulations in the parameter determination. The results show that the transition-layer approach, the coaxial initial assembly of tubes with the top-center-point the detonation, and the systematic study by numerical modeling are the key technologies to make the explosive welding of LF6 aluminum alloy and 1Cr18Ni9Ti stainless steel tubes feasible. Numerical simulation shows that radial contraction and slope collision through continuous local plastic deformation are necessary for the good bonding of tubes. Stand-off distances between tubes ( D 1 and D 2) and explosives amount ( R) have effect on the plastic deformation, moving velocity, and bonding of tubes. D 1 of 1 mm, D 2 of 2 mm, and R of 2/3 are suitable for the explosive welding of LF6-L2-1Cr18Ni9Ti three-layer tubes. The plastic strain and moving velocity of the flyer tubes increase with the increase of stand-off distance. More explosives ( R>2/3) result in the asymmetrical distribution of plastic strain and non-bonding at the end of detonation on the tubes.

  9. Experimental characterization and macro-modeling of mechanical strength of multi-sheets and multi-materials spot welds under pure and mixed modes I and II

    NASA Astrophysics Data System (ADS)

    Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric

    2015-09-01

    Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.

  10. Laser welding of aluminum: extended processing potential by different wire positions

    NASA Astrophysics Data System (ADS)

    Schinzel, Cornelius M.; Hohenberger, Bernd; Dausinger, Friedrich; Huegel, Helmut

    2000-02-01

    Aluminum alloys are getting increasingly interesting not only for the classical application in the aircraft industry, but also in rail and road vehicles and the aggregate manufacturing as well as in many other fields of the metal processing industry. The laser is rarely found as a tool for joining aluminum in series production, up to now. Among others, this is due to the fact that only few instructions for the design of an appropriate joining geometry are available in the literature. In addition, neither hints concerning the laser's suitability for industrial application are provided nor essential issues for series production by lasers are to be found, such as e.g. acceptable tolerances regarding the joining geometry. In this paper, exemplary solutions to the problems mentioned above are presented, resulting from the application of a 3 kW fiber-guided Nd:YAG-Laser for tasks in the automotive industry. Taking the example of an overlap joint geometry on the one hand, and the connection of two extrusions forming a 'T-joint-geometry' on the other hand, there will be shown which tolerance fields exist and in which way and up to which extent a gap can be bridged, not only in a gravity position. In addition, results will be presented, demonstrating that the energy coupling as well as the melt pool dynamics can be influenced by varying the wire position or using a second wire in an adequate position. Concerning an overlap joint, gaps of more than the doubled size can be bridged with this technique.

  11. Submerged-arc welding slags: characterization and leaching strategies for the removal of aluminum and titanium.

    PubMed

    Annoni, Raquel; Souza, Poliana Santos; Petrániková, Martina; Miskufova, Andrea; Havlík, Tomáš; Mansur, Marcelo Borges

    2013-01-15

    In the present study, submerged-arc welding slags were characterized by applying a variety of methods, including X-ray fluorescence, X-ray diffraction, particle size, Raman spectroscopy, and scanning electron microscope with energy dispersive X-ray analysis. The content of Al proved to be quite similar within neutral and acid slags (10-14%), while that of Ti proved to be much higher in acid slags (approximately 10%) than in neutral slags (<1%). The presence of spinel structures associated with Al species could also be identified in the analyzed samples. This characterization study was accompanied by leaching tests performed under changing operating conditions in an attempt to evaluate to what extent the Al and Ti bearing components could be removed from the slags. The leaching work involved three distinct strategies: (i) NaOH leaching followed by H(2)SO(4) leaching, (ii) acid leaching (HCl and H(2)SO(4)) using oxidizing/reducing agents, and (iii) slag calcination followed by H(2)SO(4) leaching. In the best result, 80% of Al was extracted in one single leaching stage after calcination of the acid slag with NaCl+C at 900 °C. By contrast, the removal of Ti proved to be unsatisfactory. PMID:23274794

  12. Belled end fittings: A recently qualified, high strength, low cost, and production friendly welded fitting design

    SciTech Connect

    Bayard, R.R.; Oakes, F.D. Jr.

    1996-07-01

    This paper presents an overview of the design development, fatigue testing, MSS Standard Practice development and Navy shipboard use of light wall (Schedule 10) socket welded cold formed fittings designed to replace B16.9 type butt welded fittings in sizes 1/4 through 12 NPS. Variations of the belled end fitting design have been successfully used -- thus proven in service -- for almost 40 years. This Government-sponsored program has legitimized the fittings by laboratory testing, has standardized the fittings by Standard Practice publication and has given the fittings a market presence by acceptance on Navy ship new construction and repair.

  13. Analysing the strength of friction stir spot welded joints of aluminium alloy by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Vaira Vignesh, R.; Padmanaban, R.; Arivarasu, M.; Karthick, K. P.; Abirama Sundar, A.; Gokulachandran, J.

    2016-09-01

    Friction stir spot welding (FSSW) is a recent joining technique developed for spot welding of thin metal sheets. This process currently finds application in automotive, aerospace, marine and sheet metal industry. In this work, the effect of FSSW process parameters namely tool rotation speed, shoulder diameter and dwell time on Tensile shear failure load (TSFL) is investigated. Box-Behnken design is selected for conducting experiments. Fuzzy based soft computing is used to develop a model for TSFL of AA6061 joints fabricated by FSSW. The interaction of the process parameters on TSFL is also presented.

  14. In Situ Observation of Solidification Conditions in Pulsed Laser Welding of AL6082 Aluminum Alloys to Evaluate Their Impact on Hot Cracking Susceptibility

    NASA Astrophysics Data System (ADS)

    von Witzendorff, Philipp; Kaierle, Stefan; Suttmann, Oliver; Overmeyer, Ludger

    2015-04-01

    The influence of laser pulse parameters on solidification conditions and hot crack formation in pulsed laser welding of Al6082 aluminum alloys was studied with the aid of high-speed cameras capturing visible and infrared radiation. Hot cracking was evaluated with respect to strain rate, strain, and metallurgical outcome. The strain rate was approximated by the product of interface velocity and temperature gradient at the interface. The temperature gradient decreases during the course of solidification and followed a specific course. The interface velocity was therefore used as an indicator for the strain rate, which increased in a logarithmic manner with respect to the slope of the laser pulse's cooling time. The accumulated strain was calculated by measuring the spot weld deformation during solidification. Within the heat-conduction welding regime, hot cracking can be reduced by lowering the interface velocity leading to a reduced strain rate and enhanced permeability of the dendritic microstructure. An over-proportional increase of the accumulated strain was observed for keyhole welding, which led to a high susceptibility to hot cracking regardless of the interface velocity. At low interface velocities, hot cracking was induced by extensive hydrogen diffusion at the solid-liquid interface, which promotes crack initiation.

  15. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    NASA Astrophysics Data System (ADS)

    Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  16. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    SciTech Connect

    Yousef, Adel K. M.; Taha, Ziad A.; Shehab, Abeer A.

    2011-01-17

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied.Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  17. Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting

    NASA Astrophysics Data System (ADS)

    Su, Ya-Jun; Liu, Xin-Hua; Huang, Hai-You; Liu, Xue-Feng; Xie, Jian-Xin

    2011-12-01

    Copper cladding aluminum (CCA) rods with a diameter of 30 mm and a sheath thickness of 3 mm were fabricated by horizontal core-filling continuous casting (HCFC) technology. The microstructure and morphology, distribution of chemical components, and phase composition of the interface between Cu and Al were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS). The formation mechanism of the interface and the effects of key processing parameters, e.g., aluminum casting temperature, secondary cooling intensity, and mean withdrawing speed on the interfacial microstructure and bonding strength were investigated. The results show that the CCA rod has a multilayered interface, which is composed of three sublayers—sublayer I is Cu9Al4 layer, sublayer II is CuAl2 layer, and sublayer III is composed of α-Al/CuAl2 pseudo eutectic. The thickness of sublayer III, which occupies 92 to 99 pct of the total thickness of the interface, is much larger than the thicknesses of sublayers I and II. However, the interfacial bonding strength is dominated by the thicknesses of sublayers I and II; i.e., the bonding strength decreases with the rise of the thicknesses of sublayers I and II. When raising the aluminum casting temperature, the total thickness of the interface increases while the thicknesses of sublayers I and II decrease and the bonding strength increases. Either augmenting the secondary cooling intensity or increasing the mean withdrawing speed results in the decrease in both total thickness of the interface and the thicknesses of sublayers I and II, and an increase in the interfacial bonding strength. The CCA rod with the largest interfacial bonding strength of 67.9 ± 0.5 MPa was fabricated under such processing parameters as copper casting temperature 1503 K (1230 °C), aluminum casting temperature 1063 K (790 °C), primary cooling water flux 600 L/h, secondary cooling water flux 700 L/h, and

  18. Improvements to the strength and corrosion resistance of aluminum-magnesium-manganese alloys of near-AA5083 chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, Mark Christopher

    Aluminum alloys of the 5000 series (AI-Mg-Mn) are extremely popular in a wide range of applications that call for a balance of moderately high strength, good corrosion resistance, and light weight, all at a moderate cost. One of the most popular 5000 series alloys is designated A1-5083, containing, in addition to aluminum, approximately 4 wt% magnesium and 0.7 wt% manganese. In order to increase the range of versatility of this particular alloy, a number of modifications have been examined that will potentially improve the strength and corrosion resistance characteristics while maintaining a chemical composition that is very close to the proven 5083 alloy. The strength of the 5083-based alloys under study are investigated with two goals in mind---to maximize the potential strength characteristics in a "standard" 5083 form through changes in minor processing parameters or through minor alloying additions. Increasing the standard alloy's potential is possible through improved efficiency of "preprocessing" heat treatments that maximize the homogeneous dispersion of secondary manganese-based particles. For the modified alloy study, additions of scandium and zirconium are shown to improve strength not only by forming secondary particles in the alloy, but also through substitutional solid solution strengthening, even when added at very small levels. Corrosion resistance of these 5083-based alloys is investigated once again through minor alloying additions; specifically zinc, copper, and silver. Zinc is particularly effective in that it changes the corrosion-susceptible binary aluminum-magnesium phase that would otherwise form on grain boundaries following exposure to moderately elevated temperatures for extended periods of time to a ternary aluminum-magnesium-zinc phase. This chemical composition of this ternary phase that forms following zinc additions can be further altered through minor additions of copper and silver. By determining threshold levels for these

  19. Structure/property relationships in multipass GMA welding of beryllium.

    SciTech Connect

    Hochanadel, P. W.; Hults, W. L.; Thoma, D. J.; Dave, V. R.; Kelly, A. M.; Pappin, P. A.; Cola, M. J.; Burgardt, P.

