Science.gov

Sample records for alveolar bone defects

  1. New regenerative treatment for tooth and periodontal bone defect associated with posttraumatic alveolar bone crush fracture.

    PubMed

    Kiyokawa, Kensuke; Kiyokawa, Munekatsu; Takagi, Mikako; Rikimaru, Hideaki; Fukaya, Takuji

    2009-05-01

    We developed a new regenerative treatment of tooth and periodontal defect and tooth dislocation associated with posttraumatic alveolar bone crush fracture in the region of the maxillary anterior teeth. Using this method, dislocated teeth are first extracted and crushed alveolar bone is debrided. The dislocated teeth are then reimplanted, and cancellous iliac bone (bone marrow) is grafted to the area surrounding the teeth to regenerate periodontal bone. Tooth reimplantation was completely successful in 2 cases, and periodontal bone regenerated to a sufficient height with the iliac bone graft. Compared with the general method of treatment with a prosthesis (bridge), when using this method to treat cases such as these, there is no sacrifice of healthy teeth adjacent to the defect, and sufficient esthetic and functional recovery is possible. It is thought that this method could be applied as a new treatment of alveolar bone fracture in the future.

  2. Is bone transplantation the gold standard for repair of alveolar bone defects?

    PubMed

    Raposo-Amaral, Cassio Eduardo; Bueno, Daniela Franco; Almeida, Ana Beatriz; Jorgetti, Vanda; Costa, Cristiane Cabral; Gouveia, Cecília Helena; Vulcano, Luiz Carlos; Fanganiello, Roberto D; Passos-Bueno, Maria Rita; Alonso, Nivaldo

    2014-01-01

    New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.

  3. Is bone transplantation the gold standard for repair of alveolar bone defects?

    PubMed Central

    Raposo-Amaral, Cassio Eduardo; Bueno, Daniela Franco; Almeida, Ana Beatriz; Jorgetti, Vanda; Costa, Cristiane Cabral; Gouveia, Cecília Helena; Vulcano, Luiz Carlos; Fanganiello, Roberto D; Passos-Bueno, Maria Rita

    2014-01-01

    New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2–5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone. PMID:24551445

  4. Alveolar Bone Grafting in Cleft Patients from Bone Defect to Dental Implants

    PubMed Central

    Vuletić, Marko; Jokić, Dražen; Rebić, Jerko; Žabarović, Domagoj; Macan, Darko

    2014-01-01

    Cleft lip and palate is the most common congenital deformity affecting craniofacial structures. Orofacial clefts have great impact on the quality of life which includes aesthetics, function, psychological impact, dental development and facial growth. Incomplete fusion of facial prominences during the fourth to tenth week of gestation is the main cause. Cleft gaps are closed with alveolar bone grafts in surgical procedure called osteoplasty. Autogenic bone is taken from the iliac crest as the gold standard. The time of grafting can be divided into two stages: primary and secondary. The alveolar defect is usually reconstructured between 7 and 11 years and is often related to the development of the maxillary canine root. After successful osteoplasty, cleft defect is closed but there is still a lack of tooth. The space closure with orthodontic treatment has 50-75% success. If the orthodontic treatment is not possible, in order to replace the missing tooth there are three possibilities: adhesive bridgework, tooth transplantation and implants. Dental implant has the role of holding dental prosthesis, prevents pronounced bone atrophy and loads the augmentation material in the cleft area. Despite the fact that autologous bone from iliac crest is the gold standard, it is not a perfect source for reconstruction of the alveolar cleft. Bone morphogenic protein (BMP) is appropriate as an alternative graft material. The purpose of this review is to explain morphology of cleft defects, historical perspective, surgical techniques and possibilities of implant and prosthodontic rehabilitation. PMID:27688373

  5. Reconstruction of alveolar bone defect with autogenous bone particles and osseointegrated implants: Histologic analysis and 10 years monitoring

    PubMed Central

    de Carvalho, Paulo Sérgio Perri; de Carvalho, Mariliza Comar Astolphi; Ponzoni, Daniela

    2015-01-01

    Maintaining the volume of the alveolar process after extraction can be achieved by immediate implant placement and guided bone regeneration, with or without the use of biomaterials. The authors present a case report with a 10 years follow-up, rehabilitation using osseointegrated implants in the extraction area and maintenance of the volume of the alveolar process with autogenous cortical bone shavings. PMID:26389054

  6. Volumetric Analysis of Alveolar Bone Defect Using Three-Dimensional-Printed Models Versus Computer-Aided Engineering.

    PubMed

    Du, Fengzhou; Li, Binghang; Yin, Ningbei; Cao, Yilin; Wang, Yongqian

    2017-03-01

    Knowing the volume of a graft is essential in repairing alveolar bone defects. This study investigates the 2 advanced preoperative volume measurement methods: three-dimensional (3D) printing and computer-aided engineering (CAE). Ten unilateral alveolar cleft patients were enrolled in this study. Their computed tomographic data were sent to 3D printing and CAE software. A simulated graft was used on the 3D-printed model, and the graft volume was measured by water displacement. The volume calculated by CAE software used mirror-reverses technique. The authors compared the actual volumes of the simulated grafts with the CAE software-derived volumes. The average volume of the simulated bone grafts by 3D-printed models was 1.52 mL, higher than the mean volume of 1.47 calculated by CAE software. The difference between the 2 volumes was from -0.18 to 0.42 mL. The paired Student t test showed no statistically significant difference between the volumes derived from the 2 methods. This study demonstrated that the mirror-reversed technique by CAE software is as accurate as the simulated operation on 3D-printed models in unilateral alveolar cleft patients. These findings further validate the use of 3D printing and CAE technique in alveolar defect repairing.

  7. Effect of biphasic calcium phosphate nanocomposite on healing of surgically created alveolar bone defects in beagle dogs

    NASA Astrophysics Data System (ADS)

    Wang, Lanlei; Guan, Aizhong; Shi, Han; Chen, Yangxi; Liao, Yunmao

    2009-09-01

    The aim of the present study was to investigate the effect of porous biphasic calcium phosphate nanocomposite (nanoBCP) scaffolds bioceramic. Alveolar bone defects were surgically created bilaterally at the buccal aspects of the upper second premolar in fourteen beagle dogs. After root conditioning with ethylenediaminetetraacetate (EDTA), nanoBCP was randomly filled in the defects and nothing was put into the contralaterals as controls. Dogs were killed at the 12th weeks. Histological observations were processed through a light microscopy. The results revealed that a great amount of functional periodontal fissures formed in the defects in the nanoBCP groups while minimal bone took shape in the controls. In this study, nanoBCP has proved to work well as a biocompatible and osteoconductive scaffold material to promote periodontal regeneration effectively.

  8. Histologic evaluation of alveolar bone following CO2 laser removal of connective tissue from periodontal defects.

    PubMed

    Williams, T M; Cobb, C M; Rapley, J W; Killoy, W J

    1995-10-01

    This study was undertaken to examine histologically the healing response of alveolar bone following removal of granulation and/or connective tissues from interproximal craters by manual curettage or ablation by carbon dioxide laser. The time required to complete each type of degranulation procedure was also compared. Four interproximal treatment sites in each quadrant of two dogs were randomly assigned to each treatment modality. Neither treatment modality was totally effective in removing all suprabony connective tissue. Healing was clinically uneventful and histologically similar for both treatment groups at all time intervals. Laser-treated specimens exhibited little or no inflammatory cell infiltrate, areas of heat-induced tissue necrosis, accumulations of carbonized debris that initially was surrounded by macrophages and eventually phagocytized by multi-nucleated giant cells, and spicules of nonvital bone that exhibited a surface layer of osteoid. Although manual curettage was found to be statistically significantly faster, the difference between mean times was roughly 55 seconds and therefore unlikely to be clinically significant.

  9. Evaluation of Soft Tissue Coverage over Porous Polymethylmethacrylate Space Maintainers Within Nonhealing Alveolar Bone Defects

    PubMed Central

    Kretlow, James D.; Shi, Meng; Young, Simon; Spicer, Patrick P.; Demian, Nagi; Jansen, John A.; Wong, Mark E.; Kasper, F. Kurtis

    2010-01-01

    Current treatment of traumatic craniofacial injuries often involves early free tissue transfer, even if the recipient site is contaminated or lacks soft tissue coverage. There are no current tissue engineering strategies to definitively regenerate tissues in such an environment at an early time point. For a tissue engineering approach to be employed in the treatment of such injuries, a two-stage approach could potentially be used. The present study describes methods for fabrication, characterization, and processing of porous polymethylmethacrylate (PMMA) space maintainers for temporary retention of space in bony craniofacial defects. Carboxymethylcellulose hydrogels were used as a porogen. Implants with controlled porosity and pore interconnectivity were fabricated by varying the ratio of hydrogel:polymer and the amount of carboxymethylcellulose within the hydrogel. The in vivo tissue response to the implants was observed by implanting solid, low-porosity, and high-porosity implants (n = 6) within a nonhealing rabbit mandibular defect that included an oral mucosal defect to allow open communication between the oral cavity and the mandibular defect. Oral mucosal wound healing was observed after 12 weeks and was complete in 3/6 defects filled with solid PMMA implants and 5/6 defects filled with either a low- or high-porosity PMMA implant. The tissue response around and within the pores of the two formulations of porous implants tested in vivo was characterized, with the low-porosity implants surrounded by a minimal but well-formed fibrous capsule in contrast to the high-porosity implants, which were surrounded and invaded by almost exclusively inflammatory tissue. On the basis of these results, PMMA implants with limited porosity hold promise for temporary implantation and space maintenance within clean/contaminated bone defects. PMID:20524844

  10. A New Device for Alveolar Bone Transportation

    PubMed Central

    Vega, Omar; Pérez, Daniel; Páramo, Viviana; Falcón, Jocelyn

    2011-01-01

    We present a retrospective review of a new technique for the transportation of alveolar bone using a Hyrax device modified by the principal author (O.A.V.). There were seven patients (five males and two females), including five patients with cleft palate and lip diagnosis, one patient with a high-speed gunshot wound, and one patient with facial trauma sequel due to mandibular fracture. They were all treated with an alveolar bone transportation technique (ABT) through the use of the modified Hyrax device (VEGAX). Before surgery, distraction osteogenesis of the bifocal type was performed on four patients, and the trifocal type was performed on the other three patients. However, in one case, direct dental anchorage was not used, only orthodontic appliances. In all the cases, new bone formation and gingival tissue around the defect were obtained, posterior to the alveolar distraction process; no complications were observed in any patient. In one case, two teeth involved in the disk of the ABT were extracted, due to a previous condition of periodontal disease. The alveolar bone transport with the VEGAX device is an accessible technique for almost every patient with alveolar defects due to diverse causes. In all the presented cases, predictability and success were demonstrated. PMID:22655120

  11. Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use.

    PubMed

    Chang, Po-Chun; Cirelli, Joni A; Jin, Qiming; Seol, Yang-Jo; Sugai, James V; D'Silva, Nisha J; Danciu, Theodora E; Chandler, Lois A; Sosnowski, Barbara A; Giannobile, William V

    2009-05-01

    Platelet-derived growth factor (PDGF) gene therapy offers promise for tissue engineering of tooth-supporting alveolar bone defects. To date, limited information exists regarding the safety profile and systemic biodistribution of PDGF gene therapy vectors when delivered locally to periodontal osseous defects. The aim of this preclinical study was to determine the safety profile of adenovirus encoding the PDGF-B gene (AdPDGF-B) delivered in a collagen matrix to periodontal lesions. Standardized alveolar bone defects were created in rats, followed by delivery of matrix alone or containing AdPDGF-B at 5.5 x 10(8) or 5.5 x 10(9) plaque-forming units/ml. The regenerative response was confirmed histologically. Gross clinical observations, hematology, and blood chemistries were monitored to evaluate systemic involvement. Bioluminescence and quantitative polymerase chain reaction were used to assess vector biodistribution. No significant histopathological changes were noted during the investigation. Minor alterations in specific hematological and blood chemistries were seen; however, most parameters were within the normal range for all groups. Bioluminescence analysis revealed vector distribution at the axillary lymph nodes during the first 2 weeks with subsequent return to baseline levels. AdPDGF-B was well contained within the localized osseous defect area without viremia or distant organ involvement. These results indicate that AdPDGF-B delivered in a collagen matrix exhibits acceptable safety profiles for possible use in human clinical studies.

  12. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold.

    PubMed

    Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen

    2016-01-01

    Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects.

  13. Alveolar Bone Fracture: Pathognomonic Sign for Clinical Diagnosis

    PubMed Central

    Gutmacher, Zvi; Peled, Eli; Norman, Doron; Lin, Shaul

    2017-01-01

    Aim: Dental injuries, especially luxation and avulsion, are common. Dental trauma can cause alveolar bone fracture that can lead to tooth loss and malocclusion. Single tooth alveolar bone fractures are difficult to identify unless it protrudes through the overlying mucosa and can be visualized. Pain, malocclusion, and tooth mobility provide signs of suspected alveolar bone fractures. Integrity of the proximate alveolar bone should be examined for fractures where avulsion, luxation, or other tooth trauma is detected. Any suggestion of alveolar fractures should be further investigated with an appropriate radiograph. Summary: This case report shows a pathognomonic sign that detects and diagnosis single tooth alveolar bone fractures, i.e., a localized hematoma crossing the attached gingiva from the free gingival margin to the vestibular mucosa. This should serve as a warning for localized alveolar bone fracture. A visualized hematoma and gentle, careful palpation may help detect covered fractures when the overlying mucosa is not perforated.

  14. Relationship between alveolar bone measured by /sup 125/I absorptiometry with analysis of standardized radiographs: 1. Magiscan

    SciTech Connect

    Hausmann, E.; Ortman, L.F.; McHenry, K.; Fallon, J.

    1982-05-01

    Previous studies have shown that /sup 125/I absorptiometry gives an accurate and sensitive measure of alveolar bone mass. The purpose of this study was to determine the relationship between alveolar bone mass determined by /sup 125/I absorptiometry and bone density obtained by analysis of standardized intraoral radiographs by the Magiscan System. A defect of increasing size was made at one site of the alveolar bone in a human skull. The amount of bone remaining at each step was calculated using /sup 125/I absorptiometry. Standardized radiographs were also taken at each step and the relative density in the area of the defect was determined by the Magiscan System. The Magiscan's System Computer Memory permits analysis of identical areas on a longitudinal series of films of the same alveolar bone location. The results indicate that in estimating amounts of alveolar bone the Magiscan analysis of standardized intraoral radiography is similar in sensitivity and accuracy to /sup 125/I absorptiometry.

  15. "Tent-Pole" for Reconstruction of Large Alveolar Defects: A Case Report.

    PubMed

    Xiao, Ting; Zhao, Yuyue; Luo, En; Hu, Jian

    2016-01-01

    Severe tridimensional alveolar ridge defects complicate the placement of dental implants, and surgical removal of some oral tumors might not leave adequate bone for dental implant placement. Regenerating an adequate amount of bone vertically and horizontally to achieve a satisfying outcome for well-osseointegrated implants and thus ensure long-term success of implant restoration is challenging. This report describes the clinical feasibility of a simple approach using a screw tent-pole combined with guided bone regeneration to augment complicated tridimensional alveolar ridge defects in a case of extensive bone loss due to maxillary tumor surgery. Titanium screws were arranged in "tented" fashion to provide stable room for bone regeneration. Regenerated bone was achieved and 2 more implants were placed in the regenerated ridge 10 months later, leading to a successful maxillary prosthesis.

  16. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    PubMed Central

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910

  17. Arterial hypertension perpetuates alveolar bone loss.

    PubMed

    de Medeiros Vanderlei, Janine Montenegro Toscano Moura; Messora, Michel Reis; Fernandes, Patrícia Garani; Novaes, Arthur B; Palioto, Daniela Bazan; de Moraes Grisi, Marcio Fernando; Scombatti de Souza, Sergio Luis; Gerlach, Raquel Fernanda; Antoniali, Cristina; Taba, Mario

    2013-01-01

    Few studies have focused on the impact of hypertension on the progression of periodontitis (PD). The purpose of this study was to evaluate whether hypertension affects PD by enhancing bone loss even after the stimulus for PD induction is removed. Ligature-induced PD was created on the first mandibular molars of spontaneously hypertensive rats (SHR) and normotensive rats (Wistar Kyoto-WKY). The animals were assigned to non-ligated controls (C) and PD groups: WKY-C, WKY-PD, SHR-C, and SHR-PD. After 10 days, five animals of each group were killed and the ligatures of the other animals were removed. On the 21st day (11 days without PD induced), the remaining animals were killed. The jaws were defleshed and the amount of bone loss was measured. After 10 days, the PD groups showed more bone loss than its controls (P < .05); SHR-PD = 0.72 ± 0.05 mm, SHR-C = 0.39 ± 0.04 mm, WKY-PD = 0.75 ± 0.04 mm, and WKY-C = 0.56 ± 0.04 mm. The cumulative bone loss on day 21 (0.94 ± 0.13 mm) was significantly worse than on day 10 only in SHR-PD group (P < .05). The final bone loss differences between PD and C groups accounted for 102% (SHR) and 26% (WKY) increase in comparison with the initial control levels. Hypertension is associated with progressive alveolar bone loss even when the stimulus for PD induction is removed and it may be speculated that host condition perpetuates alveolar bone loss.

  18. Tooth rotation and alveolar bone loss.

    PubMed

    Peretz, B; Machtei, E E

    1996-07-01

    Tooth rotation and periodontal breakdown has not been thoroughly studied due to lack of quantitative tools. The purpose of the present study was to examine this correlation, with respect to alveolar bone loss, from direct observation of 17 skulls. A photograph of the mandibular occlusal plane was taken from a fixed reference point, and the midcentral fossa and the extreme mesial and distal points of each tooth were marked on the photograph. A computer program established the arch form of each mandibular from the midtooth landmarks. The angle between individual teeth and the arch (at any given point) was calculated. Bone loss, indicated by the distance of the bone crest from the cementoenamel junction, was measured at six reference points around each tooth with a caliper. A positive correlation, through weak, was found between increased tooth rotation and greater bone loss. Mean bone loss of teeth with rotation of 20 degrees and greater was 4.03 mm, while that of teeth with less than 20 degrees of rotation was 3.49 mm.

  19. Multidisciplinary Management of An Unusual Isolated Alveolar Bone Infection- A Rare Case Report

    PubMed Central

    B, Dixit Mala; S, Kulkarni Rahul; M, Ramugade Manoj

    2015-01-01

    Restoration of proximal defect of tooth is of paramount importance as its improper restoration usually results in fracture of the restoration or deteriorated periodontal health. The article reports a case with a discreet mass of alveolar bone necrosis closed to the overhanged amalgam restoration in the proximal box of the maxillary molar. As a result of this improper proximal restoration it led to deep periodontal pocket and subsequent alveolar bone necrosis which was managed successfully with combined Endodontic-Periodontic treatment. This article highlights the unfortunate sequelae of bone necrosis as a consequence of an incorrect or overlooked dental treatment and its comprehensive management. PMID:26155587

  20. Ozone treatment of alveolar bone in the cape chacma baboon does not enhance healing following trauma.

    PubMed

    Kotze, Marthinus; Bütow, Kürt-W; Olorunju, Steve A; Kotze, Harry F

    2014-06-01

    In the international literature, the role of Ozone (O3) in the advancement in alveolar bone healing in the absence of bone pathology was not tested before. The purpose of this study was to evaluate alveolar bone regeneration after a bone defect was created and treated with a single topical administration of O3. Alveolar bone defects were created on five healthy chacma baboons. One side of the maxilla and mandible was topically treated with a single treatment of an O3/O2 mixture (3,5-4 % O3), while the opposite sides were not treated and thus served as control. Regeneration was measured radiologically, using a standardized gray scale, as the increase in bone density in the treatment area at 3 and 6 weeks post-operative and was statistically analyzed using multivariate analysis of variance (MANOVA). There were no significant differences in densities observed between the O3/O2 mixture treatment and the control (p > 0.05). A single O3 treatment did not increase alveolar bone healing over a 3- and 6-week period in the mandible and the maxilla.

  1. Alveolar Ridge Preservation Using Xenogeneic Collagen Matrix and Bone Allograft

    PubMed Central

    Parashis, Andreas O.; Kalaitzakis, Charalampos J.; Tatakis, Dimitris N.; Tosios, Konstantinos

    2014-01-01

    Alveolar ridge preservation (ARP) has been shown to prevent postextraction bone loss. The aim of this report is to highlight the clinical, radiographic, and histological outcomes following use of a bilayer xenogeneic collagen matrix (XCM) in combination with freeze-dried bone allograft (FDBA) for ARP. Nine patients were treated after extraction of 18 teeth. Following minimal flap elevation and atraumatic extraction, sockets were filled with FDBA. The XCM was adapted to cover the defect and 2-3 mm of adjacent bone and flaps were repositioned. Healing was uneventful in all cases, the XCM remained in place, and any matrix exposure was devoid of further complications. Exposed matrix portions were slowly vascularized and replaced by mature keratinized tissue within 2-3 months. Radiographic and clinical assessment indicated adequate volume of bone for implant placement, with all planned implants placed in acceptable positions. When fixed partial dentures were placed, restorations fulfilled aesthetic demands without requiring further augmentation procedures. Histological and immunohistochemical analysis from 9 sites (4 patients) indicated normal mucosa with complete incorporation of the matrix and absence of inflammatory response. The XCM + FDBA combination resulted in minimal complications and desirable soft and hard tissue therapeutic outcomes, suggesting the feasibility of this approach for ARP. PMID:25328523

  2. The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing

    PubMed Central

    2016-01-01

    Purpose The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. Methods Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. Results New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. Conclusions After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit. PMID:27800213

  3. Is there a relation between local bone quality as assessed on panoramic radiographs and alveolar bone level?

    PubMed

    Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde

    2008-03-01

    The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.

  4. Secondary closure of alveolar cleft with resorbable collagen membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone

    PubMed Central

    Aly, Lobna Abdel Aziz; Hammouda, Nelly

    2016-01-01

    Objects: Secondary alveolar bone grafting is a method that enables an excellent oral rehabilitation of the patients having alveolar cleft. The aim of this work is to report the closure of the alveolar cleft with the use of harvested autogenous bone graft combined with deproteinized anorganic bovine bone (Bio-Oss) under local anesthesia. Settings and Sample Population: Nine patients with age range, 8–11 years were consulted for their unilateral alveolar cleft. Materials and Methods: A combination of symphyseal bone and deproteinized bovine bone mineral (DBBM) was placed into the alveolar cleft defect. Clinical and radiographical assessments were performed at 1, 3, and 6 months postoperatively. Results: The healing period was uneventful in all cases, and no complications, such as membrane exposure, infection, or harvest site morbidity, were observed. All treated defect sites exhibited excellent bone formation, with an average of 5.45 mm (range, 2–9 mm; standard deviation 1.93 mm) of augmentation achieved overall. Conclusion: The treatment of vertically deficient alveolar ridges with guided bone regeneration using a mixture of autogenous bone and DBBM and resorbable collagen membrane can be considered successful, using this technique in an out-patient office setting. PMID:28299252

  5. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  6. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    PubMed Central

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician. PMID:27471408

  7. A Novel Murine Model for Chronic Inflammatory Alveolar Bone loss

    PubMed Central

    Oz, Helieh S; Ebersole, Jeffrey L

    2009-01-01

    Objective Chronic inflammatory bowel disease (IBD) demonstrates some similarities of dysregulated chronic immunoinflammatory lesion of periodontitis. Trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulphate (DSS) administered to rodents have been shown to elicit inflammatory responses that undermine the integrity of the gut epithelium similar to IBD in humans. The objective of this study was to evaluate the ability of these chemicals to elicit periodontal inflammation as a novel model for alveolar bone loss. Methods Mice were treated by oral application of TNBS 2 times/week, or with DSS in the diet over a period of 18 weeks. Alveolar bone loss was assessed on defleshed skull using morphometric measures for area of bone resorption. Results TNBS-treated animals tolerated oral administration with no clinical symptoms and gained weight similar to normal controls. In contrast, DSS exerted a systemic response including shortening of colonic tissue and liver enzyme changes. Both TNBS and DSS caused a localized action on periodontal tissues with alveolar bone loss observed in both maxilla and mandibles with progression in a time dependent manner. Bone loss was detected as early as week 7, with more severe periodontitis increasing over the 18 weeks (p<0.001). Young (7 month) and old (12 month) SCID mice were treated with TNBS for a period of 7 weeks and did not develop significant bone loss. Conclusions These data show that oral administration of TNBS and DSS provoke alveolar bone loss in concert with the autochthonous oral microbiota. PMID:19602109

  8. Orthodontically guided bone transport in the treatment of alveolar cleft: A case report

    PubMed Central

    Gómez, Elena; Otero, Marta; Berraquero, Rosario; Wucherpfennig, Begona; Hernández-Godoy, Juan; Guiñales, Jorge; Vincent, Germán; Burgueño, Miguel

    2016-01-01

    Introduction Conventional treatments are sometimes not possible in certain alveolar cleft cases due to the severity of the gap which separates the fragments. Various management strategies have been proposed, including sequential surgical interventions or delaying treatment until adulthood to then carry out maxillary osteotomies. A further alternative approach has also been proposed, involving the application of bone transport techniques to mobilise the osseous fragments and thereby reduce the gap between lateral fragments and the premaxilla. Case Report We introduce the case of a 10-year-old patient who presented with a bilateral alveolar cleft and a severe gap. Stable occlusion between the premaxilla and the mandible was achieved following orthodontic treatment, making it inadvisable to perform a retrusive osteotomy of the premaxilla in order to close the alveolar clefts. Faced with this situation, it was decided we would employ a bone transport technique under orthodontic guidance using a dental splint. This would enable an osseous disc to be displaced towards the medial area and reduce the interfragmentary distance. During a second surgical intervention, closure of the soft tissues was performed and the gap was filled in using autogenous bone. Conclusions The use of bone transport techniques in selected cases allows closure of the osseous defect, whilst also preserving soft tissues and reducing the amount of bone autograft required. In our case, we were able to respect the position of the premaxilla and, at the same time, generate new tissues at both an alveolar bone and soft tissue level with results which have remained stable over the course of time. Key words:Alveolar cleft, bone transport, graft. PMID:26855699

  9. Clinical and Microcomputed Topography Evaluation of the Concentrated Growth Factors as a Sole Material in a Cystic Bony Defect in Alveolar Bone Followed by Dental Implantation: A Case Report.

    PubMed

    Shyu, Shih-Shiun; Fu, Earl; Shen, E-Chin

    2016-10-01

    Concentrated growth factors (CGFs) can be used to enhance wound healing. This case report describes a short-term effect of CGF grafting followed by implant placement in a cystic bony defect within the mandible. Healing conditions were monitored by 2 implant-related surgeries, radiographs, and a microcomputed topography examination. Continuous increase of radiopacity in radiographs was noticed till 6 months after grafting. Bone core specimen was taken at 3.5 months after grafting, and percent bone volume reached 32.7% analyzed by microcomputed topography. In conclusion, the present case showed bone regeneration in the cystic bony defect grafted by CGFs alone.

  10. Does Orthodontic Treatment Affect the Alveolar Bone Density?

    PubMed Central

    Yu, Jian-Hong; Huang, Heng-Li; Liu, Chien-Feng; Wu, Jay; Li, Yu-Fen; Tsai, Ming-Tzu; Hsu, Jui-Ting

    2016-01-01

    Abstract Few studies involving human participants have been conducted to investigate the effect of orthodontic treatment on alveolar bone density around the teeth. Our previous study revealed that patients who received 6 months of active orthodontic treatment exhibited an ∼24% decrease in alveolar bone density around the teeth. However, after an extensive retention period following orthodontic treatment, whether the bone density around the teeth can recover to its original state from before the treatment remains unclear, thus warranting further investigation. The purpose of this study was to assess the bone density changes around the teeth before, during, and after orthodontic treatment. Dental cone-beam computed tomography (CBCT) was used to measure the changes in bone density around 6 teeth in the anterior maxilla (maxilla central incisors, lateral incisors, and canines) of 8 patients before and after orthodontic treatment. Each patient underwent 3 dental CBCT scans: before treatment (T0); at the end of 7 months of active orthodontic treatment (T1); after several months (20–22 months) of retention (T2). The Friedman test was applied to evaluate the changes in the alveolar bone density around the teeth according to the 3 dental CBCT scans. From T0 to T1, a significant reduction in bone density was observed around the teeth (23.36 ± 10.33%); by contrast, a significant increase was observed from T1 to T2 (31.81 ± 23.80%). From the perspective of the overall orthodontic treatment, comparing the T0 and T2 scans revealed that the bone density around the teeth was relatively constant (a reduction of only 0.75 ± 19.85%). The results of the statistical test also confirmed that the difference in bone density between T0 and T2 was nonsignificant. During orthodontic tooth movement, the alveolar bone density around the teeth was reduced. However, after a period of bone recovery, the reduced bone density recovered to its previous state from before the

  11. Does Orthodontic Treatment Affect the Alveolar Bone Density?

    PubMed

    Yu, Jian-Hong; Huang, Heng-Li; Liu, Chien-Feng; Wu, Jay; Li, Yu-Fen; Tsai, Ming-Tzu; Hsu, Jui-Ting

    2016-03-01

    Few studies involving human participants have been conducted to investigate the effect of orthodontic treatment on alveolar bone density around the teeth. Our previous study revealed that patients who received 6 months of active orthodontic treatment exhibited an ∼24% decrease in alveolar bone density around the teeth. However, after an extensive retention period following orthodontic treatment, whether the bone density around the teeth can recover to its original state from before the treatment remains unclear, thus warranting further investigation.The purpose of this study was to assess the bone density changes around the teeth before, during, and after orthodontic treatment.Dental cone-beam computed tomography (CBCT) was used to measure the changes in bone density around 6 teeth in the anterior maxilla (maxilla central incisors, lateral incisors, and canines) of 8 patients before and after orthodontic treatment. Each patient underwent 3 dental CBCT scans: before treatment (T0); at the end of 7 months of active orthodontic treatment (T1); after several months (20-22 months) of retention (T2). The Friedman test was applied to evaluate the changes in the alveolar bone density around the teeth according to the 3 dental CBCT scans.From T0 to T1, a significant reduction in bone density was observed around the teeth (23.36 ± 10.33%); by contrast, a significant increase was observed from T1 to T2 (31.81 ± 23.80%). From the perspective of the overall orthodontic treatment, comparing the T0 and T2 scans revealed that the bone density around the teeth was relatively constant (a reduction of only 0.75 ± 19.85%). The results of the statistical test also confirmed that the difference in bone density between T0 and T2 was nonsignificant.During orthodontic tooth movement, the alveolar bone density around the teeth was reduced. However, after a period of bone recovery, the reduced bone density recovered to its previous state from before the orthodontic treatment

  12. [Modern approaches to dental implants placement in deficient alveolar bone].

    PubMed

    Kulakov, A A; Gvetadze, R Sh; Brailovskaya, T V; Khar'kova, A A; Dzikovitskaya, L S

    2017-01-01

    The paper presents statistical data on implant placement procedures in Central Research Institute of Dentistry and Maxillofacial Surgery (Moscow, Russia) in 2010-2015. In 64% of cases inadequate bone volume was attributed to alveolar bone atrophy. Bone deficiency was equally often in upper and lower jaws (in 49.3 and 50.7%, correspondently) but varied in forms with complex configurations to be more specific for maxilla. The study also includes a series of clinical cases illustrating implant placement procedures in anatomically unfavorable settings.

  13. Rac-null leukocytes are associated with increased inflammation-mediated alveolar bone loss.

    PubMed

    Sima, Corneliu; Gastfreund, Shoshi; Sun, Chunxiang; Glogauer, Michael

    2014-02-01

    Periodontitis is characterized by altered host-biofilm interactions that result in irreversible inflammation-mediated alveolar bone loss. Genetic and epigenetic factors that predispose to ineffective control of biofilm composition and maintenance of tissue homeostasis are not fully understood. We elucidated how leukocytes affect the course of periodontitis in Rac-null mice. Mouse models of acute gingivitis and periodontitis were used to assess the early inflammatory response and patterns of chronicity leading to loss of alveolar bone due to inflammation in Rac-null mice. Leukocyte margination was differentially impaired in these mice during attachment in conditional Rac1-null (granulocyte/monocyte lineage) mice and during rolling and attachment in Rac2-null (all blood cells) mice. Inflammatory responses to subgingival ligatures, assessed by changes in peripheral blood differential leukocyte numbers, were altered in Rac-null compared with wild-type mice. In response to persistent subgingival ligature-mediated challenge, Rac-null mice had increased loss of alveolar bone with patterns of resorption characteristic of aggressive forms of periodontitis. These findings were partially explained by higher osteoclastic coverage of the bone-periodontal ligament interface in Rac-null compared with wild-type mice. In conclusion, this study demonstrates that leukocyte defects, such as decreased endothelial margination and tissue recruitment, are rate-limiting steps in the periodontal inflammatory process that lead to more aggressive forms of periodontitis.

  14. Osteogenic Differentiation of Human Amniotic Epithelial Cells and Its Application in Alveolar Defect Restoration

    PubMed Central

    Jiawen, Si; Jianjun, Zhang; Jiewen, Dai; Dedong, Yu; Hongbo, Yu; Jun, Shi; Xudong, Wang; Shen, Steve G.F.

    2014-01-01

    The present study investigated the detailed in vitro osteogenic differentiation process and in vivo bone regenerative property of human amniotic epithelial cells (hAECs). The in vitro osteogenic differentiation process of hAECs was evaluated by biochemical staining, real-time polymerase chain reaction, and immunofluorescence. Next, β-tricalcium phosphate (β-TCP) scaffolds alone or loaded with hAECs were implanted into the alveolar defects of rats. Micro-computed tomography evaluation and histologic studies were conducted. Our results validated the in vitro osteogenic capacity of hAECs by upregulation of Runx2, osterix, alkaline phosphatase, collagen I, and osteopontin, with positive biochemical staining for osteoblasts. An epithelial-mesenchymal transformation process might be involved in the osteogenic differentiation of hAECs by increased expression of transforming growth factor-β1. Our data also demonstrated that in vivo implantation of hAECs loaded on β-TCP scaffolds, not only improved bone regeneration by direct participation, but also reduced the early host immune response to the scaffolds. The presented data indicate that hAECs possess proper osteogenic differentiation potential and a modulatory influence on the early tissue remodeling process, making these cells a potential source of progenitor cells for clinical restoration of the alveolar defect. PMID:25368378

  15. Guided bone regeneration for fenestration defects in dental implants.

    PubMed

    Yeh, Hwey-Chin; Hsu, Kuang-Wei

    2003-09-01

    Guided bone regeneration has been applied in implant dentistry for increasing the width and height of the alveolar ridge in areas with insufficient bone. Various materials and techniques have been used for this purpose. It refers to a surgical procedure by which utilizing a mechanical barrier to create a secluded space around the defect to permit bone regeneration without the competition of other tissues. This report presents a case with buccal fenestrations on maxillary implant sites observed during a surgical procedure. An allograft and a non-resorbable membrane were concomitantly used to increase the width of the alveolar ridge. Hard tissue regeneration was evident clinically. The implants were restored for functioning and followed for 2 years. Factors affecting outcomes are also discussed. Membrane stability and the space-making effect remain the keys to success.

  16. Alveolar bone thickness around maxillary central incisors of different inclination assessed with cone-beam computed tomography

    PubMed Central

    Liu, Fang; Sun, Hong-jing; Lv, Pin; Cao, Yu-ming; Yu, Mo; Yue, Yang

    2015-01-01

    Objective To assess the labial and lingual alveolar bone thickness in adults with maxillary central incisors of different inclination by cone-beam computed tomography (CBCT). Methods Ninety maxillary central incisors from 45 patients were divided into three groups based on the maxillary central incisors to palatal plane angle; lingual-inclined, normal, and labial-inclined. Reformatted CBCT images were used to measure the labial and lingual alveolar bone thickness (ABT) at intervals corresponding to every 1/10 of the root length. The sum of labial ABT and lingual ABT at the level of the root apex was used to calculate the total ABT (TABT). The number of teeth exhibiting alveolar fenestration and dehiscence in each group was also tallied. One-way analysis of variance and Tukey's honestly significant difference test were applied for statistical analysis. Results The labial ABT and TABT values at the root apex in the lingual-inclined group were significantly lower than in the other groups (p < 0.05). Lingual and labial ABT values were very low at the cervical level in the lingual-inclined and normal groups. There was a higher prevalence of alveolar fenestration in the lingual-inclined group. Conclusions Lingual-inclined maxillary central incisors have less bone support at the level of the root apex and a greater frequency of alveolar bone defects than normal maxillary central incisors. The bone plate at the marginal level is also very thin. PMID:26445719

  17. The outcome of intraoral onlay block bone grafts on alveolar ridge augmentations: A systematic review

    PubMed Central

    Aloy-Prósper, Amparo; Peñarrocha-Oltra, David; Peñarrocha-Diago, Maria A.

    2015-01-01

    Aim: The purpose of this study was to systematically review clinical studies examining the survival and success rates of implants placed with intraoral onlay autogenous bone grafts to answer the following question: do ridge augmentations procedures with intraoral onlay block bone grafts in conjunction with or prior to implant placement influence implant outcome when compared with a control group (guided bone regeneration, alveolar distraction, native bone or short dental implants.)? Material and Method: An electronic data banks and hand searching were used to find relevant articles on vertical and lateral augmentation procedures performed with intraoral onlay block bone grafts for dental implant therapy published up to October 2013. Publications in English, on human subjects, with a controlled study design –involving at least one group with defects treated with intraoral onlay block bone grafts, more than five patients and a minimum follow-up of 12 months after prosthetic loading were included. Two reviewers extracted the data. Results: A total of 6 studies met the inclusion criteria: 4 studies on horizontal augmentation and 2 studies on vertical augmentation. Intraoperative complications were not reported. Most common postsurgical complications included mainly mucosal dehiscences (4 studies), bone graft or membrane exposures (3 studies), complete failures of block grafts (2 studies) and neurosensory alterations (4 studies). For lateral augmentation procedures, implant survival rates ranged from 96.9% to 100%, while for vertical augmentation they ranged from 89.5% to 100%. None article studied the soft tissues healing. Conclusions: Survival and success rates of implants placed in horizontally and vertically resorbed edentulous ridges reconstructed with block bone grafts are similar to those of implants placed in native bone, in distracted sites or with guided bone regeneration. More surgical challenges and morbidity arise from vertical augmentations, thus short

  18. Healing of extraction sockets and augmented alveolar defects following 1-year treatment with bisphosphonate.

    PubMed

    Khojasteh, Arash; Behnia, Hossein; Morad, Golnaz; Dashti, Seyedeh Ghazaleh; Dehghan, Mohammad Mehdi; Shahab, Shahriyar; Abbas, Fatemeh Mashhadi

    2013-01-01

    To assess the effect of bisphosphonates on healing of extraction sockets and augmented alveolar defects, 12 adult female mongrel dogs were assigned to 2 experimental groups and a control group. The experimental groups received oral alendronate (ALN, 3.5 mg/kg/wk) or IV pamidronate (PAM, 1 mg/kg/wk) for 12 months. Animals were randomly tested for serum C-terminal telopeptide of collagen I (CTx). The right first and second premolars were extracted. After 8 weeks, extraction sites were evaluated for healing. Subsequently, 3-wall defects were created in ridges and filled with human mineralized cortical particulate bone. Two months post-augmentation, animals were sacrificed and mandibles were collected for cone-beam computed tomography (CBCT) and histomorphometric appraisal. The obtained data were compared using 1-way ANOVA test. CTx test results in both experimental groups were comparable (<10 pg/mL) but lower than that of the control group (minimum 159.2 pg/mL). Two months post-extraction, bone sequestra were noticed in extraction sites in BP-treated groups, involving the entire alveolar bone in the PAM group and the upper rim of the alveoli in the ALN group. Histologically, bone sequestra from the PAM group demonstrated empty osteocyte lacunae, while in the ALN group areas of necrotic bone along with evidence of active bone remodeling was distinguished. Eight weeks post-augmentation, the experimental groups showed no evidence of bone formation in the augmented area, while bone formation ratio was measured to be 18.32% in the control group. The mean amount of pixel intensity calculated from the CBCT images of the ALN, PAM, and control group was 113.69 ± 11.04, 124.94 ± 4.72, and 113.69 ± 6.63, respectively. Pixel intensity in PAM-treated group was significantly higher than both other groups. This study demonstrated that 1-year treatment with ALN/PAM was associated with impairment of post-extraction and post-augmentation bone healing in dogs.

  19. Relationship between alveolar bone measured by /sup 125/I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique

    SciTech Connect

    Ortman, L.F.; McHenry, K.; Hausmann, E.

    1982-05-01

    The Bjorn technique is widely used in periodontal studies as a standardized measure of alveolar bone. Recent studies have demonstrated the feasibility of using /sup 125/I absorptiometry to measure bone mass. The purpose of this study was to compare /sup 125/I absorptiometry with the Bjorn technique in detecting small sequential losses of alveolary bone. Four periodontal-like defects of incrementally increasing size were produced in alveolar bone in the posterior segment of the maxilla of a human skull. An attempt was made to sequentially reduce the amount of bone in 10% increments until no bone remained, a through and through defect. The bone remaining at each step was measured using /sup 125/I absorptiometry. At each site the /sup 125/I absorptiometry measurements were made at the same location by fixing the photon source to a prefabricated precision-made occlusal splint. This site was just beneath the crest and midway between the borders of two adjacent teeth. Bone loss was also determined by the Bjorn technique. Standardized intraoral films were taken using a custom-fitted acrylic clutch, and bone measurements were made from the root apex to coronal height of the lamina dura. A comparison of the data indicates that: (1) in early bone loss, less than 30%, the Bjorn technique underestimates the amount of loss, and (2) in advanced bone loss, more than 60% the Bjorn technique overestimates it.

  20. An automatic early stage alveolar-bone-resorption evaluation method on digital dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi

    2014-03-01

    Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.

  1. Use of Human Fascia Lata in Rat Calvarial Bone Defects.

    PubMed

    Amer, Mariano A R; Rodríguez, Pablo A; Renou, Sandra J; Guglielmotti, María B

    2015-12-01

    Tooth loss leads to a decrease in alveolar bone volume, and consequently to the need for guided bone regeneration (GBR) techniques to restore bone anatomy, and the adequate choice of therapy. Fascia lata membrane (FLM) has been used in surgical procedures in neurology, orthopedics, otorhinolaryngology, cardiology, vascular surgery, gynecology, and dentistry for guided tissue regeneration. The aim of the present preliminary study was to evaluate bone tissue response in rat calvarial bone defects covered with human fascia lata membrane (FLM). Eight Wistar rats, 230g body weight, were subjected to bone surgery to create a 5x5mm long/ 1mm deep calvarial bone defect on either side of the median suture, using a piezoelectric scalpel and irrigation. The animals were treated according to the following protocol: Group I (GI): placement of a single layer of FLM (Biotar, Rosario, Prov. de Santa Fe, Argentina) to cover the defects; Group II (GII): double layer of FLM to cover the defects; Group III: no membrane; Group IV: control. All the animals were euthanized 60 days post-surgery; the heads were resected, radiographed, decalcified, and processed for embedding in paraffin and Hematoxylin-Eosin and Masson's trichrome staining. All bone defects covered with a single or double layer of FLM showed adequate osteogenesis, and none exhibited an inflammatory response. Groups III and IV Control showed scant osteogenesis and no alterations in soft tissues. The results obtained with this experimental model show biocompatibility of FML with the surrounding tissues at the studied time points. No alterations were observed in osteocytic lacunae or osteocytes in the bone after osteotomy using a piezoelectric scalpel. Further studies need to be conducted to assess bone tissue response to FLM in combination with bone substitutes.

  2. Proteomic analysis of human dental cementum and alveolar bone

    PubMed Central

    Salmon, Cristiane R.; Tomazela, Daniela M.; Ruiz, Karina Gonzales Silvério; Foster, Brian L.; Leme, Adriana Franco Paes; Sallum, Enilson Antonio; Somerman, Martha J.; Nociti, Francisco H.

    2013-01-01

    Dental cementum (DC) is a bone-like tissue covering the tooth root and responsible for attaching the tooth to the alveolar bone (AB) via the periodontal ligament (PDL). Studies have unsuccessfully tried to identify factors specific to DC versus AB, in an effort to better understand DC development and regeneration. The present study aimed to use matched human DC and AB samples (n=7) to generate their proteomes for comparative analysis. Bone samples were harvested from tooth extraction sites, whereas DC samples were obtained from the apical root portion of extracted third molars. Samples were denatured, followed by protein extraction reduction, alkylation and digestion for analysis by nanoAcquity HPLC system and LTQ-FT Ultra. Data analysis demonstrated that a total of 318 proteins were identified in AB and DC. In addition to shared proteins between these tissues, 105 and 83 proteins exclusive to AB or DC were identified, respectively. This is the first report analyzing the proteomic composition of human DC matrix and identifying putative unique and enriched proteins in comparison to alveolar bone. These findings may provide novel insights into developmental differences between DC and AB, and identify candidate biomarkers that may lead to more efficient and predictable therapies for periodontal regeneration. PMID:24007660

  3. Are Panoramic Radiographs Reliable to Diagnose Mild Alveolar Bone Resorption?

    PubMed Central

    Semenoff, Larissa; Semenoff, Tereza Aparecida Delle; Pedro, Fabio Luiz Miranda; Volpato, Evaristo Ricci; Machado, Maria Aparecida de Andrade Moreira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex

    2011-01-01

    It is extremely important to assess variations between the most used radiographs in dental practice, since minimum distortion on obtained images may change diagnosis, treatment plan, and prognosis for the patient. For this, the distance between the enamel-cementum junction and the alveolar bone crest was measured on conventional and digitized periapical, bitewing, and panoramic radiographs and compared among them. From a total of 1484 records, 39 sets of radiographs that fulfilled the inclusion criteria of the study sample were selected. The measurements were grouped according to the intensity of bone loss. Statistically significant difference was found in the averages of the measurements assessed in radiographs with absence of bone loss between conventional panoramic and periapical radiographs, between digitized panoramic and periapical radiographs and between digitized bitewing and panoramic radiographs. By analyzing the results of this work and considering the research protocol used, one can conclude that small losses in height of alveolar bone crest observed in panoramic radiographs should be cautiously evaluated, as they may be overestimated. PMID:21991470

  4. Are panoramic radiographs reliable to diagnose mild alveolar bone resorption?

    PubMed

    Semenoff, Larissa; Semenoff, Tereza Aparecida Delle; Pedro, Fabio Luiz Miranda; Volpato, Evaristo Ricci; Machado, Maria Aparecida de Andrade Moreira; Borges, Alvaro Henrique; Semenoff-Segundo, Alex

    2011-01-01

    It is extremely important to assess variations between the most used radiographs in dental practice, since minimum distortion on obtained images may change diagnosis, treatment plan, and prognosis for the patient. For this, the distance between the enamel-cementum junction and the alveolar bone crest was measured on conventional and digitized periapical, bitewing, and panoramic radiographs and compared among them. From a total of 1484 records, 39 sets of radiographs that fulfilled the inclusion criteria of the study sample were selected. The measurements were grouped according to the intensity of bone loss. Statistically significant difference was found in the averages of the measurements assessed in radiographs with absence of bone loss between conventional panoramic and periapical radiographs, between digitized panoramic and periapical radiographs and between digitized bitewing and panoramic radiographs. By analyzing the results of this work and considering the research protocol used, one can conclude that small losses in height of alveolar bone crest observed in panoramic radiographs should be cautiously evaluated, as they may be overestimated.

  5. Defective nitric oxide production by alveolar macrophages during Pneumocystis pneumonia.

    PubMed

    Lasbury, Mark E; Liao, Chung-Ping; Hage, Chadi A; Durant, Pamela J; Tschang, Dennis; Wang, Shao-Hung; Zhang, Chen; Lee, Chao-Hung

    2011-04-01

    The effect of nitric oxide (NO) on Pneumocystis (Pc) organisms, the role of NO in the defense against infection with Pc, and the production of NO by alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP) were investigated. The results indicate that NO was toxic to Pc organisms and inhibited their proliferation in culture. When the production of NO was inhibited by intraperitoneal injection of rats with the nitric oxide synthase inhibitor L-N(5)-(1-iminoethyl) ornithine, progression of Pc infection in immunocompetent rats was enhanced. Concentrations of NO in bronchoalveolar lavage fluids from immunosuppressed, Pc-infected rats and mice were greatly reduced, compared with those from uninfected animals, and AMs from these animals were defective in NO production. However, inducible nitric oxide synthase (iNOS) mRNA and protein concentrations were high in AMs from Pc-infected rats and mice. Immunoblot analysis showed that iNOS in AMs from Pc-infected rats existed primarily as a monomer, but the homo-dimerization of iNOS monomers was required for the production of NO. When iNOS dimerization cofactors, including calmodulin, were added to macrophage lysates, iNOS dimerization increased, whereas incubation of the same lysates with all cofactors except calmodulin did not rescue iNOS dimer formation. These data suggest that NO is important in the defense against Pc infection, but that the production of NO in AMs during PCP is defective because of the reduced dimerization of iNOS.

  6. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces

    PubMed Central

    Feller, L.; Khammissa, R. A. G.; Schechter, I.; Thomadakis, G.; Fourie, J.; Lemmer, J.

    2015-01-01

    Orthodontic force-induced stresses cause dynamic alterations within the extracellular matrix and within the cytoskeleton of cells in the periodontal ligament and alveolar bone, mediating bone remodelling, ultimately enabling orthodontic tooth movement. In the periodontal ligament and alveolar bone, the mechanically induced tensile strains upregulate the expression of osteogenic genes resulting in bone formation, while mechanically induced compressive strains mediate predominantly catabolic tissue changes and bone resorption. In this review article we summarize some of the currently known biological events occurring in the periodontal ligament and in the alveolar bone in response to application of orthodontic forces and how these facilitate tooth movement. PMID:26421314

  7. Changes in alveolar bone support induced by the Herbst appliance: a tomographic evaluation

    PubMed Central

    Schwartz, João Paulo; Raveli, Taisa Boamorte; Schwartz-Filho, Humberto Osvaldo; Raveli, Dirceu Barnabé

    2016-01-01

    ABSTRACT Objective: This study evaluated alveolar bone loss around mandibular incisors, induced by the Herbst appliance. Methods: The sample consisted of 23 patients (11 men, 12 women; mean age of 15.76 ± 1.75 years), Class II, Division 1 malocclusion, treated with the Herbst appliance. CBCT scans were obtained before treatment (T0) and after Herbst treatment (T1). Vertical alveolar bone level and alveolar bone thickness of mandibular incisors were assessed. Buccal (B), lingual (L) and total (T) bone thicknesses were assessed at crestal (1), midroot (2) and apical (3) levels of mandibular incisors. Student's t-test and Wilcoxon t-test were used to compare dependent samples in parametric and nonparametric cases, respectively. Pearson's and Spearman's rank correlation analyses were performed to determine the relationship of changes in alveolar bone thickness. Results were considered at a significance level of 5%. Results: Mandibular incisors showed no statistical significance for vertical alveolar bone level. Alveolar bone thickness of mandibular incisors significantly reduced after treatment at B1, B2, B3, T1 and significantly increased at L2. The magnitude of the statistically significant changes was less than 0.2 mm. The changes in alveolar bone thickness showed no statistical significance with incisor inclination degree. Conclusions: CBCT scans showed an association between the Herbst appliance and alveolar bone loss on the buccal surface of mandibular incisors; however, without clinical significance. PMID:27275621

  8. Heptamethoxyflavone, a citrus flavonoid, suppresses inflammatory osteoclastogenesis and alveolar bone resorption.

    PubMed

    Matsumoto, Chiho; Inoue, Hiroki; Tominari, Tsukasa; Watanabe, Kenta; Hirata, Michiko; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    We examined the effects of heptamethoxyflavone (HMF), a citrus flavonoid on inflammatory bone resorption. HMF suppressed the osteoclast formation and PGE2 production induced by IL-1. In mouse calvarial organ cultures, HMF attenuated the bone resorption elicited by LPS. HMF suppressed bone resorption in the mandibular alveolar bone. HMF may protect against inflammatory bone loss such as periodontal disease.

  9. Microtomography of the human tooth-alveolar bone complex

    NASA Astrophysics Data System (ADS)

    Dalstra, Michel; Cattaneo, Paolo M.; Beckmann, Felix; Sakima, Maurício T.; Lemor, Carsten; Laursen, Morten G.; Melsen, Birte

    2006-08-01

    In this study the structure of the adult human dentoalveolar process is examined using conventional and synchrotron radiation-based microtomography (SRμCT). Mandibular and maxillary segments containing two to five adjacent teeth were harvested at autopsy from 49 adult donors. These segments were embedded in blocks of methylmetacrylate and scanned using a conventional table-top μCT-scanner at a pixel size and slice thickness of 35 μm. A few segments were also scanned at a synchrotron facility at an initial pixel size of 16.4 μm, which was binned by a factor 2 to result in an effective voxel size of almost 32.8 μm. The three-dimensional reconstructions revealed how intricately the teeth are supported by the alveolar bone. Furthermore, this support is highly inhomogeneous with respect to the buccal, mesial, lingual and distal quadrants. Reflecting their various degrees of mineralization, tissues like bone, dentine, enamel and cementum, could well be identified, especially in the scans made with SRμCT. Despite comparable voxel sizes, the reconstructed data-sets obtained with conventional μCT were less detailed and somewhat fuzzy in appearance compared to the data-sets of SRμCT. However, for quantification of macroscopical features like the thickness of the alveolar wall or the presence of dehiscences/fenestrations this seemed sufficient.

