Science.gov

Sample records for aluminum-molten salt contactor

  1. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    SciTech Connect

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental

  2. Plasma contactor research, 1990

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1991-01-01

    Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the

  3. Plasma contactors for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Wilbur, Paul J.

    1986-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors, conducted concurrently at NASA Lewis Research Center and Colorado State University, are reviewed. These research programs include the definition of preliminary plasma contactor designs, and the characterization of their operation both as electron emitters and electron collectors to and from a simulated space plasma. Results indicate that ampere-level electron currents, sufficient for electrodynamic tether operation, can be exchanged between hollow cathode-based plasma contactors and a dilute plasma.

  4. Plasma contactor research - 1991

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett; Williams, John D.; Wilbur, Paul J.

    1992-01-01

    A report describing the operating principles of hollow-cathode-based plasma contactors emitting or collecting electrons from an ambient plasma is summarized. Preliminary experiments conducted to determine the noise generated by these plasma contactors in the emission-current return line and in the plasma near it are described. These noise data are measured as current fluctuations in the return line and to the Langmuir probe and then analyzed using a fast Fourier transform technique. The spectral compositions of the data are characterized using power spectral density plots which are examined to identify possible noise source(s) and production mechanism(s). The precautions taken in the construction and calibration of the instrumentation to assure adequate frequency response are described. Experimental results show that line-current noise levels are typically 2 percent of the electron current being emitted or collected. However, noise levels increase to as much as 20 percent of the electron current at a few electron-collection operating conditions. The frequencies associated with most of the noise were harmonics of the 60 Hz input to system power supplies. Plasma noise had characteristics similar in magnitude and frequency to those for the return-line noise, but they contained additional features at frequencies considered to be related to ion-acoustic instabilities. Also discussed is a new probe positioning system built to facilitate future plasma-contractor research.

  5. FLUID CONTACTOR APPARATUS

    DOEpatents

    Spence, R.; Streeton, R.J.W.

    1956-04-17

    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  6. Contactor/filter improvements

    DOEpatents

    Stelman, D.

    1988-06-30

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.

  7. Contactor/filter improvements

    DOEpatents

    Stelman, David

    1989-01-01

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. The housing further includes a gas inlet means, a gas outlet means, and means for moving a body of granular material through the zone. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. Disposed on the upstream face of the filter element is a cover screen which isolates the filter element from contact with the moving granular bed and collects a portion of the particulates so as to form a dust cake having openings small enough to exclude the granular material, yet large enough to receive the dust particles. In one embodiment, the granular material is comprised of prous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses.

  8. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  9. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  10. Space plasma contactor research, 1987

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.

  11. Mass Transfer in 12-CM Centrifugal Contactors

    SciTech Connect

    Chesna, J.C.

    2001-06-26

    One eight-stage unit (8-pack) of centrifugal contactors was tested in both extraction and stripping modes. Efficiencies approaching 100 percent were obtained in both modes. The contactors were operated successfully at a wide range of combined flow rates, including the HEF conditions. This report discusses the results of that test.

  12. Research on the displacement control method of asynchronous modular contactor

    NASA Astrophysics Data System (ADS)

    He, Gong; Ming, Zong

    2017-01-01

    Ac contactor is a kind of low voltage electrical appliances with large usage and wide application. Because of the frequent operation, contactor life must be long enough to ensure the reliable operation of power system. The electrical life of the contactor, as the key to affect the service life of the contactor, is mainly affected by the arc developed in the breaking and closing course. This paper concentrates on a new type of asynchronous modular contactor. To get the contactor movement characteristics, the dynamic model of the electromagnetic system is established by MATLAB/SIMULINK. Then, according to the displacement curve of contactor, the breaking process and closing process is planned. The thought of closed loop control, by adjusting the parameters of PID controller, enables the contactor to operate as the planning displacement curve. In addition, to achieve no arc or micro arc breaking and no bounce or micro bounce closing , a displacement closed loop control system for contactor is designed.

  13. High-current plasma contactor neutralizer system

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.

    1989-01-01

    A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.

  14. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    SciTech Connect

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-06-06

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed

  15. Micro contactor based on isotachophoretic sample transport.

    PubMed

    Goet, Gabriele; Baier, Tobias; Hardt, Steffen

    2009-12-21

    It is demonstrated how isotachophoresis (ITP) in a microfluidic device may be utilized to bring two small sample volumes into contact in a well-controlled manner. The ITP contactor serves a similar purpose as micromixers that are designed to mix two species rapidly in a microfluidic channel. In contrast to many micromixers, the ITP contactor does not require complex channel architectures and allows a sample processing in the spirit of "digital microfluidics", i.e. the samples always remain in a compact volume. It is shown that the ITP zone transport through microchannels proceeds in a reproducible and predictable manner, and that the sample trajectories follow simple relationships obtained from Ohm's law. Firstly, the micro contactor can be used to synchronize two ITP zones having reached a channel at different points in time. Secondly, fulfilling its actual purpose it is capable of bringing two samples in molecular contact via an interpenetration of ITP zones. It is demonstrated that the contacting time is proportional to the ITP zone extension. This opens up the possibility of using that type of device as a special type of micromixer with "mixing times" significantly below one second and an option to regulate the duration of contact through specific parameters such as the sample volume. Finally, it is shown how the micro contactor can be utilized to conduct a hybridization reaction between two ITP zones containing complementary DNA strands.

  16. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  17. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  18. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  19. Corrosion abatement in sulfuric acid alkylation unit horizontal contactors

    SciTech Connect

    Schutt, H.U.

    1997-09-01

    The need to increase throughput in alkylation plants has resulted in higher operating temperatures and higher water levels in alkylation acids than projected by design. Combined with higher flow rates, the more severe process environment causes carbon steel to corrode at increased rates. Carbon steel is the main material of construction for horizontal contactors (Stratco reactors). A leak to the atmosphere in the hydraulic end cone of one contactor and the realization that basic corrosion data are not available for high throughput process conditions in alkylation units prompted a laboratory study to develop the lacking expertise. Corrosion in alkylation unit horizontal contactors is successfully mitigated by saturating fresh alkylation acid with ferrous sulfate.

  20. Modeling the expansion of a contactor plasma

    NASA Astrophysics Data System (ADS)

    Hogan, Erik; Delzanno, Gian Luca; Camporeale, Enrico; Borovsky, Joseph; MacDonald, Elizabeth; Thomsen, Michelle

    2012-10-01

    Plasma contactor technology is widely used on board spacecraft to keep spacecraft charging levels under control. On the International Space Station, for instance, it is used to prevent high current discharges between differently charged surfaces. It consists of emitting a neutral plasma to create a plasma reservoir near the spacecraft in order to balance the currents collected by the spacecraft from the magnetospheric environment. One approach to modeling the contactor plasma plume applies a self-similar solution in order to gain insight into the plume dynamics without requiring expensive numerical simulations [1, 2]. Typically, hydrodynamic fluid equations are used to model the plasma behavior. We present a comparison of different self-similar plume models existing in the literature [1, 2] and compare these with our Particle-In-Cell simulations in the near-field to assess their validity. We will consider both the unmagnetized and the magnetized limit. [4pt] [1] F. F. Gabdullin, A. G. Korsun, E. M. Tverdokhlebova, IEEE Trans. Plasma Science 36(5) 2207 (2008). [2] M. Merino, E. Ahedo, C. Bombardelli, H. Urrutxua, J. Pelaez, ``Hypersonic plasma plume expansion in space,'' 32nd International Electric Propulsion Conference, IEPC-2011-086, Wiesbaden, Germany, 2011.

  1. Modeling the expansion of a contactor plasma

    NASA Astrophysics Data System (ADS)

    Hogan, E. A.; Delzanno, G.; Camporeale, E.; Borovsky, J. E.; MacDonald, E.; Thomsen, M. F.

    2012-12-01

    Plasma contactor technology is widely used on board spacecraft to keep spacecraft charging levels under control. On the International Space Station, for instance, it is used to prevent high current discharges between differently charged surfaces. It consists of emitting a neutral plasma to create a plasma reservoir near the spacecraft in order to balance the currents collected by the spacecraft from the magnetospheric environment. One approach to modeling the contactor plasma plume applies a self-similar solution in order to gain insight into the plume dynamics without requiring expensive numerical simulations [1, 2]. Typically, hydrodynamic fluid equations are used to model the plasma behavior. We present a comparison of different self-similar plume models existing in the literature [1, 2] and compare these with our Particle-In-Cell simulations in the near-field to assess their validity. We will consider both the unmagnetized and the magnetized limit, treating the magnitude and angle (relative to the plasma injection velocity) of the magnetic field as a parameter. [1] F. F. Gabdullin, A. G. Korsun, E. M. Tverdokhlebova, 'The plasma plume emitted onboard the international space station under the effect of the geomagnetic field', IEEE Trans. Plasma Science 36(5) 2207 (2008). [2] M. Merino, E. Ahedo, C. Bombardelli, H. Urrutxua, J. Pelaez, 'Hypersonic plasma plume expansion in space', 32nd International Electric Propulsion Conference, IEPC-2011-086, Wiesbaden, Germany, 2011.

  2. Low cost membrane contactors based on hollow fibres

    NASA Astrophysics Data System (ADS)

    Dohnal, Mirko; Vesely, Tomas; Raudensky, Miroslav

    2012-04-01

    Membrane contactors are used to solve different chemical engineering tasks (e.g. water saturation with gases). Such elements are traditionally used for bubble less oxidation of blood. However, their industrial applications are rather limited by their high investment costs. This is probably the main reason why membrane contactors are not used so widely, e.g. classical absorbers, etc. If potted bundles of hollow fibres are available, then it is a relatively simple task to design an ad hoc membrane contactor. However, it must be emphasised that to achieve the highest mass transfer efficiency requires a rather time-consuming tuning of each ad hoc designed contactor. To check the differences by water evaporation were aligned two modes, the water inside the hollow fibre membrane and fan air outside, next with the water outsides and flowing pressure air inside the membrane.

  3. Development of Centrifugal Contactor with High Reliability

    SciTech Connect

    Okamura, Nobuo; Takeuchi, Masayuki; Ogino, Hideki; Kase, Takeshi; Koizumi, Tsutomu

    2007-07-01

    In Japan Atomic Energy Agency (JAEA), an innovative centrifugal contactor system has been developed for a future reprocessing plant. It was confirmed that it had a higher extraction capacity through the uranium test already. But it was necessary that it had the higher mechanical reliability to be applied in a reprocessing plant. In this study, two types of driving units that use a ball bearing or a magnetic bearing have been developed for it. It was confirmed that they had enough abilities trough endurance tests. The driving unit with ball bearing could be operated continuously for 5000 hours that was equal to a term of an annual operation. It was found that it could be operated for a year without maintenance. JAEA will continue to improve them and select more advantageous one on the basis of economy and lifetime in near future. (authors)

  4. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  5. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  6. Development of novel contactor for nuclear solvent extraction

    SciTech Connect

    Kumar, Shekhar; Kumar, Rajnish; Sivakumar, D.; Balamurugan, M.; Koganti, S.B.

    2008-07-01

    For current designs of radiochemical plants, solvent-extraction contactors with no periodic maintenance like pulse column are the first choice. In addition, as costs of specialty solvents for nuclear extraction are quite high, there is a demand for operation at extreme phase ratios. Recently a novel mixer-settler was visualized and developed for this kind of service. The mixer of the novel contactor is based on rotated helical tubes and does not involve any mechanical moving part. Mass-transfer runs were carried out with aqueous nitric acid and 30% TBP solvent at A/O of 0.25-200 (in extraction) and A/O of 0.25-10 (in back-extraction mode). The developed contactor exhibited nearly 100% efficiency for all the cases. (authors)

  7. Physical processes associated with current collection by plasma contactors

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  8. Prognostic and Diagnostic Technology for DC Actuated Contactors and Motor Starters

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Zou, Lian; Briggs, Roger

    Unpredicted contactor failure can interrupt production and affect the uptime and throughput of manufacturing. Usually the life of a contactor is based on the manufacturers' life test data. However, due to the way of how the contactor is operated and the environment it is operated in, the working life of a contactor can vary significantly. In this paper, a novel technology has been investigated to predict potential failures of DC actuated contactors by monitoring their DC coil current and contactor currents. Three parameters are derived from this set of data to monitor the health of contactors: contact over-travel, armature pull-in time and coil current differential. Contact over-travel provides information on the remaining life of contacts and coil current differential provides indication of contact weld and carrier jam due to debris. The armature pull-in time provides information on contactor closing speed. Prototype contactors have been built and AC4 tests have been carried out for evaluation. Test results show that the contact over-travel parameter agrees well with contact mass loss data taken after contactors failed. The derived armature pull-in time agrees well with that measured by a laser displacement sensor. The defined parameters provide effective monitoring and prediction of potential contactor failures.

  9. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    SciTech Connect

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  10. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  11. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    ERIC Educational Resources Information Center

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  12. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  13. High Current 270 VDC Contactor and Current Sensor System Design and Development

    DTIC Science & Technology

    1998-09-01

    HVDC contactor. Eaton Corporation has developed a design, completed a critical design review, developed a test plan, constructed the prototype test...4 DISCUSSIONS AND RECOMMENDATIONS, CONCLUSIONS 4.1 Discussions and Recommendations The HVDC contactor incorporates an arc chute with a permanent...power supply failed and required repair. The dielectric withstands voltage of the HVDC contactor was reduced below the acceptable limits of the

  14. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    SciTech Connect

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middle of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.

  15. Corrosion abatement in sulfuric acid alkylation unit horizontal contactors

    SciTech Connect

    Schutt, H.U.

    1999-03-01

    A leak to the atmosphere in the hydraulic end cone of a horizontal contactor and the realization that basic corrosion data are not available for high-throughput process conditions in alkylation units prompted a laboratory study to develop the lacking expertise. Corrosion in the horizontal contractor of an alkylation unit was mitigated successfully by saturating fresh alkylation acid with ferrous sulfate (FeSO{sub 4}).

  16. Biological Treatment of Composition B Wastewaters. 1. Rotating Biological Contactor

    DTIC Science & Technology

    1986-09-01

    Hazardous Materials Agency ATTN: AMXTH-TE-D Aberdeen Proving Ground, MD 21010-5401 2 Commander Holston Army Ammunition Plant ATTN: SMCHO-EN Kingsport ...NA pilot-scale rotating biological contactor (RBC) was used to treat wastewaters from explosives production at Holston Army Ammunition Plant . At...waters will be similar to those from Holston Army kimunition Plant (HSAAP), presently the sole domestic source of RDX and S...... Aithoiigh more than

  17. Centrifugal contactor operations for UREX process flowsheet. An update

    SciTech Connect

    Pereira, Candido; Vandegrift, George F.

    2014-08-01

    The uranium extraction (UREX) process separates uranium, technetium, and a fraction of the iodine from the other components of the irradiated fuel in nitric acid solution. In May 2012, the time, material, and footprint requirements for treatment of 260 L batches of a solution containing 130 g-U/L were evaluated for two commercial annular centrifugal contactors from CINC Industries. These calculated values were based on the expected volume and concentration of fuel arising from treatment of a single target solution vessel (TSV). The general conclusions of that report were that a CINC V-2 contactor would occupy a footprint of 3.2 m 2 (0.25 m x 15 m) if each stage required twice the nominal footprint of an individual stage, and approximately 1,131 minutes or nearly 19 hours is required to process all of the feed solution. A CINC V-5 would require approximately 9.9 m 2 (0.4 m x 25 m) of floor space but would require only 182 minutes or ~ 3 hours to process the spent target solution. Subsequent comparison with the Modular Caustic Side Solvent Extraction Unit (MCU) at Savannah River Site (SRS) in October 2013 suggested that a more compact arrangement is feasible, and the linear dimension for the CINC V-5 may be reduced to about 8 m; a comparable reduction for the CINC V-2 yields a length of 5 m. That report also described an intermediate-scale (10 cm) contactor design developed by Argonne in the early 1980s that would better align with the SHINE operations as they stood in May 2012. In this report, we revisit the previous evaluation of contactor operations after discussions with CINC Industries and analysis of the SHINE process flow diagrams for the cleanup of the TSV, which were not available at the time of the first assessment.

  18. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J [Naperville, IL; Snyder, Seth W [Lincolnwood, IL

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  19. Integration issues of a plasma contactor Power Electronics Unit

    NASA Astrophysics Data System (ADS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-06-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  20. Functional testing of the space station plasma contactor

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-03-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  1. Integration issues of a plasma contactor Power Electronics Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  2. A Computer Model for Teaching the Dynamic Behavior of AC Contactors

    ERIC Educational Resources Information Center

    Ruiz, J.-R. R.; Espinosa, A. G.; Romeral, L.

    2010-01-01

    Ac-powered contactors are extensively used in industry in applications such as automatic electrical devices, motor starters, and heaters. In this work, a practical session that allows students to model and simulate the dynamic behavior of ac-powered electromechanical contactors is presented. Simulation is carried out using a rigorous parametric…

  3. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  4. Liquid–Liquid Mixing Studies in Annular Centrifugal Contactors Comparing Stationary Mixing Vane Options

    SciTech Connect

    Wardle, Kent E.

    2015-11-10

    Comparative studies of multiphase operation of annular centrifugal contactors showing the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported with selected measurements in a lab-scale 5 cm contactor and 12.5 cm engineering-scale unit. Fewer straight vanes give greater mixingzone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  5. Extraction of phenol in wastewater with annular centrifugal contactors.

    PubMed

    Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen

    2006-04-17

    Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.

  6. Indicators for technological, environmental and economic sustainability of ozone contactors.

    PubMed

    Zhang, Jie; Tejada-Martinez, Andres E; Lei, Hongxia; Zhang, Qiong

    2016-09-15

    Various studies have attempted to improve disinfection efficiency as a way to improve the sustainability of ozone disinfection which is a critical unit process for water treatment. Baffling factor, CT10, and log-inactivation are commonly used indicators for quantifying disinfection credits. However the applicability of these indicators and the relationship between these indicators have not been investigated in depth. This study simulated flow, tracer transport, and chemical species transport in a full-scale ozone contactor operated by the City of Tampa Water Department and six other modified designs using computational fluid dynamics (CFD). Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone contactor designs and upgrades and developed a composite indicator to quantify the sustainability in technological, environmental and economic dimensions.

  7. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  8. Identification And Characterization Of The Solids Found In Extraction Contactor SEP-401 In June 2012

    SciTech Connect

    Fondeur, F. F.; Fink, S. D.

    2012-12-10

    The Modular Caustic-Side Solvent Extraction Unit (MCU) recently conducted an outage that included maintenance on the centrifugal contactors. Operations personnel observed solids or deposits in two contactors and attempted to collect samples for analyses by Savannah River National Laboratory (SRNL). The residues found in Extraction Contactor SEP-401 are a mixture of amorphous silica, aluminosilicate, titanium, and debris from low alloy steel. The solids contain low concentrations of plutonium and strontium. These isotopes are associated with the titanium that came from the monosodium titanate (MST) added in the Actinide Removal Process (ARP) most likely as leached Ti from the MST that precipitated subsequently in MCU. An attempt was also made to obtain samples from the contents of Wash Contactor SEP-702. However, sampling provide ineffective.

  9. OZONE CONTACTOR FLOW VISUALIZATION AND CHARACTERIZATION USING 3-DIMENSIONAL LASER INDUCED FLUORESCENCE

    EPA Science Inventory

    Hydrodynamics of ozone contactors have a crucial impact on efficient inactivation of pathogens such as Cryptosporidium as well as control of disinfection byproducts such as bromate. Improper mixing behaviors including short-circuiting, internal recirculation and presence...

  10. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    SciTech Connect

    Ciucci, J.A. Jr.

    1983-12-01

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  11. Discharge ignition behavior of the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Hamley, John A.

    1995-01-01

    Ignition testing of hollow cathode assemblies being developed for the Space Station plasma contactor system has been initiated to validate reliable multiple restart capability. An ignition approach was implemented that was derived from an earlier arcjet program that successfully demonstrated over 11,600 ignitions. For this, a test profile was developed to allow accelerated cyclic testing at expected operating conditions. To date, one hollow cathode assembly has been used to demonstrate multiple ignitions. A prototype hollow cathode assembly has achieved 3,615 successful ignitions at a nominal anode voltage of 18.0 V. During the ignition testing several parameters were investigated, of which the heater power and pre-heat time were the only parameters found to significantly impact ignition rate.

  12. Performance analysis of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Aiffah, Wan Nurul; Aisyah, Siti; Fashihah, Nor; Anuar, Khairil

    2014-06-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extrator such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has be come a very important subject to be discussed not just amongst chemical engineers but mathematicans as well. In this study, the performance of small diameter column RDC using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of design of the experiments (DOE). DOE are applied to estimated the effect of four independent variable; protor speed, flow rate, concentration of continuous inlet and dispersed inlet and their interaction factor to detemine the most significant factor that effect the concentration of continuous and dispersed outlet as output parameters.

  13. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    SciTech Connect

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  14. ISS And Space Environment Interactions Without Operating Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  15. Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based modeling framework.

    PubMed

    Zhang, Jie; Tejada-Martínez, Andrés E; Zhang, Qiong; Lei, Hongxia

    2014-04-01

    The capability of predicting hydraulic and disinfection efficiencies of ozone disinfection contactors is essential for evaluating existing contactors and improving future designs. Previous attempts based on ideal and non-ideal models for the hydraulics and simplified mechanisms for chemical reaction modeling have resulted in low accuracy and are restricted to contactors with simple geometries. This manuscript develops a modeling framework for the ozonation process by combining computational fluid dynamics (CFD) with a kinetics-based reaction modeling for the first time. This computational framework has been applied to the full-scale ozone contactor operated by the City of Tampa Water Department. Flow fields, residence time distribution, ozone concentration distribution, and concentration-contact time (CT) distribution within the contactor have been predicted via the computational framework. The predictions of ozone and bromate concentrations at sample points agree well with physical experimental data measured in the contactor. The predicted CT values at the contactor outlet demonstrate that the disinfection performance of the ozone contactor operated by the City of Tampa Water Department is sufficient to meet regulation requirements. The impact of seasonal flow rate change on disinfection performance is found to be significant and deserves attention during the management and operation of a water treatment plant.

  16. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOEpatents

    Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  17. Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors

    SciTech Connect

    David Meikrantz; Troy Garn; Nick Mann; Jack Law; Terry Todd

    2007-09-01

    Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge collector area. Foam buildup in the upper rotor head area can aspirate additional vapor from the contactor housing resulting in a complete loss of separation equilibrium. Variable speed drives are thus desirable to optimize and balance the operating parameters to help ensure acceptable performance. Proper venting of larger contactors is required to balance pressures across individual stages and prevent vapor lock due to foam aspiration.

  18. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  19. Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor

    SciTech Connect

    Hu, S.Y.B.; Wiencek, J.M.

    1998-03-01

    A novel extraction technique using an emulsion liquid membrane within a hollow-fiber contactor was developed and utilized to extract copper using LIX 84 extractant. Emulsion liquid membranes are capable of extracting metals from dilute waste streams to levels much below those possible by equilibrium-limited solvent extraction. Utilizing an emulsion liquid membrane within a hollow-fiber contactor retains the advantages of emulsion-liquid-membrane extraction, namely, simultaneous extraction and stripping, while eliminating problems encountered in dispersive contacting methods, such as swelling and leakage of the liquid membrane. Mathematical models for extraction in hollow-fiber contactors were developed. The models satisfactorily predict the outcome of both simple solvent extraction and emulsion-liquid-membrane extraction of copper by LIX 84 in a hollow-fiber contactor over a wide range of conditions. Emulsion-liquid-membrane extraction performs exceptionally well when the extraction is close to equilibrium limit. It is also capable of extracting a solute f/rom very dilute solutions. Stability of the liquid membrane is not crucial when used in hollow-fiber contactors; the surfactant in liquid membrane can be reduced or even eliminated without severely impairing the performance.

  20. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    SciTech Connect

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-07-31

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  1. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  2. ISS Plasma Contactor Units Operations During Strong Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Alred, J.; Mikatarian, R.; Barsamian, H.; Minow, J.; Koontz, S.

    2003-12-01

    The large structure and high voltage arrays of the ISS represent a complex system that interacts with the Earth's ionosphere. To mitigate spacecraft charging problems on the ISS, two Plasma Contactor Units discharge ionized xenon gas to "clamp" the potential of the ISS with respect to the low Earth orbit plasma. The Plasma Interaction Model, a model of ISS plasma interaction developed from the basic physics of the interaction phenomena, includes magnetic induction effects, plasma temperature and density effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. To augment this model, the PCU discharge current has been monitored for the ISS in a variety of flight attitudes as well as during the annual seasons. A review of the PCU discharge currents shows a correlation to the geomagnetic activity. The variation in the PCU discharge current during strong geomagnetic activity will be presented. Also, the PCU discharge currents during periods of low geomagnetic activity will be discussed. The presentation will conclude with a comparison of satellite plasma measurements during different stages of geomagnetic activity.

  3. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  4. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    DOE PAGES

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugalmore » contactors.« less

  5. Extended test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 4700 hours with small changes in operating parameters. The discharge experienced 4 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was reignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1A) xenon hollow cathode reported to date.

  6. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  7. Apparatus for supporting contactors used in extracting nuclear materials from liquids

    DOEpatents

    Leonard, Ralph A.; Frank, Robert C.

    1991-01-01

    Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.

  8. Separation of boric acid in liquid waste with anion exchange membrane contactor

    SciTech Connect

    Park, J.K.; Lee, K.J.

    1995-12-31

    In order to separate boric acid in liquid waste, some possible technologies were investigated and the membrane contactor without dispersion and density differences was selected. The separation experiments on a Celgard 3401{reg_sign} hydrophilic microporous membrane contactor were first performed to obtain the basic data and to determine the properties of the contactor. The experimental conditions were as follows: boric acid concentrations up to 2.0 M, pH 7.0, temperatures of 25 and 55 C, and flow rates of 100, 300, 500, and 800 cm{sup 3}/min. Secondly, an AFN{reg_sign} anion exchange membrane contactor was tested at temperatures of 40 and 55 C and flow rate 400 cm{sup 3}/min. Boric acid solutions were prepared by the same method as that for Celgard 3401{reg_sign} but contained 5.0{times}10{sup {minus}4} M cobalt chloride (CoCl{sub 2}). To simulate membrane contractors, parameters such as the differential diffusion coefficients of boric acid and the mass transfer coefficients in the AFN membrane were measured, and regression models estimating the diffusion coefficient at several conditions were developed. The Celgard 3401{reg_sign} membrane contactor was simulated and compared with experimental data. Simulation results agreed with the experimental data well when a proper correction factor was utilized. The correction factor was independent of the solution temperature and was 8.75 at the flow rates of 300--800 cm{sup 3}/min. This correction factor was also applied to simulate the AFN{reg_sign} resulted in a good agreement with experiment at 40 C, but not 55 C. The retention on cobalt was also better at 40 c than 55 C. The simulating computer program was also applied to a life size contactor designed conceptually.

  9. Reliability Optimization Design for Contact Springs of AC Contactors Based on Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng; Su, Xiuping; Wu, Ziran; Xu, Chengwen

    The paper illustrates the procedure of reliability optimization modeling for contact springs of AC contactors under nonlinear multi-constraint conditions. The adaptive genetic algorithm (AGA) is utilized to perform reliability optimization on the contact spring parameters of a type of AC contactor. A method that changes crossover and mutation rates at different times in the AGA can effectively avoid premature convergence, and experimental tests are performed after optimization. The experimental result shows that the mass of each optimized spring is reduced by 16.2%, while the reliability increases to 99.9% from 94.5%. The experimental result verifies the correctness and feasibility of this reliability optimization designing method.

  10. Design, performance, and evaluation of a direct-current contactor for space nuclear electrical systems

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.; Medwid, D. W.; Koutnik, E. A.; Powell, A. H.

    1972-01-01

    A direct-current contactor for use in large space power systems was designed, built, and tested. It was developed to be operational in an environment of 540 C and at a pressure of 0.0001 N/sq m or lower. The contactor is rated to pass 10 A continuously and to interrupt a 20-A current at 10,000 V. It was tested to determine the corona threshold level and the leakage current at different temperatures. Also, it was tested for its closing and interruption ability.

  11. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Albert C.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

  12. Rotating biological contactors: Wastewater treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning wastewater treatment using rotating biological contactors (RBC). Citations focus on reaction kinetics, operational modeling, and removal efficiencies. Biological oxygen demand (BOD) and nitrogen removal are discussed. Citations examine performance of RBCs in industrial and municipal applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    PubMed

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance.

  14. Temperature control in a 30 stage, 5-cm Centrifugal Contactor Pilot Plant

    SciTech Connect

    Jack D. Law; Troy G. Garn; David H. Meikrantz

    2009-09-01

    Temperature profile testing was performed using a 30 stage 5-cm centrifugal contactor pilot plant. These tests were performed to evaluate the ability to control process temperature by adjusting feed solution temperatures. This would eliminate the need for complex jacketed heat exchanger installation on the centrifugal contactors. Thermocouples were installed on the inlet and outlets of each stage, as well as directly in the mixing zone of several of the contactor stages. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 with nitric acid were the solution feeds for the temperature profile testing. Temperature data profiles for an array of total throughputs and contactor rpm values for both single-phase and two-phase systems were collected with selected profiles. The total throughput ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Inlet solution temperatures ranging from ambient up to 50 °C were tested. Results of the two-phase temperature profile testing are detailed

  15. Evaluation of high-efficiency gas liquid contactors for natural gas processing

    SciTech Connect

    Palla, N.; Lee, A.L.

    1995-06-01

    The objectives of this program are to develop and evaluate advanced processing technologies that can reduce the cost of upgrading sub quality natural gas to pipeline standards. The successful application of cost-effective, new technologies will facilitate the production of sub quality natural gas that otherwise would be too expensive to produce. The overall program is focused on the following activities: evaluation of the potential of structured packing for the removal of acid gases from natural gases, and expansion of the currently available database of the fluid dynamics of rotating gas liquid contactors. The natural gas sweetening, structured packing field tests are scheduled to be conducted in calendar year 1995. Design, procurement and construction of the field test unit. Expansion of the available data base on the hydraulic characteristics of a rotating gas-liquid contactor is being pursued through a series of laboratory experiments. A 100 GPM, low pressure rotary contactor system has been assembled at IGT`s Energy Development Center to examine the fluid dynamic behavior of this type of contactor. The studies are determining the effects of liquid viscosity, liquid surface tension and operating conditions on liquid residence times and flooding limits.

  16. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  17. Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.

    PubMed

    Philpott, Matthew; Summers, Ian R

    2015-01-01

    Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.

  18. Theory of plasma contactors in ground-based experiments and low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.

    1990-01-01

    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.

  19. Using 3D LIF to Investigate and Improve Performance of a Multichamber Ozone Contactor

    EPA Science Inventory

    Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze hydrodynamics and mixing in a multi-chamber ozone contactor, the most widely used design for water disinfection. The results suggested that the mixing was characterized by ext...

  20. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  1. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    SciTech Connect

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  2. Evaluation of 5-cm Centrifugal Contactor Hydraulic and Mass Transfer Performance for Caustic-Side Solvent Extraction of Cesium

    SciTech Connect

    Birdwell, J.F.