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  20. An investigation of the reduction in tensile strength and fatigue life of pre-corroded 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Obert, B.; Ngo, K.; Hashemi, J.; Ekwaro-Osire, S.; Sivam, T. P.

    2000-08-01

    In aging aircraft, the synergetic interaction between corrosion and fatigue has been shown to reduce the life expectancy of aluminum alloys. The objective of this study was to quantify the effects of corrosion, in terms of mass loss per unit area, on the static strength and fatigue life of 7075-T6 aluminum alloy. This was an experimental study in which test specimens were corroded in a laboratory environment. The corrosion process was accelerated by use of a corrosion cell. Test specimens were cut from flat sheets of aluminum and covered with masking material to restrict corrosion to a confined area. After testing, the fatigue life, ultimate tensile strength (UTS), and hardness of the specimens were observed to drop significantly with small amounts of corrosion. After the initial decrease, the UTS was observed to decrease linearly with increasing corrosion levels. The fatigue life of the specimens decreased in an inverse exponential fashion as mass loss per unit area increased. The hardness values of the corroded surfaces were also observed to drop. The topology of the pits and the related subsurface damage produced areas of high stress concentration resulting in the immediate reduction of UTS and fatigue life of the specimens. Subsurface corrosion damage was responsible for the reduction in hardness.

  1. Microwave Induced Welding of Carbon Nanotube-Thermoplastic Interfaces for Enhanced Mechanical Strength of 3D Printed Parts

    NASA Astrophysics Data System (ADS)

    Sweeney, Charles; Lackey, Blake; Saed, Mohammad; Green, Micah

    Three-dimensional (3D) printed parts produced by fused-filament fabrication of a thermoplastic polymer have become increasingly popular at both the commercial and consumer level. The mechanical integrity of these rapid-prototyped parts however, is severely limited by the interfillament bond strength between adjacent extruded layers. In this report we propose for the first time a method for welding thermoplastic interfaces of 3D printed parts using the extreme heating response of carbon nanotubes (CNTs) to microwave energy. To achieve this, we developed a coaxial printer filament with a pure polylactide (PLA) core and a CNT composite sheath. This produces parts with a thin electrically percolating network of CNTs at the interfaces between adjacent extruded layers. These interfaces are then welded together upon microwave irradiation at 2.45GHz. Our patent-pending method has been shown to increase the tensile toughness by 1000% and tensile strength by 35%. We investigated the dielectric properties of the PLA/CNT composites at microwave frequencies and performed in-situ microwave thermometry using a forward-looking infrared (FLIR) camera to characterize the heating response of the PLA/CNT composites upon microwave irradiation.

  2. A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S

    SciTech Connect

    Baeslack, W.A. III; Hurley, J.; Paskell, T.

    1994-12-31

    Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems. Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.

  3. Studies on Ultrasonic Wire Bonding Using the Same or a Different Frequency Complex Vibration Welding Tip

    NASA Astrophysics Data System (ADS)

    Tsujino, Jiromaru; Sugimoto, Hideshi; Horikoshi, Mitsuo; Sakai, Masayuki; Ando, Hideki; Negishi, Takashi

    1988-01-01

    Ultrasonic wire bonding using a complex vibration tip is proposed and studied. The complex vibration welding tips designed consist of a transverse vibration rod vibrating in a perpendicular direction, and driven by (1) different (40 kHz and 60 kHz) or (2) the same vibration frequency (60 kHz) longitudinal vibration systems. Welding tip vibration locus and direction are controlled by regulating these vibration systems. Thin aluminum wire and copper plate specimens are welded successfully by these equipments. The weld strength also is independent of the direction of wire length with this method.

  4. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  5. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  6. Multihole Arc-Welding Orifice

    NASA Technical Reports Server (NTRS)

    Swaim, Benji D.

    1989-01-01

    Modified orifice for variable-polarity plasma-arc welding directs welding plume so it creates clean, even welds on both Inconel(R) and aluminum alloys. Includes eight holes to relieve back pressure in plasma. Quality of welds on ferrous and nonferrous alloys improved as result.

  7. Ultrasonic seam welding. Final report

    SciTech Connect

    Darner, G.S.

    1980-06-01

    Ultrasonic seam welding has been evaluated for making continuous seam welds on aluminum and copper-foil conductors. A seam welding system has been designed and fabricated, weldable material combinations have been identified, and the process parameters for welding materials applicable to flat cable production have been established.

  8. SRμCT study of crack propagation within laser-welded aluminum-alloy T-joints

    NASA Astrophysics Data System (ADS)

    Herzen, J.; Beckmann, F.; Riekehr, S.; Bayraktar, F. S.; Haibel, A.; Staron, P.; Donath, T.; Utcke, S.; Kocak, M.; Schreyer, A.

    2008-08-01

    Using laser welding in fabrication of metallic airframes reduces the weight and hence fuel consumption. Currently only limited parts of the airframes are welded. To increase laser beam welded parts, there is the need for a better understanding of crack propagation and crack-pore interaction within the welds. Laser beam welded Al-alloys may contain isolated small process pores and their role and interaction with growing crack need to be investigated. The present paper presents the first results of a crack propagation study in laser beam welded (LBW) Al-alloy T-joints using synchrotron radiation based micro computed tomography (SRμCT). A region-of-interest technique was used, since the specimens exceeded the field of view of the X-ray detector. As imaging with high density resolution at high photon energies is very challenging, a feasibility measurement on a small laser weld, cut cylindrically from the welded region of a T-joint, was done before starting the crack-propagation study. This measurement was performed at the beamline HARWI-II at DESY to demonstrate the potential of the SRμCT as non-destructive testing method. The result has shown a high density resolution, hence, the different Al alloys used in the T-joint and the weld itself were clearly separated. The quantitative image analysis of the 3D data sets allows visualizing non-destructively and calculating the pore size distribution.

  9. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  10. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    SciTech Connect

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P.

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic

  11. Investigation of strength of a hybrid adhesive anchor system used in precast concrete welded repair applications subjected to tensile and eccentric shear loading

    NASA Astrophysics Data System (ADS)

    Eilers, Michael Glenn

    A common precast industry repair for missing or misplaced connection plates is the use of an adhesive anchor system to fasten repair plates to precast members. Typically, the repair plate will experience elevated temperatures during the welding of the loose erection plate to the repair plate. Limited testing and theoretical data are currently available to provide design guidelines on how the elevated temperatures induced by welding affect the behavior and capacity of the adhesive anchoring systems. This dissertation outlines bond tests, eccentric shear tests, and a temperature investigation performed using a hybrid adhesive system in precast concrete repair applications. In addition, limited bond strength testing data using a high strength two-part epoxy adhesive is also included. The overall aim of this work is to provide test data and guidance to the industry and design professionals when designing adhesive anchoring systems for repair applications exposed to welding.

  12. On the determination of the origin of linear anomaly in the macrostructure of VPPA welded 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Jemian, W. A.

    1986-01-01

    The objective was to determine the cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film. By observing features on available radiographs and in studying published reports of similar features it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morpohology, second phase particles and porosity due to the solidification process and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard and enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.

  13. Thermal degradation of the tensile strength of unidirectional boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1977-01-01

    The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites in an attempt to determine the mechanism of the resulting strength degradation was studied. Findings indicate that thermally cycling B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/m squared to as low as 0.34 GN/m squared was observed after 3,000 cycles to 420 C for 203 micrometers B-1100 Al composite. In general, the 1100 Al matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface.

  14. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Guo, W.; Poplawsky, J. D.; Liu, C. T.

    2016-09-01

    The effects of welding and post-weld heat treatment (PWHT) on nanoscale co-precipitation, grain structure, and mechanical properties of an ultra-high strength steel were studied through a combination of atom probe tomography (APT) and mechanical tests. Our results indicate that the welding process dissolves all pre-existing nanoparticles and causes grain coarsening in the fusion zone, resulting in a soft and ductile weld without any cracks in the as-welded condition. A 550 °C PWHT induces fine-scale re-precipitation of NiAl and Cu co-precipitates with high number densities and ultra-fine sizes, leading to a large recovery of strength but a loss of ductility withmore » intergranular failure, whereas a 600 °C PWHT gives rise to coarse-scale re-precipitation of nanoparticles together with the formation of a small amount of reverted austenite, resulting in a great recovery in both strength and ductility. Our analysis indicates that the degree of strength recovery is dependent mainly upon the re-precipitation microstructure of nanoparticles, together with grain size and reversion of austenite, while the ductility recovery is sensitive to the grain-boundary structure. In conclusion, APT reveals that the grain-boundary segregation of Mn and P may be the main reason for the 550 °C embrittlement, and the enhanced ductility at 600 °C is ascribed to a possible reduction of the segregation and reversion of austenite.« less

  15. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    NASA Astrophysics Data System (ADS)

    Sorg, Brian S.; Welch, Ashley J.