  10. Biological reaction of alveolar bone to orthodontic tooth movement.

    PubMed

    Melsen, B

    1999-04-01

    Direct and indirect resorption are perceived as reactions to an applied force. This is in contrast to the view of orthopedic surgeons, who describe apposition as a reaction to loading of bone. A histomorphometric study of the circumalveolar bone reaction to a force system generating translation of premolars and molars of five maccaca fascicularis monkeys is described. Three force levels (100 cN, 200 cN, and 300 cN) were applied for a period of 11 weeks. Undecalcified serial sections were cut parallel to the occlusal plane, and a grid consisting of three concentric outlines of the root intersected by six radii was placed on each section. Areas anticipated to be submitted to different stress/strain distributions were isolated. A-posteriori tests were used in order to separate areas that differed with regard to parameters reflecting bone turnover. Based on these results, a new hypothesis regarding tissue reaction to orthodontic forces is suggested. Direct resorption could be perceived as a result of the lowering of the normal strain from the functioning PDL and as such, as a start of remodeling, in the bone biological sense of the word. Indirect remodeling could be perceived as a sterile inflammation attempting to remove ischemic bone under the hyalinized tissue. At a distance from the alveolus, dense woven bone was observed as a sign of a RAP (regional acceleratory phenomena). The apposition could, according to the new hypothesis, be perceived as a result of the bending of the alveolar wall produced by the pull from the Sharpey fibers. The above suggested interpretation of tissue reaction would be shared with bone biologists.

  11. Use of ultrasound-activated resorbable poly-D-L-lactide pins (SonicPins) and foil panels (Resorb-X) for horizontal bone augmentation of the maxillary and mandibular alveolar ridges.

    PubMed

    Burger, Brenton W

    2010-07-01

    Horizontal bone augmentation of the maxillary and mandibular alveolar ridges has been conventionally performed using mini titanium alloy screws. The titanium alloy screws are used to fixate corticocancellous block grafts to the recipient site or for tenting the mucoperiosteum to retain particulate bone grafts. Nonresorbable guided tissue regenerative membranes reinforced with titanium have also been developed to use with particulate bone grafts to augment alveolar ridge defects. This report demonstrates the use of resorbable ultrasound-activated pins and resorbable foil panels developed by KLS Martin for augmenting the alveolar ridges with particulate bone grafts.

  12. Long-term follow-up of tibial bone graft for correction of alveolar cleft

    PubMed Central

    Al Harbi, Hamad; Al Yamani, Ahmed

    2012-01-01

    Aims: The aim of this prospective study was to evaluate the quality and stability of autogenous tibial bone graft for the correction of alveolar bone defects in cleft patients in a long-term study as well as to evaluate the postoperative morbidity and risk of complications. Materials and Methods: A total of 47 patients with 55 donor sites were involved in this study. The first author performed all the procedures from 2003 to 2011. Medial and lateral approaches were used to harvest the bone with standardized surgical technique. Evaluation in both donor and recipient sites was done by clinical examination, postoperative pain and recovery, and radiographic examination by Panoramic and occlusal X-rays and lateral X-ray for the tibia. Moreover, the donor site was assessed for functionality and mobility based on the Lysholm score. Finally, the patient's experience was evaluated subjectively utilizing a visual analog scale. Results: The surgical outcome was satisfied in all except two cases with total graft resorption for unknown reasons. Regarding the postoperative patient experience we found that patients experienced pain in the recipient site more than they did at the donor site at 24-hour and two-week follow-ups. Conclusion: We conclude that the proximal tibia is a safe site from which cancellous bone graft can be harvested to repair the alveolus as it carries less early and late morbidity. Thus, we suggest that the tibia is an excellent choice as a donor site for alveolar bone grafting in children and adult with cleft lip and palate with satisfactory long-term stability. PMID:23482654

  13. Repair of segmental bone defects in the maxilla by transport disc distraction osteogenesis: Clinical experience with a new device.

    PubMed

    Boonzaier, James; Vicatos, George; Hendricks, Rushdi

    2015-01-01

    The bones of the maxillary complex are vital for normal oro-nasal function and facial cosmetics. Maxillary tumor excision results in large defects that commonly include segments of the alveolar and palatine processes, compromising eating, speech and facial appearance. Unlike the conventional approach to maxillary defect repair by vascularized bone grafting, transport disc distraction osteogenesis (TDDO) stimulates new bone by separating the healing callus, and stimulates growth of surrounding soft tissues as well. Bone formed in this way closely mimics the parent bone in form and internal structure, producing a superior anatomical, functional and cosmetic result. Historically, TDDO has been successfully used to close small horizontal cleft defects in the maxilla, not exceeding 25 mm. Fujioka et al. reported in 2012 that "no bone transporter corresponding to the (large) size of the oro-antral fistula is marketed. The authors report the successful treatment of 4 cases involving alveolar defects of between 25 mm and 80 mm in length.

  14. Presurgical orthodontic decompensation alters alveolar bone condition around mandibular incisors in adults with skeletal Class III malocclusion

    PubMed Central

    Sun, Boyang; Tang, Jun; Xiao, Ping; Ding, Ying

    2015-01-01

    This study is to use cone beam computed tomography (CBCT) to acquire accurate radiographic images for alveolar bone in lower incisors and the change after presurgical orthodontic treatment. Seventeen patients with skeletal Class III malocclusion, ten normal occlusion subjects, and fifteen patients treated with orthodontic treatment and orthognathic surgery were included. CBCT images were obtained. The labial and lingual inclinations of mandibular incisors, the thickness of alveolar bone, the vertical alveolar height and root length were measured. Alveolar bone thickness at the apex in patients with skeletal Class III malocclusion was thinner than normal subjects. The vertical alveolar bone heights at labial and lingual sides in patients with skeletal Class III malocclusion were both reduced compared with normal subjects, especially at the labial side. There were statistically significant correlations between lower incisor inclination and alveolar bone morphology. After orthodontics, the incisors root apex was closer to the lingual side of alveolar bone. The alveolar bone thickness at apex was not statistically changed. The vertical alveolar bone heights at the labial and lingual sides were both significantly reduced especially the lingual side after presurgical orthodontic treatment. The root length was not significantly changed. In conclusion, the alveolar bone thickness at apex is thinner and the vertical alveolar height is reduced at the labial side. Forward movement of lower incisors during presurgical orthodontic treatment can render the lower incisors root apex closer to the lingual side and the vertical alveolar height is reduced. PMID:26550202

  15. Presurgical orthodontic decompensation alters alveolar bone condition around mandibular incisors in adults with skeletal Class III malocclusion.

    PubMed

    Sun, Boyang; Tang, Jun; Xiao, Ping; Ding, Ying

    2015-01-01

    This study is to use cone beam computed tomography (CBCT) to acquire accurate radiographic images for alveolar bone in lower incisors and the change after presurgical orthodontic treatment. Seventeen patients with skeletal Class III malocclusion, ten normal occlusion subjects, and fifteen patients treated with orthodontic treatment and orthognathic surgery were included. CBCT images were obtained. The labial and lingual inclinations of mandibular incisors, the thickness of alveolar bone, the vertical alveolar height and root length were measured. Alveolar bone thickness at the apex in patients with skeletal Class III malocclusion was thinner than normal subjects. The vertical alveolar bone heights at labial and lingual sides in patients with skeletal Class III malocclusion were both reduced compared with normal subjects, especially at the labial side. There were statistically significant correlations between lower incisor inclination and alveolar bone morphology. After orthodontics, the incisors root apex was closer to the lingual side of alveolar bone. The alveolar bone thickness at apex was not statistically changed. The vertical alveolar bone heights at the labial and lingual sides were both significantly reduced especially the lingual side after presurgical orthodontic treatment. The root length was not significantly changed. In conclusion, the alveolar bone thickness at apex is thinner and the vertical alveolar height is reduced at the labial side. Forward movement of lower incisors during presurgical orthodontic treatment can render the lower incisors root apex closer to the lingual side and the vertical alveolar height is reduced.

  16. Histologic, Clinical, and Radiologic Findings of Alveolar Bone Expansion and Osteomyelitis of the Jaws in Cats.

    PubMed

    Bell, C M; Soukup, J W

    2015-09-01

    The objective of this study was to characterize clinical, radiologic, and histologic patterns of alveolar bone expansion and osteomyelitis in cats. Based on case materials submitted as surgical biopsy specimens, alveolar bone pathology was diagnosed in 28 cats. These cats had a total of 37 oral lesions with clinical and radiologic changes that involved bone and/or teeth, including periodontitis, bone expansion, tooth resorption, and/or chronic osteomyelitis; 32 lesions were evaluated by histopathology. Canine teeth were affected in 19 cats (27 affected teeth), with bilateral lesions in 5 (26.3%) cats. The caudal premolar and/or molar regions were affected in 10 cats (10 affected sites). All biopsy sites evaluated by a review of clinical images and/or radiographs had evidence of periodontitis. Clinical photographs showed expansion of alveolar bone in 13 of 16 (81%) biopsy sites evaluated. Radiologically, rarifying osseous proliferation of alveolar bone was seen at 26 of 27 (96%) biopsy sites, and tooth resorption occurred at 15 of 18 (83%) sites. Histologically, the tissue samples from canine sites had compressed trabeculae of mature remodeled bone, loose fibrous stroma with paucicellular inflammation, and mild proliferation of woven bone. Tissue samples from the premolar/molar biopsy sites were often highly cellular with mixed lymphoplasmacytic and chronic suppurative inflammation, ulceration with granulation tissue, and robust proliferation of woven bone. Alveolar bone expansion and osteomyelitis in cats occurs in conjunction with periodontal inflammation and frequently with tooth resorption.

  17. Posterior maxillary sandwich osteotomy combined with sinus grafting with bone morphogenetic protein-2 for alveolar reconstruction for dental implants: report of four cases.

    PubMed

    Jensen, Ole T; Cottam, Jared

    2013-01-01

    Four patients underwent posterior sandwich osteotomy combined with sinus floor grafting using bone morphogenetic protein-2 and other grafting materials. The patients were treated over a period of 4 years. Two to four implants were placed in each site subsequently. Of the 12 implants placed, none failed. Alveolar crest bone levels appeared to be stable over time, with an average vertical gain of about 5 mm. Overall vertical gain, including the sinus graft, exceeded 13 mm in all patients. The procedure appears to hold promise for combined vertical alveolar defects and prominent pneumatization of the posterior maxilla.

  18. Occlusal Disorders among Patients with Total Clefts of Lip, Alveolar Bone, and Palate

    PubMed Central

    Paradowska-Stolarz, Anna

    2014-01-01

    Clefts are common birth defects. They are accompanied by various malformations, including disturbances in facial look as well as skeletal disorders that include malocclusions, most frequently crossbites and class III anomalies. The aim of the study was to present the commonest malocclusions in patients with total cleft of the lip, alveolar bone and palate (n = 154) and compare the results to the healthy on-cleft patients (n = 151). Normal occlusion, characteristic for I angle class, was observed in 50% of the control group and 30% of the examined. In the examined patients with clefts, most frequently crossbite and open bite on the cleft side was observed. In patients with clefts, only 2 out of 154 patients presented isolated dental anomalies. In healthy individuals the commonest occlusal disorder was distal occlusion and dental anomalies. The commonest malocclusions among patients with clefts are crossbites and class III malocclusions. PMID:24982898

  19. Alveolar bone level is not associated with vitamin D receptor gene polymorphism and bone density in mandible.

    PubMed

    Mesa, Francisco; Gonzalez, Alejandro; Souki, Nizar; Galindo-Moreno, Pablo; Olmo, Asunción; O'Valle, Francisco; Bravo, Manuel

    2012-04-01

    The objective of this study was to determine, using digital panoramic radiographs, whether the bone level at the alveolar crest is related to the mandibular bone density and/or to vitamin D receptor (VDR) gene polymorphisms. We analyzed 319 digital panoramic radiographs from the same number of patients. Alveolar bone level was expressed as percentage of root length. The mandibular cortical width index was calculated as a measure of mandibular bone density, and, in 72 randomly selected cases, the haplotype of the VDR gene (BsmL) was determined by polymerase chain reaction. Alveolar bone level was not related to the mandibular cortical width index (p = 0.568) or VDR gene expression (p = 0.575). Bone loss was greater in smokers than in non-smokers (p = 0.036), and the mandibular cortical width index was higher in males (p = 0.04), the older age group (p = 0.032), and in those with more teeth (p = 0.01). Multivariate analysis confirmed the association between these variables and alveolar bone loss. Alveolar bone loss showed no significant relationship with the mandibular bone density evaluated on digital panoramic radiographs or with VDR genotype (BsmL) in Caucasian females and males aged under 47 years.

  20. Reveromycin A Administration Prevents Alveolar Bone Loss in Osteoprotegerin Knockout Mice with Periodontal Disease

    PubMed Central

    Mizuno, Manami; Miyazawa, Ken; Tabuchi, Masako; Tanaka, Miyuki; Yoshizako, Mamoru; Minamoto, Chisato; Torii, Yasuyoshi; Tamaoka, Yusuke; Kawatani, Makoto; Osada, Hiroyuki; Maeda, Hatsuhiko; Goto, Shigemi

    2015-01-01

    Chronic periodontal disease is characterized by alveolar bone loss and inflammatory changes. Reveromycin A (RMA) was recently developed and is a unique agent for inhibiting osteoclast activity. This study analysed the effects of RMA in an experimental mouse model of periodontitis involving osteoprotegerin (OPG)-knockout mice, specifically, whether it could control osteoclasts and reduce inflammation in periodontal tissue. We examined wild-type (WT) and OPG knockout mice (OPG KO) ligated with wire around contact points on the left first and second molars. RMA was administered twice a day to half of the mice. Using micro-computed tomography, we measured the volume of alveolar bone loss between the first and second molars, and also performed histological analysis. The OPG KO RMA+ group had significantly decreased osteoclast counts, alveolar bone loss, attachment loss, and inflammatory cytokine expression 8 weeks after ligation. Thus, RMA may reduce alveolar bone loss and inflamed periodontal tissues in patients with periodontitis. PMID:26561427

  1. Periodontal Ligament and Alveolar Bone in Health and Adaptation: Tooth Movement.

    PubMed

    Jiang, Nan; Guo, Weihua; Chen, Mo; Zheng, Ying; Zhou, Jian; Kim, Sahng Gyoon; Embree, Mildred C; Songhee Song, Karen; Marao, Heloisa F; Mao, Jeremy J

    2016-01-01

    The periodontal ligament (PDL) and alveolar bone are two critical tissues for understanding orthodontic tooth movement. The current literature is replete with descriptive studies of multiple cell types and their matrices in the PDL and alveolar bone, but is deficient with how stem/progenitor cells differentiate into PDL and alveolar bone cells. Can one type of orthodontic force with a specific magnitude and frequency activate osteoblasts, whereas another force type activates osteoclasts? This chapter will discuss the biology of not only mature cells and their matrices in the periodontal ligament and alveolar bone, but also stem/progenitor cells that differentiate into fibroblasts, osteoblasts and osteoclasts. Key advances in tooth movement rely on further understanding of osteoblast and fibroblast differentiation from mesenchymal stem/progenitor cells, and osteoclastogenesis from the hematopoietic/monocyte lineage.

  2. Reveromycin A Administration Prevents Alveolar Bone Loss in Osteoprotegerin Knockout Mice with Periodontal Disease.

    PubMed

    Mizuno, Manami; Miyazawa, Ken; Tabuchi, Masako; Tanaka, Miyuki; Yoshizako, Mamoru; Minamoto, Chisato; Torii, Yasuyoshi; Tamaoka, Yusuke; Kawatani, Makoto; Osada, Hiroyuki; Maeda, Hatsuhiko; Goto, Shigemi

    2015-11-12

    Chronic periodontal disease is characterized by alveolar bone loss and inflammatory changes. Reveromycin A (RMA) was recently developed and is a unique agent for inhibiting osteoclast activity. This study analysed the effects of RMA in an experimental mouse model of periodontitis involving osteoprotegerin (OPG)-knockout mice, specifically, whether it could control osteoclasts and reduce inflammation in periodontal tissue. We examined wild-type (WT) and OPG knockout mice (OPG KO) ligated with wire around contact points on the left first and second molars. RMA was administered twice a day to half of the mice. Using micro-computed tomography, we measured the volume of alveolar bone loss between the first and second molars, and also performed histological analysis. The OPG KO RMA+ group had significantly decreased osteoclast counts, alveolar bone loss, attachment loss, and inflammatory cytokine expression 8 weeks after ligation. Thus, RMA may reduce alveolar bone loss and inflamed periodontal tissues in patients with periodontitis.

  3. Periodontal Ligament and Alveolar Bone in Health and Adaptation: Tooth Movement

    PubMed Central

    Jiang, Nan; Guo, Weihua; Chen, Mo; Zheng, Ying; Zhou, Jian; Kim, Sahng Gyoon; Embree, Mildred C.; Song, Karen Songhee; Marao, Heloisa F.; Mao, Jeremy J.

    2015-01-01

    The periodontal ligament (PDL) and alveolar bone are two critical tissues for understanding orthodontic tooth movement. The current literature is replete with descriptive studies of multiple cell types and their matrices in the PDL and alveolar bone, but is deficient with how stem/progenitor cells differentiate into PDL and alveolar bone cells. Can one type of orthodontic force with a specific magnitude and frequency preferably activate osteoblasts, whereas another force type activates osteoclasts? This chapter will discuss the biology of not only mature cells and their matrices in the periodontal ligament and alveolar bone, but also stem/progenitor cells that differentiate into fibroblasts, osteoblasts and osteoclasts. Key advances in tooth movement rely on further understanding of osteoblast and fibroblast differentiation from mesenchymal stem/progenitor cells, and osteoclastogenesis from the hematopoietic/monocyte lineage. PMID:26599112

  4. Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor.

    PubMed

    Li, Bei; Wang, Yao

    2014-12-01

    The purpose of this study was to apply cone-beam computed tomography (CBCT) to observe contour changes in human alveolar bone after tooth extraction of the maxillary central incisor and to provide original morphological evidence for aesthetic implant treatment in the maxillary anterior area. Forty patients were recruited into the study. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken three months after tooth extraction of maxillary central incisor (test tooth T). A fixed anatomic reference point was used to orient the starting axial slice of the two scans. On three CBCT I axial slices, which represented the deep, middle, and shallow layers of the socket, labial and palatal alveolar bone widths of T were measured. The number of sagittal slices from the start point to the pulp centre of T was recorded. On three CBCT II axial slices, the pulp centres of extracted T were oriented according to the number of moved sagittal slices recorded in CBCT I. Labial and palatal alveolar bone widths at the oriented sites were measured. On the CBCT I axial slice which represented the middle layer of the socket, sagittal slices were reconstructed. Relevant distances of T on the sagittal slice were measured, as were the alveolar bone width and tooth length of the opposite central incisor. On the CBCT II axial slice, which represented the middle layer of the socket, relevant distances recorded in CBCT I were transferred on the sagittal slice. The height reduction of alveolar bone on labial and palatal sides was measured, as were the alveolar bone width and tooth length of the opposite central incisor at the oriented site. Intraobserver reliability assessed by intraclass correlation coefficients (ICCs) was high. Paired sample t-tests were performed. The alveolar bone width and tooth length of the opposite central incisor showed no statistical differences (P<0.05). The labial alveolar bone widths of T at the deep, middle, and shallow layers all showed

  5. Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor

    PubMed Central

    Li, Bei; Wang, Yao

    2014-01-01

    The purpose of this study was to apply cone-beam computed tomography (CBCT) to observe contour changes in human alveolar bone after tooth extraction of the maxillary central incisor and to provide original morphological evidence for aesthetic implant treatment in the maxillary anterior area. Forty patients were recruited into the study. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken three months after tooth extraction of maxillary central incisor (test tooth T). A fixed anatomic reference point was used to orient the starting axial slice of the two scans. On three CBCT I axial slices, which represented the deep, middle, and shallow layers of the socket, labial and palatal alveolar bone widths of T were measured. The number of sagittal slices from the start point to the pulp centre of T was recorded. On three CBCT II axial slices, the pulp centres of extracted T were oriented according to the number of moved sagittal slices recorded in CBCT I. Labial and palatal alveolar bone widths at the oriented sites were measured. On the CBCT I axial slice which represented the middle layer of the socket, sagittal slices were reconstructed. Relevant distances of T on the sagittal slice were measured, as were the alveolar bone width and tooth length of the opposite central incisor. On the CBCT II axial slice, which represented the middle layer of the socket, relevant distances recorded in CBCT I were transferred on the sagittal slice. The height reduction of alveolar bone on labial and palatal sides was measured, as were the alveolar bone width and tooth length of the opposite central incisor at the oriented site. Intraobserver reliability assessed by intraclass correlation coefficients (ICCs) was high. Paired sample t-tests were performed. The alveolar bone width and tooth length of the opposite central incisor showed no statistical differences (P<0.05). The labial alveolar bone widths of T at the deep, middle, and shallow layers all showed

  6. Effects of oestrogen deficiency on the alveolar bone of rats with experimental periodontitis

    PubMed Central

    XU, XIN-CHEN; CHEN, HUI; ZHANG, XI; ZHAI, ZAN-JING; LIU, XU-QIANG; ZHENG, XIN-YI; ZHANG, JUN; QIN, AN; LU, ER-YI

    2015-01-01

    Periodontitis is an inflammatory disease characterized by loss of connective tissue and alveolar bone, and osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture. To date, the association between periodontitis and osteoporosis has remained to be fully elucidated. In the present study, an experimental rat model of periodontitis was used to explore the effects of oestrogen deficiency-induced osteoporosis on the maxillary alveolar bone. Forty-four female, six-month-old Sprague-Dawley rats were randomly divided into four groups: Control, ligature, ovariectomized (OVX), and OVX + ligature. One month after ovariectomy, rats in the ligature and OVX + ligature groups received ligatures on their first and second maxillary molars for 1 month. Fluorescent labelling was performed prior to sacrificing the animals. At the end of the experiment, the maxillae and serum were collected and subjected to micro-computed tomography analysis, confocal laser-scanning microscopic observation, Van Gieson's fuchsin staining, tartrate-resistant acid phosphatase staining and ELISA. Ligatures slightly reduced the alveolar bone mineral density (BMD) and bone formation rate, but significantly reduced alveolar crest height (ACH). Ovariectomy reduced the alveolar BMD, impaired the trabecular structure, reduced the bone formation rate and increased the serum levels of bone resorption markers. Animals in the OVX + ligature group exhibited a lower alveolar BMD, a poorer trabecular structure, a reduced ACH, a lower bone formation rate and higher serum levels of bone resorption markers compared with those in the control group. The results of the present study showed that ovariectomy enhanced alveolar bone loss and reduced the ACH of rats with experimental periodontitis. Thus, post-menopausal osteoporosis may influence the progression of periodontitis. PMID:26035209

  7. Effects of oestrogen deficiency on the alveolar bone of rats with experimental periodontitis.

    PubMed

    Xu, Xin-Chen; Chen, Hui; Zhang, Xi; Zhai, Zan-Jing; Liu, Xu-Qiang; Zheng, Xin-Yi; Zhang, Jun; Qin, An; Lu, Er-Yi

    2015-09-01

    Periodontitis is an inflammatory disease characterized by loss of connective tissue and alveolar bone, and osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture. To date, the association between periodontitis and osteoporosis has remained to be fully elucidated. In the present study, an experimental rat model of periodontitis was used to explore the effects of oestrogen deficiency‑induced osteoporosis on the maxillary alveolar bone. Forty‑four female, six‑month‑old Sprague‑Dawley rats were randomly divided into four groups: Control, ligature, ovariectomized (OVX), and OVX + ligature. One month after ovariectomy, rats in the ligature and OVX + ligature groups received ligatures on their first and second maxillary molars for 1 month. Fluorescent labelling was performed prior to sacrificing the animals. At the end of the experiment, the maxillae and serum were collected and subjected to micro‑computed tomography analysis, confocal laser‑scanning microscopic observation, Van Gieson's fuchsin staining, tartrate‑resistant acid phosphatase staining and ELISA. Ligatures slightly reduced the alveolar bone mineral density (BMD) and bone formation rate, but significantly reduced alveolar crest height (ACH). Ovariectomy reduced the alveolar BMD, impaired the trabecular structure, reduced the bone formation rate and increased the serum levels of bone resorption markers. Animals in the OVX + ligature group exhibited a lower alveolar BMD, a poorer trabecular structure, a reduced ACH, a lower bone formation rate and higher serum levels of bone resorption markers compared with those in the control group. The results of the present study showed that ovariectomy enhanced alveolar bone loss and reduced the ACH of rats with experimental periodontitis. Thus, post‑menopausal osteoporosis may influence the progression of periodontitis.

  8. A contemporary perspective on techniques for the clinical assessment of alveolar bone

    SciTech Connect

    Hausmann, E. )

    1990-03-01

    Radiographic techniques, traditional ones as well as newer ones under development, for clinically assessing alveolar bone are critically assessed. Traditional intraoral radiography is reexamined, in particular with regard to the accuracy with which the alveolar crest is seen. Evidence is presented for a more accurate representation of the alveolar crest on bitewings rather than periapical films. Application in periodontics of newer radiographic techniques, subtraction radiography, and single and dual photon aborptiometry presently under clinical development are discussed in regard to their potential and limitations. Similarly, radiopharmaceuticals to evaluate the metabolic status of alveolar bone are discussed as well as the potential for using analyses of gingival crevice fluid as a window for assessment of alveolar crest metabolism. 46 references.

  9. Prevention of alveolar bone loss in an osteoporotic animal model via interference of semaphorin 4d.

    PubMed

    Zhang, Y; Wei, L; Miron, R J; Zhang, Q; Bian, Z

    2014-11-01

    Semaphorin 4d (Sema4d) has been proposed as a novel target gene for the treatment of osteoporosis. Recently, we fabricated a site-specific bone-targeting system from polymeric nanoparticles that demonstrates an ability to prevent bone loss in an osteoporotic model by interfering with Sema4d gene expression using small interference RNA (siRNA) molecules. The aim of the present investigation was to determine the effects of this targeting system on the periodontium, an area of high bone turnover. We demonstrated, by single photon emission computed tomography, that intravenous injection of this molecule in ovariectomized Balb/C mice is able to target alveolar bone peaking 4 hr post-injection. We then compared, by histological analysis, the bone volume/total volume (BV/TV), alveolar bone height loss, immunohistochemical expression of Sema4d, and total number of osteoclasts in mandibular alveolar bone. Four treatment modalities were compared as follows: (1) sham-operated, (2) OVX-operated, (3) OVX+estrogen replacement therapy, and (4) OVX+siRNA-Sema4d animals. The results from the present study demonstrate that an osteoporotic condition significantly increases alveolar bone height loss, and that the therapeutic effects via bone-targeting systems featuring interference of Sema4d are able to partly counteract alveolar bone loss caused by osteoporosis. While the future therapeutic demand for the large number of patients suffering from osteoporosis faces many challenges, we demonstrate within the present study an effective drug-delivery moiety with anabolic effects on the bone remodeling cycle able to locate and target alveolar bone regeneration.

  10. A novel bioabsorbable composite membrane of Polyactive 70/30 and bioactive glass number 13--93 in repair of experimental maxillary alveolar cleft defects.

    PubMed

    Puumanen, K; Kellomäki, M; Ritsilä, V; Böhling, T; Törmälä, P; Waris, T; Ashammakhi, N

    2005-10-01

    A novel bioabsorbable composite membrane of polyethylene oxide terephthalate and polybutylene terephthalate copolymer (Polyactive 70/30) combined with bioactive glass No. 13--93 was tested in the repair of experimental maxillary alveolar cleft defects. In this pilot study, the possible ability of the membrane to promote bone formation by guided tissue regeneration was investigated. Standard alveolar defects were made bilaterally in the maxilla of 12 growing rabbits and were filled with autogenous bone grafts. The test defect was covered with the composite membrane and the other defect was left uncovered to serve as a control. The follow-up time was 10 weeks. Radiological, histological, and histomorphometric evaluations were performed. Radiologically, no statistically significant differences between test and control defects at 10 weeks were found. Histologically, the membrane enhanced osteogenic activity locally at the membrane-bone interface. Swelling of the membrane was observed. Histomorphometrically, no significant promotion of bone formation by the membrane was observed. The composite membrane was found to be biocompatible and surgically easy to use, but its osteopromotive effect was limited in this experimental cleft model. Further studies are necessary to assess its suitability for reconstructive surgical applications.

  11. Comparing alveolar bone regeneration using Bio-Oss and autogenous bone grafts in humans: a systematic review and meta-analysis

    PubMed Central

    Akbarzadeh Baghban, Alireza; Dehghani, Azam; Ghanavati, Farzin; Zayeri, Farid; Ghanavati, Farzam

    2009-01-01

    INTRODUCTION: Bone regeneration grafts (BRG) are widely used in the treatment of osseous defects and oral surgery. The various techniques and associated success rates of bone augmentation require evaluation by systematic review and meta-analysis of eligible studies. The aim of this systematic review was to compare alveolar bone regeneration in humans using Bio-Oss and autogenous bone graft. MATERIALS AND METHODS: The computerized bibliographical databases including Pubmed, Google, ScienceDirect and Cochrane were searched for randomized and cohort studies in which autogenous grafts were compared to Bio-Oss in the treatment of periodontal defects. The inclusion criteria were human studies in English that were published 1998-2009. Exclusion criteria included non randomized observation and cohort studies, papers which provided summary statistics without the variance estimates, and studies that did not use BRG intervention alone, were excluded. The screening of eligible studies, assessment of the methodological quality of the trials and data extraction were collected by two observers independently. For comparing autogenous grafts used alone against Bio-Oss used alone 5 situations were investigated. Thirteen studies were included in the review which compared autogenous against Bio-Oss, autogenous combined with guided tissue regeneration (GTR) against GTR, Bio-Oss combined with GTR versus GTR, autogenous alone versus Open Flap Debridement (OFD), Bio-Oss versus OFD. In meta-analysis, changes in bone level (bone fill) was used as the measure. Data were analyzed using Bayesian meta-analysis by WinBUGS and Boa software. RESULTS: Only one comparison demonstrated that the difference in bone augmentation between Bio-Oss and OFD was statistically significant. CONCLUSION: There is insufficient evidence to show that Bio-Oss is superior to autogenous grafts in bone augmentation techniques however autogenous bone involves donor site surgery and thus donor site morbidity, so we can

  12. USE OF BIOCERAMICS IN FILLING BONE DEFECTS

    PubMed Central

    Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales

    2015-01-01

    Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576

  13. Evaluation of Effective Transmission of Light Through Alveolar Bone: A Preliminary Study

    PubMed Central

    Guiselini, Monalisa Jacob; Deana, Alessandro Melo; Mascaro, Marcelo Betti; Mesquita-Ferrari, aquel Agnelli; da Mota, Ana Carolina Costa; Bussadori, Sandra Kalil; França, Cristiane Miranda; Fernandes, Kristianne Porta Santos

    2016-01-01

    Introduction: The aim of the present study was to determine the effective transmission of 660 and 780 nm lasers through mandibular and maxillary alveolar bones in the buccal-lingual/ palatal direction. Methods: The laser probe was positioned in direct contact with the surface of the anterior, middle and posterior regions of each bone (5 dried maxillae and 5 mandibles) and the power meter was positioned on the bone wall opposite to the radiated wall for the measure of the remaining energy passing through the bone tissue. Ten measurements were performed with each laser at each irradiated point. Results: Transmitted power was significantly higher in bones irradiated with 780 nm laser. Tendencies toward greater average power transmitted in the anterior region of both bones at both wavelengths were also observed. Conclusion: Dosimetry and the choice of light source may be adjusted according to the anatomic region of the alveolar bone to be treated. PMID:28144435

  14. Platelet-Rich Fibrin Promotes Periodontal Regeneration and Enhances Alveolar Bone Augmentation

    PubMed Central

    Li, Qi; Pan, Shuang; Dangaria, Smit J.; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong

    2013-01-01

    In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms. PMID:23586051

  15. Alveolar Ridge Conservation by Early Bone Formation After Tooth Extraction in Rabbits. A Histomorphological Study.

    PubMed

    Cantín, Mario; Olate, Sergio; Fuentes, Ramón; Vásquez, Bélgica

    2015-03-01

    Alveolar ridge volume loss is an irreversible process. To prevent this physiological event, which typically result in significant local anatomical changes in both the horizontal and the vertical dimension, some strategies are indicated to minimize the loss of ridge volume that typically follows tooth extraction. The purpose of this study was to evaluate if three different bone grafts could promote new bone formation in the alveolar socket following tooth extraction for the alveolar ridge conservation. First mandibular molars of male adults rabbits were extracted and the extraction sockets were randomly treated with three different bone grafts, one xenograft and two alloplastic grafts, and a group that received no treatment (blood clot). The extraction sockets of selected rabbits from each group were evaluated at 4, 6, or 8-week post-extraction. The results indicated that the extraction sockets treated with alloplastic graft (biphasic calcium phosphate) exhibited lamellar bone formation (6.5%) as early as four weeks after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P<0.05) in the extraction sockets treated with biphasic calcium phosphate at 8-week post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model is useful to evaluate the bone formation after tooth extraction and the alveolar ridge conservation is feasible. The new bone formation and alveolar ridge preservation with bone graft after extraction of molar teeth, could result in the maintenance of sufficient bone volume to place an implant in an ideal restorative position without the need for ancillary implant site development procedures.

  16. Alveolar Ridge Conservation by Early Bone Formation After Tooth Extraction in Rabbits. A Histomorphological Study

    PubMed Central

    Cantín, Mario; Olate, Sergio; Fuentes, Ramón; Vásquez, Bélgica

    2016-01-01

    SUMMARY Alveolar ridge volume loss is an irreversible process. To prevent this physiological event, which typically result in significant local anatomical changes in both the horizontal and the vertical dimension, some strategies are indicated to minimize the loss of ridge volume that typically follows tooth extraction. The purpose of this study was to evaluate if three different bone grafts could promote new bone formation in the alveolar socket following tooth extraction for the alveolar ridge conservation. First mandibular molars of male adults rabbits were extracted and the extraction sockets were randomly treated with three different bone grafts, one xenograft and two alloplastic grafts, and a group that received no treatment (blood clot). The extraction sockets of selected rabbits from each group were evaluated at 4, 6, or 8-week post-extraction. The results indicated that the extraction sockets treated with alloplastic graft (biphasic calcium phosphate) exhibited lamellar bone formation (6.5%) as early as four weeks after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P<0.05) in the extraction sockets treated with biphasic calcium phosphate at 8-week post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model is useful to evaluate the bone formation after tooth extraction and the alveolar ridge conservation is feasible. The new bone formation and alveolar ridge preservation with bone graft after extraction of molar teeth, could result in the maintenance of sufficient bone volume to place an implant in an ideal restorative position without the need for ancillary implant site development procedures. PMID:27840551

  17. Estimation of Age Using Alveolar Bone Loss: Forensic and Anthropological Applications.

    PubMed

    Ruquet, Michel; Saliba-Serre, Bérengère; Tardivo, Delphine; Foti, Bruno

    2015-09-01

    The objective of this study was to utilize a new odontological methodological approach based on radiographic for age estimation. The study was comprised of 397 participants aged between 9 and 87 years. A clinical examination and a radiographic assessment of alveolar bone loss were performed. Direct measures of alveolar bone level were recorded using CT scans. A medical examination report was attached to the investigation file. Because of the link between alveolar bone loss and age, a model was proposed to enable simple, reliable, and quick age estimation. This work added new arguments for age estimation. This study aimed to develop a simple, standardized, and reproducible technique for age estimation of adults of actual populations in forensic medicine and ancient populations in funeral anthropology.

  18. Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model.

    PubMed

    Arai, Yuki; Aoki, Kazuhiro; Shimizu, Yasuhiro; Tabata, Yasuhiko; Ono, Takashi; Murali, Ramachandran; Mise-Omata, Setsuko; Wakabayashi, Noriyuki

    2016-07-05

    Tooth extraction causes bone resorption of the alveolar bone volume. Although recombinant human bone morphogenetic protein 2 (rhBMP-2) markedly promotes de novo bone formation after tooth extraction, the application of high-dose rhBMP-2 may induce side effects, such as swelling, seroma, and an increased cancer risk. Therefore, reduction of the necessary dose of rhBMP-2 which can still obtain sufficient bone mass is necessary by developing a new osteogenic reagent. Recently, we showed that the systemic administration of OP3-4 peptide, which was originally designed as a bone resorption inhibitor, had osteogenic ability both in vitro and in vivo. This study evaluated the ability of the local application of OP3-4 peptide to promote bone formation in a murine tooth extraction model with a very low-dose of BMP. The mandibular incisor was extracted from 10-week-old C57BL6/J male mice and a gelatin hydrogel containing rhBMP-2 with or without OP3-4 peptide (BMP/OP3-4) was applied to the socket of the incisor. Bone formation inside the socket was examined radiologically and histologically at 21 days after the extraction. The BMP/OP3-4-group showed significant bone formation inside the mandibular extraction socket compared to the gelatin-hydrogel-carrier-control group or rhBMP-2-applied group. The BMP/OP3-4-applied mice showed a lower reduction of alveolar bone and fewer osteoclast numbers, suggesting that the newly formed bone inside the socket may prevent resorption of the cortical bone around the extraction socket. Our data revealed that OP3-4 peptide promotes BMP-mediated bone formation inside the extraction socket of mandibular bone, resulting in preservation from the loss of alveolar bone.

  19. Donor Site Evaluation: Anterior Iliac Crest Following Secondary Alveolar Bone Grafting

    PubMed Central

    Vura, Nandagopal; Reddy K., Rajiv; R., Sudhir; G., Rajasekhar; Kaluvala, Varun Raja

    2013-01-01

    Introduction: The use of autogenous bone graft for Secondary alveolar bone grafting is well established in the treatment of cleft lip and palate patients. Aims and Objectives: To evaluate post-operative morbidity of anterior iliac crest graft after secondary alveolar bone grafting in cleft patients. Material and Methods: Forty patients during the period from July 2008 to March 2013, who underwent secondary alveolar bone grafting by harvesting graft from anterior iliac crest in Mamata Dental Hospital, Khammam, Andhra Pradesh, India are included in the present study. Unilateral and bilateral cleft patients who had undergone secondary alveolar bone grafting (SABG) with anterior iliac crest as their donor site have been selected and post- operative complications from the surgery were evaluated with the help of a questionnaire which included pain, gait disturbances, numbness and scar problems (infection, irritation). Results: Patients who were operated gave maximum score for pain as 8 on visual analogue scale. No pain was observed in any of the cases after 8 days, gait disturbances were seen in all patients (limping) for 2-6 days, there was no post-operative numbness with all the patients returning to their routine in 6- 15 days and 90% of the patients gave a satisfied response towards scar. Conclusion: From the results in our study the morbidity after harvesting bone from iliac crest was found to be moderate to low, which had minimal complications and were well tolerated and greater acceptance from the patient. PMID:24392424

  20. [Changes of the periodontal vascular network, periodontal fiber and alveolar bone incident to tooth extrusion].

    PubMed

    Kawato, F

    1989-06-01

    During the application of orthodontic force to a tooth, the surrounding tissues undergo changes of bone resorption and apposition, thereby resulting in tooth movement. The purpose of this study was to investigate the interrelationship between alveolar bone changes and the periodontal vascular network caused by extrusive orthodontic force using a scanning electron microscopy. Extrusive orthodontic force was applied to the mandibular 2nd and 3rd premolars of adult dogs. At the completion of the loading process, the inferior alveolar arteries were injected with a low viscosity MMA resin (Mercox). The following results were obtained. 1) At 3 days post-extrusion, various types of vascular network showing a loop pattern were seen along the direction of the tooth movement. 2) At 7 days post-extrusion, various types of vascular network with a hairpin loop pattern along the direction of the tooth movement were observed. Histologically, the fibers of periodontal ligament were stretched in the direction of the extrusion, Vascular hairpin loop formations were observed within the fibers of periodontal ligament. Bone apposition was not observed on the surface of alveolar bone. 3) At 14 days post-extrusion, a much more extensive and developed hairpin loop pattern occurred. Furthermore, new bone apposition was seen on the alveolar bone beneath under the hairpin loops. The periodontal ligament space was retained in the same width, even after bony apposition. 4) At 21 days post-extrusion, the tooth side microvascular network showed abundant low hairpin loops which anastomosed each other, and new spinous bony apposition was observed right below the periodontal vascular network. 5) At 30 days post-extrusion, the periodontal vascular network showed a almost normal appearance, with the rearrangement of vascular network. The surface of the spinous bony apposition became flat. The appositional bone had a lower degree of calcification than the alveolar bone in control group. 6) At 60 days

  1. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  2. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    PubMed Central

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  3. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study

    PubMed Central

    2017-01-01

    Purpose The microstructural characteristics of trabecular bone were identified using micro-computed tomography (micro-CT), in order to develop a potential strategy for implant surface improvement to facilitate osseointegration. Methods Alveolar bone specimens from the cadavers of 30 humans were scanned by high-resolution micro-CT and reconstructed. Volumes of interest chosen within the jaw were classified according to Hounsfield units into 4 bone quality categories. Several structural parameters were measured and statistically analyzed. Results Alveolar bone specimens with D1 bone quality had significantly higher values for all structural parameters than the other bone quality categories, except for trabecular thickness (Tb.Th). The percentage of bone volume, trabecular separation (Tb.Sp), and trabecular number (Tb.N) varied significantly among bone quality categories. Tb.Sp varied markedly across the bone quality categories (D1: 0.59±0.22 mm, D4: 1.20±0.48 mm), whereas Tb.Th had similar values (D1: 0.30±0.08 mm, D4: 0.22±0.05 mm). Conclusions Bone quality depended on Tb.Sp and number—that is, endosteal space architecture—rather than bone surface and Tb.Th. Regardless of bone quality, Tb.Th showed little variation. These factors should be taken into account when developing individualized implant surface topographies. PMID:28261521

  4. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect.

    PubMed

    Kasai, Takao; Matsumura, Sachiko; Iizuka, Tadashi; Shiba, Kiyotaka; Kanamori, Takeshi; Yudasaka, Masako; Iijima, Sumio; Yokoyama, Atsuro

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  5. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    NASA Astrophysics Data System (ADS)

    Kasai, Takao; Matsumura, Sachiko; Iizuka, Tadashi; Shiba, Kiyotaka; Kanamori, Takeshi; Yudasaka, Masako; Iijima, Sumio; Yokoyama, Atsuro

    2011-02-01

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  6. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    PubMed

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries.

  7. Influence of plaque control on the healing of experimentally-induced bone defects in the dog.

    PubMed

    Hugoson, A; Schmidt, G

    1978-03-01

    The aim of this investigation was to induce alveolar bone defects experimentally in dogs and to study the effects of mechanical tooth cleaning on their subsequent development. Thirty premolars from four beagle dogs were used. Bone defects were created by surgically exposing the adjacent alveolar bone and applying steel or silk ligatures around the roots of the chosen teeth. After 8 weeks the ligatures were removed. Dental plaque was allowed to accumulate on 20 premolars whereas daily plaque elimination by toothbrushing was carefully performed on 10 premolars. After 1, 3, and 6 months of plaque accumulation, gingival inflammation, periodontal pocket depth, gingival recession and the radiographically observed degree of bone destruction were registered. Histological examination was performed in conjunction with the registrations made 6 months after removal of the ligatures. The clinical, radiographic and histologic findings all confirm that a regeneration of the experimentally induced destruction of the periodontal tissues had taken place. This reaction was most evident in teeth exposed to mechanical plaque control. The remaining bone defects were consistently accompanied by recession of the gingival margin.

  8. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    PubMed

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].

  9. In vivo evaluation of bioactive glass foams associated with platelet-rich plasma in bone defects.

    PubMed

    Dutra, Carlos E A; Pereira, Marivalda M; Serakides, Rogéria; Rezende, Cleuza M F

    2008-06-01

    The objective of this study was to evaluate the use of bioactive glass foams produced by the sol-gel process, associated or not with platelet-rich plasma (PRP), in the regeneration of bone defects. Mongrel dogs (n = 14) were divided into two groups after having their superior first premolar removed. A small piece of vestibular bone from the alveolus was intentionally removed. The area was filled with bioactive glass foam produced by the sol-gel method. Two groups were tested: group A was the glass foam; group B was the same material associated with PRP, prepared from each animal. The other side of alveolar bone was used as a control group, in which the bone defect did not receive any biomaterial. The thickness of the bone area was measured before and after the intervention. After a period of 60 days implantation, the right and left bones were measured again, and a bone biopsy on both regions was conducted for histological analysis. The findings show an increase of bone thickness for both materials implanted compared to the control group. Group B, implanted with bioactive glass foam associated with PRP, showed a thicker bone area compared to Group A. Histological results indicate bone formation for both materials used. However, the bioactive glass associated with PRP gave rise to a more mature bone formation. These results show that bioactive glass foams processed by a sol-gel method is effective in maintaining the thickness of the alveolar ridge, and the use of PRP associated with the foams improve bone formation.

  10. Decoronation of an ankylosed tooth for preservation of alveolar bone prior to implant placement.

    PubMed

    Filippi, A; Pohl, Y; von Arx, T

    2001-04-01

    A 12-year-old patient sustained avulsions of both permanent maxillary central incisors. Subsequently, both teeth developed replacement resorption. The left incisor was extracted alio loco. The right incisor was treated by decoronation (removal of crown and pulp, but preservation of the root substance). Comparison of both sites demonstrated complete preservation of the height and width of the alveolar bone at the decoronation site, whereas the tooth extraction site showed considerable bone loss. In addition, some vertical bone apposition was found on top of the decoronated root. Decoronation is a simple and safe surgical procedure for preservation of alveolar bone prior to implant placement. It must be considered as a treatment option for teeth affected by replacement resorption if tooth transplantation is not feasible.

  11. Hounsfield Unit Change in Root and Alveolar Bone during Canine Retraction

    PubMed Central

    Jiang, Feifei; Liu, Sean Y.; Xia, Zeyang; Li, Shuning; Chen, Jie; Kula, Katherine S.; Eckert, George

    2014-01-01

    Objectives The objective of this study was to determine the Hounsfield unit (HU) changes in the alveolar bone and root surface during controlled canine retractions. Methods Eighteen maxillary canine retraction patients were selected for this split mouth design clinical trial. The canines in each patient were randomly assigned to receive either translation or controlled tipping treatment strategy. Pre- and post-treatment cone beam computed tomography scans of each patient were used to determine tooth movement direction and HU changes. The alveolar bone and root surface were divided into 108 divisions, respectively. The HU in each division was measured. The Mixed-model ANOVA was applied to test the HU change distribution at the p<0.05 significant level. Results The HU changes varied with the directions relative to the canine movement. The HU reduction occurred at the root surface. Larger reductions occurred in the divisions that were perpendicular to the moving direction. However, HU decreased in the alveolar bone in the moving direction. The highest HU reduction was at the coronal level. Conclusions HU reduction occurs on the root surface in the direction perpendicular to the tooth movement and in the alveolar bone in the direction of tooth movement when a canine is retracted. PMID:25836004

  12. Follicle-stimulating hormone enhances alveolar bone resorption via upregulation of cyclooxygenase-2

    PubMed Central

    Zhu, Chunxia; Ji, Yaoting; Liu, Shengbo; Bian, Zhuan

    2016-01-01

    This study aimed to investigate whether follicle-stimulating hormone (FSH)-induced alveolar bone resorption was mediated by a cyclooxygenase 2 (COX-2) enzyme related mechanism. Experimental periodontitis was induced in bilateral ovariectomized (OVX) rats, some of which were injected with triptorelin, an FSH inhibitor. After mandibles were collected, we performed micro-computed tomography to evaluate alveolar bone loss and immunohistochemical staining to assess COX-2 expression. As well, human periodontal ligament cells (PDLCs) were treated with FSH (30 ng/ml), and the COX-2 mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively; prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay (ELISA). The results indicated that FSH significantly increased alveolar bone resorption and the expression of COX-2 in the bilateral OVX + Ligatured rats compared with the other treatment groups. FSH also increased the mRNA and protein expression of COX-2 and PGE2 (P < 0.01) in human PDLCs. Further, the analysis of signaling pathways revealed the activation of COX-2-mediated pathways including Erk, p38, and Akt. These data suggest that FSH aggravates alveolar bone loss via a COX-2-upregulation mechanism and that the Erk, p38, and Akt pathways are involved in this pathological process. PMID:27725865

  13. Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury

    PubMed Central

    Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki

    2017-01-01

    Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837

  14. Guided periodontal regeneration using bilayered collagen membranes and bovine bone mineral in fenestration defects in the canine.

    PubMed

    Tal, Haim; Artzi, Zvi; Moses, Ofer; Nemcovsky, Carlos; Kozlovsky, Avital

    2005-10-01

    This study was performed to evaluate the effect of deproteinized bovine porous bone mineral (BBM) and BBM-collagen (BBMC) used alone or in combination with a bilayer collagen membrane in guided periodontal regeneration. In 12 dogs, contralateral surgical circular fenestration defects 5 mm in diameter were produced at the midbuccal aspect of the alveolar bone in 24 maxillary canines. Bone, periodontal ligament, and cementum were completely removed. Experimental sites were filled with BBM or BBMC. Bilayered collagen membranes covered half the experimental sites (BBM+M and BBMC+M), and the other half were left uncovered. Control sites remained empty; half were covered with collagen membranes (cont+M) and the underlying space spontaneously filled with blood, and half were left uncovered (cont). Three months postsurgery, undecalcified sections were prepared. Measurements were made using a caliper on a projection microscope, and the surface area of new bone and BBM particles within the healed surgical defect was evaluated using the point-counting method. In the experimental defects, new cementum covered 31% to 67% of the exposed dentin, with a significant difference between defects covered with membranes and defects that were not covered (P < .05). New cementum in the control (unfilled) defects also differed significantly between covered and uncovered defects. New bone growth presented a pattern similar to the cementum. There was no statistical difference between defects treated with BBM and BBMC, within both covered and uncovered groups. There was less connective tissue in the covered defects than in the uncovered defects (P < .05). The defects were filled with new bone, new connective tissue/bone marrow, and bovine bone particles. New bone area fraction was 23.4% to 25.2% in defects filled with BBMC and BBM, respectively (P = NS). Bone fraction area in membrane-covered defects ranged from 34.4% to 36.8% in experimental defects (P = NS). All membrane-treated defects

  15. Alveolar ridge preservation with deproteinized bovine bone graft and collagen membrane and delayed implants.

    PubMed

    Pang, Chaoyuan; Ding, Yuxiang; Zhou, Hongzhi; Qin, Ruifeng; Hou, Rui; Zhang, Guoliang; Hu, Kaijin

    2014-09-01

    To evaluate clinically and radiographically an alveolar ridge, preservation technique with deproteinized bovine bone graft and absorbable collagen membrane and then restoration with delayed implants were done. The study included 30 patients. The trial group's sockets were filled with deproteinized bovine bone graft (Bio-Oss) and covered with absorbable collagen membrane (Bio-Gide). The control group's sockets healed without any treatment. Panoramic radiograph and computed tomography were taken immediately after graft and 3 and 6 months later to evaluate the height, width, and volume change of the alveolar ridge bone. Dental implants were inserted in all sockets at 6 months, and osseointegration condition was evaluated in the following 12 months. All sockets healed uneventfully. In the trial group, the mean (SD) height reduction of the alveolar ridge bone was 1.05 (0.24) mm at 3 months and 1.54 (0.25) mm at 6 months. The width reduction was 1.11 (0.13) mm at 3 months and 1.84 (0.35) mm at 6 months. Bone volume reduction was 193.79 (21.47) mm at 3 months and 262.06 (33.08) mm at 6 months. At the same trend, in the control group, the bone height reduction was 2.12 (0.15) mm at 3 months and 3.26 (0.29) mm at 6 months. The width reduction was 2.72 (0.19) mm at 3 months and 3.56 (0.28) mm at 6 months. Bone volume reduction was 252.19 (37.21) mm at 3 months and 342.32 (36.41) mm at 6 months. There was a significant difference in alveolar ridge bone height, width, and volume reduction in the 2 groups. The osseointegration condition had no significant difference between the 2 groups. This study suggested that the deproteinized bovine bone graft and absorbable collagen membrane were beneficial to preserve the alveolar ridge bone and had no influence on the osseointegration of delayed implant.

  16. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model.

    PubMed

    Settem, Rajendra P; El-Hassan, Ahmed Taher; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2012-07-01

    Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.