    2001-09-12

    A test program has been conducted in which the use of pilot-scale centrifugal solvent extraction contactors for cesium removal from an alkaline waste stream has been successfully demonstrated. The program was designed specifically to evaluate the use of centrifugal contactors having 5-cm-diam rotors for the removal of cesium from alkaline high-level waste (HLW) that was generated and is being stored at the U.S. Department of Energy's Savannah River Site (SRS). The removal of cesium from this waste is highly desirable because it will reduce the volume of waste that must be treated and disposed of as HLW. The parameters applied in the test effort are those that have been established for the Caustic-Side Solvent Extraction (CSSX) process, a multistage extraction operation that has been designed by researchers at Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL). In the CSSX process, cesium is extracted by calix(4)arene-bis-(fert-octylbenzo-crown-6), commonly referred to as BOBCalixC6. The extract is scrubbed with dilute (0.05 M) nitric acid, both to remove coextracted elements (primarily potassium and sodium) and to adjust the pH of the extract to facilitate recovery of the cesium. The scrubbed solvent is contacted with 0.001 M HNO{sub 3}, which results in the stripping of the cesium from the solvent into the aqueous acid. The CSSX process flow rates have been established so to produce a cesium concentration in the strip effluent that is 12 to 15 times the concentration in the waste stream that enters the extraction section of the cascade. Results from initial hydraulic testing of a commercially available 5-cm contactor under CSSX conditions indicated that the mixing of feed solutions within the unit (which is critical to efficient solute transfer) was limited by a feature of the contactor that was designed to increase throughput and improve separation performance. In the design, phase separation is improved by reducing turbulence within the

  3. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    SciTech Connect

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh; Jack D. Law

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a

  4. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    SciTech Connect

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  5. Theory of plasma contactors in ground-based experiments and low earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, D. E.; Oberhardt, M. R.

    1990-01-01

    An examination of several models of electron collection by plasma contactors leads to a definition of the range of validity and applicability for each model. It is noted that most present ground-based experiments are of limited relevance to space applications of plasma contactors, since they operate in a regime where the magnetic field and effective collisions are at most only marginally important. An exception is the experiment of Stenzel and Urrutia (1986), which examined a plasma whose electron Larmor radius was small by comparison to the scale of the potential, and in which the anomalous transport of electrons across the magnetic field was important. The enhanced electron current was not continuous in time, but occurred in periodic bursts as the instabilities periodically emerged, saturated, and decayed.

  6. The use of emulsions, microemulsions, and hollow fiber contactors as liquid membranes

    SciTech Connect

    Wiencek, J.M.; Hu, S.Y.; Raghuraman, B.

    1995-12-01

    Liquid membranes as a generic concept have primarily involved the use of either porous solid film impregnated with a liquid carrier or emulsified systems employed in a stirred contactor. Although such systems can display high selectivities and reasonable flux, the stability of the liquid membrane to rupture (i.e. leakage) and unwanted water transport (i.e. swell) have limited their commercial application. Our lab has focused on developing improved emulsion liquid membranes. In particular, we have investigated the possibility of employing microemulsions as liquid membranes to separate metals (especially mercury) from contaminated water. Our most current work on the use of hollow fiber contactors as a means of minimizing swell and leakage in emulsion liquid membrane systems will also be presented.

  7. Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL

    SciTech Connect

    Troy G. Garn; David H. Meikrantz; Nick R. Mann; Jack D. Law; Terry A. Todd

    2008-09-01

    Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a wide range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.

  8. PUMA - a new mathematical model for the rapid calculation of steady-state concentration profiles in mixer-settler extraction, partitioning, and stripping contactors using the Purex process

    SciTech Connect

    Geldard, J.F.

    1986-11-01

    The mathematical basis for a computer code PUMA (Plutonium-Uranium-Matrix-Algorithm) is described. The code simulates steady-state concentration profiles of solvent extraction contactors used in the Purex process, directly without first generating the transient behavior. The computational times are reduced, with no loss of accuracy, by about tenfold over those required by codes that generate the steady-state profiles via transient state conditions. Previously developed codes that simulate the steady-state conditions directly are not applicable to partitioning contactors, whereas PUMA is applicable to all contactors in the Purex process. Since most difficulties are encountered with partitioning contactors when simulating steady-state profiles via transient state conditions, it is with these contactors that the greatest saving in computer times is achieved.

  9. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  10. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  11. Extraction and quantification of SO2 content in wines using a hollow fiber contactor.

    PubMed

    Plaza, Andrea; Romero, Julio; Silva, Wladimir; Morales, Elizabeth; Torres, Alejandra; Aguirre, María J

    2014-10-01

    Sulfites [Formula: see text] or sulfur dioxide (SO2) is a preservative widely used in fruits and fruit-derived products. This study aims to propose a membrane contactor process for the selective removal and recovery of SO2 from wines in order to obtain its reliable quantification. Currently, the aspiration and Ripper methods offer a difficult quantification of the sulfite content in red wines because they involve evaporation steps of diluted compounds and a colorimetric assay, respectively. Therefore, an inexpensive and accurate methodology is not currently available for continuous monitoring of SO2 in the liquids food industry. Red wine initially acidified at pH < 1 was treated by membrane extraction at 25 ℃. This operation is based on a hydrophobic Hollow Fiber Contactor, which separates the acidified red wine in the shell side and a diluted aqueous sodium hydroxide solution as receiving solution into the lumenside in countercurrent. Sulfite and bisulfite in the acidified red wine become molecular SO2, which is evaporated through the membrane pores filled with gas. Thus, SO2 is trapped in a colorless solution and the membrane contactor controls its transfer, decreasing experimental error induced in classical methods. Experimental results using model solutions with known concentration values of [Formula: see text] show an average extraction percentage of 98.91 after 4 min. On the other hand, two types of Chilean Cabernet Sauvignon wines were analyzed with the same system to quantify the content of free and total sulfites. Results show a good agreement between these methods and the proposed technique, which shows a lower experimental variability.

  12. Correlation of Hollow Cathode Assembly and Plasma Contactor Data from Ground Testing and In-Space Operation on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.

    2001-01-01

    Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.

  13. A Review of Testing of Hollow Cathodes for the International Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Patterson, M. J.; Soulas, G. C.; Sarver-Verhey, T. R.

    2001-01-01

    Since October 2000, two plasma contactors have been providing charge control on the International Space Station (ISS). At the heart of each of the two plasma contactors is a hollow cathode assembly (HCA) that produces the contacting xenon plasma. The HCA is the result of 9 years of design and testing at the NASA Glenn Research Center. This paper summarizes HCA testing that has been performed to date. As of this time, one cathode has demonstrated approximately 28,000 hr of lifetime during constant, high current use. Another cathode, HCA.014. has demonstrated 42,000 ignitions before cathode heater failure. In addition to these cathodes, four cathodes. HCA.006, HCA.003, HCA.010, and HCA.013 have undergone cyclic testing to simulate the variable current demand expected on the ISS. HCA.006 accumulated 8,000 hr of life test operation prior to being voluntarily stopped for analysis before the flight units were fabricated. HCA.010 has accumulated 15,876 hr of life testing, and 4,424 ignitions during ignition testing. HCA.003 and HCA.0 13 have accumulated 12,415 and 18,823 hr of life testing respectively.

  14. Calibrating and deriving physical parameters using plasma contactor data from the International Space Station

    NASA Astrophysics Data System (ADS)

    Bering, E.

    The International Space Station (ISS) regularly passes through the southern auroral oval south of Australia. The ISS has two plasma contactors that emit the electron currents needed to balance electron collection by surfaces such as the lattice of bare rods on the solar array masts. These electron currents exceed 0.1 A at times. The largest currents are observed in the auroral oval south of Australia. On the space station, the solar array 40 m long masts each have over 400 m of stainless steel tensioning rods. When subject to orbital v×B-l induced potentials, the rods collect substantial currents from the ionosphere. Maximum v×B-l potentials are generated near the magnetic poles. The plasma contactor emission current can be converted to an estimate of plasma density and calibrated using Floating potential Probe (FPP) and other data. These measurements show that the plasma density in the nighttime auroral ionosphere is frequently several times that predicted by the International Reference Ionosphere (IRI)-90 and IRI-2001 models.

  15. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  16. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    DOE PAGES

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.; ...

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less

  17. Calibrating and deriving physical parameters using plasma contactor data from the international space station

    NASA Astrophysics Data System (ADS)

    Bering, Edgar A.; Koontz, Steven L.; Evans, David S.; Katz, Ira; Gardner, Barbara M.; Suggs, Robert M.; Minow, Joseph I.; Dalton, Penni J.; Feruson, Dale C.; Hillard, G. Barry; Counts, Jerry L.; Barsamian, Hagop; Kern, John; Mikatarian, Ronald

    2003-12-01

    The International Space Station (ISS) regularly passes through the southern auroral oval south of Australia. The ISS has two plasma contactors that emit the electron currents needed to balance electron collection by surfaces such as the lattice of bare rods on the solar array masts. These electron currents exceed 0.1 A at times. The largest currents are observed in the auroral oval south of Australia. On the space station, the solar array 40 m long masts each have over 400 m of stainless steel tensioning rods. When subject to orbital v × B· l induced potentials, the rods collect substantial currents from the ionosphere. Maximum v × B· l potentials are generated near the magnetic poles. The plasma contactor emission current can be converted to an estimate of plasma density and calibrated using Floating Potential Probe (FPP) and other data. These measurements show that the plasma density in the nighttime auroral ionosphere is frequently several times that predicted by the International Reference Ionosphere (IRI)-90 and IRI2001 models.

  18. Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.

    PubMed

    Karami, M R; Keshavarz, P; Khorram, M; Mehdipour, M

    2013-09-15

    In this study, a mathematical model was developed to analyze the separation of ammonia from the purge gas of ammonia plants using microporous hollow fiber membrane contactors. A numerical procedure was proposed to solve the simultaneous linear and non linear partial differential equations in the liquid, membrane and gas phases for non-wetted or partially wetted conditions. An equation of state was applied in the model instead of Henry's law because of high solubility of ammonia in water. The experimental data of CO₂-water system in the literature was used to validate the model due to the lack of data for ammonia-water system. The model showed that the membrane contactor can separate ammonia very effectively and with recoveries higher than 99%. SEM images demonstrated that ammonia caused some micro-cracks on the surfaces of polypropylene fibers, which could be an indication of partial wetting of membrane in long term applications. However, the model results revealed that the membrane wetting did not have significant effect on the absorption of ammonia because of very high solubility of ammonia in water. It was also found that the effect of gas velocity on the absorption flux was much more than the effect of liquid velocity.

  19. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    SciTech Connect

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.; Wyatt, Nicholas B.; Brooks, Carlton F.; Rao, Rekha

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively in both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.

  20. A new process for drug loaded nanocapsules preparation using a membrane contactor.

    PubMed

    Charcosset, Catherine; Fessi, Hatem

    2005-12-01

    In this paper, we describe a new process for the preparation of drug loaded nanocapsules using a membrane contactor which may be scaled up for industrial applications. Nanocapsules are prepared according to the nanoprecipitation method. The organic phase (solvent, polymer, oil, and drug) is pressed through the pores of an ultrafiltration membrane via the filtrate side. The aqueous phase (water and surfactant) circulates inside the membrane module, and sweeps away the nanocaspules forming at the pore outlets. Two model drugs are selected for the preparation of drug loaded nanocapsules: indomethacin and vitamin E. It is shown that indomethacin loaded nanocapsules with a mean diameter of 240 nm and vitamin E loaded nanocapsules with a mean diameter of 230 nm are obtained with a 150,000 daltons ultrafiltration membrane, a transmembrane pressure of 3 bar, and a crossflow rate of 1.7 m.s(- 1). High fluxes are also obtained (around 0.6 m3/h.m2), leading to the preparation of 1.8 10(- 3) m3 drug loaded nanocapsules in 8 min. The advantage of this membrane contactor compared to other processes for drug loaded nanocapsules preparation is shown to be its scale-up ability.

  1. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  2. Phosphate salts

    MedlinePlus

    ... sodium if you have heart disease. Fluid retention (edema): Avoid using phosphate salts that contain sodium if ... heart failure, or other conditions that can cause edema. High levels of calcium in the blood (hypercalcemia): ...

  3. Bath Salts

    MedlinePlus

    ... panic attacks depression suicidal thoughts paranoia delusions and hallucinations distorted sense of reality decreased ability to think ... of bath salts may cause people to have hallucinations, hear voices, feel paranoid, and develop a psychosis ...

  4. Properties of the Auroral Zone Ionosphere Inferred Using Plasma Contactor Data From the International Space Station

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Bering, E. A.; Evans, D. S.; Katz, I.; Gardner, B. M.; Suggs, R. M.; Minow, J. I.; Dalton, P. J.; Ferguson, D. C.; Hillard, G. B.; Counts, J. L.; Barsamian, H.; Kern, J.; Mikatarian, R.

    2001-12-01

    Comparison of the auroral electron precipitation maps produced by the NOAA POES satellite constellation with the flight path of the International Space Station (ISS) reveals that ISS regularly passes through the southern auroral oval south of Australia. During the first few months of 2001, ISS configuration and flight attitude were such that tensioning rods on the space station solar array masts could collect current from the ionosphere in the same way as a bare wire antenna or electrodynamic tether. The ISS has two plasma contactors that emit the electron currents needed to balance electron collection by surfaces such as the lattice of bare rods on the solar array masts. During this period, these electron currents exceeded 0.1 A at times. The largest currents were observed in the auroral oval south of Australia, often after orbital sunset. On the space station, the solar array 40 m long masts each have over 400 m of stainless steel tensioning rods. When subject to orbital vxBṡl induced potentials, the rods collect substantial currents from the ionosphere. Models of the mast collection processes based upon J. R. Sanmartin's bare wire collection theory have been incorporated into computer codes that integrate models of the station geometry, orbital motion, earth's magnetic field, and ionosphere to obtain plasma contactor emission currents. During the period being analyzed, the station flew in an orientation such that the masts were perpendicular to the orbital velocity vector, and parallel to the earth's surface. Maximum vxBṡl potentials are generated near the magnetic poles. The current drawn by the masts is linearly proportional to the plasma density. The plasma contactor emission current can be converted to an estimate of plasma density. These measurements show that the plasma density in the nighttime auroral ionosphere is frequently several times that predicted by the International Reference Ionosphere (IRI)-90 and IRI-2001 models. We will discuss how the

  5. Thermal Analysis of AC Contactor Using Thermal Network Finite Difference Analysis Method

    NASA Astrophysics Data System (ADS)

    Niu, Chunping; Chen, Degui; Li, Xingwen; Geng, Yingsan

    To predict the thermal behavior of switchgear quickly, the Thermal Network Finite Difference Analysis method (TNFDA) is adopted in thermal analysis of AC contactor in the paper. The thermal network model is built with nodes, thermal resistors and heat generators, and it is solved using finite difference method (FDM). The main circuit and the control system are connected by thermal resistors network, which solves the problem of multi-sources interaction in the application of TNFDA. The temperature of conducting wires is calculated according to the heat transfer process and the fundamental equations of thermal conduction. It provides a method to solve the problem of boundary conditions in applying the TNFDA. The comparison between the results of TNFDA and measurements shows the feasibility and practicability of the method.

  6. Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis.

    PubMed

    Tugtas, Adile Evren

    2014-07-01

    Volatile fatty acid (VFA) separation from synthetic VFA solutions and leachate was investigated via the use of a membrane contactor. NaOH was used as a stripping solution to provide constant concentration gradient of VFAs in both sides of a membrane. Mass flux (12.23 g/m(2)h) and selectivity (1.599) observed for acetic acid were significantly higher than those reported in the literature and were observed at feed pH of 3.0, flow rate of 31.5 ± 0.9 mL/min, and stripping solution concentration of 1.0 N. This study revealed that the flow rate, stripping solution strength, and feed pH affect the mass transfer of VFAs through the PTFE membrane. Acetic and propionic acid separation performances observed in the present study provided a cost effective and environmental alternative due to elimination of the use of extractants.

  7. On the Operational Status of the ISS Plasma Contactor Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Burke, Thomas P. (Technical Monitor); Carpenter, Christian B.

    2004-01-01

    The Plasma Contactor Unit (PCU) was developed by the Rocketdyne division of The Boeing Company to control charging of the International Space Station (ISS). Each PCU contains a Hollow Cathode Assembly (HCA), which emits the charge control electrons. The HCAs were designed and fabricated at NASA s Glenn Research Center (GRC). GRC's HCA development program included manufacture of engineering, qualification, and flight model HCAs as well as qualification and wear tests. GRC tracks the on-orbit data for the flight HCAs in order to ascertain their overall health. As of April 5, 2004, 43 ignitions and over 6000 hours have been accumulated on a single unit. The flight HCAs continue to operate flawlessly. This paper will discuss the operation of the HCAs during ground tests and on-orbit operation from initial startup to April 30, 2004.

  8. Bioaugmentation for treating transient 4-fluorocinnamic acid shock loads in a rotating biological contactor.

    PubMed

    Amorim, Catarina L; Duque, Anouk F; Afonso, Carlos M M; Castro, Paula M L

    2013-09-01

    A rotating biological contactor (RBC) was used to treat shock loadings of 4-fluorocinnamic acid (4-FCA). Intermittent 4-FCA shocks of 35 mg L(-1) were applied (ca. 3 months) with only limited mineralization occurring and accumulation of 4-fluorobenzoate (4-FBA) as an intermediate. After bioaugmentation with a degrading bacterium the RBC was able to deal with 4-FCA intermittent loading of 80 mg L(-1) however, a gradual decline in RBC performance occurred, leading to 4-FBA accumulation. The degrading strain was recovered from the biofilm during 2 months but intermittent feeding may have led to diminishing strain numbers. Distinct bacterial communities in the 1st and the 5th and 10th stages of the RBC were revealed by denaturating gradient gel electrophoresis. Several isolates retrieved from the RBC transformed 4-FCA into 4-FBA but only two strains mineralized the compound. Bioaugmentation allowed removal of the fluorinated compound however intermittent feeding may have compromised the bioreactor efficiency.

  9. The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions.

    PubMed

    Novotný, Ceněk; Trošt, Nina; Šlušla, Martin; Svobodová, Kateřina; Mikesková, Hana; Válková, Hana; Malachová, Kateřina; Pavko, Aleksander

    2012-06-01

    Biodegradation potential of Dichomitus squalens in biofilm cultures and rotating biological contactor (RBC) was investigated. The fungus formed thick biofilms on inert and lignocellulosic supports and exhibited stable activities of laccase and manganese peroxidase to reach 40-62 and 25-32% decolorization of anthraquinone Remazol Brilliant Blue R and heterocyclic phthalocyanine dyes, respectively. The decolorization ceased when glucose concentration dropped to 1 mmol l(-1). In RBC reactor, respective decolorizations of Remazol Brilliant Blue R and heterocyclic Methylene Blue and Azure B dyes (50 mg l(-1)) attained 99%, 93%, and 59% within 7, 40 and 200 h. The fungus exhibited tolerance to coliform and non-coliform bacteria on rich organic media, the inhibition occurred only on media containing tryptone and NaCl. The degradation efficiency in RBC reactor, capability to decolorize a wide range of dye structures and tolerance to bacterial stress make D. squalens an organism applicable to remediation of textile wastewaters.

  10. Turbulent dispersion results from gel-sphere processes and application to centrifugal contactors

    SciTech Connect

    Haas, P.A.

    1986-07-01

    Three different devices using controlled velocities of organic liquids were applied to disperse aqueous solutions as drops. One consisted of simple tubes of small diameters. A second contained motionless mixer units inside large tubes. The third employed couette flow of the organic liquid between a cylindrical rotor and a stationary cylinder. These devices were applied to gel-sphere processes in which the liquid drops are converted into solid gel spheres of hydrated metal oxides. The gel-sphere products are good, strong spheres and allow good measurement of the sphere and the drop-size distributions. The drop diameters must be controlled and predictable to allow preparation of product spheres of the desired sizes. Empirical correlations were determined for application to the gel-sphere processes. The theory of turbulent dispersion based on eddy velocities has been developed by Kolmorogoff, Hinze, and others. Davies reviewed this theory and the agreement of theory with four types of dispersion devices for energy dissipation rates of 6 to 400,000 W/g. The gel-sphere results for drop-size distribution are for energy dissipation rates of 10/sup -3/ to 1.5 W/g. Those combined results support the theory of turbulence as the dispersion mechanism over a range of 10/sup 9/ for the rate of energy dissipation. The turbulent dispersion with Couette flow is the mechanism for mixing in an advanced design of centrifugal contactors for solvent extraction. The theory of turbulence is applied to predict drop sizes and mixing power for centrifugal contactors as developed at Oak Ridge National Laboratory (ORNL). 14 refs., 7 figs., 6 tabs.

  11. Tube-side mass transfer for hollow fibre membrane contactors operated in the low Graetz range.

    PubMed

    Wang, C Y; Mercer, E; Kamranvand, F; Williams, L; Kolios, A; Parker, A; Tyrrel, S; Cartmell, E; McAdam, E J

    2017-02-01

    Transformation of the tube-side mass transfer coefficient derived in hollow fibre membrane contactors (HFMC) of different characteristic length scales (equivalent diameter and fibre length) has been studied when operated in the low Graetz range (Gz<10). Within the low Gz range, mass transfer is generally described by the Graetz problem (Sh=3.67) which assumes that the concentration profile comprises a constant shape over the fibre radius. In this study, it is experimentally evidenced that this assumption over predicts mass transfer within the low Graetz range. Furthermore, within the low Gz range (below 2), a proportional relationship between the experimentally determined mass transfer coefficient (Kov ) and the Graetz number has been identified. For Gz numbers below 2, the experimental Sh number approached unity, which suggests that mass transfer is strongly dependent upon diffusion. However, within this diffusion controlled region of mass transfer, tube-side fluid velocity remained important. For Gz numbers above 2, Sh could be satisfactorily described by extension to the Lévêque solution, which can be ascribed to the constrained growth of the concentration boundary layer adjacent to the fibre wall. Importantly this study demonstrates that whilst mass transfer in the low Graetz range does not explicitly conform to either the Graetz problem or classical Lévêque solution, it is possible to transform the experimentally derived overall mass transfer coefficient (Kov ) between characteristic length scales (dh and L). T h is was corroborated by comparison of the empirical relationship determined in this study (Sh=0.36Gz) with previously published studies operated in the low Gz range. This analysis provides important insight for process design when slow tube-side flows, or low Schmidt numbers (coincident with gases) constrain operation of hollow fibre membrane contactors to the low Gz range.

  12. Liquid-liquid extraction of uranium(VI) in the system with a membrane contactor.

    PubMed

    Biełuszka, Paweł; Zakrzewska, Grażyna; Chajduk, Ewelina; Dudek, Jakub

    Raising role of the nuclear power industry, including governmental plans for the construction of first nuclear power plant in Poland, creates increasing demand for the uranium-based nuclear fuels. The project implemented by Institute of Nuclear Chemistry and Technology concerns the development of effective methods for uranium extraction from low-grade ores and phosphorites for production of yellow cake-U3O8. The Liqui-Cel(®) Extra-Flow 2.5 × 8 Membrane Contactor produced by CELGARD LLC (Charlotte, NC) company is the main component of the installation for liquid-liquid extraction applied for processing of post leaching liquors. In the process of membrane extraction the uranyl ions from aqueous phase are transported through the membrane into organic phase. The flow of two phases in the system was arranged in co-current mode. The very important element of the work was a selection of extracting agents appropriate for the membrane process. After preliminary experiments comprising tests of membrane resistivity and determination of extraction efficiency, di(2-ethylhexyl)phosphoric acid was found to be most favourable. An important aspect of the work was the adjustment of hydrodynamic conditions in the capillary module. To avoid the membrane wettability by organic solvent and mixing two phases equal pressure drops along the membrane module to minimize the transmembrane pressure, were assumed. Determination of pressure drop along the module was conducted using Bernoulli equation. The integrated process of extraction/re-extraction conducted in continuous mode with application of two contactors was designed.

  13. Performance of polydimethylsiloxane membrane contactor process for selective hydrogen sulfide removal from biogas.

    PubMed

    Tilahun, Ebrahim; Bayrakdar, Alper; Sahinkaya, Erkan; Çalli, Bariş

    2017-01-13

    H2S in biogas affects the co-generation performance adversely by corroding some critical components within the engine and it has to be removed in order to improve the biogas quality. This work presents the use of polydimethylsiloxane (PDMS) membrane contactor for selective removal of H2S from the biogas. Experiments were carried out to evaluate the effects of different pH of absorption liquid, biogas flowrate and temperature on the absorption performances. The results revealed that at the lowest loading rate (91mg H2S/m(2)·h) more than 98% H2S and 59% CO2 absorption efficiencies were achieved. The CH4 content in the treated gas increased from 60 to 80% with nearly 5% CH4 loss. Increasing the pH (7-10) and loading rate (91-355mg H2S/m(2)·h) enhanced the H2S absorption capacity, and the maximum H2S/CO2 and H2S/CH4 selectivity factors were 2.5 and 58, respectively. Temperature played a key role in the process and lower temperature was beneficial for intensifying H2S absorption performance. The highest H2S fluxes at pH 10 and 7 were 3.4g/m(2)·d and 1.8g/m(2)·d with overall mass transfer coefficients of 6.91×10(-6) and 4.99×10(-6)m/s, respectively. The results showed that moderately high H2S fluxes with low CH4 loss may be achieved by using a robust and cost-effective membrane based absorption process for desulfurization of biogas. A tubular PDMS membrane contactor was tested for the first time to remove H2S from biogas under slightly alkaline conditions and the suggested process could be a promising for real scale applications.

  14. Sliding-cavity fluid contactors in low-gravity fluids, materials, and biotechnology research.

    PubMed

    Todd, Paul; Vellinger, John C; Sengupta, Shramik; Sportiello, Michael G; Greenberg, Alan R; Krantz, William B

    2002-10-01

    The well-known method of sliding-cavity fluid contactors used by Gosting for diffusion measurements and by Tiselius in electrophoresis has found considerable use in low-gravity research. To date, sliding-cavity contactors have been used in liquid diffusion experiments, interfacial transport experiments, biomolecular crystal growth, biphasic extraction, multistage extraction, microencapsulation, seed germination, invertebrate development, and thin-film casting. Sliding-cavity technology has several advantages for spaceflight: it is simple, it accommodates small samples, samples can be fully enclosed, phases can be combined, multiple samples can be processed at high sample density, real-time observations can be made, and mixed and diffused samples can be compared. An analysis of the transport phenomena that govern the sliding-cavity method is offered. During sliding of one liquid over another flow rates between 0.001 and 0.1m/sec are developed, giving Reynolds numbers in the range 0.1-100. Assuming no slip at liquid-solid boundaries shear rates are of the order 1sec(-1). The measured consequence is the transfer of 2-5% of the content of a cavity to the opposite cavity. In the absence of gravity, buoyancy-driven transport is assumed absent. Transport processes are limited to (1) molecular diffusion, in which reactants diffuse toward one another at rates that depend on their diffusion coefficient and concentration gradient (Fick's second law), (2) solutocapillary (Marangoni) flow driven by surface-tension gradients, (3) capillary flow (drop spreading) at liquid-solid three-phase lines leading to immiscible phase demixing, and (4) vapor-phase diffusive mass transfer in evaporative processes. Quantitative treatment of these phenomena has been accomplished over the past few years in low-gravity research in space and on aircraft.

  15. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    NASA Astrophysics Data System (ADS)

    Kit Chan, Wai; Jouët, Justine; Heng, Samuel; Lun Yeung, King; Schrotter, Jean-Christophe

    2012-05-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation.

  16. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.

    PubMed

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2013-07-01

    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or 'slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (V(L)). Whilst the highest CO2 flux was recorded at high V(L), selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required.

  17. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.

    PubMed

    Naim, R; Ismail, A F

    2013-04-15

    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor.

  18. Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Borovsky, J. E.; Thomsen, M. F.; Moulton, J. D.; MacDonald, E. A.

    2015-05-01

    The idea of using a high-voltage electron beam with substantial current to actively probe magnetic field line connectivity in space has been discussed since the 1970s. However, its experimental realization onboard a magnetospheric spacecraft has never been accomplished because the tenuous magnetospheric plasma cannot provide the return current necessary to keep spacecraft charging under control. In this work, we perform Particle-In-Cell simulations to investigate the conditions under which a high-voltage electron beam can be emitted from a spacecraft and explore solutions that can mitigate spacecraft charging. The electron beam cannot simply be compensated for by an ion beam of equal current, because the Child-Langmuir space charge limit is violated under conditions of interest. On the other hand, releasing a high-density neutral contactor plasma prior and during beam emission is critical in aiding beam emission. We show that after an initial transient controlled by the size of the contactor cloud where the spacecraft potential rises, the spacecraft potential can settle into conditions that allow for electron beam emission. A physical explanation of this result in terms of ion emission into spherical geometry from the surface of the plasma cloud is presented, together with scaling laws of the peak spacecraft potential varying the ion mass and beam current. These results suggest that a strategy where the contactor plasma and the electron beam operate simultaneously might offer a pathway to perform beam experiments in the magnetosphere.

  19. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    SciTech Connect

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.

  20. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    SciTech Connect

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.

  1. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.

    PubMed

    Hogg, Seth R; Muthu, Satish; O'Callaghan, Michael; Lahitte, Jean-Francois; Bruening, Merlin L

    2012-03-01

    Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst.

  2. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  3. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    SciTech Connect

    David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

    2009-09-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning

  4. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater.

    PubMed

    Sarayu, K; Sandhya, S

    2012-12-01

    A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98 % removed in the RBC when the superficial air flow rate was 375 ml/h (1,193 and 1,226 mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872 mg/m(3)/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K (s) demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98 % organic removal in the RBC.

  5. Experimental and modeling study on removal of pharmaceutically active compounds in rotating biological contactors.

    PubMed

    Vasiliadou, I A; Molina, R; Martínez, F; Melero, J A

    2014-06-15

    The aim of this work was to study the biological removal of pharmaceutical compounds in rotating biological contactors (RBCs) under continuous operation. A two-stage RBC was used, providing a total surface area of 1.41 m(2). Four pharmaceuticals of different therapeutic classes; caffeine, sulfamethoxazole, ranitidine and carbamazepine, were studied. Six experimental scenarios were applied to the RBC-system by varying substrates' loadings (12-54 gCOD/d), volumetric flow rate (2-5L/d), and pharmaceuticals' concentration (20-50 μg/L). The different conditions resulted to different solid retention times (SRT: 7-21 d) in each scenario. The increase of SRT due to variations of the operating conditions seemed to have a positive effect on pharmaceuticals' removal. Likewise, a negative correlation was observed between substrates' loading and pharmaceuticals' removal. An increase of initial pharmaceuticals' concentration resulted to decrease of SRT and pharmaceuticals' removal, suggesting a toxic effect to the biofilm. The maximum removals achieved were greater than 85% for all pharmaceuticals. Finally, a mathematical model which includes biofilm growth, substrates' utilization and pharmaceuticals' elimination was developed. The model predicts the contribution of sorption and biodegradation on pharmaceuticals' elimination taking into account the diffusion of pharmaceuticals inside biofilm.

  6. Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes.

  7. Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor

    SciTech Connect

    D. H. Meikrantz; T. G. Garn; J. D. Law; N. R. Mann; T. A. Todd

    2008-09-01

    TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samples was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.

  8. Innovative use of membrane contactor as condenser for heat recovery in carbon capture.

    PubMed

    Yan, Shuiping; Zhao, Shuaifei; Wardhaugh, Leigh; Feron, Paul H M

    2015-02-17

    The gas-liquid membrane contactor generally used as a nonselective gas absorption enhancement device is innovatively proposed as a condenser for heat recovery in liquid-absorbent-based carbon capture. The membrane condenser is used as a heat exchanger to recover the latent heat of the exiting vapor from the desorber, and it can help achieve significant energy savings when proper membranes with high heat-transfer coefficients are used. Theoretical thermodynamic analysis of mass and heat transfer in the membrane condensation system shows that heat recovery increases dramatically as inlet gas temperature rises and outlet gas temperature falls. The optimal split mass flow rate is determined by the inlet gas temperature and the overall heat-transfer coefficient in the condensation system. The required membrane area is also strongly dependent on the overall heat-transfer coefficient, particularly at higher inlet gas temperatures. Mass transfer across the membrane has an insignificant effect on heat transfer and heat recovery, suggesting that membrane wetting may not be an issue when a membrane condenser is used for heat recovery. Our analysis provides important insights into the energy recovery performance of the membrane condensation system as well as selection of operational parameters, such as split mass flow rate and membrane area, thickness, and thermal conductivity.