    2001-05-01

    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  16. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer- and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1999-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  17. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer-and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1998-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  18. Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Lyons, Jed; Forman, Royce

    2006-01-01

    The effects of laser peening, shot peening, and a combination of both on the fatigue life of Friction Stir Welds (FSW) was investigated. The fatigue samples consisted of dog bone specimens and the loading was applied in a direction perpendicular to the weld direction. Several laser peening conditions with different intensities, durations, and peening order were tested to obtain the optimum peening parameters. The surface roughness resulting from various peening techniques was assessed and characterized. The results indicate a significant increase in fatigue life using laser peening compared to shot peened versus their native welded specimens.

  19. On the Microstructural and Mechanical Characterization of Hybrid Laser-Welded Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Wu, S. C.; Hu, Y. N.; Song, X. P.; Xue, Y. L.; Peng, J. F.

    2015-04-01

    Butt-welded 2-mm-thick high-strength aluminum alloys have been welded using a hybrid fiber laser and pulsed arc heat source system with the ER5356 filler. The microstructure, size of precipitates, texture, grain size and shape, change of strengthening elements, mechanical properties, and surface-based fatigue fracture characteristics of hybrid-welded joints were investigated in detail. The results indicate that the hybrid welds and the unaffected base materials have the lowest and largest hardness values, respectively, compared with the heat-affected zone. It is resonably believed that the elemental loss, coarse grains, and changed precipitates synthetically produce the low hardness and tensile strengths of hybrid welds. Meanwhile, the weaker grain boundary inside welds appears to initiate a microcrack. Besides, there exists an interaction of fatigue cracks and gas pores and microstructures.

  20. Effect of Rotational Speed on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded 2024 Al Alloy

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Gao, Shuangsheng; Ji, Shude; Yue, Yumei; Chai, Peng

    2016-04-01

    Refill friction stir spot welding (RFSSW) was successfully used to weld alclad 2024 aluminum alloy with different thicknesses. Effects of tool rotational speed on the weld formation, microstructure, and mechanical properties of the RFSSW welds were mainly discussed. Results show that keyhole is successfully refilled and welding defects such as flash, annular groove, and material adhesion can be observed. A bright contrast bonding ligament is found embedded in the weld and it is thicker in the center. Defects of hook, void, lack of mixing, and incomplete refilling can be found at the thermo-mechanically affected zone/stir zone (TMAZ/SZ) interface, which can be attributed to weak metallurgical bonding effect. With increasing the tool rotational speed, thickness of the bonding ligament decreases, grains in the SZ coarsen, hardness of the SZ decreases, and lap shear load of the welds decreases. When changing the rotating speed, impact strength shows rather complicated variation trend.

  1. Welding in airplane construction

    NASA Technical Reports Server (NTRS)

    Rechtlich, A; Schrenk, M

    1928-01-01

    The present article attempts to explain the principles for the production of a perfect weld and to throw light on the unexplained problems. Moreover, it is intended to elucidate the possibilities of testing the strength and reliability of welded parts.

  2. Advance in friction welding and ultrasonic welding of ceramics to metals

    SciTech Connect

    Greitmann, M.J.; Weib, R.

    1997-11-01

    The authors have joined four different ceramic materials (MgO-PSZ, Al{sub 2}O{sub 3}, SiC and Si{sub 3}N{sub 4} cylinders 10 mm in diameter and 50 mm in length) to the aluminum alloy Al-Si1MgMn by friction welding. Process parameters such as friction speed, axial force, burn-off and torque have been recorded continuously. For some specimens the authors recorded the temperature at the interface using thermocouples. The joints obtained were tested in tension. Fracture occurred either in the ceramic or at the interface. Heat conduction calculations to estimate the temperature distribution during welding have been conducted by the Finite Element Method (FEM), using experimental data for input. Afterwards, residual stresses introduced through thermal expansion mismatch and stresses introduced through a tensile test have been determined by FEM. Applying multiaxial Weibull statistics to the ceramic specimen, tensile strength for different geometries of the joint and different material combinations was estimated. Ultrasonic welded joints of MgO-PSZ and Steel X 4 CrNi 18-10 according to DIN EN (comparable to the US-steel AISI No. 304) could be realized using aluminum interlayers. In addition to a conventional ultrasonic welding equipment for metal welding a new molecular coldwelding technique (ultrasonic torsional welding system) was tested. In comparison to friction welding the ultrasonic welding technique results in limited deformation of the ceramic-metal joint parts and in a decreased welding time. Nevertheless a special solution must be found to the problem of tool wear and the vibration conditions.

  3. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part II: Mechanical Characterization and Modeling

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Estevez, Rafael; Parry, Guillaume; Deschamps, Alexis

    2014-09-01

    This paper presents an experimental and modeling study of the mechanical behavior of an electron beam welded EN-AW 7020 aluminum alloy. The heterogeneous distribution of mechanical properties is characterized by micro-tensile tests and by strain field measurements using digital image correlation technic. These results are related to the microstructural observation presented in the companion paper. The mechanical behavior of the weld is simulated by a finite element model including a Gurson-type damage evolution model for void evolution. The model is shown to be capable of describing accurately experimental situations where the sample geometry is varied, resulting in stress triaxiality ratios ranging from 0.45 to 1.3.

  4. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part II: Mechanical Characterization and Modeling

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Estevez, Rafael; Parry, Guillaume; Deschamps, Alexis

    2014-12-01

    This paper presents an experimental and modeling study of the mechanical behavior of an electron beam welded EN-AW 7020 aluminum alloy. The heterogeneous distribution of mechanical properties is characterized by micro-tensile tests and by strain field measurements using digital image correlation technic. These results are related to the microstructural observation presented in the companion paper. The mechanical behavior of the weld is simulated by a finite element model including a Gurson-type damage evolution model for void evolution. The model is shown to be capable of describing accurately experimental situations where the sample geometry is varied, resulting in stress triaxiality ratios ranging from 0.45 to 1.3.

  5. Investigation into Interface Lifting Within FSW Lap Welds

    SciTech Connect

    K. S. Miller; C. R. Tolle; D. E. Clark; C. I. Nichol; T. R. McJunkin; H. B. Smartt

    2008-06-01

    Friction stir welding (FSW) is rapidly penetrating the welding market in many materials and applications, particularly in aluminum alloys for transportation applications. As this expansion outside the research laboratory continues, fitness for service issues will arise, and process control and NDE methods will become important determinants of continued growth. The present paper describes research into FSW weld nugget flaw detection within aluminum alloy lap welds. We present results for two types of FSW tool designs: a smooth pin tool and a threaded pin tool. We show that under certain process parameters (as monitored during welding with a rotating dynamometer that measures x, y, z, and torque forces) and tooling designs, FSW lap welds allow significant nonbonded interface lifting of the lap joint, while forming a metallurgical bond only within the pin region of the weld nugget. These lifted joints are often held very tightly together even though unbonded, and might be expected to pass cursory NDE while representing a substantial compromise in joint mechanical properties. The phenomenon is investigated here via radiographic and ultrasonic NDE techniques, with a copper foil marking insert (as described elsewhere) and by the tensile testing of joints. As one would expect, these results show that tool design and process parameters significantly affect plactic flow and this lifted interface. NDE and mechanical strength ramifications of this defect are discussed.

  6. Metallurgical characterization of the fracture of several high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bhandarkar, M. D.; Lisagor, W. B.

    1977-01-01

    The fracture behavior for structural aluminum alloys (2024, 6061, 7075, and 7178) was examined in selected heat treatments. The investigation included tensile, shear, and precracked notch-bend specimens fractured at ambient temperature under monotonic loading. Specimens were obtained from thin sheets and thick plates and were tested in longitudinal and transverse orientations at different strain rates. Microstructures of alloys were examined using the optical microscope and the scanning electron microscope with associated energy dispersive X ray chemical analysis. Several different types of second phase particles, some not reported by other investigators, were identified in the alloys. Fracture morphology was related to microstructural variables, test variables, and type of commercial product. Specimen orientation examined in the present investigation had little effect on fracture morphology. Test strain rate changes resulted in some change in shear fracture morphology, but not in fracture morphology of tensile specimens.

  7. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    NASA Astrophysics Data System (ADS)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  8. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    NASA Astrophysics Data System (ADS)

    Fortuna, S. V.; Ivanov, K. V.; Tarasov, S. Yu.; Eliseev, A. A.; Ivanov, A. N.; Rubtsov, V. E.; Kolubaev, E. A.

    2015-10-01

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  9. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    SciTech Connect

    Fortuna, S. V. Ivanov, K. V. Eliseev, A. A.; Tarasov, S. Yu. Ivanov, A. N. Rubtsov, V. E. Kolubaev, E. A.

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  10. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  11. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    SciTech Connect

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-17

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  12. Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    PubMed

    Rahman, Tanzina; George, Jessica; Shipley, Heather J

    2013-10-01

    The effect of ionic strength (IS), flow rate, and nanoparticle concentration on the transport and deposition of aluminum oxide nanoparticles (Al2O3 NPs) in saturated sand was investigated. Mobility of Al2O3 NPs was influenced by IS, the highest mobility was observed in DI water (97% elution of the influent) and decreased with increasing ionic strength. Decreased mobility of the NPs was due to aggregation as the IS increased. Varying flow conditions did not have a significant effect on mobility. However, increased and faster elution was observed when the influent concentration was increased from 50 mg/L to 400 mg/L. The influent and effluent nanoparticle sizes were also measured using dynamic light scattering. For most conditions, the size was observed to be below 100 nm and there was no significant change to the influent and effluent particle sizes. Significant elution was observed although conditions were electrostatically favorable, which was attributed to the small, stable size (~82 nm) of the particles and blocking. DLVO theory was also applied to the data to better understand the mechanisms of mobility. It is necessary to consider these mechanisms for a reliable prediction of transport through the subsurface and potential removal methods such as filtration.