  17. Arthritis-induced alveolar bone loss is associated with changes in the composition of oral microbiota.

    PubMed

    Corrêa, Jôice Dias; Saraiva, Adriana Machado; Queiroz-Junior, Celso Martins; Madeira, Mila Fernandes Moreira; Duarte, Poliana Mendes; Teixeira, Mauro Martins; Souza, Danielle Glória; da Silva, Tarcília Aparecida

    2016-06-01

    Rheumatoid arthritis (RA) and periodontitis (PD) are chronic inflammatory disorders that cause bone loss. PD tends to be more prevalent and severe in RA patients. Previous experimental studies demonstrated that RA triggers alveolar bone loss similarly to PD. The aim of this study was to investigate if arthritis-induced alveolar bone loss is associated with modification in the oral microbiota. Checkerboard DNA-DNA hybridization was employed to analyze forty oral bacterial species in 3 groups of C57BL/6 mice: control (n = 12; without any challenge); Y4 (n = 8; received oral inoculation of Aggregatibacter Actinomycetemcomitans strain FDC Y4) and AIA group (n = 12; chronic antigen-induced arthritis). The results showed that AIA and Y4 group exhibited similar patterns of bone loss. The AIA group exhibited higher counts of most bacterial species analyzed with predominance of Gram-negative species similarly to infection-induced PD. Prevotella nigrescens and Treponema denticola were detected only in the Y4 group whereas Campylobacter showae, Streptococcus mitis and Streptococcus oralis were only found in the AIA group. Counts of Parvimonas micra, Selenomonas Noxia and Veillonella parvula were greater in the AIA group whereas Actinomyces viscosus and Neisseira mucosa were in large proportion in Y4 group. In conclusion, AIA is associated with changes in the composition of the oral microbiota, which might account for the alveolar bone loss observed in AIA mice.

  18. B Cell IgD Deletion Prevents Alveolar Bone Loss Following Murine Oral Infection.

    PubMed

    Baker, Pamela J; Boutaugh, Nicole Ryan; Tiffany, Michaela; Roopenian, Derry C

    2009-01-01

    Periodontal disease is one of the most common infectious diseases of humans. Immune responses to infection trigger loss of alveolar bone from the jaw and eventual tooth loss. We investigated the contribution of B cell IgD to alveolar bone loss by comparing the response of B cell normal BALB/cJ mice and IgD deficient BALB/c-Igh-5(-/-J) mice to oral infection with Porphyromonas gingivalis, a gram-negative periodontopathic bacterium from humans. P. gingivalis-infected normal mice lost bone. Specific antibody to P. gingivalis was lower and oral colonization was higher in IgD deficient mice; yet bone loss was completely absent. Infection increased the proportion of CD69(+) activated B cells and CD4(+) T cells in immune normal mice compared to IgD deficient mice. These data suggest that IgD is an important mediator of alveolar bone resorption, possibly through antigen-specific coactivation of B cells and CD4(+) T cells.

  19. Biodegradable effect of PLGA membrane in alveolar bone regeneration on beagle dog.

    PubMed

    Hua, Nan; Ti, Vivian Lao; Xu, Yuanzhi

    2014-11-01

    Guided bone regeneration (GBR) is a principle adopted from guided tissue regeneration (GTR). Wherein, GBR is used for the healing of peri-implant bony dehiscences, for the immediate placement of implants into extraction sockets and for the augmentation of atrophic alveolar ridges. This procedure is done by the placement of a resorbable or non-resorbable membrane that will exclude undesirable types of tissue growth between the extraction socket and the soft tissue to allow only bone cells to regenerate in the surgically treated lesion. Here, we investigated the biodegradable effect of polylactic-co-glycolic acid (PLGA) membrane in the alveolar bone on Beagle dogs. Results show that both collagen and PLGA membrane had been fully resorbed, biodegraded, at four weeks post-operative reentry into the alveolar bone. Histological results under light microscopy revealed formation of new bone trabeculae in the extraction sites on both collagen and PLGA membrane. In conclusion, PLGA membrane could be a potential biomaterials for use on GBR and GTR. Nevertheless, further studies will be necessary to elucidate the efficiency and cost effectiveness of PLGA as GBR membrane in clinical.

  20. Micro-CT evaluation of bone defects: applications to osteolytic bone metastases, bone cysts, and fracture.

    PubMed

    Buie, Helen R; Bosma, Nick A; Downey, Charlene M; Jirik, Frank R; Boyd, Steven K

    2013-11-01

    Bone defects can occur in various forms and present challenges to performing a standard micro-CT evaluation of bone quality because most measures are suited to homogeneous structures rather than ones with spatially focal abnormalities. Such defects are commonly associated with pain and fragility. Research involving bone defects requires quantitative approaches to be developed if micro-CT is to be employed. In this study, we demonstrate that measures of inter-microarchitectural bone spacing are sensitive to the presence of focal defects in the proximal tibia of two distinctly different mouse models: a burr-hole model for fracture healing research, and a model of osteolytic bone metastases. In these models, the cortical and trabecular bone compartments were both affected by the defect and were, therefore, evaluated as a single unit to avoid splitting the defects into multiple analysis regions. The burr-hole defect increased mean spacing (Sp) by 27.6%, spacing standard deviation (SpSD) by 113%, and maximum spacing (Spmax) by 72.8%. Regression modeling revealed SpSD (β=0.974, p<0.0001) to be a significant predictor of the defect volume (R(2)=0.949) and Spmax (β=0.712, p<0.0001) and SpSD (β=0.271, p=0.022) to be significant predictors of the defect diameter (R(2)=0.954). In the mice with osteolytic bone metastases, spacing parameters followed similar patterns of change as reflected by other imaging technologies, specifically bioluminescence data which is indicative of tumor burden. These data highlight the sensitivity of spacing measurements to bone architectural abnormalities from 3D micro-CT data and provide a tool for quantitative evaluation of defects within a bone.

  1. Alveolar regions of the mandible for the installation of immediate-implant fixtures and bone screws of alveolar distractors.

    PubMed

    Kim, Da-Hye; Park, Man-Soo; Won, Sung-Yoon; Hu, Kyung-Seok; Han, Dong-Hoo; Kim, Hee-Jin

    2011-05-01

    The purposes of this study were to elucidate the anatomic relationship between the dental roots and surrounding tissues and to identify the optimal sites at which to install dental surgical devices including immediate-implant fixtures and alveolar distractors. We made 5 types of measurements on horizontal cross sections obtained at 1-mm intervals from 20 Korean mandibles. The following results were obtained: (1) the mandibular facial plate was thinnest at the canine (0.5-0.7 mm) and became thicker toward the molar region; (2) the thicknesses of the facial and lingual cortical bone in the interdental region increased from anterior to posterior and from coronal to apical aspects; (3) in each section, the buccolingual root was narrower than 4 mm at depths greater than 8 and 9 mm in the central and lateral incisors, respectively, and the maximum mesiodistal root widths were 3.0 and 3.3 mm; (4) the interroot distance increased from anterior to posterior and from coronal to apical aspects; and (5) on the sections of the first and second molars, the diameter of the septal bone ranged from 4.2 to 7.9 mm buccolingually and from 1.3 to 3.3 mm mesiodistally. Achieving successful placements of implant fixtures and bone screws requires an accurate understanding of the anatomic structure at the installation site. The reported anatomic data might facilitate successful treatments and provide crucial information for use when planning and performing placements of dental surgical devices.

  2. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs

    PubMed Central

    Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy

    2004-01-01

    Background The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Methods Third and fourth mandibular premolars were extracted from 3 Beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, immediate placements of titanium implants were performed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and a biphasic calcium phosphate ceramic. As a control, the right defects were left unfilled. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. Results No post surgical complication was observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (p<0.05) increase in term of thread numbers in contact with bone (TN), bone-to-implant contact (BIC) and peri-implant bone density (PBD), of about 8.6%, 11.0% and 14.7%, respectively. In addition, no significant difference was observed when TN, BIC and PBD in filled defects were compared to no-defect sites. Conclusion It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increase bone regeneration around immediate implants. PMID:15212348

  3. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction

    PubMed Central

    Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489

  4. The Association between Lower Incisal Inclination and Morphology of the Supporting Alveolar Bone — A Cone-Beam CT Study

    PubMed Central

    Yu, Quan; Pan, Xiao-gang; Ji, Guo-ping; Shen, Gang

    2009-01-01

    Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean age of 13.4 years, were included in this study. As part of orthodontic treatment planning the patients were required to take dental Cone-beam CT (CBCT) covering the region of lower incisors, the surrounding alveolar bone and the mandibular symphysis. The cephalometric parameters were designed and measured to indicate the inclination of lower central incisor and physical morphology of the adjacent alveolar bone. Computer-aided descriptive statistical analysis was performed using SPSS 15.0 software package for Windows. A correlation analysis and a linear regression analysis between the incisor inclination and the alveolar bone morphology were performed. Results Significant positive correlations were found between the lower central incisor inclination and the morphological contour of the alveolar bone (P <0.05). The lower central incisor root apex was closer to the lingual alveolar crest when it was buccally inclined. Conclusion The morphology of the alveolar bone may be affected by incisal inclination. PMID:20690425

  5. Nitrogen-containing bisphosphonate therapy: assessment of the alveolar bone structure in rats – a blind randomized controlled trial

    PubMed Central

    Pacheco, Viviane N; Langie, Renan; Etges, Adriana; Ponzoni, Deise; Puricelli, Edela

    2015-01-01

    This study aimed to assess the effect of zoledronic acid exposure on structures of the alveolar bone of rats. The sample was composed of 42 male Wistar rats. Animals in the T1 and T2 groups received weekly doses of 0.2 mg/kg intraperitoneal zoledronic acid for 3 weeks, while animals in the T3 group received the same treatment for 8 weeks. The control groups C1, C2 and C3 received equivalent doses of saline. The first upper molars of Wistar rats in the C2, T2, C3 and T3 groups were extracted. Cone-beam computerized tomography scans were performed, and the image density was analysed by grey levels. The presence and type of inflammatory infiltrate, vascularization and bone necrosis were assigned by histological qualitative scores. Histomorphometric analysis of bone density was performed in the groups without extraction. No significant differences were found in the bone grey density estimated by grey-level value and histomorphometric analysis between the C1 and T1 groups (P > 0.05). The grey levels in the T3 group were lower (P < 0.05) than in the C3 group, corresponding to the bone defect. Histological assessments showed the presence of bone necrosis in the T3 group and lower levels of bone remodelling in the test groups (T2 and T3) compared to the control groups (C2 and C3). The results of qualitative analyses did not differ significantly between the groups (P > 0.05). Zoledronic acid-exposed animals showed maxillary changes including reduced grey levels, the presence of bone necrosis and a higher prevalence of inflammatory signs. PMID:26119047

  6. Harlequin ichthyosis model mouse reveals alveolar collapse and severe fetal skin barrier defects.

    PubMed

    Yanagi, Teruki; Akiyama, Masashi; Nishihara, Hiroshi; Sakai, Kaori; Nishie, Wataru; Tanaka, Shinya; Shimizu, Hiroshi

    2008-10-01

    Harlequin ichthyosis (HI), which is the most severe genodermatosis, is caused by loss-of-function mutations in ABCA12, a member of the ATP-binding cassette transporter family. To investigate the pathomechanism of HI and the function of the ABCA12 protein, we generated ABCA12-deficient mice (Abca12(-/-)) by targeting Abca12. Abca12(-/-) mice closely reproduce the human HI phenotype, showing marked hyperkeratosis with eclabium and skin fissure. Lamellar granule abnormalities and defective ceramide distribution were remarkable in the epidermis. Skin permeability assay of Abca12(-/-) fetuses revealed severe skin barrier dysfunction after the initiation of keratinization. Surprisingly, the Abca12(-/-) mice also demonstrated lung alveolar collapse immediately after birth. Lamellar bodies in alveolar type II cells of the Abca12(-/-) mice lacked normal lamellar structures. The level of surfactant protein B, an essential component of alveolar surfactant, was reduced in the Abca12(-/-) mice. Fetal therapeutic trials with systemic administration of retinoid or dexamethasone, which are effective for HI and respiratory distress, respectively, to the pregnant mother mice neither improved the skin phenotype nor extended the survival period. Our HI model mice reproduce the human HI skin phenotype soon after the initiation of fetal skin keratinization and provide evidence that ABCA12 plays pivotal roles in lung and skin barrier functions.

  7. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars.

    PubMed

    Kose, Oguz; Arabaci, Taner; Yemenoglu, Hatice; Kara, Adem; Ozkanlar, Seckin; Kayis, Sevki; Duymus, Zeynep Yesil

    2016-03-30

    The aim of this study was to evaluate the effects of systemic fucoxanthin treatment on alveolar bone resorption in rats with periodontitis. Thirty rats were divided into control, experimental periodontitis (EP), and experimental periodontitis-fucoxanthin (EP-FUCO) groups. Periodontitis was induced by ligature for four weeks. After removal of the ligature, the rats in the EP-FUCO group were treated with a single dose of fucoxanthin (200 mg/kg bw) per day for 28 consecutive days. At the end of the study, all of the rats were euthanized and intracardiac blood and mandible tissue samples were obtained for biochemical, immunohistochemical, and histometric analyses. Fucoxanthin treatment resulted in a slight decrease in tumor necrosis factor-α, interleukin-1β, and interleukin-6 levels and a significant decrease in oxidative stress index. It was observed that fucoxanthin caused a significant reduction in receptor activator of nuclear factor kappa-β ligand (RANKL) levels and a statistically non-significant elevation in osteoprotegerin and bone-alkaline phosphatase levels. There were no significant differences in alveolar bone loss levels between the EP and EP-FUCO groups. This experimental study revealed that fucoxanthin provides a limited reduction in alveolar bone resorption in rats with periodontitis. One of the mechanisms underlying the mentioned limited effect might be related to the ability of fucoxanthin to inhibit oxidative stress-related RANKL-mediated osteoclastogenesis.

  8. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars

    PubMed Central

    Kose, Oguz; Arabaci, Taner; Yemenoglu, Hatice; Kara, Adem; Ozkanlar, Seckin; Kayis, Sevki; Duymus, Zeynep Yesil

    2016-01-01

    The aim of this study was to evaluate the effects of systemic fucoxanthin treatment on alveolar bone resorption in rats with periodontitis. Thirty rats were divided into control, experimental periodontitis (EP), and experimental periodontitis-fucoxanthin (EP-FUCO) groups. Periodontitis was induced by ligature for four weeks. After removal of the ligature, the rats in the EP-FUCO group were treated with a single dose of fucoxanthin (200 mg/kg bw) per day for 28 consecutive days. At the end of the study, all of the rats were euthanized and intracardiac blood and mandible tissue samples were obtained for biochemical, immunohistochemical, and histometric analyses. Fucoxanthin treatment resulted in a slight decrease in tumor necrosis factor-α, interleukin-1β, and interleukin-6 levels and a significant decrease in oxidative stress index. It was observed that fucoxanthin caused a significant reduction in receptor activator of nuclear factor kappa-β ligand (RANKL) levels and a statistically non-significant elevation in osteoprotegerin and bone-alkaline phosphatase levels. There were no significant differences in alveolar bone loss levels between the EP and EP-FUCO groups. This experimental study revealed that fucoxanthin provides a limited reduction in alveolar bone resorption in rats with periodontitis. One of the mechanisms underlying the mentioned limited effect might be related to the ability of fucoxanthin to inhibit oxidative stress-related RANKL-mediated osteoclastogenesis. PMID:27043583

  9. Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice.

    PubMed

    Lam, Roselind S; O'Brien-Simpson, Neil M; Lenzo, Jason C; Holden, James A; Brammar, Gail C; Walsh, Katrina A; McNaughtan, Judith E; Rowler, Dennis K; Van Rooijen, Nico; Reynolds, Eric C

    2014-09-01

    The role of the macrophage in the immunopathology of periodontitis has not been well defined. In this study, we show that intraoral inoculation of mice with Porphyromonas gingivalis resulted in infection, alveolar bone resorption, and a significant increase in F4/80(+) macrophages in gingival and submandibular lymph node tissues. Macrophage depletion using clodronate-liposomes resulted in a significant reduction in F4/80(+) macrophage infiltration of gingival and submandibular lymph node tissues and significantly (p < 0.01) less P. gingivalis-induced bone resorption compared with controls in BALB/c and C57BL/6 mice. In both mouse strains, the P. gingivalis-specific IgG Ab subclass and serum cytokine [IL-4, IL-10, IFN-γ, and IL-12 (p70)] responses were significantly (p < 0.01) lower in the macrophage-depleted groups. Macrophage depletion resulted in a significant reduction in the level of P. gingivalis infection, and the level of P. gingivalis infection was significantly correlated with the level of alveolar bone resorption. M1 macrophages (CD86(+)), rather than M2 macrophages (CD206(+)), were the dominant macrophage phenotype of the gingival infiltrate in response to P. gingivalis infection. P. gingivalis induced a significant (p < 0.01) increase in NO production and a small increase in urea concentration, as well as a significant increase in the secretion of IL-1β, IL-6, IL-10, IL-12 (p70), eotaxin, G-CSF, GM-CSF, macrophage chemoattractant protein-1, macrophage inflammatory protein-α and -β, and TNF-α in isolated murine macrophages. In conclusion, P. gingivalis infection induced infiltration of functional/inflammatory M1 macrophages into gingival tissue and alveolar bone resorption. Macrophage depletion reduced P. gingivalis infection and alveolar bone resorption by modulating the host immune response.

  10. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  11. Radiographic evaluation of the effect of obesity on alveolar bone in rats with ligature-induced periodontal disease

    PubMed Central

    do Nascimento, Cassiane Merigo; Cassol, Tiago; da Silva, Fernanda Soares; Bonfleur, Maria Lucia; Nassar, Carlos Augusto; Nassar, Patricia Oehlmeyer

    2013-01-01

    There is evidence that the lack of metabolic control of obese patients may accelerate periodontitis. The aim of this study was to evaluate radiographically the effect of cafeteria-diet-induced obesity on alveolar bone loss in rats subjected to periodontal disease. Twenty male Wistar rats were randomly divided into four groups: 1) control group, 2) control and ligature group; 3) cafeteria group; and 4) cafeteria and ligature group. The animals were evaluated for obesity and euthanized, and the mandible of each rat was removed to perform a radiographic evaluation of alveolar bone loss and its effect on diet-induced obesity. The results showed greater alveolar bone loss in the mice in Group 4 (P<0.01). Thus, we concluded that obese mice, on average, showed greater radiographic evidence of alveolar bone loss than mice undergoing induction of obesity. PMID:24124386

  12. Subantimicrobial Dose Doxycycline Effects on Alveolar Bone Loss in Postmenopausal Women

    PubMed Central

    Payne, Jeffrey B.; Stoner, Julie A.; Nummikoski, Pirkka V.; Reinhardt, Richard A.; Goren, Arthur D.; Wolff, Mark S.; Lee, Hsi-ming; Lynch, James C.; Valente, Robert; Golub, Lorne M.

    2007-01-01

    Aim: Determine efficacy of two-year continuous subantimicrobial dose doxycycline (SDD; 20 mg bid) on alveolar bone in postmenopausal osteopenic, estrogen-deficient women undergoing periodontal maintenance in a two-year double-blind, placebo-controlled, randomized clinical trial. Materials and Methods: 128 subjects randomized to SDD or placebo (n=64 each). Posterior vertical bite-wings taken at baseline, one and two years for alveolar bone density (ABD), using radiographic absorptiometry (RA) and computer-assisted densitometric image analysis (CADIA), and alveolar bone height (ABH). Statistical analyses utilized Generalized Estimating Equations; primary analyses were intent-to-treat (ITT). Results presented as SDD versus placebo. Results: Under ITT, there was no statistically-significant effect of SDD on ABD loss (RA: p=0.8; CADIA: p=0.2) or ABH loss (p=0.2). Most sites (81−95%) were inactive. For subgroup analyses, mean CADIA was higher with SDD for non-smokers (p=0.05) and baseline probing depths ≥ 5 mm (p =0.003). SDD was associated with 29% lower odds of more progressive ABH loss in women > 5 years postmenopausal (p=0.05) and 36% lower among protocol-adherent subjects (p =0.03). Conclusion: In postmenopausal osteopenic women with periodontitis, SDD did not differ overall from placebo. Based on exploratory subgroup analyses, additional research is needed to determine the usefulness of SDD in non-smokers, subjects > 5 years postmenopausal and in deeper pockets. PMID:17716313

  13. Comparison of Cone Beam Computed Tomography-Derived Alveolar Bone Density Between Subjects with and without Aggressive Periodontitis

    PubMed Central

    Al-Zahrani, Mohammad S.; Elfirt, Eman Y.; Al-Ahmari, Manea M.; Yamany, Ibrahim A.; Alabdulkarim, Maher A.

    2017-01-01

    Introduction Understanding the changes in bone density of patients affected by aggressive periodontitis could be useful in early disease detection and proper treatment planning. Aim The aim of this study was to compare alveolar bone density in patients affected with aggressive periodontitis and periodontally healthy individuals using Cone Beam Computed Tomography (CBCT). Materials and Methods This cross-sectional study was conducted on 20 patients with a confirmed diagnosis of aggressive periodontitis. Twenty periodontally healthy patients attending the dental clinics for implant placement or extraction of impacted third molars served as controls. Alveolar bone density was measured using CBCT scanning. Comparisons between aggressive periodontitis group and controls for age and alveolar bone density of the anterior and posterior regions were performed using an independent sample t-test. Multivariable linear regression models were also performed. Results The differences between groups in regard to age, anterior and posterior alveolar bone density was not statistically significant (p<0.05). In the posterior region, the multivariable regression model showed that bone density was not associated with age, gender or the study groups. Whereas, in the anterior region, patient’s age was found to be significantly associated with bone density, p=0.014. Conclusion Alveolar bone density as measured by CBCT in aggressive periodontitis patients was not different from periodontally healthy individuals. Further studies are needed to confirm these findings. PMID:28274060

  14. Masquelet Technique for Treatment of Posttraumatic Bone Defects

    PubMed Central

    Wong, Tak Man; Lau, Tak Wing; Li, Xin; Fang, Christian; Leung, Frankie

    2014-01-01

    Masquelet technique, which is the use of a temporary cement spacer followed by staged bone grafting, is a recent treatment strategy to manage a posttraumatic bone defect. This paper describes a series of 9 patients treated with this technique of staged bone grafting following placement of an antibiotic spacer to successfully manage osseous long bone defects. The injured limbs were stabilized and aligned at the time of initial spacer placement. In our series, osseous consolidation was successfully achieved in all cases. This technique gives promising result in the management of posttraumatic bone defects. PMID:24688420

  15. Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: confocal microscopy analysis

    NASA Astrophysics Data System (ADS)

    Ramalho-Ferreira, Gabriel; Faverani, Leonardo Perez; Grossi-Oliveira, Gustavo Augusto; Okamoto, Tetuo; Okamoto, Roberta

    2015-03-01

    In this study, the characteristics of the alveolar bone of rats with induced osteoporosis were examined. Thirty-two rats were divided into four groups according to the induction of osteoporosis and drugs administered: OG, osteoporotic rats without treatment (negative control); SG, rats which underwent sham surgery ovariectomy (SHAM); alendronate (AG), osteoporotic rats treated with alendronate; and RG, osteoporotic rats treated with raloxifene (RG). On the 8th day after ovariectomy and SHAM surgeries, drug therapy was started with AG or RG. On the 52nd day, 20 mg/kg calcein was administered to all of the rats, and on the 80th day, 20 mg/kg alizarin red was administered. Euthanasia was performed on the 98th day. The bone area marked by fluorochromes was calculated and data were subjected to two-way ANOVA test and Tukey's post-hoc test (p<0.05). The comparison of the induced osteoporosis groups showed no statistically significant differences in bone turnover only between RG and SG (p=0.074) and AG and OG (p=0.138). All other comparisons showed significant differences (p<0.001). The largest bone turnover was observed in RG and SG groups. RG was the medication that improved the dynamics of the alveolar bone of rats with induced osteoporosis, resembling that of healthy rats.

  16. A periodontal attachment mechanism without alveolar bone. Case report.

    PubMed

    Novak, M J; Polson, A M; Caton, J; Freeman, E; Meitner, S

    1983-02-01

    A 22-year-old black male was referred for periodontal therapy because of radiographic evidence of advanced bone loss associated with the posterior teeth. Clinical examination revealed gingivitis, normal sulcus depths, and minimal loss of clinical attachment. Complete blood counts, serum chemistry, and neutrophil function were within normal limits. Histological, histochemical and ultrastructural analysis of an extracted tooth revealed no loss of attachment; large areas of the cementum were collagen-poor and, ultrastructurally, resembled afibrillar cementum. It is proposed that the periodontal attachment mechanism present in this case was associated with a localized failure in normal periodontal development.

  17. Strain mapping and correlative microscopy of the alveolar bone in a bone-periodontal ligament-tooth fibrous joint.

    PubMed

    Jang, Andrew; Prevost, Richard; Ho, Sunita P

    2016-07-05

    This study details a method to calculate strains within interradicular alveolar bone using digital volume correlation on X-ray tomograms of intact bone-periodontal ligament-tooth fibrous joints. The effects of loading schemes (concentric and eccentric) and optical magnification on the resulting strain in alveolar bone will be investigated with an intent to correlate deformation gradients with data sets from other complementary techniques. Strain maps will be correlated with structural and site-specific mechanical properties obtained on the same specimen using atomic force microscopy and atomic force microscopy-based nanoindentation technique. Specimens include polydimethylsiloxane as a standard material and intact hemi-mandibles harvested from rats. X-ray tomograms were taken at no-load and loaded conditions using an in situ load cell coupled to a micro X-ray computed tomography unit. Digital volume correlation was used to calculate deformations within alveolar bone. Comparison of strain maps was made as a result of different loading schemes (concentric vs eccentric) and at different magnifications (4× vs 10×). Virtual sections and strain maps from digital volume correlation solutions were aligned with structure and reduced elastic modulus to correlate datasets of the same region within a specimen. Strain distribution between concentrically and eccentrically loaded complexes was different but illustrated a similar range. Strain maps of homogeneous materials (polydimethylsiloxane) resulting from digital volume correlation at different magnifications were similar. However, strain maps of heterogeneous materials at lower and higher magnification differed. The digital volume correlation technique illustrated a dependence on optical magnification specifically for heterogeneous materials such as bone. The results at a higher optical magnification highlight the potential for extracting deformation at higher resolutions. Correlation of data spaces from different

  18. Diffuse alveolar hemorrhage associated with thrombotic thrombocytopenic purpura after allogeneic bone marrow transplantation.

    PubMed

    Kalayoğlu Beşışık, Sevgi; Yenerel, Mustafa; Diz Küçükkaya, Reyhan; Çalışkan, Yaşar; Sargın, Deniz

    2004-12-05

    Alveolar hemorrhage is an early complication after bone marrow transplantation (BMT) and often associated with inflammatory pulmonary processes. We present a case of diffuse alveolar hemorrhage associated with BMT associated thrombotic thrombocytopenic purpura (BMT-TTP). An 18-years-old man with acute myeloid leukaemia (FAB; M5) underwent ABO incompatible BMT from his HLA-identical sister. On the 37th day of BMT, BMT-TTP was diagnosed with the occurrence of red cell fragmentation and rise in serum lactic dehydrogenase (LDH) level with severe sudden decrease in hemoglobin and platelet levels. Cyclosporine A (CsA) was ceased and plasma infusion with plasma exchange was started. On the 42nd day of BMT, the diagnosis of diffuse alveolar hemorrhage was made by the clinical, bronchoscopic and bronchoalveolar lavage fluid findings. Alveolar hemorrhage among patients with BMT-TTP has been scarce reported. These two complications may be regarded as related, as small vessel injury is a central feature in both and they may share aetiological and pathogenetic factors.

  19. Recruitment of bone marrow-derived cells to periodontal tissue defects

    PubMed Central

    Kimura, Yasuyuki; Komaki, Motohiro; Iwasaki, Kengo; Sata, Masataka; Izumi, Yuichi; Morita, Ikuo

    2014-01-01

    Bone marrow-derived cells (BMCs) are considered to be a major source of mesenchymal stem cells (MSCs) in adults and are known to be effective in periodontal tissue regeneration. However, whether endogenous BMCs are involved in periodontal tissue repair process is uncertain. We therefore created periodontal tissue defects in the buccal alveolar bone of mandibular first molars in bone marrow chimeric mice, and immunohistochemically examined the expression of stromal cell derived factor-1 (SDF-1) and the mobilization of BMCs. We found that SDF-1 expression was increased around the defects at as early as 1 week after injury and that BMCs were mobilized to the defects, while GFP+/CD45+ were rarely observed. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the number of platelet-derived growth factor receptor (pdgfr) α+/Sca-1+ (PαS) cells in the bone marrow decreased after injury. Taken together, these results suggest that BMCs are mobilized to the periodontal tissue defects. Recruitment of BMCs, including a subset of MSCs could be a new target of periodontal treatment. PMID:25364726

  20. Repair of long bone defects with demineralized bone matrix and autogenous bone composite

    PubMed Central

    Ozdemir, Mehmet T; Kir, Mustafa Ç

    2011-01-01

    Background: Repair of diaphyseal bone defects is a challenging problem for orthopedic surgeons. In large bone defects the quantity of harvested autogenous bone may not be sufficient to fill the gap and then the use of synthetic or allogenic grafts along with autogenous bone becomes mandatory to achieve compact filling. Finding the optimal graft mixture for treatment of large diaphyseal defects is an important goal in contemporary orthopedics and this was the main focus of this study. The aim of this study is to investigate the efficacy of demineralized bone matrix (DBM) and autogenous cancellous bone (ACB) graft composite in a rabbit bilateral ulna segmental defect model. Materials and Methods: Twenty-seven adult female rabbits were divided into five groups. A two-centimeter piece of long bone on the midshaft of the ulna was osteotomized and removed from the rabbits’ forearms. In group 1 (n=7) the defects were treated with ACB, in group 2 (n=7) with DBM, and in group 3 (n=7) with ACB and DBM in the ratio of 1:1. Groups 4 and 5, with three rabbits in each group, were the negative and positive controls, respectively. Twelve weeks after implantation the rabbits were sacrificed and union was evaluated with radiograph (Faxitron), dual-energy x-ray absorptiometry (DEXA), and histological methods (decalcified sectioning). Results: Union rates and the volume of new bone in the different groups were as follows: group 1 - 92.8% union and 78.6% new bone; group 2 - 72.2% union and 63.6% new bone; and group 3 - 100% union and 100% new bone. DEXA results (bone mineral density [BMD]) were as follows: group 1 - 0.164 g/cm2, group 2 - 0.138 g/cm2, and group 3 - 0.194 g/cm2. Conclusions: DBM serves as a graft extender or enhancer for autogenous graft and decreases the need of autogenous bone graft in the treatment of bone defects. In this study, the DBM and ACB composite facilitated the healing process. The union rate was better with the combination than with the use of any one of

  1. Correlations between initial cleft size and dental anomalies in unilateral cleft lip and palate patients after alveolar bone grafting.

    PubMed

    Jabbari, Fatima; Reiser, Erika; Thor, Andreas; Hakelius, Malin; Nowinski, Daniel

    2016-01-01

    Objective To determine in individuals with unilateral cleft lip and palate the correlation between initial cleft size and dental anomalies, and the outcome of alveolar bone grafting. Methods A total of 67 consecutive patients with non-syndromic unilateral complete cleft lip and palate (UCLP) were included from the cleft lip and palate-craniofacial center, Uppsala University Hospital, Sweden. All patients were operated by the same surgeon and treated according to the Uppsala protocol entailing: lip plasty at 3 months, soft palate closure at 6 months, closure of the residual cleft in the hard palate at 2 years of age, and secondary alveolar bone grafting (SABG) prior to the eruption of the permanent canine. Cleft size was measured on dental casts obtained at the time of primary lip plasty. Dental anomalies were registered on radiographs and dental casts obtained before bone grafting. Alveolar bone height was evaluated with the Modified Bergland Index (mBI) at 1 and 10-year follow-up. Results Anterior cleft width correlated positively with enamel hypoplasia and rotation of the central incisor adjacent to the cleft. There was, however, no correlation between initial cleft width and alveolar bone height at either 1 or 10 years follow-up. Conclusions Wider clefts did not seem to have an impact on the success of secondary alveolar bone grafting but appeared to be associated with a higher degree of some dental anomalies. This finding may have implications for patient counseling and treatment planning.

  2. Correlations between initial cleft size and dental anomalies in unilateral cleft lip and palate patients after alveolar bone grafting

    PubMed Central

    Jabbari, Fatima; Reiser, Erika; Thor, Andreas; Hakelius, Malin; Nowinski, Daniel

    2016-01-01

    Objective To determine in individuals with unilateral cleft lip and palate the correlation between initial cleft size and dental anomalies, and the outcome of alveolar bone grafting. Methods A total of 67 consecutive patients with non-syndromic unilateral complete cleft lip and palate (UCLP) were included from the cleft lip and palate-craniofacial center, Uppsala University Hospital, Sweden. All patients were operated by the same surgeon and treated according to the Uppsala protocol entailing: lip plasty at 3 months, soft palate closure at 6 months, closure of the residual cleft in the hard palate at 2 years of age, and secondary alveolar bone grafting (SABG) prior to the eruption of the permanent canine. Cleft size was measured on dental casts obtained at the time of primary lip plasty. Dental anomalies were registered on radiographs and dental casts obtained before bone grafting. Alveolar bone height was evaluated with the Modified Bergland Index (mBI) at 1 and 10-year follow-up. Results Anterior cleft width correlated positively with enamel hypoplasia and rotation of the central incisor adjacent to the cleft. There was, however, no correlation between initial cleft width and alveolar bone height at either 1 or 10 years follow-up. Conclusions Wider clefts did not seem to have an impact on the success of secondary alveolar bone grafting but appeared to be associated with a higher degree of some dental anomalies. This finding may have implications for patient counseling and treatment planning. PMID:26923345

  3. Herpes Zoster Induced Alveolar Bone Necrosis in Immunocompromised Patients; Two Case Reports

    PubMed Central

    Gholami, Mahdi; Shahakbari, Reza; Abdolahpour, Somayeh; Hatami, Masoud; Roshanmir, Azam

    2016-01-01

    Introduction: Herpes zoster Infection (HZI) is a viral disease with painful skin rashes and blisters in a limited area on one side of the body, often in a strip. Osteonecrosis with spontaneous exfoliation of teeth in association with HZI of the mandibular nerve is a rare phenomenon. In this report, such an unusual complication of HZI is presented. Case Report: The clinical course of a 53-year-old woman and a 54-year-old man with HZI associated with alveolar bone necrosis and tooth exfoliation were reviewed in order to develop a patient profile for this rare combination of physical findings. Conclusion: In immunocompromised patients, the clinicians should consider HZI as a possible cause of tooth mobility, exfoliation, and alveolar osteonecrosis, which needs early intervention to prevent secondary complications. PMID:27738615

  4. Difference in the Surgical Outcome of Unilateral Cleft Lip and Palate Patients with and without Pre-Alveolar Bone Graft Orthodontic Treatment

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Shin; Wallace, Christopher Glenn; Hsiao, Yen-Chang; Chiu, Yu-Ting; Pai, Betty Chien-Jung; Chen, I.-Ju; Liao, Yu-Fang; Liou, Eric Jen-Wein; Chen, Philip Kuo-Ting; Chen, Jyh-Ping; Noordhoff, M. Samuel

    2016-04-01

    Presurgical orthodontic treatment before secondary alveolar bone grafting (SABG) is widely performed for cleft lip/palate patients. However, no randomized controlled trial has been published comparing SABG outcomes in patients with, and without, presurgical orthodontic treatment. This randomized, prospective, single-blinded trial was conducted between January 2012 and April 2015 to compare ABG volumes 6 months postoperatively between patients with and without presurgical orthodontic treatment. Twenty-four patients were enrolled and randomized and 22 patients completed follow-up. Patients who had presurgical orthodontics before SABG had significantly improved inclination (p < 0.001) and rotation (p < 0.001) of the central incisor adjacent to the defect, significantly improved ABG fill volume (0.81 ± 0.26 cm3 at 6 months compared to 0.59 ± 0.22 cm3 p < 0.05) and less residual alveolar bone defect (0.31 ± 0.08 cm3 at 6 months compared to s 0.55 ± 0.14 cm3 p < 0.001) compared to patients who did not have presurgical orthodontic treatment. In conclusion, orthodontic treatment combined with SABG results in superior bone volume when compared with conventional SABG alone.

  5. Difference in the Surgical Outcome of Unilateral Cleft Lip and Palate Patients with and without Pre-Alveolar Bone Graft Orthodontic Treatment.

    PubMed

    Chang, Chun-Shin; Wallace, Christopher Glenn; Hsiao, Yen-Chang; Chiu, Yu-Ting; Pai, Betty Chien-Jung; Chen, I-Ju; Liao, Yu-Fang; Liou, Eric Jen-Wein; Chen, Philip Kuo-Ting; Chen, Jyh-Ping; Noordhoff, M Samuel

    2016-04-04

    Presurgical orthodontic treatment before secondary alveolar bone grafting (SABG) is widely performed for cleft lip/palate patients. However, no randomized controlled trial has been published comparing SABG outcomes in patients with, and without, presurgical orthodontic treatment. This randomized, prospective, single-blinded trial was conducted between January 2012 and April 2015 to compare ABG volumes 6 months postoperatively between patients with and without presurgical orthodontic treatment. Twenty-four patients were enrolled and randomized and 22 patients completed follow-up. Patients who had presurgical orthodontics before SABG had significantly improved inclination (p < 0.001) and rotation (p < 0.001) of the central incisor adjacent to the defect, significantly improved ABG fill volume (0.81 ± 0.26 cm(3) at 6 months compared to 0.59 ± 0.22 cm(3); p < 0.05) and less residual alveolar bone defect (0.31 ± 0.08 cm(3) at 6 months compared to s 0.55 ± 0.14 cm(3); p < 0.001) compared to patients who did not have presurgical orthodontic treatment. In conclusion, orthodontic treatment combined with SABG results in superior bone volume when compared with conventional SABG alone.

  6. Effectiveness of Lateral Bone Augmentation on the Alveolar Crest Dimension: A Systematic Review and Meta-analysis.

    PubMed

    Sanz-Sánchez, I; Ortiz-Vigón, A; Sanz-Martín, I; Figuero, E; Sanz, M

    2015-09-01

    Lateral ridge augmentation procedures are aimed to reconstruct deficient alveolar ridges or to build up peri-implant dehiscence and fenestrations. The objective of this systematic review was to assess the efficacy of these interventions by analyzing data from 40 clinical studies evaluating bone augmentation through either the staged or the simultaneous approach. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guideline for systematic reviews was used. The primary outcomes were the changes at reentry, in the ridge width, and in the vertical and horizontal dimensions of the peri-implant defect, measured in millimeters, in the staged and simultaneous approaches, respectively. The results of the meta-analysis showed, for the simultaneous approach, a statistically significant defect height reduction when all treatments were analyzed together (weighted mean difference [WMD] = -4.28 mm; 95% confidence interval: [CI] -4.88, -3.69; P < 0.01). The intervention combining bone replacement grafts with barrier membranes was associated with superior outcomes The most frequently used intervention was the combination of xenograft and bioabsorbable membrane. Similarly, for the staged approach, there was a statistically significant horizontal gain when all treatment groups were combined (WMD = 3.90 mm; 95% CI: 3.52, 4.28; P < 0.001). The most frequently used intervention was the use of autogenous bone blocks. Both treatment strategies led to high survival and success rates (>95%) for the implants placed on the regenerated sites. Nonexposed sites gained significantly more in the simultaneous and staged approaches (WMD = 1.1 and 3.1 mm).

  7. Glycemic control and alveolar bone loss progression in type 2 diabetes.

    PubMed

    Taylor, G W; Burt, B A; Becker, M P; Genco, R J; Shlossman, M

    1998-07-01

    This study tested the hypothesis that the risk for alveolar bone loss is greater, and bone loss progression more severe, for subjects with poorly controlled (PC) type 2 diabetes mellitus (type 2 DM) compared to those without type 2 DM or with better controlled (BC) type 2 DM. The PC group had glycosylated hemoglobin (HbA1) > or = 9%; the BC group had HbA1 < 9%. Data from the longitudinal study of the oral health of residents of the Gila River Indian Community were analyzed. Of the 359 subjects, aged 15 to 57 with less than 25% radiographic bone loss at baseline, 338 did not have type 2 DM, 14 were BC, and 7 were PC. Panoramic radiographs were used to assess interproximal bone level. Bone scores (scale 0-4) corresponding to bone loss of 0%, 1% to 24%, 25% to 49%, 50% to 74%, or > or = 75% were used to identify the worst bone score (WBS) in the dentition. Change in worst bone score at follow-up, the outcome, was specified on a 4-category ordinal scale as no change, or a 1-, 2-, 3-, or 4-category increase over baseline WBS (WBS1). Poorly controlled diabetes, age, calculus, time to follow-up examination, and WBS1 were statistically significant explanatory variables in ordinal logistic regression models. Poorly controlled type 2 DM was positively associated with greater risk for a change in bone score (compared to subjects without type 2 DM) when the covariates were included in the model. The cumulative odds ratio (COR) at each threshold of the ordered response was 11.4 (95% CI = 2.5, 53.3). When contrasted with subjects with BC type 2 DM, the COR for those in the PC group was 5.3 (95% CI = 0.8, 53.3). The COR for subjects with BC type 2 DM was 2.2 (95% CI = 0.7, 6.5), when contrasted to those without type 2 DM. These results suggest that poorer glycemic control leads to both an increased risk for alveolar bone loss and more severe progression over those without type 2 DM, and that there may be a gradient, with the risk for bone loss progression for those with better

  8. Inhibitory effects of Persicariae Rhizoma aqueous extracts on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats

    PubMed Central

    Kang, Su Jin; Lee, Eun Kyung; Han, Chang Hyun; Lee, Bong Hyo; Lee, Young Joon; Ku, Sae Kwang

    2016-01-01

    Persicariae Rhizoma (PR) is the dried stem parts of Persicaria tinctoria H. Gross (Polygonaceae), and has been traditionally used as anti-inflammatory and detoxifying agent. In the present study, the effects of PR aqueous extracts on ligation-induced experimental periodontitis (EPD) and associated alveolar bone loss in rats were examined. Following the induction of EPD in rats, PR extracts were orally administered once a day for 10 days, and the changes and gains in body weight, alveolar bone loss and total aerobic bacterial counts of buccal gingiva were observed with histopathological analysis. In addition, anti-inflammatory effects were evaluated by monitoring myeloperoxidase (MPO) activities, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α contents, and anti-oxidant effects were investigated by measuring inducible nitric oxide synthase (iNOS) activities and malondialdehyde (MDA) levels. Bacterial proliferation, periodontitis and associated alveolar bone loss induced by ligature placement were significantly and dose-dependently inhibited by the treatment with PR extracts. The inhibitory effects of 200 mg/kg PR were similar to those of 5 mg/kg indomethacin on ligation-induced periodontitis and associated alveolar bone losses in this study. The results suggest that PR effectively inhibits ligature placement-induced periodontitis and alveolar bone loss in rats via antibacterial, antioxidative and anti-inflammatory activities. PMID:27588077

  9. Secondary alveolar bone grafting in cleft of the lip and palate patients

    PubMed Central

    Walia, Abhilashaa

    2011-01-01

    Aim: The aim was to restore the function and form of both arches with a proper occlusal relationship and eruption of tooth in the cleft area. Materials and Methods: Eleven patients were selected irrespective of sex and socio-economic status and whose age was within the mixed dentition period. Iliac crest is grafted in cleft area and subsequently evaluated for graft success using study models, and periapical and occlusal radiographs. Results: At the time of evaluation teeth were erupted in the area and good alveolar bone levels were present. Premaxilla becomes immobile with a good arch form and arch continuity. There are no major complications in terms of pain, infection, paraesthesia, hematoma formation at donor site without difficulty in walking. There is no complication in terms of pain, infection, exposure of graft, rejection of graft, and wound dehiscence at the recipient site. Discussion: It is evident that secondary alveolar grafting during the mixed dentition period is more beneficial for patients at the donor site as well as the recipient site. Conclusion: Long-term follow-up is required to achieve maximum advantage of secondary alveolar grafting; the age of the patient should be within the mixed dentition period, irrespective of sex, socio-economic status. It may be unilateral or bilateral. PMID:22090755

  10. Bone Substitutes for Peri-Implant Defects of Postextraction Implants

    PubMed Central

    Santos, Pâmela Letícia; Gulinelli, Jéssica Lemos; Telles, Cristino da Silva; Betoni Júnior, Walter; Chiacchio Buchignani, Vivian; Queiroz, Thallita Pereira

    2013-01-01

    Placement of implants in fresh sockets is an alternative to try to reduce physiological resorption of alveolar ridge after tooth extraction. This surgery can be used to preserve the bone architecture and also accelerate the restorative procedure. However, the diastasis observed between bone and implant may influence osseointegration. So, autogenous bone graft and/or biomaterials have been used to fill this gap. Considering the importance of bone repair for treatment with implants placed immediately after tooth extraction, this study aimed to present a literature review about biomaterials surrounding immediate dental implants. The search included 56 articles published from 1969 to 2012. The results were based on data analysis and discussion. It was observed that implant fixation immediately after extraction is a reliable alternative to reduce the treatment length of prosthetic restoration. In general, the biomaterial should be used to increase bone/implant contact and enhance osseointegration. PMID:24454377

  11. Role of Bone Graft in Reconstruction of Skull Base Defect

    PubMed Central

    Yamamoto, Yuhei; Minakawa, Hidehiko; Yoshida, Tetsunori; Igawa, Hiroharu; Sugihara, Tsuneki; Ohura, Takehiko; Nohira, Kunihiko

    1993-01-01

    Ten patients underwent reconstruction of skull base defects between 1989 and 1992. In this series, the maximum size of the skull base defect was 6 × 5 cm. Three patients underwent bone grafts to reinforce the skull base. The postoperative course of seven patients without bone grafts was uneventful. There was no cerebrospinal fluid leakage, meningitis, extradural abscess, on brain herniation. On the other hand, two of the three patients with bone grafts developed extradural abseesses requiring the bone grafts to be removed. Although the number of patients in this series is not large, this study demonstrates that the use of bone grafts in reconstruction of skull base detects could be one of the factors in increasing the chances of infectious complications. We think that a bone graft is not necessary to reconstruct moderate-sized skull base defects. ImagesFigure 1Figure 2Figure 2Figure 3Figure 3Figure 4p228-aFigure 4Figure 4 PMID:17170915

  12. Reaming debris as a novel source of autologous bone to enhance healing of bone defects.

    PubMed

    Bakker, Astrid D; Kroeze, Robert Jan; Korstjens, Clara; de Kleine, Ruben H; Frölke, Jan Paul M; Klein-Nulend, Jenneke

    2011-06-15

    Reaming debris is formed when bone defects are stabilized with an intramedullary nail, and contains viable osteoblast-like cells and growth factors, and might thus act as a natural osteoinductive scaffold. The advantage of using reaming debris over stem cells or autologous bone for healing bone defects is that no extra surgery is needed to obtain the material. To assess the clinical feasibility of using reaming debris to enhance bone healing, we investigated whether reaming debris enhances the healing rate of a bone defect in sheep tibia, compared to an empty gap. As golden standard the defect was filled with iliac crest bone. Bones treated with iliac crest bone and reaming debris showed larger callus volume, increased bone volume, and decreased cartilage volume in the fracture gap, and increased torsional toughness compared to the empty gap group at 3 weeks postoperative. In addition, bones treated with reaming debris showed increased torsional stiffness at 6 weeks postoperatively compared to the empty defect group, while bending stiffness was marginally increased. These results indicate that reaming debris could serve as an excellent alternative to iliac crest bone for speeding up the healing process in bone defects that are treated with an intramedullary nail.

  13. Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies.

    PubMed

    Caballero, Montserrat; Morse, Justin C; Halevi, Alexandra E; Emodi, Omri; Pharaon, Michael R; Wood, Jeyhan S; van Aalst, John A

    2015-09-01

    Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect.

  14. Management of maxillary alveolar bone fracture and severely intruded maxillary central incisor: report of a case.

    PubMed

    Yonezawa, Hisanobu; Yanamoto, Souichi; Hoshino, Tomonori; Yamada, Shin-Ichi; Fujiwara, Taku; Umeda, Masahiro

    2013-10-01

    An 11-year-old male who injured his maxilla and right maxillary central incisor and lip during a fall was presented to our hospital. His lower lip and upper gingiva were lacerated with swelling and epistaxis, and he had a maxillary alveolar bone fracture and severe intrusion of the right maxillary central incisor, which had penetrated the floor of the nasal cavity with avulsion. Under local anesthesia, we repositioned the incisor and bone segment and fixed them with a titanium micromesh plate and self-tapping screws and splints. The incisor was also treated by root canal 3 days after the operation and was restored with a crown. We performed root canal filling 1 month later. Five months later, the plate and screws were removed. In prognosis of our case, no symptoms of inflammatory root resorption or ankylosis have observed for more than 1 year and 6 months of follow up based on both clinical and radiographic findings.

  15. Appositional bone formation in marginal defects at implants.

    PubMed

    Botticelli, Daniele; Berglundh, Tord; Buser, Daniel; Lindhe, Jan

    2003-02-01

    In a previous experiment, it was demonstrated that a wide marginal defect around an implant can heal with a high degree of osseointegration. The present experiment was performed to evaluate the degree and quality of de novo bone formation and osseointegration in marginal defects adjacent to submerged titanium implants. All mandibular premolars and 1st molars were extracted in four Labrador dogs. Four experimental sites were identified in the right side of the mandible. In two sites, custom-made implants with a sandblasted, large grit, acid-etched (SLA) surface were installed without further ostectomy (control sites). In the two remaining sites (test sites), a specially designed step drill was used to widen the marginal 5 mm of the canal. A barrier membrane was used to cover the implants in the defect sites. All implants were submerged. One month later, an identical procedure, including site preparation and implant installation, was performed in the left side of the mandible. Two months following the first implant installation procedure, biopsies were collected and prepared for sectioning. Ostectomy and implant installation in the control location resulted in a series of bone tissue alterations which eventually allowed newly formed bone to establish contact with the SLA surface. The marginal defect lateral to the implant in the test locations gradually became filled with newly formed bone. De novo bone formation started within the walls of the surgically prepared defect. Bone-to-implant contact was first established in the apical portion of the gap. This new bone tissue was in the coronal direction continuous with a dense, non-mineralized 'implant attached' soft tissue which, over time, also became mineralized to increase the height of the zone of bone-to-implant contact. The results suggest that healing of a wide marginal defect around an implant is characterized by appositional bone growth from the lateral and apical bone walls of the defect.

  16. Assessment of the changes in alveolar bone quality after fixed orthodontic therapy: A trabecular structure analysis

    PubMed Central

    Haghnegahdar, Abdolaziz; Zarif Najafi, Hooman; Sabet, Maryam; Saki, Maryam

    2016-01-01

    Background. Tooth displacement changes the periodontium. The aim of orthodontic treatment is desired tooth movement with minimum side effects on the alveolar bone quality. The aim of the present study was to assess changes of alveolar trabeculation in children, young adults and adults and the two genders. Methods. In this cross-sectional study, 63 patients who had been treated in Department of Orthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran, were chosen with convenient sampling method. They were divided into three groups based on their age. Their digitized panoramic radiographs (PRs) were evaluated at six interdental sites from the mesial aspect of the mandibular second molars to the distal aspect of the mandibular first premolars using a visual index. The trabeculation pattern was assigned as either dense (score 3), dense-sparse (score 2) or sparse (score 1). Data were imported to SPSS. Mean of the scores before treatment (score B) and mean of them after treatment (score A) were compared for each group with paired t-test. Changes between score B and sore A of the groups were compared using one-way ANOVA and post hoc tests. Results. Mean score A was significantly higher than mean score B in children (P = 0.001). In contrast, mean score A was significantly lower than mean score B in young adults (P = 0.003). Conclusion. Orthodontists should be cautious when treating young adults and adults regarding the probable, yet possibly temporary, negative effects of orthodontic therapy on the alveolar bone quality. PMID:28096944

  17. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament.

    PubMed

    Nivedhitha Sundaram, M; Sowmya, S; Deepthi, S; Bumgardener, Joel D; Jayakumar, R

    2016-05-01

    Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL.

  18. Effect of slow forced eruption on the vertical levels of the interproximal bone and papilla and the width of the alveolar ridge

    PubMed Central

    Kwon, Eun-Young; Lee, Ju-Youn

    2016-01-01

    Objective Forced eruption has been proposed for the reconstruction of deficient bone and soft tissue. The aim of this study was to examine the changes in the alveolar ridge width and the vertical levels of the interproximal bone and papilla following forced eruption. Methods Patients whose hopeless maxillary anterior teeth were expected to undergo severe bone resorption and soft tissue recession upon extraction were recruited. In addition, patients whose maxillary anterior teeth required forced eruption for restoration due to tooth fracture or dental caries were included. Before and after forced eruption, the interproximal bone height was measured by radiographic analysis, and changes in the alveolar ridge width and the interproximal papilla height were measured with an acrylic stent. Results This prospective study demonstrated that the levels of the interproximal alveolar bone and papilla were significantly increased by 1.36 mm and 1.09 mm, respectively, in the vertical direction. However, the alveolar ridge width was significantly reduced by an average of 0.67 mm in the buccolingual direction. The changes in the level of the interproximal alveolar bone and papilla were positively correlated. Conclusions Although the levels of the interproximal bone and papilla were significantly increased, the alveolar ridge width was significantly decreased following forced eruption. There was a modest positive and significant correlation between the changes in the height of the interproximal alveolar bone and the papilla. Based on our findings, modification of vertical forced eruption should be considered when augmentation of the alveolar ridge width is required. PMID:27896212

  19. Quantification of osteoarticular joint defects through bone segmentation and modeling.

    PubMed

    Yang, Jian; Fu, Tianyu; Ai, Danni; Xing, Huijun; Li, Qin; Wang, Yongtian

    2014-01-01

    Shoulder instability is a major threat to people's daily life. Many patients suffer from shoulder instability such as the loss of the glenoid and humeral head. In clinical practice, an accurate 3D structure estimation of damaged joints is necessary to diagnose and treat bone defects. This study quantifies osteoarticular defects through the modeling and visualization of osteoarticular structures. An improved algorithm to extract the 3D structure of the bones is proposed. The bone contour is then automatically extracted using prior shape and gray scale intensity distribution of joint CT images. Joint structures with mirror symmetry are matched using the Iterative Closest Point registration algorithm. Osteoarticular defects can be quantified on the basis of the symmetric information of the bones. Experimental results demonstrate that the proposed method can effectively segment the joint structures from the CT image. In addition, the proposed mirror symmetrical method can effectively estimate osteoarticular defects.