  9. Experimental design and statistical analysis in Rotating Disc Contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Ariffin, Wan Nor Munirah

    2015-12-01

    The purpose of this paper is to examine the performance of the liquid-liquid extraction in Rotating Disc Contactor (RDC) Column that being used in industries. In this study, the performance of small diameter column RDC using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of design of the experiments (DOE) and also Multiple Linear Regression (MLR). The DOE method are used to estimated the effect of four independent. Otherwise, by using Multiple Linear Regression (MLR) is to justify the relationship between the input variables and output variables and also to determine which variable are more influence for both output variable. The input variables for both method include rotor speed (Nr); ratio of flow (Fd); concentration of continuous inlet (Ccin); concentration of dispersed inlet (Cdin); interaction between Nr with Fd; interaction between Nr with Ccin; interaction Nr with Cdin. Meanwhile the output variables are concentration of continuous outlet (Ccout) and concentration of dispersed outlet (Cdout) on RDC column performance. By using this two method, we have two linear model represent two output of Ccout and Cdout for MLR. Lastly, the researcher want to determine which input variable that give more influence to output variable by using this two method. Based on the result, we obtained that rotor speed (Nr) more influence to dependent variable, Ccout and concentration of continuous inlet (Ccin) more influence to dependent variable, Cdout according the two method that was used.

  10. Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC).

    PubMed

    Cheng, Ka Yu; Ho, Goen; Cord-Ruwisch, Ralf

    2012-12-01

    A membraneless bioelectrochemical system - rotatable bio-electrochemical contactor (RBEC) consists of an array of rotatable electrode disks was developed to convert the chemical energy from wastewater organics (acetate) directly into electricity. Each rotatable electrode disk had an upper-air exposing and a lower-water submerging halves. Intermittent rotation (180°) enabled each halve to alternately serve as anode and cathode. Removal of chemical oxygen demand (COD) was increased by 15% (from 0.79 to 0.91 kg COD m(-3) d(-1)) by allowing electron flow from the lower to the upper disk halves. Coupling with a potentiostat could alleviate cathodic limitation and increased COD removal to 1.32 kg COD m(-3) day(-1) (HRT 5h). About 40% of the COD removed was via current, indicating that the biofilm could use the lower half disk as electron acceptor. The RBEC removed COD more energy-efficiently than conventional activated sludge processes as active aeration is not required (0.47 vs. 0.7-2.0 kW h kg COD(-1)).

  11. Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor.

    PubMed

    Pakshirajan, Kannan; Kheria, Sumeet

    2012-06-30

    Coloured industry wastewaters often contain dyes and other toxic ingredients, and, therefore, pose serious threat to the receiving environment. Among the available methods the eco-friendly biological method has gained maximum attention due to its many advantages over the traditional methods. In the present study, continuous biological treatment of coloured wastewater from a textile dyeing industry was investigated using the white rot fungus Phanerochaete chrysosporium in a rotating biological contactor (RBC) reactor. The raw wastewater was diluted with an equal volume of either distilled water or media containing glucose at varying concentrations to study its effect on the decolourization process. Results revealed that the wastewater could be decolourized to an extent of more than 64% when diluted with media containing glucose; and, a maximum decolourization efficiency of 83% was obtained with 10 g/l glucose concentration. COD removal efficiencies were also found to be consistent with the decolourization efficiencies of the wastewaters. Further, the results were correlated with the enzyme activities of manganese peroxidase (MnP) and lignin peroxidase (LiP) by the fungus, which were found to play some significant role in decolourization of the wastewater. Results of replacing the costly carbon source glucose in the decolourization media with the more cheap molasses, however, revealed very high COD removal efficiency, but low decolourization efficiency of the industry wastewater.

  12. Surface Charging Controlling of the Chinese Space Station with Hollow Cathode Plasma Contactor

    NASA Astrophysics Data System (ADS)

    Jiang, Kai; Wang, Xianrong; Qin, Xiaogang; Yang, Shengsheng; Yang, Wei; Zhao, Chengxuan; Chen, Yifeng; Shi, Liang; Tang, Daotan; Xie, Kan

    2016-07-01

    A highly charged manned spacecraft threatens the life of an astronaut and extravehicular activity, which can be effectively reduced by controlling the spacecraft surface charging. In this article, the controlling of surface charging on Chinese Space Station (CSS) is investigated, and a method to reduce the negative potential to the CSS is the emission electron with a hollow cathode plasma contactor. The analysis is obtained that the high voltage (HV) solar array of the CSS collecting electron current can reach 4.5 A, which can be eliminated by emitting an adequate electron current on the CSS. The theoretical analysis and experimental results are addressed, when the minimum xenon flow rate of the hollow cathode is 4.0 sccm, the emission electron current can neutralize the collected electron current, which ensures that the potential of the CSS can be controlled in a range of less than 21 V, satisfied with safety voltage. The results can provide a significant reference value to define a flow rate to the potential controlling programme for CSS.

  13. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors.

    PubMed

    Cookney, J; Cartmell, E; Jefferson, B; McAdam, E J

    2012-01-01

    This paper demonstrates the potential for recovering dissolved methane from low temperature anaerobic processes treating domestic wastewater. In the absence of methane recovery, ca. 45% of the produced methane is released as a fugitive emission which results in a net carbon footprint of -0.47 kg CO(2e) m(-3). A poly-di-methyl-siloxane (PDMS) membrane contactor was applied to support sweep gas desorption of dissolved methane using nitrogen. The dense membrane structure controlled gaseous mass transfer thus recovery was maximised at low liquid velocities. At the lowest liquid velocity, V(L), of 0.0025 m s(-1), 72% of the dissolved methane was recovered. A vacuum was also trialled as an alternative to sweep-gas operation. At vacuum pressures below 30 mbar, reasonable methane recovery was observed at an intermediate V(L) of 0.0056 m s(-1). Results from this study demonstrate that dissolved methane recovery could increase net electrical production from low temperature anaerobic processes by ca. +0.043 kWh(e) m(-3) and reduce the net carbon footprint to +0.01 kg CO(2e) m(-3). However, further experimental work to optimise the gas-side hydrodynamics is required as well as validation of the long-term impacts of biofouling on process performance.

  14. Absorption of sparingly soluble gases by reactive media in self-aerated gas-liquid contactors: A scale-up procedure

    SciTech Connect

    Zundelevich, Y.

    1995-01-01

    Absorption of sparingly soluble gases, such as NO or O{sub 2}, is greatly enhanced if the latter react with the media. Among a dozen of reactive solvents for NO{sub x} abatement, aqueous acidic urea appears the most economically and environmentally attractive because urea is a cheap reagent and because products of reaction of urea with nitrous acid, formed in the liquid phase via absorption of NO and NO{sub 2}, are carbon dioxide and nitrogen, which can be directly released into the atmosphere. That makes urea process unique among other wet scrubbing processes that routinely produce secondary waste. Its full potential has never been realized, perhaps due to the lack of an efficient gas-liquid contactor to overcome low solubility of NO in aqueous solutions. LLNL has recently designed and built a bench scale gas-liquid contactor for nitric acid regeneration with oxygen. The contactor proved very effective in overcoming the problem of low solubility of oxygen converting back to nitric acid approximately 99% of nitrous acid formed at the cathode (which would otherwise convert to NO{sub x}). The bench scale contactor consists of a 12 inch diameter tank with self-inducting impeller/aerator of very high gas capacity. The aerator represents a 3.5 inch turbine mounted on a vertical shaft inside the draft tube equipped with a stator. During operation the lower half of the turbine induces liquid and the upper half induces gas from the draft tube. The new contactor offers two approaches to solving the NO{sub x} pollution problem. Where full recovery of nitric acid is desired, oxygen can be fed into the contactor to convert nitrous acid into nitric. This approach was demonstrated at LLNL. Alternately, in the proposed acidic urea process nitrous acid, as it forms from NO{sub x}, would be converted to nitrogen, water and carbon dioxide.

  15. Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: a new tool for large scale production.

    PubMed

    Yedomon, B; Fessi, H; Charcosset, C

    2013-11-01

    Albumin nanoparticles are attractive drug delivery systems as they can be prepared under soft conditions and incorporate several kinds of molecules. The aim of this study was to upscale the desolvation process for preparing Bovine Serum Albumin (BSA) nanoparticles using a membrane contactor. At a first step, the BSA nanoparticles were prepared at small scale using a syringe pump. BSA nanoparticles of 139 nm in size, with a polydispersity index of 0.046, were obtained at the optimal conditions: pH 8.2, 100 mg mL(-1) BSA albumin solution (2 mL), and 1 mL min(-1) flow rate of ethanol addition (8 mL). The upscaling with a membrane contactor was achieved by permeating ethanol through the pores of a Shirasu Porous Glass (SPG Technology Co., Japan) membrane and circulating the aqueous phase tangentially to the membrane surface. By increasing the pressure of the ethanol from 1 to 2.7 bars, a progressive decrease in nanoparticle size was obtained with a high nanoparticles yield (around 94-96%). In addition, the flow rate of the circulating phase did not affect the BSA nanoparticle characteristics. At the optimal conditions (pH 8.2, 100 mg mL(-1) BSA albumin solution, pressure of ethanol 2.7 bars, flow rate of the circulating phase 30.7 mL s(-1)), the BSA nanoparticles showed similar characteristics to those obtained with the syringe pump. Large batches of BSA nanoparticles were prepared up to 10 g BSA. The BSA nanoparticles were stable at least during 2 months at 4 °C, and their characteristics were reproducible. It was then concluded that the membrane contactor technique could be a suitable method for the preparation of albumin nanoparticles at large scale with properties similar to that obtained at small scale.

  16. Low-salt diet

    MedlinePlus

    ... you cook, replace salt with other seasonings. Pepper, garlic, herbs, and lemon are good choices. Avoid packaged spice blends. They often contain salt. Use garlic and onion powder, not garlic and onion salt. ...

  17. Packed cage rotating biological contactor system for treatment of cyanide wastewater.

    PubMed

    Sirianuntapiboon, Suntud; Chuamkaew, Chollada

    2007-01-01

    The aim of this work was to study the efficiency of the packed cage rotating biological contactor (RBC) system with synthetic wastewater (SWW) containing 800 mg/l BOD(5) with various cyanide residue concentrations and hydraulic loading time. The results showed that cyanide had a negative effect to both the system's efficiency and bio-film quality. An increase in cyanide concentration led to a decrease in bio-film growth and the consequent reduction in the removal efficiency of the system. Also, the effluent suspended solids (SS) of the system was increased with increasing cyanide concentrations because the bio-film detached from the media due to the toxicity of the cyanide residue. The system showed the highest COD, BOD(5), TKN and cyanide removal efficiencies of 94.0 +/- 1.6%, 94.8 +/- 0.9%, 59.1 +/- 2.8% and 95.5 +/- 0.6%, respectively, with SWW containing 5 mg/l cyanide under HRT of 8 days, while they were only 88.8 +/- 0.7%, 89.5 +/- 0.5%, 40.3 +/- 1.1% and 93.60 +/- 0.09%, respectively, with SWW containing 40 mg/l cyanide. In addition, the effluent ammonia, nitrite and nitrate were increased with increases in cyanide concentration or loading. However, the system with SWW containing the highest cyanide concentration of 40 mg/l showed almost constant COD and BOD(5) removal efficiencies of 89% and 90%, even when the system was controlled under the lowest HRT of 8 h.

  18. Evaluation of the Hydraulic Capacity and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-cm-Diameter Centrifugal Contactor

    SciTech Connect

    Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen

    2002-09-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design

  19. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    SciTech Connect

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-09-19

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of

  20. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOEpatents

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  1. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  2. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  3. CaBr{sub 2} hydrolysis for HBr production using a direct sparging contactor.

    SciTech Connect

    Yang, J.; Panchal, C. B.; Doctor, R. D.; Energy Systems

    2009-09-01

    The calcium-bromine cycle being investigated is a novel continuous hybrid cycle for hydrogen production employing both heat and electricity. Calcium bromide (CaBr{sub 2}) hydrolysis generates hydrogen bromide (HBr) which is electrolyzed to produce hydrogen. The CaBr{sub 2} hydrolysis at 1050 K (777 C) is endothermic with the heat of reaction {delta}G{sub T} = 181.5 KJ/mol (43.38 kcal/mol) and the Gibbs free energy change is positive at 99.6 kJ/mol (23.81 kcal/mol). What makes this hydrolysis reaction attractive is both its rate and that well over half the thermodynamic requirements for water-splitting heat of reaction of {delta}G{sub T} = 285.8 KJ/mol (68.32 kcal/mol) are supplied at this stage using heat rather than electricity. Molten-phase calcium bromide reactors may overcome the technical barriers associated with earlier hydrolysis approaches using supported solid-phase calcium bromide studied in the Japanese UT-3 cycle. Before constructing the experiment two design concepts were evaluated using COMSOL{trademark} multi-physics models; (1) the first involved sparging steam into a calcium-bromide melt, while (2) the second considered a 'spray-dryer' contactor spraying molten calcium bromide counter-currently to upward-flowing steam. A recent paper describes this work. These studies indicated that sparging steam into a calcium-bromide melt is more feasible than spraying molten calcium bromide droplets into steam. Hence, an experimental sparging hydrolysis reactor using a mullite tube (ID 70 mm) was constructed capable of holding 0.3-0.5 kg (1.5-2.5 x 10{sup -3} kg mol) CaBr{sub 2} forming a melt with a maximum 0.08 m (8 cm) depth. Sparging steam at a steam rate of 0.02 mol/mol of CaBr{sub 2} per minute (1.2-2.3 x 10{sup -5} kg/s), into this molten bath promptly yielded HBr in a stable operation that converted up to 25% of the calcium bromide. The kinetic constant derived from the experimental data was 2.17 x 10{sup -12} kmol s{sup -1} m{sup -2} MPa{sup -1} for

  4. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  5. Modeling the Transverse Shell-side Mass Transfer in Hollow Fiber Membrane Contactors at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Kirsch, V. A.; Volkov, V. V.; Bildukevich, A. V.

    A method for calculating the external mass transfer in a contactor with a transverse confined flow of a viscous incompressible liquid (gas) past hollow fibers at low Reynolds numbers is proposed. The method is based on the concept of regular arrays of parallel fibers with a well-defined flowfield. As a simplest model system, a row of parallel fibers is considered, for which dependences of a drag force and an efficiency of a solute retention on the inter-fiber distance, membrane mass transfer coefficient, Peclet and Reynolds numbers are computed. The influence of the fluid inertia on the mass transport is studied. It is shown that a linear Stokes equations can be used for as higher Re numbers, as denser is the fiber array. In this case the flow field is independent on the Re number, and analytical solutions for the flowfield and fiber sorption efficiency (fiber Sherwood number) can be used.

  6. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  7. What Are Bath Salts?

    MedlinePlus

    ... risks of using synthetic cathinones (bath salts)? Another danger of bath salts is that they might contain ... Drugs: Is There a Way to Reduce the Dangers? June 09, 2015 / The NIDA Blog Team Concert ...

  8. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    article title:  Winter and Summer Views of the Salt Lake Region     View Larger Image Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the ...

  9. Retrospective salt tectonics

    SciTech Connect

    Jackson, M.P.A.

    1996-12-31

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  10. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; Wollack, Edward J.; Wright, Kenneth H.

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  11. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  12. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  13. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  14. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  15. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  16. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    PubMed

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  17. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    SciTech Connect

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  18. SALT Science Conference 2015

    NASA Astrophysics Data System (ADS)

    Buckley, David; Schroeder, Anja

    2015-06-01

    The Southern African Large Telescope (SALT) has seen great changes in the last years following the beginning of full time science operations in 2011. The three first generation instruments, namely the SALTICAM imager, the Robert Stobie Spectrograph (RSS) and its multiple modes and finally in 2014, the new High Resolution Spectrograph (HRS), have commissioned it. The SALT community now eagerly anticipate the installation and commissioning of the near-infrared arm of RSS, likely to commence in 2016. The the third "Science with SALT" conference was held at the Stellenbosch Institute of Advanced Study from 1-5 June 2015. The goals of this conference were to: -Present and discuss recent results from SALT observations; -Anticipate scientific programs that will be carried out with new SALT instrumentation such as RSS-NIR; -Provide a scientific environment in which to foster inter-institutional and inter-facility collaborations between scientists at the different SALT partners; -Provide an opportunity for students and postdocs to become more engaged in SALT science and operations; -Encourage the scientific strategic planning that will be necessary to insure an important role for SALT in an era of large astronomical facilities in the southern hemisphere such as MeerKAT, the SKA, LSST, and ALMA; -Consider options for future instrumentation and technical development of SALT; and, -Present, discuss, and engage in the SALT Collateral Benefits program led by SAAO. Conference proceedings editors: David Buckley and Anja Schroeder

  19. Contactor Energy Requirements for Capturing CO2 From ambient air using NaOH determined in a pilot-scale prototype system

    NASA Astrophysics Data System (ADS)

    Stolaroff, J. K.; Keith, D.; Lowry, G.

    2005-12-01

    Systems for capturing CO2 from ambient air for sequestration have recently been proposed (e.g. Dubey et al., 2002; Zeman and Lackner, 2004; Keith et al., 2004). Capture from ambient air has a number of structural advantages over capture from point sources; in particular it makes possible future emissions scenarios with negative net CO2 emissions. The systems suggested use either a Ca(OH)2 or NaOH solution to capture CO2 and then regenerate the solution in a chemical loop. The energy requirements of such a system, however, have been hotly disputed (Herzog, 2003). The energy requirements and effectiveness of the chemical regeneration are well established as they are practiced on a large scale in the industrial kraft process used in pulp and paper production, but the energy and land use requirements of a contactor for this system are uncertain as this component of the system is not implemented industrially. In this research, we address the most controversial component of the system, the contactor, which extracts CO2 from air into solution. A prototype contactor with a spray tower design is constructed (1m by 6m), and CO2 absorption by a NaOH solution spray (5 l/min) is measured. The CO2 absorption efficiency and energy requirements per unit CO2 absorbed are calculated. The energy requirements of the contactor are found to be on the order of 10-40 kJ/mol-CO2, which is small compared to the energy of combustion of fossil fuels, and compared with the energy required for the regeneration steps. Thus, a NaOH-based spray tower design can serve as an energy-efficient contactor for capturing CO2 from ambient air. Dubey, M. K., Ziock, H., Rueff, G., Elliott, S., and Smith, W. S. (2002). ``Extraction of carbon dioxide from the atmosphere through engineered chemical sinkage''. ACS -- Division of Fuel Chemistry Reprints, 47(1):81--84. Herzog, H. (2003). Assessing the feasibility of capturing co2 from the air. Technical report, MIT Laboratory for Energy and the Environment. Keith

  20. Photochemistry of triarylsulfonium salts

    SciTech Connect

    Dektar, J.L.; Hacker, N.P. )

    1990-08-01

    The photolysis of triphenylsulfonium, tris(4-methylphenyl)sulfonium, tris(4-chlorophenyl)sulfonium, several monosubstituted (4-F, 4-Cl, 4-Me, 4-MeO, 4-PhS, and 4-PhCO), and disubstituted (4,4{prime}-Me{sub 2} and 4,4{prime}-(MeO){sub 2}) triphenylsulfonium salts was examined in solution. It was found that direct irradiation of triphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts, gave the new rearrangement products. The mechanism for direct photolysis is proposed to occur from the singlet excited states to give a predominant heterolytic cleavage along with some homolytic cleavage.

  1. Molten Salt Electrochemical Systems.

    DTIC Science & Technology

    1983-05-31

    metal tetrafluoroborates were examined for similar behavior. Commercial samples of the lithium, sodium and potassium salts were used, while the...REPORT a PERID C £0 inal, 1 June 1980-31 March Molten Salt Electrochemical Systems 1983 6 PERFORMING OŘG. REPORT NUMBER 7. AUTHOR(a) I CONTRACT OR...dilfferent from Reporl) IS. KEY WORDS (Continue ora ow... side 55 n~cssay and Identify by block number ) Molten Salt , Phase Diagram, Electrolyte 30

  2. A history of salt.

    PubMed

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  3. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  4. New photocatalytic contactors obtained by PECVD deposition of TiO 2 thin layers on the surface of macroporous supports. PECVD TiO2-based membranes as photocatalytic contactors

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Roualdès, S.; Ayral, A.

    2015-07-01

    Two different kinds of PECVD anatase-based composite membranes have been successfully prepared by PECVD synthesis (at 150 °C)/post-annealing (at 300 °C) of a titania film deposited on macroporous supports as a top-layer or a skin-coverage. Photocatalytic activity of PECVD anatase films has been proved performing Pilkington test and methylene blue degradation determination in a lab-scale diffusion cell. Measurements of methylene blue degradation and water flow in a pilot-scale dynamic unit have enabled to show the performance of PECVD anatase-based membranes in terms of permeation and photocatalytic properties. Whereas bi-layered membranes present higher photo-degradation ability (up to 2.5 × 10-8 mol s-1 m-2 destroyed methylene blue moles per unit of time and of membrane surface area), skin-covered membranes are characterized by higher water permeance (up to 6800 L h-1 m-2 bar-1). So both kinds of membranes should have an interest as photocatalytic contactors.

  5. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  6. Integrated Salt Studies

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2015-04-01

    The growing importance of salt in the energy, subsurface storage, and chemical and food industries also increases the challenges with prediction of geometries, kinematics, stress and transport in salt. This requires an approach, which integrates a broader range of knowledge than is traditionally available in the different scientific and engineering disciplines. We aim to provide a starting point for a more integrated understanding of salt, by presenting an overview of the state of the art in a wide range of salt-related topics, from (i) the formation and metamorphism of evaporites, (ii) rheology and transport properties, (iii) salt tectonics and basin evolution, (iv) internal structure of evaporites, (v) fluid flow through salt, to (vi) salt engineering. With selected case studies we show how integration of these domains of knowledge can bring better predictions of (i) sediment architecture and reservoir distribution, (ii) internal structure of salt for optimized drilling and better cavern design, (iii) reliable long-term predictions of deformations and fluid flow in subsurface storage. A fully integrated workflow is based on geomechanical models, which include all laboratory and natural observations and links macro- and micro-scale studies. We present emerging concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and deformation of the evaporites by brittle and ductile processes, (iii) the coupling of processes in evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution.

  7. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  8. SALT for Language Acquisition.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  9. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  10. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt?

    PubMed Central

    Yuan, Fang; Leng, Bingying; Wang, Baoshan

    2016-01-01

    To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed. PMID:27446195

  11. Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC).

    PubMed

    Cema, G; Wiszniowski, J; Zabczyński, S; Zabłocka-Godlewska, E; Raszka, A; Surmacz-Górska, J

    2007-01-01

    Due to negative environmental effects of nitrogen discharge to recipients and increasingly stringent effluent standards, effective nitrogen removal is necessity. Biological methods are the simplest and cheapest way to treat wastewater; however, it may become an extremely expensive option when high influent nitrogen concentrations are measured and there is a lack of biodegradable organic carbon. Therefore, there is a great need to find new solutions and improve existing technologies. The deammonification is an excellent example of such a new process that requires considerably low amounts of organic carbon and oxygen in comparison to conventional nitrification/denitrification. The main objective of presented research was to investigate an Anammox process accompanied with autotrophic nitrification and heterotrophic denitrification in one rotating biological contactor (RBC). During the research period, it was possible to carry out the Anammox process in low temperature below 20 'C. Additionally, it was found that the process is insensitive to high nitrite concentration in the reactor, up to 100 g NO2-N m(-3), resulting only in a temporary decrease in removal rates. Furthermore, analysis of data indicated that the Stover-Kincannon model can be used for the description of ammonium and nitrite removal processes.

  12. Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor

    SciTech Connect

    Castillo, E. Vergara, M.; Moreno, Y.

    2007-07-01

    This paper describes the feasibility of an aerobic system (rotating biological contactor, RBC) and a biological anaerobic system (upward-flow anaerobic sludge bed reactor) at small scale for the treatment of a landfill leachate. In the first phase of the aerobic system study, a cyclic-batch RBC system was used to select perforated acetate discs among three different acetate disc configurations. These discs were chosen on the basis of high COD removal (65%) and biological stability. In the second phase, the RBC system (using four stages) was operated continuously at different hydraulic retention times (HRT), at different rotational speeds, and with varying organic concentrations of the influent leachate (2500-9000 mg L{sup -1}). Forty percent of the total surface area of each perforated disc was submerged in the leachate. A COD removal of about 52% was obtained at an HRT of 24 h and a rotational speed of 6 rpm. For the anaerobic system, the reactor was evaluated with a volumetric organic load of 3273 g-COD m{sup -3} day{sup -1} at an HRT of 54, 44, 39, 24 and 17 h. At these conditions, the system reached COD removal efficiencies of 62%, 61%, 59%, 44% and 24%, respectively.

  13. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste.

    PubMed

    Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao

    2014-08-15

    High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation.

  14. Decolorization of bleach plant effluent by mucoralean and white-rot fungi in a rotating biological contactor reactor.

    PubMed

    Driessel, B V; Christov, L

    2001-01-01

    Bleach plant effluents from the pulp and paper industry generated during bleaching with chlorine-containing chemicals are highly colored and also partly toxic due to the presence of chloro-organics, hence the need for pretreatment prior to discharge. In a rotating biological contactor (RBC) reactor effluent decolorization was studied using Coriolus versicolor, a white-rot fungus and Rhizomucor pusillus strain RM7, a mucoralean fungus. Decolorization by both fungi was directly proportional to initial color intensities. It was found that the extent of decolorization was not adversely affected by color intensity, except at the lowest level tested. It was shown that decolorization of 53 to 73% could be attained using a hydraulic retention time of 23 h. With R. pusillus, 55% of AOX were removed compared to 40% by C. versicolor. Fungal treatment with both R. pusillus and C. versicolor rendered the effluent essentially nontoxic. Addition of glucose to decolorization media stimulated color removal by C. versicolor, but not with R. pusillus. Ligninolytic enzymes (manganese peroxidase and laccase) were only detected in effluent treated by C. versicolor. It seems that there are definite differences in the decoloring mechanisms between the white-rot fungus (adsorption + biodegradation) and the mucoralean fungus (adsorption). This aspect needs to be investigated in greater detail to verify the mode responsible for the decolorization activity in both types of fungi.

  15. Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater.

    PubMed

    Malachova, Katerina; Rybkova, Zuzana; Sezimova, Hana; Cerven, Jiri; Novotny, Cenek

    2013-12-01

    Use of fungal organisms in rotating biological contactors (RBC) for bioremediation of liquid industrial wastes has so far been limited in spite of their significant biodegradation potential. The purpose was to investigate the power of RBC using Irpex lacteus for decolorization and detoxification of industrial dyes and dyeing textile liquors. Recalcitrant dye Methylene Blue (150 mg L(-1)) was decolorized within 70 days, its mutagenicity removed, and the biological toxicity decreased more than 10-fold. I. lacteus biofilm in the RBC completely decolorized within 26 and 47 days dyeing liquors containing disperse or reactive dyes adjusted to pH4.5 and 5-fold diluted with the growth medium, respectively. Their respective biological toxicity values were reduced 10- to 10(4)-fold in dependence of the test used. A battery of toxicity tests comprising Vibrio fisheri, Lemna minor and Sinapis alba was efficient to monitor the toxicity of textile dyes and wastewaters. Strong decolorization and detoxification power of RBC using I. lacteus biofilms was demonstrated.

  16. Effect of disintegrated sludge recycling on membrane permeability in a membrane bioreactor combined with a turbulent jet flow ozone contactor.

    PubMed

    Hwang, Byung-Kook; Kim, Jae-Hyuk; Ahn, Chang Hoon; Lee, Chung-Hak; Song, Jae-Yoon; Ra, Young-Hyun

    2010-03-01

    We have combined a turbulent jet flow ozone contactor (TJC) with a membrane bioreactor (MBR) to establish a zero-discharge system in terms of excess sludge in the MBR. The TJC-MBR system was compared with the conventional MBR (Control-MBR) with respect to i) the size and zeta potential of the sludge particles, ii) the loosely bound extra-cellular polymeric substances (EPSs) and tightly bound EPS of the microbial flocs, iii) the porosity and biovolume of the bio-cake accumulated on the membrane, and iv) the membrane permeability. The TJC system generated the ozonated sludge with a negligible amount of loosely bound EPS and a positive zeta potential. As a result, when such ozonated sludge was recycled, the average size of the sludge particles (e.g., microbial flocs) increased in the TJC-MBR. Consequently the bio-cake formed in the TJC-MBR had greater porosity than that in the Control-MBR, giving rise to higher membrane permeability in the TJC-MBR.

  17. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  18. Salt and nephrolithiasis.

    PubMed

    Ticinesi, Andrea; Nouvenne, Antonio; Maalouf, Naim M; Borghi, Loris; Meschi, Tiziana

    2016-01-01

    Dietary sodium chloride intake is nowadays globally known as one of the major threats for cardiovascular health. However, there is also important evidence that it may influence idiopathic calcium nephrolithiasis onset and recurrence. Higher salt intake has been associated with hypercalciuria and hypocitraturia, which are major risk factors for calcium stone formation. Dietary salt restriction can be an effective means for secondary prevention of nephrolithiasis as well. Thus in this paper, we review the complex relationship between salt and nephrolithiasis, pointing out the difference between dietary sodium and salt intake and the best methods to assess them, highlighting the main findings of epidemiologic, laboratory and intervention studies and focusing on open issues such as the role of dietary salt in secondary causes of nephrolithiasis.

  19. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  20. Stress, salt and hypertension.

    PubMed

    Henry, J P

    1988-01-01

    Reasons are given why calcium, obesity and genetics cannot be considered primary factors in the etiology of essential hypertension. This leaves the major protagonists as salt and neuroendocrine responses to the emotions aroused by the social environment. Most essential hypertension is renin dependent and associated with the physiological changes induced by arousal of the defence response. The psychosocial stimulation associated with this arousal induces an increase in salt appetite. This makes the salt consumption of society a measure of the social stress to which it is exposed. Primitive people whose blood pressure remains normal throughout their lives may lack modern societies' physically protective achievements but their religiously prescribed social solidarity may protect them from psychosocial stress. Our chronic suppression of awareness of emotional arousal together with loss of the ritualized support of affiliative behavior may result in repressed emotional responses which find somatic expression in diseases such as essential hypertension. Hypertensiologist George Pickering proposed that the primitive's ritual and taboo (the equivalent in our society might be the Alcoholic's Anonymous belief in a 'Higher Power') protect them from much anger and despair. He gave this precedence over salt as the primary factor in essential hypertension. New evidence supports this. Despite a high salt diet the blood pressure of socially adjusted rodents remains normal throughout their lifespan. On the other hand, the hypertension that develops when they are psychosocially stimulated is not abated by a low salt diet. In humans, the blood pressure of cloistered, secluded Italian nuns on a high salt diet has remained normal for 20 years while that of nearby village women has risen at a startling 2 mmHg/annum during the same period. On the other hand, in rapidly changing Malawi mature adult, rural and urban blood pressures are rising fast despite a low salt intake. Thus the

  1. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    SciTech Connect

    Xie, Kan; Farnell, Casey C.; Williams, John D.

    2014-08-15

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10{sup −5 }Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  2. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  3. Amine salts of nitroazoles

    DOEpatents

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  4. Cooking without salt

    MedlinePlus

    ... flavor and nutrition. Plant-based foods -- carrots, spinach, apples, and peaches -- are naturally salt-free. Sun-dried ... types of pepper, including black, white, green, and red. Experiment with vinegars (white and red wine, rice ...

  5. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  6. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  7. Simultaneous Production and Recovery of Fumaric Acid from Immobilized Rhizopus oryzae with a Rotary Biofilm Contactor and an Adsorption Column

    PubMed Central

    Cao, N.; Du, J.; Gong, C. S.; Tsao, G. T.