  13. Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    PubMed

    Rahman, Tanzina; George, Jessica; Shipley, Heather J

    2013-10-01

    The effect of ionic strength (IS), flow rate, and nanoparticle concentration on the transport and deposition of aluminum oxide nanoparticles (Al2O3 NPs) in saturated sand was investigated. Mobility of Al2O3 NPs was influenced by IS, the highest mobility was observed in DI water (97% elution of the influent) and decreased with increasing ionic strength. Decreased mobility of the NPs was due to aggregation as the IS increased. Varying flow conditions did not have a significant effect on mobility. However, increased and faster elution was observed when the influent concentration was increased from 50 mg/L to 400 mg/L. The influent and effluent nanoparticle sizes were also measured using dynamic light scattering. For most conditions, the size was observed to be below 100 nm and there was no significant change to the influent and effluent particle sizes. Significant elution was observed although conditions were electrostatically favorable, which was attributed to the small, stable size (~82 nm) of the particles and blocking. DLVO theory was also applied to the data to better understand the mechanisms of mobility. It is necessary to consider these mechanisms for a reliable prediction of transport through the subsurface and potential removal methods such as filtration. PMID:23835066

  14. Development of Weld Inspection of the Ares I Crew Launch Vehicle Upper Stage

    NASA Technical Reports Server (NTRS)

    Russell, Sam; Ezell, David

    2010-01-01

    NASA is designing a new crewed launch vehicle called Ares I to replace the Space Shuttle after its scheduled retirement in 2010. This new launch vehicle will build on the Shuttle technology in many ways including using a first stage based upon the Space Shuttle Solid Rocket Booster, advanced aluminum alloys for the second stage tanks, and friction stir welding to assemble the second stage. Friction stir welding uses a spinning pin that is inserted in the joint between two panels that are to be welded. The pin mechanically mixes the metal together below the melting temperature to form the weld. Friction stir welding allows high strength joints in metals that would otherwise lose much of their strength as they are melted during the fusion welding process. One significant change from the Space Shuttle that impacts NDE is the implementation of self-reacting friction stir welding for non-linear welds on the primary metallic structure. The self-reacting technique differs from the conventional technique because the load of the pin tool pressing down on the metal being joined is reacted by a nut on the end of the tool rather than an anvil behind the part. No spacecraft has ever flown with a self-reacting friction stir weld, so this is a major advancement in the manufacturing process, bringing with it a whole new set of challenges for NDE to overcome. The metal microstructure and possible defects are different from other weld processes. Friction plug welds will be used to close out the hole remaining in the radial welds when friction stir welded. This plug welding also has unique challenges in inspection. The current state of development of these inspections will be presented, along with other information pertinent to NDE of the Ares I.

  15. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Data analysis

    SciTech Connect

    Wibowo, J.; Amadei, B.; Sture, S.; Price, R.H.

    1994-04-01

    Assessing the shear behavior of intact rock & rock fractures is an important issue in the design of a potential nuclear waste repository at Yucca Mountain Nevada. Cyclic direct shear experiments were conducted on replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff. The tests were carried out under constant normal loads or constant normal stiffnesses with different initial normal load levels. Each test consisted of five cycles of forward and reverse shear motion. Based on the results of the shear tests conducted under constant normal load, the shear behavior of the joint replicas tested under constant normal stiffness was predicted by using the graphical analysis method of Saeb (1989), and Amadei and Saeb (1990). Comparison between the predictions and the actual constant stiffness direct shear experiment results can be found in a report by Wibowo et al. (1993b). Results of the constant normal load shear experiments are analyzed using several constitutive models proposed in the rock mechanics literature for joint shear strength, dilatancy, and joint surface damage. It is shown that some of the existing models have limitations. New constitutive models are proposed and are included in a mathematical analysis tool that can be used to predict joint behavior under various boundary conditions.

  16. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  17. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    SciTech Connect

    Jeanmaire, G.; Dehmas, M.; Redjaïmia, A.; Puech, S.; Fribourg, G.

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. - Highlights: • Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force • Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation • Size of AlN precipitates can be reduced by quenching prior isothermal holding. • Fine precipitation of AlN related to the α → γ transformation.

  18. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  19. A three-dimensional quantitative understanding of short fatigue crack growth in high strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Wen, Wei

    The behaviors of short fatigue crack (SFC) propagation through grain boundaries (GBs) were monitored during high cycle fatigue in an Al-Li alloy AA8090. The growth behaviors of SFCs were found to be mainly controlled by the twist components (alpha) of crack plane deflection across each of up to first 20 GBs along the crack path. The crack plane twist at the GB can result in a resistance against SFC growth; therefore SFC propagation preferred to follow a path with minimum alpha at each GB. In addition to the grain orientation, the tilting of GB could also affect alpha. An experiment focusing on quantifying GB-resistance was conducted on an Al-Cu alloy AA2024-T351. With a focused ion beam (FIB) and electron backscatter diffraction (EBSD), the micro-notches were made in front of the selected GBs which had a wide range of alpha, followed by monitoring the interaction of crack propagation from the notches with the GBs during fatigue. The crack growth rate was observed to decrease at each GB it had passed; and such growth-rate decrease was proportional to alpha. The resistance of the GB was determined to vary as a Weibull-type function of alpha. Based on these discoveries, a microstructure-based 3-D model was developed to quantify the SFC growth in high-strength Al alloys, allowing the prediction of crack front advancement in 3-D and the quantification of growth rate along the crack front. The simulation results yielded a good agreement with the experimental results about the SFC growth rate on the surface of the AA8090 Al alloy. The model was also used to predict the life of SFC growth statistically in different textures, showing potential application to texture design of alloys. Fatigue crack initiation at constituent particles (beta-phase) was preliminarily studied in the AA2024-T351 Al alloy. Cross-sectioning with the FIB revealed that the 3-D geometry, especially the thickness, of fractured constituent particles (beta-phase) was the key factor controlling the

  20. The properties and application of scandium-reinforced aluminum

    NASA Astrophysics Data System (ADS)

    Ahmad, Zaki

    2003-02-01

    Scandium-reinforced aluminum alloys represent a new generation of high-performance alloys that display numerousadvantages over high-strength aluminum alloys. Scandium-reinforced alloys are much stronger than other high-strength alloys, exhibit significant grain refinement, strengthen welds, and eliminate hot cracking in welds. These alloys also exhibit a good resistance to corrosion as shown by recent studies. A review of their mechanical, microstructural, and corrosion characteristics shows that scandium-reinforced alloys can be usefully employed in aerospace, sports, transportation, and process industries. The information on scandium-reinforced alloys is scanty; very little has been published on the mechanical, microstructural, and corrosion behavior of these alloys. The following fills this gap.

  1. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  2. Shear bond strength of orthodontic brackets after acid-etched and erbium-doped yttrium aluminum garnet laser-etched

    PubMed Central

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh

    2014-01-01

    Background: Laser ablation has been suggested as an alternative method to acid etching; however, previous studies have obtained contrasting results. The purpose of this study was to compare the shear bond strength (SBS) and fracture mode of orthodontic brackets that are bonded to enamel etched with acid and erbium-doped yttrium aluminum garnet (Er:YAG) laser. Materials and Methods: In this experimental in vitro study, buccal surfaces of 15 non-carious human premolars were divided into mesial and distal regions. Randomly, one of the regions was etched with 37% phosphoric acid for 15 s and another region irradiated with Er:YAG laser at 100 mJ energy and 20 Hz frequency for 20 s. Stainless steel brackets were then bonded using Transbond XT, following which all the samples were stored in distilled water for 24 h and then subjected to 500 thermal cycles. SBS was tested by a chisel edge, mounted on the crosshead of universal testing machine. After debonding, the teeth were examined under ×10 magnification and adhesive remnant index (ARI) score determined. SBS and ARI scores of the two groups were then compared using t-test and Mann-Whitney U test. Significant level was set at P < 0.05. Results: The mean SBS of the laser group (16.61 ± 7.7 MPa) was not significantly different from that of the acid-etched group (18.86 ± 6.09 MPa) (P = 0.41). There was no significant difference in the ARI scores between two groups (P = 0.08). However, in the laser group, more adhesive remained on the brackets, which is not suitable for orthodontic purposes. Conclusion: Laser etching at 100 mJ energy produced bond strength similar to acid etching. Therefore, Er:YAG laser may be an alternative method for conventional acid-etching. PMID:25097641

  3. Weldability of thin sheet metals by small-scale resistance spot welding using high-frequency inverter and capacitor-discharge power supplies

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Dong, S. J.; Ely, K. J.

    2001-08-01

    An investigation has been conducted of the weldability of 0.2-mm-thick sheet aluminum, brass, and copper in small-scale resistance spot welding using a high-frequency inverter and a capacitor-discharge power supply. The results have been compared to those of previous investigations using a line-frequency alternating current power supply. The effects of electrode materials and process parameters on joint strength, nugget diameter, weld-metal expulsion and electrode-sheet sticking were studied. This work has also provided practical guidelines for selection of power supplies, process parameters (welding current/pulse energy, welding time/pulse width, electrode forces, etc.) and electrode materials for small-scale resistance spot welding of thin sheet aluminum, brass and copper.