  20. Preparation and biocompatibility evaluation of bioactive glass-forsterite nanocomposite powder for oral bone defects treatment applications.

    PubMed

    Saqaei, Mahboobe; Fathi, Mohammadhossein; Edris, Hossein; Mortazavi, Vajihesadat

    2015-11-01

    Bone defects which emerge around dental implants are often seen when implants are placed in areas with insufficient alveolar bone, in extraction sockets, or around failing implants. Bone regeneration in above-mentioned defects using of bone grafts or bone substitutes may cure the long-term prognoses of dental implants. Biocompatibility, bioactivity and osteogenic properties are key factors affecting the applications of a bone substitute. This study was aimed at preparation, characterization, biocompatibility and bioactivity evaluation of the bioactive glass-forsterite nanocomposite powder as a desired candidate for oral bone defect treatments. Nanocomposite powders containing 58S bioactive glass and different amounts of forsterite nanopowder were synthesized in situ by sol-gel technique. Characterization of the prepared nanocomposite powders and their cytotoxicity assessment was performed via MTT test. Bioactivity assessment was done by immersing the prepared powder in the simulated body fluid (SBF). Results showed that nanocomposite powders containing forsterite with crystallite size of 20-50nm were successfully fabricated by calcination at 600°C. The prepared bioactive glass-forsterite nanocomposite powders revealed high in vitro biocompatibility; besides, the nanocomposite containing 20wt.% forsterite showed a substantial increase in the cell viability compared with control groups. During immersion in SBF, the formation of apatite layer confirmed the bioactivity of bioactive glass-forsterite nanocomposite powders. According to the results, the fabricated nanocomposite powders can be introduced as a promising candidate for oral bone imperfection treatments and hard tissue mend.

  1. Assessment of Alveolar Bone Status in Middle Aged Chinese (40-59 Years) with Chronic Periodontitis — Using CBCT

    PubMed Central

    Zhao, Haijiao; Li, Chen; Lin, Li; Pan, Yaping; Wang, Hongyan; Zhao, Jian; Tan, Lisi; Pan, Chunling; Song, Jia; Zhang, Dongmei

    2015-01-01

    Objective This study used con-beam computed tomography (CBCT) to investigate the prevalence and severity of alveolar bone loss in middle-aged (40–59 years) Chinese with chronic periodontitis. Materials and Methods The study group comprised 145 dentate individuals aged 40 to 59 years residing in China who suffered from chronic periodontitis. CBCT and the application of NNT software were used to examine the level and location of alveolar bone loss. Results The study revealed that 40–59 year old patients with chronic periodontitis had severe bone loss. At 5,286 sites (34.7%), alveolar bone loss was mild; severe alveolar bone loss was found at 5,978 sites (39.2%). A comparison of bone loss in different jaws revealed that the area with the highest degree of bone loss was on the lingual side of the maxillary molar (56.3 ± 7.2%), and that the area with the lowest degree was primarily on the lingual side of the mandibular canine (27.5 ± 6.3%). There was a lower degree of alveolar bone loss in males than females. Differences were observed when comparing the incidence of bone loss between males and females (P < 0.05). Menopause in females and smoking in both genders may affect the level of bone loss. Male smokers experienced a greater degree of bone loss (41.67 ± 5.76%) than male non-smokers (32.95 ± 4.31%). A 42.23 ± 6.34% bone loss was found in menopausal females versus 31.35 ± 3.62% in non-menopausal females. Conclusions The study revealed that different sites and teeth exhibited a diverse degree of bone loss. In middle-aged patients with chronic periodontitis, the highest degrees of bone loss in the incisors, premolars, and molars were on the lingual side, mesial side and lingual side, respectively. Menopause in females and smoking may affect the level of bone loss. PMID:26431206

  2. Bone defect rehabilitation using lyophilized bone preshaped on a stereolithographic model

    PubMed Central

    Bohner, Lauren Oliveira Lima; Mukai, Eduardo; Mukai, Sueli; Tortamano, Pedro; Sesma, Newton

    2016-01-01

    Bone grafting provides ideal conditions to the patient's rehabilitation with dental implants. In addition, prototyped tridimensional models allow the surgical procedure to be simulated and enable important anatomic structures to be visualized. To present a bone defect rehabilitated with xenogenic bone preshaped on a stereolithographic model and the follow-up after 7 years of treatment. The present case report describes a bone defect rehabilitated with a lyophilized bone block preshaped on a stereolithographic model. The patient, a 56-year-old woman, was referred to the dental office presenting a bone defect in the anterior maxilla. Bone regeneration intervention was performed with xenogenic grafting and barrier membrane. The follow-up of the postoperative period and after 7 years is presented. After 7 years, the tomographic exam showed the maintenance of bone at the grafted site, representing the long-term success of the treatment. PMID:27630509

  3. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation

    PubMed Central

    da SILVA, Aldir Cordeiro; CAPISTRANO, Anderson; de ALMEIDA-PEDRIN, Renata Rodrigues; CARDOSO, Maurício de Almeida; CONTI, Ana Cláudia de Castro Ferreira; CAPELOZZA, Leopoldino

    2017-01-01

    Abstract Objective The aim of this retrospective study was to evaluate the long-term effects of orthodontic traction on root length and alveolar bone level in impacted canines and adjacent teeth. Material and Methods Sample consisted of 16 patients (nine males and seven females), mean initial age 11 years and 8 months presenting with unilaterally maxillary impacted canines, palatally displaced, treated with the same surgical and orthodontic approach. Teeth from the impacted-canine side were assigned as Group I (GI), and contralateral teeth as control, Group II (GII). The mean age of patients at the end of orthodontic treatment was 14 years and 2 months and the mean post-treatment time was 5 years and 11 months. Both contralateral erupted maxillary canines and adjacent teeth served as control. Root length and alveolar bone level (buccal and palatal) were evaluated on cone-beam computed tomography (CBCT) images. The comparison of root length and alveolar bone level changes between groups were assessed by applying paired t-test, at a significance level of 5% (p<0.05). Results There were no statistically significant differences in root length and buccal and palatal bone levels of canines and adjacent teeth among groups. Conclusions Impacted canine treatment by closed-eruption technique associated with canine crown perforation, has a minimal effect on root length and buccal and palatal alveolar bone level in both canine and adjacent teeth, demonstrating that this treatment protocol has a good long-term prognosis. PMID:28198979

  4. Calcium Phosphate Based Three-Dimensional Cold Plotted Bone Scaffolds for Critical Size Bone Defects

    PubMed Central

    Bergmann, Christian J. D.; Odekerken, Jim C. E.; Welting, Tim J. M.; Jungwirth, Franz; Devine, Declan; Bouré, Ludovic; Zeiter, Stephan; van Rhijn, Lodewijk W.; Telle, Rainer; Fischer, Horst; Emans, Pieter J.

    2014-01-01

    Bone substitutes, like calcium phosphate, are implemented more frequently in orthopaedic surgery to reconstruct critical size defects, since autograft often results in donor site morbidity and allograft can transmit diseases. A novel bone cement, based on β-tricalcium phosphate, polyethylene glycol, and trisodium citrate, was developed to allow the rapid manufacturing of scaffolds, by extrusion freeform fabrication, at room temperature. The cement composition exhibits good resorption properties and serves as a basis for customised (e.g., drug or growth factor loaded) scaffolds for critical size bone defects. In vitro toxicity tests confirmed proliferation and differentiation of ATDC5 cells in scaffold-conditioned culture medium. Implantation of scaffolds in the iliac wing of sheep showed bone remodelling throughout the defects, outperforming the empty defects on both mineral volume and density present in the defect after 12 weeks. Both scaffolds outperformed the autograft filled defects on mineral density, while the mineral volume present in the scaffold treated defects was at least equal to the mineral volume present in the autograft treated defects. We conclude that the formulated bone cement composition is suitable for scaffold production at room temperature and that the established scaffold material can serve as a basis for future bone substitutes to enhance de novo bone formation in critical size defects. PMID:24719891

  5. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP

    PubMed Central

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R.; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  6. OCLI-023, a Novel Pyrimidine Compound, Suppresses Osteoclastogenesis In Vitro and Alveolar Bone Resorption In Vivo

    PubMed Central

    Kim, Ju Ang; Lee, Doohyun; Kim, Nam Doo; Shin, Hong-In; Bae, Yong Chul; Park, Eui Kyun

    2017-01-01

    An abnormal increase in osteoclast differentiation and activation results in various bone-resorptive diseases, including periodontitis, rheumatoid arthritis, and osteoporosis. Chemical compounds containing pyrimidine ring have been shown to regulate a variety of biological processes. Therefore, in order to identify an antiresorptive agent, we synthesized a series of pyrimidine ring-containing chemical compounds, and found that OCLI-023 suppressed the differentiation and activation of osteoclasts in vitro. OCLI-023 directly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow macrophages into osteoclasts, without a cytotoxic response. OCLI-023 also downregulated the RANKL-induced mRNA expression of osteoclast markers as well as inhibited the formation of actin rings and resorption pits. OCLI-023 attenuated the RANKL-induced activation of c-Jun N-terminal kinase and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathways. In a mouse model of periodontitis, ligature induced an increase of distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) in the second molar, and OCLI-023 significantly reduced it. Histological analysis showed ligature-induced increase of osteoclast numbers was also significantly reduced by OCLI-023. These data demonstrated the inhibitory effect of OCLI-023 on osteoclast differentiation and activity of osteoclasts in vitro, as well as on ligature-induced bone loss in vivo, and OCLI-023 can be proposed as a novel anti-resorptive compound. PMID:28085946

  7. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP.

    PubMed

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-07-08

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1(-/-) mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1(-/-) mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP.

  8. Alveolar bone protective and hypoglycemic effects of systemic propolis treatment in experimental periodontitis and diabetes mellitus.

    PubMed

    Aral, Cüneyt Asım; Kesim, Servet; Greenwell, Henry; Kara, Mehmet; Çetin, Aysun; Yakan, Birkan

    2015-02-01

    The aim of this study was to evaluate the efficacy of the anti-inflammatory effects of propolis on the systemic and local effects on experimental periodontitis and diabetes. Fifty-six Wistar rats were divided into seven groups: (1) negative-control (NC), (2) periodontitis (P), (3) diabetes (D), (4) diabetes+periodontitis (DP), (5) periodontitis+propolis (P-Pro), (6) diabetes+propolis (D-Pro), and (7) diabetes+periodontitis+propolis (DP-Pro). Periodontitis was induced by ligature placement and diabetes was induced by streptozotocin injection. Propolis (Pro) was administrated by oral gavage (100 mg/kg/day). On day 21, plasma was obtained for analysis and alveolar bone level was evaluated using histomorphometric analysis. Compared to NC the final blood glucose levels for D-Pro was not significantly different (P=.052), however, D, DP, and DP-Pro were significantly different. There were no statistically significant differences in blood glucose concentrations between P and P-Pro, between D and D-Pro, and between DP and DP-Pro. All groups showed significantly more alveolar bone loss compared with NC. A significant difference in bone loss was found between P and P-Pro, and DP and DP-Pro, however there was no difference between D and D-Pro. Plasma interleukin 1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and matrix metalloproteinase-8 (MMP-8) levels were not significantly different among groups. In conclusion, propolis reduced fasting blood glucose levels in diabetes. In addition, propolis might be beneficial as an adjunct treatment of diabetes associated periodontitis and periodontitis without diabetes.

  9. Bioceramic Implant Induces Bone Healing of Cranial Defects.

    PubMed

    Engstrand, Thomas; Kihlström, Lars; Lundgren, Kalle; Trobos, Margarita; Engqvist, Håkan; Thomsen, Peter

    2015-08-01

    Autologous bone or inert alloplastic materials used in cranial reconstructions are techniques that are associated with resorption, infection, and implant exposure. As an alternative, a calcium phosphate-based implant was developed and previously shown to potentially stimulate bone growth. We here uncover evidence of induced bone formation in 2 patients. Histological examination 9 months postoperatively showed multinuclear cells in the central defect zone and bone ingrowth in the bone-implant border zone. An increased expression of bone-associated markers was detected. The other patient was investigated 50 months postoperatively. Histological examination revealed ceramic materials covered by vascularized compact bone. The bone regenerative effect induced by the implant may potentially improve long-term clinical outcome compared with conventional techniques, which needs to be verified in a clinical study.

  10. Molecular and structural assessment of alveolar bone during tooth eruption and function in the miniature pig, Sus scrofa

    PubMed Central

    Yeh, Kuang-Dah; Popowics, Tracy

    2011-01-01

    Summary The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue. Miniature pigs were compared at two occlusal stages, 13 weeks (n=3), corresponding with the mucosal penetration stage of M1 tooth eruption, and 23 weeks (n=3), corresponding with early occlusion of M1/M1. Bone samples for RNA extraction and qRT-PCR analysis were harvested from the diastema and adjacent to M1 roots on one side. Following euthanasia, bone samples for hematoxylin and eosin and TRAP staining were harvested from these regions on the other side. In contrast to expectations, both erupting and functioning molars had reticular fibrolamellar structure in alveolar bone adjacent to M1. However, the woven bone matrix in older pigs was thicker and had denser primary osteons. Gene expression data and osteoclast cell counts showed a tendency for more bone resorptive activity near the molars than at distant sites, but no differences between eruptive stages. Thus, although resorption does occur, it is not a primary mechanism in the transition in alveolar bone from eruption to function. Incremental growth of existing woven bone and filling in of primary osteons within the mineralized scaffold generated the fortification necessary to support an erupted and functioning tooth. PMID:21434979

  11. Tantalum cones and bone defects in revision total knee arthroplasty.

    PubMed

    Boureau, F; Putman, S; Arnould, A; Dereudre, G; Migaud, H; Pasquier, G

    2015-04-01

    Management of bone loss is a major challenge in revision total knee arthroplasty (TKA). The development of preformed porous tantalum cones offers new possibilities, because they seem to have biological and mechanical qualities that facilitate osseointegration. Compared to the original procedure, when metaphyseal bone defects are too severe, a single tantalum cone may not be enough and we have developed a technique that could extend the indications for this cone in these cases. We used 2 cones to fill femoral bone defects in 7 patients. There were no complications due to wear of the tantalum cones. Radiological follow-up did show any migration or loosening. The short-term results confirm the interest of porous tantalum cones and suggest that they can be an alternative to allografts or megaprostheses in case of massive bone defects.

  12. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-01

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768

  13. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  14. Interleukin-33 and RANK-L Interplay in the Alveolar Bone Loss Associated to Periodontitis

    PubMed Central

    Lapérine, Olivier; Cloitre, Alexandra; Caillon, Jocelyne; Huck, Olivier; Bugueno, Isaac Maximiliano; Pilet, Paul; Sourice, Sophie; Le Tilly, Elodie; Palmer, Gaby; Davideau, Jean-Luc; Geoffroy, Valérie; Guicheux, Jérôme; Beck-Cormier, Sarah; Lesclous, Philippe

    2016-01-01

    Introduction Chronic Periodontitis (CP) is an inflammatory disease of bacterial origin that results in alveolar bone destruction. Porphyromonas gingivalis (Pg), one of the main periopathogens, initiates an inflammatory cascade by host immune cells thereby increasing recruitment and activity of osteoclasts, the bone resorbing cells, through enhanced production of the crucial osteoclastogenic factor, RANK-L. Antibodies directed against some cytokines (IL-1β, IL-6 and TNF-α) failed to exhibit convincing therapeutic effect in CP. It has been suggested that IL-33, could be of interest in CP. Objective the present study aims to analyze whether and how IL-33 and RANK-L and/or their interplay are involved in the bone destruction associated to CP. Material and Methods mRNAs and protein expressions of IL-33 and RANK-L were analyzed in healthy and CP human gingival samples by immunohistochemistry (IHC) and RT-qPCR. Murine experimental periodontitis (EP) was induced using Pg infected ligature and Pg free ligature around the first maxillary molar. Alveolar bone loss was recorded by μCT. Mouse gingival explants were stimulated for 24 hours with IL-33 and RANK-L mRNA expression investigated by RT-qPCR. Human oral epithelial cells were infected by Pg for 6, 12; 24 hours and IL-33 and RANK-L mRNA expressions were analyzed by RT-qPCR. Results IL-33 is overexpressed in gingival epithelial cells in human affected by CP as in the murine EP. In human as in murine gingival cells, RANK-L was independently induced by Pg and IL-33. We also showed that the Pg-dependent RANK-L expression in gingival epithelial cells occured earlier than that of IL-33. Conclusion Our results evidence that IL-33 overexpression in gingival epithelial cells is associated with CP and may trigger RANK-L expression in addition to a direct effect of Pg. Finally, IL-33 may act as an extracellular alarmin (danger signal) showing proinflammatory properties in CP perpetuating bone resorption induced by Pg infection

  15. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    PubMed

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-07

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link.

  16. Clinical Evaluation of Autologous Platelet Rich Fibrin in Horizontal Alveolar Bony Defects

    PubMed Central

    Sam, George; Amol, Nagrale Vijay

    2014-01-01

    Background: Horizontal bone loss is the most common periodontal problem confronting the clinician but has received little attention. Platelet rich fibrin (PRF) is a second generation platelet concentrate. The platelets, leucocytes, growth factors and cytokines contained within PRF make it a healing biomaterial with tremendous potential for bone and soft tissue regeneration. Aim: This interventional clinical trial evaluates the clinical effectiveness of Autologous Platelet Rich Fibrin (PRF) in the management of horizontal bony defects. Settings and Design: Department of Periodontics. Design was Non Randomized Clinical Trial with split mouth design. Materials and Methods: A total of 45 sites with horizontal bone loss in 15 patients were studied, 15 sites were treated with PRF gel (experimental group I) and 15 sites were treated with PRF gel and PRF membrane (experimental group II). Control group (15 sites) were treated with open flap debridement. Statistical Analysis: All the parameters were assessed at baseline and after nine months which included Pocket Depth (PD), Clinical Attachment level (CAL), Gingival Recession (REC) and Relative Crest Height (RCH). The mean changes at baseline and after 9 months within each group were compared using Wilcoxon Signed Ranks Test. The mean changes for each parameter between groups were compared using Kruskal Wallis Test. Results: Re-evaluation at nine months revealed that all groups showed a significant reduction in probing depth (1.1±0.38 mm in control, 1.73±0.53 mm in group I, 1.7±0.45 mm in group II)(p<0.05) and clinical attachment gain (0.86±0.58 mm in control, 1.56±0.62 mm in group I, 1.7±0.52 in group II)(p<0.05) as compared to baseline. Intergroup comparisons of reduction in probing depth and clinical attachment gain showed significant differences in the experimental groups as compared to control (p<0.05), but there was no significant difference between the experimental groups (p>0.05). There was no significant

  17. Treatment of Bone Defects in War Wounds: Retrospective Study

    PubMed Central

    Grubor, Predrag; Milicevic, Snjezana; Grubor, Milan; Meccariello, Luigi

    2015-01-01

    Introduction: Results of the treatment of open fractures primarily depend on the treatment of connected soft tissue injuries. Objective: The aim was to present the experience and methods gained during the treatment of diaphyseal bone defects as a consequence of gunshot fracture soft war trauma. Patients and Methods: The study consisted of 116 patients with the diaphyseal bone defect who were treated with the usage of primary and delayed autotransplantation of bones, transplants of the fibula and Ilizarov distraction osteogenesis. Results: The results of compensation of bone defect less than 4 cm and conducted by an early cortico-spongioplastics were as follows: good in 8 respondents (45%), satisfactory in 6 (34%) and poor in 4 respondents (21%). In cases of delayed cortico-spongioplastics, the above mentioned results were: good in 36 (41%) respondents, satisfactory in 24 (34%) and poor in 16 (25%) respondents. The results of compensation of bone defect greater than 4 cm with the usage of fibular transplant were as follows: good in 3 (38%) respondents, satisfactory in 3 (38%) and poor in 2 (24%), and with the usage of using the Ilizarov method, the results were as follows: good in 8 (57%) respondents, satisfactory in 3 (21.5%) and poor in 3(21.5%) respondents. Conclusion: The results showed that, in cases of compensation of bone defects less than 4 cm, the advantage is given to the primary spongioplastics over the delayed one. In cases of compensation of bone defects greater than 4 cm, the advantage is given to the Ilizarov distraction osteogenesis when compared to the fibular transplant. PMID:26543315

  18. Treatment of bone and soft tissue defects in infected nonunion.

    PubMed

    Fleischmann, W; Suger, G; Kinzl, L

    1992-01-01

    In the treatment of infected pseudarthroses the general principles of osteitis treatment are applied. This includes radical excision of pseudarthrotic and infected bone tissue, and of diseased surrounding soft tissue. External fixation devices are the preferred method of stabilization of the bone. Based on the data of a retrospective study of 31 Papineau procedures, 65 local flap transfers, and 46 free flap transfers we found that the Papineau procedure works in minor bone and soft tissue defects. Unstable scar formation is a major disadvantage of this method. Local muscular flaps are indicated in the treatment of soft tissue defects in the proximal and medial portions of the lower leg. A prerequisite for free flap transfers is the availability of trained personnel and suitable technical equipment. The option is limited by the patient's vascular situation. This kind of tissue transfer seems to be superior to other methods. For the substitution of bone defects corticocancellous bone transplantation may be used. A promising alternative method to deal with extensive bone defects is osteogenesis produced by callus distraction.

  19. Dental implants with versus without peri-implant bone defects treated with guided bone regeneration

    PubMed Central

    Peñarrocha-Oltra, David; Peñarrocha-Diago, Maria; Peñarrocha-Diago, Miguel

    2015-01-01

    Background The guided bone regeneration (GBR) technique is highly successful for the treatment of peri-implant bone defects. The aim was to determine whether or not implants associated with GBR due to peri-implant defects show the same survival and success rates as implants placed in native bone without defects. Material and Methods Patients with a minimum of two submerged dental implants: one suffering a dehiscence or fenestration defect during placement and undergoing simultaneous guided bone regeneration (test group), versus the other entirely surrounded by bone (control group) were treated and monitored annually for three years. Complications with the healing procedure, implant survival, implant success and peri-implant marginal bone loss were assessed. Statistical analysis was performed with non-parametric tests setting an alpha value of 0.05. Results Seventy-two patients and 326 implants were included (142 test, 184 control). One hundred and twenty-five dehiscences (average height 1.92±1.11) and 18 fenestrations (average height 3.34±2.16) were treated. At 3 years post-loading, implant survival rates were 95.7% (test) and 97.3% (control) and implant success rates were 93.6% and 96.2%, respectively. Mean marginal bone loss was 0.54 (SD 0.26 mm) for the test group and 0.43 (SD 0.22 mm) for the control group. No statistically significant differences between both groups were found. Conclusions Within the limits of this study, implants with peri-implant defects treated with guided bone regeneration exhibited similar survival and success rates and peri-implant marginal bone loss to implants without those defects. Large-scale randomized controlled studies with longer follow-ups involving the assessment of esthetic parameters and hard and soft peri-implant tissue stability are needed. Key words:Guided bone regeneration, peri-implant defects, dental implants, marginal bone level, success rate, survival rate. PMID:26330931

  20. Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study.

    PubMed

    Choi, B-H; Zhu, S-J; Kim, B-Y; Huh, J-Y; Lee, S-H; Jung, J-H

    2005-06-01

    Previous studies have shown that a combination of platelet-rich plasma (PRP) and autogenous bone graft can increase the rate of osteogenesis and enhance bone formation qualitatively. However, contradictory results were reported in a recent animal study. In order to clarify this inconsistency, this study examined the influence of the PRP concentrations on the viability and proliferation of alveolar bone cells in vitro. Bone cells obtained from the alveolar bone chips were exposed to various PRP concentrations. After a culture period of 7 days, cellular viability and proliferation were evaluated by counting the number of cells and a MTT assay. The results showed that the viability and proliferation of alveolar bone cells were suppressed by high PRP concentrations, but were stimulated by low PRP concentrations (1-5%). These in vitro results support the view that variations in the PRP concentrations might influence the bone formation within the PRP-treated bone grafts.

  1. A feasibility study of applying cone-beam computed tomography to observe dimensional changes in human alveolar bone*

    PubMed Central

    Li, Bei; Wang, Yao; Li, Jun

    2014-01-01

    The purpose of this study was to demonstrate the feasibility of applying cone-beam computed tomography (CBCT) to observe dimensional changes in human alveolar bone continuously after tooth extraction. Sixty patients were selected from a CBCT database. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken after implant surgery. A fixed anatomic reference point was used to orient the horizontal slice of the two scans. The alveolar ridge width was measured on the horizontal slice. In each series of CBCT I sagittal slices, the number of slices from the start point to the pulp center of the test tooth was recorded. The tooth length was measured on the sagittal slice. In each series of CBCT II slices, tooth length was measured on a sagittal slice selected based on the number of slices from the start point to the pulp center recorded in CBCT I. Intraobserver reliability, assessed by the intraclass correlation coefficient (ICC), was high. Paired sample t-tests of repeated measurements of both tooth length and alveolar bone width showed no statistically significant differences (P<0.05). This study has proved that projection differences among CBCT scans taken at different time points from one patient can be neglected without affecting the accuracy of millimeter scale measurements. CBCT is a reliable imaging tool for continuously observing dimensional changes in human alveolar bone. PMID:24711360

  2. The Influence of Different Nonsteroidal Anti-Inflammatory Drugs on Alveolar Bone in Rats: An Experimental Study

    PubMed Central

    Inal, Sermet; Kabay, Sahin; Cayci, Muhammet Kasim; Deger, Ayşenur; Kuru, Halil Isa; Altikat, Sayit; Akkas, Gizem

    2015-01-01

    The aim The aim of this study was to investigate the effect of dexketoprofen trometamol, meloxicam, diclofenac sodium on any untreated alveolar bone when they are used as drugs for another indication. Materials and Methods Twenty eight male Spraque-Dawley rats were randomized into four groups as dexketoprofen trometamol (Group I), meloxicam (Group II), diclofenac sodium (Group III) and control group. Nonsteroidal anti-inflammatory drugs (NSAID) were administered after a fibula fracture for 10 days. Untreated alveolar bone was histopathologically examined for spongious bone density, osteoclastic density and osteoblastic density. Results Spongious bone density was lower in study groups (Group I, group II and group III) than the control group (p<0.05). In contrast, the increase in osteoclastic density was observed in other groups apart from the control group (p<0.05). Osteoblastic density was evaluated and it was determined that group II and group III had lower results than the control group (p<0.05) but group I was equal to the control group. Conclusion This study showed that systemically administrated NSAIDs have the potential to affect untreated alveolar bone. This should also be considered in long term use of NSAIDs. PMID:27688417

  3. Effect of laser phototherapy on human alveolar bone repair: micro tomographic and histomorphometrical analysis

    NASA Astrophysics Data System (ADS)

    Romão, Marcia M. A.; Marques, Márcia M.; Cortes, Arthur R. G.; Horliana, Anna C. R. T.; Moreira, Maria S.; Lascala, Cesar A.

    2015-06-01

    The immediate dental implant placement in the molars region is critical, because of the high amount of bone loss and the discrepancy between the alveolar crest thickness and the dental implant platform. Laser phototherapy (LPT) improves bone repair thus could accelerate the implant placement. Twenty patients were selected for the study. Ten patients were submitted to LPT with GaAlAs diode laser (808nm) during molar extraction, immediately after, 24h, 48h, 72h, 96h and 7 days. The irradiations were applied in contact and punctual mode (100mW, 0.04cm2, 0.75J/cm2, 30s per point, 3J per point). The control group (n=10) received the same treatment; however with the power of the laser off. Forty days later samples of the tissue formed inside the sockets were obtained for further microtomography (microCTs) and histomorphometry analyses. Data were compared by the Student t test, whereas those from the different microCT parameters were compared by the Pearson correlation test (p<0.05). The relative bone volume, as well as area was significantly higher (p<0.001) in the lased than the control group. In the control group there were negative correlations between number and thickness, and between number and separation of trabecula (p<0.01). Between thickness and separation of trabecula the correlation was positive (p<0.01). The laser group showed significant negative correlation between the number and the thickness of trabecula (p<0.01). LPT accelerated bone repair. By the Pearson correlation test it was possible to infer that the lased group presented a more homogeneous trabecular configuration, which would allow earlier dental implant placement.

  4. On tooth movements and associated tissue alterations related to edentulous areas and bone defects.

    PubMed

    Stokland, Birgitta Lindskog

    2011-01-01

    The aim of the thesis was to study orthodontic tooth movement in relation to edentulous areas and infrabony pockets as well as the physiological movement of teeth facing an edentulous area. A dog model was used in Studies I and II. Teeth were orthodontically moved into and out from inflamed, infrabony periodontal pockets (Study I) and into areas of reduced bone height (Study II). Clinical, radiographic and histometric analyses were made with respect to changes in tooth-supporting tissues. Study III involved clinical, radiographic and 3D model assessments of changes in periodontal conditions and alveolar ridge dimensions in adult patients subjected to tooth movement into areas with reduced ridge dimensions. In Study IV, panoramic radiographs of 292 subjects, taken at an interval of 12 years, were analyzed with regard to changes in the elongation of unopposed molars and tipping of molars facing a mesial edentulous space. In the animal study orthodontic bodily movement of teeth with inflamed, infrabony pockets caused an enhanced rate of progression of the periodontal lesion (Study 1), particularly when the tooth movement was directed towards the infrabony defect. Teeth with healthy periodontium that were orthodontically moved into areas of markedly reduced bone height maintained their periodontal tissue support (Study II). Corresponding orthodontic tooth movement in humans (Study III) resulted in minor dimensional alterations of the periodontal tissues and an increased bucco-lingual width of the alveolar ridge in the area into which the tooth had been moved, whereas a decreased width of the newly established edentulous area was noted. All teeth that were moved showed lateral root resorption at the level of the bone crest on the pressure side, but signs of repair were noticed 1-year post-treatment. In the 12-year radiographic study (Study IV) unopposed molars showed a significant increase in elongation over the 12 years of follow-up. The degree of elongation increased

  5. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis.

    PubMed

    Herbert, B A; Novince, C M; Kirkwood, K L

    2016-06-01

    Aggregatibacter actinomycetemcomitans is a perio-pathogenic bacteria that has long been associated with localized aggressive periodontitis. The mechanisms of its pathogenicity have been studied in humans and preclinical experimental models. Although different serotypes of A. actinomycetemcomitans have differential virulence factor expression, A. actinomycetemcomitans cytolethal distending toxin (CDT), leukotoxin, and lipopolysaccharide (LPS) have been most extensively studied in the context of modulating the host immune response. Following colonization and attachment in the oral cavity, A. actinomycetemcomitans employs CDT, leukotoxin, and LPS to evade host innate defense mechanisms and drive a pathophysiologic inflammatory response. This supra-physiologic immune response state perturbs normal periodontal tissue remodeling/turnover and ultimately has catabolic effects on periodontal tissue homeostasis. In this review, we have divided the host response into two systems: non-hematopoietic and hematopoietic. Non-hematopoietic barriers include epithelium and fibroblasts that initiate the innate immune host response. The hematopoietic system contains lymphoid and myeloid-derived cell lineages that are responsible for expanding the immune response and driving the pathophysiologic inflammatory state in the local periodontal microenvironment. Effector systems and signaling transduction pathways activated and utilized in response to A. actinomycetemcomitans will be discussed to further delineate immune cell mechanisms during A. actinomycetemcomitans infection. Finally, we will discuss the osteo-immunomodulatory effects induced by A. actinomycetemcomitans and dissect the catabolic disruption of balanced osteoclast-osteoblast-mediated bone remodeling, which subsequently leads to net alveolar bone loss.

  6. Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase.

    PubMed

    Simão, Ana Maria S; Beloti, Marcio M; Rosa, Adalberto L; de Oliveira, Paulo T; Granjeiro, José Mauro; Pizauro, João M; Ciancaglini, Pietro

    2007-11-01

    The aim of this study was to obtain membrane-bound alkaline phosphatase from osteoblastic-like cells of human alveolar bone. Cells were obtained by enzymatic digestion and maintained in primary culture in osteogenic medium until subconfluence. First passage cells were cultured in the same medium and at 7, 14, and 21 days, total protein content, collagen content, and alkaline phosphatase activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Cells in primary culture at day 14 were washed with Tris-HCl buffer, and used to extract the membrane-bound alkaline phosphatase. Cells expressed osteoblastic phenotype. The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10.0. This enzyme also hydrolyzes ATP, ADP, fructose-1-phosphate, fructose-6-phosphate, pyrophosphate and beta-glycerophosphate. PNPPase activity was reduced by typical inhibitors of alkaline phosphatase. SDS-PAGE of membrane fraction showed a single band with activity of approximately 120 kDa that could be solubilized by phospholipase C or Polidocanol.

  7. Effects of Electromagnetic Fields on Osteogenesis of Human Alveolar Bone-Derived Mesenchymal Stem Cells

    PubMed Central

    Lim, KiTaek; Hexiu, Jin; Kim, Jangho; Seonwoo, Hoon; Cho, Woo Jae; Choung, Pill-Hoon; Chung, Jong Hoon

    2013-01-01

    This study was performed to investigate the effects of extremely low frequency pulsed electromagnetic fields (ELF-PEMFs) on the proliferation and differentiation of human alveolar bone-derived mesenchymal stem cells (hABMSCs). Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined not merely the effect of ELF-PEMFs on cell proliferation, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix but vinculin, vimentin, and calmodulin (CaM) expressions in hABMSCs during osteogenic differentiation. Exposure of hABMSCs to ELF-PEMFs increased proliferation by 15% compared to untreated cells at day 5. In addition, exposure to ELF-PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis within 2 weeks. ELF-PEMFs also increased vinculin, vimentin, and CaM expressions, compared to control. In particular, CaM indicated that ELF-PEMFs significantly altered the expression of osteogenesis-related genes. The results indicated that ELF-PEMFs could enhance early cell proliferation in hABMSCs-mediated osteogenesis and accelerate the osteogenesis. PMID:23862141

  8. Alternatives to Autograft Evaluated in a Rabbit Segmental Bone Defect

    DTIC Science & Technology

    2015-07-09

    ation in the defects treated with DBM grafts as compared to Col:β-TCP grafts. The healing of bones treated with Col:β- TCP was improved when augmented ...DBM. One would expect the augmentation with cells to play a greater role in bone healing if the availability of stem cells and osteogenic growth...folds without augmentation [27–29], a control group contain- ing either no scaffold or scaffolds without cells was not in- cluded to minimise animal use

  9. Treatment with paracetamol, ketorolac or etoricoxib did not hinder alveolar bone healing: a histometric study in rats

    PubMed Central

    FRACON, Ricardo Nogueira; TEÓFILO, Juliana Mazzonetto; MORIS, Izabela Cristina; LAMANO, Teresa

    2010-01-01

    Prostaglandins control osteoblastic and osteoclastic function under physiological or pathological conditions and are important modulators of the bone healing process. The non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and consequently prostaglandins synthesis. Experimental and clinical evidence has indicated a risk for reparative bone formation related to the use of non-selective (COX-1 and COX-2) and COX-2 selective NSAIDs. Ketorolac is a non-selective NSAID which, at low doses, has a preferential COX-1 inhibitory effect and etoricoxib is a new selective COX-2 inhibitor. Although literature data have suggested that ketorolac can interfere negatively with long bone fracture healing, there seems to be no study associating etoricoxib with reparative bone formation. Paracetamol/acetaminophen, one of the first choices for pain control in clinical dentistry, has been considered a weak anti-inflammatory drug, although supposedly capable of inhibiting COX-2 activity in inflammatory sites. Objective The purpose of the present study was to investigate whether paracetamol, ketorolac and etoricoxib can hinder alveolar bone formation, taking the filling of rat extraction socket with newly formed bone as experimental model. Material and methods The degree of new bone formation inside the alveolar socket was estimated two weeks after tooth extraction by a differential point-counting method, using an optical microscopy with a digital camera for image capture and histometry software. Differences between groups were analyzed by ANOVA after confirming a normal distribution of sample data. Results and conclusions Histometric results confirmed that none of the tested drugs had a detrimental effect in the volume fraction of bone trabeculae formed inside the alveolar socket. PMID:21308296

  10. Periodontal disease-associated compensatory expression of osteoprotegerin is lost in type 1 diabetes mellitus and correlates with alveolar bone destruction by regulating osteoclastogenesis.

    PubMed

    Silva, Juliete Aparecida F; Lopes Ferrucci, Danilo; Peroni, Luis Antônio; de Paula Ishi, Eduardo; Rossa-Junior, Carlos; Carvalho, Hernandes F; Stach-Machado, Dagmar Ruth

    2012-01-01

    Alveolar bone resorption results from the inflammatory response to periodontal pathogens. Systemic diseases that affect the host response, such as type 1 diabetes mellitus (DM1), can potentiate the severity of periodontal disease (PD) and accelerate bone resorption. However, the biological mechanisms by which DM1 modulates PD are not fully understood. The aim of this study was to determine the influence of DM1 on alveolar bone resorption and to evaluate the role of receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin (OPG) in osteoclastogenesis in rats. PD was induced by means of ligature in nondiabetic and in streptozotocyn-induced DM1 rats. Morphological and morphometric analyses, stereology and osteoclast counting were performed. RANKL and OPG mRNA levels, protein content, and location were determined. PD caused alveolar bone resorption, increased the number of osteoclasts in the alveolar bone crest and also promoted changes in RANKL/OPG mRNA expression. DM1 alone showed alveolar bone destruction and an increased number of osteoclasts at the periapical and furcal regions. DM1 exacerbated these characteristics, with a greater impact on bone structure, resulting in a low OPG content and a higher RANKL/OPG ratio, which correlated with prominent osteoclastogenesis. This work demonstrates that the effects of PD and DM1 enhance bone destruction, confirms the importance of the RANKL signaling pathway in bone destruction in DM1 in animal models and suggests the existence of alternative mechanisms potentiating bone degradation in PD.

  11. [Dental alveolar bone and dental arch remodeling in children: orthodontic diagnosis and treatments based on individual child arch development].

    PubMed

    Xiaobing, Li

    2016-12-01

    The etiology of malocclusions basically involves both congenital and environmental factors. Malocclusion is the result of the abnormal development of the orofacial complex (including tooth, dental alveolar bone, upper and lower jaws). Early orthodontic interceptive treatments involve the elimination of all congenital and environmental factors that contribute to the malformation of the orofacial complex, as well as interrupt the deviated development of the orofacial complex and the occlusion. Early orthodontic interceptive treatments mainly aim to use children's growth potential to correct abnormal developments of occlusions and orthodontically treat malocclusions more efficiently. The early orthodontic interceptive treatments include correcting the child's bad oral habits, training the abnormal functioned para-oral muscles, maintaining the normal eruptions of succeeding permanent teeth, applying interceptive treatments to the mal-developed teeth, and employing functional orthopedic treatments for abnormal growths of the upper and lower jaws. In orthodontics, correcting mal-positioned teeth is called orthodontic treatment, while rectifying the abnormal relationships of the upper and lower jaws is called functional orthopedic treatment. However, no clear definition is available as regards to the early orthodontic interceptive treatment of malocclusions caused by the deviated development of the dental alveolar bone. This new theory of "early dental alveolar bone and dental arch remodeling technique" was proposed by Professor Li Xiaobing of the Department of Pediatric Dentistry, Faculty of Pediatric Dentistry and Orthodontics in West China Hospital of Stomatology through his clinical analyses and investigation of his early orthodontic interceptive treatments. He defined the early orthodontic corrections of abnormal growth of dental alveolar bone as "remodel". The "early dental alveolar bone and dental arch remodeling theory and technique" is proved useful in

  12. Inhibitory effects of French pine bark extract, Pycnogenol®, on alveolar bone resorption and on the osteoclast differentiation.

    PubMed

    Sugimoto, Hideki; Watanabe, Kiyoko; Toyama, Toshizo; Takahashi, Shun-suke; Sugiyama, Shuta; Lee, Masaichi-Chang-il; Hamada, Nobushiro

    2015-02-01

    Pycnogenol(®) (PYC) is a standardized bark extract from French maritime pine (Pinus pinaster Aiton). We examined the inhibitory effects of PYC on alveolar bone resorption, which is a characteristic feature of periodontitis, induced by Porphyromonas gingivalis (P. gingivalis) and osteoclast differentiation. In rat periodontitis model, rats were divided into four groups: group A served as the non-infected control, group B was infected orally with P. gingivalis ATCC 33277, group C was administered PYC in the diet (0.025%: w/w), and group D was infected with P. gingivalis and administered PYC. Administration of PYC along with P. gingivalis infection significantly reduced alveolar bone resorption. Treatment of P. gingivalis with 1 µg/ml PYC reduced the number of viable bacterial cells. Addition of PYC to epithelial cells inhibited adhesion and invasion by P. gingivalis. The effect of PYC on osteoclast formation was confirmed by tartrate-resistant acid phosphatase staining. PYC treatment significantly inhibited osteoclast formation. Addition of PYC (1-100 µg/ml) to purified osteoclasts culture induced cell apoptosis. These results suggest that PYC may prevent alveolar bone resorption through its antibacterial activity against P. gingivalis and by suppressing osteoclastogenesis. Therefore, PYC may be useful as a therapeutic and preventative agent for bone diseases such as periodontitis.

  13. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  14. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects.

    PubMed

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S; Bornstein, Michael M; Wang, Chun-Cheng; Buser, Daniel

    2015-10-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored.

  15. Alveolar bone turnover and tooth movement in male rats after removal of orthodontic appliances.

    PubMed

    King, G J; Latta, L; Rutenberg, J; Ossi, A; Keeling, S D

    1997-03-01

    The purpose of this study was to acquire tooth movement, histomorphometric and biochemical data on oral tissues that had previously been loaded with calibrated orthodontic forces. One hundred and forty-four male Sprague-Dawley rats were randomly divided into two groups: Group I, orthodontic appliances placed for 16 days to mesially move maxillary first molars with an initial force of 40 gm, and group II, sham orthodontic treatment. Seven to twelve rats were killed at each of six times after removal of appliance. Tooth movement was measured cephalometrically, alveolar bone turnover by histomorphometry, and tissue phosphatase levels biochemically. Treated molars moved distally more rapidly than the shams (13.9 vs 5.0 microns/day). The appliance removal group had a persistent 10-fold elevation in root resorption on the mesial (p < 0.0001), as well as early elevations in osteoclasts on the mesial and osteoblasts on the distal (p < 0.001) that returned to control by 3 to 5 days. Acid, alkaline phosphatase, and tartrate-resistant acid phosphatase (TRAP) remained elevated in the tissues until 10 days (p < 0.0001). Changes in the dynamic measures of bone formation were characterized by low rates at days 1 and 3 (p < 0.01), elevating thereafter on the mesial and the converse on the distal. Orthodontic tooth movement relapses, and bone remodeling continues for several days after removal of appliance consistent with the direction of loading, orthodontic treatment stimulates root resorption at sites that were loaded in pressure without detectable recovery, and root resorption does not increase at the tension sites.

  16. Critical Size Bone Defect Healing Using Collagen–Calcium Phosphate Bone Graft Materials

    PubMed Central

    Walsh, William Robert; Oliver, Rema A.; Christou, Chris; Lovric, Vedran; Walsh, Emma Rose; Prado, Gustavo R.; Haider, Thomas

    2017-01-01

    The need for bone graft materials to fill bony voids or gaps that are not related to the intrinsic stability of the bone that arise due to trauma, tumors or osteolysis remains a clinically relevant and significant issue. The in vivo response of collagen–tricalcium phosphate bone graft substitutes was evaluated in a critical size cancellous defect model in skeletally mature rabbits. While the materials were chemically virtually identical, new bone formation, implant resorption and local in vivo responses were significantly different. Differences in the in vivo response may be due, in part, collagen source and processing which influences resorption profiles. Continued improvements in processing and manufacturing techniques of collagen—tricalcium phosphate bone graft substitutes can result in osteoconductive materials that support healing of critical size bone defects even in challenging pre-clinical models. PMID:28045946

  17. [Bone morphogenetic proteins (BMP): clinical application for reconstruction of bone defects].

    PubMed

    Sierra-García, Gerardo Daniel; Castro-Ríos, Rocío; Gónzalez-Horta, Azucena; Lara-Arias, Jorge; Chávez-Montes, Abelardo

    2016-01-01

    Since the introduction of bone morphogenetic proteins, their use has become an invaluable ally for the treatment of bone defects. These proteins are potent growth factors, related to angiogenic and osteogenic activity. The osteoinductive capacity of recombinant bone morphogenetic protein (rhBMP) in the formation of bone and cartilage has been confirmed in in vitro studies and evaluated in clinical trials. To obtain a therapeutic effect, administration is systemic, by injection over the physiological dose. Among the disadvantages, ectopic bone formation or high morbidity in cases of spinal fusion is observed. In this review, the roles of bone morphogenetic proteins in bone repair and clinical applications are analyzed. These findings represent advances in the study of bone regeneration and application of growth factors for more predictable results.

  18. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    PubMed

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects.

  19. The Effectiveness of Crataegus orientalis M Bieber. (Hawthorn) Extract Administration in Preventing Alveolar Bone Loss in Rats with Experimental Periodontitis.

    PubMed

    Hatipoğlu, Mükerrem; Sağlam, Mehmet; Köseoğlu, Serhat; Köksal, Ekrem; Keleş, Ali; Esen, Hacı Hasan

    2015-01-01

    The purpose of this animal study was to evaluate the effects of hawthorn (Crataeus orientalis M Bieber.) extract on serum oxidative status and alveolar bone loss in experimental periodontitis. Twenty-seven Wistar rats were assigned to one of the following groups: non- ligated+placebo (saline) (NL, n = 9), ligature only+placebo (saline) (LO, n = 9), and ligature and treated with hawthorn extract in saline (H, n = 9) (100 mg/kg orogastrically, once a day for 11 days). Periodontitis was induced by submerging a 4/0 silk ligature in the sulcus of the mandibular right first molars of rats, and the animals were sacrificed after 11 days. Micro-CT examinations were performed for linear and volumetric parameter assessment of alveolar bone. Periodontal tissues were histopathologically examined to assess the differences among the study groups. Levels of serum total antioxidant status (TAS)/total oxidant status (TOS), and oxidative stress index (OSI) were also analyzed. Alveolar bone loss was significantly reduced by hawthorn administration compared to LO group (p<0.05). The number of inflammatory cells and osteoclasts in the LO group was significantly higher than that of the NL and H groups (p< 0.05). The number of osteoblasts in the LO and H groups was significantly higher than that of the NL group (p<0.05). TOS and OSI levels were significantly reduced in H group compared to LO group (P <0.05) and TAS levels were similar in H and NL group (p< 0.05). Hawthorn extract showed inhibitory effect on periodontal inflammation and alveolar bone loss by regulating TAS, TOS and OSI levels in periodontal disease in rats when administered systemically.

  20. Histological studies on the effects of tooth brushing on repair of alveolar bone after periodontal osseous surgery in the rat incisor.

    PubMed

    Agematsu, H; Watanabe, H; Fukayama, M; Yamamoto, H; Kanazawa, T; Kishiro, H; Miake, K

    1993-08-01

    The purpose of this study was to elucidate the effects of tooth brushing on repair of alveolar bone after periodontal osseous surgery in the labial alveolar bone of rat incisor. The surgery was performed on 24 Wistar rats divided into 2 groups: the experimental group, which was subjected to tooth brushing, and the control group, which was not. In the experimental group, daily tooth brushing was initiated at 4 weeks after surgery. The rats were sacrificed after 1 or 2 weeks of tooth brushing. Microradiographic, light and fluorescence microscopic examinations were made of sections of the alveolar bone and its surrounding tissue. After 1 week of tooth brushing, callus with a low degree of mineralization and with large, irregularly arranged, young osteocytes appeared in the superficial layer and crest portion of alveolar bone in the brushing region. Numerous blood vessels had invaded the callus. In this region, the height of osteoblasts on the callus surface increased. At the alveolar crest region, the callus was approximately 3 times thicker than in the superficial region. After 2 weeks of tooth brushing, modification had occurred in the callus; this region had evolved into developed bone with a compact matrix. These findings suggest that the intermittent mechanical stress of tooth brushing is useful in activating the cells of the alveolar periosteum and in stimulating bone formation.

  1. Alveolar bone density and its clinical implication in the placement of dental implants and orthodontic mini-implants

    PubMed Central

    Almasoud, Naif N.; Tanneru, Nagaraju; Marei, Hesham F.

    2016-01-01

    Objectives: To assess the bone density in maxilla and mandible in dentate and edentulous patients in Saudi population. Methods: This study involved a retrospective analysis of cone beam CT images of 100 patients (50 male and 50 female) who have come to College of Dentistry, University of Dammam, Dammam, Kingdom of Saudi Arabia between January 2014 and 2015. Using the bone density option in the Simplant software, the Hounsfield unit (HU) was calculated at the edentulous sites. While for dentate sites, a region of interest was selected coronally at 3-5 mm to the root apex using I-CAT vision software. The densities of the buccal bone and cancellous bone were measured at interradicular areas of a specific teeth. Results: The highest bone density at the edentulous sites was at the mandibular anterior region (776.5 ± 65.7 HU), followed by the mandibular posterior region (502.2 ± 224.2 HU). Regarding the dentate sites, the highest bone density was at the buccal cortical plate of the lower incisor teeth (937.56 ± 176.92 HU) and the lowest bone density was at the cancellous bone around the posterior maxillary teeth (247.12 ± 46.75 HU). Conclusion: The alveolar bone density at dentate and edentulous sites in our population is generally lower than the norm reference density of other populations, which dictates the need for quantitative assessment of bone density before implants and mini-implants placement. PMID:27279516

  2. Mechanical environment change in root, periodontal ligament, and alveolar bone in response to two canine retraction treatment strategies

    PubMed Central

    Jiang, F.; Xia, Z.; Li, S.; Eckert, G.; Chen, J.

    2015-01-01

    Objective To investigate the initial mechanical environment (ME) changes in root surface, periodontal ligament (PDL), and alveolar bone due to two treatment strategies, low or high moment-to-force ratio (M/F). Setting and Sample Population Indiana University-Purdue University Indianapolis. Eighteen patients who underwent maxillary bilateral canine retraction. Material and method Finite element models of the maxillary canines from the patients were built based on their cone beam computed tomography scans. For each patient, the canine on one side had a specially designed T-loop spring with the M/F higher than the other side. Four stress invariants (1st principal/dilatational/3rd principal/von Mises stress) in the tissues were calculated. The stresses were compared with the bone mineral density (BMD) changes reported previously for linking the ME change to bone modeling/remodeling activities. The correlation was tested by the mixed-model anova. Results The alveolar bone in the direction of tooth movement is primarily in tension, while the PDL is in compression; the stresses in the opposite direction have a reversed pattern. The M/F primarily affects the stress in root. Three stress invariants (1st principal/3rd principal/dilatational stress) in the tooth movement direction have moderate correlations with BMD loss. Conclusions The stress invariants may be used to characterize what the osteocytes sense when ME changes. Their distributions in the tissues are significantly different, meaning the cells experience different stimuli. The higher bone activities along the direction of tooth movement may be related to the initial volumetric increase and decrease in the alveolar bone. PMID:25865531

  3. The Treatment Efficacy of Bone Tissue Engineering Strategy for Repairing Segmental Bone Defects Under Osteoporotic Conditions.

    PubMed

    Wang, Zhen Xing; Chen, Cheng; Zhou, Quan; Wang, Xian Song; Zhou, Guangdong; Liu, Wei; Zhang, Zhi-Yong; Cao, Yilin; Zhang, Wen Jie

    2015-09-01

    The potential of increasing bone mass and preventing fractures in osteoporosis using stem cell therapy is currently an area of intense focus. However, there are very little data available regarding the postfracture bony defect healing efficacy under osteoporotic conditions. This study aims to investigate whether critical-sized segmental bone defects in a rabbit model of osteoporosis could be repaired using an allogenic stem cell-based tissue engineering (TE) approach and to investigate the potential influence of osteoporosis on the treatment efficacy. Rabbit fetal bone marrow mesenchymal stem cells (BMSCs) were harvested and expanded in vitro. Decalcified bone matrix (DBM) scaffolds were then seeded with allogenic fetal BMSCs and cultivated in osteogenic media to engineer BMSC/DBM constructs. Critical-sized radial defects were created in ovariectomized (OVX) rabbits and the defects were repaired either by insertion of BMSC/DBM constructs or by DBM scaffolds alone. Also, nonovariectomized age-matched (non-OVX) rabbits were served as control. At 3 months post-treatment under the osteoporotic condition (OVX rabbits), the BMSC/DBM constructs inserted within the defect generated significantly more bone tissue when compared to the DBM scaffold as demonstrated by the X-ray, microcomputed tomography, and histological analyses. In addition, when compared to a normal nonosteoporotic condition (age-matched non-OVX rabbits), the defect treatment efficacy was adversely affected by the osteoporotic condition with significantly less bone regeneration. This study demonstrated the potential of allogenic fetal BMSC-based TE strategy for repairing bone defects in an osteoporotic condition. However, the treatment efficacy could be considerably compromised in the OVX animals. Therefore, a more sophisticated strategy that addresses the complicated pathogenic conditions associated with osteoporosis is needed.