    1996-01-01

    An integrated system of simultaneous fermentation-adsorption for the production and recovery of fumaric acid from glucose by Rhizopus oryzae was investigated. The system was constructed such that growing Rhizopus mycelia were self-immobilized on the plastic discs of a rotary biofilm contactor during the nitrogen-rich growth phase. During the nongrowth, production phase, the biofilm was alternately exposed to liquid medium and air upon rotation of the discs in the horizontal fermentation vessel. The product of fermentation, fumaric acid, was removed simultaneously and continuously by a coupled adsorption column, thereby moderating inhibition, enhancing the fermentation rate, and sustaining cell viability. Another beneficial effect of the removal of fumaric acid is release of hydroxyl ions from a polyvinyl pyridine adsorbent into the circulating fermentation broth. This moderates the decrease in pH that would otherwise occur. Polyvinyl pyridine and IRA-900 gave the highest loading for this type of fermentation. This fermentation system is capable of producing fumaric acid with an average yield of 85 g/liter from 100 g of glucose per liter within 20 h under repetitive fed-batch cycles. On a weight yield basis, 91% of the theoretical maximum was obtained with a productivity of 4.25 g/liter/h. This is in contrast to stirred-tank fermentation supplemented with calcium carbonate, whose average weight yield was 65% after 72 h with a productivity of 0.9 g/liter/h. The immobilized reactor was operated repetitively for 2 weeks without loss of biological activity. PMID:16535381

  8. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate.

    PubMed

    Egli, K; Fanger, U; Alvarez, P J; Siegrist, H; van der Meer, J R; Zehnder, A J

    2001-03-01

    Anaerobic ammonium oxidation with nitrite to N2 (anammox) is a recently discovered microbial reaction with interesting potential for nitrogen removal from wastewater. We enriched an anammox culture from a rotating disk contactor (near Kölliken, Switzerland) that was used to treat ammonium-rich leachate with low organic carbon content. This enrichment led to a relative population size of 88% anammox bacteria. The microorganism carrying out the anammox reaction was identified by analysis of the 16S rDNA sequence and by fluorescence in situ hybridization (FISH) with 16S-rRNA-targeting probes. The percentage sequence identity between the 16S rDNA sequences of the Kölliken anammox organism and the archetype anammox strain Candidatus Brocadia anammoxidans was 90.9%, but between 98.5 and 98.9% with Candidatus Kuenenia stuttgartiensis, an organism identified in biofilms by molecular methods. The Kölliken culture catalyzed the anaerobic oxidation of ammonium with nitrite in a manner seemingly identical to that of Candidatus B. anammoxidans, but exhibited higher tolerance to phosphate (up to 20 mM) and to nitrite (up to 13 mM) and was active at lower cell densities. Anammox activity was observed only between pH 6.5 and 9, with an optimum at pH 8 and a temperature optimum at 37 degrees C. Hydroxylamine and hydrazine, which are intermediates of the anammox reaction of Candidatus B. anammoxidans, were utilized by the Kölliken organisms, and approximately 15% of the nitrite utilized during autotrophic growth was converted to nitrate. Electron microscopy showed a protein-rich region in the center of the cells surrounded by a doughnut-shaped region containing ribosomes and DNA. This doughnut-shape region was observed with FISH as having a higher fluorescence intensity. Similar to Candidatus B. anammoxidans, the Kölliken anammox organism typically formed homogenous clusters containing up to several hundred cells within an extracellular matrix.

  9. Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors.

    PubMed

    Sancho, I; Licon, E; Valderrama, C; de Arespacochaga, N; López-Palau, S; Cortina, J L

    2017-04-15

    The integration of up-concentration processes to increase the efficiency of primary sedimentation, as a solution to achieve energy neutral wastewater treatment plants, requires further post-treatment due to the missing ammonium removal stage. This study evaluated the use of zeolites as a post-treatment step, an alternative to the biological removal process. A natural granular clinoptilolite zeolite was evaluated as a sorbent media to remove low levels (up to 100mg-N/L) of ammonium from treated wastewater using batch and fixed bed columns. After being activated to the Na-form (Z-Na), the granular zeolite shown an ammonium exchange capacity of 29±0.8mgN-NH4(+)/g in single ammonium solutions and 23±0.8mgN-NH4(+)/g in treated wastewater simulating up-concentration effluent at pH=8. The equilibrium removal data were well described by the Langmuir isotherm. The ammonium adsorption into zeolites is a very fast process when compared with polymeric materials (zeolite particle diffusion coefficient around 3×10(-12)m(2)/s). Column experiments with solutions containing 100mgN-NH4(+)/L provide effective sorption and elution rates with concentration factors between 20 and 30 in consecutive operation cycles. The loaded zeolite was regenerated using 2g NaOH/L solution and the rich ammonium/ammonia concentrates 2-3g/L in NaOH were used in a liquid-liquid membrane contactor system in a closed-loop configuration with nitric and phosphoric acid as stripping solutions. The ammonia recovery ratio exceeded 98%. Ammonia nitrate and di-ammonium phosphate concentrated solutions reached up to 2-5% wt. of N.

  10. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  11. Fundamental Properties of Salts

    SciTech Connect

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  12. Clean Salt integrated flowsheet

    SciTech Connect

    Lunsford, T.R.

    1994-09-27

    The Clean Salt Process (CSP) is a novel waste management scheme that removes sodium nitrate and aluminum nitrate nonahydrate as decontaminated (low specific activity) salts from Hanford`s high-level waste (HLW). The full scale process will separate the bulk of the waste that exists as sodium salts from the small portion of the waste that is by definition radioactive and dangerous. This report presents initial conceptual CSP flowsheets and demonstrates the benefit of integrating the process into the Tank Waste Remediation Systems (TWRS) Reference Flowsheet. Total HLW and low-level (LLW) volumes are reported for two different CSP integration options and are compared to the TWRS Reference Flowsheet values. The results for a single glass option eliminating LLW disposal are also reported.

  13. Mineral resource of the month: salt

    USGS Publications Warehouse

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  14. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  15. The Great Salt Lake

    USGS Publications Warehouse

    Hassibe, W.R.; Keck, W.G.

    1991-01-01

    The western part of the conterminous United States is often thought of as being a desert without any large bodies of water. In the desert area of western Utah, however, lies Great Salt Lake, which in 1986 covered approximately 2,300 square miles and contained 30 million acre-feet of water (an acre-foot is the amount of water necessary to cover 1 acre of land with water 1 foot in depth or about 326,000 gallons). To emphasize its size, the Great Salt Lake is the largest lake west of the Mississippi River, larger than the states of Rhode Island and Delaware.

  16. [Salt intake in children].

    PubMed

    Girardet, J-P; Rieu, D; Bocquet, A; Bresson, J-L; Briend, A; Chouraqui, J-P; Darmaun, D; Dupont, C; Frelut, M-L; Hankard, R; Goulet, O; Simeoni, U; Turck, D; Vidailhet, M

    2014-05-01

    Very early in life, sodium intake correlates with blood pressure level. This warrants limiting the consumption of sodium by children. However, evidence regarding exact sodium requirements in that age range is lacking. This article focuses on the desirable sodium intake according to age as suggested by various groups of experts, on the levels of sodium intake recorded in consumption surveys, and on the public health strategies implemented to reduce salt consumption in the pediatric population. Practical recommendations are given by the Committee on nutrition of the French Society of Pediatrics in order to limit salt intake in children.

  17. Mechanism for salt scaling

    NASA Astrophysics Data System (ADS)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  18. Characterization of an Autotrophic Nitrogen-Removing Biofilm from a Highly Loaded Lab-Scale Rotating Biological Contactor

    PubMed Central

    Pynaert, Kris; Smets, Barth F.; Wyffels, Stijn; Beheydt, Daan; Siciliano, Steven D.; Verstraete, Willy

    2003-01-01

    In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH4+ wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% ± 5% of the influent N at the highest surface load of approximately 8.3 g of N m−2 day−1, with N2 as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 ± 7.6 and 76.5 ± 6.4 mg of NH4+-N g of volatile suspended solids [VSS]−1 day−1, respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS−1 day−1). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH4+ wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought

  19. Photocatalytic oxidation of 2,4,6-trichlorophenol in water using a cocurrent downflow contactor reactor (CDCR).

    PubMed

    Ochuma, Idoko J; Fishwick, Robert P; Wood, Joseph; Winterbottom, J Mike

    2007-06-18

    The heterogeneous photocatalytic oxidation of aqueous solutions of 2,4,6-trichlorophenol (2,4,6-TCP) as a model pollutant in industrial wastewater has been carried out in a pilot scale cocurrent downflow contactor reactor (CDCR). The reactions were carried out in the presence of Ultra-Violet radiation, O(2) and TiO(2) photocatalyst (VP Aeroperl P25/20). The TiO(2) was characterized by Dynamic Vapour Sorption (DVS) technique giving specific surface area and surface energy of 46.06 m(2)g(-1) and 80.12 mJ m(-2), respectively. The CDC reactor was fitted with an internally and vertically mounted 1.0 kW or 2.0 kW UV lamp. The reactions were carried out at 50 degrees C and 1 bar, with the reactor being operated in closed loop recycle mode and suspended photocatalyst being re-circulated. The CDC reactor, a device of very high mass transfer efficiency giving unusually large gas hold-up of approximately 50%, was operated with oxygen mass transfer and dissolution in the zone above the UV lamp (high mass transfer zone) and along and around the UV lamp housing (reaction zone). Under optimized reaction conditions, 100% conversion of 2,4,6-TCP was achieved in 180 min using 15 dm(3) solutions with initial concentration of 120 mg dm(-3). A combination of TiO(2) photocatalyst, UV irradiation and oxidant was observed to give the most rapid photodegradation and photomineralization of the 2,4,6-TCP in comparison with irradiation only. Using the 1 kW or 2 kW UV lamps, conversion of 100 mg dm(-3) of 2,4,6-TCP after 30 min was 62.51% and 90.71%, respectively, with initial reaction rates of 1.33 x 10(-5) and 4.22 x 10(-5) mol min(-1), respectively, and rate constants 0.0046 and 0.29 min(-1), respectively.

  20. Photoluminescence of urine salts

    NASA Astrophysics Data System (ADS)

    Bordun, O.; Drobchak, O.

    2008-02-01

    Photoexcitation and luminescence spectra of dried urine sample under laser excitation were studied. Luminescence spectra of urine are determined by luminescence of urea which is the main component of urine. The presence of pathological salts in urine leads to the long-wave shifting of maxima of luminescence and to the decreasing of luminescence intensity.

  1. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  2. Utah: Salt Lake City

    Atmospheric Science Data Center

    2014-05-15

    ... mountains surrounding Salt Lake City are renowned for the dry, powdery snow that results from the arid climate and location at the ... should be used with the red filter placed over your left eye. The canyons and peaks of the Uinta and Wasatch Mountains are ...

  3. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  4. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  5. Unitized paramagnetic salt thermometer

    SciTech Connect

    Abraham, B.M.

    1982-06-01

    The details of construction and assembly of a cerous magnesium nitrate (CMN) paramagnetic thermometer are presented. The thermometer is a small unit consisting of a primary, two secondaries, the salt pill, and thermal links. The thermometer calibration changes very little on successive coolings and is reliable to 35 mK. A typical calibration curve is also presented.

  6. Salt repository design approach

    SciTech Connect

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

  7. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  8. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  9. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  10. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  11. Sodium (Salt or Sodium Chloride)

    MedlinePlus

    ... foods available to you and millions of other consumers. You will have the power to choose the ... cutting back and how to build a healthier relationship with food. Sea Salt Versus Table Salt Discover ...

  12. Salt acclimation processes in wheat.

    PubMed

    Janda, Tibor; Darko, Éva; Shehata, Sami; Kovács, Viktória; Pál, Magda; Szalai, Gabriella

    2016-04-01

    Young wheat plants (Triticum aestivum L. cv. Mv Béres) were exposed to 0 or 25 mM NaCl for 11 days (salt acclimation). Thereafter the plants were irrigated with 500 mM NaCl for 5 days (salt stress). Irrigating the plants with a low concentration of NaCl successfully led to a reduction in chlorotic symptoms and in the impairment of the photosynthetic processes when the plants were exposed to subsequent high-dose salt treatment. After exposure to a high concentration of NaCl there was no difference in leaf Na content between the salt-acclimated and non-acclimated plants, indicating that salt acclimation did not significantly modify Na transport to the shoots. While the polyamine level was lower in salt-treated plants than in the control, salt acclimation led to increased osmotic potential in the leaves. Similarly, the activities of certain antioxidant enzymes, namely glutathione reductase, catalase and ascorbate peroxidase, were significantly higher in salt-acclimated plants. The results also suggest that while SOS1, SOS2 or NHX2 do not play a decisive role in the salt acclimation processes in young wheat plants; another stress-related gene, WALI6, may contribute to the success of the salt acclimation processes. The present study suggested that the responses of wheat plants to acclimation with low level of salt and to treatment with high doses of salt may be fundamentally different.

  13. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  14. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    PubMed

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.

  15. SALT IN AYURVEDA I

    PubMed Central

    Mooss, N S

    1987-01-01

    In basic Ayurveda texts, Susruta, Caraka and Vagbhata, some quite specific Salts (Lavanam) have been described and their properties and actions are enumerated. By comparing those accounts with the present methods of preparation, conclusions have been made and evidently spurious methods are pointed out. The reported properties of Saindhava, Samudra, Vida, Sauvarcha, Romaka, Audbhida, Gutika, the Katu Group, Krsna and Pamsuja Lavanas are discussed in terms of their chemical constituents here and, thus, the authors establish its inter-connections. PMID:22557573

  16. Is Salt at Fault

    DTIC Science & Technology

    1989-02-28

    because the kidney requires 3 - 5 days (and sweat glands Ve - : re -Q L0 dar ., to adant to full sal t-cc, nservino C. a r- a.CE i _"/ It h-so cEhoLLld -,e...TITLE: Estimating Salt Losses During Exercise 1. Measure your sweat rate (qt/hr) by weighing yourself nude on an accurate scale , before and after

  17. TPE/REE separation with the use of zirconium salt of HDBP

    NASA Astrophysics Data System (ADS)

    Glekov, R. G.; Shmidt, O. V.; Palenik, Yu. V.; Goletsky, N. D.; Sukhareva, S. Yu.; Fedorov, Yu. S.; Zilberman, B. Ya.

    2003-01-01

    Partitioning of long-lived radionuclides (minor actinides, fission products) is considered as TBP-compatible ZEALEX-process for extraction separation of transplutonium elements (TPE) and rare-earth elements (REE), as well as Y, Mo, Fe and residual amounts of Np, Pu, U. Zirconium salt of dibutyl phosphoric acid (ZS-HDBP) dissolved in 30 % TBP is used as a solvent. The process was tested in multistage centrifugal contactors. Lanthanides, Y and TPE, as well as Mo, Fe were extracted from high-level Purex raffinate, Am and ceric subgroup of REE being separated from the polyvalent elements by stripping with HNO3. TPE/REE partitioning was achieved in the second cycle of the ZEALEX-process using DTPA in formic acid media. The integral decontamination factor of Am from La and Ce after both cycles is >200, from Pr and Nd 20-30 and from Sm and Eu 3.6; REE strips in both cycles contained <0,1% of the initial amount of TPE.

  18. A Trail of Salts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

  19. LIQUID CYCLONE CONTACTOR

    DOEpatents

    Whatley, M.E.; Woods, W.M.

    1962-09-01

    This invention relates to liquid-liquid extraction systems. The invention, an improved hydroclone system, comprises a series of serially connected, axially aligned hydroclones, each of which is provided with an axially aligned overflow chamber. The chambers are so arranged that rotational motion of a fluid being passed through the system is not lost in passing from chamber to chamber; consequently, this system is highly efficient in contacting and separating two immiscible liquids. (AEC)

  20. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  1. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  2. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  3. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  4. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  5. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  6. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  7. Electrochromic salts, solutions, and devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  8. Salt appetite in the elderly.

    PubMed

    Hendi, Khadeja; Leshem, Micah

    2014-11-28

    The present study investigated whether salt appetite in the elderly is impaired similar to thirst because of the commonality of their physiological substrates and whether alterations in salt appetite are related to mood. Elderly (65-85 years, n 30) and middle-aged (45-58 years, n 30) men and women were compared in two test sessions. Thirst, psychophysical ratings of taste solutions, dietary Na and energy intakes, seasoning with salt and sugar, number of salty and sweet snacks consumed, preferred amounts of salt in soup and sugar in tea, and an overall measure of salt appetite and its relationship with mood, nocturia and sleep were measured. Elderly participants were found to be less thirsty and respond less to thirst. In contrast, no impairment of salt appetite was found in them, and although they had a reduced dietary Na intake, it dissipated when corrected for their reduced dietary energy intake. Diet composition and Na intake were found to be similar in middle-aged and elderly participants, despite the lesser intake in elderly participants. There were no age-related differences in the intensity of taste or hedonic profile of Na, in salting habits, in tests of salting soup, or number of salty snacks consumed. No relationship of any measure of salt appetite with mood measured by the Positive and Negative Affect Schedule, frequency of nocturia, or sleep duration was observed. The age-related impairment of the physiology of mineralofluid regulation, while compromising thirst and fluid intake, spares salt appetite, suggesting that salt appetite in humans is not regulated physiologically. Intact salt appetite in the elderly might be utilised judiciously to prevent hyponatraemia, increase thirst and improve appetite.

  9. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  10. Should we eat less salt?

    PubMed

    Delahaye, François

    2013-05-01

    High blood pressure is a major cardiovascular risk factor. There is overwhelming evidence that high salt consumption is a major cause of increased blood pressure. There is also a link between high salt consumption and risk of stroke, left ventricular hypertrophy, renal disease, obesity, renal stones and stomach cancer. Reducing salt consumption leads to a decrease in blood pressure and the incidence of cardiovascular disease. There are no deleterious effects associated with reducing salt consumption and it is also very cost-effective. Many organizations and state governments have issued recommendations regarding the suitable amount of salt consumption. In France, the objective is a salt consumption<8g/day in men and<6.5g/day in women and children. As 80% of consumed salt comes from manufactured products in developed countries, reduction of salt consumption requires the participation of the food industry. The other tool is consumer information and education. Salt consumption has already decreased in France in recent years, but efforts must continue.

  11. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  12. Theory Of Salt Effects On Protein Solubility

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    Salt is one of the major factors that effects protein solubility. Often, at low salt concentration regime, protein solubility increases with the salt concentration(salting in) whereas at high salt concentration regime, solubility decreases with the increase in salt concentration(salting out). There are no quantitative theories to explain salting in and salting out. We have developed a model to describe the salting in and salting out. Our model accounts for the electrostatic Coulomb energy, salt entropy and non-electrostatic interaction between proteins. We analytically solve the linearized Poisson Boltzmann equation modelling the protein charge by a first order multipole expansion. In our model, protein charges are modulated by the anion binding. Consideration of only the zeroth order term in protein charge doesn't help to describe salting in phenomenon because of the repulsive interaction. To capture the salting in behaviour, it requires an attractive electrostatic interaction in low salt regime. Our work shows that at low salt concentration, dipole interaction is the cause for salting in and at high salt concentration a salt-dependent depletion interaction dominates and gives the salting out. Our theoretical result is consistent with the experimental result for Chymosin protein NIH Grant No R01GM107487.

  13. Sodium: How to Tame Your Salt Habit

    MedlinePlus

    ... same amount of sodium as table salt. Use salt substitutes wisely. Some salt substitutes or light salts contain a mixture of table ... substitute — and get too much sodium. Also, many salt substitutes contain potassium chloride. Although potassium can lessen some ...

  14. Studies of Absorption in Salt

    DTIC Science & Technology

    1983-02-01

    Pressed Salt ........................................... 9 2.5.2 Natural Salt ........................................... 14 3.0 EXPERIMENTAL METHODS ...micrographs with sufficient contrast could not be obtained. 2.3 Crack Decoration We found that the most effective method to enhance the grain boundaries and...corrections based on the methods developed by Johnson (1946), Saltikov (1958) and more recently discussed by Underwood (1968). Corrected values for grain

  15. CHED Events: Salt Lake City

    NASA Astrophysics Data System (ADS)

    Wink, Donald J.

    2009-03-01

    The Division of Chemical Education (CHED) Committee meetings planned for the Spring 2009 ACS Meeting in Salt Lake City will be in the Marriott City Center Hotel. Check the location of other CHED events, the CHED Social Event, the Undergraduate Program, Sci-Mix, etc. because many will be in the Salt Palace Convention Center.

  16. Ammoniated salt heat pump

    NASA Astrophysics Data System (ADS)

    Haas, W. R.; Jaeger, F. J.; Giordano, T. J.

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat. Several liquid ammoniates are identified and the critical properties of three of the most promising are presented. Results of small scale (5000 Btu) system tests are discussed and a design concept for a prototype system is given. This system represents a significant improvement over the system using solid ammoniates investigated previously because of the increase in heat transfer rates (5 to 60 Btu/hr sq ft F) and the resulting reduction in heat exchanger size. As a result the concept shows promise of being cost competitive with conventional systems.

  17. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  18. Plant salt-tolerance mechanisms

    SciTech Connect

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  19. Plant salt-tolerance mechanisms.

    PubMed

    Deinlein, Ulrich; Stephan, Aaron B; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  20. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.; Kramer, C. M.; Bradshaw, R. W.; Nissen, D. A.; Goods, S. H.; Mar, R. W.; Munford, J. W.; Karnowsky, M. M.; Biefeld, R. N.; Norem, N. J.

    1981-03-01

    Of the fluids proposed for heat transfer and energy storage, molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO3 and KNO3. Although nitrate/nitrite mixtures were used for decades as heat transfer and heat treatment fluids the use was at temperatures of about 4500 C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 6000 C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program was developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms.

  1. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  2. Salt brickwork as long-term sealing in salt formations

    SciTech Connect

    Walter, F.; Yaramanci, U.

    1993-12-31

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated.

  3. Developments in Molten Salt and Liquid-Salt-Cooled Reactors

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    In the last 5 years, there has been a rapid growth in interest in the use of high-temperature (700 to 1000 deg C) molten and liquid fluoride salts as coolants in nuclear systems. This renewed interest is a consequence of new applications for high-temperature heat and the development of new reactor concepts. Fluoride salts have melting points between 350 and 500 deg C; thus, they are of use only in high-temperature systems. Historically, steam cycles with temperature limits of {approx}550 deg C have been the only efficient method to convert heat to electricity. This limitation produced few incentives to develop high-temperature reactors for electricity production. However, recent advances in Brayton gas turbine technology now make it possible to convert higher-temperature heat efficiency into electricity on an industrial scale and thus have created the enabling technology for more efficient nuclear reactors. Simultaneously, there is a growing interest in using high-temperature nuclear heat for the production of hydrogen and shale oil. Five nuclear-related applications are being investigated: (1) liquid-salt heat-transport systems in hydrogen and shale oil production systems; (2) the advanced high-temperature reactor, which uses a graphite-matrix coated-particle fuel and a liquid salt coolant; (3) the liquid-salt-cooled fast reactor which uses metal-clad fuel and a liquid salt coolant; (4) the molten salt reactor, with the fuel dissolved in the molten salt coolant; and (5) fusion energy systems. The reasons for the new interest in liquid salt coolants, the reactor concepts, and the relevant programs are described. (author)

  4. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  5. Iodized Salt Sales in the United States

    PubMed Central

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P.; Yuan, Keming; Perrine, Cria G.; Cogswell, Mary E.

    2015-01-01

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt. PMID:25763528

  6. Iodized salt sales in the United States.

    PubMed

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P; Yuan, Keming; Perrine, Cria G; Cogswell, Mary E

    2015-03-10

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt.

  7. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution

  8. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor.

    PubMed

    Orandi, S; Lewis, D M; Moheimani, N R

    2012-09-01

    An indigenous mining algal-microbial consortium was immobilised within a laboratory-scale photo-rotating biological contactor (PRBC) that was used to investigate the potential for heavy metal removal from acid mine drainage (AMD). The microbial consortium, dominated by Ulothrix sp., was collected from the AMD at the Sar Cheshmeh copper mine in Iran. This paper discusses the parameters required to establish an algal-microbial biofilm used for heavy metal removal, including nutrient requirements and rotational speed. The PRBC was tested using synthesised AMD with the multi-ion and acidic composition of wastewater (containing 18 elements, and with a pH of 3.5 ± 0.5), from which the microbial consortium was collected. The biofilm was successfully developed on the PRBC's disc consortium over 60 days of batch-mode operation. The PRBC was then run continuously with a 24 h hydraulic residence time (HRT) over a ten-week period. Water analysis, performed on a weekly basis, demonstrated the ability of the algal-microbial biofilm to remove 20-50 % of the various metals in the order Cu > Ni > Mn > Zn > Sb > Se > Co > Al. These results clearly indicate the significant potential for indigenous AMD microorganisms to be exploited within a PRBC for AMD treatment.

  9. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor.

    PubMed

    Sebaaly, Carine; Charcosset, Catherine; Stainmesse, Serge; Fessi, Hatem; Greige-Gerges, Hélène

    2016-03-15

    This work is dedicated to prepare liposomal dry powder formulations of inclusion complexes of clove essential oil (CEO) and its main component eugenol (Eug). Ethanol injection method and membrane contactor were applied to prepare liposomes at laboratory and large scale, respectively. Various liposomal formulations were tested: (1) free hydroxypropyl-β-cyclodextrin loaded liposomes; (2) drug in hydroxypropyl-β-cyclodextrin in liposomes (DCL); (3) DCL2 obtained by double loading technique, where the drug is added in the organic phase and the inclusion complex in the aqueous phase. Liposomes were characterized for their particle size, polydispersity index, Zeta potential, morphology, encapsulation efficiency of CEO components and Eug loading rate. Reproducible results were obtained with both injection devices. Compared to Eug-loaded liposomes, DCL and DCL2 improved the loading rate of Eug and possessed smaller vesicles size. The DPPH(•) scavenging activity of Eug and CEO was maintained upon incorporation of Eug and CEO into DCL and DCL2. Contrary to DCL2, DCL formulations were stable after 1 month of storage at 4°C and upon reconstitution of the dried lyophilized cakes. Hence, DCL in aqueous and lyophilized forms, are considered as a promising carrier system to preserve volatile and hydrophobic drugs enlarging their application in cosmetic, pharmaceutical and food industries.

  10. Experimental and Model Studies on Continuous Separation of 2-Phenylpropionic Acid Enantiomers by Enantioselective Liquid-Liquid Extraction in Centrifugal Contactor Separators.

    PubMed

    Feng, Xiaofeng; Tang, Kewen; Zhang, Pangliang; Yin, Shuangfeng

    2016-03-01

    Multistage enantioselective liquid-liquid extraction (ELLE) of 2-phenylpropionic acid (2-PPA) enantiomers using hydroxypropyl-β-cyclodextrin (HP-β-CD) as extractant was studied experimentally in a counter-current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single-stage model for chiral extraction of 2-PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2-PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP-β-CD concentration of 0.1 mol L(-1) at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%.

  11. Early evolution of salt structures in north Louisiana salt basin

    SciTech Connect

    Lobao, J.J.; Pilger, R.H. Jr.

    1986-05-01

    Several salt diapirs and pillows in southern and central north Louisiana have been studied using approximately 355 mi (570 km) of seismic reflection data and information from 57 deep well holes. Using seismic profiles with deep well-hole data is the most advantageous method to document regional salt tectonism through time. The following conclusions were reached on diapirism in the North Louisiana Salt basin. (1) The diapiric event began early (early Coahuilan) in the southern and central part of the basin, and later (late Coahuilan to Comanchean) in the northern part. (2) The initial diapiric event is much more abrupt and intense in the southern and central diapirs when compared with the later diapiric event in the northern diapirs. (3) Regional depocenter shifting, relative sea level, local erosion with salt extrusion, and rapid depositional loading of sediments are the major controls on diapirism in the basin.

  12. Salt intake, plasma sodium, and worldwide salt reduction.

    PubMed

    He, Feng J; Macgregor, Graham A

    2012-06-01

    There is overwhelming evidence that a reduction in salt intake from the current level of approximately 9-12 g/d in most countries of the world to the recommended level of 5-6 g/d lowers blood pressure (BP) in both hypertensive and normotensive individuals. A further reduction to 3-4 g/d has a greater effect. Prospective studies and outcome trials have demonstrated that a lower salt intake is related to a reduced risk of cardiovascular disease. Cost-effectiveness analyses have documented that salt reduction is more or at the very least just as cost-effective as tobacco control in reducing cardiovascular disease, the leading cause of death and disability worldwide. The mechanisms whereby salt raises blood pressure and increases cardiovascular risk are not fully understood. The existing concepts focus on the tendency for an increase in extracellular fluid volume. Increasing evidence suggests that small increases in plasma sodium may have a direct effect on BP and the cardiovascular system, independent of extracellular volume. All countries should adopt a coherent and workable strategy to reduce salt intake in the whole population. Even a modest reduction in population salt intake will have major beneficial effects on health, along with major cost savings.

  13. Salt supply to and significance of asymmetric salt diapirs

    NASA Astrophysics Data System (ADS)

    Koyi, H.; Burliga, S.; Chemia, Z.

    2012-04-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal geometry of the Gorleben diapir reflect an asymmetric salt supply driven by an asymmetric differential loading. The Kłodawa Salt Structure of Poland is also an asymmetric salt structure driven by asymmetric differential loading from the overlying sediments. The KSS is a salt ridge built of Zechstein evaporite series located in the axial part of the former Mid-Polish Trough. This extensional basin was filled with Zechstein to Cretaceous sediments and was inverted in the Late Cretaceous to Paleogene time. The diapir was triggered in Triassic above a basement fault. In late Triassic, after intruding cover sediments, the diapir extruded an overhang. Using the asymmetric Kłodawa Salt Structure (KSS) in central Poland as a prototype, a series of analogue models were carried out to investigate the evolution history and salt supply driven by asymmetric differential loading. During extension of the model, a daipir was upbuilt by the sand cover above the basement fault. The ductile layer was allowed to extrude a wide overhang at the model "late Triassic" time. The diapir was later downbuilt

  14. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions.

    PubMed

    Sadeghi, Rahmat; Jahani, Farahnaz

    2012-05-03

    To obtain further experimental evidence for the mechanisms of the salting effect produced by the addition of salting-out or sating-in inducing electrolytes to aqueous solutions of water-soluble polymers, systematic studies on the vapor-liquid equilibria and liquid-liquid equilibria of aqueous solutions of several polymers are performed in the presence of a large series of electrolytes. Polymers are polyethylene glycol 400 (PEG400), polyethylene glycol dimethyl ether 250 (PEGDME250), polyethylene glycol dimethyl ether 2000 (PEGDME2000), and polypropylene glycol 400 (PPG400), and the investigated electrolytes are KCl, NH(4)Cl, MgCl(2), (CH(3))(4)NCl, NaCl, NaNO(3), Na(2)CO(3), Na(2)SO(4), and Na(3)Cit (tri-sodium citrate). Aqueous solutions of PPG400 form aqueous two-phase systems with all the investigated salts; however, other investigated polymers form aqueous two-phase systems only with Na(2)CO(3), Na(2)SO(4), and Na(3)Cit. A relation was found between the salting-out or sating-in effects of electrolyte on the polymer aqueous solutions and the slopes of the constant water activity lines of ternary polymer-salt aqueous solutions, so that, in the case of the salting-out effect, the constant water activity lines had a concave slope, but in the case of the salting-in effects, the constant water activity lines had a convex slope. The effect of temperature, anion of electrolyte, cation of electrolyte, and type and molar mass of polymers were studied and the results interpreted in terms of the solute-water and solute-solute interactions. The salting-out effect results from the formation of ion (specially anion)-water hydration complexes, which, in turn, decreases hydration, and hence, the solubility of the polymer and the salting-in effect results from a direct binding of the cations to the ether oxygens of the polymers.