  4. Formability of Friction Stir-Welded Blanks with Different Thickness Ratios

    NASA Astrophysics Data System (ADS)

    Kolahgar, Sina; Ghaffarpour, Morteza; Habibi, Niloufar; Kokabi, Amir Hossein; Akbarzadeh, Abbas

    2016-05-01

    Welded sheets with different thicknesses are one of the interesting types of tailor-welded blanks (TWBs) that are widely used in metal-forming industries. In the present work, the formability behavior of different 1100-aluminum TWBs was studied. In this regard, the TWBs were made with different thickness ratios by using friction stir welding (FSW) at different welding rotational speeds ( ω). The thickness ratios of 1.0, 1.3, and 1.7 were investigated where the thinner sheets had 1.5 mm thick for all conditions; i.e., the volume of welded material increased when the thickness ratio increased. Macrostructural observations, mechanical investigations, and sheet-forming limit tests were conducted. The results indicate that increasing ω leads to increasing the weld nugget size up to a maximum level and welding became impossible at higher ω. Furthermore, increasing heat input during FSW, the ultimate tensile strength of welds reduced in comparison with the initial cold-worked base metal. However, the ductility improved by increasing the heat input, which produced the sound welds. Formability studies of the friction stir-welded blanks with equal thicknesses have shown that the forming ratio improves up to 2.8 times the base metal. Forming limit curves also illustrate that increasing the thickness ratio of TWB causes the formability ratio to decrease steadily. Thus, when the thickness ratio becomes 1.7, the formability of TWB decreases approximately to the thinnest base metal.

  5. Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Ito, K.; Ichimura, K.; Ichikawa, Y.; Ohno, S.; Onda, N.

    2008-12-01

    Aluminum alloys are widely used as materials for engineering components of automobiles and airplanes because of their light weight and high corrosion resistance. However, cracks may develop sometimes in aluminum components, which have to be repaired by welding. It is difficult to weld aluminum components due to its high specific thermal conductivity and high coefficient of thermal expansion. The low-pressure cold-spray technique can be used instead of welding for repairing cracks. However, the effects of surface conditions on particle deposition and the mechanical properties of cold-sprayed coatings have not been investigated thus far. In this study, the effect of surface conditions focusing on active newly formed surface on aluminum particle deposition is studied and the mechanical properties of low-pressure cold-sprayed aluminum coatings are investigated by four-point bending tests. It is found that for efficient particle deposition it was necessary to obtain active newly formed surface of the substrate and particle surfaces by several impingements because the existence of inactive native oxide films has an adverse effect on the deposition. Furthermore, the strength of a cold-sprayed specimen is found to be higher than that of a cold-rolled specimen under compressive loading.

  6. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  7. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  8. Effect of welding parameters on the mechanical and microstructural properties of friction stir welded AA- 2014 joints

    NASA Astrophysics Data System (ADS)

    Khan, R.; Bhatty, M. B.; Iqbal, F.; Zaigham, H.; Salam, I.

    2016-08-01

    In this study, the effect of processing parameters on the mechanical and microstructural properties of aluminum AA2014-T6 joints produced by friction stir welding was analyzed. Friction stir welding was carried out on a milling machine. Different samples were produced by varying the tool rotational rates (700, 1000 rpm) and travel speeds (45-105 mm/min). Tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyze the microstructural evolution of the material, the welds’ cross-sections were observed under optical microscope. The results shows that the resulting microstructure is free of defects and tensile strength of the welded joints is upto 75% of the base metal strength.

  9. Friction Stir Welding of Stainless Steel to Al Alloy: Effect of Thermal Condition on Weld Nugget Microstructure

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Gupta, R. K.; Husain, M. M.

    2014-02-01

    Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.

  10. Modification of Structure and Strength Properties of Permanent Joints Under Laser Beam Welding with Application of Nanopowder Modifiers

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Ovcharenko, V. E.

    2016-08-01

    In the paper we present the results of experimental study of specially prepared nanosize metal-ceramic compositions impact upon structure, microhardness and mechanical properties of permanent joints produced by laser-beam welding of steel and titanium alloy plates.

  11. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  12. Fatigue Behavior of Friction Stir-Welded Joints Repaired by Grinding

    NASA Astrophysics Data System (ADS)

    Vidal, C.; Infante, V.

    2014-04-01

    Fatigue is undoubtedly the most important design criterion in aeronautic structures. Although friction stir-welded joints are characterized by a high mechanical performance, they can enclose some defects, especially in their root. These defects along with the relatively low residual stresses of the friction stir-welding thermomechanical cycle can turn into primary sources of crack initiation. In this context, this article deals with the fatigue behavior of friction stir-welded joints subjected to surface smoothing by grinding improvement technique. The 4-mm-thick aluminum alloy 2024-T351 was used in this study. The fatigue strength of the base material, joints in the as-welded condition, and the sound and defective friction stir-welded joints improved by grinding were investigated in detail. The tests were carried out with a constant amplitude loading and with a stress ratio of R = 0. The fatigue results show that an improvement in fatigue behavior was obtained in the joints repaired by superficial grinding technique. The weld grinding technique is better especially for lower loads and increases the high cycle fatigue strength. The fatigue strength of the improved welded joints was higher than that of the base material.

  13. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    PubMed

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3).

  14. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    EPA Science Inventory

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  15. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part I: Microstructure Characterization

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Parry, Guillaume; Deschamps, Alexis

    2014-12-01

    This work presents a detailed, multiscale, spatially resolved study of the microstructure of an electron beam butt weld of the EN-AW 7020 (Al-Zn-Mg) alloy. Using a combination of optical, scanning and transmission electron microscopy, differential scanning calorimetry, and small-angle X-ray scattering, the distribution of phases in the different areas of the heat-affected zone and of the fusion zone is quantitatively characterized, for two different aging states: naturally aged after welding and artificially aged at 423 K (150 °C). The heat-affected zone consists of regions experiencing different levels of precipitate dissolution and coarsening during welding as well as new precipitation during post-welding heat treatment (PWHT). The microstructure of the fusion zone is typical from a fast solidification process, with a strong solute segregation in the interdendritic zones. The precipitate distribution after PWHT follows this solute distribution, and the resulting hardness is much lower than the relatively homogeneous value in the base metal and the heat-affected zone.

  16. VPPA weld model evaluation

    NASA Astrophysics Data System (ADS)

    McCutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-07-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  17. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  18. Tracking Motions Of Manually Controlled Welding Torches

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Gangl, Ken

    1996-01-01

    Techniques for measuring motions of manually controlled welding torches undergoing development. Positions, orientations, and velocities determined in real time during manual arc welding. Makes possible to treat manual welding processes more systematically so manual welds made more predictable, especially in cases in which mechanical strengths and other properties of welded parts highly sensitive to heat inputs and thus to velocities and orientations of welding torches.

  19. Welding Using Chilled-Inert-Gas Purging

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  20. New explosive seam welding concepts

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1973-01-01

    Recently developed techniques provide totally-confined linear explosive seam welding and produce scarf joint with linear explosive seam welding. Linear ribbon explosives are utilized in making narrow, continuous, airtight joints in variety of aluminum alloys, titanium, copper, brass, and stainless steel.

  1. Upgraded HFIR Fuel Element Welding System

    SciTech Connect

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  2. Laser welding of dissimilar materials for lightweight construction and special applications

    NASA Astrophysics Data System (ADS)

    Schimek, Mitja; Springer, André; Pfeifer, Ronny; Kaierle, Stefan

    2013-02-01

    Against the background of climate objectives and the desired reduction of CO2-emissions, optimization of existing industrial products is needed. To counter rising raw material costs, currently used materials are substituted. This will places new requirements on joining technologies for dissimilar material classes. The main difficulty lies in joining these materials cohesively without changing the properties of the base materials. Current research work at the LZH on joining dissimilar materials is being carried out for the automotive sector and for solar absorbers. For the automotive industry, a laser welding process for joining steel and aluminum without using additives is being investigated, equipped with a spectroscopic welding depth control to increase tensile strength. With a specially constructed laser processing head, it is possible to regulate welding penetration depth in the aluminum sheet, reducing the formation of intermetallic phases. Flat plate solar collectors are favorable devices for generating heat from solar energy. The solar absorber is the central part of a collector, consisting of an aluminum sheet and a copper tube which is attached to the aluminum sheet. Research on new laser welding processes aims at reducing the amount of energy required for production of these solar absorbers. In the field of joining dissimilar materials, laser joining processes, especially for special applications, will complement established joining techniques.

  3. Direct welding of glass and metal by 1  kHz femtosecond laser pulses.

    PubMed

    Zhang, Guodong; Cheng, Guanghua

    2015-10-20

    In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices. PMID:26560385

  4. Mechanical Properties, Corrosion Behavior, and Microstructures of a MIG-Welded 7020 Al Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoyan; Cao, Xiaowu; Xu, Guofu; Deng, Ying; Tang, Lei; Yin, Zhimin

    2016-03-01

    7020 aluminum alloy plates were welded by metal inert gas welding method, with the ER5183 welding wire containing Zr and ER5356 welding wire without Zr, respectively. The mechanical properties, corrosion behavior, and microstructures of these two welded joints were investigated. The tensile strength and ductilities of the joints are inferior to those of base alloy, and the lowest hardness is obtained in the welded zone, while the heat-affected zones are more sensitive to corrosion than the base metal and welded zones. The base metal shows a deformed subgrains microstructure, and the heat-affected zones still remain in elongated shape, where the soften zones form as a result of η' (MgZn2) coarsening. Two welded zones are mainly characterized by as-cast structure; however, grains are refined and a zone of equiaxed grains forms along the bonding boundary due to the Zr addition into ER5183 Al alloy. Accordingly, the mechanical properties and corrosion resistance in this zone of the joint with ER5183 exhibit better than those of the joint with ER5356.