  4. Repair of orbital bone defects in canines using grafts of enriched autologous bone marrow stromal cells

    PubMed Central

    2014-01-01

    Backgroud Bone tissue engineering is a new approach for the repair of orbital defects. The aim of the present study was to explore the feasibility of tissue-engineered bone constructed using bone marrow stromal cells (BMSCs) that were rapidly isolated and concentrated from bone marrow (BM) by the red cell lysis method, then combined with β-tricalcium phosphate (β-TCP) to create grafts used to restore orbital bone defects in canines. Methods In the experimental group, grafts were constructed using BMSCs obtained by red cell lysis from 20 ml bone marrow, combined with β-TCP and BM via the custom-made stem cell-scaffold device, then used to repair 10 mm diameter medial orbital wall bony defects in canines. Results were compared with those in groups grafted with BM/β-TCP or β-TCP alone, or with defects left untreated as controls. The enrichment of BMSCs and nucleated cells (NCs) in the graft was calculated from the number in untreated bone marrow and in suspensions after red cell lysis. Spiral computed tomography (CT) scans were performed 1, 4, 12 and 24 weeks after implantation in all groups. Gross examination, micro-CT and histological measurements were performed 24 weeks after surgery. The results were analyzed to evaluate the efficacy of bone repair. Results The number of NCs and of colony-forming units within the scaffolds were increased 54.8 times and 53.4 times, respectively, compared with untreated bone marrow. In the BMSC-BM/β-TCP group, CT examination revealed that the scaffolds were gradually absorbed and the bony defects were restored. Micro-CT and histological examination confirmed that the implantations led to good repair of the defects, with 6 out 8 orbital defects completely restored in the experimental group, while by contrast, the grafts in the control groups did not fully repair the bony defects, a difference which was statistically significant (p < 0.05). Conclusions Tissue-engineered bone, constructed using BMSCs isolated by red cell

  5. The cytology of the dental follicle and adjacent alveolar bone during tooth eruption in the dog.

    PubMed

    Marks, S C; Cahill, D R; Wise, G E

    1983-11-01

    Previous studies from our laboratories have shown that premolar eruption in dogs depends upon the presence of the dental follicle and is independent of root or crown growth or attachment to the oral epithelium. The present study is an analysis of the cellular composition of the dental follicle and the cellular investment of the adjacent walls of the bony crypt before and during eruption of the third and fourth mandibular permanent premolars in young beagle dogs. Four premolar follicles and their adjacent bony crypts were examined at 2-week intervals over 12 weeks before and during eruption of these teeth. Tissues were removed, fixed, processed, and oriented so that each follicle and the adjacent crypt wall could be reproducibly examined in vertical and horizontal planes. Mononuclear cells with abundant cytoplasm, euchromatic nuclei, and prominent nucleoli were present in juxtavascular location in the coronal part of the dental follicle; and these cells increased in number immediately preceding and during tooth eruption in parallel with an increase in osteoclasts on the adjacent crypt wall. These data are interpreted to mean that the coronal part of the dental follicle may coordinate the alveolar bone resorption required for tooth eruption by attracting and directing to the crypt wall a population of mononuclear cells, which either become osteoclasts and/or direct osteoclastic activity during tooth eruption.

  6. Dimensional changes in height of labial alveolar bone of proclined lower incisor after lingual positioning by orthodontic treatment: A cephalometric study on adult Bengali population

    PubMed Central

    Shaw, Amit

    2015-01-01

    Aim: The study aims to know whether modern orthodontic treatment procedure do actually cause permanent bone loss at the alveolar bone crest or improve alveolar bone morphology on labial aspect of permanent incisors which are to be moved lingually. Settings and Design: Manual tracings of pre and post treatment lateral cephalometric radiographs were used. Material and Method: The cephalometric radiographs of 34 adult bengali subjects whose orthodontic treatment involved lingual positioning of procumbent mandibular central incisors were examined to determine the morphologic changes (bone height) in the labial alveolar bone that resulted from orthodontic treatment. Result: Comparison of tracings of radiographs taken before and after treatment indicated that 57.6% shows an increase in labial alveolar bone height, 30.3% shows decreased value and 12.1% shows no change with the decrease in the angulation between long axis of lower incisor and mandibular plane (GoGn). In the increase group there is a significant increase in the distance ‘incisal edge to D point’ whereas this dimension decreased significantly in the rest of the cases. In addition, a significant positive correlation (r = 0.56) was found between the changes in the distance from the incisal edge to the ‘D’ point and the alveolar bone height. But no significant relation was found between alveolar bone height and decrease in angulation of lower incisor either in the ‘increase group’ (r = 0.13, p > 0.05) or in the ‘decrease group’ (r = 0.37, p > 0.05). Conclusion: These findings indicate that during orthodontic treatment that involves lingual positioning of procumbent teeth but no intrusion, an increase in the amount of buccal alveolar bone may take place. PMID:25684908

  7. [Ankle joint prosthesis for bone defects].

    PubMed

    Lampert, C

    2011-11-01

    Large defects of the talus, i.e. due to tumors, large areas of osteolysis in total ankle replacement (TAR) and posttraumatic talus body necrosis are difficult to manage. The gold standard in these circumstances is still tibiocalcaneal arthrodesis with all the negative aspects of a completely rigid hindfoot. We started 10 years ago to replace the talus by a custom-made, all cobalt-chrome implant (laser sintering). The first patient with a giant cell tumor did very well but the following patients showed all subsidence of the metal talus into the tibia due to missing bony edges. Therefore, we constructed a custom-made talus (mirrored from the healthy side) and combined it with a well functioning total ankle prosthesis (Hintegra). So far we have implanted this custom-made implant into 3 patients: the first had a chondrosarcoma of the talus (1 year follow-up), the second had massive osteolysis/necrosis of unknown origin (6 months follow-up) and the third massive osteolysis following a correct TAR (2 months follow-up). The results are very encouraging as all of the patients are practically pain free and have a good range of movement (ROM): D-P flexion 15°-0-20° but less motion in the lower ankle joint: ROM P-S 5°-0-5°. No subsidence was detected in the tibia or the calcaneus. The custom-made talus combined with the Hintegra total ankle replacement will probably be an interesting alternative to a tibiocalcaneal arthrodesis in selected cases with massive defects of the talus.

  8. Accuracy of Cone Beam Computed Tomography in Diagnosis and Treatment Planning of Periodontal Bone Defects: A Case Report

    PubMed Central

    Songa, Vajra Madhuri; Jampani, Narendra Dev; Babu, Venkateshwara; Buggapati, Lahari

    2014-01-01

    Diagnosis of periodontitis depend mostly on traditional two-dimensional (2-D) radiographic assessment. Regardless of efforts in improving reliability, present methods of detecting bone level changes over time or determining three-dimensional (3-D) architecture of osseous defects are lacking. To improve the diagnostic potential, an imaging modality which would give an undistorted 3-D vision of a tooth and surrounding structures is imperative. Cone beam computed tomography (CBCT) generates 3D volumetric images which provide axial, coronal and sagittal multi-planar reconstructed images without magnification and renders image guidance throughout the treatment phase. The purpose of this case report was to introduce the clinical application of a newly developed, CBCT system for detecting alveolar bone loss in 21-year-old male patient with periodontitis. To evaluate the bone defect we took an intraoral radiograph and performed CBCT scanning on mandibular left first molar tooth and compared their images. CBCT images of mandibular left first molar showed the extension of furcation involvement, its distal root is devoid of supporting bone and it has only lingual cortical plate which were not shown precisely by the conventional intraoral radiograph. So we consider that the use of latest adjuncts like CBCT is successful in diagnosing periodontal defects. PMID:25654049

  9. Review of secondary alveolar cleft repair

    PubMed Central

    Cho-Lee, Gui-Youn; García-Díez, Eloy-Miguel; Nunes, Richard-Agostinho; Martí-Pagès, Carles; Sieira-Gil, Ramón; Rivera-Baró, Alejandro

    2013-01-01

    Introduction: The alveolar cleft is a bony defect that is present in 75% of the patients with cleft lip and palate. Although secondary alveolar cleft repair is commonly accepted for these patients, nowadays, controversy still remains regarding the surgical technique, the timing of the surgery, the donor site, and whether the use of allogenic materials improve the outcomes. The purpose of the present review was to evaluate the protocol, the surgical technique and the outcomes in a large population of patients with alveolar clefts that underwent secondary alveolar cleft repair. Materials and Methods: A total of 109 procedures in 90 patients with alveolar cleft were identified retrospectively after institutional review board approval was obtained. The patients were treated at a single institution during a period of 10 years (2001-2011). Data were collected regarding demographics, type of cleft, success parameters of the procedure (oronasal fistulae closure, unification of the maxillary segments, eruption and support of anterior teeth, support to the base of the nose, normal ridge form for prosthetic rehabilitation), donor site morbidity, and complications. Pre- and postoperative radiological examination was performed by means of orthopantomogram and computed tomography (CT) scan. Results: The average patient age was 14.2 years (range 4–21.3 years). There were 4 right alveolar-lip clefts, 9 left alveolar-lip clefts, 3 bilateral alveolar-lip clefts, 18 right palate-lip clefts, 40 left palate-lip clefts and 16 bilateral palate-lip clefts. All the success parameters were favorable in 87 patients. Iliac crest bone grafts were employed in all cases. There were three bone graft losses. In three cases, allogenic materials used in a first surgery performed in other centers, underwent infection and lacked consolidation. They were removed and substituted by autogenous iliac crest bone graft. Conclusions: The use of autogenous iliac crest for secondary alveolar bone grafting

  10. Treatment of large segmental bone defects with reamer-irrigator-aspirator bone graft: technique and case series.

    PubMed

    McCall, Todd A; Brokaw, David S; Jelen, Bradley A; Scheid, D Kevin; Scharfenberger, Angela V; Maar, Dean C; Green, James M; Shipps, Melanie R; Stone, Marcus B; Musapatika, Dana; Weber, Timothy G

    2010-01-01

    Treatment of large segmental defects using conventional autogenous iliac crest bone graft can be limited by volume of cancellous bone and donor site morbidity. The reamer-irrigator-aspirator (RIA) technique allows access to a large volume of cancellous bone graft containing growth factors with potency equal to or greater than autograft material from the iliac crest. The purpose of this study was to evaluate the effectiveness of RIA-harvested autogenous bone graft for treating large segmental defects of long bones.

  11. A Novel Nanosilver/Nanosilica Hydrogel for Bone Regeneration in Infected Bone Defects.

    PubMed

    Zhang, Shiwen; Guo, Yuchen; Dong, Yuliang; Wu, Yunshu; Cheng, Lei; Wang, Yongyue; Xing, Malcolm; Yuan, Quan

    2016-06-01

    Treating bone defects in the presence of infection is a formidable clinical challenge. The use of a biomaterial with the dual function of bone regeneration and infection control is a novel therapeutic approach to this problem. In this study, we fabricated an innovative, dual-function biocomposite hydrogel containing nanosilver and nanosilica (nAg/nSiO2) particles and evaluated its characteristics using FT-IR, SEM, swelling ratio, and stiffness assays. The in vitro antibacterial analysis showed that this nAg/nSiO2 hydrogel inhibited both Gram-positive and Gram-negative bacteria. In addition, this nontoxic material could promote osteogenic differentiation of rat bone marrow stromal cells (BMSCs). We then created infected bone defects in rat calvaria in order to evaluate the function of the hydrogel in vivo. The hydrogel demonstrated effective antibacterial ability while promoting bone regeneration in these defects. Our results indicate that this nAg/nSiO2 hydrogel has the potential to both control infection and to promote bone healing in contaminated defects.

  12. Bioglass as a carrier for reindeer bone protein extract in the healing of rat femur defect.

    PubMed

    Tölli, Hanna; Kujala, Sauli; Levonen, Katri; Jämsä, Timo; Jalovaara, Pekka

    2010-05-01

    Bioactive glasses have been developed as scaffolds for bone tissue engineering but combination with reindeer bone protein extract has not been evaluated. We investigated the effects of bone protein extract implants (5-40 mg dosages) with bioglass (BG) carrier on the healing of rat femur defects. Bioglass implants and untreated defects served as controls. All doses of extract increased bone formation compared with the control groups, and bone union was enhanced with doses of 10 mg or more. In comparison with untreated defect, mean cross-sectional bone area at the defect site was greater when implants with BG + 15 mg of extract or bioglass alone were used, bone density at the defect site was higher in all bioglass groups with and without bone extract, and the BG + 15 mg extract dosage marginally increased bone torsional stiffness in mechanical testing. Bioglass performed well as a carrier candidate for reindeer bone protein extract.

  13. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects.

    PubMed

    Priddy, Lauren B; Chaudhuri, Ovijit; Stevens, Hazel Y; Krishnan, Laxminarayanan; Uhrig, Brent A; Willett, Nick J; Guldberg, Robert E

    2014-10-01

    Autograft treatment of large bone defects and fracture non-unions is complicated by limited tissue availability and donor site morbidity. Polymeric biomaterials such as alginate hydrogels provide an attractive tissue engineering alternative due to their biocompatibility, injectability, and tunable degradation rates. Irradiated RGD-alginate hydrogels have been used to deliver proteins such as bone morphogenetic protein-2 (BMP-2), to promote bone regeneration and restoration of function in a critically sized rat femoral defect model. However, slow degradation of irradiated alginate hydrogels may impede integration and remodeling of the regenerated bone to its native architecture. Oxidation of alginate has been used to promote degradation of alginate matrices. The objective of this study was to evaluate the effects of alginate oxidation on BMP-2 release and bone regeneration. We hypothesized that oxidized-irradiated alginate hydrogels would elicit an accelerated release of BMP-2, but degrade faster in vivo, facilitating the formation of higher quality, more mature bone compared to irradiated alginate. Indeed, oxidation of irradiated alginate did accelerate in vitro BMP-2 release. Notably, the BMP-2 retained within both constructs was bioactive at 26days, as observed by induction of alkaline phosphatase activity and positive Alizarin Red S staining of MC3T3-E1 cells. From the in vivo study, robust bone regeneration was observed in both groups through 12weeks by radiography, micro-computed tomography analyses, and biomechanical testing. Bone mineral density was significantly greater for the oxidized-irradiated alginate group at 8weeks. Histological analyses of bone defects revealed enhanced degradation of oxidized-irradiated alginate and suggested the presence of more mature bone after 12weeks of healing.

  14. Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong

    2012-12-01

    Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.

  15. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    PubMed Central

    Scheibel, Paula Cabrini; Ramos, Adilson Luiz; Iwaki, Lilian Cristina Vessoni; Micheletti, Kelly Regina

    2014-01-01

    OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI) and external apical root resorption (EARR) after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1) and after 12 months of treatment (T2). ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157). CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction. PMID:25715722

  16. Multilayer porous UHMWPE scaffolds for bone defects replacement.

    PubMed

    Maksimkin, A V; Senatov, F S; Anisimova, N Yu; Kiselevskiy, M V; Zalepugin, D Yu; Chernyshova, I V; Tilkunova, N A; Kaloshkin, S D

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79±2%; the pore size range was 80-700μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility.

  17. Evaluation of the efficacy of platelet-rich plasma and platelet-rich fibrin in alveolar defects after removal of impacted bilateral mandibular third molars

    PubMed Central

    Doiphode, Amol M.; Hegde, Prashanth; Mahindra, Uma; Santhosh Kumar, S. M.; Tenglikar, Pavan D.; Tripathi, Vivek

    2016-01-01

    Aim and Objectives: This study attempted the evaluation of the efficacy of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in alveolar defects after removal of bilateral mandibular third molars. Materials and Methods: A total of 30 patients reporting to Department of Oral and Maxillofacial Surgery and having bilateral mandibular third molar impaction in both male and female aged between 18 and 30 years were included in this study. PRF and PRP were placed in extraction site and recalled at 2nd, 4th, and 6th month postoperatively. Data were statistically analyzed using IBM SPSS software for Windows, version 19.0. IBM Corp., Armonk, NY, USA. Results: This study showed decreased probing depth in PRF group compared to PRP and control one. This signifies a better soft tissue healing of extraction sockets with PRF as compared to the PRP and the control group and increase in the bone density highlights the use of PRP and PRF certainly as a valid method in inducing hard tissue regeneration. Conclusion: This study indicates a definite improvement in the periodontal health distal to second molar after third molar surgery in cases treated with PRF as compared to the PRP group and control group. Hence, PRP and PRF can be incorporated as an adjunct to promote wound healing and osseous regeneration in mandibular third molar extraction sites. PMID:27195227

  18. Reduction of bone resorption by the application of fibrin glue in the reconstruction of the alveolar cleft.

    PubMed

    Segura-Castillo, José L; Aguirre-Camacho, Humberto; González-Ojeda, Alejandro; Michel-Perez, Jorge

    2005-01-01

    A major complication in 30% to 75% of cases of surgical treatment of alveolar cleft is resorption of the bone graft. A treatment alternative is the application of fibrin glue, which has the capacity to favor the integration of the graft. The main objective of the study was to evaluate if the use of the fibrin glue reduces bone resorption when it is applied locally. The authors designed a randomized clinical trial. Patients were divided into two groups: group 1, fibrin glue; and group 2, control. Pre- and postoperative graft volume, bone density, bone quality (Lekholm and Zarb, and Norton and Gamble classifications), and postoperative complications were evaluated. The follow-up for all patients was 3 months after discharge. Twenty-seven patients were surgically treated, 13 in group 1 and 14 in group 2. Group 1 had increased graft volume compared with group 2 (64.32 cm v 21.70 cm; P < 0.0001). Bone density was higher in group 1 than in group 2 (396.57 v 245.68; P > 0.076). Bone quality was type 1, 2 and 3 and 4 in group 1. Resorption in group 2 was 62.26%; in group 1, it was 29.72% (P > 0.081). The observed complications were infection and dehiscence of sutures (P > 0.537). The authors conclude that the fibrin glue significantly diminishes bone resorption, allowing improved graft integration and quality.

  19. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex.

    PubMed

    Vaquette, Cédryck; Fan, Wei; Xiao, Yin; Hamlet, Stephen; Hutmacher, Dietmar W; Ivanovski, Saso

    2012-08-01

    This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum.

  20. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone

    PubMed Central

    RIVERA, CÉSAR; MONSALVE, FRANCISCO; SALAS, JUAN; MORÁN, ANDREA; SUAZO, IVÁN

    2013-01-01

    Platelet preparations promote bone regeneration by inducing cell migration, proliferation and differentiation in the area of the injury, which are essential processes for regeneration. In addition, several studies have indicated that simvastatin (SIMV), widely used for the treatment of hypercholesterolemia, stimulates osteogenesis. The objective of this study was to evaluate the effects of treatment with either platelet-rich plasma (PRP) or plasma rich in growth factors (PRGF) in combination with SIMV in the regeneration and repair of alveolar bone. The jaws of Sprague Dawley rats (n=18) were subjected to rotary instrument-induced bone damage (BD). Animals were divided into six groups: BD/H2O (n=3), distilled water without the drug and alveolar bone damage; BD/H2O/PRP (n=3), BD and PRP; BD/H2O/PRGF (n=3), BD and PRGF; BD/SIMV (n=3), BD and water with SIMV; BD/SIMV/PRP (n=3), BD, PRP and SIMV; and BD/SIMV/PRGF (n=3), BD, PRGF and SIMV. Conventional histological analysis (hematoxylin and eosin staining) revealed that the BD/SIMV group showed indicators for mature bone tissue, while the BD/SIMV/PRP and BD/SIMV/PRGF groups showed the coexistence of indicators for mature and immature bone tissue, with no statistical differences between the platelet preparations. Simvastatin did not improve the effect of platelet-rich plasma and plasma rich in growth factors. It was not possible to determine which platelet preparation produced superior effects. PMID:24250728

  1. Effect of labiolingual inclination of a maxillary central incisor and surrounding alveolar bone loss on periodontal stress: A finite element analysis

    PubMed Central

    Choi, Sung-Hwan; Kim, Young-Hoon; Lee, Kee-Joon

    2016-01-01

    Objective The aim of this study was to investigate whether labial tooth inclination and alveolar bone loss affect the moment per unit of force (Mt/F) in controlled tipping and consequent stresses on the periodontal ligament (PDL). Methods Three-dimensional models (n = 20) of maxillary central incisors were created with different labial inclinations (5°, 10°, 15°, and 20°) and different amounts of alveolar bone loss (0, 2, 4, and 6 mm). The Mt/F necessary for controlled tipping (Mt/Fcont) and the principal stresses on the PDL were calculated for each model separately in a finite element analysis. Results As labial inclination increased, Mt/Fcont and the length of the moment arm decreased. In contrast, increased alveolar bone loss caused increases in Mt/Fcont and the length of the moment arm. When Mt/F was near Mt/Fcont, increases in Mt/F caused compressive stresses to move from a predominantly labial apical region to a palatal apical position, and tensile stresses in the labial area moved from a cervical position to a mid-root position. Although controlled tipping was applied to the incisors, increases in alveolar bone loss and labial tooth inclination caused increases in maximum compressive and tensile stresses at the root apices. Conclusions Increases in alveolar bone loss and labial tooth inclination caused increases in stresses that might cause root resorption at the root apex, despite the application of controlled tipping to the incisors. PMID:27226961

  2. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow.

    PubMed

    den Boer, Frank C; Wippermann, Burkhard W; Blokhuis, Taco J; Patka, Peter; Bakker, Fred C; Haarman, Henk J Th M

    2003-05-01

    Hydroxyapatite is a synthetic bone graft, which is used for the treatment of bone defects and nonunions. However, it is a rather inert material with no or little intrinsic osteoinductive activity. Recombinant human osteogenic protein-1 (rhOP-1) is a very potent biological agent, that enhances osteogenesis during bone repair. Bone marrow contains mesenchymal stem cells, which are capable of new bone formation. Biosynthetic bone grafts were created by the addition of rhOP-1 or bone marrow to granular porous hydroxyapatite. The performance of these grafts was tested in a sheep model and compared to the results of autograft, which is clinically the standard treatment of bone defects and nonunions. A 3 cm segmental bone defect was made in the tibia and fixed with an interlocking intramedullary nail. There were five treatment groups: no implant (n=6), autograft (n=8), hydroxyapatite alone (n=8), hydroxyapatite loaded with rhOP-1 (n=8), and hydroxyapatite loaded with autologous bone marrow (n=8). At 12 weeks, healing of the defect was evaluated with radiographs, a torsional test to failure, and histological examination of longitudinal sections through the defect. Torsional strength and stiffness of the healing tibiae were about two to three times higher for autograft and hydroxyapatite plus rhOP-1 or bone marrow compared to hydroxyapatite alone and empty defects. The mean values of both combination groups were comparable to those of autograft. There were more unions in defects with hydroxyapatite plus rhOP-1 than in defects with hydroxyapatite alone. Although the differences were not significant, histological examination revealed that there was more often bony bridging of the defect in both combination groups and the autograft group than in the group with hydroxyapatite alone. Healing of bone defects, treated with porous hydroxyapatite, can be enhanced by the addition of rhOP-1 or autologous bone marrow. The results of these composite biosynthetic grafts are equivalent to

  3. Investigating Oral Microbiome Profiles in Children with Cleft Lip and Palate for Prognosis of Alveolar Bone Grafting

    PubMed Central

    Liu, Luwei; Zhang, Qian; Lin, Jiuxiang; Ma, Lian; Zhou, Zhibo; He, Xuesong; Jia, Yilin; Chen, Feng

    2016-01-01

    In this study, we sought to investigate the oral microbiota structure of children with cleft lip and palate (CLP) and explore the pre-operative oral bacterial composition related to the prognosis of alveolar bone grafting. In total, 28 patients (19 boys, 9 girls) with CLP who were scheduled to undergo alveolar bone grafting for the first time were recruited. According to the clinical examination of operative sites at the third month after the operation, the individuals were divided into a non-inflammation group (n = 15) and an inflammation group (n = 13). In all, 56 unstimulated saliva samples were collected before and after the operation. The v3-v4 hypervariable regions of the 16S rRNA gene were sequenced using an Illumina MiSeq sequencing platform. Based on the beta diversity of the operational taxonomic units (OTUs) in the inflammation and non-inflammation samples, the microbial variation in the oral cavity differed significantly between the two groups before and after the operation (P < 0.05). Analysis of the relative abundances of pre-operative OTUs revealed 26 OTUs with a relative abundance higher than 0.01%, reflecting a significant difference of the relative abundance between groups (P < 0.05). According to a principal component analysis of the pre-operative samples, the inflammation-related OTUs included Tannerella sp., Porphyromonas sp., Gemella sp., Moraxella sp., Prevotella nigrescens, and Prevotella intermedia, most of which were enriched in the inflammation group and showed a significant positive correlation. A cross-validated random forest model based on the 26 different OTUs before the operation was able to fit the post-operative status of grafted sites and yielded a good classification result. The sensitivity and specificity of this classified model were 76.9% and 86.7%, respectively. These findings show that the oral microbiota profile before alveolar bone grafting may be related to the risk of post-operative inflammation at grafted sites. PMID

  4. Combination of negative pressure wound therapy with open bone grafting for bone and soft tissue defects.

    PubMed

    Deng, Kai; Yu, Ai-Xi; Xia, Cheng-Yan; Li, Zong-Huan; Wang, Wei-Yang

    2013-08-01

    The aim of this study was to investigate the efficiency of negative pressure wound therapy (NPWT) combined with open bone graft (OBG; NPWT-OBG) for the treatment of bone and soft tissue defects with polluted wounds in an animal model. All rabbits with bone and soft tissue defects and polluted wounds were randomly divided into two groups, the experimental group (NPWT with bone graft) and the control group (OBG). The efficacy of the treatment was assessed by the wound conditions and healing time. Bacterial bioburdens and bony calluses were evaluated by bacteria counting and X-rays, respectively. Furthermore, granulation tissue samples from the wounds on days 0, 3, 7 and 14 of healing were evaluated for blood vessels and vascular endothelial growth factor (VEGF) levels. Wounds in the experimental group tended to have a shorter healing time, healthier wound conditions, lower bacterial bioburden, improvement of the bony calluses and an increased blood supply compared with those in the control group. With NPWT, wound infection was effectively controlled. For wounds with osseous and soft tissue defects, NPWT combined with bone grafting was demonstrated to be more effective than an OBG.

  5. Changes in the bucco-lingual thickness of the mandibular alveolar process and skeletal bone mineral density in dentate women: a 5-yr prospective study.

    PubMed

    Jonasson, Grethe; Kiliaridis, Stavros

    2005-04-01

    After tooth extraction there is a great interindividual variation in the remodelling pattern of the alveolar process in edentulous areas, with some individuals losing little bone and others undergoing extensive resorption. However, little is known about possible longitudinal changes in the dentate region of the alveolar process of adults and if these are related to alterations in the skeletal bone mineral density (BMD). In a prospective study, on two occasions, 5-yr apart, the BMD of 117 women was determined in the distal forearm by using dual-energy X-ray absorptiometry, and the bucco-lingual thickness of the mandibular alveolar process was measured on dental casts by using a dial calliper. A decrease in the mean alveolar thickness, exceeding a cut-off value of 0.1 mm, was found in 60% of the women and an increase was found in 3% of the individuals. This decrease was 0.22 +/- 0.20 mm in the posterior region and 0.16 +/- 0.19 mm in the anterior region. The changes in alveolar thickness in the posterior region were significantly correlated to the BMD changes both on the mid-crestal level site and on the cervical level site. We conclude that the bucco-lingual thickness decreases with age in the dentate alveolar process, possibly owing to periosteal resorption related to skeletal bone loss.

  6. Current Concepts of Bone Tissue Engineering for Craniofacial Bone Defect Repair

    PubMed Central

    Fishero, Brian Alan; Kohli, Nikita; Das, Anusuya; Christophel, John Jared; Cui, Quanjun

    2014-01-01

    Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair. PMID:25709750

  7. Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat Calvarial Bone Defects

    PubMed Central

    Osugi, Masashi; Yoshimi, Ryoko; Inukai, Takeharu; Hibi, Hideharu; Ueda, Minoru

    2012-01-01

    Tissue engineering has recently become available as a treatment procedure for bone augmentation. However, this procedure has several problems, such as high capital investment and expensive cell culture, complicated safety and quality management issues regarding cell handling, and patient problems with the invasive procedure of cell collection. Moreover, it was reported that stem cells secrete many growth factors and chemokines during their cultivation, which could affect cellular characteristics and behavior. This study investigated the effect of stem-cell-cultured conditioned media on bone regeneration. Cultured conditioned media from human bone marrow–derived mesenchymal stem cells (MSC-CM) enhanced the migration, proliferation, and expression of osteogenic marker genes, such as osteocalcin and Runx2, of rat MSCs (rMSCs) in vitro. MSC-CM includes cytokines such as insulin-like growth factor-1 and vascular endothelial growth factor. In vivo, a prepared bone defect of a rat calvarial model was implanted in five different rat groups using one of the following graft materials: human MSCs/agarose (MSCs), MSC-CM/agarose (MSC-CM), Dulbecco's modified Eagle's medium without serum [DMEM(−)]/agarose [DMEM(−)], PBS/agarose (PBS), and defect only (Defect). After 4 and 8 weeks, implant sections were evaluated using microcomputed tomography (micro-CT) and histological analysis. Micro-CT analysis indicated that the MSC-CM group had a greater area of newly regenerated bone compared with the other groups (p<0.05) and histological analysis at 8 weeks indicated that the newly regenerated bone bridge almost covered the defect. Interestingly, the effects of MSC-CM were stronger than those of the MSC group. In vivo imaging and immunohistochemical staining of transgenic rats expressing green fluorescent protein also showed that migration of rMSCs to the bone defect in the MSC-CM group was greater than in the other groups. These results demonstrated that MSC-CM can regenerate bone

  8. Hepatocyte growth factor secreted by bone marrow stem cell reduce ER stress and improves repair in alveolar epithelial II cells

    PubMed Central

    Nita, Izabela; Hostettler, Katrin; Tamo, Luca; Medová, Michaela; Bombaci, Giuseppe; Zhong, Jun; Allam, Ramanjaneyulu; Zimmer, Yitzhak; Roth, Michael; Geiser, Thomas; Gazdhar, Amiq

    2017-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a progressive, irreversible lung disease with complex pathophysiology. Evidence of endoplasmic reticulum (ER) stress has been reported in alveolar epithelial cells (AEC) in IPF patients. Secreted mediators from bone marrow stem cells (BMSC-cm) have regenerative properties. In this study we investigate the beneficial effects of BMSC-cm on ER stress response in primary AEC and ER stressed A549 cells. We hypothesize that BMSC-cm reduces ER stress. Primary AEC isolated from IPF patients were treated with BMSC-cm. To induce ER stress A549 cells were incubated with Tunicamycin or Thapsigargin and treated with BMSC-cm, or control media. Primary IPF-AEC had high Grp78 and CHOP gene expression, which was lowered after BMSC-cm treatment. Similar results were observed in ER stressed A549 cells. Alveolar epithelial repair increased in presence of BMSC-cm in ER stressed A549 cells. Hepatocyte growth factor (HGF) was detected in biologically relevant levels in BMSC-cm. Neutralization of HGF in BMSC-cm attenuated the beneficial effects of BMSC-cm including synthesis of surfactant protein C (SP-C) in primary AEC, indicating a crucial role of HGF in ER homeostasis and alveolar epithelial repair. Our data suggest that BMSC-cm may be a potential therapeutic option for treating pulmonary fibrosis. PMID:28157203

  9. MyD88 is essential for alveolar bone loss induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide in mice.

    PubMed

    Madeira, M F M; Queiroz-Junior, C M; Cisalpino, D; Werneck, S M C; Kikuchi, H; Fujise, O; Ryffel, B; Silva, T A; Teixeira, M M; Souza, D G

    2013-12-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative bacteria highly associated with localized aggressive periodontitis. The recognition of microbial factors, such as lipopolysaccharide from A. actinomycetemcomitans ((Aa)LPS), in the oral environment is made mainly by surface receptors known as Toll-like receptors (TLR). TLR4 is the major LPS receptor. This interaction leads to the production of inflammatory cytokines by myeloid differentiation primary-response protein 88 (MyD88) -dependent and -independent pathways, which may involve the adaptor Toll/interleukin-1 receptor-domain-containing adaptor inducing interferon-β (TRIF). The aim of this study was to assess the involvement of MyD88 in alveolar bone loss induced by (Aa)LPS in mice. C57BL6/J wild-type (WT) mice, MyD88, TRIF or TRIF/MyD88 knockout mice received 10 injections of Aa LPS strain FDC Y4 (5 μg in 3 μl), in the palatal gingival tissue of the right first molar, every 48 h. Phosphate-buffered saline was injected in the opposite side and used as control. Animals were sacrificed 24 h after the 10th injection and the maxillae were removed for macroscopic and biochemical analyses. The injections of Aa LPS induced significant alveolar bone loss in WT mice. In the absence of MyD88 or TRIF/MyD88 no bone loss induced by (Aa)LPS was observed. In contrast, responses in TRIF(-/-) mice were similar to those in WT mice. Diminished bone loss in the absence of MyD88 was associated with fewer TRAP-positive cells and increased expression of osteoblast markers, RUNX2 and osteopontin. There was also reduced tumor necrosis factor-α production in MyD88(-/-) mice. There was less osteoclast differentiation of hematopoietic bone marrow cells from MyD88(-/-) mice after (Aa)LPS stimulation. Hence, the signaling through MyD88 is pivotal for (Aa)LPS-induced osteoclast formation and alveolar bone loss.

  10. Histomorphometric evaluation of the effect of systemic and topical ozone on alveolar bone healing following tooth extraction in rats.

    PubMed

    Erdemci, F; Gunaydin, Y; Sencimen, M; Bassorgun, I; Ozler, M; Oter, S; Gulses, A; Gunal, A; Sezgin, S; Bayar, G R; Dogan, N; Gider, I K

    2014-06-01

    The aim of this study was to investigate the effects of systemic and topical ozone applications on alveolar bone healing following tooth extraction. One hundred and twelve male Wistar rats were divided into eight groups of 14 rats each; seven groups were experimental (A-G) and one formed the control group (K). The experimental groups were further divided into two sub-groups, with seven rats in each - sacrificed on days 14 and 28 (subgroups 1 and 2). The maxillary right central incisors were extracted under general anaesthesia following the administration of local anaesthesia. After sacrifice, semi-serial histological sections were prepared, and mineralized and trabecular bone and osteoid and osteoblast surfaces were measured. Measurements of the trabecular bone showed statistically higher values in the groups treated with systemic ozone (D(2): 50.01 ± 2.12; E(2): 49.03 ± 3.03; F(2): 48.76 ± 2.61; G(2): 50.24 ± 3.37) than in the groups that underwent topical ozone administration (A(2): 46.01 ± 3.07; B(2): 46.79 ± 3.09; C(2): 47.07 ± 2.12; P = 0.030 (G(2)-A(2), G(2)-B(2), G(2)-C(2))). Within the limitations of the current study, it may be concluded that postoperative long-term systemic ozone application can accelerate alveolar bone healing following extraction. However, additional studies are required to clarify the effects of the different ozone applications on new bone formation.

  11. The remodeling pattern of human mandibular alveolar bone during prenatal formation from 19 to 270mm CRL.

    PubMed

    Radlanski, Ralf J; Renz, Herbert; Tsengelsaikhan, Nyamdorj; Schuster, Felix; Zimmermann, Camilla A

    2016-05-01

    The underlying mechanisms of human bone morphogenesis leading to a topologically specific shape remain unknown, despite increasing knowledge of the basic molecular aspects of bone formation and its regulation. The formation of the alveolar bone, which houses the dental primordia, and later the dental roots, may serve as a model to approach general questions of bone formation. Twenty-five heads of human embryos and fetuses (Radlanski-Collection, Berlin) ranging from 19mm to 270mm (crown-rump-length) CRL were prepared as histological serial sections. For each stage, virtual 3D-reconstructions were made in order to study the morphogenesis of the mandibular molar primordia with their surrounding bone. Special focus was given to recording the bone-remodeling pattern, as diagnosed from the histological sections. In early stages (19-31mm CRL) developing bone was characterized by appositional only. At 41, in the canine region, mm CRL bony extensions were found forming on the bottom of the trough. Besides general apposition, regions with resting surfaces were also found. At a fetal size of 53mm CRL, septa have developed and led to a compartment for canine development. Furthermore, one shared compartment for the incisor primordia and another shared compartment for the molars also developed. Moreover, the inner surfaces of the dental crypts showed resorption of bone. From this stage on, a general pattern became established such that the compartmentalizing ridges and septa between all of the dental primordia and the brims of the crypts were noted, and were due to appositional growth of bone, while the crypts enlarged on their inner surfaces by resorption. By 160mm CRL, the dental primordia were larger, and all of the bony septa had become reduced in size. The primordia for the permanent teeth became visible at 225mm CRL and shared the crypts of their corresponding deciduous primordia.

  12. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs.

    PubMed

    Sugawara, Akiyoshi; Fujikawa, Kenji; Takagi, Shozo; Chow, Laurence C

    2008-11-01

    A calcium phosphate cement (CPC-1), prepared by mixing an equimolar mixture of tetracalcium phosphate and dicalcium phosphate anhydrous with water, has been shown to be highly biocompatible and osteoconductive. A new type of calcium phosphate cement (CPC-2), prepared by mixing a mixture of alpha-tricalcium phosphate and calcium carbonate with pH 7.4 sodium phosphate solution, was also reported to be highly biocompatible. The objective of the present study was to compare the osteoconductivities of CPC-1 and CPC-2 when implanted in surgically created defects in the jaw bones of dogs. At 1 month after surgery, implanted CPC-1 was partially replaced by new bone and converted to bone within 6 months. In comparison, at 1 month after surgery, the defect filled with CPC-2 was mostly replaced by new bone. Therefore, bone formation in CPC-2-filled pocket was more rapid than in CPC-1-filled pocket. These findings supported the hypothesis that CPC-2 converted to bone more rapidly than CPC-1.

  13. The clinical application of rhBMP-7 for the reconstruction of alveolar cleft.

    PubMed

    Ayoub, Ashraf; Roshan, Cherian P; Gillgrass, Toby; Naudi, Kurt; Ray, Arup

    2016-01-01

    In this study, radiographic assessment was performed to find out the effectiveness of bone regeneration following the application of recombinant human bone morphogenetic protein 7 (rhBMP-7) for the reconstruction of alveolar cleft defects in 11 cases: nine unilateral and two bilateral alveolar clefs. Reconstruction of the alveolar cleft was performed by using 3.5 mg of rhBMP-7 (Osigraft OP1) on a type I collagen carrier. Radiographs were taken 6 months post operation using a Gendex Intraoral Unit with Agfa Dentus M2 Comfort occlusal film. The amount of bony infill was graded on a Kindelan four-point scale. The patients were followed up for an average of 6.6 years. Based on the radiographic analysis, eight out of the nine unilateral alveolar cleft cases received a score of grade I and one patient had a grade II score, using the Kindelan scale. In the two bilateral alveolar clefts, only one side had bone formation. The radiographic appearance showed a normal trabecular pattern similar to the adjacent bone. Thus, rhBMP-7 was radiographically and clinically successful in regenerating the bone at the alveolar cleft which resulted in shortening of the operation time, absence of donor-site morbidity and a shorter hospital stay. The promising results of this preliminary study should encourage a phase II trial to compare bone grafts with BMP for the reconstruction of alveolar defects.

  14. Modern materials in fabrication of scaffolds for bone defect replacement

    NASA Astrophysics Data System (ADS)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.

    2016-08-01

    The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.

  15. Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone.

    PubMed

    Takimoto, Aki; Kawatsu, Masayoshi; Yoshimoto, Yuki; Kawamoto, Tadafumi; Seiryu, Masahiro; Takano-Yamamoto, Teruko; Hiraki, Yuji; Shukunami, Chisa

    2015-02-15

    The periodontal ligament (PDL) is a mechanosensitive noncalcified fibrous tissue connecting the cementum of the tooth and the alveolar bone. Here, we report that scleraxis (Scx) and osterix (Osx) antagonistically regulate tensile force-responsive PDL fibrogenesis and osteogenesis. In the developing PDL, Scx was induced during tooth eruption and co-expressed with Osx. Scx was highly expressed in elongated fibroblastic cells aligned along collagen fibers, whereas Osx was highly expressed in the perialveolar/apical osteogenic cells. In an experimental model of tooth movement, Scx and Osx expression was significantly upregulated in parallel with the activation of bone morphogenetic protein (BMP) signaling on the tension side, in which bone formation compensates for the widened PDL space away from the bone under tensile force by tooth movement. Scx was strongly expressed in Scx(+)/Osx(+) and Scx(+)/Osx(-) fibroblastic cells of the PDL that does not calcify; however, Scx(-)/Osx(+) osteogenic cells were dominant in the perialveolar osteogenic region. Upon BMP6-driven osteoinduction, osteocalcin, a marker for bone formation was downregulated and upregulated by Scx overexpression and knockdown of endogenous Scx in PDL cells, respectively. In addition, mineralization by osteoinduction was significantly inhibited by Scx overexpression in PDL cells without affecting Osx upregulation, suggesting that Scx counteracts the osteogenic activity regulated by Osx in the PDL. Thus, Scx(+)/Osx(-), Scx(+)/Osx(+) and Scx(-)/Osx(+) cell populations participate in the regulation of tensile force-induced remodeling of periodontal tissues in a position-specific manner.

  16. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease.

    PubMed

    Silva, Viviam de Oliveira; Lobato, Raquel Vieira; Andrade, Eric Francelino; de Macedo, Cristina Gomes; Napimoga, Juliana Trindade Clemente; Napimoga, Marcelo Henrique; Messora, Michel Reis; Murata, Ramiro Mendonça; Pereira, Luciano José

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease.

  17. Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis.

    PubMed

    Botelho, Marco Antonio; Rao, Vietla Satyanarayana; Montenegro, Danusa; Bandeira, Mary Anne Menezes; Fonseca, Said Gonçalves Cruz; Nogueira, Nadia Accioly Pinto; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne Castro

    2008-04-01

    Carvacrol and dimeric chalcones are the respective bioactive components of Lippia sidoides and Myracrodruon urundeuva, popular medicinal plants of Northeastern Brazil with proven antimicrobial and antiinflammatory properties. Periodontal disease is associated with inflammation and microbiological proliferation, thus the study aimed to investigate the effect of a topical gel based on carvacrol and chalcones in the experimental periodontal disease (EPD) in rats. Animals were treated with carvacrol and/or chalcones gel, immediately after EPD induction, three times a day for 11 days. Appropriate controls were included in the study. Animals were weighed daily. They were killed on day 11, the mandibles dissected and alveolar bone loss was measured. The periodontium were examined at histopathology and the neutrophil influx into the gingiva was assayed using myeloperoxidase activity. The bacterial flora were assessed through culture of the gingival tissue. Alveolar bone loss was significantly (p < 0.05) inhibited by combined carvacrol and chalcones gel, compared with the vehicle and non-treated groups. The treatment with the combined gel reduced tissue lesion at histopathology, decreased myeloperoxidase activity in gingival tissue and inhibited the growth of oral microorganisms as well as the weight loss. Carvacrol and chalcones combination gel has a beneficial effect upon EPD in this model.

  18. Variations in the buccal-lingual alveolar bone thickness of impacted mandibular third molar: our classification and treatment perspectives

    PubMed Central

    Ge, Jing; Zheng, Jia-Wei; Yang, Chi; Qian, Wen-Tao

    2016-01-01

    Selecting either buccal or lingual approach for the mandibular third molar surgical extraction has been an intense debate for years. The aim of this observational retrospective study was to classify the molar based on the proximity to the external cortical bone, and analyze the position of inferior alveolar canal (IAC) of each type. Cone-beam CT (CBCT) data of 110 deeply impacted mandibular third molars from 91 consecutive patients were analyzed. A new classification based on the mean deduction value (MD) of buccal-lingual alveolar bone thickness was proposed: MD≥1 mm was classified as buccal position, 1 mm>MD>−1 mm was classified as central position, MD≤−1 mm was classified as lingual position. The study samples were distributed as: buccal position (1.8%) in 2 subjects, central position (10.9%) in 12 and lingual position (87.3%) in 96. Ninety-six molars (87.3%) contacted the IAC. The buccal and inferior IAC course were the most common types in impacted third molar, especially in lingually positioned ones. Our study suggested that amongst deeply impacted mandibular third molars, lingual position occupies the largest proportion, followed by the central, and then the buccal type. PMID:26759181

  19. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    PubMed Central

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  20. An experimental study on the application of radionuclide imaging in repair of the bone defect.

    PubMed

    Zhu, Weimin; Wang, Daping; Zhang, Xiaojun; Lu, Wei; Liu, Jianquan; Peng, Liangquan; Li, Hao; Han, Yun; Zeng, Yanjun

    2011-08-01

    The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone's reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05). The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone's reconstruction.

  1. Treatment of Periradicular Bone Defect by Periosteal Pedicle Graft as a Barrier Membrane and Demineralized Freeze-Dried Bone Allograft

    PubMed Central

    Saxena, Anurag

    2017-01-01

    The purpose of this case report is to describe the usefulness of Periosteal Pedicle Graft (PPG) as a barrier membrane and Demineralized Freeze-Dried Bone Allograft (DFDBA) for bone regeneration in periradicular bone defect. A patient with intraoral discharging sinus due to carious exposed pulp involvement was treated by PPG and DFDBA. Clinical and radiological evaluations were done immediately prior to surgery, three months, six months and one year after surgery. Patient was treated using split-thickness flap, PPG, apicoectomy, defect fill with DFDBA and lateral displacement along with suturing of the PPG prior to suturing the flap, in order to close the communication between the oral and the periapical surroundings through sinus tract opening. After one year, successful healing of periradicular bone defect was achieved. Thus, PPG as a barrier membrane and DFDBA have been shown to have the potential to stimulate bone formation when used in periradicular bone defect. PMID:28274066

  2. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis.

    PubMed

    Johnson, K D; Frierson, K E; Keller, T S; Cook, C; Scheinberg, R; Zerwekh, J; Meyers, L; Sciadini, M F

    1996-05-01

    Three porous ceramic bone graft materials were compared with regard to their ability to heal a 2.5 cm defect created surgically in a bilateral canine radius model. The ceramic materials were analyzed at 12 and 24 weeks after surgery and included tricalcium phosphate, hydroxyapatite, and collagen hydroxyapatite, which contained a mixture of 35% tricalcium phosphate and 65% hydroxyapatite with added collagen. Each material was evaluated alone and with added bone marrow aspirate. All the implants were compared with a graft of autogenous cancellous bone in the contralateral radius. Biomechanical testing and radiographic evaluation revealed that the addition of bone marrow aspirate was essential for tricalcium phosphate and hydroxyapatite to achieve results comparable with those of cancellous bone. Collagen hydroxyapatite performed well without the addition of bone marrow, although the addition of marrow did have a positive effect. Further qualitative radiographic and histological analysis demonstrated that tricalcium phosphate was the only ceramic that showed any sign of degradation at 24 weeks. This observed degradation proved to be an important factor in evaluating radiographs because the radiodensity of collagen hydroxyapatite and hydroxyapatite interfered with the determination of radiographic union. At 24 weeks, tricalcium phosphate with bone marrow was the material that performed most like cancellous bone. In this study, the biomechanical and radiographic parameters of tricalcium phosphate with bone marrow were roughly comparable with those of cancellous bone at 12 and 24 weeks. Tricalcium phosphate was the only implant that showed significant evidence of degradation at 24 weeks by both histological and radiographic evaluations, and this degradation took place only after a degree of mechanical competence necessary for weight-bearing was achieved.

  3. A randomized controlled evaluation of alveolar ridge preservation following tooth extraction using deproteinized bovine bone mineral and demineralized freeze-dried bone allograft

    PubMed Central

    Sadeghi, Rokhsareh; Babaei, Maryam; Miremadi, S. Asghar; Abbas, Fatemeh Mashadi

    2016-01-01

    Background: Alveolar ridge preservation could be performed immediately following tooth extraction to limit dimensional changes of alveolar process due to bone resorption. The aim of this study was to compare the clinical and histologic outcomes of socket preservation using two different graft materials; deproteinized bovine bone mineral (DBBM) and demineralized freeze-dried bone allograft (DFDBA) with absorbable collagen membrane. Materials and Methods: Twenty extraction sockets in 20 patients were randomly divided into 2 treatment groups: 10 sockets were augmented with DBBM and collagen membrane whereas 10 sockets were filled with DFDBA and covered by collagen membrane. Primary closure was achieved over extraction sockets by flap advancement. Horizontal and vertical ridge dimensional changes were assessed at baseline and after 4-6 months at the time of implant placement. For histological and histomorphometrical analysis, bone samples were harvested from the augmented sites with trephine during implant surgery. All data were analyzed using SPSS version 18 (α=0.05). Results: Clinical measurements revealed that average horizontal reduction was 2.3 ± 0.64 mm for DFDBA and 2.26 ± 0.51 mm for DBBM. Mean vertical ridge resorption at buccal side was 1.29 ± 0.68 mm for DFDBA and 1.1 ± 0.17 mm for DBBM. Moreover, mean vertical ridge reduction at lingual site was 0.41 ± 0.38 mm and 0.35 ± 0.34 mm for DFDBA and DBBM, respectively. No significant differences were seen between two groups in any of those clinical parameters. Histologic analysis showed statistically significant more new bone deposition for DFDBA compared to DBBM (34.49 ± 3.19 vs. 18.76 ± 3.54) (P < 0.01). Residual graft particles were identified significantly more in DBBM (12.77 ± 1.85) than DFDBA (6.06 ± 1.02). Conclusion: Based on the findings of this study, both materials have positive effect on alveolar ridge preservation after tooth extraction, but there was more new bone formation and less

  4. COMPARATIVE STUDY OF BONE NEOFORMATION USING AUTOLOGOUS GRAFTING AND THREE REPLACEMENTS: BONE DEFECTS IN RATS

    PubMed Central

    Stein, Rodrigo Steffen; Silva, Jefferson Braga; Silva, Vinicius Duval da

    2015-01-01

    Objective: Compare the percentage of bone neoformation promoted by autologous bone grafting and three kinds of replacement materials with different characteristics in rats' femoral holes. Methods: Two holes measuring 5.4×2.7mm, were produced on each femur (right and left) of 14 isogenic Wistar rats. Each of the four defects produced was filled by autologous bone or by one of three tested materials-hydroxyapatite (HA), Genphos® (HA+ β-TCP) and GenMix® (a combined bovine bone graft). In the end of the 6-week (n = 6) and 12-week (n = 8) periods, the animals were sacrificed. The sections (stained with Picro-Sirius) were assessed by optical microscopy and specific software. Results: The groups with autologous bone were shown to be significantly superior to the others at both assessed times, showing a mean bone formation rate ± SD of 90.6 ± 10.8% in six weeks, and 98 ± 9.2% in 12 weeks (p > 0.0001 for both assessed times). In six weeks, the results for the other groups were the following: Genphos®, 46 ± 7.1%; HA, 43.1 ± 8.4%; and GenMix®, 57.3 ± 4.5%. In 12 weeks: Genphos®, 47.8 ± 11.1%; HA, 39.9 ± 5.4%; GenMix®, 59.7 ± 4.8%, significant (p = 0.007). Conclusions: In both assessed times, the three bone replacement materials tested in the study showed to be inferior to autologous bone graft for bone neoformation percentage. PMID:27022515

  5. Reconstruction of large mandibular bone and soft-tissue defect using bone transport distraction osteogenesis.

    PubMed

    Elsalanty, Mohammed E; Taher, Taher N; Zakhary, Ibrahim E; Al-Shahaat, Osama A; Refai, Mohammed; El-Mekkawi, Hatem A

    2007-11-01

    Reconstruction of large anterior mandibular defects is a challenging task. The condition can become even more complex if primary reconstruction fails, leading to loss of the entire midline portion of the lower face with massive scarring of the remaining tissues. Bone transport distraction osteogenesis can provide a viable treatment option for these patients. One of such cases will be presented, followed by a discussion of the advantages, disadvantages, and limitations of the technique.