  15. Synthesis of Quaternary Heterocyclic Salts

    PubMed Central

    Winstead, Angela J.; Nyambura, Grace; Matthews, Rachael; Toney, Deveine; Oyaghire, Stanley

    2014-01-01

    The microwave synthesis of twenty quaternary ammonium salts is described. The syntheses feature comparable yields to conventional synthetic methods reported in the current literature with reduced reaction times and the absence of solvent or minimal solvent. PMID:24256924

  16. Nucleophilic arylation with tetraarylphosphonium salts

    PubMed Central

    Deng, Zuyong; Lin, Jin-Hong; Xiao, Ji-Chang

    2016-01-01

    Organic phosphonium salts have served as important intermediates in synthetic chemistry. But the use of a substituent on the positive phosphorus as a nucleophile to construct C–C bond remains a significant challenge. Here we report an efficient transition-metal-free protocol for the direct nucleophilic arylation of carbonyls and imines with tetraarylphosphonium salts in the presence of caesium carbonate. The aryl nucleophile generated from phosphonium salt shows low basicity and good nucleophilicity, as evidenced by the successful conversion of enolizable aldehydes and ketones. The reaction is not particularly sensitive to water, shows wide substrate scope, and is compatible with a variety of functional groups including cyano and ester groups. Compared with the arylmetallic reagents that are usually moisture sensitive, the phosphonium salts are shelf-stable and can be easily handled. PMID:26822205

  17. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  18. PLAT X41601 EAST (SALT LAKE CITY CEMETERY LOCATER), SALT LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAT X-4-160-1 EAST (SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING SOUTH AT CEMETERY BETWEEN OLIVE STREET (1020 EAST) AND 1000 EAST STREET, REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 12049, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  19. Salt excretion in Suaeda fruticosa.

    PubMed

    Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C

    2010-09-01

    Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.

  20. Sedimentation dynamics about salt features

    SciTech Connect

    Lowrie, A.; Blake, D.W.

    1985-02-01

    Detailed side-scan sonar and gridded bathymetric surveys on continental margins reveal the existence of numerous submarine canyons. Recently published compilations of current velocities in submarine canyons indicate that alternating and undirectionaly flows often exceed 20-30 cm/sec with peak velocities ranging from 70 to 100 cm/sec. Current meters attached to the ocean floor have been lost at current velocities of 190 cm/sec. Such velocities are ample to transport sand-size sediments. The results of DSDP Leg 96 show the existence of massive sands and gravels on the Louisiana slope, deposited during the last glacial advance. Thus, present physical oceanographic data may be an analog to conditions during glacially induced lowered sea levels. Salt ridges and domes underlie much of the Louisiana slope, determining morphology. Submarine canyons lace the slope. Given a prograding shelf, the net sediment transport routes will be down the submarine canyons. Sediment deposition patterns around the salt ridges and domes include parallel-bedded foredrifts on the upslope side, lee drifts on the downslope side, and moats along the lateral flanks of the salt features. Major differences exist between the sedimentation patterns around a ridge and a dome. The size and shape of the flow pattern will determine whether there can be a flow over the salt feature with a resulting turbulent wave that may influence sedimentation. Sedimentation patterns about salt features on the present slope should be applicable to similar paleoenvironments.

  1. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  2. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  3. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  4. Salt release from potato crisps.

    PubMed

    Tian, Xing; Fisk, Ian D

    2012-04-01

    The rate of salt release in-mouth from salted potato crisps was evaluated. It was hypothesised that a slow steady release of sodium would occur on chewing and hydration; to test this a crisp was chewed and held in the oral cavity without swallowing for 60 s. Sodium release was measured over the entire holding period, after 20-30 s a peak in salivary sodium levels was recorded. A similar trend was observed with sensory perceived saltiness by trained panellists. The results suggest that a significant proportion of the crisp's salt flavouring is released in a pulse-type mechanism which would not be encountered when the crisp is exposed to normal eating patterns and would result in the consumption of a large proportion of unperceived sodium.

  5. Protein aggregation in salt solutions

    PubMed Central

    Kastelic, Miha; Kalyuzhnyi, Yurij V.; Hribar-Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2015-01-01

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein–protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim’s thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid–liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer–salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization. PMID:25964322

  6. Salt splitting with ceramic membranes

    SciTech Connect

    Kurath, D.

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  7. Salt: important element, invisible menace.

    PubMed

    Wick, Jeannette Y

    2012-11-01

    Public health authorities have mounted campaigns aimed at educating Americans about the obesity epidemic and urging them to consume less sugar. Another food additive-salt-is also a culprit, and many experts believe it should be the target of our next major public health campaign. In addition to obesity, salt is associated with increased rates of cardiovascular disease (especially hypertension), gastric cancer, and osteoporosis. Most Americans consume much more salt than they need or is healthy, with up to 75% of it coming from prepared foods. To be successful, these campaigns must educate young consumers. These campaigns must also incorporate food manufacturers and change our dining environments so that low-sodium foods are accessible and affordable.

  8. Cerebral salt wasting syndrome: review.

    PubMed

    Cerdà-Esteve, M; Cuadrado-Godia, E; Chillaron, J J; Pont-Sunyer, C; Cucurella, G; Fernández, M; Goday, A; Cano-Pérez, J F; Rodríguez-Campello, A; Roquer, J

    2008-06-01

    Hyponatremia is the most frequent electrolyte disorder in critically neurological patients. Cerebral salt wasting syndrome (CSW) is defined as a renal loss of sodium during intracranial disease leading to hyponatremia and a decrease in extracellular fluid volume. The pathogenesis of this disorder is still not completely understood. Sympathetic responses as well as some natriuretic factors play a role in this syndrome. Distinction between SIADH and CSW might be difficult. The essential point is the volemic state. It is necessary to rule out other intermediate causes. Treatment requires volume replacement and maintenance of a positive salt balance. Mineral corticoids may be useful in complicated cases.

  9. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  10. Microplastic Pollution in Table Salts from China.

    PubMed

    Yang, Dongqi; Shi, Huahong; Li, Lan; Li, Jiana; Jabeen, Khalida; Kolandhasamy, Prabhu

    2015-11-17

    Microplastics have been found in seas all over the world. We hypothesize that sea salts might contain microplastics, because they are directly supplied by seawater. To test our hypothesis, we collected 15 brands of sea salts, lake salts, and rock/well salts from supermarkets throughout China. The microplastics content was 550-681 particles/kg in sea salts, 43-364 particles/kg in lake salts, and 7-204 particles/kg in rock/well salts. In sea salts, fragments and fibers were the prevalent types of particles compared with pellets and sheets. Microplastics measuring less than 200 μm represented the majority of the particles, accounting for 55% of the total microplastics, and the most common microplastics were polyethylene terephthalate, followed by polyethylene and cellophane in sea salts. The abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well salts. This result indicates that sea products, such as sea salts, are contaminated by microplastics. To the best of our knowledge, this is the first report on microplastic pollution in abiotic sea products.

  11. Sources of household salt in South Africa.

    PubMed

    Jooste, Pieter L

    2005-01-01

    Marketing of non-iodized salt through unconventional distribution channels is one of the factors weakening the national salt iodization program in South Africa. The aim of this study was therefore to quantify the various sources of household salt, and to relate this information to socio-economic status. Questionnaire information was collected by personal interview during home visits from a multistage, cluster, probability sample of 2164 adults representative of the adult population. Nationally 77.7% of households obtained their table salt from the typical food shops distributing iodized salt. However, in the nine different provinces between 8 and 37.3% of households used unconventional sources, distributing mainly non-iodized salt, to obtain their household salt. These alternative sources include distributors of agricultural salt, small general dealer shops called spaza shops, in peri-urban and rural townships, street vendors and salt saches placed in the packaging of maize meal bags. Country-wide around 30% of low socio-economic households obtained their salt from unconventional sources compared to less than 5% in high socio-economic households, emphasizing the vulnerability of low socio-economic groups to the use of non-iodized salt. Intervention strategies should mobilize all role players involved in unconventional marketing channels of household salt to provide only iodized salt to consumers, as required by law.

  12. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  13. Infrared Spectrometry of Inorganic Salts

    ERIC Educational Resources Information Center

    Ackermann, Martin N.

    1970-01-01

    Describes a general chemistry experiment which uses infrared spectroscopy to analyze inorganic ions and thereby serves to introduce an important instrumental method of analysis. Presents a table of eight anions and the ammonium ion with the frequencies of their normal modes, as well as the spectra of three sulfate salts. (RR)

  14. Hydrogen Cyanide and Cyanide Salts

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 016 F www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN CYANIDE AND CYANIDE SALTS ( CAS No . various ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2010 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This docu

  15. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply

    PubMed Central

    Žmitek, Katja; Pravst, Igor

    2016-01-01

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union’s free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply. PMID:27438852

  16. Chlorine Salts at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Horgan, B.

    2016-09-01

    Although chlorine salts (perchlorates, chlorides) are known to exist at the Phoenix landing site, their distribution and type have not been positively identified yet. We look for these salts through a novel NIR remote sensing technique.

  17. Salt dome discoveries mounting in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1996-06-17

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  18. Reconsolidated Salt as a Geotechnical Barrier

    SciTech Connect

    Hansen, Francis D.; Gadbury, Casey

    2015-11-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  19. Cardiovascular and other effects of salt consumption

    PubMed Central

    Cappuccio, Francesco P

    2013-01-01

    Salt is one of the most important determinants of high blood pressure and increased cardiovascular risk worldwide. However, a high salt intake has other adverse effects beyond those involving the cardiovascular system, so that there is renewed interest in the relationships between high salt intake and other diseases. PMID:25019010

  20. DEVELOPING INDICATORS OF SALT MARSH HEALTH

    EPA Science Inventory

    We relate plant zonation in salt marshes to key ecosystem services such as erosion control and wildlife habitat. Ten salt marshes in Narragansett Bay, with similar geological bedrock and sea exchange, were identified to examine plant zonation. Sub-watersheds adjacent to the salt ...

  1. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  2. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  3. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  4. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  5. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  6. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  7. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  8. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  9. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  10. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  11. The economics of salt cake recycling

    SciTech Connect

    Graziano, D.; Hryn, J.N.; Daniels, E.J.

    1996-03-01

    The Process Evaluation Section at Argonne National Laboratory (ANL) has a major program aimed at developing cost-effective technologies for salt cake recycling. This paper addresses the economic feasibility of technologies for the recovery of aluminum, salt, and residue-oxide fractions from salt cake. Four processes were assessed for salt recovery from salt cake: (1) base case: leaching in water at 25{degree}C, with evaporation to crystallize salts; (2) high-temperature case: leaching in water at 250{degree}C, with flash crystallization to precipitate salts; (3) solventlantisolvent case: leaching in water at 25{degree}C, concentrating by evaporation, and reacting with acetone to precipitate salts; and (4) electrodialysis: leaching in water at 25{degree}C, with concentration and recovery of salts by electrodialysis. All test cases for salt recovery had a negative present value, given current pricing structure and 20% return on investment. Although manufacturing costs (variable plus fixed) could reasonably be recovered in the sales price of the salt product, capital costs cannot. The economics for the recycling processes are improved, however, if the residueoxide can be sold instead of landfilled. For example, the base case process would be profitable at a wet oxide value of $220/metric ton. The economics of alternative scenarios were also considered, including aluminum recovery with landfilling of salts and oxides.

  12. Molecular biology of cyanobacterial salt acclimation.

    PubMed

    Hagemann, Martin

    2011-01-01

    High and changing salt concentrations represent major abiotic factors limiting the growth of microorganisms. During their long evolution, cyanobacteria have adapted to aquatic habitats with various salt concentrations. High salt concentrations in the medium challenge the cell with reduced water availability and high contents of inorganic ions. The basic mechanism of salt acclimation involves the active extrusion of toxic inorganic ions and the accumulation of compatible solutes, including sucrose, trehalose, glucosylglycerol, and glycine betaine. The kinetics of these physiological processes has been exceptionally well studied in the model Synechocystis 6803, leading to the definition of five subsequent phases in reaching a new salt acclimation steady state. Recent '-omics' technologies using the advanced model Synechocystis 6803 have revealed a comprehensive picture of the dynamic process of salt acclimation involving the differential expression of hundreds of genes. However, the mechanisms involved in sensing specific salt stress signals are not well resolved. In the future, analysis of cyanobacterial salt acclimation will be directed toward defining the functions of the many unknown proteins upregulated in salt-stressed cells, identifying specific salt-sensing mechanisms, using salt-resistant strains of cyanobacteria for the production of bioenergy, and applying cyanobacterial stress genes to improve the salt tolerance of sensitive organisms.

  13. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  14. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  15. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  16. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  17. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  18. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  19. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  20. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  1. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  2. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  3. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  4. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  5. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  6. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  7. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  8. Reactivity of pyrylium salts toward basic reactants

    NASA Technical Reports Server (NTRS)

    Neidlein, R.; Witerzens, P.

    1981-01-01

    The reactivity of some N-acyl and N-sulfonyl-hydrazines 2-4, 10a-10g, 12, 13, 16a, 16b and of hydrazones 18, benzyldihydrazone 21 towards pyrylium salts 1 was examined. By reaction of 2,4,6-trimethyl-pyrylium salt 1 with substituted hydrazines some pyridinium salts were obtained. Relationships between basicity and reactivity were discussed.

  9. INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, UT. VIEW LOOKING SOUTH. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18272, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  10. 200 MAIN STREET, SALT LAKE CITY, UT. VIEW LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    200 MAIN STREET, SALT LAKE CITY, UT. VIEW LOOKING EAST OF "MAIN' STREET. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18273, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  11. Pharmaceutical salts: a summary on doses of salt formers from the Orange Book.

    PubMed

    Saal, C; Becker, A

    2013-07-16

    Over half of the active pharmaceutical ingredients currently approved within the US are pharmaceutical salts. Selection of suitable pharmaceutical salts is carried out during late research or early development phase. Therefore several properties of different pharmaceutical salts of a new chemical entity are assessed during salt screening and salt selection. This typically includes physico-chemical behavior, dissolution rate and pharmacokinetics of a pharmaceutical salt. Beyond these properties also toxicological aspects have to be taken into account. As a starting point for a toxicological assessment we present an overview of the usage of pharmaceutical salts as described in the FDA's Orange Book including maximum daily doses for the most important administration routes.

  12. Dry Creek salt dome, Mississippi Interior Salt basin

    SciTech Connect

    Montgomery, S.L.; Ericksen, R.L.

    1997-03-01

    Recent drilling of salt dome flanks in the Mississippi Salt basin has resulted in important new discoveries and the opening of a frontier play. This play is focused on gas/condensate reserves in several Cretaceous formations, most notably the Upper Cretaceous Eutaw and lower Tuscaloosa intervals and Lower Cretaceous Paluxy and Hosston formations. As many as eight domes have been drilled thus far; sandstones in the upper Hosston Formation comprise the primary target. Production has been as high as 3-5 Mcf and 500-1200 bbl of condensate per day, with estimated ultimate reserves in the range of 0.2 to 1.5 MBOE (million barrels oil equivalent) per well. As typified by discovery at Dry Creek salt dome, traps are related to faulting, unconformities, and updip loss of permeability. Previous drilling at Dry Creek, and in the basin generally, avoided the flank areas of most domes, due to geologic models that predicted latestage (Tertiary) piercement and breached accumulations. Recent data from Dry Creek and other productive domes suggest that growth was episodic and that piercement of Tertiary strata did not affect deeper reservoirs charged with hydrocarbons in the Late Cretaceous.

  13. Ultrasonic characterization of pork meat salting

    NASA Astrophysics Data System (ADS)

    García-Pérez, J. V.; De Prados, M.; Pérez-Muelas, N.; Cárcel, J. A.; Benedito, J.

    2012-12-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p<0.05) linear relationships were found between the ultrasonic velocity and the salt (R2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  14. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  15. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  16. Beryllium Interactions in Molten Salts

    SciTech Connect

    G. S. Smolik; M. F. Simpson; P. J. Pinhero; M. Hara; Y. Hatano; R. A. Anderl; J. P. Sharpe; T. Terai; S. Tanaka; D. A. Petti; D.-K. Sze

    2006-01-01

    Molten flibe (2LiF·BeF2) is a candidate as a cooling and tritium breeding media for future fusion power plants. Neutron interactions with the salt will produce tritium and release excess free fluorine ions. Beryllium metal has been demonstrated as an effective redox control agent to prevent free fluorine, or HF species, from reacting with structural metal components. The extent and rate of beryllium solubility in a pot design experiments to suppress continuously supplied hydrogen fluoride gas has been measured and modeled[ ]. This paper presents evidence of beryllium loss from specimens, a dependence of the loss upon bi-metal coupling, i.e., galvanic effect, and the partitioning of the beryllium to the salt and container materials. Various posttest investigative methods, viz., scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to explore this behavior.

  17. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.

    1981-04-01

    This paper presents an overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program. The experimental programs are concentrating on molten nitrate salts which have been proposed as heat transfer and energy storage medium. The salt composition of greatest interest is drawsalt, nominally a 50-50 molar mixture of NaNO3 and KNO3 with a melting point of 220 C. Several technical uncertainties have been identified that must be resolved before nitrate based solar plants can be commercialized. Research programs at Sandia National Laboratories, universities, and industrial suppliers have been implemented to resolve these technical uncertainties. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications such as the repowering/industrial retrofit and cogeneration program are presented.

  18. The taste of table salt.

    PubMed

    Roper, Stephen D

    2015-03-01

    Solutions of table salt (NaCl) elicit several tastes, including of course saltiness but also sweet, sour, and bitter. This brief review touches on some of the mileposts concerning what is known about taste transduction for the Na(+) ion, the main contributor to saltiness. Electrophysiological recordings, initially from single gustatory nerve fibers, and later, integrated impulse activity from gustatory nerves led researchers to predict that Na(+) ions interacted with a surface molecule. Subsequent studies have resolved that this molecule is likely to be an epithelial sodium channel, ENaC. Other Na(+) transduction mechanisms are also present in taste buds but have not yet been identified. The specific type(s) of taste cells responsible for salt taste also remains unknown.

  19. Molten nitrate salt materials studies

    NASA Astrophysics Data System (ADS)

    Carling, R. M.

    1981-03-01

    An overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program is presented. The experimental programs are concentrating on molten nitrate salts which were proposed as heat transfer and energy storage medium. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications are presented.

  20. Novel Paradigms of Salt and Hypertension.

    PubMed

    Feng, Wenguang; Dell'Italia, Louis J; Sanders, Paul W

    2017-02-20

    Salt resistance/sensitivity refers specifically to the effect of dietary sodium chloride (salt) intake on BP. Increased dietary salt intake promotes an early and uniform expansion of extracellular fluid volume and increased cardiac output. To compensate for these hemodynamic changes and maintain constant BP in salt resistance, renal and peripheral vascular resistance falls and is associated with an increase in production of nitric oxide. In contrast, the decline in peripheral vascular resistance and the increase in nitric oxide are impaired or absent in salt sensitivity, promoting an increase in BP in these individuals. Endothelial dysfunction may pose a particularly significant risk factor in the development of salt sensitivity and subsequent hypertension. Vulnerable salt-sensitive populations may have in common underlying endothelial dysfunction due to genetic or environmental influences. These individuals may be very sensitive to the hemodynamic stress of increased effective blood volume, setting in motion untoward molecular and biochemical events that lead to overproduction of TGF-β, oxidative stress, and limited bioavailable nitric oxide. Finally, chronic high-salt ingestion produces endothelial dysfunction, even in salt-resistant subjects. Thus, the complex syndrome of salt sensitivity may be a function of the endothelium, which is integrally involved in the vascular responses to high salt intake.

  1. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  2. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  3. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.

  4. Carpinteria salt marsh habitat polygons

    USGS Publications Warehouse

    Lafferty, Kevin D.; Dunham, Eleca J.; Mancini, Frank T.; Stewart, Tara E.; Hechinger, Ryan F.

    2017-01-01

    We identified five common habitat types in Carpinteria Salt Marsh: channels, pans (flats), marsh, salt flat and upland.  We then drew polygons around each habitat type identified from a registered and orthorectified aerial photograph and created a GIS shapefile. Polygons were ground-truthed in the field. From these habitat polygons, one can use GIS applications to estimate the area of each habitat type in this estuary. These data support the following publications: Kuris, Armand M., et al. "Ecosystem energetic implications of parasite and free-living biomass in three estuaries." Nature 454.7203 (2008): 515-518.Hechinger, Ryan F., Kevin D. Lafferty, Andy P. Dobson, James H. Brown, and Armand M. Kuris. "A common scaling rule for abundance, energetics, and production of parasitic and free-living species." Science 333, no. 6041 (2011): 445-448.Hechinger, Ryan F., Kevin D. Lafferty, John P. McLaughlin, Brian L. Fredensborg, Todd C. Huspeni, Julio Lorda, Parwant K. Sandhu et al. "Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries." Ecology 92, no. 3 (2011): 791-791.Buck, J.C., Hechinger, R.F., Wood, A.C., Stewart, T.E., Kuris, A.M., and Lafferty, K.D., "Host density increases parasite recruitment but decreases host risk in a snail-trematode system." Manuscript submitted for publication. Lafferty, K.D., Stewart, T.E., and Hechinger, R.F. (in press). Bird distribution surveys at Carpinteria Salt Marsh, California USA, January 2012 to March 2013: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7F47M95. 

  5. Salt splitting using ceramic membranes

    SciTech Connect

    Kurath, D.E.

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  6. Molten fluoride fuel salt chemistry

    SciTech Connect

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  7. Salt Complexation in Block Copolymer Thin Films

    SciTech Connect

    Kim,S.; Misner, M.; Yang, L.; Gang, O.; Ocko, B.; Russell, T.

    2006-01-01

    Ion complexation within cylinder-forming block copolymer thin films was found to affect the ordering process of the copolymer films during solvent annealing, significantly enhancing the long-range positional order. Small amounts of alkali halide or metal salts were added to PS-b-PEO, on the order of a few ions per chain, where the salt complexed with the PEO block. The orientation of the cylindrical microdomains strongly depended on the salt concentration and the ability of the ions to complex with PEO. The process shows large flexibility in the choice of salt used, including gold or cobalt salts, whereby well-organized patterns of nanoparticles can be generated inside the copolymer microdomains. By further increasing the amount of added salts, the copolymer remained highly ordered at large degrees of swelling and demonstrated long-range positional correlations of the microdomains in the swollen state, which holds promise as a route to addressable media.

  8. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION.(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...METAL OXIDE SOLUBILITY AND MOLTEN SALT Interim report on a continuing CORROSION NRL problem. S. PERFORMING a4. REPORT NUMlER 7. AuTtwORr) S. CONTRACT OR...EQUILIBRIA AND OXIDE SOLUTION RELATIONS IN MOLTEN SALTS ............................................. 2 IV. METHODS FOR DETERMINING SOLUBILITIES

  9. Louisiana slope salt-ridge continuity confirmed

    SciTech Connect

    Lowrie, A.; Hoffman, K.S.; Sullivan, N.

    1989-03-01

    The Louisiana offshore is a world-class hydrocarbon province. Abundant reservoirs develop as the result of interaction between salt tectonics and sedimentation. Thus, it is essential to know both regional and local characteristics of the extent and timing of salt tectonics as an aid in hydrocarbon exploration. Exploration mythology mandates that salt domes and ridges are virtually random across the slope area. In sharp contrast, the authors describe a definite pattern to the salt ridges of slightly concave (to the north) arcs, with the southernmost arc located along the Sigsbee Escarpment and the northernmost along the shelf break. Furthermore, salt domes may not be truly randomly located but rather part of ancestral or existent salt ridges. Confirming data are provided by dip bathymatric and seismic profiles. The bathymetric profiles are at 5-mi (8-km) spacings from 1987 published charts of the Gulf of Mexico. Dip seismic lines reveal that bathymetric highs are associated with underlying salt. Buried salt accumulations are surficially expressed by actual ridges and domes, a leveling of sea floor, or a local decrease in the rate of regional slope descent. Salt is the Neogene-age basement of the Louisiana slope. The existence of an overall salt-ridge pattern implies that there is a single dynamic geologic system controlling the evolution of this slope. As salt tectonic rates and timing are deciphered for specific sites along dip, intervening rates may be interpolated to unmapped zones. Confirming an overall salt tectonic pattern is mandatory prior to quantifying regional and specific rates for the whole slope.

  10. Monitoring Change in Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Naftz, David; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Carling, Gregory

    2013-08-01

    Great Salt Lake is the largest hypersaline lake in the Western Hemisphere and the fourth largest terminal lake in the world (Figure 1). The open water and adjacent wetlands of the Great Salt Lake ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere [Aldrich and Paul, 2002]. In addition, the area is of important economic value: Brine shrimp (Artemia franciscana) residing in Great Salt Lake support an aquaculture shrimp cyst industry with annual revenues as high as $60 million.

  11. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  12. Advanced salt receiver for solar power towers

    SciTech Connect

    Romero, M.; Sanchez, M.; Barrera, G.

    1995-11-01

    Falling Film receivers constitute an alternative to the traditional Salt in Tube receivers, widely used and tested in the Central Receiver Systems. This report presents an innovative concept of Internal Film Receiver (IFR), in which a film made of a eutectic mixture of molten salts flows down the back side of a stainless steel panel. The installation with 550 kW nominal power, molten salt inlet temperature 300 C and outlet temperature 550 C is described.

  13. Thermally stimulated luminescence of urine salts

    NASA Astrophysics Data System (ADS)

    Bordun, O. M.; Drobchak, O. Z.

    2007-07-01

    We investigated thermally stimulated luminescence (TSL) of urine salts in the normal state and with oxalate, urate, and phosphate salts. We found that the presence of pathological salts leads to a decrease of TSL intensity and to the appearance of additional TLS bands with maxima at 118 and 205 K in addition to the characteristic bands at 173 and 260 K. The TLS bands are related to the urine components. The TSL intensities of urine salts of different chemical composition are compared. The thermal activation energy of the strongest TSL bands is determined.

  14. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  15. Helping crops stand up to salt

    SciTech Connect

    Raeburn, P.

    1985-05-01

    A new approach to the problem of increasing soil salinity is to raise salt-tolerant plants. The search for such plants involves finding new applications for naturally occurring salt-resistant plants (halophytes), using conventional breeding techniques to identify and strengthen crop varieties known to have better-than-average salt tolerance, and applying recombinant DNA methods to introduce salt resistance into existing plants. One promising plant is salicornia, which produces oil high in polyunsaturates at a greater yield than soybeans. Two varieties of atriplex yield as much animal feed as alfalfa and can be harvested several times a year. Seed companies are supporting the research.

  16. Brine Transport Experiments in Granular Salt

    SciTech Connect

    Jordan, Amy B.; Boukhalfa, Hakim; Caporuscio, Florie Andre; Stauffer, Philip H.

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  17. Salt formation to improve drug solubility.

    PubMed

    Serajuddin, Abu T M

    2007-07-30

    Salt formation is the most common and effective method of increasing solubility and dissolution rates of acidic and basic drugs. In this article, physicochemical principles of salt solubility are presented, with special reference to the influence of pH-solubility profiles of acidic and basic drugs on salt formation and dissolution. Non-ideality of salt solubility due to self-association in solution is also discussed. Whether certain acidic or basic drugs would form salts and, if salts are formed, how easily they would dissociate back into their free acid or base forms depend on interrelationships of several factors, such as S0 (intrinsic solubility), pH, pKa, Ksp (solubility product) and pHmax (pH of maximum solubility). The interrelationships of these factors are elaborated and their influence on salt screening and the selection of optimal salt forms for development are discussed. Factors influencing salt dissolution under various pH conditions, and especially in reactive media and in presence of excess common ions, are discussed, with practical reference to the development of solid dosage forms.

  18. Electrolytic orthoborate salts for lithium batteries

    SciTech Connect

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  19. Electrolytic orthoborate salts for lithium batteries

    SciTech Connect

    Angell, Charles Austen; Xu, Wu

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  20. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  1. Strategies for salt reduction in foods.

    PubMed

    Toldrá, Fidel; Barat, José M

    2012-04-01

    The amounts of sodium chloride in the formulation of a variety of foods like bakery, meats and dairy foods, ready meals, sauces and snacks, are relatively large and thus, have a strong contribution on the salt dietary intake. There is a clear demand by the consumers and medical associations to reduce the salt content in foods. Different strategies have been proposed and most of them consist of the replacement of sodium chloride by other salts and the addition of other substances for an acceptable sensory quality. The recent patents for salt reduction and their applications in foods are reviewed in this manuscript.

  2. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  3. Salt intake and reproductive function in sheep.

    PubMed

    Digby, S N; Chadwick, M A; Blache, D

    2011-06-01

    Producers have the possibility to combat human-induced dryland salinity by planting salt-tolerant plants such as saltbush. Saltbush has the potential to be used as a source of food for livestock at a time and place where pasture is not viable. However, saltbush contains high concentrations of sodium chloride salt and some other anti-nutritional factors that have the potential to affect feed and water intake and, directly or indirectly, the reproductive capacity of sheep. High-salt diet during gestation induces a small modification of the activity of the renin-angiotensin system (RAS) that has an important role in the maintenance of the salt-water balance in non-pregnant and pregnant sheep. In contrast, the main effect of salt ingestion during pregnancy is observed on the biology of the offspring, with changes in the response of the RAS to salt ingestion and altered thirst threshold in response to an oral salt ingestion. These changes, observed later in life, are the result of fetal programming following the ingestion of salt by the mother. It seems that the exposure to salt during pregnancy could provide an advantage to the offspring because of this adaptive response. The response may be particularly useful, for example, when grazing herbivores are fed halophytic forages adapted to saline soils.

  4. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  5. Metal salts of alkyl catechol dithiophosphoric acids and oil compositions containing the salts

    SciTech Connect

    Yamaguchi, E.S.; Liston, T.V.

    1988-03-08

    Metal salts of alkyl catechol esters of dithiophosphoric acid suitable as additives in oil compositions are disclosed in this patent. Oil compositions containing the salts of such esters show improved extreme pressure/anti-wear and anit-oxidant properties.

  6. The bioenergetics of salt tolerance

    SciTech Connect

    Packer, L.

    1991-01-01

    The aim of this project was to try to understand the adaptive mechanisms that organisms develop in order to respond to a sudden transformation in their environment to a salt shock.'' To study this problem we used a fresh water oxygenic photosynthetic cyanobacterium known as Synecoccus 6311. This organism suffers injury after this sudden exposure to high concentrations of sodium chloride equivalent to or even higher than that in sea water. Yet they are able to re-establish their photosynthetic activity which is partially injured and return to virtually normal growth rates. Identification of the temporal sequence of changes involved in adaptation to this stress was the rationale. Indeed this project employed a wide variety of biochemical and biophysical methods, including electron spin resonance techniques and nuclear magnetic resonance to study the bioenergetics and transport mechanisms, growth and energy changes in these organisms and how the structural components of the cells changed in response to adaptation to growth at high salinity. The problem has relevance for higher plants because most of the arable farmland in the work is already under use and that which is not used is usually in salite environments. Hence, understanding basic mechanisms of salt tolerance is a fundamental biological problem with great applications for bioproductivity and agriculture. 18 refs.

  7. Identifying acid salts of magnesium

    SciTech Connect

    Plumb, R.; Thivierge, R.F. Jr.; Xu, W.W.

    1987-11-05

    In preliminary work they found that significant quantities of certain nitrogen oxides and of sulfuric acid were absorbed by lower hydrates of magnesium sulfate. It appeared that acid salts were being formed but the known chemistry of group IIA (group 2) sulfates and acid sulfates which was worked out many years ago did not provide an explanation of their observations. They developed a new technique for delineating the solidus boundary of ternary mixtures using friability tests and applied it to the systems of interest. Magnesium acid salt hydrates with compositions on the solidus boundary could be readily identified. X-ray powder patterns confirmed the existence of two previously unknown ternary compounds, Mg/sub 2/(HSO/sub 4/)/sub 2/SO/sub 4/ x 4H/sub 2/O and Mg(HSO/sub 4/)/sub 2/ x H/sub 2/SO/sub 4/ x 3H/sub 2/O. Mixed acid sulfate-nitrate-hydrates could be detected but fuming at room temperatures interfered with quantitative determinations of the solidus boundary and X-ray measurements.