  5. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  6. Investigation of laser-beam weldability of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Zuo, Tiechuan; Xiao, Y. H.; Sepold, Gerd

    1993-05-01

    The conditions for laser beam welding of aluminum alloys and measures for increasing the weld penetration depth are discussed. The mechanisms of creating pores and cracks are thoroughly analyzed and several countermeasures are proposed.

  7. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  8. Influence of multi-step heat treatments in creep age forming of 7075 aluminum alloy: Optimization for springback, strength and exfoliation corrosion

    SciTech Connect

    Arabi Jeshvaghani, R.; Zohdi, H.; Shahverdi, H.R.; Bozorg, M.; Hadavi, S.M.M.

    2012-11-15

    Multi-step heat treatments comprise of high temperature forming (150 Degree-Sign C/24 h plus 190 Degree-Sign C for several minutes) and subsequent low temperature forming (120 Degree-Sign C for 24 h) is developed in creep age forming of 7075 aluminum alloy to decrease springback and exfoliation corrosion susceptibility without reduction in tensile properties. The results show that the multi-step heat treatment gives the low springback and the best combination of exfoliation corrosion resistance and tensile strength. The lower springback is attributed to the dislocation recovery and more stress relaxation at higher temperature. Transmission electron microscopy observations show that corrosion resistance is improved due to the enlargement in the size and the inter-particle distance of the grain boundaries precipitates. Furthermore, the achievement of the high strength is related to the uniform distribution of ultrafine {eta} Prime precipitates within grains. - Highlights: Black-Right-Pointing-Pointer Creep age forming developed for manufacturing of aircraft wing panels by aluminum alloy. Black-Right-Pointing-Pointer A good combination of properties with minimal springback is required in this component. Black-Right-Pointing-Pointer This requirement can be improved through the appropriate heat treatments. Black-Right-Pointing-Pointer Multi-step cycles developed in creep age forming of AA7075 for improving of springback and properties. Black-Right-Pointing-Pointer Results indicate simultaneous enhancing the properties and shape accuracy (lower springback).

  9. Improvement of Weld Characteristics by Laser-Arc Double-Sided Welding Compared to Single Arc Welding

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Zhang, Kezhao; Hu, Xue; Yang, Yuhe; Chen, Yanbin; Wu, Yichao

    2015-11-01

    The single arc welding and laser-arc double-sided welding (LADSW) processes are investigated by virtue of test welds. The impacts of the laser beam during the LADSW process on the weld characteristics are studied from weld geometry, crystal morphology, and the mechanical properties of the joints. Compared with the single arc welding, the LADSW process improves the energy density and reduces the range of arc action, which together leads to a doubling of weld penetration depth. When penetrated by the laser beam, the liquid metal of the arc welding pool experiences severe fluctuations, leading to a finer grain size in the range of 17-26 μm in the LADSW weld, a reduction of nearly 63% compared to the grains in the single arc weld. The tensile strength and elongation-to-failure of the LADSW weld were increased by nearly 10 and 100% over the single arc welding, respectively.

  10. Applying NASA's explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.

    1991-01-01

    The status of an explosive seam welding process, which was developed and evaluated for a wide range of metal joining opportunities, is summarized. The process employs very small quantities of explosive in a ribbon configuration to accelerate a long-length, narrow area of sheet stock into a high-velocity, angular impact against a second sheet. At impact, the oxide films of both surface are broken up and ejected by the closing angle to allow atoms to bond through the sharing of valence electrons. This cold-working process produces joints having parent metal properties, allowing a variety of joints to be fabricated that achieve full strength of the metals employed. Successful joining was accomplished in all aluminum alloys, a wide variety of iron and steel alloys, copper, brass, titanium, tantalum, zirconium, niobium, telerium, and columbium. Safety issues were addressed and are as manageable as many currently accepted joining processes.

  11. On the determination of the origin of linear anomaly in the macrostructure of VPPA welded 2219-T87 aluminum alloy: Preliminary report

    NASA Technical Reports Server (NTRS)

    Jemian, W. A.

    1986-01-01

    The cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film is examined. By observing features on available radiographs and in studying published reports of similar features, it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morphology, second phase particles and porosity due to the solidification process, and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.

  12. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  13. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  14. Enabling lightweight designs by a new laser based approach for joining aluminum to steel

    NASA Astrophysics Data System (ADS)

    Brockmann, Rüdiger; Kaufmann, Sebastian; Kirchhoff, Marc; Candel-Ruiz, Antonio; Müllerschön, Oliver; Havrilla, David

    2015-03-01

    As sustainability is an essential requirement, lightweight design becomes more and more important, especially for mobility. Reduced weight ensures more efficient vehicles and enables better environmental impact. Besides the design, new materials and material combinations are one major trend to achieve the required weight savings. The use of Carbon Fiber Reinforced Plastics (abbr. CFRP) is widely discussed, but so far high volume applications are rarely to be found. This is mainly due to the fact that parts made of CFRP are much more expensive than conventional parts. Furthermore, the proper technologies for high volume production are not yet ready. Another material with a large potential for lightweight design is aluminum. In comparison to CFRP, aluminum alloys are generally more affordable. As aluminum is a metallic material, production technologies for high volume standard cutting or joining applications are already developed. In addition, bending and deep-drawing can be applied. In automotive engineering, hybrid structures such as combining high-strength steels with lightweight aluminum alloys retain significant weight reduction but also have an advantage over monolithic aluminum - enhanced behavior in case of crash. Therefore, since the use of steel for applications requiring high mechanical properties is unavoidable, methods for joining aluminum with steel parts have to be further developed. Former studies showed that the use of a laser beam can be a possibility to join aluminum to steel parts. In this sense, the laser welding process represents a major challenge, since both materials have different thermal expansion coefficients and properties related to the behavior in corrosive media. Additionally, brittle intermetallic phases are formed during welding. A promising approach to welding aluminum to steel is based on the use of Laser Metal Deposition (abbr. LMD) with deposit materials in the form of powders. Within the present work, the advantages of this

  15. New trends for the NDT of aeronautic welds

    NASA Astrophysics Data System (ADS)

    Ithurralde, G.; Simonet, D.; Choffy, J.-P.; Bernard, L.

    2001-04-01

    Recent advances in laser beam welding, electron beam welding and friction stir welding enable to join aeronautic and space alloys (mainly aluminum based) and think about new welded design for structural parts at a lower cost. This paper deals with both the non destructive testing approach implemented for welding process optimization, and the NDT multi-sensors tools selected because of their ability for on-line defect tracking automation.

  16. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  17. Influence of CO2-Ar Mixtures as Shielding Gas on Laser Welding of Al-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Boukha, Zouhair; Sánchez-Amaya, José María; González-Rovira, Leandro; Rio, Eloy Del; Blanco, Ginesa; Botana, Javier

    2013-12-01

    In this study, AA5083 samples were butt welded under a conduction regime with high-power diode laser (HPDL). Various mixtures composed of Ar and CO2 were used as a shielding gas. The influence of the shielding gas composition on the microstructure and on the properties of laser welds was analyzed. The weld beads were deeply characterized by metallographic/microstructural studies, X-ray diffraction (XRD), X-ray energy dispersive spectrometry (X-EDS) chemical analyses, X-ray photoelectron spectra (XPS), microhardness, and tensile strength. The corrosion resistance of laser-remelted surfaces with different CO2/Ar ratios was also estimated by means of electrochemical tests. The addition of CO2 to the shielding gas results in a better weld penetration and oxidizes the weld pool surface. This addition also promotes the migration of Mg toward the surface of weld beads and induces the formation of magnesium aluminates spinel on the welds. The best corrosion resistance result is achieved with 20 pct CO2. The overall results indicate that the addition of small percentage of CO2 to Ar leads to improvements of the mechanical and corrosion properties of the aluminum welds.

  18. Effect of weld schedule variation on the weldability and durability of AHSS spot weld joints

    NASA Astrophysics Data System (ADS)

    Weishaupt, Eric Raymond

    Tensile strength testing and high cycle fatigue testing of advanced high strength steel spot welded shear lap joints were performed for the various weld conditions. The materials used in this study were DP 980, DP 780 and TRIP 780. The microstructure and microhardness of the shear lap joints were examined in an effort to identify the effect of microstructural changes on the strength and fatigue durability of the spot weld specimens. The occurrence of interfacial failure was recorded for the differing weld processes. Several weld schedules were examined and used to produce shear lap spot weld joints, specifically varying the squeeze force and the average current. The weld force used to produce a spot weld does not have a significant effect on the fracture mode of the specimen given the average current is constant. The average current used to produce a spot weld has a significant effect on the fracture mode of the spot weld for several squeeze forces. Interfacial failure of spot welded TRIP 780 can be mitigated using a certain range of currents when welding. This appears to come as a tradeoff for sacrificing the strength of the joint. Higher values of weld strength were obtainable; however, welds that failed with higher strengths also experienced interfacial failure. A fracture mechanics approach to estimating the high cycle fatigue life of the shear lap specimen is also proposed and represents a conservative estimate of the shear lap specimen durability.

  19. Compressive Strength of 24S-T Aluminum-alloy Flat Panels with Longitudinal Formed Hat-section Stiffeners

    NASA Technical Reports Server (NTRS)

    Schuette, Evan H; Barab, Sual; Mccracken, Howard L

    1946-01-01

    Results are presented for a part of a test program on 24S-T aluminum alloy flat compression panels with longitudinal formed hat-section stiffeners. This part of the program is concerned with panels in which the thickness of the stiffener materials is 0.625 times the skin thickness. The results, presented in tabular and graphical form, show the effect of the relative dimensions of the panel on the buckling stress and the average stress at maximum load. Comparative envelope curves are presented for hat-stiffened and Z-stiffened panels having the same ratio of stiffener thickness to sheet thickness. These curves provide some indication of the relative structural efficiencies of the two types of panel.