  6. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    DTIC Science & Technology

    2013-01-01

    negative controls: defect group) or were im- planted with autologous bone graft from the iliac crest (positive controls: autograft group) or were...serve as controls for the biomechanical evaluation. The specimens were tested to flexural failure in a 4-point bending configuration with 10- mm spacing...the Rabbit Forearm Measured in 4-Point Bending and Presented as a Comparison Between the Experimental Side Where the Surgery Was Performed and the

  7. Horizontal bone augmentation by means of guided bone regeneration.

    PubMed

    Benic, Goran I; Hämmerle, Christoph H F

    2014-10-01

    The development of bone augmentation procedures has allowed placement of dental implants into jaw bone areas lacking an amount of bone sufficient for standard implant placement. Thus, the indications for implants have broadened to include jaw regions with bone defects and those with a bone anatomy that is unfavorable for implant anchorage. Of the different techniques, the best documented and the most widely used method to augment bone in localized alveolar defects is guided bone regeneration. A large body of evidence has demonstrated the successful use of guided bone regeneration to regenerate missing bone at implant sites with insufficient bone volume and the long-term success of implants placed simultaneously with, or after, guided bone regeneration. However, the influence of guided bone regeneration on implant survival and success rates, and the long-term stability of the augmented bone, remain unknown. Many of the materials and techniques currently available for bone regeneration of alveolar ridge defects were developed many years ago. Recently, various new materials and techniques have been introduced. Many of them have, however, not been sufficiently documented in clinical studies. The aim of this review was to present the scientific basis of guided bone regeneration and the accepted clinical procedures. A classification of bone defects has been presented, aiming at simplifying the decision-making process regarding the choice of strategy for bone augmentation. Finally, an outlook into actual research and the possible future options related to bone augmentation has been provided.

  8. Cyclophilin A (CypA) is associated with the inflammatory infiltration and alveolar bone destruction in an experimental periodontitis

    SciTech Connect

    Liu, Lihua; Li, Chengzhang; Cai, Cia; Xiang, Junbo; Cao, Zhengguo

    2010-01-01

    Background and objective: CypA is able to regulate inflammatory responses and MMPs production via interaction with its cell surface receptor, EMMPRIN. This study aimed to address the possible association of CypA with pathological inflammation and destruction of periodontal tissues, and whether CypA-EMMPRIN interaction exists in periodontitis. Materials and methods: Experimental periodontitis was induced by ligation according to our previous method. Histological and radiographic examinations were performed. Western blot was used to detect CypA and EMMPRIN expressions in gingival tissues. Immunohistochemistry was applied for CypA, EMMPRIN, MMP-1, MMP-2, MMP-9, as well as cell markers of macrophage, lymphocyte and neutrophil. CypA expression, alveolar bone loss, and inflammatory infiltrations were quantified followed by correlation analyses. Results: Western blot revealed that CypA and EMMRPIN expressions were dramatically elevated in inflamed gingival tissues (ligature group) as compared to healthy gingival tissues (control group). The enhanced CypA and EMMPRIN expressions were highly consistent in cell localization on seriate sections. They were permanently co-localized in infiltrating macrophages and lymphocytes, as well as osteoclasts and osteoblasts in interradicular bone, but rarely expressed by infiltrating neutrophils. MMP-1, MMP-2, and MMP-9 expressions were also sharply increased in inflamed gingiva. MMP-2 and MMP-9 were mainly over-expressed by macrophages, while MMP-1 was over-produced by fibroblasts and infiltrating cells. The number of CypA-positive cells was strongly correlated with the ACJ-AC distance (r = 0.839, p = 0.000), the number of macrophages (r = 0.972, p = 0.000), and the number of lymphocytes (r = 0.951, p = 0.000). Conclusion: CypA is associated with the inflammatory infiltration and alveolar bone destruction of periodontitis. CypA-EMMPRIN interaction may exist in these pathological processes.

  9. Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects.

    PubMed

    Miller, Micah A; Ivkovic, Alan; Porter, Ryan; Harris, Mitchel B; Estok, Daniel M; Smith, R Malcolm; Evans, Christopher H; Vrahas, Mark S

    2011-04-01

    Clinical management of delayed healing or nonunion of long bone fractures and segmental bone defects poses a substantial orthopaedic challenge. Surgical advances and bone tissue engineering are providing new avenues to stimulate bone growth in cases of bone loss and nonunion. The reamer-irrigator-aspirator (RIA) device allows surgeons to aspirate the medullary contents of long bones and use the progenitor-rich "flow-through" fraction in autologous bone grafting. Dexamethasone (DEX) is a synthetic steroid that has been shown to induce osteoblastic differentiation. A series of 13 patients treated with RIA bone grafting enhanced with DEX for nonunion or segmental defect was examined retrospectively to assess the quality of bony union and clinical outcomes. Despite the initial poor prognoses, promising results were achieved using this technique; and given the complexity of these cases the observed success is of great value and warrants controlled study into both standardisation of the procedure and concentration of the grafting material.

  10. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells

    PubMed Central

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway. PMID:27359105

  11. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells.

    PubMed

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic; You, Hyung-Keun

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway.

  12. Histomorphometric Study of Alveolar Bone Healing in Rats Fed a Boron-Deficient Diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone healing after tooth extraction in rats is a suitable experimental model to study bone formation. Thus, we performed a study to determine the effects of boron (B) deficiency on bone healing by using this model. Weanling Wistar rats were divided into two groups: control (+B; 3 mg B/kg diet), and ...

  13. Alveolar bone necrosis and spontaneous tooth exfoliation in an HIV-seropositive subject with herpes zoster.

    PubMed

    Feller, L; Wood, N H; Raubenheimer, E J; Meyerov, R; Lemmer, J

    2008-03-01

    Herpes zoster in the distribution of the maxillary and mandibular divisions of the trigeminal nerve is characterized by painful vesicular eruptions of the skin and oral mucosa in the distribution of the affected nerves. Oral complications may occur, including post-herpetic neuralgia, devitalization of teeth, abnormal development of permanent teeth, root resorption and periapical lesions. In cases where necrosis of the alveolar bony process occur it may be preceded or accompanied by spontaneous exfoliation of teeth. This usually follows the resolution of the acute phase of HZ and is more prevalent in HIV-seropositive than in HIV-seronegative subjects. A case of HZ of the trigeminal nerve in an HIV-seropositive subject, with complications of necrosis of alveolar bony process, external root resorption and tooth exfoliation is presented and the literature of HIV-associated HZ is reviewed.

  14. Evaluation of laser photobiomodulation on healing of bone defects grafted with bovine bone in diabetic rats

    NASA Astrophysics Data System (ADS)

    Paraguassú, Gardênia Matos; da Costa Lino, Maíra Doria Martinez; de Carvalho, Fabíola Bastos; Cangussu, Maria Cristina; Pinheiro, Antônio Luiz Barbosa; Ramalho, Luciana Maria Pedreira

    2012-09-01

    Previous studies have shown positive effects of Low Level Laser Therapy (LLLT) on the repair of bone defects, but there is a few that associates bone healing in the presence of a metabolic disorder such as Diabetes Mellitus, a systemic disorder associated to impair of the repair of different tissues. The aim of this study was to assess, histologically, the repair of surgical defects created in the femur of diabetic and non-diabetic rats treated or not with LLLT (λ780nm, 70mW, CW, o/˜0.4mm, 16J/cm2 per session) associated or not to the use of a biomaterial. Surgical tibial bone defects were created in 60 animals that were divided into 4 groups: Group B (non-diabetic + biomaterial); Group BL (non-diabetic + biomaterial + LLLT); Group BD (diabetic + biomaterial); Group BDL (diabetic + biomaterial + LLLT). The irradiated group received 16 J/cm2 per session divided into 4 points around the defect, being the first irradiation carried out immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The specimens underwent a semi-quantitative analysis. The results showed inflammation more intense in the BD and BDL groups than in the B and BL groups in the period of 15 days (p = 0.02), however the cortical repair in the BDL group was below 25% in more than half of the specimens, while in the BD group, the repair was more than to 25% in all specimens. At 30 days, both osteoblastic activity and collagen deposition were significantly higher in the B group when compared to the BD group (p=0.04). Bone deposition was significantly higher in the BL group (p=0.023) than in BDL group. It is concluded that LLLT has a positive biomodulative effect in the early stages of the healing process of bone defects grafted with biomaterial in diabetic and non-diabetic rats.

  15. Effect of Alendronate with β – TCP Bone Substitute in Surgical Therapy of Periodontal Intra-Osseous Defects: A Randomized Controlled Clinical Trial

    PubMed Central

    Ravi, Vishali; Subbaraya, Dwijendra Kocherlakota; Prasanna, Jammula Surya; Panthula, Veerendranath Reddy; Koduganti, Rekha Rani

    2016-01-01

    Introduction Alendronate (ALN), an aminobisphosphonate, inhibits osteoclastic bone resorption and also stimulates osteogenesis. Beta-Tricalcium Phosphate (β-TCP) is an osteoconductive graft material which provides a scaffold for bone formation and also a widely used drug delivery vehicle for growth factors and antibiotics. Drug delivery vehicles, like β-TCP, improve the potency of the drugs by specific local site delivery of the drug, optimal release characteristics and easy handling. Aim The aim of the this study was to evaluate the bone formation potential of 400μg ALN delivered in β-TCP in the treatment of periodontal intra-osseous defects. Materials and Methods Thirty patients with periodontal defects were randomly assigned to 400μg ALN + β-TCP + Saline (test) group and β-TCP + Saline (active-control) group. Clinical parameters like Clinical Attachment Level (CAL) gain, Probing Depth (PD) reduction, post-operative Gingival Recession (GR) were assessed from the baseline, 3 months and 6 months recordings. Radiographic parameters like Linear Bone Growth (LBG), Percentage Bone Fill (%BF), and change in alveolar crest height (ACH) were assessed from baseline and 6 months radiographs. Results Mean measurements in the ALN test group for CAL gain (3.4 ± 0.74 mm), PD reduction (4.33 ± 0.82 mm), LBG (2.88 ± 0.88 mm), and %BF (51.98 ± 15.84%) were significantly greater with a p-value <0.05 compared to the mean measurements of CAL gain (2.20 ± 0.86 mm), PD reduction (3.20 ± 1.15 mm), LBG (1.70 ± 0.39 mm), and %BF (30.35 ± 6.88%) of the control group. There was mild alveolar crestal apposition (0.32 ± 0.68 mm) in the ALN test group and mild alveolar crestal resorption (-0.24 ± 0.40 mm) in the control group. Conclusion 400μg ALN combined with β-TCP bone graft material was effective in improving soft tissue parameters, inhibiting alveolar crestal resorption and enhancing bone formation, compared to β-TCP alone. PMID:27656552

  16. The approximal bone height and intrabony defects in young adults, related to the salivary buffering capacity and counts of Streptococcus mutans and Lactobacilli.

    PubMed

    Wikner, S; Söder, P O; Frithiof, L; Wouters, F

    1990-01-01

    Using a computerized technique the bone height and prevalence of approximal periodontal intrabony defects were assessed on posterior bite-wing radiographs from 151 young adults. The results were related to the buffering capacity and counts of Streptococcus mutans and lactobacilli in whole stimulated saliva. The mean distance from the cement-enamel junction to the alveolar bone crest was greater in the high buffering group than in the low buffering group (p less than 0.05), and particularly in non-smokers (p less than 0.01). Intrabony defects were more common in the low buffering group (p less than 0.05) and in women (p less than 0.001).

  17. Stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height: A three-dimensional finite element analysis

    PubMed Central

    Singh, S. Vijay; Bhat, Manohar; Gupta, Saurabh; Sharma, Deepak; Satija, Harsha; Sharma, Sumeet

    2015-01-01

    Objective: A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. Materials and Methods: The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. Results: The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. Conclusions: Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post. PMID:26430375

  18. Treatment of Locked Posterior Shoulder Dislocation With Bone Defect.

    PubMed

    Khira, Yousuf M; Salama, Adel M

    2017-03-14

    Locked posterior shoulder dislocation is an uncommon condition and is associated with a reverse Hill-Sachs lesion in 50% of cases. The condition is likely to occur in cases of violent trauma, seizures, or electric shock. Unrecognized dislocation with humeral head fracture affects joint function and humeral head vascularity and may lead to chronic instability, osteonecrosis, and osteoarthritis. A group of 12 patients, including 10 men and 2 women, with neglected locked posterior shoulder dislocation with a reverse Hill-Sachs lesion were treated with the modified McLaughlin technique. The added bone graft from the iliac crest was impacted in the defect and fixed with screws. Mean follow-up was 30 months (range, 24-48 months). The range of forward flexion was 150˚ to 175˚ (average, 165˚), external rotation ranged from 60˚ to 80˚ (average, 75˚), internal rotation ranged from 40˚ to 60˚ (average, 50˚), and average abduction was 150˚ (range, 145˚-160˚). The modified University of California Los Angeles (UCLA) scoring system was used for postoperative clinical evaluation. Total UCLA scores immediately postoperatively ranged from 22 to 28 points (average, 26.5 points) and averaged 30 points (range, 28-33 points) at last follow-up. No recurrence of dislocation occurred during the follow-up period. Of the study patients, 10 returned to their previous job and 2 modified their manual work. The modified McLaughlin technique with added iliac crest bone graft to fill the defect and prevent humeral head deformity is a successful technique for the treatment of patients with chronic locked posterior shoulder dislocation. [Orthopedics. 201x; xx(x):xx-xx.].

  19. Effect of calcium sulfate-chitosan composite: pellet on bone formation in bone defect.

    PubMed

    Cho, Byung Chae; Kim, Tae Gyu; Yang, Jung Duk; Chung, Ho Yun; Park, Jae Woo; Kwon, Ick Chan; Roh, Kyung Ho; Chung, Hye Sun; Lee, Dong Sin; Park, Nang Un; Kim, In San

    2005-03-01

    The purpose of this experiment was to study the effects of chitosan, calcium sulfate, and calcium sulfate-chitosan composite pellet on the osteogenesis of defective tibia in rabbits. Eighty New Zealand white rabbits, each weighing approximately 3 to 3.5 kg, were used for this study. A 1-cm ostectomy was made on the middle of the tibia of each rabbit with the periosteum preserved. Nothing was implanted in the control group (group 1), and five chitosan pellets (60 mg/pellet) were implanted in group 1, three OsteoSet pellets (100 mg/pellet) in group 3, and four calcium sulfate-chitosan composite pellets (1 pellet, 80 mg; calcium sulfate 40 mg/pellet, chitosan 40 mg/pellet) in group 4. For each group, a radiographic study, bone mineral density test, three-point bending test, and histologic examination were performed in the second, fourth, and sixth weeks. In the radiologic study, in group 1, cortical bone was not formed even at 6 weeks. In group 2, it was observed at 6 weeks. In groups 3 and 4, cortical bone was partially seen around the fourth week. At 6 weeks, it was clearly observed on both sides, and the projection of the marrow cavity became distinctive, so bone consolidation was considered to be much progressed. The bone mineral density test and three-point bending test results appeared to be highly similar in groups 3 and 4 and in groups 2 and 1. Particularly at 6 weeks, the measures for groups 3 and 4 were statistically significant compared with those for groups 1 and 2 (P < 0.05). In histologic examination, new bone formation began to be seen at 2 weeks in all groups, but it was more active and faster in groups 3 and 4. At 6 weeks, fibrous connective tissue still remained at the center in groups 1 and 2; however, the fibrous connective tissue at the center was replaced with callus, the bony bridge was obvious, and lamellation of callus was observed more in groups 3 and 4. The results indicate that chitosan pellets, OsteoSet, and chitosan-calcium sulfate

  20. Guided tissue regeneration using a collagen barrier and bone swaging technique in noncontained infrabony defects.

    PubMed

    Kodama, Toshiro; Minabe, Masato; Sugiyama, Takashi; Mitarai, Eiko; Fushimi, Hajime; Kitsugi, Daisuke; Tsutsumi, Kouji; Katsuki, Makiko

    2013-01-01

    This clinical study evaluated the effectiveness of guided tissue regeneration using a resorbable collagen membrane and bone swaging in noncontained infrabony defects by assessing changes in probing pocket depth, probing attachment level, and radiographic bone level after 6 months, 1 year, and 2 years. Postsurgical clinical and radiographic measurements were statistically significantly different from presurgical measurements. The rate of bone fill was positively associated with the baseline depth of the bone defect but not associated with the width. The noncontained infrabony defects treated with this combined regenerative method improved clinically and radiographically.

  1. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair

    PubMed Central

    Huang, Chunlan; Ness, Vincent P.; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-01-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in three-dimensional formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via Multiphoton Laser Scanning Microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3kb collagen type I promoter driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We demonstrated that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions

  2. [Experimental study of poly-DL-lactic acid membrane guided bone regeneration in rabbit radii bone defects].

    PubMed

    Duan, Hong; Fan, Yubo; Dou, Jun; Pei, Fuxing

    2004-10-01

    This study was conducted to observe bone regeneration guided by poly-DL-latic acid (PDLLA) membrane in rabbit radii bone defects and to explore the mechanism of the membrane guided bone regeneration (MGBR). The animal models of bony and periosteous defects were established in both radii of 40 adult New Zealand white rabbits. The left defect as the experimental side was bridged with PDLLA membrane tube, the right side as the controlled side was untreated. The specimens were collected at 2, 4, 8 and 12 weeks postoperatively. General observation, X-ray, histological observation and biomechanical examination were applied to the repair of the models of MGBR in both groups. Two weeks after operation, with much new bony callus formed outside the tube at both fragments, the membrane tube covered with connective tissues was filled with haematoma and fibrous callus. Twelve weeks after operation, the PDLLA membrane became white and its tube shape was still maintained. However, new bone callus outside the tube almost completely disappeared, and inside the tubes all radii bone defects were successfully repaired with bony union. On the controlled sides, bone defects were filled with connective tissues 2 weeks postoperatively. And 12 weeks after operation, the typical nonunion that had been formed after bone marrow canals were sealed with cortical bone. On the experimental side, the strength of the newly formed bone at the 12th week was higher than that at the 8th week (P<0.05), whereas the biomechanical examination could not be done on the controlled side. Therefore, these findings suggested that the bone regeneration could be successfully guided by PDLLA membrane, and this MGBR technique might be generally used in the treatment of bone defects and nonunion.

  3. Support Immersion Endoscopy in Post-Extraction Alveolar Bone Chambers: A New Window for Microscopic Bone Imaging In Vivo

    PubMed Central

    Engelke, Wilfried; Lazzarini, Marcio; Stühmer, Walter; Beltrán, Víctor

    2015-01-01

    Using an endoscopic approach, small intraoral bone chambers, which are routinely obtained during tooth extraction and implantation, provide visual in vivo access to internal bone structures. The aim of the present paper is to present a new method to quantify bone microstructure and vascularisation in vivo. Ten extraction sockets and 6 implant sites in 14 patients (6 men / 8 women) were examined by support immersion endoscopy (SIE). After tooth extraction or implant site preparation, microscopic bone analysis (MBA) was performed using short distance SIE video sequences of representative bone areas for off-line analysis with ImageJ. Quantitative assessment of the microstructure and vascularisation of the bone in dental extraction and implant sites in vivo was performed using ImageJ. MBA revealed bone morphology details such as unmineralised and mineralised areas, vascular canals and the presence of bleeding through vascular canals. Morphometric examination revealed that there was more unmineralised bone and less vascular canal area in the implant sites than in the extraction sockets. PMID:26713617

  4. Support Immersion Endoscopy in Post-Extraction Alveolar Bone Chambers: A New Window for Microscopic Bone Imaging In Vivo.

    PubMed

    Engelke, Wilfried; Lazzarini, Marcio; Stühmer, Walter; Beltrán, Víctor

    2015-01-01

    Using an endoscopic approach, small intraoral bone chambers, which are routinely obtained during tooth extraction and implantation, provide visual in vivo access to internal bone structures. The aim of the present paper is to present a new method to quantify bone microstructure and vascularisation in vivo. Ten extraction sockets and 6 implant sites in 14 patients (6 men / 8 women) were examined by support immersion endoscopy (SIE). After tooth extraction or implant site preparation, microscopic bone analysis (MBA) was performed using short distance SIE video sequences of representative bone areas for off-line analysis with ImageJ. Quantitative assessment of the microstructure and vascularisation of the bone in dental extraction and implant sites in vivo was performed using ImageJ. MBA revealed bone morphology details such as unmineralised and mineralised areas, vascular canals and the presence of bleeding through vascular canals. Morphometric examination revealed that there was more unmineralised bone and less vascular canal area in the implant sites than in the extraction sockets.

  5. The effects of alveolar bone loss and miniscrew position on initial tooth displacement during intrusion of the maxillary anterior teeth: Finite element analysis

    PubMed Central

    Cho, Sun-Mi; Choi, Sung-Hwan; Sung, Sang-Jin; Yu, Hyung-Seog

    2016-01-01

    Objective The aim of this study was to determine the optimal loading conditions for pure intrusion of the six maxillary anterior teeth with miniscrews according to alveolar bone loss. Methods A three-dimensional finite element model was created for a segment of the six anterior teeth, and the positions of the miniscrews and hooks were varied after setting the alveolar bone loss to 0, 2, or 4 mm. Under 100 g of intrusive force, initial displacement of the individual teeth in three directions and the degree of labial tilting were measured. Results The degree of labial tilting increased with reduced alveolar bone height under the same load. When a miniscrew was inserted between the two central incisors, the amounts of medial-lateral and anterior-posterior displacement of the central incisor were significantly greater than in the other conditions. When the miniscrews were inserted distally to the canines and an intrusion force was applied distal to the lateral incisors, the degree of labial tilting and the amounts of displacement of the six anterior teeth were the lowest, and the maximum von Mises stress was distributed evenly across all the teeth, regardless of the bone loss. Conclusions Initial tooth displacement similar to pure intrusion of the six maxillary anterior teeth was induced when miniscrews were inserted distal to the maxillary canines and an intrusion force was applied distal to the lateral incisors. In this condition, the maximum von Mises stresses were relatively evenly distributed across all the teeth, regardless of the bone loss. PMID:27668194

  6. Combination of platelet-rich plasma with degradable bioactive borate glass for segmental bone defect repair.

    PubMed

    Zhang, Ya-Dong; Wang, Gang; Sun, Yan; Zhang, Chang-Qing

    2011-02-01

    Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor significantly improves bone repair. In this study, a strategy combining degradable bioactive borate glass (BG) scaffolds with platelet-rich plasma (PRP) was tested. The bone defect was filled with BG alone, BG combined with autologous PRP or left empty. Bone formation was analyzed at 4, 8 and 12 weeks using both histology and radiology. The PRP treated group yielded better bone formation than the pure BG scaffold as determined by both histology and microcomputer tomography after 12 weeks. In conclusion, PRP improved bone healing in a diaphyseal rabbit model on BG. The combination of PRP and BG may be an effective approach to repair critical defects.

  7. [Secondary Alveolar Bone Grafting in Orofacial Cleft: A Survey of a Portuguese Tertiary Hospital].

    PubMed

    Costa, Ana Isabel; Morgado, Hélder; Mariz, Carlos; Estevão-Costa, José Manuel

    2016-03-01

    Introdução: A fenda lábio-palatina é a malformação congénita craniofacial mais frequente. Na presença de defeito ósseo, a técnica de enxerto ósseo alveolar secundário é o método de correção mais consensual entre os autores. Neste estudo avalia-se o resultado da aplicação desta técnica num hospital terciário. Material e Métodos: Análise dos enxertos ósseos alveolares secundários realizados entre 2007 e 2014, sendo incluídos os casos em que a crista ilíaca foi a região dadora e em que a informação clínica e imagiológica estava completa. A eficácia da intervenção foi avaliada radiologicamente com recurso à escala de Bergland (tipo I-IV), e correlacionada com variáveis associadas à patologia e/ou correção cirúrgica. Resultados: Dos 32 enxertos ósseos alveolares secundários realizados, 29 cumpriam os critérios de inclusão: 13 casos (44,8%) correspondiam a fendas pré-forâmen unilaterais completas; quatro (13,8%) a fendas pré-forâmen bilaterais completas; oito (27,6%) a fendas transforâmen unilaterais e quatro (13,8%) a fendas transforâmen bilaterais. Pela escala de Bergland (aplicada com um seguimento médio de 8 ± 5 meses), seis eram do tipo I, 15 do tipo II, cinco de tipo III e três do tipo IV. Não foi encontrada associação entre a eficácia da intervenção cirúrgica e o tipo de fenda lábio-palatina, presença do incisivo e fase de erupção do canino. Cinco doentes foram submetidos a novo enxerto ósseo alveolar (três tipo II e dois tipo III na avaliação inicial). Discussão: Na presente série, o enxerto ósseo alveolar foi eficaz na maioria dos doentes (72%, tipo I e II), independentemente do tipo de fenda lábio-palatina. A proporção de falências (10,3%) e a necessidade ulterior de reintervenção (17%) foram relativamente altas justificando o seguimento a longo-prazo e a continuação deste estudo. Conclusão: Importa realçar o envolvimento multidisciplinar para identificação atempada do momento

  8. Decreased Amount of Supporting Alveolar Bone at Single-Rooted Premolars Is Under Estimated by 2D Examinations

    PubMed Central

    Hong, Hsiang-Hsi; Chang, Chung-Chieh; Hong, Adrienne; Liu, Heng-Liang; Wang, Yen-Li; Chang, Shih-Hao; Yen, Tzung-Hai

    2017-01-01

    The purpose of this study was to relate the proportions of bone-supported root length of a 2D view into the amount of a 3D bone-attached root surface area (BA-RSA) by using a dental laser scanner examination. White-light 3D scanning technology was used to probe 36 maxillary and 35 mandibular single-rooted premolars. The bone-supported height (BSH) and BA-RSA at designated levels (95–25%) were compared using statistical t tests. The 100% BSH and BA-RSA of the maxillary/mandibular premolars were 12.6 ± 1.60 mm/13.45 ± 1.47 mm (p < 0.05) and 220.78 ± 35.31 mm2/199.51 ± 26.33 mm2 (p < 0.01), respectively. Approximately 79–80%, 59–60%, and 35–36% premolars 2D BSH remained in comparison to 75%, 50%, and 25% 3D BA-RSA preservation, respectively. However, corresponding to a 75%, 50%, and 25% 2D BSH reserve, premolars retained 67–68%, 39–41%, and 15–17% 3D BA-RSA, respectively. When taking 1.0 mm connective tissue attachment into account, 60% 3D BA-RSA and 50% 2D BSH loss were noted at the 5.1–5.4 mm clinical attachment level. Assigning a periodontal prognosis and determining the severity of periodontitis for premolars with alveolar bone loss based on 3D’s or 2D’s measurement is inconsistent. PMID:28367999

  9. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing.

  10. Micro-CT Analysis of Bone Healing in Rabbit Calvarial Critical-Sized Defects with Solid Bioactive Glass, Tricalcium Phosphate Granules or Autogenous Bone

    PubMed Central

    Karhula, Sakari S.; Haapea, Marianne; Kauppinen, Sami; Finnilä, Mikko; Saarakkala, Simo; Serlo, Willy; Sándor, George K.

    2016-01-01

    ABSTRACT Objectives The purpose of the present study was to evaluate bone healing in rabbit critical-sized calvarial defects using two different synthetic scaffold materials, solid biodegradable bioactive glass and tricalcium phosphate granules alongside solid and particulated autogenous bone grafts. Material and Methods Bilateral full thickness critical-sized calvarial defects were created in 15 New Zealand white adult male rabbits. Ten defects were filled with solid scaffolds made of bioactive glass or with porous tricalcium phosphate granules. The healing of the biomaterial-filled defects was compared at the 6 week time point to the healing of autologous bone grafted defects filled with a solid cranial bone block in 5 defects and with particulated bone combined with fibrin glue in 10 defects. In 5 animals one defect was left unfilled as a negative control. Micro-computed tomography (micro-CT) was used to analyze healing of the defects. Results Micro-CT analysis revealed that defects filled with tricalcium phosphate granules showed new bone formation in the order of 3.89 (SD 1.17)% whereas defects treated with solid bioactive glass scaffolds showed 0.21 (SD 0.16)%, new bone formation. In the empty negative control defects there was an average new bone formation of 21.8 (SD 23.7)%. Conclusions According to findings in this study, tricalcium phosphate granules have osteogenic potential superior to bioactive glass, though both particulated bone with fibrin glue and solid bone block were superior defect filling materials. PMID:27489608

  11. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits.

    PubMed

    Udehiya, Rahul Kumar; Amarpal; Aithal, H P; Kinjavdekar, P; Pawde, A M; Singh, Rajendra; Taru Sharma, G

    2013-06-01

    Autogenic and allogenic bone marrow derived mesenchymal stem cells (BM-MSCs) were compared for repair of bone gap defect in rabbits. BM-MSCs were isolated from bone marrow aspirates and cultured in vitro for allogenic and autogenic transplantation. A 5mm segmental defect was created in mid-diaphysis of the radius bone. The defect was filled with hydroxyapatite alone, hydroxyapatite with autogeneic BM-MSCs and hydroxyapatite with allogenic BM-MSCs in groups A, B and C, respectively. On an average 3.45×10(6) cells were implanted at each defect site. Complete bridging of bone gap with newly formed bone was faster in both treatment groups as compared to control group. Histologically, increased osteogenesis, early and better reorganization of cancellous bone and more bone marrow formation were discernible in treatment groups as compared to control group. It was concluded that in vitro culture expanded allogenic and autogenic BM-MSCs induce similar, but faster and better healing as compared to control.

  12. Posttraumatic displacement management: lateral luxation and alveolar bone fracture in young permanent teeth with 5 years of follow-up.

    PubMed

    Honório, Heitor Marques; de Alencar, Catarina Ribeiro Barros; Pereira Júnior, Edmer Silvestre; de Oliveira, Daniela Silva Barroso; de Oliveira, Gabriela Cristina; Rios, Daniela

    2015-01-01

    Dental trauma is an important public health problem due to high prevalence and associated limitations. The external impact accounting for trauma may result in different injury types to teeth and supporting structures. This paper describes a clinical case of tooth trauma in an 8-year-old patient exhibiting the displacement of three permanent teeth with open root apexes. Although the traumatic impact resulted in two injury types to teeth and supporting tissues (lateral luxation and alveolar bone fracture), the therapeutic approach was the same in both situations. The bone and teeth were repositioned by digital pressure, stabilized by semirigid splint, and followed up at every week. After six weeks, the splint was removed. At that moment, the clinical and radiographic findings indicated normal soft/hard tissues and absence of pulp/periodontal pathologies. At the fifth year of follow-up, the treatment success of the case was confirmed, although it has been observed that all lower incisors exhibited pulp obliteration as a consequence of the dental trauma.

  13. Electrical Stimulation in the Bone Repair of Defects Created in Rabbit Skulls

    PubMed Central

    Silva, C.; Olate, S.; Pozzer, L.; Muñoz, M.; Cantín, M.; Uribe, F.; de Albergaría-Barbosa, J. R.

    2016-01-01

    SUMMARY Electrical stimulation has been used in different conditions for tissue regeneration. The aim of this study was to analyze the tissue response of defects created in rabbit skulls to electrical stimulation. Two groups were formed, each with 9 New Zealand rabbits; two 5 mm defects were made, one in each parietal, with one being randomly filled with autogenous bone extracted as particles and the other maintained only with blood clotting. The rabbits were euthanized at 8 weeks and 15 weeks to then study the samples collected histologically. In the 8-week analysis bone formation was observed in the defects in the test and control filled with bone graft, whereas the defects with clotting presented a very early stage of bone formation with abundant connective tissue. At 15 weeks an advanced stage of bone regeneration was identified in the defects with bone graft, whereas no significant differences were found in the electrically stimulated defects. In conclusion, electrical stimulus does not alter the sequence of bone formation; new studies could help establish patterns and influences of the stimulus on bone regeneration. PMID:27840552

  14. G(-) anaerobes-reactive CD4+ T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice.

    PubMed

    Mahamed, Deeqa A; Marleau, Annette; Alnaeeli, Mawadda; Singh, Bhagirath; Zhang, Xiaoxia; Penninger, Joseph M; Teng, Yen-Tung A

    2005-05-01

    Diabetic patients experience a higher risk for severe periodontitis; however, the underlying mechanism remains unclear. We investigated the contribution of antibacterial T-cell-mediated immunity to enhanced alveolar bone loss during periodontal infection in nonobese diabetic (NOD) mice by oral inoculation with Actinobacillus actinomycetemcomitans, a G(-) anaerobe responsible for juvenile and severe periodontitis. The results show that 1) inoculation with A. actinomycetemcomitans in pre-diabetic NOD mice does not alter the onset, incidence, and severity of diabetes; 2) after A. actinomycetemcomitans inoculation, diabetic NOD mice (blood glucose >200 mg/dl and with severe insulitis) exhibit significantly higher alveolar bone loss compared with pre-diabetic and nondiabetic NOD mice; and 3) A. actinomycetemcomitans-reactive CD4+ T-cells in diabetic mice exhibit significantly higher proliferation and receptor activator of nuclear factor kappaB ligand (RANKL) expression. When diabetic mice are treated with the RANKL antagonist osteoprotegerin (OPG), there is a significant reversal of alveolar bone loss, as well as reduced RANKL expression in A. actinomycetemcomitans-reactive CD4+ T-cells. This study clearly describes the impact of autoimmunity to anaerobic infection in an experimental periodontitis model of type 1 diabetes. Thus, microorganism-reactive CD4+ T-cells and the RANKL-OPG axis provide the molecular basis of the advanced periodontal breakdown in diabetes and, therefore, OPG may hold therapeutic potential for treating bone loss in diabetic subjects at high risk.

  15. A comparative study of barrier membranes as graft protectors in the treatment of localized bone defects. An experimental study in a canine model.

    PubMed

    Stavropoulos, Franci; Dahlin, Christer; Ruskin, James D; Johansson, Carina

    2004-08-01

    Guided bone regeneration is a predictable and well-documented surgical approach for the treatment of deficient alveolar ridges prior to endosseous implant placement. The purpose of this study was to compare a new resorbable membrane (GORE RESOLUT ADAPT Regenerative Membrane, i.e. 67% glycolide (PGA) : 33% trimethyline carbonate (TMC)) with Bio-Gide, a resorbable collagen membrane. Five canines were used in the study. Three saddle-type osseous defects were created bilaterally in edentulous areas of the mandible. The defects were filled with assayed, canine demineralized freeze-dried bone (DFDB) in a thermoplastic gelatin matrix. Using a randomized block design, four sites were covered with PGA : TMC membranes of four different porosities, one site was covered with a collagen membrane and one site consisted of DFDB alone (control). At 3 months, the animals were euthanized and the mandibles were removed en bloc for laboratory processing. A total of 30 sites were reviewed microradiographically and underwent histomorphometric analysis for bone regeneration, soft tissue presence and remaining graft material. All sites exhibited uneventful healing. A significantly higher percentage of bone regeneration was seen in the sites protected by the PGA : TMC membrane. A higher component of soft tissue was visible beneath the collagen membrane as compared with the PGA : TMC membrane. The control sites exhibited noticeable deformation of the regenerated bone secondary to collapse of the overlying periosteum. The authors conclude that the PGA : TMC membrane protected the DFDB-filled defect and allowed a greater amount of bone regeneration than the defect protected by the collagen membrane or the control.

  16. Reconstruction of mandibular vertical defects for dental implants with autogenous bone block grafts using a tunnel approach: clinical study of 50 cases.

    PubMed

    Restoy-Lozano, A; Dominguez-Mompell, J L; Infante-Cossio, P; Lara-Chao, J; Espin-Galvez, F; Lopez-Pizarro, V

    2015-11-01

    The objective of this study was to evaluate the outcomes of mandibular vertical defect reconstruction with autologous bone and the use of a sub-periosteal tunnel approach in preparation for dental implant insertion. Forty-three consecutive patients with an atrophic posterior mandible were reconstructed using this method. Two thin laminae of cortical bone, obtained by splitting blocks harvested from the retromolar area, were fixed in a box-like framework containing cancellous and particulate bone. The goal was to achieve an alveolar ridge width of ≥5.5mm and an effective bone height (EBH) of ≥10.5mm for dental implant insertion (≥3.4mm diameter, ≥9.5mm length). Fifty reconstruction procedures were performed. The mean EBH was 7.1±1.3mm pre-treatment and 12.3±1.1mm post-treatment (mean increase 5.2±1.4mm). Complete graft loss was recorded in two cases; the remaining complications were minor. After a mean consolidation period of 3.5 months, 96 dental implants were placed. No failure of osseointegration was observed at follow-up (mean 32.9 months). The average bone height reduction was 0.9mm (graft vertical resorption 17.4%). Reconstruction of posterior mandibular vertical defects using two autogenous cortical bone blocks with particulate bone between them, combined with a tunnelling technique, provided good healing with no wound dehiscence and minimum resorption of the grafted bone, favouring a substantial vertical bone gain.

  17. Increased bone formation in a rabbit long-bone defect model after single local and single systemic application of erythropoietin.

    PubMed

    Omlor, Georg W; Kleinschmidt, Kerstin; Gantz, Simone; Speicher, Anja; Guehring, Thorsten; Richter, Wiltrud

    2016-08-01

    Background and purpose - Delayed bone healing with non-union is a common problem. Further options to increase bone healing together with surgery are needed. We therefore evaluated a 1-dose single application of erythropoietin (EPO), applied either locally to the defect or systemically during surgery, in a critical-size rabbit long-bone defect. Material and methods - 19 New Zealand White rabbits received a 15-mm defect in the radius diaphysis. An absorbable gelatin sponge was soaked with saline (control group and systemic treatment group) or EPO (local treatment group) and implanted into the gap. The systemic treatment group received EPO subcutaneously. In vivo micro-CT analysis was performed 4, 8, and 12 weeks postoperatively. Vascularization was evaluated histologically. Results - Semiquantitative histomorphometric and radiological evaluation showed increased bone formation (2.3- to 2.5-fold) in both treatment groups after 12 weeks compared to the controls. Quantitative determination of bone volume and tissue volume showed superior bone healing after EPO treatment at all follow-up time points, with the highest values after 12 weeks in locally treated animals (3.0- to 3.4-fold). More vascularization was found in both EPO treatment groups. Interpretation - Initial single dosing with EPO was sufficient to increase bone healing substantially after 12 weeks of follow-up. Local application inside the defect was most effective, and it can be administered directly during surgery. Apart from effects on ossification, systemic and local EPO treatment leads to increased callus vascularization.

  18. Increased bone formation in a rabbit long-bone defect model after single local and single systemic application of erythropoietin

    PubMed Central

    Omlor, Georg W; Kleinschmidt, Kerstin; Gantz, Simone; Speicher, Anja; Guehring, Thorsten; Richter, Wiltrud

    2016-01-01

    Background and purpose Delayed bone healing with non-union is a common problem. Further options to increase bone healing together with surgery are needed. We therefore evaluated a 1-dose single application of erythropoietin (EPO), applied either locally to the defect or systemically during surgery, in a critical-size rabbit long-bone defect. Material and methods 19 New Zealand White rabbits received a 15-mm defect in the radius diaphysis. An absorbable gelatin sponge was soaked with saline (control group and systemic treatment group) or EPO (local treatment group) and implanted into the gap. The systemic treatment group received EPO subcutaneously. In vivo micro-CT analysis was performed 4, 8, and 12 weeks postoperatively. Vascularization was evaluated histologically. Results Semiquantitative histomorphometric and radiological evaluation showed increased bone formation (2.3- to 2.5-fold) in both treatment groups after 12 weeks compared to the controls. Quantitative determination of bone volume and tissue volume showed superior bone healing after EPO treatment at all follow-up time points, with the highest values after 12 weeks in locally treated animals (3.0- to 3.4-fold). More vascularization was found in both EPO treatment groups. Interpretation Initial single dosing with EPO was sufficient to increase bone healing substantially after 12 weeks of follow-up. Local application inside the defect was most effective, and it can be administered directly during surgery. Apart from effects on ossification, systemic and local EPO treatment leads to increased callus vascularization. PMID:27348783

  19. Is alveolar cleft reconstruction still controversial? (Review of literature)

    PubMed Central

    Seifeldin, Sameh A.

    2015-01-01

    Cleft lip and palate (CL/P) is a frequent congenital malformation that manifests in several varieties including unilateral or bilateral and complete or incomplete. Alveolar cleft reconstruction remains controversial with regard to timing, graft materials, surgical techniques, and methods of evaluation. Many studies have been conducted addressing these points to develop an acceptable universal protocol for managing CL/P. The primary goal of alveolar cleft reconstruction in CL/P patients is to provide a bony bridge at the cleft site that allows maxillary arch continuity, oronasal fistula repair, eruption of the permanent dentition into the newly formed bone, enhances nasal symmetry through providing alar base support, orthodontic movement and placement of osseointegrated implants when indicated. Other goals include improving speech, improvement of periodontal conditions, establishing better oral hygiene, and limiting growth disturbances. In order to rehabilitate oral function in CL/P patients alveolar bone grafting is necessary. Secondary bone grafting is the most widely accepted method for treating alveolar clefts. Autogenous bone graft is the primary source for reconstructing alveolar cleft defects and is currently the preferred grafting material. PMID:26792963

  20. Biodegradable hybrid tissue engineering scaffolds for reconstruction of large bone defects

    NASA Astrophysics Data System (ADS)

    Barati, Danial

    Complex skeletal injuries and large bone fractures are still a significant clinical problem in US. Approximately 1.5 million Americans (veterans, their families, and civilians) every year suffer from bone loss due to traumatic skeletal injuries, infection, and resection of primary tumors that require extensive grafting to bridge the gap. The US bone graft market is over $2.2 billion a year. Due to insufficient mechanical stability, lack of vascularity, and inadequate resorption of the graft, patients with traumatic large skeletal injuries undergo multiple costly operations followed by extensive recovery steps to maintain proper bone alignment and length. Current strategies for repairing damaged or diseased bones include autologous or allograft bone transplantations. However, limited availability of autografts and risk of disease transmission associated with allografts have necessitated the search for the development of new bone graft options and strategies. The overall goal of this project is to develop a much-needed bone-mimetic engineered graft as a substitute for current strategies providing required bone grafts for reconstruction of large bone defects. This project will use the structure of natural cortical bone as a guide to produce an engineered bone graft with balanced strength, osteogenesis, vascularization, and resorption. The outcome of this project will be a biodegradable hybrid scaffold system (similar to natural cortical bone) including a mechanically strong scaffold allowing for mechanical stability of the load-bearing defect site and a soft and highly porous structure such as a hydrogel phase which will allow for efficient cell and growth factor delivery into the defect implantation site, cell niche establishment and promotion of mineralization. Successful completion of this project will transform bone graft technology for regeneration of complex bone defects from a frozen or freeze-dried allograft to a safe, infection-free, mechanically

  1. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.

    PubMed

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  2. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    PubMed Central

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  3. Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/β-catenin signaling pathway in alveolar bone of ovariectomized rats.

    PubMed

    Sun, Wei; Wang, Yuan-qin; Yan, Qi; Lu, Rui; Shi, Bin

    2014-02-01

    Recent studies have shown that Er-Zhi-Wan (EZW), a traditional Chinese medicine consisting of Herba Ecliptae (HE) and Fructus Ligustri Lucidi (FLL), had a definite antiosteoporotic effect on osteoporotic femur, but its effect on osteoporosis of alveolar bone remains unknown. In the present study, we investigated the effects of Er-Zhi-Wan (EZW) on the microarchitecture and the regulation of Wnt/β-catenin signaling pathway in the alveolar bone of ovariectomized rats. Thirty Sprague-Dawley rats were randomly divided into three groups: sham operation group (sham, n=10), ovariectomy (OVX) group (n=10), and OVX with EZW treatment group (EZW group, n=10). From one week after ovariectomy, EZW (100 mg/mL) or vehicle (distilled water) was fed (1 mL/100 g) once per day for 12 weeks until the sacrifice of the rats. The body weights were measured weekly. After sacrifice, the sera and mandible were collected and routinely prepared for the measurement of alveolar trabecular microarchitecture, serum levels of E2, bone-specific alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase 5b (TRAP5b), as well as mandibular mRNA expression of Wnt/β-catenin signaling pathway molecules wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), β-catenin and dickkopf homolog 1 (DKK1). The results showed that EZW treatment significantly prevented the body weight gain, degradation of alveolar trabecular microarchitecture and alveolar bone loss in the OVX rats. Furthermore, we observed that EZW could increase the serum levels of E2 and BALP, and decrease levels of serum TRAP5b in EZW group compared with vehicle group. In addition, RT-PCR results revealed that EZW upregulated the expression levels of wnt3a, LRP5 and β-catenin, and reduced the expression of DKK1 in OVX rats. Taken together, our results suggested that EZW may have potential anti-osteoporotic effects on osteoporotic alveolar bone by stimulating Wnt/LRP5/β-catenin signaling pathway.

  4. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.

    PubMed

    García, José R; Clark, Amy Y; García, Andrés J

    2016-04-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.

  5. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects

    PubMed Central

    García, José R.; Clark, Amy Y.; García, Andrés J.

    2016-01-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded polyethylene glycol (PEG) hydrogels functionalized with either a triple-helical, α2β1 integrin-specific peptide (GFOGER) or an αvβ3 integrin-targeting peptide (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration. PMID:26662727

  6. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects.

    PubMed

    Chatterjea, Anindita; van der Stok, Johan; Danoux, Charlène B; Yuan, Huipin; Habibovic, Pamela; van Blitterswijk, Clemens A; Weinans, Harrie; de Boer, Jan

    2014-05-01

    In the present study, two open porous calcium phosphate ceramics, β-tricalcium phosphate (β-TCP), and hydroxyapatite (HA) were compared in a critical-sized femoral defect in rats. Previous comparisons of these two ceramics showed significantly greater osteoinductive potential of β-TCP upon intramuscular implantation and a better performance in a spinal fusion model in dogs. Results of the current study also showed significantly more bone formation in defects grafted with β-TCP compared to HA; however, both the ceramics were not capable of increasing bone formation to such extend that it bridges the defect. Furthermore, a more pronounced degradation of β-TCP was observed as compared to HA. Progression of inflammation and initiation of new bone formation were assessed for both materials at multiple time points by histological and fluorochrome-based analyses. Until 12 days postimplantation, a strong inflammatory response in absence of new bone formation was observed in both ceramics, without obvious differences between the two materials. Four weeks postimplantation, signs of new bone formation were found in both β-TCP and HA. At 6 weeks, inflammation had subsided in both ceramics while bone deposition continued. In conclusion, the two ceramics differed in the amount of bone formed after 8 weeks of implantation, whereas no differences were found in the duration of the inflammatory phase after implantation or initiation of new bone formation.

  7. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis

    PubMed Central

    Wang, X.; Luo, F.; Huang, K.

    2016-01-01

    Objectives Induced membrane technique is a relatively new technique in the reconstruction of large bone defects. It involves the implantation of polymethylmethacrylate (PMMA) cement in the bone defects to induce the formation of membranes after radical debridement and reconstruction of bone defects using an autologous cancellous bone graft in a span of four to eight weeks. The purpose of this study was to explore the clinical outcomes of the induced membrane technique for the treatment of post-traumatic osteomyelitis in 32 patients. Methods A total of 32 cases of post-traumatic osteomyelitis were admitted to our department between August 2011 and October 2012. This retrospective study included 22 men and ten women, with a mean age of 40 years (19 to 70). Within this group there were 20 tibias and 12 femurs with a mean defect of 5 cm (1.5 to 12.5). Antibiotic-loaded PMMA cement was inserted into the defects after radical debridement. After approximately eight weeks, the defects were implanted with bone graft. Results The patients were followed for 27.5 months (24 to 32). Radiographic bone union occurred at six months for 26 cases (81%) and clinical healing occurred in 29 cases (90%) at ten months. A total of six cases had a second debridement before bone grafting because of recurrence of infection and one patient required a third debridement. No cases of osteomyelitis had recurred at the time of the last follow-up visit. Conclusion The induced membrane technique for the treatment of post-traumatic osteomyelitis is a simple, reliable method, with good early results. However, there are many challenges in determining the scope of the debridement, type of limb fixation and source of bone graft to be used. Cite this article: Dr Z. Xie. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. Bone Joint Res 2016;5:101–105. DOI: 10.1302/2046-3758.53.2000487. PMID:27033845

  8. Assessment of cleft lip and palate patients treated with presurgical orthopedic correction and either primary bone grafts, gingivoperiosteoplasty, or without alveolar grafting procedures.

    PubMed

    Grisius, Thomas M; Spolyar, John; Jackson, Ian T; Bello-Rojas, Gustavo; Dajani, Khaled

    2006-05-01

    The effects of alveolar grafting on the development of the craniofacial complex have been reported by numerous investigators. The reported results vary in the literature from significant to very little impediment of maxillary growth. The present work evaluates and compares facial form at age six years in complete unilateral cleft lip and palate patients treated with presurgical orthopedic correction and primary reconstruction with (1) primary bone grafts (n = 14), (2) gingivoperiosteoplasty (n = II), or (3) without alveolar grafting procedures at the time of lip repair (n = 13). The cohort groups were analyzed with a one-way analysis of variance (ANOV A). Statistical analysis revealed significant differences between the three groups for only one of the 12 parameters analyzed. The primary bone grafted group demonstrated less vertical descent-of the anterior maxilla compared to the gingivoperiosteoplasty and non-grafted groups (P = .0027).

  9. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    PubMed

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation.

  10. Bone defect regeneration and cortical bone parameters of type 2 diabetic rats are improved by insulin therapy.

    PubMed

    Picke, A-K; Gordaliza Alaguero, I; Campbell, G M; Glüer, C-C; Salbach-Hirsch, J; Rauner, M; Hofbauer, L C; Hofbauer, C

    2016-01-01

    Zucker Diabetic Fatty (ZDF) rats represent an established model of type 2 diabetes mellitus (T2DM) and display several features of human diabetic bone disease, including impaired osteoblast function, decreased bone strength, and delayed bone healing. Here, we determined whether glycemic control by insulin treatment prevents skeletal complications associated with diabetes. Subcritical femur defects were created in diabetic (fa/fa) and non-diabetic (+/+) ZDF rats. Diabetic rats were treated once daily with long-lasting insulin glargin for 12weeks for glycemic control. Insulin treatment successfully maintained serum levels of glycated hemoglobin, while untreated diabetic rats showed a 2-fold increase. Trabecular and cortical bone mass measured by μCT were decreased in diabetic rats. Insulin treatment increased bone mass of the cortical, but not of the trabecular bone compartment. Dynamic histomorphometry revealed a lower bone formation rate at the trabecular and periosteal cortical bone in diabetic animals and decreased serum procollagen type 1 N-terminal propeptide (P1NP, -49%) levels. Insulin treatment partially improved these parameters. In T2DM, serum levels of tartrate-resistant acid phosphatase (TRAP, +32%) and C-terminal telopeptide (CTX, +49%) were increased. Insulin treatment further elevated TRAP levels, but did not affect CTX levels. While diabetes impaired bone defect healing, glycemic control with insulin fully reversed these negative effects. In conclusion, insulin treatment reversed the adverse effects of T2DM on bone defect regeneration in rats mainly by improving osteoblast function and bone formation. This article is part of a Special Issue entitled Bone and diabetes.

  11. SURGICAL TREATMENT FOR INFECTED LONG BONE DEFECTS AFTER LIMB-THREATENING TRAUMA: APPLICATION OF LOCKED PLATE AND AUTOGENOUS CANCELLOUS BONE GRAFT

    PubMed Central

    KAWAKAMI, RYOICHI; KONNO, SHIN-ICHI; EJIRI, SOICHI; HATASHITA, SATOSHI

    2015-01-01

    ABSTRACT Background: Treatment strategies for bone defects include free bone grafting, distraction osteogenesis, and vascularized bone grafting. Because bone defect morphology is often irregular, selecting treatment strategies may be difficult. With the Masquelet technique, a fracture site is bridged and fixed with a locking plate after treating deep infection with antibiotic-containing cement, and a free cancellous bone-graft is concomitantly placed into the defects. This procedure avoids excessive bone resection. Methods:We studied 6 patients who underwent surgical treatment for deep infection occurring after extremity trauma (2004 through 2009). Ages at surgery ranged from 29 to 59 years (largest age group: 30 s). Mean follow-up was 50.7 months (minimum/maximum: 36/72 months). One patient had complete amputation of the upper extremity, 3 open forearm fractures, 1 closed supracondylar femur fracture, and 1 open tibia fracture. In all patients, bone defects were filled with antibiotic-containing cement beads after infected site debridement. If bacterial culture of infected sites during curettage was positive, surgery was repeated to refill bone defects with antibiotic-containing cement beads. After confirmation of negative bacterial culture, osteosynthesis was performed, in which bone defects were bridged and fixed with locking plates. Concomitantly, crushed cancellous bone grafts harvested from the autogenous ilium was placed in the bone defects. Results: Time from bone grafting and plate fixation to bone union was at least 3 and at most 6 months, 4 months on average. Infection relapsed in one patient with methicillin-resistant Staphylococcus aureus, necessitating vascularized fibular grafting which achieved bone union. No patients showed implant loosening or breakage or infection relapse after the last surgery during follow-up. Conclusion: The advantage of cancellous bone grafting include applicability to relatively large bone defects, simple surgical procedure

  12. [Clinical application on restoration of dentition defects using tooth-alveolar bone grafts].

    PubMed

    Zhifang, Chen; Wei, Zhang

    2016-08-01

    目的 评价牙-牙槽骨联合移植修复牙列缺损的临床效果。方法 将45例牙列缺损患者根据牙移植手术方法不同分为2组:A组24例,采用改良的外科正牙手术方法,在供区移植牙周围牙槽骨内切取牙-牙槽骨的复合体,在受区预备相应的洞型后,植入牙-牙槽骨复合体;B组21例,采用常规牙移植方法,取出移植牙,制备植牙窝,植入供牙。2组正畸固定4~6周,术后2~12周选择性根管治疗,定期随访观察,对临床效果进行评价。结果 2组移植牙在牙冠色泽变化以及牙周膜影像等方面无统计学差异(P>0.05),在松动度、牙根吸收、根管治疗比率、牙槽骨吸收等方面有统计学差异(P<0.05),A组疗效优于B组。结论 牙-牙槽骨移植克服了传统牙移植的部分缺点,可作为牙列缺损的修复方法之一。.