  8. Anaglyph, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM

  9. Salt domes: is there more energy available from their salt than from their oil?

    PubMed

    Wick, G L; Isaacs, J D

    1978-03-31

    Calculations indicate that a typical oil-bearing salt dome along the Gulf Coast of the United States contains more energy in its salt than is present in its oil. The magnitude of the potential salinity gradient energy is even greater when all of the salt domes are considered.

  10. Investigation of salt loss from the Bonneville Salt Flats, northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer.A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  11. 250 NORTH & MAIN STREET (PARK 83, SALT LAKE CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    250 NORTH & MAIN STREET (PARK 8-3, SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING NORTH - REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18271, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  12. Physicochemical changes of tilapia (Oreochromis niloticus) muscle during salting.

    PubMed

    Chaijan, Manat

    2011-12-01

    The effect of wet and dry saltings on the physicochemical changes of tilapia (Oreochromis niloticus) muscle was investigated. Dry salting resulted in the higher rate of salt uptake into tilapia muscle facilitating the faster decrease in Aw (p<0.05). The pH of both dry and wet salted fish muscles tended to decrease throughout the salting time and the lower pH was found in dry salted fish (p<0.05). The increase in the protein content in the salting medium was found during wet salted tilapia production (p<0.05). The TCA-soluble peptide content tended to decrease with increasing the salting time in both salting methods (p<0.05), suggesting a leaching effect of the salting medium or the exudative loss occurred in salted tilapia. Wet salting caused the greater formation of metmyoglobin in tilapia muscle when compared to dry salting at all time points (p<0.05) and the content of metmyoglobin increased as salting time increased in both salting methods (p<0.05). A lowered metmyoglobin with a lowered redness index of dry salted tilapia muscle was found, indicating the continuous oxidation of metmyoglobin to other hypervalent derivatives and hence the discolouration of salted tilapia. Lipid hydrolysis and oxidation of tilapia meat occurred with varying degrees in both salting methods and these changes depended on salting time. Dry salting resulted in a higher oxidation of tilapia muscle lipid as indicated by the higher PV and TBARS throughout the salting period when compared with that of wet salting (p<0.05). In conclusion, the physicochemical changes of tilapia muscle during salting are governed by the salting method and the salting time applied.

  13. Rheological contrasts in salt and their effects on flow in salt

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2014-05-01

    The majority of numerical and analogue models of salt tectonics assume homogeneous rheological models, and consequently produce simple internal structures. This is in contrast to observations in salt mines and 3D seismic, showing complex folding at a wide range of scales, in combination with boudinage and fracturing, which point to large rheological contrasts in salt bodies. The rheology of rock salt during slow deformation can be both Newtonian and Power law. Dislocation creep and dissolution-precipitation processes, such as solution-precipitation creep and dynamic recrystallisation, both play a significant role and grain boundary healing in deforming salt may result in cyclic softening and hardening behaviour. The switch between these processes can cause major changes in rock salt rheology, at time scales both relevant to geologic evolution and subsurface operations. In the dislocation creep field, a compilation of laboratory data show that different rock salts can creep at four orders of magnitude different strain rates under otherwise the same conditions. Potassium - Magnesium salts are in turn much weaker, and Anhydrite much stronger than rock salt. Anhydrite - carbonate inclusions embedded in deforming salt bodies respond to the movements of the salt in a variety of ways including boudinage and folding. New methods of microstructure analysis integrated with paleorheology indicators observed in natural laboratories allows an integration of these data and the development of a unified model for salt creep for both underground cavities and natural deformation, including the effect of high fluid pressures in salt which lead to a dramatic increases in permeability. For example, modeling of anhydrite stringer sinking is an important way to obtain the long term rheology of the halite, indicating that the rheology of Zechstein salt during the Tertiary was dominated by dislocation creep. These form the basis of a new generation of mechanical models to predict the

  14. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  15. Metal salt catalysts for enhancing hydrogen spillover

    DOEpatents

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  16. Skin Sensitizing Potency of Halogenated Platinum Salts.

    EPA Science Inventory

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  17. Acyclic telluroiminium salts: isolation and characterization.

    PubMed

    Mutoh, Yuichiro; Murai, Toshiaki; Yamago, Shigeru

    2004-12-29

    The isolation, structure, and reactions of acyclic telluroiminium salts were disclosed. The delocalization of electrons on the tellurium atom and the partial double-bond character of C-Te bonds in the salts are discussed on the basis of X-ray molecular structure analysis, 13C and 125Te NMR spectroscopy, and molecular orbital calculation.

  18. Morning sickness: impact on offspring salt preference.

    PubMed

    Crystal, S R; Bernstein, I L

    1995-12-01

    These studies examined the relationship between salt preference of adult offspring and their mothers' symptoms of morning sickness during pregnancy. College students who could provide information about their mothers' symptoms of morning sickness completed a survey about their dietary salt intake (study 1; n = 169) or rated and consumed ten snack foods (study 2; n = 66). In study 1 a salt-use score was calculated based on responses to the Salt Intake Questionnaire; offspring of women with moderate or severe vomiting reported a significantly higher level of salt use (p < 0.01) than those whose mothers report little or no symptoms. In study 2 saltiness and pleasantness ratings of high-salt foods, intake of those foods and total sodium intake were the focus of analysis. Offspring of women reporting moderate or severe vomiting showed a significantly greater preference for the snack food subjects rated as saltiest than those whose mothers reported no or mild vomiting. They also ate more of that food and consumed more total sodium during the test session. Effects were stronger in Caucasian than Asian subjects. These studies suggest that moderate to severe vomiting during pregnancy can be associated with significantly higher salt intake in offspring. Thus, a gestational event may be an important determinant of salt intake and preference in adulthood.

  19. Impact of thiocyanate salts on zein properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new class of zein plasticizer was investigated, thiocyanate salts. Ammonium (ATC), potassium (KTC), guanidine (GTC) and magnesium thiocyanate (MTC) salts were added to solutions of zein in 90% ethanol/10% water with various amounts of tri(ethylene glycol) (TEG), cast as films and then tested to de...

  20. Grains of Salt. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Joly, Dominique

    This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume provides information on the origin and uses of salt, both in the ancient world and today. Topics are: (1) relationship of salt to the human body; (2) collection methods; (3) uses for human life;…

  1. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  2. [Global strategies to reduce salt intake].

    PubMed

    Valenzuela Landaeta, Karen; Atalah Samur, Eduardo

    2011-06-01

    Currently, cardiovascular diseases (CVD) are the leading cause of death worldwide. High blood pressure is one of the main risk factors for the development of CVD and blood pressure levels are strongly associated with salt intake. Worldwide, salt consumptions accounts more than two fold the recommended daily intake, which has been described to be associated with CVD and some cancers. Benefits of decrease salt intake (reduction of morbidity, mortality and health related costs) have promoted several public health strategies to reduce salt consumption globally. Among the most commonly used strategies include educational campaigns and the gradual decrease of added salt in processed foods. Chile has joined these initiatives with an agreement between the producers of bread and the Ministry of Health to gradually decrease the concentration of salt in bread nationwide. The purpose of this review is to provide updated information regarding recommended intakes of salt, real intake, adverse effects of excess consumption, profits attributable to a decline and analyze the global strategies to reduce salt intake in the population.

  3. Salt glacier and composite sediment-salt glacier models for the emplacement and early burial of allochthonous salt sheets

    SciTech Connect

    Fletcher, R.C.; Hudec, M.R.; Watson, I.A.

    1996-12-31

    Allochthonous salt sheets in the northern Gulf of Mexico were emplaced as extrusive {open_quotes}salt glaciers{close_quotes} at the sediment-water interface. Massive dissolution was suppressed by a thin carapace of pelagic sediments. During emplacement, several hundred meters of bathymetric relief restricted rapid sedimentation to outside the glacial margins. The glaciers acted as sediment dams, influencing the transport and deposition of sediment from an upslope source. Because of contemporaneous sedimentation, the base of the glaciers climbed upward in all directions away from their feeder stocks, and successive sedimentary horizons were truncated against it. The local slope at the base of the sheets is equal to the local rate of sedimentation divided by the local rate of salt advance. Alternating episodes of slow and rapid sedimentation gave rise to a basal salt surface of alternating flats and ramps, which are preserved. Many salt sheets have nearly circular map patterns but are strongly asymmetric. Feeder stocks occur near upslope edges, and base-of-salt slopes are greater updip of the feeder. The asymmetry is due to more rapid sedimentation at the upslope edge and to slower advance induced by the smaller hydraulic head between the salt fountain and the upslope edge compared to the downslope edge. Rapid emplacement of the Mickey salt sheet (Mitchell dome) from a preexisting salt stock took {approximately}4 m.y, as {approximately}1 km of sediment was deposited. A three-dimensional geomechanical model for the rapid salt emplacement yields the following relationship for the diapir`s downdip radius versus time: R(t) {approx} Mt{sup q} {approx} B[({rho} - {rho}{sub w})gK{sup 3} / {eta}]{sup 1/8}t{sup q}, where M, q, b, and K are constants related to salt supply into the sheet, {rho} and {rho}{sub w} are the densities of salt water, g is the acceleration of gravity, {eta} is salt viscosity, and t is a model time extrapolated back to zero sheet volume at t = 0.

  4. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  5. Salt intake, knowledge of salt intake, and blood pressure control in Chinese hypertensive patients.

    PubMed

    Qin, Yu; Li, Ting; Lou, Peian; Chang, Guiqiu; Zhang, Pan; Chen, Peipei; Qiao, Cheng; Dong, Zongmei

    2014-12-01

    A cross-sectional study involving 2502 subjects was conducted to evaluate salt intake, knowledge of salt intake, and blood pressure control in hypertensive patients. The blood pressure control rate was 33.5% among the hypertensive patients. Of the patients, 69.9% had salt intake higher than 6 g/d. Overall 35.0% knew the recommended salt intake, and 94.9% knew that "excess salt intake can result in hypertension." Altogether, 85.8% of patients had received health education related to a low-salt diet at some time. Patients who consumed less than 6 g/d of salt had a higher control rate than those who consumed more than 6 g/d (48.7% vs. 27.0%; χ(2) = 111.0; P < .001). Patients with knowledge of the recommended salt intake had a higher control rate than those without (45.8% vs. 26.9%; χ(2) = 91.3; P < .001). Our findings suggest a high salt intake and low blood pressure control rate among Chinese hypertensive patients. Knowledge of recommended salt intake is inappropriate for patients with education of a low-salt diet.

  6. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    SciTech Connect

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.

  7. 1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING (LEFT BACKGROUND), AND TWIN COTTAGES (UPPER RIGHT) (4 x 5 negative; 5 x 7 print) - Salt Sulpher Springs, U.S. Route 219, Salt Sulphur Springs, Monroe County, WV

  8. 25. LOOKING UP THE SALT RIVER FROM THE INTAKE GATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. LOOKING UP THE SALT RIVER FROM THE INTAKE GATES OF THE SALT RIVER POWER CANAL, SHOWING HEADWORKS OF POWER CANAL Photographer: Walter J. Lubken, October 17, 1906 - Roosevelt Power Canal & Diversion Dam, Parallels Salt River, Roosevelt, Gila County, AZ

  9. 5. Monighan dragline at work in the Salt River at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Monighan dragline at work in the Salt River at Mormon Flat. Photographer unknown, 1923. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  10. Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species.

    PubMed

    Gálvez, Francisco Javier; Baghour, Mourad; Hao, Gangping; Cagnac, Olivier; Rodríguez-Rosales, María Pilar; Venema, Kees

    2012-02-01

    In general, wild tomato species are more salt tolerant than cultivated species, a trait that is related to enhanced Na(+) accumulation in aerial parts in the wild species, but the molecular basis for these differences is not known. Plant NHX proteins have been suggested to be important for salt tolerance by promoting accumulation of Na(+) or K(+) inside vacuoles. Therefore, differences in expression or activity of NHX proteins in tomato could be at the basis of the enhanced salt tolerance in wild tomato species. To test this hypothesis, we studied the expression level of four NHX genes in the salt sensitive cultivated species Solanum lycopersicum L. cv. Volgogradskij and the salt tolerant wild species Solanum pimpinelifolium L in response to salt stress. First, we determined that in the absence of salt stress, the RNA abundance of LeNHX2, 3 and 4 was comparable in both species, while more LeNHX1 RNA was detected in the tolerant species. LeNHX2 and LeNHX3 showed comparable expression levels and were present in all tissues, while LeNHX4 was expressed above all in stem and fruit tissues. Next, we confirmed that the wild species was more tolerant and accumulated more Na(+) in aerial parts of the plant. This correlated with the observation that salt stress induced especially the LeNHX3 and LeNHX4 isoforms in the tolerant species. These results support a role of NHX genes as determinants of salt tolerance in tomato, inducing enhanced Na(+) accumulation observed in the wild species when grown in the presence of NaCl.

  11. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress.

    PubMed

    Lee, Min Hee; Cho, Eun Ju; Wi, Seung Gon; Bae, Hyoungwoo; Kim, Ji Eun; Cho, Jae-Young; Lee, Sungbeom; Kim, Jin-Hong; Chung, Byung Yeoup

    2013-09-01

    Salinization plays a primary role in soil degradation and reduced agricultural productivity. We observed that salt stress reversed photosynthesis and reactive oxygen scavenging responses in leaves or roots of two rice cultivars, a salt-tolerant cultivar Pokkali and a salt-sensitive cultivar IR-29. Salt treatment (100 mM NaCl) on IR-29 decreased the maximum photochemical efficiency (Fv/Fm) and the photochemical quenching coefficient (qP), thereby inhibiting photosynthetic activity. By contrast, the salt treatment on Pokkali had the converse effect on Fv/Fm and qP, while increasing the nonphotochemical quenching coefficient (NPQ), thereby favoring photosynthetic activity. Notably, chloroplast or root cells in Pokkali maintained their ultrastructures largely intact under the salt stress, but, IR-29 showed severe disintegration of existing grana stacks, increase of plastoglobuli, and swelling of thylakoidal membranes in addition to collapsed vascular region in adventitious roots. Pokkali is known to have higher hydrogen peroxide (H2O2)-scavenging enzyme activities in non-treated seedlings, including ascorbate peroxidase, catalase, and peroxidase activities. However, these enzymatic activities were induced to a greater extent in IR-29 by the salt stress. While the level of endogenous H2O2 was lower in Pokkali than in IR-29, it was reversed upon the salt treatment. Nevertheless, the decreased amount of H2O2 in IR-29 upon the salt stress didn't result in a high scavenging activity of total cell extracts for H2O2, as well as O2(·-) and (·)OH species. The present study suggests that the tolerance to the moderate salinity in Pokkali derives largely from the constitutively maintained antioxidant enzymatic activities as well as the induced antioxidant enzyme system.

  12. Initial salt screening procedures for manufacturing ibuprofen.

    PubMed

    Lee, Tu; Wang, Yeh Wen

    2009-05-01

    The aim of this paper is to design initial salt screening procedures for manufacturing ibuprofen. Salt forms of a pharmaceutical acid racemic (R,S)-(+/-)-ibuprofen and their "developable" synthetic routes were ferreted out simultaneously through the screening of seven bases of sodium hydroxide, potassium hydroxide, L-arginine, L-histidine, L-lysine, diethanolamine, and tris(hydroxymethyl)aminomethane (THAM), and the match with the use of nine organic solvents of methanol, dimethyl sulfoxide, ethanol, N, N-dimethylformamide, acetonitrile, isopropyl alcohol, 1,4-dioxane, acetone, and tetrahydrofuran mainly in the presence of water in 20 mL scintillation vials. Racemic (R,S)-(+/-)-sodium ibuprofen dihydrate, a well-known ibuprofen salt and the newly discovered racemic (R,S)-(+/-)-THAM ibuprofen, appeared as white-squared powders with a molecular weight of 327.42 g/mol, a melting point of 160.17 degrees C, and the apparent solubility product, K'(sp), of 6.0 x 10(-4) M(2) at 25 degrees C were successfully synthesized by the initial salt screening methods. The new amine salt of ibuprofen was monoclinic and had a space group of P2(1)/c and lattice parameters of a = 17.578(8) degrees, b = 10.428(4) degrees, c = 9.991(4) A, alpha = 90.00 degrees , beta = 97.17(1) degrees, gamma = 90.00 degrees, and V = 1,817.05(244) A(3). The aspect ratio of the amine salt crystals of ibuprofen of approximately 1.0 implied that the crystals had a better flowability than the sodium salt counterparts. This amine salt of ibuprofen was more stable in moist or dried atmospheres and was more hydrophobic than the sodium salt of ibuprofen. Moreover, the slow dissolution of this amine salt of ibuprofen might have made it less bitter and more suitable as a sustained release drug than the sodium salt of ibuprofen. The future work is to search for the different polymorphs of this amine salt of ibuprofen and to extend the initial salt screening working logics to the formation of co-crystals.

  13. 23. VIEW SHOWING SALT RIVER PROJECT CREWS SLIPFORMING LATERAL DURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW SHOWING SALT RIVER PROJECT CREWS SLIPFORMING LATERAL DURING REHABILITATION AND BETTERMENT PROGRAM Photographer: unknown. April 1968 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  14. Eight salt forms of sulfadiazine.

    PubMed

    Buist, Amanda R; Dennany, Lynn; Kennedy, Alan R; Manzie, Craig; McPhie, Katherine; Walker, Brandon

    2014-09-01

    Proton transfer to the sulfa drug sulfadiazine [systematic name: 4-amino-N-(pyrimidin-2-yl)benzenesulfonamide] gave eight salt forms. These are the monohydrate and methanol hemisolvate forms of the chloride (2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium chloride monohydrate, C(10)H(11)N(4)O(2)S(+) · Cl(-) · H2O, (I), and 2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium chloride methanol hemisolvate, C(10)H(11)N(4)O(2)S(+) · Cl(-) · (0.5)CH(3)OH, (II)); a bromide monohydrate (2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium bromide monohydrate, C(10)H(11)N(4)O(2)S(+) · Br(-) · H2O, (III)), which has a disordered water channel; a species containing the unusual tetraiodide dianion [bis(2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium) tetraiodide, 2C(10)H(11)N(4)O(2)S(+) · I4(2-), (IV)], where the [I4](2-) ion is located at a crystallographic inversion centre; a tetrafluoroborate monohydrate (2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium tetrafluoroborate monohydrate, C(10)H(11)N(4)O(2)S(+) · BF(4)(-) · H2O, (V)); a nitrate (2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium nitrate, C(10)H(11)N(4)O(2)S(+) · NO(3)(-), (VI)); an ethanesulfonate {4-[(pyrimidin-2-yl)sulfamoyl]anilinium ethanesulfonate, C(10)H(11)N(4)O(2)S(+) · C(2)H(5)SO(3)(-), (VII)}; and a dihydrate of the 4-hydroxybenzenesulfonate {4-[(pyrimidin-2-yl)sulfamoyl]anilinium 4-hydroxybenzenesulfonate dihydrate, C(10)H(11)N(4)O(2)S(+) · HOC(6)H(4)SO(3)(-) · 2H2O, (VIII)}. All these structures feature alternate layers of cations and of anions where any solvent is associated with the anion layers. The two sulfonate salts are protonated at the aniline N atom and the amide N atom of sulfadiazine, a tautomeric form of the sulfadiazine cation that has not been crystallographically described before. All the other salt forms are instead protonated at the aniline group and on one N atom of the pyrimidine ring. Whilst all eight species are based upon

  15. Mechanochemical synthesis of layered hydroxy salts

    SciTech Connect

    Thomas, Nygil

    2012-11-15

    Highlights: ► Ultrafast synthesis method was developed for the synthesis of layered hydroxy salts. ► Preparation of hydroxy single salt by this method requires only one minute. ► Hydroxy salts with variable Ni/Zn ratio could be synthesized by varying the metal contents of the starting mixture. ► This synthesis method is solvent free and environment friendly. -- Abstract: A simple one minute synthesis method was adapted for the preparation of layered hydroxy salts of copper, zinc, nickel and cadmium by grinding the metal salts with sodium hydroxide in a mortar. This solvent free method is environment friendly and fast. This method could be extended to the preparation of Ni/Zn hydroxy double salts. The Ni/Zn ratio could be varied from 1.2 to 1.9 by varying the metal contents of the precursor salts without the formation of any impurities in the sample. The prepared compounds had similar characteristics as that of the samples prepared by precipitation route. No sign of carbonate contamination was observed in any of the prepared samples.

  16. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  17. Genetic Diversity of Salt Tolerance in Miscanthus

    PubMed Central

    Chen, Chang-Lin; van der Schoot, Hanneke; Dehghan, Shiva; Alvim Kamei, Claire L.; Schwarz, Kai-Uwe; Meyer, Heike; Visser, Richard G. F.; van der Linden, C. Gerard

    2017-01-01

    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus. PMID:28261243

  18. Ecogeomorphic Heterogeneity Sculpts Salt Marshes

    NASA Astrophysics Data System (ADS)

    Leonardi, N.; Fagherazzi, S.

    2014-12-01

    state for marsh boundaries, which would make the prediction of failure events impossible. Internal physical processes allowing salt marshes to reach self-organized criticality are geotechnical, biological, and related to the non-homogeneity of salt marshes whose material discontinuities act as stress raisers.

  19. Kidney, salt, and hypertension: how and why.

    PubMed

    Kurokawa, K

    1996-06-01

    A hypothesis is proposed that the aberrant response of the tubuloglomerular feedback to salt load is the abnormality in the kidney in the genesis of essential hypertension. This thesis is based upon the following facts on the kidney, salt and hypertension. To effectively achieve the primary function of the kidney, that is, to maintain the milieu interieur or the extracellular fluids, the kidney must maintain a high glomerular filtration rate (GFR) and almost a complete tubular reabsorption in the face of limited salt intake or low ECF volume and in the face of changes in systemic blood pressure. Autoregulation of renal blood flow and GFR is therefore critical. In addition to myogenic responses in the resistant afferent artery, the juxtaglomerular apparatus (JGA) plays a crucial role in the autoregulation of renal plasma flow and GFR through tubuloglomerular feedback (TGF). That the JGA and TGF have appeared first in amphibian species in evolution suggests that the transition from aquatic sea life, where salt is always in excess to terrestrial life, required this particular structure and function of the kidney. Salt intake in the natural environments on land is very limited, and chronic excess salt intake is a habit peculiar to humans in recent culture or civilization. Thus, it is hypothesized that through evolution the TGF is primarily set to maintain high GFR in the face of low salt intake. We propose that aberrant TGF responses to salt loading may underlie the genesis of essential hypertension in humans. Indeed, hypertension is not seen in human cultures that ingest a very low salt intake.

  20. Salt, salted food intake, and risk of gastric cancer: epidemiologic evidence.

    PubMed

    Tsugane, Shoichiro

    2005-01-01

    Because gastric cancer is still the most common cancer, its prevention is one of the most important aspects of Japan's cancer control strategy. Observations among Japanese immigrants in the USA and Brazil based on the geographic differences, the trend in cancer incidence with time, and the change in incidence patterns indicate that gastric cancer is closely associated with dietary factors, such as the intake of salt and salted food. In international and intra-Japanese ecological studies, the average salt excretion level, estimated using randomly selected 24-h urine samples in each population, was closely correlated with gastric cancer mortality. Several case-control and cohort studies, including the author's recent works, have shown that a higher intake of some traditional salt-preserved food and salt per se, which was estimated using a validated food-frequency questionnaire, was associated with a risk of gastric cancer. While salted food intake may increase the risk of Helicobacter pylori infection, it can also act synergistically to promote the development of gastric cancer. Based on substantial evidence about the association between salt and salted food intake and the risk of gastric cancer from ecological, case-control, and cohort studies conducted in Japan and other countries, as well as mechanistic plausibility, dietary modification involving less salt and salted food intake is a practical strategy with which to prevent gastric cancer.

  1. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  2. Diet and Physical Performance: Water and Salt,

    DTIC Science & Technology

    1982-03-29

    EQUIVALENT TO AN EARLY SALT DEPLETION DEFICIT Sweat Sweat Sweat Sweat Sodium NaCl Volume Sodium (mEq/L) (%) (L) (Total mEq) 75 0.43 8 600 40 0.23 15...I AD-A114 200 ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE N TICK MA F/6 6/5 IDIET AN. PHYSICAL PERFORMANCE: ATER AND SALT (U) IMAR .2 R W HUBBARD...Water and Salt S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR() a. CONTRACT OR GRANT NUMBER( ) Roger W. Hubbard 9. PERFORMING ORGANIZATION NAME AND ADDRESS

  3. Preparation of iodized salt for goitre prophylaxis

    PubMed Central

    Holman, J. C. M.

    1953-01-01

    The methods employed for iodizing free-running salts are discussed. They are not suitable for the iodization of coarse crystalline salts and a new process has been devised by the Chilean Iodine Educational Bureau of London for the iodization of open-pan and solar evaporated salts. This process is described and illustrated by photographs of suitable plants. Attention is drawn to the advantages of potassium iodate as an iodizing agent. ImagesFIG. 1FIG. 3FIG. 4FIG. 5 PMID:13094511

  4. Phytotoxicity of salt and plant salt uptake: Modeling ecohydrological feedback mechanisms

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, Peter; Rasmussen, Nikolaj F.; Feificova, Dagmar; Trapp, Stefan

    2008-04-01

    A new model of phytotoxicity of salt and plant salt uptake is presented and is coupled to an existing three-dimensional groundwater simulation model. The implementation of phytotoxicity and salt uptake relationships is based on experimental findings from willow trees grown in hydroponic solution. The data confirm an s-shaped phytotoxicity relationship as found in previous studies. Uptake data were explained assuming steady state salt concentration in plant roots, passive salt transport into the roots, and active enzymatic removal of salt from plant roots. On the one hand, transpiration strongly depends on groundwater salinity (phytotoxicity); on the other hand, transpiration significantly changes the groundwater salinity (uptake). This feedback loop generates interesting dynamic phenomena in hydrological systems that are dominated by transpiration and are influenced by significant salinity gradients. Generic simulations are performed for the Okavango island system and are shown to reproduce essential phenomena observed in nature.

  5. The science of salt: a systematic review of clinical salt studies 2013 to 2014.

    PubMed

    Johnson, Claire; Raj, Thout Sudhir; Trudeau, Luc; Bacon, Simon L; Padwal, Raj; Webster, Jacqui; Campbell, Norm

    2015-05-01

    The authors provided a systematic review of the clinical and population health impact of increased dietary salt intake during 1 year. Randomized controlled trials or cohort studies or meta-analyses on the effect of sodium intake were examined from Medline searches between June 2013 to May 2014. Quality indicators were used to select studies that were relevant to clinical and public health. A total of 213 studies were reviewed, of which 11 (n=186,357) were eligible. These studies confirmed a causal relationship between increasing dietary salt and increased blood pressure and an association between several adverse health outcomes and increased dietary salt. A new association between salt intake and renal cell cancer was published. No study that met inclusion criteria found harm from lowering dietary salt. The findings of this systematic review are consistent with previous data relating increased dietary salt to increased blood pressure and adverse health outcomes.

  6. Mesoscale modeling of polyelectrolyte brushes with salt.

    PubMed

    Ibergay, Cyrille; Malfreyt, Patrice; Tildesley, Dominic J

    2010-06-03

    We report dissipative particle dynamics (DPD) simulations of a polyelectrolyte brush under athermal solvent conditions. The electrostatic interactions are calculated using the particle-particle particle-mesh (PPPM) method with charges distributed over the particles. The polymer beads, counterions, co-ions, and solvent particles are modeled explicitly. The DPD simulations show a dependence of the brush height on the grafting density and the charge fraction that is typical of the nonlinear osmotic brush regime. We report the effect of the addition of salt on the structural properties of the brush. In the case of a polyelectrolyte brush with a high surface coverage, the simulations reproduce the transition between the nonlinear osmotic brush regime where the thickness of the brush is independent of the salt concentration and the salted regime where the brush height decreases weakly with the salt concentration.

  7. TOWARDS DEVELOPING INDICATORS OF SALT MARSH CONDITION

    EPA Science Inventory

    Five ecosystem services: water quality maintenance, erosion and flood control, recreation and cultural use, wildlife habitat, and food production were identified from the literature as key services to characterize salt marshes of high integrity. We describe a systems approach to ...

  8. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  9. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  10. Liquid salt environment stress-rupture testing

    DOEpatents

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  11. South Bay Salt Pond Mercury Studies Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  12. Cross-reactivity of Halogenated Platinum Salts

    EPA Science Inventory

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  13. What's the Use of a Salt Marsh?

    ERIC Educational Resources Information Center

    Van Raalte, Charlene

    1977-01-01

    Summarizes information about salt marshes, including descriptions of their development and structure, details of their values in terms of commercial fishing, stabilization of coastal zones, "reclamation" for grazing and cropfields, recreation and aesthetics. (CS)

  14. Salt-finger convection under reduced gravity

    NASA Technical Reports Server (NTRS)

    Chen, C. F.

    1990-01-01

    Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to differential diffusion rates. Because of the fact that the destabilizing effect of the concentration gradient is amplified by the Lewis number (the ratio of thermal diffusivity to solute diffusivity) salt-finger convection can be generated at very much reduced gravity levels. This effect may be of importance in the directional solidification of binary alloys carried out in space. The transport of solute and heat by salt-finger convection at microgravity conditions is considered; instability arising from surface tension gradients, the Marangoni instability, is discussed, and the possible consequences of combined salt-finger and Marangoni instability are considered.

  15. Corrosion of Mullite by Molten Salts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Yoshio, Tetsuo

    1996-01-01

    The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O-Al2O3-SiO2 compounds. The results are interpreted using the Na2O-Al203-SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O-Al2O3-SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.

  16. Classification of 17 DES supernovae by SALT

    NASA Astrophysics Data System (ADS)

    Kasai, E.; Bassett, B.; Crawford, S.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.

    2016-02-01

    We report optical spectroscopy of 17 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (380-820nm) were obtained using the Robert Stobie Spectrograph (RSS) on the South African Large Telescope (SALT).

  17. Oregon Salt Marshes: How Blue are They?

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  18. Protective coating for salt-bath brazing

    NASA Technical Reports Server (NTRS)

    Francisco, A. C.; Gyorgak, C. A.

    1971-01-01

    Ceramic coating, consisting of graphite, enameler's clay, and algin binder, applied to materials prior to salt bath brazing facilitates brazing process and results in superior joints. Alternate coating materials and their various proportions are given.

  19. Coordination chemistry in fused-salt solutions

    NASA Technical Reports Server (NTRS)

    Gruen, D. M.

    1969-01-01

    Spectrophotometric work on structural determinations with fused-salt solutions is reviewed. Constraints placed on the method, as well as interpretation of the spectra, are discussed with parallels drawn to aqueous spectrophotometric curves of the same materials.