  20. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  1. Friction stir welding tool and process for welding dissimilar materials

    DOEpatents

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  2. A Comparative Analysis of the Impact of Tool Design to Fatigue Behavior of Single-Sided and Double-Sided Welded Butt Joints of EN AW 6082-T6 Alloy

    NASA Astrophysics Data System (ADS)

    Krasnowski, K.; Dymek, S.

    2013-12-01

    In this paper, the results of fatigue behavior on friction stir welded joints of aluminum alloy EN AW 6082-T6 are reported. In particular, the study presents the influence of the geometry of a welding tool on fatigue strengths and tensile strengths. The test joints were prepared as single side welded and double side welded by FSW. The welding was performed at various linear welding speeds (224, 560, and 900 mm/min) and one rotational speed of 710 rev./min using three different tool shapes. The results of macro examination and tensile test led to the selection of a single set of tool movement parameters at which the test joints for fatigue test were made. Samples were tested in two states of surface condition, i.e., "as-welded" and with mechanically removed marks left by rotating and moving tool during FSW process. Studies have shown that fatigue behavior of FSW joints depends on the tool shape used in the welding process as well as the surface condition of welded joints and manner of joint production.

  3. Industrial laser welding evaluation study

    NASA Technical Reports Server (NTRS)

    Hella, R.; Locke, E.; Ream, S.

    1974-01-01

    High power laser welding was evaluated for fabricating space vehicle boosters. This evaluation was made for 1/4 in. and 1/2 in. aluminum (2219) and 1/4 in. and 1/2 in. D6AC steel. The Avco HPL 10 kW industrial laser was used to perform the evaluation. The objective has been achieved through the completion of the following technical tasks: (1) parameter study to optimize welding and material parameters; (2) preparation of welded panels for MSFC evaluation; and (3) demonstration of the repeatability of laser welding equipment. In addition, the design concept for a laser welding system capable of welding large space vehicle boosters has been developed.

  4. Ultrasonic energy welds copper to aluminium

    SciTech Connect

    Flood, G.

    1997-01-01

    Attempting to weld copper to aluminum by conventional means through the application of thermal energy to melt and fuse the two metals (fusion welding) can result in an unreliable weld. The oxide layer on aluminum is difficult to remove, the melt temperatures of the two metals are not close, the two metals exhibit high thermal conductivity and alloying of the two metals creates a brittle intermetallic that is mechanically and electrically unreliable. An alternative for design engineers is to weld copper to aluminum by applying ultrasonic energy, which joins the metals without melting. The ultrasonic process creates a high quality weld both mechanically and electrically without forming a brittle intermetallic and without intermediate steps. Ultrasonic welding of copper to aluminum has been shown to be efficient and effective as demonstrated by a number of practical production applications. The problems of tough oxides, high thermal conductivity, high electrical conductivity, intermetallics and brittle alloys are not significant with the ultrasonic welding process. And similarly, the problems associated with pre and postweld cleaning, fluxes, hot metal and high energy costs are eliminated. Modern ultrasonic welding equipment is capable of monitoring energy and controlling the critical welding process variables.

  5. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    SciTech Connect

    Xu, Z.

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  6. Effect of tool geometry on ultrasonic welding process

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomohiro; Sakata, Yutaro; Watanabe, Takehiko

    2014-08-01

    Ultrasonic welding of pure aluminum sheets is performed using two weld tools, one with a knurled surface and one with a cylindrical surface. Relative motion behaviors of each weld tool, with respect to the working materials, during ultrasonic welding tests are analyzed using the digital correlation method. Weld microstructure development is investigated on the basis of transitional weld stages in the context of relative motion behaviors. The dominant relative motion is between the two work materials at the beginning of the weld but changes to be the motion between the weld tool and the work material it is in contact with as weld time increases. Thermo-mechanical effects of the relative motion of the weld tool and the work materials, on the development of weld microstructure, are discussed.

  7. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  8. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Yalavarthy, H. V.; He, T.; Yen, C.-F.; Cheeseman, B. A.

    2010-07-01

    A concise yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo-mechanical finite-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work-piece material behavior during the FSW process. Specifically, competition and interactions between plastic-deformation and dynamic-recrystallization processes are considered to properly account for the material-microstructure evolution in the weld nugget zone. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.

  9. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  10. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Pattee, F. M.; Masubuchi, K.

    1974-01-01

    Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.

  11. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  12. Mechanics and mechanisms of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    de Vries, Edgar

    During ultrasonic welding of sheet metal, normal and shear forces act on the parts to be welded and the weld interface. These forces are a result of the ultrasonic vibrations of the tool, pressed onto the parts to be welded. Furthermore they determine the weld quality and the power that is needed to produce the weld. The main goal in this study is to measure and calculate the tangential forces during ultrasonic metal welding that act on the parts and the weld interface and correlate them to weld quality. In this study a mechanics based model was developed which included a model for the temperature generation during welding and its effect on the mechanical material properties. This model was then used to calculate the interface forces during welding. The model results were in good agreement with the experimental results, which included the measured shear force during welding. With the knowledge of the forces that act at the interface it might be possible to control weld quality (strength) and avoid sonotrode welding (sticking of the sonotrode to the parts). Without a solution to these two problems USMW will never be applicable to large scale automated production use, despite its advantages. In the experiments the influence of part dimensions, friction coefficient, normal force and vibration amplitude on weld quality and sonotrode adhesion were examined. The presented model is capable of predicting and explaining unfavorable welding conditions, therefore making it possible to predetermine weld locations on larger parts or what surface preparation of the parts to be welded would lead to an improved welding result. Furthermore shear force at the anvil measured during welding could be correlated to changing welding conditions. This is a new approach of explaining the process of USMW, because it is based on mechanical considerations. The use of a shear force measuring anvil has the potential to be implemented into welding systems and the shear force would provide an

  13. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.

  14. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  15. A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.

    2012-04-01

    High-strength aluminum and titanium alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies [e.g., gas metal arc welding (GMAW)] and to obtain high-quality welds, solid-state joining technologies such as friction-stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military-vehicle-underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication, and testing. One such approach is developed and applied in this study. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. The approach is critically assessed using a strengths, weaknesses, opportunities, and threats (SWOT) analysis.

  16. Low voltage cathodic protection for high strength steels. Part 1: Definition of a new aluminum galvanic anode material

    SciTech Connect

    Pautasso, J.P.; Le Guyader, H.; Debout, V.

    1998-12-31

    Zn or Al-Zn-In sacrificial anodes are commonly used to protect submerged marine structures from general corrosion and galvanic corrosion. However, such electronegative alloys can also induce stress corrosion cracking or hydrogen embrittlement on high strength steels. Decreasing the electronegative potential applied to the structure, in the suitable range (around {minus}0.80 V vs Ag/AgCl) can significantly reduce the amount of hydrogen produced by the cathodic reaction and thus limit the risk of hydrogen embrittlement. The present work has consisted in determining the criteria for a new cathodic protection system with low voltage anodes and selecting one anode that matches the determined requirements, on the basis of laboratory tests. Among the various alloys tested the Al-O.1% Ga anode provided the most promising results and therefore was selected. The first full scale marine tests performed on an industrial casting of this anode have shown the effectiveness of the Al-O.1% Ga anode in the chosen potential range, with a satisfactory galvanic efficiency in real environments.

  17. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  18. Polyimide weld bonding for titanium alloy joints

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Kurland, R. M.

    1974-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  19. The application of statistically designed experiments to resistance spot welding

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Hales, Stephen J.

    1991-01-01

    State-of-the-art Resistance Spot Welding (RSW) equipment has the potential to permit realtime monitoring of operations through advances in computerized process control. In order to realize adaptive feedback capabilities, it is necessary to establish correlations among process variables, welder outputs, and weldment properties. The initial step toward achieving this goal must involve assessment of the effect of specific process inputs and the interactions among these variables on spot weld characteristics. This investigation evaluated these effects through the application of a statistically designed experiment to the RSW process. A half-factorial, Taguchi L sub 16 design was used to understand and refine a RSW schedule developed for welding dissimilar aluminum-lithium alloys of different thickness. The baseline schedule had been established previously by traditional trial and error methods based on engineering judgment and one-factor-at-a-time studies. A hierarchy of inputs with respect to each other was established, and the significance of these inputs with respect to experimental noise was determined. Useful insight was gained into the effect of interactions among process variables, particularly with respect to weldment defects. The effects of equipment related changes associated with disassembly and recalibration were also identified. In spite of an apparent decrease in equipment performance, a significant improvement in the maximum strength for defect-free welds compared to the baseline schedule was achieved.

  20. Gage monitors quality of cross-wire resistance welds

    NASA Technical Reports Server (NTRS)

    Etzel, J.; Piltch, A.

    1968-01-01

    Gage nondestructively monitors the quality of cross-wire resistance welds during the welding operation. The gage gives a dial indication of the relative embedment of the cross wires during the actual welding operation. A direct relationship exists between the depth of embedment and both weld strength and consistency.

  1. Laser welding of bone: Successful in vitro experiments

    SciTech Connect

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1994-02-01

    A method for ``welding`` bones is being developed. Tensile joint strengths of chicken bones welded in vitro have exceeded one kilogram. Welding was performed with either a Nd:YAG (1064 nm) or a diode laser (820 nm). Light was delivered with an optical fiber held a few millimeters from the bone surface. A solder was developed to assist in the welding process.