  13. Soluble VEGFR1 reverses BMP2 inhibition of intramembranous ossification during healing of cortical bone defects.

    PubMed

    Hu, Kai; Besschetnova, Tatiana Y; Olsen, Bjorn R

    2016-09-07

    BMP2 is widely used for promotion of bone repair and regeneration. However, bone formation induced by BMP2 is quite variable. Bone forming progenitor cells in different locations appear to respond to BMP2 in different ways, and repair outcomes can vary as a consequence of modulating effects by other factors. In this study, we have examined the effects of VEGF on BMP2-induced repair of a cortical bone defect, a 1 mm diameter drill hole, in the proximal tibia of mice. Treatment of the defect with either a bolus of PBS or soluble VEGFR1 (sVEGFR1), a decoy receptor for VEGF, had the same effects on bone formation via intramembranous ossification in the defect and cartilage formation and injured periosteum, during the healing process. In contrast, treatment with BMP2 inhibited intramembranous bone formation in the defect while it promoted cartilage and endochondral bone formation in the injured periosteum compared with mice treated with PBS or sVEGFR1. The inhibitory effect of BMP2 on bone formation was unlikely due to increased osteoclast activity and decreased invasion of blood vessels in the defect. Most importantly, co-delivery of BMP2 and sVEGFR1 reversed the inhibition of intramembranous bone formation by BMP2. Furthermore, the decreased accumulation of collagen and production of bone matrix proteins in the defect of groups with BMP2 treatment could also be prevented by co-delivery of BMP2 and sVEGFR1. Our data indicate that introducing a VEGF-binding protein, such as sVEGFR1, to reduce levels of extracellular VEGF, may enhance the effects of BMP2 on intramembranous bone formation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  14. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images

    PubMed Central

    Guerrero, Maria Eugenia; Noriega, Jorge

    2014-01-01

    Purpose This study was performed to determine the efficacy of observers' prediction for the need of bone grafting and presence of perioperative complications on the basis of cone-beam computed tomography (CBCT) and panoramic radiographic (PAN) planning as compared to the surgical outcome. Materials and Methods One hundred and eight partially edentulous patients with a need for implant rehabilitation were referred for preoperative imaging. Imaging consisted of PAN and CBCT images. Four observers carried out implant planning using PAN image datasets, and at least one month later, using CBCT image datasets. Based on their own planning, the observers assessed the need for bone graft augmentation as well as complication prediction. The implant length and diameter, the need for bone graft augmentation, and the occurrence of anatomical complications during planning and implant placement were statistically compared. Results In the 108 patients, 365 implants were installed. Receiver operating characteristic analyses of both PAN and CBCT preoperative planning showed that CBCT performed better than PAN-based planning with respect to the need for bone graft augmentation and perioperative complications. The sensitivity and the specificity of CBCT for implant complications were 96.5% and 90.5%, respectively, and for bone graft augmentation, they were 95.2% and 96.3%, respectively. Significant differences were found between PAN-based planning and the surgery of posterior implant lengths. Conclusion Our findings indicated that CBCT-based preoperative implant planning enabled treatment planning with a higher degree of prediction and agreement as compared to the surgical standard. In PAN-based surgery, the prediction of implant length was poor. PMID:25279342

  15. [Analysis on changes of sclerotin volume during the self-repairing process of bone defect].

    PubMed

    Mamatjan, Mamut; Mamtimin, Geni; Nijat, Yusup; Zhang, Rui; Arxidin, Ablat; Muhtar, Yusup; Akrem, Mahmut; Jurat, Matruzi; Mamattursun, Turdi

    2012-08-01

    Bone maintenance theory considers that the external load is the direct stimulating source of the bone remodeling. In this article, the method of experimental observation of self-repairing process of the bone defect and related results are introduced. Firstly, a hole was drilled in the rabbit thighbone so that the continuity of the bone was changed. Then bone defect model was established, and the thighbone data were obtained by using CT scanning, and the self-repairing process of bone defects caused by growth factor were observed and analyzed by MIMICS software. Finally, the relationship between volume changes of sclerotin was established, and scientific bases were provided for introducing the bionic topology optimization method to the remodeling process. The experimental results showed that the self-repairing of the each layer sclerotin of the young rabbits was faster than that of the adult ones under the same condition. In addition, the volume always changes contrarily between the spongy bone and enamel bone during the self-repairing process of bone defect.

  16. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats

    PubMed Central

    Oishi, Shuji; Shimizu, Yasuhiro; Hosomichi, Jun; Kuma, Yoichiro; Maeda, Hideyuki; Nagai, Hisashi; Usumi-Fujita, Risa; Kaneko, Sawa; Shibutani, Naoki; Suzuki, Jun-ichi; Yoshida, Ken-ichi; Ono, Takashi

    2016-01-01

    Intermittent hypoxia (IH) recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA). Recently, we found that IH increased bone mineral density (BMD) in the inter-radicular alveolar bone (reflecting enhanced osteogenesis) in the mandibular first molar (M1) region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF) pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF) in periodontal ligament (PDL) tissues. Seven-week-old male Sprague–Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT). Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2). The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model. PMID:27695422

  17. Novel Therapy for Bone Regeneration in Large Segmental Defects

    DTIC Science & Technology

    2015-10-01

    determined that our scaffolds were not weight bearing and with a different fixation method we believe we can even further improve TPO’s efficacy which...Chu TM, Warden SJ, Turner CH, Stewart RL. Segmental bone regeneration using a load- bearing biodegradable carrier of bone morphogenetic protein-2...biomaterialsSegmental bone regeneration using a load- bearing biodegradable carrier of bone morphogenetic protein-2 Tien-Min G. Chua,b,, Stuart J. Wardenc

  18. Oxidative Nanopatterning of Titanium Surface Influences mRNA and MicroRNA Expression in Human Alveolar Bone Osteoblastic Cells

    PubMed Central

    Wimmers Ferreira, Maidy Rehder; Rodrigo Fernandes, Roger; Freire Assis, Amanda; Dernowsek, Janaína A.; Passos, Geraldo A.; Variola, Fabio; Fittipaldi Bombonato-Prado, Karina

    2016-01-01

    Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution. Biochemical assays showed that cell culture proliferation augmented after 10 days, and cell viability increased gradually over 14 days. Among the treated surfaces, we observed an increase of alkaline phosphatase activity as a function of the surface texture, with higher activity shown by cells adhering onto nanotextured surfaces. Nevertheless, the rough microtexture group showed higher amounts of calcium than nanotextured group. Microarray data showed differential expression of 716 mRNAs and 32 microRNAs with functions associated with osteogenesis. Results suggest that oxidative nanopatterning of titanium surfaces induces changes in the metabolism of osteoblastic cells and contribute to the explanation of the mechanisms that control cell responses to micro- and nanoengineered surfaces. PMID:27200092

  19. Orthopedic intrusion of premaxilla with distraction devices before alveolar bone grafting in patients with bilateral cleft lip and palate.

    PubMed

    Liou, Eric Jein-Wein; Chen, Philip K T; Huang, C Shing; Chen, Y Ray

    2004-03-01

    Surgical repositioning of the downward displaced premaxilla in bilateral cleft lip and palate patients remains a controversial and perplexing issue because of its detrimental effects on the growth of the premaxilla. The purpose of this prospective clinical study was to introduce and evaluate the treatment results of an innovative technique for nonsurgically intruding the downward displaced premaxilla. Eight consecutive cases of bilateral cleft lip and palate at the age of mixed dentition were included for the correction of their premaxillary deformities. A pair of intraoral tooth-borne distraction devices was used for the orthopedic intrusion. Serial lateral and posteroanterior cephalometric radiographs were taken periodically for evaluating the growth of the premaxilla 1 year before the intrusion, changes during the intrusion, and growth/relapse up to 1 year after the intrusion. There was no overgrowth of the premaxilla or overeruption of the maxillary incisors during the 1-year observing period before the orthopedic intrusion. The treatment results revealed that the downward displaced premaxillae were all corrected within 1 month. Cephalometrically, 46 percent of the correction resulted from a true orthopedic intrusion and another 54 percent from a dentoalveolar effect in which the maxillary incisors were intruded and the premaxillary dentoalveolus was shortened. The cephalometric evaluations also implied that what occurred during the orthopedic intrusion was mostly the sutural contraction osteogenesis/osteolysis in the vomeropremaxillary suture combined with slightly mechanical upward displacement of the vomeronasal septum complex and nasal bones. The orthopedic intrusion of the premaxilla with distraction devices is an effective nonsurgical method for correcting the downward displaced premaxilla before alveolar bone grafting in patients with bilateral cleft lip and palate, and the results remained stable after 1 year.

  20. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model

    PubMed Central

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  1. A perfusion bioreactor system efficiently generates cell‐loaded bone substitute materials for addressing critical size bone defects

    PubMed Central

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne‐Wistrand, Anna; Walles, Heike

    2015-01-01

    Abstract Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  2. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence

    PubMed Central

    2012-01-01

    Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Although there are several methods for bone reconstruction, they all have specific indications and limitations. The concept of using barrier membranes for restoration of bone defects has been developed in an effort to simplify their treatment by offering a sinlge-staged procedure. Research on this field of bone regeneration is ongoing, with evidence being mainly attained from preclinical studies. The purpose of this review is to summarize the current experimental and clinical evidence on the use of barrier membranes for restoration of bone defects in maxillofacial and orthopedic surgery. Although there are a few promising preliminary human studies, before clinical applications can be recommended, future research should aim to establish the 'ideal' barrier membrane and delineate the need for additional bone grafting materials aiming to 'mimic' or even accelerate the normal process of bone formation. Reproducible results and long-term observations with barrier membranes in animal studies, and particularly in large animal models, are required as well as well-designed clinical studies to evaluate their safety, efficacy and cost-effectiveness. PMID:22834465

  3. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence.

    PubMed

    Dimitriou, Rozalia; Mataliotakis, George I; Calori, Giorgio Maria; Giannoudis, Peter V

    2012-07-26

    Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Although there are several methods for bone reconstruction, they all have specific indications and limitations. The concept of using barrier membranes for restoration of bone defects has been developed in an effort to simplify their treatment by offering a single-staged procedure. Research on this field of bone regeneration is ongoing, with evidence being mainly attained from preclinical studies. The purpose of this review is to summarize the current experimental and clinical evidence on the use of barrier membranes for restoration of bone defects in maxillofacial and orthopedic surgery. Although there are a few promising preliminary human studies, before clinical applications can be recommended, future research should aim to establish the 'ideal' barrier membrane and delineate the need for additional bone grafting materials aiming to 'mimic' or even accelerate the normal process of bone formation. Reproducible results and long-term observations with barrier membranes in animal studies, and particularly in large animal models, are required as well as well-designed clinical studies to evaluate their safety, efficacy and cost-effectiveness.

  4. Cell sheet-engineered bones used for the reconstruction of mandibular defects in an animal model

    PubMed Central

    DU, CHUNHUA; YAO, CHAO; LI, NINGYI; WANG, SHUANGYI; FENG, YUANYONG; YANG, XUECAI

    2015-01-01

    The aim of the present study was to investigate the generation of cell sheet-engineered bones used for the reconstruction of mandibular defects. Bone marrow stem cells (BMSCs) were cultured and induced to generate osteoblasts. Poly(lactic-co-glycolic acid) (PLGA) scaffolds were wrapped with or without cell sheets and then implanted into dogs with mandibular defects in the right side (experimental group) or the left side (control group), respectively. Subsequently, X-ray analyses, and hematoxylin and eosin staining were performed at various time points (at 4, 8, 12 or 16 weeks post-implantation; n=4 at each time point). The osteogenesis in the experimental group was significantly improved compared with that in the control group. At 16 weeks after implantation, numerous Haversian systems and a few lamellar bones were observed at the periphery. In the control group, the engineered bone (without BMSC sheets) presented fewer Haversian systems and no lamellar bones. The optical density of the fresh bone in the experimental group was significantly higher compared with that in the control group (P<0.05). In conclusion, tissue-engineered bone with the structure of lamellar bones can be generated using BMSC sheets and implantation of these bones had an improved effects compared with the control group. Cell sheet transplantation was found to enhance bone formation at the reconstruction site of the mandibular defects. PMID:26668619

  5. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects.

    PubMed Central

    Takagi, K; Urist, M R

    1982-01-01

    Trephine defects in the adult rat skull 0.8 cm in diameter, which do not spontaneously heal, were filled with a bovine bone morphogenetic protein (BMP) fraction. The defects healed not only by bony ingrowth from the trephine rim, but also by proliferation of pervascular mesenchymal-type cells (pericytes) of the dura mater. Under the influence of BMP, dural pericytes differentiated into chondroid and woven bone. Between three and four weeks postimplantation, sinusoids formed and the woven bone remodelled into lamellar bone. Concurrently, blood-borne bone marrow cells colonized the bone deposits, and the diploe were restored. Demonstrating that it is soluble in interstitial fluid, and diffusible across a nucleopore membrane (which isolated the bony margins of the skull), BMP induced new bone formation in the underlying dura and complete repair of the defect. The response of the dura to the BMP fraction produced more new bone than the response to allogeneic bone matrix. The BMP-induced repair was dose dependent; the quantity of new bone was proportional to the dose of the implanted BMP. Images Fig. 1a. Fig. 1b. Fig. 1c. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. Fig. 9. PMID:7092346

  6. Effects of implantation of three-dimensional engineered bone tissue with a vascular-like structure on repair of bone defects

    NASA Astrophysics Data System (ADS)

    Nishi, Masanori; Matsumoto, Rena; Dong, Jian; Uemura, Toshimasa

    2012-12-01

    Previously, to create an implantable bone tissue associated with blood vessels, we co-cultured rabbit bone marrow mesenchymal stem cells (MSCs) with MSC-derived endothelial cells (ECs) within a porous polylactic acid-based scaffold utilizing a rotating wall vessel (RWV) bioreactor. Here, this engineered tissue was orthotopically implanted into defects made in femurs of immunodeficient rats, and histological analysis were carried out to examine the repair of the damage and the formation of bone around the implant. The bone defects were better repaired in the implanted group than control group after 3 weeks. The results indicate that the engineered bone could repair bone defects.

  7. Effect of enamel matrix derivative (Emdogain) on bone defects in rabbit tibias.

    PubMed

    Cornelini, Roberto; Scarano, Antonio; Piattelli, Maurizio; Andreana, Sebastiano; Covani, Ugo; Quaranta, Alessandro; Piattelli, Adriano

    2004-01-01

    The aim of this study was to assess the effect of an enamel matrix derivative (Emdogain, Biora, AB, Malmö, Sweden) on bone healing. Ten New Zealand rabbits, weighing about 2.5 kg, were used. One 8-mm bone defect was created in each tibia. The defect on the right leg was filled with Emdogain, whereas the defect on the opposite leg was left unfilled as control. A total of 20 defects were created. Five rabbits each were killed at 4 and 8 weeks with an overdose of Tanax. Block sections containing the defects were retrieved and the specimens processed for light microscopy examination. The slides were stained with acid and basic fuchsin and toluidine blue. Histologically, no differences were noted in both groups at each observation period; in the test group, remnants of the implanted Emdogain were not present at 4 weeks. Newly formed bone was detectable in both groups at all observation times. At 8 weeks, both groups showed mature bone, and in the test group the material implanted was not visible. No inflammatory cells were visible in both groups. In conclusion, our results indicate that Emdogain implanted in bone defects is fully resorbed after 4 to 8 weeks and does not adversely affect bone formation.

  8. A novel intramedullary callus distraction system for the treatment of femoral bone defects.

    PubMed

    Horas, Konstantin; Schnettler, Reinhard; Maier, Gerrit; Horas, Uwe

    2016-08-01

    An intramedullary device has some advantages over external fixation in callus distraction for bone defect reconstruction. There are difficulties controlling motorized intramedullary devices and monitoring the distraction rate which may lead to poor results. The aim of this study was to design a fully implantable and non-motorized simple distraction nail for the treatment of bone defects. The fully implantable device comprises a tube-in-tube system and a wire pulling mechanism for callus distraction. For the treatment of femoral bone defects, a traction wire, attached to the device at one end, is fixed to the tibial tubercle at its other end. Flexion of the knee joint over a predetermined angle generates a traction force on the wire triggering bone segment transport. This callus distraction system was implanted into the femur of four human cadavers (total 8 femora), and bone segment transport was conducted over 60-mm defects with radiographic monitoring. All bone segments were transported reliably to the docking site. From these preliminary results, we conclude that this callus distraction system offers an alternative to the current intramedullary systems for the treatment of bone defects.

  9. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone.

    PubMed

    Zacchetti, Giovanna; Dayer, Romain; Rizzoli, René; Ammann, Patrick

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively.

  10. Systemic Treatment with Strontium Ranelate Accelerates the Filling of a Bone Defect and Improves the Material Level Properties of the Healing Bone

    PubMed Central

    Zacchetti, Giovanna; Rizzoli, René

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively. PMID:25243150

  11. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori.

  12. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  13. Histopathological features of bone regeneration in a canine segmental ulnar defect model

    PubMed Central

    2014-01-01

    Background Today, finding an ideal biomaterial to treat the large bone defects, delayed unions and non-unions remains a challenge for orthopaedic surgeions and researchers. Several studies have been carried out on the subject of bone regeneration, each having its own advantages. The present study has been designed in vivo to evaluate the effects of cellular auto-transplantation of tail vertebrae on healing of experimental critical bone defect in a dog model. Methods Six indigenous breeds of dog with 32 ± 3.6 kg average weight from both sexes (5 males and 1 female) received bilateral critical-sized ulnar segmental defects. After determining the health condition, divided to 2 groups: The Group I were kept as control I (n = 1) while in Group II (experimental group; n = 5) bioactive bone implants were inserted. The defects were implanted with either autogeneic coccygeal bone grafts in dogs with 3-4 cm diaphyseal defects in the ulna. Defects were stabilized with internal plate fixation, and the control defects were not stabilized. Animals were euthanized at 16 weeks and analyzed by histopathology. Results Histological evaluation of this new bone at sixteen weeks postoperatively revealed primarily lamellar bone, with the formation of new cortices and normal-appearing marrow elements. And also reformation cortical compartment and reconstitution of marrow space were observed at the graft-host interface together with graft resorption and necrosis responses. Finally, our data were consistent with the osteoconducting function of the tail autograft. Conclusions Our results suggested that the tail vertebrae autograft seemed to be a new source of autogenous cortical bone in order to supporting segmental long bone defects in dogs. Furthermore, cellular autotransplantation was found to be a successful replacement for the tail vertebrae allograft bone at 3-4 cm segmental defects in the canine mid- ulna. Clinical application using graft expanders or bone

  14. Enhanced Healing of Segmental Bone Defects by Modulation of the Mechanical Environment

    DTIC Science & Technology

    2012-10-01

    enhances healing of a 2-mm tibial osteotomy in dogs16 but not a 1-mm femoral osteotomy in rats17. Using the latter model, however, Claes et al.18 showed that...defect. In the groups with the two lower-stiffness fixators, there was evidence of a periosteal reaction adjacent to the defect gap around the periosteum...the collagen sponge, with periosteal new bone formation on the bone adjacent to the defect. This presented as the for- mation of external callus, with

  15. [Densitometric investigation of the dynamics of bone defects regeneration in surgical treatment of chronic periodontitis].

    PubMed

    Pogosian, Iu M; Arutiunian, A A; Pogosian, A Iu; Lalaian, B K

    2009-05-01

    Apicotomy of 105 teeth of 78 patients with chronic periodontitis has been performed. The periapical defect were filled with two kinds of osteoplastic matter: the first group was treated with demineralised bone matrix of newborn pigs (DBMNP), the second group with artificial hydroxyapatite, while both matters were enriched with platelet rich plazma (PRP).As a third, control group, cases. The defects of which were not filled with osteoplastic matter, were investigated. The dynamics of the regeneration of bone defects was studied based on the data of densitometric investigation. The results of objective observations have revealed high efficiency of surgical treatment of chronic periodontitis with the filling with DBMNP in combination with PRP.

  16. Outcome of bone defect reconstruction with clavicle bone cement prosthesis after tumor resection: a case series study

    PubMed Central

    2014-01-01

    Background To investigate the short and medium term outcomes of bone defect reconstruction with bone cement prosthesis after clavicle malignancies resection. Methods A total of 5 clavicular malignancy patients experienced bone cement prosthesis reconstruction after subtotal claviculectomy were enrolled the study from January 2005 to May 2012. Musculoskeletal Tumor Society score (MSTS), Visual Analogue scale (VAS) and American Shoulder and Elbow Surgeons shoulder outcome score (ASES) were adopted for assessment. Results The mean follow-up period was 25.8 months. All patients were performed bone cement defect reconstruction after claviculectomy. In which, 3 cases showed disease-free and other 2 cases were alive with sickness. The average Musculoskeletal Tumor Society score was 85.40% ± 5.68%(77%-90%), Visual Analogue Scale was 1.40 ± 0.55 (1–2) and American Shoulder and Elbow Surgeons Shoulder Outcome Score was 92.40 ± 3.29(87–96). Conclusions Adoption of clavicle bone cement prosthesis for bone defect reconstruction after tumor resection can maintain the contour of shoulder and reduce the complications ascribe to the claviculectomy. It is an effective and feasible therapeutic procedure in clinical setting. PMID:24885109

  17. Bone scaffolds loaded with siRNA-Semaphorin4d for the treatment of osteoporosis related bone defects

    PubMed Central

    Zhang, Yufeng; Wei, Lingfei; Miron, Richard J.; Shi, Bin; Bian, Zhuan

    2016-01-01

    Osteoporosis is a prominent disorder affecting over 200 million people worldwide. Recently, semaphorins have been implicated in the cell-cell communication between osteoclasts and osteoblasts and have been associated with the progression of osteoporosis. Previously, we demonstrated that knockdown of semaphorin4d (Sema4d) using siRNA delivered with a bone-targeting system prevented bone loss in an osteoporotic animal model. Here, we used this bone-specific technology containing siRNA-Sema4d and fabricated a PLLA scaffold capable of enhancing bone repair following fracture. We investigated the ability of the implant to release siRNA-Sema4d into the surrounding tissues over time and to influence new bone formation in a 3 mm femur osteoporotic defect model in ovariectomized rats. Delivery of the bone-targeting system released from PLLA scaffolds began 2 hours post-implantation, peaked at 1 day, and was sustained over a 21 day period. μCT analysis demonstrated a significantly higher bone volume/total volume bone mineral density and number of osteoblasts in the rats that were transplanted with scaffolds loaded with siRNA-Sema4d. These results confirm the specific role of Sema4d in bone remodeling and demonstrate that significant increases in the speed and quality of new bone formation occur when siRNA-Sema4d is delivered via a PLLA scaffold. PMID:27254469

  18. The effects of photobiomodulation on healing of bone defects in streptozotocin induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Martinez Costa Lino, Maíra D.; Bastos de Carvalho, Fabíola; Ferreira Moraes, Michel; Augusto Cardoso, José; Pinheiro, Antônio L. B.; Maria Pedreira Ramalho, Luciana

    2011-03-01

    Previous studies have shown positive effects of Low level laser therapy (LLLT) on the repair of bone defects, but there are only a few that associates bone healing in the presence of a metabolic disorder as Diabetes Melitus and LLLT. The aim of this study was to assess histologically the effect of LLLT (AsGaAl), 780nm, 70mW, CW, Ø~0.4mm, 16J/cm2 per session) on the repair of surgical defects created in the femur of diabetic and non-diabetic Wistar Albinus rats. Surgical bone defects were created in 60 animals divided into four groups of 15 animals each: Group C (non-diabetic - control); Group CL (non-diabetic + LLLT); Group CD (diabetic); Group CDL (diabetic + LLLT). The animals on the irradiated group received 16 J/cm2 per session divided into four points around the defect, being the first irradiation immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The results of the present investigation showed histological evidence of improved amount of collagen fibers at early stages of the bone healing (15 days) and increased amount of well organized bone trabeculae at the end of the experimental period (30 days) on irradiated animals, (diabetic and non-diabetic) compared to non irradiated ones. It is concluded that LLLT has a positive biomodulative effect on the healing process of bone defects, even when diabetes mellitus was present.

  19. Incorporation of copper into chitosan scaffolds promotes bone regeneration in rat calvarial defects

    PubMed Central

    D'Mello, Sheetal; Elangovan, Satheesh; Hong, Liu; Ross, Ryan D.; Sumner, D. Rick; Salem, Aliasger K.

    2015-01-01

    The objective of this study was to investigate the effects of a copper loaded chitosan scaffold on bone regeneration in critical-sized calvarial defects in rats. Chitosan scaffolds and copper-chitosan scaffolds were fabricated and characterized by scanning electron microscopy (SEM). Chitosan and copper-chitosan scaffolds were implanted into 5 mm diameter critical-sized calvarial defects in Fisher 344 male rats. Empty defects (no scaffolds) were included as a control. After 4 weeks, the rats were sacrificed for micro-computed tomography (micro-CT) and histological analysis of new bone tissue development. Microscopy images revealed the uniformly porous structure of chitosan and copper-chitosan scaffolds. Significant bone regeneration was noted in the defects treated with copper-chitosan scaffolds when evaluated using micro-CT and histological analysis, when compared to other groups tested. On analysis of the micro-CT scans, an eleven-fold and a two-fold increase in the new bone volume/total volume (BV/TV) % was found in defects treated with the copper-chitosan scaffolds, when compared to empty defects and chitosan scaffolds, respectively. This study demonstrated the suitability of copper-crosslinked chitosan scaffolds for bone tissue engineering and provides the first evidence that inclusion of copper ions in scaffolds can enhance tissue regeneration. PMID:25230382

  20. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources.

    PubMed

    Stockmann, Philipp; Park, Jung; von Wilmowsky, Cornelius; Nkenke, Emeka; Felszeghy, Endre; Dehner, Jan-Friedrich; Schmitt, Christian; Tudor, Christian; Schlegel, Karl Andreas

    2012-06-01

    Due to donor side morbidity and the absence of osteogenic properties in bone substitutes, there is a growing need for an alternative to traditional bone grafting within the scope of tissue engineering. This animal study was conducted to compare the in vivo osteogenic potential of adipose-derived (AD), periosteum-derived (PD) and bone marrow-derived (BM) mesenchymal stem/progenitor cells (MSC). Autologous mesenchymal stem/progenitor cells of named tissue origin were induced into osteogenic differentiation following in vitro cell expansion. Ex vivo cultivated cells were seeded on a collagen scaffold and subsequently added to freshly created monocortical calvarial bone defects in 21 domestic pigs. Pure collagen scaffold served as a control defect. The animals were sacrificed at specific time points and de novo bone formation was quantitatively analyzed by histomorphometry. Bone volume/total defect volume (BV/TV) and the mineralization rate of newly formed bone were compared among the groups. In the early stages of wound healing, up to 30 days, the test defects did not show better bone regeneration than those in the control defect, but the bone healing process in the test defects was accelerated in the later stage compared to those in the control defect. All the test defects showed complete osseous healing after 90 days compared to those in the control defect. During the observation period, no significant differences in BV/TV and mineralization of newly formed bone among the test defects were observed. Irrespective of the tissue sources of MSC, the speed and pattern of osseous healing after cell transplantations into monocortical bone defects were comparable. Our results indicate that the efficiency of autologous AD-MSC, PD-MSC and BM-MSC transplantation following ex vivo cell expansion is not significantly different for the guided regeneration of bone defects.

  1. Ilizarov Method for Bone Lengthening and Defect Management Review of Contemporary Literature.

    PubMed

    Gubin, Alexander; Borzunov, Dmitry; Malkova, Tatiana

    2016-06-01

    Since its origination in the middle of the past century, the Ilizarov method has advanced greatly and has become a viable method for bone lengthening, severe deformity correc- tion, and defect management. As the reported studies show, it remains one of the most used tools for bone reconstruction. The original method and its modifications continue to be the topic of interest for orthopaedic scientists as evidenced by the number of clinical studies on the Ilizarov method that have been published in orthopaedic journals in the period from 2000 through 2014, most of which present the out- comes of treating large series of patients using distraction osteogenesis for bone lengthening, defect management, and deformity correction. We made a review of contemporary clinical studies on the Ilizarov method used for bone length- ening and defect management.

  2. Reconstruction of metatarsal bone defects with a free fibular osteomyocutaneous flap incorporating soleus muscle.

    PubMed

    Yamashita, Yutaro; Hashimoto, Ichiro; Goishi, Keiichi; Fukunaga, Yutaka; Abe, Yoshiro; Nakanishi, Hideki

    2013-02-01

    Severe traumatic bone and soft-tissue defects are often treated by lower leg amputation. The amputation level becomes a very important factor with respect to the patient's basic daily activities. We report the case of a 51-year-old man who was referred to us with severe traumatic metatarsal bone and dorsum pedis skin and soft-tissue defects. To avoid amputation, a free fibular osteomyocutaneous flap incorporating the soleus muscle was used to reconstruct the second and third metatarsal bones and the soft-tissue defect, respectively. Now, 2 years after the procedure, the patient is able to walk independently. To the best of our knowledge, this is the first report of use of such a composite transfer for a complex midfoot defect.

  3. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.

    PubMed

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-03-03

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  4. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    PubMed Central

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-01-01

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties. PMID:26950123

  5. Mutan: A mixed linkage α-[(1,3)- and (1,6)]-d-glucan from Streptococcus mutans, that induces osteoclast differentiation and promotes alveolar bone loss.

    PubMed

    Kwon, Hyun-Jung; Kim, Jung Min; Han, Kook-Il; Jung, Eui-Gil; Kim, Yong Hyun; Patnaik, Bharat Bhusan; Yoon, Mi Sook; Chung, Sung Kyun; Kim, Wan Jong; Han, Man-Deuk

    2016-02-10

    Mutan is an extracellular polysaccharide of Streptococcus mutans (S. mutans) that consists of α-(1,3)-linked glucose residues in main chains and α-(1,6) bonds in side chains. In the present study, mutan was isolated from S. mutans, and its structural characteristics were determined using Fourier-transform infrared spectroscopy (FT-IR) and (13)C nuclear magnetic resonance (NMR) spectroscopy. The effects of mutan on RANKL-induced osteoclast differentiation in RAW 264.7 cells were examined. Furthermore, microCT and morphometric analyses were used to determine the contribution of mutan to alveolar bone loss in the maxilla of a rat periodontitis model. Mutan increased (more than 2-fold) RANKL-induced osteoclast differentiation in a dose-dependent manner. Mutan also enhanced the alveolar bone loss in the rat maxilla 2.3-fold. In mutan-treated rats, the bone mineral density, bone volume, trabecular number, and trabecular thickness decreased, whereas trabecular separation significantly increased. In addition, mutan and lipopolysaccharide (LPS) induced similar microarray profiles in RAW 264.7 cells. A total of 43 genes related to osteoclastogenesis were differentially expressed after either mutan or LPS treatment. Five-fold increases in the expression of several genes, including IL-1β, IL-1α, IL-6, and chemokine ligands, were observed in mutan-treated RAW 264.7 cells. These results suggest a molecular mechanism for the inflammation induced by S. mutans during the establishment of periodontal disease.

  6. A finite element study to determine the occurrence of abfraction and displacement due to various occlusal forces and with different alveolar bone height

    PubMed Central

    Vandana, Kharidhi Laxman; Deepti, Mittal; Shaimaa, Muneer; Naveen, Karnath; Rajendra, Desai

    2016-01-01

    Background: Noncarious cervical lesions (NCCLs) are rarely described in the periodontal literature, perhaps because no direct link between NCCLs and periodontal lesions has been demonstrated. Aim: The aim of this study is to determine the stress and displacement produced in the tooth at different bone levels under different occlusal load using finite element model (FEM) study. Materials and Methods: Four FEMs of maxillary incisor were designed consisting of the tooth, pulp, periodontal ligament, and alveolar bone at the various level of bone height (25%, 50%, and 75%). Different occlusal load (5 kg, 15 kg, 24 kg, and 29 kg) at an angle of 50° to the long axis of the tooth was applied on the palatal surface at the level of middle third of the crown. All the models were assumed to be isotropic, linear and elastic, and the analysis was performed on a Pentium IV processor computer using the ANSYS software. Results: The maximum stress in the tooth was seen in the cervical region and to a greater extent at the apex for all models. The maximum tooth displacement for all the occlusal loads applied in this study was at the incisal edge with the minimum tooth displacement at the cervical third of the root which shifted apically with the reduction of alveolar bone support. Conclusion: The cumulative effect of increased stress and displacement at the cervical region of the tooth would result in abfraction as the age advances along with other wasting diseases. PMID:27041831

  7. Repair of Segmental Bone Defect Using Totally Vitalized Tissue Engineered Bone Graft by a Combined Perfusion Seeding and Culture System

    PubMed Central

    Feng, Ya-Fei; Li, Xiang; Hu, Yun-Yu; Wang, Zhen; Ma, Zhen-Sheng; Lei, Wei

    2014-01-01

    Background The basic strategy to construct tissue engineered bone graft (TEBG) is to combine osteoblastic cells with three dimensional (3D) scaffold. Based on this strategy, we proposed the “Totally Vitalized TEBG” (TV-TEBG) which was characterized by abundant and homogenously distributed cells with enhanced cell proliferation and differentiation and further investigated its biological performance in repairing segmental bone defect. Methods In this study, we constructed the TV-TEBG with the combination of customized flow perfusion seeding/culture system and β-tricalcium phosphate (β-TCP) scaffold fabricated by Rapid Prototyping (RP) technique. We systemically compared three kinds of TEBG constructed by perfusion seeding and perfusion culture (PSPC) method, static seeding and perfusion culture (SSPC) method, and static seeding and static culture (SSSC) method for their in vitro performance and bone defect healing efficacy with a rabbit model. Results Our study has demonstrated that TEBG constructed by PSPC method exhibited better biological properties with higher daily D-glucose consumption, increased cell proliferation and differentiation, and better cell distribution, indicating the successful construction of TV-TEBG. After implanted into rabbit radius defects for 12 weeks, PSPC group exerted higher X-ray score close to autograft, much greater mechanical property evidenced by the biomechanical testing and significantly higher new bone formation as shown by histological analysis compared with the other two groups, and eventually obtained favorable healing efficacy of the segmental bone defect that was the closest to autograft transplantation. Conclusion This study demonstrated the feasibility of TV-TEBG construction with combination of perfusion seeding, perfusion culture and RP technique which exerted excellent biological properties. The application of TV-TEBG may become a preferred candidate for segmental bone defect repair in orthopedic and maxillofacial

  8. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.

    PubMed

    Liu, Guangpeng; Zhao, Li; Zhang, Wenjie; Cui, Lei; Liu, Wei; Cao, Yilin

    2008-06-01

    Tissue engineering techniques have been proven effective in bone regeneration and repairing load-bearing bone defects. Previous studies, however, have heretofore been limited to the use of slowdegradable or natural biomaterials as scaffolds. There are, however, no reports on using biodegradable, synthetic beta-tricalcium phosphate (beta-TCP) as scaffolds to repair weight-bearing bone defects in large animals. In the present study, highly porous beta-TCP scaffolds prepared by the polymeric sponge method were used to repair goat tibial defects. Fifteen goats were randomly assigned to one of three groups, and a 26 mm-long defect at the middle part of the right tibia in each goat was created. In Group A (six goats), a porous beta-TCP ceramic cylinder that had been loaded with osteogenically induced autologous bone marrow stromal cells (BMSCs) was implanted in the defect of each animal. In Group B (six goats), the same beta-TCP ceramic cylinder without any cells loaded was placed in the defect. In Group C (three goats), the defect was left untreated. In Group A, bony union can be observed by gross view, X-ray and micro-computed tomography (Micro-CT) detection, and histological observation at 32 weeks post-implantation. The implanted beta-TCP scaffolds were almost completely replaced by tissue-engineered bone. Bone mineral density in the repaired area of Group A was significantly higher (p < 0.05) than that of Group B, in which scant new bone was formed in each defect and the beta-TCP hadn't been completely resorbed at 32 weeks. Moreover, the tissue-engineered bone of Group A had similar biomechanical properties as that of the normal left tibia in terms of bending strength and Young's modulus (p > 0.05). In Group C, little or no new bone was formed, and non-union occurred, showing that the 26 mm segmental defect of the goat tibia was critical sized at 32 weeks. Thus, it can be concluded that the mechanical properties of the BMSCs/beta-TCP composites could be much

  9. Repair of bone defects with prefabricated vascularized bone grafts and double-labeled bone marrow-derived mesenchymal stem cells in a rat model

    PubMed Central

    Jiang, Xiao-Rui; Yang, Hui-Ying; Zhang, Xin-Xin; Lin, Guo-Dong; Meng, Yong-Chun; Zhang, Pei-Xun; Jiang, Shan; Zhang, Chun-Lei; Huang, Fei; Xu, Lin

    2017-01-01

    This study aims to investigate the repair of bone defects with prefabricated vascularized bone grafts and double-labeled bone marrow-derived mesenchymal stem cells (BMSCs) in a rat model. BMSCs were separated from rat bone marrow. LTR-CMVpro-RFP and LTR-CMVpro-GFP were transfected into the BMSCs for in vitro and in vivo tracking. BMSCs-RFP and BMSCs-GFP were induced into endothelial progenitor cells (EPCs) and osteoblasts (OBs). Rats were divided into five groups: Group A: in vitro prefabrication with EPCs-RFP + in vivo prefabrication with arteriovenous vascular bundle + secondary OBs-GFP implantation; Group B: in vitro prefabrication with EPCs-RFP + secondary OBs-GFP implantation; Group C: in vivo prefabrication with arteriovenous vascular bundle + secondary OBs-GFP implantation; Group D: implantation of EPCs-RFP + implantation of with arteriovenous vascular bundle + simultaneous OBs-GFP implantation; Group E: demineralized bone matrix (DBM) grafts (blank control). Among five groups, Group A had the fastest bone regeneration and repair, and the regenerated bone highly resembled normal bone tissues; Group D also had fast bone repair, but the repair was slightly slower than Group A. Therefore, in vitro prefabrication with EPCs-RFP plus in vivo prefabrication with arteriovenous vascular bundle and secondary OBs-GFP implantation could be the best treatment for bone defect. PMID:28150691

  10. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.

    PubMed

    Chen, Guobao; Yang, Li; Lv, Yonggang

    2016-04-01

    To promote bone healing, bone repair biomaterials are increasingly designed to incorporate growth factors. However, the impact of matrix mechanics of cell-free scaffold independent of microstructure on the osteogenic differentiation of endogenous osteoprogenitor cells orchestrating bone repair and regeneration remains not to be fully understood. In our recent study, three-dimensional (3D) scaffolds with different stiffness but same microstructure have been successfully fabricated by coating decellularized bone with collagen/hydroxyapatite (HA) mixture with different collagen rations. It has been demonstrated that the scaffold with optimal stiffness can induce the osteogenic differentiation of MSCs in vitro and in the subcutaneous tissue. The present in vivo study further investigated the repair efficiency of these scaffolds in a rabbit radius with a critical-sized segmental defect model and its potential mechanism. Micro-computed tomography (μ-CT), X-ray and histological analysis were carried out to evaluate the repair capacity of these scaffolds. The results demonstrated that the cell-free scaffold with optimal stiffness incorporation of endogenous osteoprogenitor cells significantly promoted the repair and reconstruction quality of mass bone defect. One of the crucial mechanisms was that hypoxia and stromal cell-derived factor-1α (SDF-1α) mediated mesenchymal stem cells (MSCs) migration by which matrix mechanics exerted influence on bone fracture healing. These findings suggested that only modulating the matrix stiffness of cell-free scaffold can be one of the most attractive strategies for promoting the progression of bone healing.

  11. Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2006-03-01

    We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.

  12. New bone formation in a bone defect associated to dental implant using absorbable or non-absorbable membrane in a dog model

    PubMed Central

    Lopez, Maria de Almeida; Olate, Sergio; Lanata-Flores, Antonio; Pozzer, Leandro; Cavalieri-Pereira, Lucas; Cantín, Mario; Vásquez, Bélgica; de Albergaria-Barbosa, José

    2013-01-01

    The aim of this research was to determine the bone formation capacity in fenestration defects associated with dental implants using absorbable and non-absorbable membranes. Six dogs were used in the study. In both tibias of each animal 3 implants were installed, and around these 5 mm circular defects were created. The defects were covered with absorbable membranes (experimental group 1), non-absorbable membranes (experimental group 2), and the third defect was not covered (control group). At 3 and 8 weeks post-surgery, the animals were euthanized and the membranes with the bone tissue around the implants were processed for histological analysis. The statistical analysis was conducted with Tukey’s test, considering statistical significance when p<0.1. Adequate bone repair was observed in the membrane-covered defects. At 3 weeks, organization of the tissue, bone formation from the periphery of the defect and the absence of inflammatory infiltrate were observed in both experimental groups, but the defect covered with absorbable membrane presented statistically greater bone formation. At 8 weeks, both membrane-covered defects showed adequate bone formation without significant differences, although they did in fact present differences with the control defect in both periods (p>0.1). In the defects without membrane, continuous connective tissue invasions and bone repair deficiency were observed. There were no significant differences in the characteristics and volume of the neoformed bone in the defects around the implants covered by the different membranes, whereas the control defects produced significantly less bone. The use of biological membranes contributes to bone formation in three-wall defects. PMID:24228090

  13. Osteogenic effect of a gastric pentadecapeptide, BPC-157, on the healing of segmental bone defect in rabbits: a comparison with bone marrow and autologous cortical bone implantation.

    PubMed

    Sebecić, B; Nikolić, V; Sikirić, P; Seiwerth, S; Sosa, T; Patrlj, L; Grabarević, Z; Rucman, R; Petek, M; Konjevoda, P; Jadrijević, S; Perović, D; Slaj, M

    1999-03-01

    Gastrectomy often results in increased likelihood of osteoporosis, metabolic aberration, and risk of fracture, and there is a need for a gastric peptide with osteogenic activity. A novel stomach pentadecapeptide, BPC-157, improves wound and fracture healing in rats in addition to having an angiogenic effect. Therefore, in the present study, using a segmental osteoperiosteal bone defect (0.8 cm, in the middle of the left radius) that remained incompletely healed in all control rabbits for 6 weeks (assessed in 2 week intervals), pentadecapeptide BPC-157 was further studied (either percutaneously given locally [10 microg/kg body weight] into the bone defect, or applied intramuscularly [intermittently, at postoperative days 7, 9, 14, and 16 at 10 microg/kg body weight] or continuously [once per day, postoperative days 7-21 at 10 microg or 10 ng/kg body weight]). For comparison, rabbits percutaneously received locally autologous bone marrow (2 mL, postoperative day 7). As standard treatment, immediately after its formation, the bone defect was filled with an autologous cortical graft. Saline-treated (2 mL intramuscularly [i.m.] and 2 mL locally into the bone defect), injured animals were used as controls. Pentadecapeptide BPC-157 significantly improved the healing of segmental bone defects. For instance, upon radiographic assessment, the callus surface, microphotodensitometry, quantitative histomorphometry (10 microg/kg body weight i.m. for 14 days), or quantitative histomorphometry (10 ng/kg body weight i.m. for 14 days) the effect of pentadecapeptide BPC-157 was shown to correspond to improvement after local application of bone marrow or autologous cortical graft. Moreover, a comparison of the number of animals with unhealed defects (all controls) or healed defects (complete bony continuity across the defect site) showed that besides pentadecapeptide intramuscular application for 14 days (i.e., local application of bone marrow or autologous cortical graft), also

  14. Comparison of Bone Resorption Rates after Intraoral Block Bone and Guided Bone Regeneration Augmentation for the Reconstruction of Horizontally Deficient Maxillary Alveolar Ridges.

    PubMed

    Gultekin, B Alper; Bedeloglu, Elcin; Kose, T Emre; Mijiritsky, Eitan

    2016-01-01

    Purpose. Bone atrophy after tooth loss may leave insufficient bone for implant placement. We compared volumetric changes after autogenous ramus block bone grafting (RBG) or guided bone regeneration (GBR) in horizontally deficient maxilla before implant placement. Materials and Methods. In this retrospective study, volumetric changes at RBG or GBR graft sites were evaluated using cone-beam computed tomography. The primary outcome variable was the volumetric resorption rate. Secondary outcomes were bone gain, graft success, and implant insertion torque. Results. Twenty-four patients (28 grafted sites) were included (GBR, 15; RBG, 13). One patient (RBG) suffered mucosal dehiscence at the recipient site 6 weeks after surgery, which healed spontaneously. Mean volume reduction in the GBR and RBG groups was 12.48 ± 2.67% and 7.20 ± 1.40%, respectively. GBR resulted in significantly more bone resorption than RBG (P < 0.001). Mean horizontal bone gain and width after healing were significantly greater in the GBR than in the RBG group (P = 0.002 and 0.005, resp.). Implant torque was similar between groups (P > 0.05). Conclusions. Both RBG and GBR hard-tissue augmentation techniques provide adequate bone graft volume and stability for implant insertion. However, GBR causes greater resorption at maxillary augmented sites than RBG, which clinicians should consider during treatment planning.

  15. Comparison of Bone Resorption Rates after Intraoral Block Bone and Guided Bone Regeneration Augmentation for the Reconstruction of Horizontally Deficient Maxillary Alveolar Ridges

    PubMed Central

    Bedeloglu, Elcin; Kose, T. Emre

    2016-01-01

    Purpose. Bone atrophy after tooth loss may leave insufficient bone for implant placement. We compared volumetric changes after autogenous ramus block bone grafting (RBG) or guided bone regeneration (GBR) in horizontally deficient maxilla before implant placement. Materials and Methods. In this retrospective study, volumetric changes at RBG or GBR graft sites were evaluated using cone-beam computed tomography. The primary outcome variable was the volumetric resorption rate. Secondary outcomes were bone gain, graft success, and implant insertion torque. Results. Twenty-four patients (28 grafted sites) were included (GBR, 15; RBG, 13). One patient (RBG) suffered mucosal dehiscence at the recipient site 6 weeks after surgery, which healed spontaneously. Mean volume reduction in the GBR and RBG groups was 12.48 ± 2.67% and 7.20 ± 1.40%, respectively. GBR resulted in significantly more bone resorption than RBG (P < 0.001). Mean horizontal bone gain and width after healing were significantly greater in the GBR than in the RBG group (P = 0.002 and 0.005, resp.). Implant torque was similar between groups (P > 0.05). Conclusions. Both RBG and GBR hard-tissue augmentation techniques provide adequate bone graft volume and stability for implant insertion. However, GBR causes greater resorption at maxillary augmented sites than RBG, which clinicians should consider during treatment planning. PMID:27847815

  16. Short-term Outcomes of Induced Membrane Technique in Treatment of Long Bone Defects in Iran

    PubMed Central

    Yeganeh, Ali; Mahmodi, Mani; Farahini, Hosein; Moghtadaei, Mehdi

    2016-01-01

    Introduction: Severe defects in long bones can be caused by several factors such as trauma that lead to open wound and secondary infections after surgery. Induced membrane technique is one of the therapeutic strategies that can be used for these patients. Due to importance of this method and lack of information about this technique in Iran. Aim: this study was performed to investigate technical strengths and weakness of induced membrane technique. Material and Methods: This case series study conducted on 21 patients with bone defects in the femur and tibia and metatarsal bones referred to orthopedic clinic of Rasoul Akram Hospital, Tehran, Iran, for induced membrane surgery in 2012-2015. Demographic and clinical data were obtained using history, clinical examinations and observations for each patient. Union achievement was the main outcome of this study, which was confirmed by radiographic findings and physical examination. Obtained data was analyzed by SPSS ver. 16. Results: All patients were male except one and their mean age was 30.52 years old. Bone defects were in tibia, femur and metatarsus in 9, 9 and 3 patients, respectively. Three patients received soft tissue reconstruction with flap before induced membrane surgery. Age, defects size, cigarette addiction and drug use and delay to start the treatment had no significant effect on union status. In total, 90% of patients had successful surgery. Conclusion: using induced membrane technique in patients with defects in their long bone such as tibia, femur and metatarsus would lead to high success for reconstruction. PMID:27703290

  17. Effect of calcium phosphate glass on bone formation in calvarial defects of Sprague-Dawley rats.

    PubMed

    Moon, Hyun-Ju; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Choi, Seong-Ho; Kim, Chong-Kwan; Kim, Kee-Deog; LeGeros, Racquel Z; Lee, Yong-Keun

    2006-09-01

    The purpose of this study was to investigate the bone regenerative effect of calcium phosphate glass in vivo. We prepared two different sizes of calcium phosphate glass powder using the system CaO-CaF2-P2O5-MgO-ZnO; the particle size of the powders were 400 microm and 40 microm. 8 mm calvarial critical-sized defects were created in 60 male Sprague-Dawley rats. The animals were divided into 3 groups of 20 animals each. Each defect was filled with a constant weight of 0.5 g calcium phosphate glass powder mixed with saline. As controls, the defect was left empty. The rats were sacrificed 2 or 8 weeks after postsurgery, and the results were evaluated using radiodensitometric and histological studies; they were also examined histomorphometrically. When the bigger powders with 400 microm particle were grafted, the defects were nearly completely filled with new-formed bone in a clean healing condition after 8 week. When smaller powders with 40 microm particle were transplanted, new bone formation was even lower than the control group due to a lot of inflammatory cell infiltration. It was concluded that the prepared calcium phosphate glass enhanced the new bone formation in the calvarial defect of Sprague-Dawley rats and it is expected to be a good potential materials for hard tissue regeneration. The particle size of the calcium phosphate was crucial; 400 microm particles promoted new bone formation, while 40 microm particles inhibited it because of severe inflammation.

  18. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 ± 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r2 = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  19. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    PubMed Central

    Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation. PMID:28246596

  20. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models.

    PubMed

    Kim, Kwansik; Kim, In Sook; Cho, Tae Hyung; Seo, Young-Kwon; Hwang, Soon Jung

    2015-08-01

    High-power pulsed lasers have been recently regarded to be anabolic to bone, but in vivo evidence is still lacking. This study aimed to investigate the capacity of bone repair using a high-power, Q-switched, pulsed, neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, using bilateral calvarial defect models having non-critical sized, 5 mm (rat) or 8 mm (rabbit) diameter. One of the bilateral defects, which were all filled with collagen sponge or left empty, was irradiated with a Nd:YAG laser once every 2 days for 2 weeks at a constant total fluence rate (344 J/cm(2) ), output power (0.75 W), pulse repetition rate (15 pps) and wavelength (1064 nm) and examined for the laser effect. The same experimental scheme was designed using a rabbit calvarial defect model implanted with sponge, which was explored for the dose effect of output power at 0.75 and 3 W with the same quantities of the other parameters. New bone formation was evaluated by micro-computed tomography-based analysis and histological observation at 4 weeks after surgery. Laser irradiation significantly increased new bone formation by approximately 45%, not only in the sponge-filled defects of rats but also when the defects were left empty, compared to the non-irradiated group. Consistently, both doses of output power (0.75 and 3 W) enhanced new bone formation, but there was no significant difference between the two doses. This study is one of the first to demonstrate the beneficial effect of Nd:YAG lasers on the regeneration of bone defects which were left empty or filled with collagen sponge, suggesting its great potential in postoperative treatment targeting local bone healing.

  1. Adjustable Stiffness, External Fixator for the Rat Femur Osteotomy and Segmental Bone Defect Models

    PubMed Central

    Glatt, Vaida; Matthys, Romano

    2014-01-01

    The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair. PMID:25350129

  2. Bone Regeneration in Rat Cranium Critical-Size Defects Induced by Cementum Protein 1 (CEMP1)

    PubMed Central

    Serrano, Janeth; Romo, Enrique; Bermúdez, Mercedes; Narayanan, A. Sampath; Zeichner-David, Margarita; Santos, Leticia; Arzate, Higinio

    2013-01-01

    Gene therapy approaches to bone and periodontal tissue engineering are being widely explored. While localized delivery of osteogenic factors like BMPs is attractive for promotion of bone regeneration; method of delivery, dosage and side effects could limit this approach. A novel protein, Cementum Protein 1 (CEMP1), has recently been shown to promote regeneration of periodontal tissues. In order to address the possibility that CEMP1 can be used to regenerate other types of bone, experiments were designed to test the effect of hrCEMP1 in the repair/regeneration of a rat calvaria critical-size defect. Histological and microcomputed tomography (µCT) analyses of the calvaria defect sites treated with CEMP1 showed that after 16 weeks, hrCEMP1 is able to induce 97% regeneration of the defect. Furthermore, the density and characteristics of the new mineralized tissues were normal for bone. This study demonstrates that hrCEMP1 stimulates bone formation and regeneration and has therapeutic potential for the treatment of bone defects and regeneration of mineralized tissues. PMID:24265720

  3. Guided bone regeneration to repair an osseous defect.

    PubMed

    Carvalho, Roberto S; Nelson, Donald; Kelderman, Hans; Wise, Roger

    2003-04-01

    The ultimate goal of orthodontic therapy is to establish functional and esthetic dental relationships in a balanced facial pattern. In patients with compromised periodontal support, the use of multidisciplinary treatment plans is essential in attaining these goals. This case report includes a thorough documentation of the orthodontic and periodontal treatments to demonstrate the effectiveness of guided bone regenerative procedures combined with a bone allograft to aid in correcting a dental malocclusion.