  20. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  1. ADR salt pill design and crystal growth process for hydrated magnetic salts

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  2. Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress

    PubMed Central

    Ferreira, Liliana J.; Azevedo, Vanessa; Maroco, João; Oliveira, M. Margarida; Santos, Ana Paula

    2015-01-01

    DNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantified using the 5-methylcytosine (5mC) antibody and an ELISA-based technique, which is an affordable and quite pioneer assay in plants, and in situ imaging of methylation sites in interphase nuclei of tissue sections. Variations of global DNA methylation levels in response to salt stress were tissue- and genotype-dependent. We show a connection between a higher ability of DNA methylation adjustment levels and salt stress tolerance. The salt-tolerant rice variety Pokkali was remarkable in its ability to quickly relax DNA methylation in response to salt stress. In spite of the same tendency for reduction of global methylation under salinity, in the salt-sensitive rice variety IR29 such reduction was not statistically supported. In ‘Pokkali’, the salt stress-induced demethylation may be linked to active demethylation due to increased expression of DNA demethylases under salt stress. In ‘IR29’, the induction of both DNA demethylases and methyltransferases may explain the lower plasticity of DNA methylation. We further show that mutations for epigenetic regulators affected specific phenotypic parameters related to salinity tolerance, such as the root length and biomass. This work emphasizes the role of differential methylome flexibility between salt tolerant and salt sensitive rice varieties as an important player in salt stress tolerance, reinforcing the need to better understand the connection between epigenetic networks and plant responses to environmental stresses. PMID:25932633

  3. Salt-thermal zeolitization of fly ash.

    PubMed

    Choi, C L; Park, M; Lee, D H; Kim, I E; Park, B Y; Choi, J

    2001-07-01

    The molten-salt method has been recently proposed as a new approach to zeolitization of fly ash. Unlike the hydrothermal method, this method employs salt mixtures as the reaction medium without any addition of water. In this study, systematic investigation has been conducted on zeolitization of fly ash in a NaOH-NaNO3 system in order to elucidate the mechanism of zeolite formation and to achieve its optimization. Zeolitization of fly ash was conducted by thermally treating a powder mixture of fly ash, NaOH, and NaNO3. Zeolitization of fly ash took place above 200 degrees C, a temperature lower than the melting points of salt and base in the NaOH-NaNO3 system. However, it was uncertain whether the reactions took place in a local molten state or in a solid state. Therefore, the proposed method is renamed the "salt-thermal" method rather than the "molten-salt" method. Mainly because of difficulty in mobility of components in salt mixtures, zeolitization seems to occur within a local reaction system. In situ rearrangement of activated components seems to lead to zeolite formation. Particle growth, rather than crystal growth through agglomeration, resulted in no distinct morphologies of zeolite phases. Following are the optimal zeolitization conditions of the salt-thermal method: temperature, 250-350 degrees C; time, 3-12 h; weight ratio of NaOH/NaNO3, 0.3-0.5; weight ratio of NaNO3/fly ash, 0.7-1.4. Therefore, it is clear from this work that the salt-thermal method could be applied to massive zeolitization of fly ash as a new alternative method for recycling this waste.

  4. DNA nanosensor surface grafting and salt dependence

    NASA Astrophysics Data System (ADS)

    Carvalho, B. G.; Fagundes, J.; Martin, A. A.; Raniero, L.; Favero, P. P.

    2013-02-01

    In this paper we investigated the Paracoccidoides brasiliensis fungus nanosensor by simulations of simple strand DNA grafting on gold nanoparticle. In order to improve the knowledge of nanoparticle environment, the addiction of salt solution was studied at the models proposed by us. Nanoparticle and DNA are represented by economic models validated by us in this paper. In addition, the DNA grafting and salt influences are evaluated by adsorption and bond energies calculations. This theoretical evaluation gives support to experimental diagnostics techniques of diseases.

  5. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  6. Physical Properties Data for Rock Salt

    DTIC Science & Technology

    1981-01-01

    PHOTOGRAPH THIS SHEET ADLEE INVENTORY Physical Properties Data for Rock salt N DOCUMENT IDENTIFICATION DJsbTRIuT10IN STATEMENT A DISTRIUTION...Physical Properties Data for Rock Salt )ata Book (see block 18) 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(&) S. 167RCORGRN NUMBER(n) SH. H. Li, R. A...Chemical properties -Electrical properties --- : Mechanical properties --Optical properties --Magnetic properties -- .1Theruophysical properties -Geological

  7. Organic Perfluorohalogenate Salts; New Energetic Materials

    DTIC Science & Technology

    2014-06-01

    Cesium Hexadecafluorotriiodide Ion In an earlier report Hargreaves reported the results of a study on the reaction of iodide salts with IF5. It is...as methathatical reactions (Reaction 4) with cesium IF6- initially produced colorless solids which upon standing at room temperature decomposed. It...of the cesium salt of a complex anion with tetramethylammonium fluoride in an appropriate solvent (Figure 18). The reaction of Cesium fluoride with

  8. Iatrogenic salt poisoning in captive sandhill cranes

    USGS Publications Warehouse

    Franson, J.C.; Sileo, L.; Fleming, W.J.

    1981-01-01

    Salt poisoning developed in captive sandhill cranes (Grus canadensis) when sea salt was added to normal drinking water to produce a sodium chloride concentration of 1%. Two of 18 cranes died and 2 were euthanatized when moribund. Muscle weakness, paresis, dyspnea, and depression were observed. Brain and serum sodium, serum uric acid,:and plasma osmolality values were abnormally high. Lesions were those of visceral gout, renal tubular necrosis, nephrosis, and skeletal muscle.necrosis.

  9. 238Pu recovery and salt disposition from the molten salt oxidation process

    NASA Astrophysics Data System (ADS)

    Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.

    2000-07-01

    We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.

  10. Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes

    NASA Astrophysics Data System (ADS)

    Escapa, Mauricio; Perillo, Gerardo M. E.; Iribarne, Oscar

    2015-01-01

    Salt-marshes are under increasing threat, particularly from sea-level rise and increased wave action associated with climate change. The development and stability of these valuable habitats largely depend on complex interactions between biotic and abiotic processes operating at different scales. Also, interactions between biotic and abiotic processes drive internal morphological change in salt-marshes. In this paper we used a biogeomorphological approach to assess the impact of biological activities and interactions on salt pan formation in Sarcocornia-dominated salt marshes. Salt pans represent a key physiographic feature of salt-marshes and recent studies hypothesized that biogeomorphic processes could be related to salt pan formation in SW Atlantic salt-marshes. The glasswort Sarcocornia perennis is one of the dominant plants in the salt-marshes of the Bahía Blanca Estuary (Argentina) where they form patches up to 8 m in diameter. These salt-marshes are also inhabited in great densities by the burrowing crab Neohelice (Chasmagnathus) granulata whose bioturbation rates are among the highest reported for salt-marshes worldwide. A set of biological interactions between N. granulata and S. perennis appears to be responsible for salt pan development in these areas which has not been described elsewhere. The main objective of this work was to determine the ecological interactions occurring between plants and crabs that lead to salt pan formation by using field-based sampling and manipulative experiments. Our results showed that S. perennis facilitated crab colonization of the salt-marsh by buffering otherwise stressful physical conditions (e.g., temperature, desiccation). Crabs preferred to construct burrows underneath plants and, once they reach high densities (up to 40 burrows m- 2), the sediment reworking caused plant die-off in the central area of patches. At this state, the patches lose elevation and become depressed due to the continuous bioturbation by crabs

  11. Nitrite toxicity of Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts

    USGS Publications Warehouse

    Sowers, A.; Young, S.P.; Isely, J.J.; Browdy, C.L.; Tomasso, J.R.

    2004-01-01

    The uptake, depuration and toxicity of environmental nitrite was characterized in Litopenaeus vannamei exposed in water containing low concentrations of artificial sea salt or mixed salts. In 2 g/L artificial sea salts, nitrite was concentrated in the hemolymph in a dose-dependent and rapid manner (steady-state in about 2 d). When exposed to nitrite in 2 g/L artificial sea salts for 4 d and then moved to a similar environment without added nitrite, complete depuration occurred within a day. Increasing salinity up to 10 g/L decreased uptake of environmental nitrite. Nitrite uptake in environments containing 2 g/L mixed salts (combination of sodium, potassium, calcium and magnesium chlorides) was similar to or lower than rates in 2 g/L artificial sea salt. Toxicity was inversely related to total dissolved salt and chloride concentrations and was highest in 2 g/L artificial sea salt (96-h medial lethal concentration = 8.4 mg/L nitrite-N). Animals that molted during the experiments did not appear to be more susceptible to nitrite than animals that did not molt. The shallow slope of the curve describing the relationship between toxicity and salinity suggests that management of nitrite toxicity in low-salinity shrimp ponds by addition of more salts may not be practical. ?? Copyright by the World Aquaculture Society 2004.

  12. CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING NORTHEAST AT CHINESE PLAT MARKER AND BURNER. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  13. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  14. Evolution of salt-related structures

    SciTech Connect

    Bishop, R.S.

    1988-01-01

    Several types of structures (piercements, turtles, and nonpiercements) are caused by salt movement. Reconstructions show that the emplacement process is basically the same for many geometrically dissimilar structures, but that the great differences of shape originated from different patterns of sediment loading, salt thickness, and basin evolution. The reconstructions are generalizations derived from numerous real examples to show timing, evolution of dip, origin of thickness changes and overchanges, how the salt-sediment volume exchange occurs, and diagnostic criteria to interpret these events. Such reconstructions help to discriminate between turtles and nonpiercements, to interpret lithofacies, and to unravel the role of sedimentary events on the structural evolution. In addition, they illustrate the mechanism of diapirism, using criteria to help distinguish diapirism in an overburden having strength (the mechanism assumed here) from diapirism in a viscous overburden (the classical buoyancy theory). In general, many piercements may start quite early (even before a density inversion exists) and move primarily by extrusion or may alternate between extrusion and intrusion beneath a thin overburden. The pattern of sedimentation largely determines the pattern of diapirism. In contrast, nonpiercements and turtle structures are passive features and may form whenever salt migrates away from them to an adjacent ''escape hatch.'' For example, nonpiercements may not form by salt rising vertically, but rather by salt moving away horizontally to some point of escape. In other words, the dome remains static while the overburden collapses into the rim syncline.

  15. Immobilization of IFR salt wastes in mortar

    SciTech Connect

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered.

  16. Interrelationships between downslope transport and salt tectonism

    SciTech Connect

    Behrens, E.W. )

    1991-03-01

    Echo characteristics of high resolution (3.5 kHz) seismic reflection profiles were used to map the distribution of coarsely textured shelf sediments transported downslope by turbidity current and/or mass transport processes. Piston cores provided ground truth for the interpretation of sediment character; and multichannel reflection data showed the distribution of salt structures. Where salt is extensive but occurs in more or less distinctly isolated structures, it creates interdomal intraslope basins that are successively filled basins (i.e., the extent of downslope transport) may vary considerably over short distances along strike. Pathways may be clearly discernable or quite enigmatic. Where salt structures are more sparse, sediments flow downslope, around the bathymetric highs created by the diapirs, in broad or narrow valleys that are structurally controlled. Where salt structures are so extensive that they form coalescing canopies (lower slope), they broadly pond downslope flow. However, downslope flow may continue through the salt complex along channels following canopy sutures and transit the entire slope. The Alaminos Canyon Fan is evidence of shelf sediments bypassing the entire slope in spite of very extensive salt diapirism.

  17. Percolation and Physical Properties of Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.

    2015-12-01

    Textural equilibrium controls the distribution of the liquid phase in many naturally occurring porous materials such as partially molten rocks and alloys, salt-brine and ice-water systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining a constant dihedral angle, θ, at solid-liquid contact lines. A characteristic of texturally equilibrated porous media, in the absence of deformation, is that the pore network percolates at any porosity for θ<60° while a percolation threshold exists for θ>60°. However, in ductile polycrystalline materials including rock salt, the balance between surface tension and ductile deformation controls the percolation of fluid pockets along grain corners and edges. Here we show sufficiently rapid deformation can overcome this threshold by elongating and connecting isolated pores by examining a large number of accessible salt samples from deep water Gulf of Mexico. We first confirm the percolation threshold in static laboratory experiments on synthetic salt samples with X-ray microtomography. We then provide field evidence on existence of interconnected pore space in rock salt in extremely low porosities, significantly below the static percolation threshold. Scaling arguments suggest that strain rates in salt are sufficient to overcome surface tension and may allow percolation. We also present the first level-set computations of three-dimensional texturally equilibrated melt networks in realistic rock fabrics. The resulting pore space is used to obtain the effective physical properties of rock, effective electrical conductivity and mechanical properties, with a novel numerical model.

  18. Salt stimulated respiration of Chlorella fusca.

    PubMed

    Löppert, H G

    1976-01-01

    ATP contents have been measured before and after addition of KCl (5 mM final concentration) to suspensions of Chlorella in distilled water under different conditions of energy supply. The levels decreased immediately after salt addition and returned to the original values under conditions both of oxidative phosphorylation and of cyclic photophosphorylation, but not under conditions of fermentation. It appears that this decrease in the ATP level is the cause for salt stimulated respiration (S.S.R.). Furthermore, it is shown that cycloheximide and EDTA, which interact with Rb+ uptake (active and ATP-driven) at low salt concentration, also reduce S.S.R. From this parallelism it is concluded that the ATPase involved in Rb+ uptake at low salt concentration is also responsible for S.S.R. at high salt concentration. As S.S.R. provides far more energy than is required for the small influx of ions it is suggested that the ATPase is decoupled by the salt from ion transport.

  19. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  20. Crushed salt reconsolidation at elevated temperatures.

    SciTech Connect

    Holcomb, David Joseph; Clayton, Daniel James; Lee, Moo Yul; Bronowski, David R.

    2010-06-01

    There is a long history of testing crushed salt as backfill for the Waste Isolation Pilot Plant program, but testing was typically done at 100 C or less. Future applications may involve backfilling crushed salt around heat-generating waste packages, where near-field temperatures could reach 250 C or hotter. A series of experiments were conducted to investigate the effects of hydrostatic stress on run-of-mine salt at temperatures up to 250 C and pressures to 20 MPa. The results of these tests were compared with analogous modeling results. By comparing the modeling results at elevated temperatures to the experimental results, the adequacy of the current crushed salt reconsolidation model was evaluated. The model and experimental results both show an increase in the reconsolidation rate with temperature. The current crushed salt model predicts the experimental results well at a temperature of 100 C and matches the overall trends, but over-predicts the temperature dependence of the reconsolidation. Further development of the deformation mechanism activation energies would lead to a better prediction of the temperature dependence by the crushed salt reconsolidation model.

  1. Thermal Characterization of Molten Salt Systems

    SciTech Connect

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  2. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  3. 21 CFR 172.626 - Salts of carrageenan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of carrageenan. 172.626 Section 172.626 Food... Gums, Chewing Gum Bases and Related Substances § 172.626 Salts of carrageenan. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  4. 75 FR 16509 - Certain Potassium Phosphate Salts From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION Certain Potassium Phosphate Salts From China AGENCY: United States International Trade Commission... phosphate salts, provided for in subheadings 2835.24.00 and 2835.39.10 of the Harmonized Tariff Schedule of... ``phosphate salts''). Certain Potassium Phosphate Salts from the People's Republic of China:...

  5. 21 CFR 172.660 - Salts of furcelleran.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of furcelleran. 172.660 Section 172.660 Food... Gums, Chewing Gum Bases and Related Substances § 172.660 Salts of furcelleran. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  6. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  7. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  8. 21 CFR 172.660 - Salts of furcelleran.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of furcelleran. 172.660 Section 172.660 Food... Gums, Chewing Gum Bases and Related Substances § 172.660 Salts of furcelleran. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  9. 21 CFR 172.626 - Salts of carrageenan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of carrageenan. 172.626 Section 172.626 Food... Gums, Chewing Gum Bases and Related Substances § 172.626 Salts of carrageenan. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  10. Gibsland salt-stock family in northwestern Louisiana

    SciTech Connect

    Saucier, A.E.

    1984-09-01

    A semiregional isopach map of the Hosston-Sligo interval in north Louisiana suggests the existence of a salt-stock family similar to D. Sanneman's example in the Zechstein basin of northwestern Germany. The mother salt stock appears to be the Gibsland salt dome in Bienville Parish, which the isopach map indicates had a well-developed rim syncline during Hosston deposition. Withdrawal of salt into the Gibsland dome appears to have triggered the growth of peripheral salt pillows such as Vacherie, Minden, Athens, Sugar Creek, and Arcadia. Some of these pillows subsequently developed into salt stocks. The centrifugal or outward growth of salt structures continued with the withdrawal of salt from beneath the Minden subbasin into the Minden and Bistineau salt domes. This accentuated growth of the Sligo, Bellevue, and Cotton Valley salt pillows, which in turn triggered development of the Pine Island salt pillow in latest Early Cretaceous time. The growth of the salt structures progressed outward from deeper to shallower portions of the North Louisiana salt basin. An older salt-stock family may be centered on the Winnfield or Cedar Creek salt domes in the deepest part of the salt basin. Centrifugal growth of these stock should be discernible in seismic profiles. A knowledge of the relative ages of these structures is important in predicting sites of Lower Cretaceous reefs and hydrocarbon migration paths.

  11. SEXTON'S HOUSE. 200 NORTH N STREET (895 EAST), SALT LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SEXTON'S HOUSE. 200 NORTH N STREET (895 EAST), SALT LAKE CITY, UT. VIEW OF THE NORTHEAST. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18996, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  12. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  13. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  14. 21 CFR 172.660 - Salts of furcelleran.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Salts of furcelleran. 172.660 Section 172.660 Food... Gums, Chewing Gum Bases and Related Substances § 172.660 Salts of furcelleran. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  15. 21 CFR 172.660 - Salts of furcelleran.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of furcelleran. 172.660 Section 172.660 Food... Substances § 172.660 Salts of furcelleran. The food additive salts of furcelleran may be safely used in food... occurring salts (ammonium, calcium, potassium, or sodium) of furcelleran to the level that it is...

  16. 21 CFR 172.626 - Salts of carrageenan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Salts of carrageenan. 172.626 Section 172.626 Food... Gums, Chewing Gum Bases and Related Substances § 172.626 Salts of carrageenan. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  17. 21 CFR 172.626 - Salts of carrageenan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of carrageenan. 172.626 Section 172.626 Food... Substances § 172.626 Salts of carrageenan. The food additive salts of carrageenan may be safely used in food... occurring salts (ammonium, calcium, potassium, or sodium) of carrageenan to the level that it is...

  18. 21 CFR 172.660 - Salts of furcelleran.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Salts of furcelleran. 172.660 Section 172.660 Food... Gums, Chewing Gum Bases and Related Substances § 172.660 Salts of furcelleran. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  19. 21 CFR 172.626 - Salts of carrageenan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Salts of carrageenan. 172.626 Section 172.626 Food... Gums, Chewing Gum Bases and Related Substances § 172.626 Salts of carrageenan. The food additive salts... the concentration of one of the naturally occurring salts (ammonium, calcium, potassium, or sodium)...

  20. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  1. Brines formed by multi-salt deliquescence

    SciTech Connect

    Carroll, S; Rard, J; Alai, M; Staggs, K

    2005-11-04

    The FY05 Waste Package Environment testing program at Lawrence Livermore National Laboratory focused on determining the temperature, relative humidity, and solution compositions of brines formed due to the deliquescence of NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures. Understanding the physical and chemical behavior of these brines is important because they define conditions under which brines may react with waste canister surfaces. Boiling point experiments show that NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures form brines that transform to hydrous melts that do not truly 'dry out' until temperatures exceed 300 and 400 C, respectively. Thus a conducting solution is present for these salt assemblages over the thermal history of the repository. The corresponding brines form at lower relative humidity at higher temperatures. The NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture has a mutual deliquescence relative humidity (MDRH) of 25.9% at 120 C and 10.8% at 180 C. Similarly, the KNO{sub 3}-NaNO{sub 3} salt mixture has MDRH of 26.4% at 120 C and 20.0% at 150 C. The KNO{sub 3}-NaNO{sub 3} salt mixture salts also absorb some water (but do not appear to deliquesce) at 180 C and thus may also contribute to the transfer of electrons at interface between dust and the waste package surface. There is no experimental evidence to suggest that these brines will degas and form less deliquescent salt assemblages. Ammonium present in atmospheric and tunnel dust (as the chloride, nitrate, or sulfate) will readily decompose in the initial heating phase of the repository, and will affect subsequent behavior of the remaining salt mixture only through the removal of a stoichiometric equivalent of one or more anions. Although K-Na-NO{sub 3}-Cl brines form at high temperature and low relative humidity, these brines are dominated by nitrate, which is known to inhibit corrosion at lower temperature

  2. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  3. Salt sensitivity is associated with insulin resistance in essential hypertension.

    PubMed

    Fuenmayor, N; Moreira, E; Cubeddu, L X

    1998-04-01

    The relationship between salt sensitivity and insulin resistance was investigated in nondiabetic, nonobese (body mass index < or = 28) untreated patients with uncomplicated, mild-to-moderate essential hypertension. Alterations in insulin-mediated glucose disposal were assessed by means of the insulin suppression test. Subjects were classified as salt sensitive and salt resistant according to their blood pressure response to low and high salt intake. Fasting serum glucose levels were within normal limits and did not differ between salt sensitive and salt resistant hypertensives, irrespectively of the level of salt intake. Fasting serum insulin levels increased in salt sensitive patients when on a high intake of salt. The insulin suppression test revealed the existence of marked differences in insulin-mediated glucose uptake between salt sensitive and salt resistant hypertensives. Much higher steady-state glucose values (nanomoles of glucose/ liter) were obtained during the insulin suppression test in salt sensitive than in salt-resistant hypertensives (7.4+/-1.6 v 3.5+/-0.1 under low salt; and 12.5+/-1.1 v 4.3+/-0.1 under high salt intake). The product of glucose times insulin obtained at steady state during low and high salt intakes were 2.5 and 5 times greater, respectively, in salt sensitive than in salt resistant hypertensives. Therefore, the impairment in insulin-mediated glucose disposal observed in salt sensitive hypertensives was present both under low salt (60 to 70 mEq/day) and high salt intake (300 mEq/day). However, it was exacerbated under high salt intake. These results suggest that untreated salt sensitive hypertensives have a considerable impairment in insulin-mediated glucose disposal because of a state of insulin resistance. High salt intake increased BP, induced hyperinsulinemia, and worsened insulin-mediated glucose disposal only in salt sensitive patients. We propose that salt sensitivity contributes, separately from hypertension, to insulin

  4. Functionalization of nanomaterials with aryldiazonium salts.

    PubMed

    Mohamed, Ahmed A; Salmi, Zakaria; Dahoumane, Si Amar; Mekki, Ahmed; Carbonnier, Benjamin; Chehimi, Mohamed M

    2015-11-01

    This paper reviews the surface modification strategies of a wide range of nanomaterials using aryldiazonium salts. After a brief history of diazonium salts since their discovery by Peter Griess in 1858, we will tackle the surface chemistry using these compounds since the first trials in the 1950s. We will then focus on the modern surface chemistry of aryldiazonium salts for the modification of materials, particularly metallic, semiconductors, metal oxide nanoparticles, carbon-based nanostructures, diamond and clays. The successful modification of sp(2) carbon materials and metals by aryldiazonium salts paved the way to innovative strategies for the attachment of aryl layers to metal oxide nanoparticles and nanodiamonds, and intercalation of clays. Interestingly, diazotized surfaces can easily trap nanoparticles and nanotubes while diazotized nanoparticles can be (electro)chemically reduced on electrode/materials surfaces as molecular compounds. Both strategies provided organized 2D surface assembled nanoparticles. In this review, aryldiazonium salts are highlighted as efficient coupling agents for many types of molecular, macromolecular and nanoparticulate species, therefore ensuring stability to colloids on the one hand, and the construction of composite materials and hybrid systems with robust and durable interfaces/interphases, on the other hand. The last section is dedicated to a selection of patents and industrial products based on aryldiazonium-modified nanomaterials. After nearly 160 years of organic chemistry, diazonium salts have entered a new, long and thriving era for the benefit of materials, colloids, and surface scientists. This tempts us to introduce the terminology of "diazonics" we define as the science and technology of aryldiazonium salt-derived materials.

  5. Effect of counterions on physicochemical properties of prazosin salts.

    PubMed

    Kumar, Lokesh; Meena, Chhuttan Lal; Pawar, Yogesh B; Wahlang, Banrida; Tikoo, Kulbhushan; Jain, Rahul; Bansal, Arvind K

    2013-03-01

    This study evaluated the effect of counterions on the physicochemical properties of prazosin salts. Salt forms of prazosin, namely, mesylate, besylate, tosylate, camsylate, oxalate, and maleate, were prepared and compared with the marketed anhydrous and polyhydrate forms of prazosin hydrochloride. Physicochemical characterization was performed in the order of crystallinity, hygroscopicity, solubility, and stability to select the optimal salt(s). Permeability study in Caco-2 cell lines and in vivo bioavailability study in rat model were investigated to ascertain their biopharmaceutical advantage. All salt forms were crystalline, nonhygroscopic (except the anhydrous hydrochloride salt), and had solubility in the range of 0.2 to 1.6 mg/ml. All salts were physically and chemically stable at 40°C/75% relative humidity, but degraded in UV-visible light, except the anhydrous hydrochloride salt. Prazosin mesylate was selected as the optimal salt, as it possessed higher solubility, permeability, and bioavailability, compared to the commercial hydrochloride salts. Hydrochloride salt is reported to have poor bioavailability that is partially attributed to its low solubility and extensive common-ion effect in the gastric region. Factors like hydrophilicity of the counterion, hydration state of the salt, and melting point of the salt contribute to the physicochemical properties of the salts. This study has implications in the selection of an optimal salt form for prazosin, which is suitable for further development.

  6. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  7. Quaternary geology of Vacherie salt dome, north Louisiana salt dome basin. Volume II

    SciTech Connect

    Kolb, C.R.; Holmes, J.C.; Alford, J.J.

    1983-07-01

    This volume comprises 14 appendices: lineations on Vacherie and Rayburn's domes (1977); possible geomorphic influence of Vacherie salt dome on the Quaternary fluvial geomorphology of Bashaway Creek (1980); remote sensing and analysis of radar imagery (1978); uphole seismic survey at Vacherie salt dome (1977); electrical resistivity survey at Vacherie salt dome (1978); pedologic investigations (1977); ionium-thorium dating of ironstones from terrace deposits, Vacherie salt dome, North Louisiana (1978); grain-shape and grain-surface studies (1981); the terrace concept - Gulf Coastal Plain (1981); interpretation of Quaternary sediments along lines of seismic shot hole (1976); topographic lows above domes (1977); structural significance of topographic lows above North Louisiana salt domes (1981); diagnostic microfossils - Vacherie dome (1978); and development of stratigraphy above Vacherie dome from Cretaceous to Sparta times (1982).

  8. Gamma irradiation of nitrate-based salts. [Hitec and Draw Temp. 430 molten salts

    SciTech Connect

    Breon, S.R.; Chellew, N.R.; Clemmer, R.G.; Hoh, J.C.

    1980-03-01

    An experiment was devised to determine the radiolytic stability of two commercially available candidate salts - Hitec and Draw Temp 430. The salts were exposed to 0.8 x 10/sup 9/ R of gamma radiation in the /sup 60/Co facility at the Argonne National Laboratory and simultaneously heated to temperatures in excess of 530/sup 0/C. A helium gas stream circulated over the salts was analyzed for decomposition products. It was found that there was no observable thermal or radiolytic decomposition of either salt. Although the exposure was equivalent to only about 1 minute in a controlled thermonuclear reactor, the results were very encouraging and suggest that further experimentation on molten nitrate-based salts is warranted.

  9. The effect of the salt viscosity on future evolution of the Gorleben salt diapir, Germany

    NASA Astrophysics Data System (ADS)

    Chemia, Z.; Schmeling, H.; Koyi, H.

    2009-08-01

    The Gorleben diapir, which has been targeted for radioactive waste disposal, contains large blocks of anhydrite. Numerical models that depict the geometrical configuration of the Gorleben diapir are used to understand internal structure of diapir caused by movement of the anhydrite blocks for various salt rheologies. It is shown that the rheology of the salt plays a significant role in how and at which rate the anhydrite blocks sink within the diapir. The mobility of anhydrite blocks depends on the effective viscosity of salt which has to be lower than threshold value of around 10 18-10 19 Pa s. Decreasing salt viscosity allows the previously "stationary" anhydrite blocks to sink. If the effective viscosity of salt in post-depositional stage of the Gorleben diapir falls below this threshold value, induced internal flow due to the present anhydrite layer might disturb any repository within the diapir.

  10. Novel graphite salts of high oxidizing potential

    SciTech Connect

    McCarron, E.M. III

    1980-08-01

    The intercalation of graphite by the third-transition-series metal hexafluorides has yielded the graphite salts, C/sub 8//sup +/OsF/sub 6//sup -/, C/sub 8//sup +/IrF/sub 6//sup -/ and C/sub 12//sup 2 +/PtF/sub 6//sup 2 -/. The fluoroplatinate salt represents the highest electron withdrawal from the graphite network yet achieved. Analogues to the Os and Ir salts have been obtained both by fluorination of Group V pentaflouride intercalates, C/sub 8/MF/sub 5/ (M = As, Sb), and by the interaction of the dioxygenyl salts with graphite (8C + O/sub 2/MF/sub 6/ ..-->.. C/sub 8/MF/sub 6/ + O/sub 2/+). Non-intercalating binary fluorides have been observed to intercalate in the presence of a fluorine-rich environment (e.g., 8C + PF/sub 5/ + 1/2 F/sub 2/ ..-->.. C/sub 8/PF/sub 6/). GeF/sub 4/, which also does not spontaneously intercalate graphite, has been observed to interact with graphite in the presence of 2 atmospheres of fluorine overpressure to give the fluoroplatinate salt analogue, C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/. This material is in equilibrium with the pentafluorogermanate at ordinary pressures and temperatures. C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/ ..-->.. C/sub 12//sup +/GeF/sub 5//sup -/ + 1/2 F/sub 2/. C/sub 12/GeF/sub 6/ must have an oxidizing potential close to that of fluorine itself. The graphite fluorometallate salts are both electronic and ionic (F/sup -/) conductors. For the C/sub 8//sup +/MF/sub 6//sup -/ salts, a maximum electronic conductivity an order of magnitude greater than the parent graphite has been observed for stage two. The high oxidizing potential, coupled with the fluoride ion transport capability of the graphite salts, has been exploited in the construction of solid-state galvanic cells. These cells use the graphite fluorometallate salts as electrode materials in combination with a superionic fluoride-ion-conducting solid electrolyte.

  11. Salt Mechanics Primer for Near-Salt and Sub-Salt Deepwater Gulf of Mexico Field Developments

    SciTech Connect

    FOSSUM, ARLO F.; FREDRICH, JOANNE T.

    2002-07-01

    The Gulf of Mexico (GoM) is the most active deepwater region in the world and provides some of the greatest challenges in scope and opportunity for the oil and gas industry. The complex geologic settings and significant water and reservoir depths necessitate high development costs, in addition to requiring innovating technology. The investment costs are substantial: because of the extreme water depths (up to 8000 feet) and considerable reservoir depths (to 30,000 feet below mudline), the cost of drilling a single well can be upwards of 50 to 100 million dollars. Central, therefore, to successful economic exploitation are developments with a minimum number of wells combined with a well service lifetime of twenty to thirty years. Many of the wells that are planned for the most significant developments will penetrate thick salt formations, and the combined drilling costs for these fields are estimated in the tens of billions of dollars. In May 2001, Sandia National Laboratories initiated a Joint Industry Project focused on the identification, quantification, and mitigation of potential well integrity issues associated with sub-salt and near-salt deepwater GoM reservoirs. The project is jointly funded by the DOE (Natural Gas and Oil Technology Partnership) and nine oil companies (BHP Billiton Petroleum, BP, ChevronTexaco, Conoco, ExxonMobil, Halliburton, Kerr-McGee, Phillips Petroleum, and Shell). This report provides an assessment of the state of the art of salt mechanics, and identifies potential well integrity issues relevant to deepwater GoM field developments. Salt deformation is discussed and a deformation mechanism map is provided for salt. A bounding steady-state strain rate contour map is constructed for deepwater GoM field developments, and the critical issue of constraint in the subsurface, and resultant necessity for numerical analyses is discussed.

  12. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  13. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  14. Salt screening and characterization of ciprofloxacin.