  2. Differences between Laser and Arc Welding of HSS Steels

    NASA Astrophysics Data System (ADS)

    Němeček, Stanislav; Mužík, Tomáš; Míšek, Michal

    Conventional welding processes often fail to provide adequate joints in high strength steels with multiphase microstructures. One of the promising techniques is laser beam welding: working without filler metal and with sufficient capacity for automotive and transportation industry (where the amount of AHSS steels increases each year, as well as the length of laser welds). The paper compares microstructures and properties of HSS (high strength steel) joints made by MAG (Metal Active Gas) and laser welding. The effects of main welding parameters (heat input, welding speed and others) are studied on multiphase TRIP 900 steel tubes and martensitic sheets DOCOL 1200, advanced materials for seat frames and other automotive components. Whereas the strength of conventional welds is significantly impaired, laser welding leaves strength of the base material nearly unaffected. As the nature of fracture changes during loading and depending on the welding method, failure mechanisms upon cross tension tests have been studied as well.

  3. Plastic Finite Element Analysis of D0 Toroid Iron Welds

    SciTech Connect

    Wands, R.; /Fermilab

    1987-11-23

    The assembly of the DO toroid iron involves the use of large groove welds to connect massive blocks of steel. These welds are very heavily constrained, and large thermal strains develop which have produced large cracks in the base metal near the weld. The effort to solve these problems has involved investigations of weld geometry, weld preparation, and the metallurgy of both the base metal and the welding rod. The purpose of this analysis was to compare the effects of two welding rods with markedly different yield strengths and post-yieding behaviour on the plastic strains developed in the base metal near the weld.

  4. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  5. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  6. Numerical control system of battery welding with pulsed YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Guoshun; Yang, Zhaoxia; Zhang, Taishi; Wei, Zhigang; Li, Chaoyang

    1999-09-01

    This article briefly introduces the pulse YAG laser welding system, a new research achievement of my section. This system can weld the electric pole, the holly board and other aluminum parts of lithium battery, and the process of loading, unloading, compressing and welding can be completed automatically. Moreover, the software proprietary of the system is very good, and its interface is friendly too. In order to achieve optimum welding effect, we have designed special laser discharging waveform. Its rise delay time, fall delay time, and width are all designed specially. With this special technology, the welding spot we get is smooth like mirror, and the welding intensity can be controlled conveniently.

  7. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  8. Residual stress characteristics of butt-welded flange by finite element analysis

    NASA Astrophysics Data System (ADS)

    Song, Yong-Lun; Yang, Xiao-Hong; Ran, Guo-Wei; Xiao, Tian-Jiao; Yan, Si-Bo

    2011-06-01

    Finite element simulation is utilized in an aluminum alloy 2014 butt-welded flange under AC Tungsten Inert Gas (AC-TIG) welding condition. The simulated results are in good agreement with the residual stress for the plate test using the actual welding parameters. Furthermore, characteristics of residual stress could be investigated in detail in several aspects, such as the welding structures, the welding sequences, the time intervals, preheating, and repair weld. The intermittent welding may be more convenient and advantageous for the practical applications to reduce the stress, and the local repair welding may cause more stress within the repairing region obviously.

  9. Tool Forces Developed During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.

    2003-01-01

    This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.

  10. Structure-Property Correlation of AA2014 Friction Stir Welds: Role of Tool Pin Profile

    NASA Astrophysics Data System (ADS)

    Ramanjaneyulu, K.; Madhusudhan Reddy, G.; Venugopal Rao, A.; Markandeya, R.

    2013-08-01

    The influence of rapid plastic deformation in the generation of welding heat during friction stir welding (FSW), supplementing the frictional heat generation by the tool shoulder, forms the thrust of the present investigation. Several researchers have highlighted the role of tool shoulder in the generation of frictional heat and suggested that the tool-material interface friction as the sole mechanism for heating. The configuration of tool pin profile is seldom studied for its contribution to welding heat through rapid plastic deformation at high strain rates (103/s), especially while welding thick plates. An attempt has been made to understand the dependence of deformation heat generation with different tool pin profiles in welding 5 mm thick AA2014-T6 aluminum alloy, maintaining the same swept volume during the tool rotation. An attempt has also been made to correlate the influence of process response variables such as force and torque acting on the tool pin. To quantify the physical influence of tool pin profile, temperature measurements were made in the region adjacent to the rotating pin, close to nugget in the thermo-mechanically affected zone (TMAZ). It has been observed that the temperature rises at a relatively rapid rate in the case of hexagonal tool pin compared to the welds produced employing other tool pin profiles. It is observed that during FSW, extensive deformation experienced at the nugget zone and the evolved microstructure strongly influences the mechanical properties of the joint. The present study is also aimed at understanding the influence of tool profile on the microstructural changes and the associated mechanical properties. Transverse tensile samples failed at the nugget/TMAZ boundary due to localized softening. Hexagonal tool pin profile welds have shown higher tensile strength, low TMAZ width, and high nugget hardness compared to other tool pin profile welds.

  11. Dynamics of near-alpha titanium welding

    NASA Astrophysics Data System (ADS)

    Neuberger, Brett William

    Typically, when gas tungsten arc welding (GTAW) is employed to join near-alpha titanium alloys, the resulting weld fusion zone (FZ) is much harder than that of the base metal (BM), thereby leading to lost ductility. The aim of this investigation was to improve FZ ductility of Ti-5Al-1Sn-1V-1Zr-0.8Mo by modifying filler metal chemistry. In this regard, metallic yttrium was added to the filler metal and aluminum concentration reduced. It was believed that additions of yttrium would lead to formation of yttria in the weld melt, thereby promoting heterogeneous nucleation. Since oxygen and aluminum both act as alpha-stabilizers, expected pickup of oxygen during the welding process will be offset by the aluminum reduction. Tensile testing indicated that modified filler metal welds showed a dramatic increase in ductility of the FZ. Fracture toughness testing showed that while JIC values decreased in all welds, the tearing modulus, T, in modified filler metal welds was significantly higher than that of matching filler metal welds. Microhardness mapping of the weld zones illustrated that modified filler metal welds were significantly softer than matching filler metal welds. Microstructural examinations were completed through the use of optical, SEM and TEM studies, indicating that there was a presence of nano-particles in the weld FZ. XPS analysis identified these particles as yttrium oxysulfate. WDS analysis across the welds' heat affected zones demonstrated that there is an internal diffusion of oxygen from the BM into the FZ. Research results indicate yttrium oxysulfide particles form in the weld pool, act as a drag force on the solidification front and limit growth of prior-beta grain boundaries. The reduced prior-beta grain size and removal of interstitial oxygen from the matrix in modified filler metal welds, further enhanced by oxidation of yttrium oxysulfide to yttrium oxysulfate, leads to increased ductility in the weld's FZ. Addition of yttrium to the weld also

  12. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  13. Weldability of thin sheet metals during small-scale resistance spot welding using an alternating-current power supply

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gorman, P.; Tan, W.; Ely, K. J.

    2000-09-01

    The resistance weldability of 0.2-mm-thick sheet aluminum, brass, and copper in small-scale resistance spot welding (SSRSW) was studied. The effects of electrode materials and process parameters on joint strength and nugget size were investigated. The welding current ranges for SSRSW of the sheet metals were determined based on the minimum current that produced a required nugget diameter and maximum currents that did not result in electrode-sheet sticking or weld metal expulsion. A qualitative analysis indicated that resistance weldability of the metals is not only determined by their resistivity (or thermal conductivity) but is also affected by other physical properties (such as melting point, latent heat of fusion and specific heat).

  14. Melting Efficiency During Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  15. Influence of Specific Features of Twin Arc Welding on Properties of Weld Joints

    NASA Astrophysics Data System (ADS)

    Sholokhov, M. A.; Melnikov, A. U.; Fiveyskiy, A. M.

    2016-04-01

    The present article covers the influence of standard and narrow gap twin arc welding on properties of weld joints from high-strength steels. While analyzing microsections we established that distribution of micro structure and phase terms, as well the distribution of micro-hardness, were more homogeneous under narrow gap twin arc welding.

  16. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  17. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  18. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    NASA Technical Reports Server (NTRS)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  19. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  20. Characterization of weld imperfections in 2195 Al-Li alloy: Experimental approaches towards mechanisms

    NASA Astrophysics Data System (ADS)

    Zaidi, Anwer Arif

    1997-10-01

    2195 Al-Li alloy apparently offers significantly higher strength to weight ratio than the 2219 aluminum alloy. It was discovered that 2195 Al-Li has a greater tendency to crack, generates peculiar kind of porosity, and is vulnerable to deleterious microparticulate emission during welding than its 2219 predecessor. An experimental investigation has been carried to characterize these weld imperfections in 2195 Al-Li alloy. This work presents a scientific account of an analytical study and of the clues it has provided towards an understanding of the weld imperfections in 2195 Al-Li welds. The study begins with the observation of peculiar pore formation in 2195 welds, which occurs not as in the case of 2219 welds upon solidification, but in a thermal ageing process subsequent to solidification. An apparent reaction (DTA) between the fusion zone dendritic surface and nitrogen gas implies a porous fusion zone. Tiny surface melting sites, designated as Blisters, due to its resemblance to skin blisters, testify to the conjunction of outgassing and melting effects and suggest that porosity formation in the solid phase depends upon local melting as well as outgassing. The absence of a dark magnesium rich substance, designated as smut in the immediate vicinity of a crack opening next to a weld repair bead implies either an umbrella of gas emission keeping off a condensate evaporated under the welding arc or, possibly an expulsion of atomized, liquified metal from the crack itself in the form of microparticulate emission. These microparticulate emission from VPPA welds takes various forms herein labeled as smut, snow, and Lava. It is attributed to a gas generating reaction taking place at molten grain boundaries or crack surfaces. The reaction could only be release of hydrogen displaced from lithium hydrides by a coming influx of dissolved nitrogen. There appears to be a close link between porosity, cracking and microparticulate emission. Observations of melting on the surface