    PubMed

    Zhang, Guoshun; Zhang, Li; Yang, Dezhi; Zhang, Na; He, Lan; Du, Guanhua; Lu, Yang

    2016-02-01

    With the aim of improving the solubility of ciprofloxacin, polybasic organic acids were utilized to react with ciprofloxacin in different stoichiometric proportions. The use of the solvent drop grinding (SDG) method, as well as the solvent evaporation method, resulted in the crystalline salts ciprofloxacin/fumaric acid (1:1, 2:1), ciprofloxacin/maleic acid (1:1) and ciprofloxacin/citric acid (2:1). The solubilities of these salts in pure water (pH 7.0) were determined using high-performance liquid chromatography (HPLC) at 310 K, with the salts showing considerably greater solubility than ciprofloxacin itself and, interestingly, ciprofloxacin/fumaric acid (2:1) being more soluble than ciprofloxacin/fumaric acid (1:1). Intrigued by this phenomenon, we undertook a comparison of the crystal structures of the salts: the three-dimensional sandwich-like structure observed in the 2:1 salt indicates that the preferred stacking may be a factor in increasing the solubility of ciprofloxacin.

  15. Salt deposition at particle contact points

    NASA Astrophysics Data System (ADS)

    Nie, Xiaodong; Evitts, Richard W.; Besant, Robert W.; Kennell, Glyn F.

    2015-09-01

    Caking may occur when granular potash fertilizer with a moisture content greater than 0.25 % (w/w) undergoes drying. Since cake strength is proportional to the mass of crystal deposited per unit volume near contact points (and other factors) the modelling of mass deposition near contact points is important. The Young-Laplace equation for the air-salt-solution interface is used to determine the geometry of a 2-D planar saline film between two cubic potash particles. A 2-D theoretical model is developed and applied for ion diffusion and deposition near the contact point during drying. The numerical predictions of ion diffusion in an initially saturated salt illustrate the transient spatial distribution of new KCl deposits along the solid surfaces near the contact line. These results indicate the average salt deposition commences at the air-liquid-solid intersection, where the liquid film is thinnest, and moves toward the particle contact point with increasing area averaged KCl deposits, causing the formation of crystal deposits and bridges near contact points. It is concluded that the average salt deposit height increases inversely with distance from the contact point and decreases with initial contact angle of the contact region, but the deposition is nearly independent of the evaporation or drying rate near each contact region. Caking strength depends on, among other parameters, the amount of salt deposition near contact points.

  16. Synthesis and Characterization of Processable Polyaniline Salts

    NASA Astrophysics Data System (ADS)

    Gul, Salma; Shah, Anwar-ul-Haq Ali; Bilal, Salma

    2013-06-01

    Polyaniline (PANI) is one of the most promising candidates for possible technological applications. PANI has potential applications in batteries, anion exchanger, tissue engineering, inhibition of steel corrosion, fuel cell, sensors and so on. However, its insolubility in common organic solvents limits its range of applications. In the present study an attempt has been made to synthesize soluble polyaniline salt via inverse polymerization pathway using benzoyl peroxide as oxidant and dodecylbenzenesulfonic acid (DBSA) as dopant as well as a surfactant. A mixture of chloroform and 2-butanol was used as dispersion medium for the first time. The influence of synthesis parameters such as concentration of aniline, benzoyl peroxide and DBSA on the yield and other properties of the resulting PANI salt was studied. The synthesized PANI salt was found to be completely soluble in DMSO, DMF, chloroform and in a mixture of toluene and 2-propanol. The synthesized polymer salt was also characterized with cyclic voltam-metry, SEM, XRD, UV-Vis spectroscopy and viscosity measurements. TGA was used to analyze the thermal properties of synthesized polymer. The extent of doping of the PANI salt was determined from UV-Vis spectra and TGA analysis. The activation energy for the degradation of the polymer was calculated with the help of TGA.

  17. The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland.

    PubMed

    Yuan, Fang; Lyu, Ming-Ju Amy; Leng, Bing-Ying; Zhu, Xin-Guang; Wang, Bao-Shan

    2016-06-01

    Limonium bicolor, a typical recretohalophyte that lives in saline environments, excretes excessive salt to the environment through epidermal salt glands to avoid salt stress. The aim of this study was to screen for L. bicolor genes involved in salt secretion by high-throughput RNA sequencing. We established the experimental procedure of salt secretion using detached mature leaves, in which the optimal salt concentration was determined as 200 mM NaCl. The detached salt secretion system combined with Illumina deep sequencing were applied. In total, 27,311 genes were annotated using an L. bicolor database, and 2040 of these genes were differentially expressed, of which 744 were up-regulated and 1260 were down-regulated with the NaCl versus the control treatment. A gene ontology enrichment analysis indicated that genes related to ion transport, vesicles, reactive oxygen species scavenging, the abscisic acid-dependent signaling pathway and transcription factors were found to be highly expressed under NaCl treatment. We found that 102 of these genes were likely to be involved in salt secretion, which was confirmed using salt-secretion mutants. The present study identifies the candidate genes in the L. bicolor salt gland that are highly associated with salt secretion. In addition, a salt-transporting pathway is presented to explain how Na(+) is excreted by the salt gland in L. bicolor. These findings will shed light on the molecular mechanism of salt secretion from the salt glands of plants.

  18. Arabidopsis sos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance.

    PubMed

    Ariga, Hirotaka; Katori, Taku; Yoshihara, Ryouhei; Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Iuchi, Satoshi; Kobayashi, Masatomo; Tezuka, Kenji; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2013-07-01

    An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance.

  19. Arabidopsis sos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance

    PubMed Central

    Ariga, Hirotaka; Katori, Taku; Yoshihara, Ryouhei; Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Iuchi, Satoshi; Kobayashi, Masatomo; Tezuka, Kenji; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2013-01-01

    An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance. PMID:23656872

  20. Little known mid-Paleozoic salts of northwestern North Dakota

    SciTech Connect

    Fischer, D.W.; Anderson, S.B.

    1984-07-01

    Four Paleozoic formations that contain bedded salts previously undescribed in North Dakota have been identified and mapped. They are the Silurian Interlake, and Devonian Ashern, Souris River, and Duperow Formations. A series of stratigraphically and areally discontinuous, thin, bedded salts has been identified in the Silurian Interlake Formation. As many as five, thin, bedded salts are present in the upper gray member of the Devonian Ashern Formation. Where found, these salts are stratigraphically correlatable but laterally discontinuous. A thin, bedded salt is present in both the Souris River and Duperow. These salts are laterally continuous with salts previously described in Saskatchewan. Although the occurrences of the salts discussed commonly are discontinuous, knowledge of their presence can be helpful in designing a drilling and testing program for wells in areas where they occur. Furthermore, a knowledge of the presence of these salts is helpful in understanding the overall tectonic and depositional history of the Williston basin.

  1. Precipitates/Salts Model Sensitivity Calculation

    SciTech Connect

    P. Mariner

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.

  2. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  3. Salt vulnerability assessment methodology for urban streams

    NASA Astrophysics Data System (ADS)

    Betts, A. R.; Gharabaghi, B.; McBean, E. A.

    2014-09-01

    De-icing agents such as road salts while used for winter road maintenance can cause negative effects on urban stream water quality and drinking water supplies. A new methodology using readily available spatial data to identify Salt Vulnerable Areas (SVAs) for urban streams is used to prioritize implementation of best management practices. The methodology calculates the probable chloride concentration statistics at specified points in the urban stream network and compares the results with known aquatic species exposure tolerance limits to characterize the vulnerability scores. The approach prioritizes implementation of best management practices to areas identified as vulnerable to road salt. The vulnerability assessment is performed on seven sites in four watersheds in the Greater Toronto Area and validated using the Hanlon Creek watershed in Guelph. The mean annual in-stream chloride concentration equation uses readily available spatial data - with province-wide coverage - that can be easily used in any urban watershed.

  4. SALT segmented primary mirror: inductive edge sensors

    NASA Astrophysics Data System (ADS)

    Gajjar, Hitesh; Menzies, John; Buckley, David; Neel, Christian; Parbaud, Philippe; Royet, Stéphane

    2014-07-01

    The development of an inductive edge sensor is in process for the control of the Southern African Large Telescope's (SALT)1 segmented mirror primary. The original capacitive edge sensing system was not capable of maintaining the figure of the primary mirror due to excessive noise and a severe sensitivity to humidity despite exhaustive attempts at characterisation1. The prototype of the inductive edge sensor has progressed to a mature industrialised version that is in the process of being installed and commissioned on SALT. The performance of the sensor in response to temperature and RH is very good with a maximum error of 10nm typical after temperature compensation. The noise and control characteristics of the array have been simulated in order to establish the maximum cumulative error and error rate tolerable for the SALT specific case. It has been established through simulation that over the expected 5 day alignment cycle, a maximum cumulative error of 30nm can be tolerated.

  5. Time resolved astronomy with the SALT

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Crawford, S.; Gulbis, A. A. S.; McPhate, J.; Nordsieck, K. H.; Potter, S. B.; O'Donoghue, D.; Siegmund, O. H. W.; Schellart, P.; Spark, M.; Welsh, B. Y.; Zietsman, E.

    2010-07-01

    While time resolved astronomical observations are not new, the extension of such studies to sub-second time resolution is and has resulted in the opening of a new observational frontier, High Time Resolution Astronomy (HTRA). HTRA studies are well suited to objects like compact binary stars (CVs and X-ray binaries) and pulsars, while asteroseismology of pulsating stars, occultations, transits and the study of transients, will all benefit from such HTRA studies. HTRA has been a SALT science driver from the outset and the first-light instruments, namely the UV-VIS imager, SALTICAM, and the multi-purpose Robert Stobie Spectrograph (RSS), both have high time resolution modes. These are described, together with some observational examples. We also discuss the commissioning observations with the photon counting Berkeley Visible Image Tube camera (BVIT) on SALT. Finally we describe the software tools, developed in Python, to reduce SALT time resolved observations.

  6. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  7. Molten nitrate salt technology development status report

    SciTech Connect

    Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

    1981-03-01

    Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

  8. Thermodynamics of salt-doped polymers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Gang

    2013-03-01

    There is much current interest in salt-doped polymers as materials for energy applications. For example, a promising system for rechargeable battery applications consists of diblock copolymers of an ion-dissolving block, such as polyethylene oxide (PEO) and a nonconducting block such as polystyrene. Experimentally, it has been shown that the addition of lithium salts significantly alters the order-order and order-disorder transition (ODT) temperatures. In particular, the ODT temperature can increase substantially upon adding even a small amount of lithium salt, and the domain spacing in the ordered phases also increases significantly. Both changes are found to depend on the anion type. In this talk, I describe a simple theory for explaining these phenomena. A key effect is the solvation energy of the anions by the polymers, which we approximate using the Born solvation model. The difference in the Born energy between different polymers provides a driving force towards phase separation. By studying the shift in the mean-field spinodal of the disordered phase, we can identify an effective χ parameter, with a systematic dependence on the anion radius, in agreement with available experimental data. Furthermore, by studying the behavior of the domain spacing with salt concentration, we clarify the relationship between different definitions of the effective χ parameter. We propose that the effective χ parameter determined from the structure factor of the disordered phase is a more robust measure of the change in miscibility between the two blocks. Finally, we demonstrate that salt doping induces a strongly first-order transition from the disordered phase to the lamellar phase, with different salt concentrations in the two phases.

  9. Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions

    PubMed Central

    Goffe, Louis; Wrieden, Wendy; Penn, Linda; Hillier-Brown, Frances; Lake, Amelia A.; Araujo-Soares, Vera; Summerbell, Carolyn; White, Martin; Adamson, Ashley J.

    2016-01-01

    Objectives To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving. Design Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes), amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty), time spent shaking (3s, 5s or 10s), and individual serving. Setting Controlled, laboratory, conditions. Participants A quota-based convenience sample of 10 participants (five women) aged 18–59 years. Main Outcome Measures Amount of salt delivered by salt shakers. Results Across all trials, the 17 holed shaker delivered a mean (SD) of 7.86g (4.54) per trial, whilst the five holed shaker delivered 2.65g (1.22). The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001). This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (pssalt shakers have the potential to reduce the salt content of takeaway food, and particularly food from Fish & Chip shops, where these shakers are particularly used. Further research will be required to determine the effects of this intervention on customers’ salt intake with takeaway food and on total dietary salt intake. PMID:27668747

  10. Geothermal patterns of Louisiana salt domes

    SciTech Connect

    Kumar, M.B. )

    1989-09-01

    Seven salt domes of Louisiana, in the shallow to intermediate depth ranges, were selected for the investigation of geothermal patterns associated with them. Equilibrium geotemperatures were determined from the bottom hole temperatures of wells drilled in the salt dome areas. Isothermal contour mapping was attempted for various depth levels, namely, 8,000, 9,000, 10,000, 12,000, and 14,000 ft. Limited availability of data permitted construction of isothermal contour maps on some of the depth horizons for each of the domes.

  11. Cerebral salt wasting versus SIADH: what difference?

    PubMed

    Sterns, Richard H; Silver, Stephen M

    2008-02-01

    The term cerebral salt wasting (CSW) was introduced before the syndrome of inappropriate antidiuretic hormone secretion was described in 1957. Subsequently, CSW virtually vanished, only to reappear a quarter century later in the neurosurgical literature. A valid diagnosis of CSW requires evidence of inappropriate urinary salt losses and reduced "effective arterial blood volume." With no gold standard, the reported measures of volume depletion do not stand scrutiny. We cannot tell the difference between CSW and the syndrome of inappropriate antidiuretic hormone secretion. Furthermore, the distinction does not make a difference; regardless of volume status, hyponatremia complicating intracranial disease should be treated with hypertonic saline.

  12. [Cerebral salt wasting syndrome in bacterial meningitis].

    PubMed

    Attout, H; Guez, S; Seriès, C

    2007-10-01

    Subarachnoid hemorrhage is the most common cause of cerebral salt wasting syndrome. There are few reports of this condition in infectious meningitis. We describe a patient with hyponatremia and bacterial meningitis. Hyponatremia rapidly improved after administration of sodium chloride. The purpose of this report is to alert clinicians to the fact that hyponatremic patients with central nervous system disease do not necessarily have a syndrome of inappropriate secretion of antidiuretic hormone (SIADH), but may have cerebral salt wasting syndrome. By contrast with SIADH, the treatment requires saline administration.

  13. Cerebral salt wasting in a postoperative period.

    PubMed

    Janus, Dominika; Wojcik, Malgorzata; Dolezal-Oltarzewska, Katarzyna; Kalicka-Kasperczyk, Anna; Poplawska, Karolina; Starzyk, Jerzy B

    2014-01-01

    Cerebral salt wasting syndrome (CSW-cerebral salt wasting) was first described in 1950 by Peters. This syndrome can occur in patients who have sustained damage to the central nervous system (e.g. patients with subarachnoid bleeding, bacterial meningitis or after neurosurgery). Patients present with excessive natriuresis and hyponatremic dehydration. Differentiating this syndrome with the syndrome of inappropriate antidiuretic hormone secretion (SIADH-syndrome of inappropriate antidiuretic hormone secretion), which may occur in the same group of patients, is necessary in order to administer the correct treatment which consists of fluid restriction and sodium replacement in SIADH and fluid and sodium replacement as well as occasional mineralocorticoid therapy in CSW.

  14. Hot water, fresh beer, and salt

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  15. Cathodes for molten-salt batteries

    NASA Technical Reports Server (NTRS)

    Argade, Shyam D.

    1993-01-01

    Viewgraphs of the discussion on cathodes for molten-salt batteries are presented. For the cathode reactions in molten-salt cells, chlorine-based and sulfur-based cathodes reactants have relatively high exchange current densities. Sulfur-based cathodes, metal sulfides, and disulfides have been extensively investigated. Primary thermal batteries of the Li-alloy/FeS2 variety have been available for a number of years. Chlorine based rechargable cathodes were investigated for the pulse power application. A brief introduction is followed by the experimental aspects of research, and the results obtained. Performance projections to the battery system level are discussed and the presentation is summarized with conclusions.

  16. Numerical simulation of salt cementation in the porous rocks adjacent to salt diapirs

    NASA Astrophysics Data System (ADS)

    Allstadt, Raphael; Li, Shiyuan; Marquart, Gabriele; Reuning, Lars; Niederau, Jan

    2015-04-01

    Porosity and permeability are among the most important petrophysical properties of reservoirs rocks in oil systems. Observations during exploration indicate that in the vicinity of salt domes the porosity of reservoir rocks is often reduced by halite cementation. In this study we present results of simulating the process of salt precipitation near salt diapirs by using a schematic model of a Zechstein diapir in the North Sea basin. The numerical simulation is based on solving the transport equations for heat, porous flow and dispersive and reactive chemical species. Chemical reaction and equilibrium is based on the PHREEQC computer code. In our model over-pressured brine is entering from below and is deflected towards the diapir due to an intermediate layer of low permeability. The high thermal conductivity of salt yields a lateral temperature gradient starting from the diapir. Due to this effect the simulated temperature profile shows lower temperatures close to the salt dome than in comparable depths further away. Caused by the temperature-controlled solubility of NaCl in the brine and supplied ions by the diapir, halite first precipitates near the salt diapir by cementing the pore spaces and thus reducing the porosity. Salt-precipitation in the simulation starts after 840 000 years and reduces the porosity from 10 % to 5.5 % after 19 Mill. years. The permanent influx of brine causes growth of the cementation area and the related reduction of porosity in the reservoir.

  17. Archaeological and chemical evidence for early salt production in China

    PubMed Central

    Flad, Rowan; Zhu, Jiping; Wang, Changsui; Chen, Pochan; von Falkenhausen, Lothar; Sun, Zhibin; Li, Shuicheng

    2005-01-01

    Salt production and trade is thought to be critical to the development of all states and emergent empires. Until now, however, scientific evidence of early salt production has rarely been presented, and no studies of early Chinese salt production have provided unequivocal proof. Here, we report x-ray fluorescence, x-ray diffraction, and scanning electron microscopy (SEM) analyses that demonstrate that salt was the primary product during the first millennium before Christ (B.C.) at Zhongba in Central China. This work provides an early example of salt production discovered in China and presents a methodology for evaluating salt production sites in other regions. PMID:16116100

  18. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  19. Plasma 24,25-dihydroxyvitamin D concentration of Dahl salt-sensitive rats decreases during high salt intake

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Tewolde, Teclemicael K.; Forte, Camille; Wang, Min; Bayorh, Mohamed A.; Emmett, Nerimiah L.; White, Jolanda; Griffin, Keri

    2002-01-01

    Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.

  20. Linking external and internal salt geometries - a key to understanding salt dynamics

    NASA Astrophysics Data System (ADS)

    Kukla, Peter; Urai, Janos

    2014-05-01

    Considering the growing importance of salt in the energy, food and waste disposal industries, this paper reviews the status quo and major developments in salt research over the last decade. As a way forward in order to close identified gaps in knowledge, an integrated salt basin evaluation concept is proposed appreciating both external and internal geometries and properties. Examples of key studies in the Central European Basin and the South Oman Salt basin show that such a model may improve our understanding of the multi-scale processes operating in salt terrains. The workflow proposed allows to better asses (i) the initiation and maintenance of salt dynamics, (ii) the evolution of the internal structure of evaporites during halokinesis in salt giants, (iii) the coupling of processes in the evaporites and the salt's under- and overburden. It will lead to a better integration of the different data sets and resulting models, which will provide new insights into the structural evolution of salt giants. Finally it will also stimulate new concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and mechanics of the evaporites by brittle and ductile processes, (iii) the coupling of processes in the evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution. As an outlook for future research to be initiated in salt terrains we still need to improve our database on evaporite rocks especially the ones which take changes of properties in time into account. This includes for example the dependencies of thermal and mechanical properties on changes in strain, pressure and temperature or external and internal geometry changes relating to slow geological processes. Also geomechanical modelling efforts can be significantly improved by making full use of the data available on the effects of water, and some of the discrepancies seen in experimental data on different salts can probably be explained in

  1. Amplification of salt-induced polymer diffusiophoresis by increasing salting-out strength.

    PubMed

    McAfee, Michele S; Zhang, Huixiang; Annunziata, Onofrio

    2014-10-21

    The role of salting-out strength on (1) polymer diffusiophoresis from high to low salt concentration, and (2) salt osmotic diffusion from high to low polymer concentration was investigated. These two cross-diffusion phenomena were experimentally characterized by Rayleigh interferometry at 25 °C. Specifically, we report ternary diffusion coefficients for polyethylene glycol (molecular weight, 20 kg·mol(-1)) in aqueous solutions of several salts (NaCl, KCl, NH4Cl, CaCl2, and Na2SO4) as a function of salt concentration at low polymer concentration (0.5% w/w). We also measured polymer diffusion coefficients by dynamic light scattering in order to discuss the interpretation of these transport coefficients in the presence of cross-diffusion effects. Our cross-diffusion results, primarily those on salt osmotic diffusion, were utilized to extract N(w), the number of water molecules in thermodynamic excess around a macromolecule. This preferential-hydration parameter characterizes the salting-out strength of the employed salt. For chloride salts, changing cation has a small effect on N(w). However, replacing NaCl with Na2SO4 (i.e., changing anion) leads to a 3-fold increase in N(w), in agreement with cation and anion Hofmeister series. Theoretical arguments show that polymer diffusiophoresis is directly proportional to the difference N(w) - n(w), where n(w) is the number of water molecules transported by the migrating macromolecule. Interestingly, the experimental ratio, n(w)/N(w), was found to be approximately the same for all investigated salts. Thus, the magnitude of polymer diffusiophoresis is also proportional to salting-out strength as described by N(w). A basic hydrodynamic model was examined in order to gain physical insight on the role of n(w) in particle diffusiophoresis and explain the observed invariance of n(w)/N(w). Finally, we consider a steady-state diffusion problem to show that concentration gradients of strong salting-out agents such as Na2SO4 can

  2. Stability of salt in the Permian salt basin of Kansas, Oklahoma, Texas and New Mexico, with a section on dissolved salts in surface water

    USGS Publications Warehouse

    Bachman, George Odell; Johnson, Ross Byron

    1973-01-01

    The Permian salt basin in the Western Interior of the United States is defined as that region comprising a series of sedimentary basins in which halite and associated salts accumulated during Permian time. The region includes the western parts of Kansas, Oklahoma, and Texas, and eastern parts of Colorado and New Mexico. Following a long period of general tectonic stability throughout the region during most of early Paleozoic time, there was much tectonic activity in the area of the Permian salt basin during Late Pennsylvanian and Early Permian time just before bedded salt was deposited. The Early Permian tectonism was followed by stabilization of the basins in which the salt was deposited. These salt basins were neither contemporaneous nor continuous throughout the region, so that many salt beds are also discontinuous. In general, beds in the northern part of the basin (Kansas and northern Oklahoma) are older and the salt is progressively younger towards the south. Since Permian time the Permian salt basin has been relatively stable tectonically. Regionally, the area of the salt basin has been tilted and warped, has undergone periods of erosion, and has been subject to a major incursion of the sea; but deep-seated faults or igneous intrusions that postdate Permian salt are rare. In areas of the salt basin where salt is near the surface, such as southeastern New Mexico and central Kansas, there are no indications of younger deep-seated faulting and only a few isolated igneous intrusives of post-Permian age. On the other hand, subsidence or collapse of the land surface resulting from dissolution has been commonplace in the Permian salt basin. Some dissolution of salt deposits has probably been taking place ever since deposition of the salt more than 230 million years ago. Nevertheless, the subsurface dissolution fronts of the thick bedded-salt deposits of the Permian basin have retreated at a very slow average rate during that 230 million years. The preservation of

  3. Salt and hypertension: why is there still a debate?

    PubMed Central

    Batuman, Vecihi

    2013-01-01

    More than a quarter of human populations now suffer from hypertension paralleling the marked increase in the dietary intake of salt during the recent several decades. Despite overwhelming experimental and epidemiological evidence, some still debate the relation between salt and hypertension. Pointing to some conflicting data in a few flawed studies, they argue that policy interventions to reduce the dietary intake of salt are premature and maybe unsafe without further studies. A brief review of data relating salt intake to hypertension, along with an overview of the history of the introduction of salt to human diet on an historic and evolutionary time scale, should help dispel doubts on the effectiveness and safety of low-salt diet. The recorded history confirms how rare and inaccessible salt has been until recent times. Like all other terrestrial life forms, humans evolved in a salt-free environment under intense evolutionary pressure for the selection of salt-conserving genes. Hypertension is a prototypical evolutionary maladaptation disorder of the modern man—a species exquisitely well adapted to low salt conditions suddenly confronted with salt excess. The World Health Organization and many governments have finally taken action to reduce dietary intake of salt, which already has started to reduce the burden of hypertension and the associated cardiovascular morbidity and mortality. This brief review is to broadly look at the evidence linking salt to hypertension from a historic and evolutionary perspective as well as touching upon some of the epidemiological and experimental data. PMID:25019011

  4. Current Levels of Salt Knowledge: A Review of the Literature

    PubMed Central

    Sarmugam, Rani; Worsley, Anthony

    2014-01-01

    High salt intake increases the risk of hypertension and cardiovascular diseases. Given the role of knowledge as a determinant of food intake, this paper aims to review the current levels of salt knowledge and the association between salt knowledge and dietary salt intake and salt-related dietary practices in the general population. Twenty two studies were included in the review. In general, the studies showed consumers were able to identify the health risks associated with high salt intake. However, knowledge of recommended daily intakes, understanding of the relationships between salt and sodium and foods that contribute most salt to the diet were poor. Four of the five studies which examined the relationships between salt knowledge and salt-related dietary practices reported significant associations. Two important gaps in the current literature were identified. First, there is a need for a robustly validated tool to examine salt knowledge and its impact on salt intake. Second, a comprehensive salt knowledge assessment should include assessment of procedural, as well as declarative, knowledge. PMID:25470377

  5. Oscillations in a Linearly Stratified Salt Solution

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our physics students like to watch a ball bouncing underwater. They do this by dropping a weighted plastic ball into a 1000-ml cylinder filled with a linearly stratified salt-water solution at room temperature. The ball oscillates and comes to rest at about mid-depth. Its motion is analogous to the damped vertical oscillations of a mass hanging…

  6. A suitable model for emeraldine salt.

    PubMed

    Varela-Alvarez, Adrián; Sordo, José A

    2008-05-07

    A new mechanism for the formation of doped polyaniline is presented. Besides providing suitable structural and spectroscopic parameters, the new mechanism allows for the rationalization of the experimentally observed equilibrium between polaron and bipolaron defects in emeraldine salt. The magnetic behavior and the "metallic island" model for conduction in doped polyaniline are also theoretically supported by the new proposal.

  7. Mouse Model of Halogenated Platinum Salt Hypersensitivity

    EPA Science Inventory

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate a...

  8. Salt repository project closeout status report

    SciTech Connect

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  9. Department of Amplification: The Perpetual Salt Fountain.

    ERIC Educational Resources Information Center

    Arons, Arnold B.

    1995-01-01

    Presents the story of "The Perpetual Salt Fountain" to illustrate some fairly typical ramifications and vagaries in the workings of science. Outlines the discovery of double diffusive convection and uses the fact that it had been observed in the laboratory a century before its independent rediscovery to emphasize the vagaries of…

  10. Grating Formation in Diazo Salt (Sensitized) Gelatin,

    DTIC Science & Technology

    1979-10-03

    AD-AO8O 745 ARMY ENBINEER TOPOGRAPHIC LABS FORT BrLVOR VA " 7 *RATING FORMATION IN DIAZO SALT (SENSITIZED) GELATIN,(U) OCT 79 J V GLAOOEM...arrangements. The diffraction efficiency was measured as a quotient of the power diffrated into the first order beam and the power in the incident

  11. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  12. Infant salt preference and mother's morning sickness.

    PubMed

    Crystal, S R; Bernstein, I L

    1998-06-01

    Evidence for an association between early pregnancy sickness and offspring salt (NaCl) preference has been obtained from studying offspring as young adults. To determine whether effects on NaCl preference are expressed in infancy, the present study examined 16-week-old infants whose mothers reported either little or no vomiting (N = 15) or frequent moderate to severe vomiting (N = 14) during the first 14 weeks of their pregnancy. The infants' oral-motor facial reactions to each solution and their relative intakes of distilled water and 0.1m and 0.2m NaCl were used as measures of preference. Infants of mothers who reported no or mild symptoms had a significantly lower relative intake of salt solutions than infants whose mothers reported moderate to severe symptoms (p < 0.01). The former infants also showed a greater number of aversive facial responses when given 0.2m NaCl (p < 0.05). Taken together, these findings support the hypothesis that maternal dehydration, induced by moderate to severe vomiting during pregnancy, can lead to enhanced salt preference in offspring. They also provide a potential explanation for some of the variability encountered when human infants are tested for their salt preference.

  13. Formation of alkylaminium salts in particulate matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amines in the atmosphere derive from sources, such as sewage treatment and livestock feeding. The abundance of these amines in the atmosphere makes it important to determine how amines react to form particles, specifically amine salts. Experiments were conducted in a smog chamber to determine the ch...

  14. Formation of alkylaminium salts in particulate matter.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smog chamber experiments were conducted to determine how amines react to form particles, specifically amine salts, in the atmosphere. All of the experiments were performed in a smog chamber at University of California Riverside’s College of Engineering Center for Environmental Research and Technolo...

  15. Preservation of hides using low salt methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective, environmentally friendly, economical preservation of hides for shipping to hide processing plants is a major concern to the hides and skins industry. Raw hides are traditionally preserved with a high amount of salt before they are stored and shipped to tanneries to be processed into leat...

  16. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  17. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  18. Blanket of Snow Covers Salt Lake City

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 23, 2001, less than two months before the start of the 2002 Winter Olympics, snow blankets Salt Lake City and the surrounding area. The Great Salt Lake, on the left hand side of the image above, often contributes to the region's snowfall through the 'lake-effect.' As cold air passes over a large body of water it both warms and absorbs moisture. The warm air then rises (like a hot air balloon) and cools again. As it cools, the water vapor condenses out, resulting in snowfall. Just to the east (right) of the Great Salt Lake the mountains of the Wasatch Range lift air from the lake even higher, enhancing the lake-effect, resulting in an average snowfall of 64 inches a year in Salt Lake City and 140 inches in Park City, which is located at the foot of the Wasatch Front. For more information about the lake-effect, read Lake-Effect Snowfalls. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Chlorate salts and solutions on Mars

    NASA Astrophysics Data System (ADS)

    Hanley, Jennifer; Chevrier, Vincent F.; Berget, Deanna J.; Adams, Robert D.

    2012-04-01

    Chlorate (ClO3-) is an intermediate oxidation species between chloride (Cl-) and perchlorate (ClO4-), both of which were found at the landing site by the Wet Chemistry Lab (WCL). The chlorate ion is almost as stable as perchlorate, and appears to be associated with perchlorate in most terrestrial reservoirs (e.g. Atacama and Antarctica). It is possible that chlorate contributed to the ion sensor response on the WCL, yet was masked by the strong perchlorate signal. However, very little is known about chlorate salts and their effect on the stability of water. We performed evaporation rate experiments in our Mars simulation chamber, which enabled us to determine the activity of water for various concentrations. From this we constructed solubility diagrams for NaClO3, KClO3, Mg(ClO3)2 and Ca(ClO3)2, and determined the Pitzer parameters for each salt. Chlorate salt eutectic temperatures range from 270 K (KClO3) to 204 K (Mg(ClO3)2). Modeling the addition of chlorate to the initial WCL solutions shows that it precipitates in concentrations comparable to other common salts, such as gypsum and epsomite, and implies that chlorates may play an important role in the wet chemistry on Mars.

  20. The Path to Nitrate Salt Disposition

    SciTech Connect

    Funk, David John

    2016-03-16

    The topic is presented in a series of slides arranged according to the following outline: LANL nitrate salt incident as thermal runaway (thermally sensitive surrogates, full-scale tests), temperature control for processing, treatment options and down selection, assessment of engineering options, anticipated control set for treatment, and summary of the overall steps for RNS.