  4. Combination of bone allograft, barrier membrane and doxycycline in the treatment of infrabony periodontal defects: A comparative trial

    PubMed Central

    Agarwal, Ashish; Gupta, N.D.

    2015-01-01

    Aim The purpose of the present study was to compare the regenerative potential of noncontained periodontal infrabony defects treated with decalcified freeze-dried bone allograft (DFDBA) and barrier membrane with or without local doxycycline. Methods This study included 48 one- or two-wall infrabony defects from 24 patients (age: 30–65 years) seeking treatment for chronic periodontitis. Defects were randomly divided into two groups and were treated with a combination of DFDBA and barrier membrane, either alone (combined treatment group) or with local doxycycline (combined treatment + doxycycline group). At baseline (before surgery) and 3 and 6 months after surgery, the pocket probing depth (PPD), clinical attachment level (CAL), radiological bone fill (RBF), and alveolar height reduction (AHR) were recorded. Analysis of variance and the Newman–Keuls post hoc test were used for statistical analysis. A two-tailed p-value of less than 0.05 was considered to be statistically significant. Results In the combined treatment group, the PPD reduction was 2.00 ± 0.38 mm (32%), CAL gain was 1.25 ± 0.31 mm (17.9%), and RBF was 0.75 ± 0.31 mm (20.7%) after 6 months. In the combined treatment + doxycycline group, these values were 2.75 ± 0.37 mm (44%), 1.5 ± 0.27 mm (21.1%), and 1.13 ± 0.23 mm (28.1%), respectively. AHR values for the groups without and with doxycycline were 12.5% and 9.4%, respectively. Conclusion There was no significant difference in the regeneration of noncontained periodontal infrabony defects between groups treated with DFDBA and barrier membrane with or without doxycycline. PMID:26236130

  5. Evaluation of a biodegradable graft substitute in rabbit bone defect model

    PubMed Central

    Yang, XiaoBo; Li, Yong; Huang, Qiang; Yang, Jing; Shen, Bing; Pei, FuXing

    2012-01-01

    Objective: To evaluate a new biodegradable copolymer calcium sulfate/poly amino acid (CS/PAA) as a graft substitute for the repair of the surgically created cancellous bone defects in rabbits and its biological properties in vivo. Materials and Methods: Cancellous bone defects were created by drilling holes in the unilateral lateral aspect of the femoral condyle of New Zealand white rabbits. Three groups were assigned: Group A rabbits were grafted with 80% CS/PAA and group B rabbits were grafted with 95% CS/PAA as two treatment groups; group C was sham-operation control group. To study the osteogenic capability in vivo, specimens were harvested at 4, 8, 12, and 16 weeks after implantation and were evaluated by gross assessment, X-ray, histological examination, and histomorphometry. In order to identify the molecular mechanism of bone defect repair, the expression of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) was detected using Western blot at 4 weeks. Results: Group A and group B showed more vigorous and rapid repair leading to regeneration of cancellous bone than sham-operation control group on gross observation, radiology, and histomorphometry. There was no significant difference between groups A and B. Morphological observation and histological examination showed that the copolymers degraded in sync with the new bone formation process. The expression of BMP-2 and VEGF in implantation groups was higher than that in control group by western blot. Conclusion: These findings demonstrated that the novel biodegradable copolymers can repair large areas of cancellous bone defects. With its controllable degradation rate, it suggests that CS/PAA may be a series of useful therapeutic substitute for bone defects. PMID:22719111

  6. Effect of dolomite on the repair of bone defects in rats: histological study.

    PubMed

    Moreschi, Eduardo; Hernandes, Luzmarina; Dantas, Jailson Araujo; da Silva, Maria Angélica Raffaini Covas Pereira; Casaroto, Ana Regina; Bersani-Amado, Ciomar Aparecida

    2010-12-01

    The aim of the present study was to evaluate histologically and radiographically the tissue response to dolomite [CaMg(CO3)2] and its osteogenic potential in the repair of bone cavities in the calvaria of rats. A bone defect 10 mm in diameter and 1 mm deep was made in the calvaria of male Wistar rats. The defects were filled with dolomite, inorganic bovine bone (positive control), or coagulum (negative control). The animals were euthanized 7, 15, 30, and 60 days after surgery, and specimens were collected for radiographic and microscopic analyses. The bone defects were processed for paraffin embedding and H&E staining. The histological study revealed that dolomite stimulated a moderate inflammatory response, with programmed cell death in the first 15 days, compared to bovine bone which showed a moderate to intense acute response. In the chronic phase, the inflammatory response was characterized by the occurrence of macrophages organized as epithelioid cells in the dolomite group, and giant cells in the bovine-bone group. Fibrosis developed in all three groups; however, encapsulation of the fragments, reabsorption, and osteoconductive activity occurred only in the defects filled with bovine bone. The radiographic analysis showed that the bovine bone was most efficient in the repair of the defects, followed by the dolomite and the coagulum. This study demonstrated that the dolomite stimulated a moderate acute inflammatory response with programmed cell death, and a chronic inflammatory response by means of the phagocytic mononuclear system. Although osteo-conductive activity was not shown, the dolomite favored the repair process, compared to the coagulum group.

  7. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  8. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  9. Novel Therapy for Bone Regeneration in Large Segmental Defects

    DTIC Science & Technology

    2014-10-01

    animal model, the minipig. The scope of the research comprises the following specific aims (i) to determine the union rate of tibial midshaft defects...in minipigs treated with BMP-2, TPO, or saline control; and (ii) to evaluate the safety and side effects of treating tibial midshaft defects in... tibial geometry between the strains of minipigs we evaluated (Ossabaw, Sinclair, and Yucatan), the different issues needed to be resolved to optimize

  10. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    PubMed

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  11. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    PubMed Central

    Xu, Weiguo; Ganz, Cornelia; Weber, Ulf; Adam, Martin; Holzhüter, Gerd; Wolter, Daniel; Frerich, Bernhard; Vollmar, Brigitte; Gerber, Thomas

    2011-01-01

    In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising. PMID:21845044

  12. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    PubMed Central

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957

  13. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  14. Management of traumatic tibial diaphyseal bone defect by “induced-membrane technique”

    PubMed Central

    Gupta, Gaurav; Ahmad, Sohail; Mohd. Zahid; Khan, A H; Sherwani, M K A; Khan, Abdul Qayyum

    2016-01-01

    Background: Gap nonunion of long bones is a challenging problem, due to the limitation of conventional reconstructive techniques more so if associated with infection and soft tissue defect. Treatment options such as autograft with non-vascularized fibula and cancellous bone graft, vascularized bone graft, and bone transportation are highly demanding on the part of surgeons and hospital setups and have many drawbacks. This study aims to analyze the outcome of patients with wide diaphyseal bone gap treated with induced-membrane technique (Masquelet technique). Materials and Methods: This study included 9 patients (7 males and 2 females), all with tibial bone-gap. Eight of the 9 patients were infected and in 3 patients there was associated large soft tissue defect requiring flap cover. This technique is two-stage procedure. Stage I surgery included debridement, fracture stabilization, application of spacer between bone ends, and soft tissue reconstruction. Stage II surgery included removal of spacer with preservation of induced membrane formed at spacer surface and filling the bone-gap with morselized iliac crest bone-graft within the membrane sleeve. Average bone-gap of 5.2 cm was treated. The spacer was always found to be encapsulated by a thick glistening membrane which did not collapse after its removal. All patients were followed up for an average period of 21.5 months. Results: Serial Radiographs showed regular uptake of autograft and thus consolidation within themselves in the region of bone gap and also with host bone. Bone-union was documented in all patients and all patients are walking full weight-bearing without support. Conclusions: The study highlights that the technique provide effective and practical management for difficult gap nonunion. It does not require specialized equipment, investigations, and surgery. Thus, it provides a reasonable alternative to the developing infrastructures and is a reliable and reproducible technique. PMID:27293290

  15. Implants of polyanionic collagen matrix in bone defects of ovariectomized rats.

    PubMed

    Cunha, Marcelo Rodrigues; Santos, Arnaldo Rodrigues; Goissis, Gilberto; Genari, Selma C

    2008-03-01

    In recent years, there has been a great interest in the development of biomaterials that could be used in the repair of bone defects. Collagen matrix (CM) has the advantage that it can be modified chemically to improve its mechanical properties. The aim of the present study was to evaluate the effect of three-dimensional membranes of native or anionic (submitted to alkaline treatment for 48 or 96 h) collagen matrix on the consolidation of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats subjected to hormone replacement therapy. The animals received the implants 4 months after ovariectomy and were sacrificed 8 weeks after implantation of the membranes into 4-mm wide bone defects created in the distal third of the femur with a surgical bur. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas, suggesting that the material was biocompatible. Microscopic analysis showed a lower amount of bone ingrowth in the areas receiving the native membrane compared to the bone defects filled with the anionic membranes. In ovariectomized animals receiving anionic membranes, a delay in bone regeneration was observed mainly in animals not subjected to hormone replacement therapy. We conclude that anionic membranes treated with alkaline solution for 48 and 96 h presented better results in terms of bone ingrowth.

  16. Evaluation of bioactive glass and platelet-rich plasma for bone healing in rabbit calvarial defects.

    PubMed

    Penteado, Luiz A M; Colombo, Carlos E D; Penteado, Roberta A P M; Assis, Angélica O; Gurgel, Bruno C V

    2013-09-01

    Bone regeneration is an important objective in clinical dental practice and has been used for different applications. The aim of this study was to evaluate the effectiveness of platelet-rich plasma (PRP) and bioactive glass (BG) for bone healing of surgical calvarial defects in rabbits. Two 8-mm defects were prepared in the parietal bones of ten animals, and the animals were randomly assigned to two groups. In each group, two subgroups were created with five defects each: BC - blood clot, BG, PRP and PRP + BG. Thus, four treatments were performed with five specimens each. The animals were sacrificed after 12 weeks and the specimens were analyzed radiographically, histologically and histomorphometrically. Data were subjected to ANOVA and Tukey's tests (α = 0.05). Outcomes demonstrated that the PRP group had higher bone density (%) values than the groups not treated with PRP (P < 0.05). Histometrically, both groups treated with PRP (PRP: 25.6 ± 9.9; PRP+BG: 25.8 ± 12.4) demonstrated higher percentages of new bone formation than the groups not treated with PRP (BG: 6.1 ± 4.3; BC: 7.8 ± 5.6) (P < 0.05). The results suggested that PRP improved bone repair and that bioactive glass alone, or in association with PRP, did not improve bone healing.

  17. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  18. Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing

    PubMed Central

    Wang, Xin; Friis, Thor E.; Masci, Paul P.; Crawford, Ross W.; Liao, Wenbo; Xiao, Yin

    2016-01-01

    The quality of hematomas are crucial for successful early bone defect healing, as the structure of fibrin clots can significantly influence the infiltration of cells, necessary for bone regeneration, from adjacent tissues into the fibrin network. This study investigated if there were structural differences between hematomas from normal and delayed healing bone defects and whether such differences were linked to changes in the expression of IL-1β. Using a bone defect model in rats, we found that the hematomas in the delayed healing model had thinner fibers and denser clot structures. Moreover, IL-1β protein levels were significantly higher in the delayed healing hematomas. The effects of IL-1β on the structural properties of human whole blood clots were evaluated by thrombelastograph (TEG), scanning electronic microscopy (SEM), compressive study, and thrombolytic assays. S-nitrosoglutathione (GSNO) was applied to modulate de novo hematoma structure and the impact on bone healing was evaluated in the delayed healing model. We found that GSNO produced more porous hematomas with thicker fibers and resulted in significantly enhanced bone healing. This study demonstrated that IL-1β and GSNO had opposing effects on clot architecture, the structure of which plays a pivotal role in early bone healing. PMID:27767056

  19. Bone-defects healing by high-molecular hyaluronic acid: preliminary results

    PubMed Central

    Baldini, Alberto; Zaffe, Davide; Nicolini, Gabriella

    2010-01-01

    Summary Aim. The aim of this study is to evaluate the capability of Hyaloss™ matrix (Fab – Fidia Advanced Biopolymers – Pd – Italy), a biomaterial based on hyaluronic acid, used as organic scaffold in bone repair in post-extractive defects. Materials and methods: 20 post-extractive sockets were selected, with similar size defects in the same patient and in the same hemiarch. Hyaluronic acid with high molecular weight (Hyaloss™ matrix, Fab – Pd – Italy) was mixed with autologous bone obtained using Safescraper® curve (Meta – Re – Italy) to repair post-extractive sites. Safescraper® is a cutting edge system that allows to the collection of autologous bone without using traditional, incision-based collection techniques, which could cause discomfort to the patient. Results: Clinical and hystological evaluations were performed, four months after grafting, in the maxilla and in the mandible. From a clinical point of view Hyaloss™ matrix mixed with autologous bone and patient’s blood becomes a substance similar to gel, which is easy to insert in to the defect. From a hystological point of view, in the treated site there is the presence of an erosive activity, with accelerated angiogenetic and bone remodelling activities. Conclusions: The preliminary results show an acceleration of the bone deposit process and of its remodelling due to the presence of Hyaloss™ matrix, which, from a clinical point of view, improves the handling and application of the bone matrix inside the defects and, from a hystologic point of view makes it possible to obtain bone regeneration in less time when it is used with autologous bone. PMID:22238698

  20. The Efficacy of Cyclic Injection of Bone Morphogenetic Protein-2 in Large-Scale Calvarial Bone Defects.

    PubMed

    Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo

    2017-03-01

    Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

  1. Alveolar bone thickness and lower incisor position in skeletal Class I and Class II malocclusions assessed with cone-beam computed tomography

    PubMed Central

    Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan

    2013-01-01

    Objective To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. Methods CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Results Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Conclusions Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients. PMID:23814708

  2. Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects.

    PubMed

    Ribeiro, F V; Suaid, F F; Ruiz, K G S; Rodrigues, T L; Carvalho, M D; Nociti, F H; Sallum, E A; Casati, M Z

    2012-01-01

    This study investigated the effect of bone marrow-derived cells associated with guided bone regeneration in the treatment of dehiscence bone defects around dental implants. Iliac-derived bone marrow cells were harvested from dogs and phenotypically characterized with regard to their osteogenic properties. After teeth extraction, three implant sites were drilled, dehiscences created and implants placed. Dehiscences were randomly assigned to: bone marrow-derived cells, bone marrow-derived cells+guided bone regeneration, and control (no treatment). After 3 months, implants with adjacent tissues were processed histologically, bone-to-implant contact, bone fill within the threads, new bone area in a zone lateral to the implant, new bone height, and new bone weight at the bottom of the defect were determined. Phenotypic characterization demonstrated that bone marrow-derived cells presented osteogenic potential. Statistically higher bone fill within the threads was observed in both bone marrow-derived cells+guided bone regeneration bone marrow-derived cell groups compared with the control group (P<0.05), with no difference between the groups treated with cells (P>0.05). For the other parameters (new bone area, bone-to-implant contact, new bone height and new bone weight), only the bone marrow-derived cells+guided bone regeneration group presented higher values compared with the non-treated control (P<0.05). Bone marrow-derived cells provided promising results for peri-implantar bone regeneration, although the combined approach seems to be relevant, especially to bone formation out of the implant threads.

  3. Diets Based on Virgin Olive Oil or Fish Oil but Not on Sunflower Oil Prevent Age-Related Alveolar Bone Resorption by Mitochondrial-Related Mechanisms

    PubMed Central

    Bullon, Pedro; Battino, Maurizio; Varela-Lopez, Alfonso; Perez-Lopez, Patricia; Granados-Principal, Sergio; Ramirez-Tortosa, Maria C.; Ochoa, Julio J.; Cordero, Mario D.; Gonzalez-Alonso, Adrian; Ramirez-Tortosa, César L.; Rubini, Corrado; Zizzi, Antonio; Quiles, José L.

    2013-01-01

    Background/Objectives Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. Methods/Findings Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. Conclusions The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis. PMID:24066124

  4. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres

    PubMed Central

    Chou, Joshua; Hao, Jia; Kuroda, Shinji; Bishop, David; Ben-Nissan, Besim; Milthorpe, Bruce; Otsuka, Makoto

    2013-01-01

    Foraminifera carbonate exoskeleton was hydrothermally converted to biocompatible and biodegradable zinc-tricalcium phosphate (Zn-TCP) as an alternative biomimetic material for bone fracture repair. Zn-TCP samples implanted in a rat tibial defect model for eight weeks were compared with unfilled defect and beta-tricalcium phosphate showing accelerated bone regeneration compared with the control groups, with statistically significant bone mineral density and bone mineral content growth. CT images of the defect showed restoration of cancellous bone in Zn-TCP and only minimal growth in control group. Histological slices reveal bone in-growth within the pores and porous chamber of the material detailing good bone-material integration with the presence of blood vessels. These results exhibit the future potential of biomimetic Zn-TCP as bone grafts for bone fracture repair. PMID:24351911

  5. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  6. Impaction bone grafting for tibial defects in knee replacement surgery. Results at two years.

    PubMed

    Naim, Soulat; Toms, Andrew D

    2013-04-01

    Bone loss with large defects poses a complex and challenging problem in primary and revision knee arthroplasty. The defects are often irregular and difficult to quantify. One of the techniques available to restore bone in such cases is Knee Impaction Bone Grafting (KIBG); however, the clinical literature to support this technique is weak. Since 2006 we have used impaction bone grafting for contained and uncontained large tibial defects in primary and revision total knee arthroplasty. We have prospectively studied 11 patients with large tibial defects treated at the Exeter Knee Reconstruction Unit with KIBG using a short cemented stem following the Slooff-Ling philosophy. Average age was 66 years (41-86 years). Minimum follow-up was 2 years. The Knee Society Scores improved from 27.4 to 89.2 on average, with Knee Society Function score and WOMAC increasing by 263 and 23.2 points respectively. The mean post-operative flexion was 112 degrees. The average gain in motion over preoperative value was 20 degrees. At two years there were no mechanical failures. None of the patients have required secondary procedures or further revisions. All radiographs showed incorporation and remodelling of the graft. The only complication was a superficial dysaesthesia around the operative scar. Although being time consuming and technically demanding, KIBG for substantial tibial bone loss has shown excellent versatility and good short term results, providing a stable construct with immediate weight bearing post operatively. In view of previous concerns regarding early incorporation and stability of impaction bone grafting in the tibia, we present our early results at 2 years. This technique has become our preferred technique for treating substantial bone loss in tibial defects seen in primary and revision knee arthroplasty surgery.

  7. Bioactive glass in cavitary bone defects: a comparative experimental study in rabbits

    PubMed Central

    Camargo, André Ferrari de França; Baptista, André Mathias; Natalino, Renato; de Camargo, Olavo Pires

    2015-01-01

    OBJECTIVES: To compare bioactive glass and autograft regarding their histomorphometric characteristics. METHODS: The authors conducted a prospective case-control experimental study on animals in order to compare the histomorphometric characteristics of bioactive glass versus autograft. Eight rabbits underwent surgery in which a cavitary defect was created in both proximal femurs. One side was filled with bioactive glass granules and the other, with autograft grafted from the contralateral side. The sides were randomized. Fourteen days after surgery, the animals were euthanized. RESULTS: Histologic analysis revealed that bone neoformation was equivalent among the two groups and the osteoblasts cell-count was higher in the femurs treated with bioactive glass. The osteocytes cell-count, however, was lower. The similarity in bone formation between both groups was consistent to literature findings. CONCLUSION: Bioactive glass is similar to autograft regarding bone neoformation in this animal model of cavitary bone defects. Level of Evidence III, Case-Control Study. PMID:26327802

  8. Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model

    PubMed Central

    Kaempfen, Alexandre; Todorov, Atanas; Güven, Sinan; Largo, René D.; Jaquiéry, Claude; Scherberich, Arnaud; Martin, Ivan; Schaefer, Dirk J.

    2015-01-01

    The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone) seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step) or only after six weeks of subcutaneous “incubation” (2-step). After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed. PMID:26053395

  9. The Management of Bone Defects in Periarticular Knee Injuries: A Review Article.

    PubMed

    Buck, Brian; Murtha, Yvonne M

    2017-03-01

    Traumatic bone defects of the distal femur and proximal tibia present treatment challenges for the orthopaedic traumatologist. In addition to bone loss, significant soft tissue compromise and cartilage defects leave the patient and surgeon with few reconstructive options for proper long-term joint function. These injuries are often complicated by delayed healing, nonunion, malunion, infection, and poor subjective patient outcomes. There are a variety of clinical problems associated with the treatment of periarticular fractures about the knee. This article will describe the surgical options for these difficult problems.

  10. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect.

    PubMed

    Li, Ru; Stewart, Duncan J; von Schroeder, Herbert P; Mackinnon, Erin S; Schemitsch, Emil H

    2009-01-01

    Fracture healing requires coordinated coupling between osteogenesis and angiogenesis in which vascular endothelial growth factor (VEGF) plays a key role. We hypothesized that targeted over-expression of angiogenic and osteogenic factors within the fracture would promote bone healing by inducing development of new blood vessels and stimulating/affecting proliferation, survival, and activity of skeletal cells. Using a cell-based method of gene transfer, without viral vector, 5.0 x 10(6) fibroblasts transfected with VEGF were delivered to a 10-mm bone defect in rabbit tibiae (Group 1) (n = 9); control groups were treated with fibroblasts (Group 2) (n = 7), or saline (Group 3) (n = 7) only. After 12 weeks, eight tibial fractures healed in Group 1, compared to four each in Groups 2 and 3. In Group 1, ossification was seen across the entire defect; in Groups 2 and 3, the defects were fibrous and sparsely ossified. Group 1 had more positively stained (CD31) vessels than Groups 2 and 3. MicroCT 3-D showed complete bridging of the new bone for Group 1, but incomplete healing for Groups 2 and 3. MicroCT bone structural parameters showed significant differences between VEGF treatment and control groups (p < 0.05). These results indicate that the cell-based VEGF gene therapy has significant angiogenic and osteogenic effects to enhance healing of a segmental defect in the long bone of rabbits.

  11. Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres

    PubMed Central

    Chou, Joshua; Hao, Jia; Kuroda, Shinji; Ben-Nissan, Besim; Milthopre, Bruce

    2014-01-01

    The aim of this study was to examine the bone regeneration properties of beta-tricalcium phosphate hydrothermally converted from foraminifera carbonate exoskeleton in the repair of rat calvarial defect. These natural materials possess unique interconnected porous network with uniform pore size distribution, which can be potentially advantageous. In total, 20 adult male Wistar rats received full-thickness calvarial defect with a diameter of 5 mm. The rate of newly formed bone was measured radiologically by X-ray and micro-computed tomography and by histologic examination. After 2 weeks, the beta-tricalcium phosphate group exhibited full closure of the defect site, while control group remained unrestored at the end of the 6-week experimentation. It was observed that the newly regenerated bone thickened over the course of the experiment in the beta-tricalcium phosphate group. No soft tissue reaction was observed around the beta-tricalcium phosphate implant and the rats remained healthy. These results showed that repair of the calvarial defect can be achieved by biomimetic beta-tricalcium phosphate macrospheres, which hold potential for application as bone grafts for bone augmentation surgeries. PMID:24808939

  12. Raman study of the effect of LED light on grafted bone defects

    NASA Astrophysics Data System (ADS)

    Soares, Luiz G. G. P.; Aciole, Jouber M. S.; Aciole, Gilbeth T. S.; Barbosa, Artur F. S.; Silveira-Júnior, Landulfo; Pinheiro, Antônio L. B.

    2013-03-01

    Benefits of the isolated or combined use light and biomaterials on bone healing have been suggested. Our group has used several models to assess the effects of laser on bone. A Raman spectral analysis on surgical bone defects grafted or not with Hydroxyapatite (HA), treated or not with LED was carried out. 40 rats were divided into 4 groups. On Group I the defect was filled with the clot. On Group II, the defect was filled with the HA. On groups III the defect was filled with Clot and further irradiated with LED and on group IV the defects was filled with the HA and further irradiated with LED. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 68s, 20 J/cm2 per session, 140 J/cm2 per treatment) was applied at 48 h intervals during 15 days. Specimens were taken after 15 and 30 days after surgery and kept on liquid nitrogen, and underwent Raman analysis. For this, the peak of hydroxyapatite (~960 cm-1) was used as marker of bone mineralization. Significant difference was observed at both times (p<0.05). When the biomaterial was used higher peaks were observed. Association with LED further improved the intensity. Conclusion: It is concluded that LED light improved the effect of the HA.

  13. Space Maintenance and New Bone Formation with Polyurethane Biocomposites in a Canine Saddle Defect

    DTIC Science & Technology

    2014-05-01

    osteoblast differentiation, and enhance new bone formation. Biodegradable polyurethane (PUR) biocomposites containing allograft bone particles are...biocomposites with two doses of rhBMP-2 to heal saddle defects in the canine mandible. Methods: The biodegradable polyurethane was synthesized from...mm mesiodistal. The biocomposite was shaped through the creation of a pocket of soft tissue into which the composite could be injected (Fig 1

  14. Alveolar graft in the cleft lip and palate patient: Review of 104 cases

    PubMed Central

    Tobella-Camps, María L.; Rivera-Baró, Alejandro

    2014-01-01

    Introduction: Alveolar bone grafting is a vital part of the rehabilitation of cleft patients. The factors that have been most frequently associated with the success of the graft are the age at grafting and the pre-grafting orthodontic treatment. Objectives: 1) Describe the cases of alveolar bone grafts performed at the Maxilofacial Unit of Hospital Sant Joan de Déu, Barcelona (HSJD); and 2) Analyze the success/failure of alveolar grafts and related variables. Material and Methods: Descriptive retrospective study using a sample of 104 patients who underwent a secondary alveolar graft at the Craniofacial Unit of HSJD between 1998 and 2012. The graft was done by the same surgeon in all patients using bone from the iliac crest. Results: 70% of the patients underwent the procedure before the age of 15 (median 14.45 years); 70% of the graft patients underwent pre-graft maxillary expansion. A total of 100 cases were recorded as successful (median age of 14.58 years, 68 underwent pre-graft expansion) and only 4 were recorded as failures (median age of 17.62 years, 3 underwent pre-graft expansion). We did not find statistically significant differences in age at the time of grafting or pre-surgical expansion when comparing the success and failure groups. We found the success rate of the graft to be 96.2%. Conclusions: The number of failures was too small to establish a statistically significant conclusion in our sample regarding the age at grafting and pre-grafting expansion. The use of alveolar bone grafting from the iliac crest has a very high success rate with a very low incidence of complications. Existing controversies regarding secondary bone grafting and the wide range of success rates found in the literature suggest that it is necessary to establish a specific treatment protocol that ensures the success of this procedure. Key words:Alveolar graft, cleft lip and palate, alveolar cleft, alveolar defect. PMID:24880440

  15. Influence of Architecture of β-Tricalcium Phosphate Scaffolds on Biological Performance in Repairing Segmental Bone Defects

    PubMed Central

    Ma, Zhen-Sheng; Zhang, Yang; Zhang, Zhi-Yong; Lei, Wei

    2012-01-01

    Background Although three-dimensional (3D) β-tricalcium phosphate (β-TCP) scaffolds serve as promising bone graft substitutes for the segmental bone defect treatment, no consensus has been achieved regarding their optimal 3D architecture. Methods In this study, we has systematically compared four types of β-TCP bone graft substitutes with different 3D architectures, including two types of porous scaffolds, one type of tubular scaffolds and one type of solid scaffolds, for their efficacy in treating segmental bone defect in a rabbit model. Results Our study has demonstrated that when compared to the traditional porous and solid scaffolds, tubular scaffolds promoted significantly higher amount of new bone formation in the defect regions as shown by X-ray, micro CT examinations and histological analysis, restored much greater mechanical properties of the damaged bone evidenced by the biomechanical testing, and eventually achieved the complete union of segmental defect. Moreover, the implantation of tubular scaffolds enhanced the neo-vascularization at the defect region with higher bone metabolic activities than others, as indicated by the bone scintigraphy assay. Conclusions This study has further the current knowledge regarding the profound influence of overall 3D architecture of β-TCP scaffolds on their in vivo defect healing performance and illuminated the promising potential use of tubular scaffolds as effective bone graft substitute in treating large segmental bone defects. PMID:23185494

  16. Natural composite of wood as replacement material for ostechondral bone defects.

    PubMed

    Aho, Allan J; Rekola, Jami; Matinlinna, Jukka; Gunn, Jarmo; Tirri, Teemu; Viitaniemi, Pertti; Vallittu, Pekka

    2007-10-01

    Deciduous wood, birch, pretreated by a technique combining heat and water vapor was applied for the reconstruction of bone defects in the knee joint of rabbits. It was observed that wood showed characteristic properties to be incorporated by the host bone during observation time of 4, 8, and 20 weeks. The natural channel structure of wood served as a porous scaffold, allowing host bone growth as small islets into the wood implants. The other properties of heat-treated wood, such as bioactivity, good handling properties, and sufficient biomechanical properties, might be additional favorable factors for the application of wood as a natural composite material for bone and cartilage repair. At the interface of the surfaces of wood and living bone, bonding occurred. The Chemical Interface Model for bonding bone to wood consists of the reactive ions, such as hydroxyl groups --OH, and covalent bonding as well as hydrogen bonding, which originate from both wood and bone. The bone tissue trauma, with its reactive Ca(2+) and PO(4) (3-) ions, proteins, and collagen, available for interaction at ionic and nanolevel, are associated with the complicated chemistry in the cellular response of the early bone healing process. It was concluded that heat-treated wood acted like a porous biomaterial scaffold, allowing ongrowth and ingrowth of bone and cartilage differentiation on its surface, and demonstrating osteoconductive contact, bonding at the interface.

  17. Use of Bioresorbable Hydrogels and Genetic Engineering to Accomplish Rapid Stabilization and Healing in Segmental Long Bone Defects

    DTIC Science & Technology

    2013-04-29

    also suggests that the lymphatics play a critical role in fracture repair. With normal healing of tibial fracture, foci of ossification are...Effectiveness in segmental tibial defects in rats. Tissue Eng 12:489–497. Finkemeier CG. 2002. Bone-grafting and bone-graft substitutes. J Bone Joint...Vogelin E, Brekke JH, Jones NF. 2000. Heterotopic and orthotopic bone formation with a vascularized periosteal flap, a matrix and rh-BMP- 2 (bone

  18. Development of Composite Scaffolds for Load Bearing Segmental Bone Defects

    DTIC Science & Technology

    2013-07-01

    progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various...follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate...related to fractures, sport and blast injuries. Diseases include bone cancer (osteosarcoma), tumor resection and reconstruction, osteoporosis

  19. [Changes in the alveolar ridge level in implantation using the osteotomy technic. Retrospective studies].

    PubMed

    Strietzel, F P; Nowak, M

    1999-11-01

    Due to a configuration defect, the use of membrane-guided bone regeneration or alveolar ridge extension is required. The bone splitting and bone spreading technique was modified by developing the osteotome technique and the osteotome kit (Summers 1994). Lateral and apical bone displacement and condensation are the principles of this nonablative implant bed preparation technique. Estimation of the periimplant bone level is one of the important prognostic parameters for estimating implant survival. The level of the alveolar crest near implants which were inserted using the osteotome technique was investigated by measuring the differences between the alveolar crest and the implant shoulder in postoperative radiographs after implant insertion and after uncovering the implants in 17 patients. The osteotome technique was used in bone quality D2 and D3 according to the classification by Misch (1993). Significant differences were found between the bone levels after implant insertion and implant uncovering. A significant correlation (r = 0.5466; P = 0.023) was calculated between the differences of the marginal bone level at implantation and uncovering time and the bone quality. There should be strict indications for using the osteotome technique for evaluating the bone quality found at the implant site to optimize the long-term prognosis of the implants.

  20. Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon ( Columba livia ) Ulna.

    PubMed

    Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi

    2015-06-01

    Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.

  1. Experiment K-310: The effect of space flight on ostenogenesis and dentinogenesis in the mandible of rats. Supplement 1: The effects of space flight on alveolar bone modeling and remodeling in the rat mandible

    NASA Technical Reports Server (NTRS)

    Van, P. T.; Vignery, A.; Bacon, R.

    1981-01-01

    The histomorphometric study of alveolar bone, a non-weight-bearing bone submitted mainly to the mechanical stimulations of mastication, showed that space flight decreases the remodeling activity but does not induce a negative balance between resorption and formation. The most dramatic effect of space flight has been observed along the periosteal surface, and especially in areas not covered with masticatory muscles, where bone formation almost stopped completely during the flight period. This bone, having been submitted to the same mechanical forces in the flight animals and the controls, leads to the conclusion that factors other than mechanical loading might be involved in the decreased bone formation during flight.

  2. Coenzyme Q Protects Against Age-Related Alveolar Bone Loss Associated to n-6 Polyunsaturated Fatty Acid Rich-Diets by Modulating Mitochondrial Mechanisms.

    PubMed

    Varela-Lopez, Alfonso; Bullon, Pedro; Battino, Maurizio; Ramirez-Tortosa, M Carmen; Ochoa, Julio J; Cordero, Mario D; Ramirez-Tortosa, César L; Rubini, Corrado; Zizzi, Antonio; Quiles, José L

    2016-05-01

    An age-dependent model of the periodontium was reproduced to evaluate the effect of life-long feeding on a low coenzyme Q10 dosage in n-6, n-3 polyunsaturated fatty acid or monounsaturated fatty acid-based diets on periodontal tissues of young and old rats. Results shown that exacerbated age-related alveolar bone loss previously associated to n-6 polyunsaturated fatty acid diet was attenuated by coenzyme Q10 Gene expression analysis suggests that involved mechanisms might be related to a restored capacity of mitochondria to adapt to aging in gingival cells from rats fed on n-6 polyunsaturated fatty acid. In particular, this could be due to an age-related increase of the rate of mitochondrial biogenesis and a better oxidative and respiratory balance in these animals. From the nutritional and clinical point of view, it is noteworthy that supplementation with coenzyme Q10 could counteract the negative effects of n-6 polyunsaturated fatty acid on alveolar bone loss (a major feature of periodontitis) associated to age.

  3. Evaluation of Qualitative Changes in Simulated Periodontal Ligament and Alveolar Bone Using a Noncontact Electromagnetic Vibration Device with a Laser Displacement Sensor

    PubMed Central

    Kobayashi, Hiroshi; Hayashi, Makoto; Yamaoka, Masaru; Yasukawa, Takuya; Ibi, Haruna; Ogiso, Bunnai

    2016-01-01

    Evaluating periodontal tissue condition is an important diagnostic parameter in periodontal disease. Noncontact electromagnetic vibration device (NEVD) was previously developed to monitor this condition using mechanical parameters. However, this system requires accelerometer on the target tooth. This study assessed application of laser displacement sensor (LDS) to NEVD without accelerometer using experimental tooth models. Tooth models consisted of cylindrical rod, a tissue conditioner, and polyurethane or polyurethane foam to simulate tooth, periodontal ligament, and alveolar bone, respectively. Tissue conditioner was prepared by mixing various volumes of liquid with powder. Mechanical parameters (resonant frequency, elastic modulus, and coefficient of viscosity) were assessed using NEVD with the following methods: Group A, measurement with accelerometer; Group B, measurement with LDS in the presence of accelerometer; and Group C, measurement with LDS in the absence of accelerometer. Mechanical parameters significantly decreased with increasing liquid volume. Significant differences were also observed between the polyurethane and polyurethane foam models. Meanwhile, no statistically significant differences were observed between Groups A and B; however, most mechanical parameters in Group C were significantly larger and more distinguishable than those of Groups A and B. LDS could measure mechanical parameters more accurately and clearly distinguished the different periodontal ligament and alveolar bone conditions. PMID:27274995

  4. Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects.

    PubMed

    Delloye, C; Verhelpen, M; d'Hemricourt, J; Govaerts, B; Bourgois, R

    1992-09-01

    Cortical bone grafts were implanted for six months in mature dogs using an osteoperiosteal 3-cm defect in the ulna to evaluate their respective morphometric and physical values compared with autografts. The bone-grafting material included fresh auto- and allografts, frozen and thimerosal preserved allografts, and partially demineralized bone allografts. The grafts were evaluated by roentgenograms, microradiograms, photon absorptiometry, porosity, fluorescence labeling measurements, and torsional loading at failure. Autografts achieved a better union score than the allografts, but intracortical bone porosity, percentage of cumulative new bone, and mineral apposition rate were not variables with statistical significance. Lamellar bone was found earlier and in greater quantity in autografts. Within the graft, new bone was deposited at a slower rate than in the recipient bone. Autografts showed less peripheral resorption and a greater torsional resistance than allografts. Photon absorptiometry demonstrated that nondemineralized allografts underwent a substantial loss of peripheral bone. This marked reduction in the outer diameter of the graft had more influence on torsional resistance than did the intracortical porosity of the graft. Demineralized allografts were osteoinductive in only 28% of the cases and appeared to respond in an all-or-nothing pattern. Frozen and thimerosal preserved allografts were the most acceptable substitutes to autografts.

  5. Effects of laser and ozone therapies on bone healing in the calvarial defects.

    PubMed

    Kazancioglu, Hakki Oguz; Ezirganli, Seref; Aydin, Mehmet Serif

    2013-11-01

    This study aims to analyze the effect of the low-level laser therapy (LLLT) and ozone therapy on the bone healing of critical size defect (CSD) in rat calvaria. A total of 30 Wistar male rats were used. A 5-mm-diameter trephine bur was used to create CSD on the right side of the parietal bone of each rat calvarium. Once the bone was excised, a synthetic biphasic calcium phosphate graft material was implanted to all the bone defect sites. The animals were randomly divided into 3 groups as follows: the control group (n = 10), which received no LLLT or ozone therapy; the LLLT group (n = 10), which received only LLLT (120 seconds, 3 times a week for 2 weeks); and the ozone therapy group (n = 10) (120 seconds, 3 times a week for 2 weeks). After 1 month, all the rats were killed, and the sections were examined to evaluate the presence of inflammatory infiltrate, connective tissue, and new bone formation areas. Histomorphometric analyses showed that in the LLLT and ozone groups, the new bone areas were significantly higher than in the control group (P < 0.05). In the LLLT group, higher new bone areas were found than in the ozone group (P < 0.05). This study demonstrated that both ozone and laser therapies had a positive effect on bone formation in rat calvarial defect, compared with the control group; however, ozone therapy was more effective than LLLT (808 nm; 0.1 W; 4 J/cm(2); 0.028 cm(2), continuous wave mode).

  6. The effect of type II collagen on MSC osteogenic differentiation and bone defect repair.

    PubMed

    Chiu, Li-Hsuan; Lai, Wen-Fu T; Chang, Shwu-Fen; Wong, Chin-Chean; Fan, Cheng-Yu; Fang, Chia-Lang; Tsai, Yu-Hui

    2014-03-01

    The function of type II collagen in cartilage is well documented and its importance for long bone development has been implicated. However, the involvement of type II collagen in bone marrow derived mesenchymal stem cell (BMSC) osteogenesis has not been well investigated. This study elucidated the pivotal role of type II collagen in BMSC osteogenesis and its potential application to bone healing. Type II collagen-coated surface was found to accelerate calcium deposition, and the interaction of osteogenic medium-induced BMSCs with type II collagen-coated surface was mainly mediated through integrin α2β1. Exogenous type II collagen directly activated FAK-JNK signaling and resulted in the phosphorylation of RUNX2. In a segmental defect model in rats, type II collagen-HA/TCP-implanted rats showed significant callus formation at the reunion site, and a higher SFI (sciatic function index) scoring as comparing to other groups were also observed at 7, 14, and 21 day post-surgery. Collectively, type II collagen serves as a better modulator during early osteogenic differentiation of BMSCs by facilitating RUNX2 activation through integrin α2β1-FAK-JNK signaling axis, and enhance bone defect repair through an endochondral ossification-like process. These results advance our understanding about the cartilaginous ECM-BMSC interaction, and provide perspective for bone defect repair strategies.

  7. Bone formation in calvarial defects of Sprague-Dawley rats by transplantation of calcium phosphate glass.

    PubMed

    Moon, Hyun-Ju; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Choi, Seong-Ho; Kim, Chong-Kwan; Kim, Kee-Deog; LeGeros, Racquel Z; Lee, Yong-Keun

    2005-09-01

    The purpose of this study was to investigate the bone-regenerative effect of calcium phosphate glass in vivo. We prepared amorphous calcium phosphate glass powder having a mean particle size of 400 microm in the system CaO-CaF2-P2O5-MgO-ZnO. Calvarial critical-sized defects (8 mm) were created in 60 male Sprague-Dawley rats. The animals were divided into an experimental group and control group of 30 animals each. Each defect was filled with a constant weight of 0.5 g calcium phosphate glass powder mixed with saline. As a control, the defect was left empty. The rats were sacrificed 2, 4, or 8 weeks postsurgery, and the results evaluated using radiodensitometric and histological studies; they were also examined histomorphometrically. When the calcium phosphate glass powders with 400-microm particles were grafted, the defects were nearly completely filled with new-formed bone in a clean healing condition after 8 weeks. It was observed that the prepared calcium phosphate glass enhanced new bone formation in the calvarial defect of Sprague-Dawley rats and could be expected to have potential for use as a hard tissue regeneration material.

  8. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects.

    PubMed

    Chen, Wenchuan; Liu, Jun; Manuchehrabadi, Navid; Weir, Michael D; Zhu, Zhimin; Xu, Hockin H K

    2013-12-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) are inexhaustible and can be harvested at a low cost without an invasive procedure. However, there has been no report on comparing hUCMSCs with human bone marrow MSCs (hBMSCs) for bone regeneration in vivo. The aim of this study was to investigate hUCMSC and hBMSC seeding on macroporous calcium phosphate cement (CPC), and to compare their bone regeneration in critical-sized cranial defects in rats. Cell attachment, osteogenic differentiation and mineral synthesis on RGD-modified macroporous CPC were investigated in vitro. Scaffolds with cells were implanted in 8-mm defects of athymic rats. Bone regeneration was investigated via micro-CT and histological analysis at 4, 12, and 24 weeks. Three groups were tested: CPC with hUCMSCs, CPC with hBMSCs, and CPC control without cells. Percentage of live cells and cell density on CPC in vitro were similarly good for hUCMSCs and hBMSCs. Both cells had high osteogenic expressions of alkaline phosphatase, osteocalcin, collagen I, and Runx2. Bone mineral density and trabecular thickness in hUCMSC and hBMSC groups in vivo were greater than those of CPC control group. New bone amount for hUCMSC-CPC and hBMSC-CPC constructs was increased by 57% and 88%, respectively, while blood vessel density was increased by 15% and 20%, than CPC control group at 24 weeks. hUCMSC-CPC and hBMSC-CPC groups generally had statistically similar bone mineral density, new bone amount and vessel density. In conclusion, hUCMSCs seeded on CPC were shown to match the bone regeneration efficacy of hBMSCs in vivo for the first time. Both hUCMSC-CPC and hBMSC-CPC constructs generated much more new bone and blood vessels than CPC without cells. Macroporous RGD-grafted CPC with stem cell seeding is promising for craniofacial and orthopedic repairs.

  9. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects

    PubMed Central

    Chen, Wenchuan; Liu, Jun; Manuchehrabadi, Navid; Weir, Michael D.; Zhu, Zhimin; Xu, Hockin H.K.

    2014-01-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) are inexhaustible and can be harvested at a low cost without an invasive procedure. However, there has been no report on comparing hUCMSCs with human bone marrow MSCs (hBMSCs) for bone regeneration in vivo. The aim of this study was to investigate hUCMSC and hBMSC seeding on macroporous calcium phosphate cement (CPC), and to compare their bone regeneration in critical-sized cranial defects in rats. Cell attachment, osteogenic differentiation and mineral synthesis on RGD-modified macroporous CPC were investigated in vitro. Scaffolds with cells were implanted in 8-mm defects of athymic rats. Bone regeneration was investigated via micro-CT and histological analysis at 4, 12, and 24 weeks. Three groups were tested: CPC with hUCMSCs, CPC with hBMSCs, and CPC control without cells. Percentage of live cells and cell density on CPC in vitro were similarly good for hUCMSCs and hBMSCs. Both cells had high osteogenic expressions of alkaline phosphatase, osteocalcin, collagen I, and Runx2. Bone mineral density and trabecular thickness in hUCMSC and hBMSC groups in vivo were greater than those of CPC control group. New bone amount for hUCMSC-CPC and hBMSC-CPC constructs was increased by 57% and 88%, respectively, while blood vessel density was increased by 15% and 20%, than CPC control group at 24 weeks. hUCMSC-CPC and hBMSC-CPC groups generally had statistically similar bone mineral density, new bone amount and vessel density. In conclusion, hUCMSCs seeded on CPC were shown to match the bone regeneration efficacy of hBMSCs in vivo for the first time. Both hUCMSC-CPC and hBMSC-CPC constructs generated much more new bone and blood vessels than CPC without cells. Macroporous RGD-grafted CPC with stem cell seeding is promising for craniofacial and orthopedic repairs. PMID:24054499

  10. Influence of the Alveolar Cleft Type on Preoperative Estimation Using 3D CT Assessment for Alveolar Cleft

    PubMed Central

    Choi, Hang Suk; Choi, Hyun Gon; Kim, Soon Heum; Park, Hyung Jun; Shin, Dong Hyeok; Jo, Dong In; Kim, Cheol Keun

    2012-01-01

    Background The bone graft for the alveolar cleft has been accepted as one of the essential treatments for cleft lip patients. Precise preoperative measurement of the architecture and size of the bone defect in alveolar cleft has been considered helpful for increasing the success rate of bone grafting because those features may vary with the cleft type. Recently, some studies have reported on the usefulness of three-dimensional (3D) computed tomography (CT) assessment of alveolar bone defect; however, no study on the possible implication of the cleft type on the difference between the presumed and actual value has been conducted yet. We aimed to evaluate the clinical predictability of such measurement using 3D CT assessment according to the cleft type. Methods The study consisted of 47 pediatric patients. The subjects were divided according to the cleft type. CT was performed before the graft operation and assessed using image analysis software. The statistical significance of the difference between the preoperative estimation and intraoperative measurement was analyzed. Results The difference between the preoperative and intraoperative values were -0.1±0.3 cm3 (P=0.084). There was no significant intergroup difference, but the groups with a cleft palate showed a significant difference of -0.2±0.3 cm3 (P<0.05). Conclusions Assessment of the alveolar cleft volume using 3D CT scan data and image analysis software can help in selecting the optimal graft procedure and extracting the correct volume of cancellous bone for grafting. Considering the cleft type, it would be helpful to extract an additional volume of 0.2 cm3 in the presence of a cleft palate. PMID:23094242

  11. A Biodegradable Implant for Restoring Bone Discontinuity Defects in Dogs,

    DTIC Science & Technology

    1985-11-01

    Research Walter Reed Army Medical Center Washington, DC 20307-530n Enclosures 11 08 039 S0- ’" I " : iA L - I ’ -II ABSTRACT A copolymer ( polylactic acid...hydroxy acids have been investi- gated in our laboratory because of their favorable bone repair characteris- tics. Polyglycolic acid (PGA) and polylactic ...typing this manuscript. 16 -a VIP REFERENCES I. Kulkarni RK, Pani KC, Neuman C, Leonard F: Polylactic Acid for Surgical Implants. Arch Surg 93:839, 1966

  12. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects

    PubMed Central

    Ode, G.; Hoelscher, G.; Ingram, J.; Bethea, S.; Bosse, M. J.

    2016-01-01

    Objectives The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with

  13. Three-D imaging of dental alveolar bone change after fixed orthodontic treatment in patients with periodontitis

    PubMed Central

    Ma, Zhi-Gui; Yang, Chi; Fang, Bing; Xia, Yun-Hui; Mao, Li-Xia; Feng, Yi-Miao

    2015-01-01

    Objectives: The objective of this study was to radiographically quantify bone height and bone density in patients with periodontitis after fixed orthodontic treatment using cone beam computed tomography (CBCT). Materials and methods: A total of 81 patients including 40 patients with chronic periodontitis (group 1) and 41 patients with normal periodontal tissues (group 2) were selected. CBCT scanning for anterior teeth were taken before and after orthodontic treatment. Measurements of bone height and bone density were performed using CBCT software. Results: The group 1 presented a statistically lesser bone density and bone height when compared to group 2 before treatment. There was a significant loss of bone density for both groups after orthodontic treatment, but bone density loss was significantly greater in the group 1. There was no statistically significant bone height change in two groups after treatment. Conclusions: This study demonstrated that orthodontic treatment can preserve bone height but not capable of maintaining bone density, especially for patients with periodontitis. It is indicated that the change of bone density may be more susceptible than that of bone height when radiographically evaluating bone status under this combined periodontal and orthodontic therapy. PMID:25932177

  14. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice

    PubMed Central

    Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H.; Li, Ailian; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Henderson, Janet E.; Martineau, Paul A.

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair. PMID:28350850

  15. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    PubMed

    Ribeiro, Frederico O; Gómez-Benito, María José; Folgado, João; Fernandes, Paulo R; García-Aznar, José Manuel

    2015-01-01

    The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  16. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2

    PubMed Central

    2015-01-01

    The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies. PMID:26043112

  17. Effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of BMP-2

    PubMed Central

    Han, Jinyou; He, Hong

    2016-01-01

    The aim of the study was to investigate the effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of bone morphogenetic protein-2 (BMP-2). Adult male Wistar rats (n=30), with an age range of 14–15 weeks, and an average weight of 250±16 g were used. The animals were randomly divided into the control and observation groups. The rats in the control group were injected with 25-dihydroxyvitamin (1,25-dihydroxycholecalciferol) into their dental ligament. The rats in the observation group were placed with an orthodontic device between the first molar and central incisor in the maxillary. On the first day after animal treatment, piezosurgery stimulation was performed on the first molar in maxillary. The changes of the movement distance of the first molar and gum surface temperature on days 1, 3, 5, 7 and 14 were then compared. Immunohistochemical staining was performed to detect the expression of BMP-2 of periodontal tissue in the tension side of the first molar. Tooth movement distance in the observation group on days 5, 7 and 14 was significantly longer than that in the control group (p<0.05). The gum surface temperature of the observation group was elevated to some extent, peaking after 20 min. BMP-2 mRNA and protein levels in the observation group were significantly higher than those of the control group at days 3, 5, 7 and 14 (p<0.05). In conclusion, piezosurgery may significantly accelerate the movement of orthodontic alveolar bone tooth of rats and be associated with an increasing BMP-2 expression. PMID:27882108

  18. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    PubMed

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.

  19. Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids.

    PubMed

    Suenaga, Hideyuki; Furukawa, Katsuko S; Suzuki, Yukako; Takato, Tsuyoshi; Ushida, Takashi

    2015-11-01

    Mesenchymal stem cell (MSC) condensation contributes to membrane ossification by enhancing their osteodifferentiation. We investigated bone regeneration in rats using the human bone marrow-derived MSC-spheroids prepared by rotation culture, without synthetic or exogenous biomaterials. Bilateral calvarial defects (8 mm) were created in nude male rats; the left-sided defects were implanted with MSC-spheroids, β-tricalcium phosphate (β-TCP) granules, or β-TCP granules + MSC-spheroids, while the right-sided defects served as internal controls. Micro-computed tomography and immunohistochemical staining for osteocalcin/osteopontin indicated formation of new, full-thickness bones at the implantation sites, but not at the control sites in the MSC-spheroid group. Raman spectroscopy revealed similarity in the spectral properties of the repaired bone and native calvarial bone. Mechanical performance of the bones in the MSC-implanted group was good (50 and 60% those of native bones, respectively). All tests showed poor bone regeneration in the β-TCP and β-TCP + MSC-spheroid groups. Thus, significant bone regeneration was achieved with MSC-spheroid implantation into bone defects, justifying further investigation.

  20. Fkbp10 Deletion in Osteoblasts Leads to Qualitative Defects in Bone.

    PubMed

    Lietman, Caressa D; Lim, Joohyun; Grafe, Ingo; Chen, Yuqing; Ding, Hao; Bi, Xiaohong; Ambrose, Catherine G; Fratzl-Zelman, Nadja; Roschger, Paul; Klaushofer, Klaus; Wagermaier, Wolfgang; Schmidt, Ingo; Fratzl, Peter; Rai, Jyoti; Weis, MaryAnn; Eyre, David; Keene, Douglas R; Krakow, Deborah; Lee, Brendan H

    2017-02-16

    Osteogenesis Imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65KDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10(fl/fl) mice (Mus musculus; C57BL/6) using the osteoblast specific Col1a1 2.3kb Cre recombinase. Using µCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy of bone collagen demonstrated a decrease in mature, hydroxylysine-aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral-to-matrix ratio and in crystal size as shown by Raman spectroscopy and small angle x-ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton. This article is protected by copyright. All rights reserved.

  1. Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats

    PubMed Central

    Lee, Kangwon; Weir, Michael D.; Lippens, Evi; Mehta, Manav; Wang, Ping; Duda, Georg N.; Kim, Woo S.; Mooney, David J.; Xu, Hockin H. K.

    2014-01-01

    Objectives Calcium phosphate cement (CPC) is promising for dental and craniofacial applications due to its ability to be injected or filled into complex-shaped bone defects and molded for esthetics, and its resorbability and replacement by new bone. The objective of this study was to investigate bone regeneration via novel macroporous CPC containing absorbable fibers, hydrogel microbeads and growth factors in critical-sized cranial defects in rats. Methods Mannitol porogen and alginate hydrogel microbeads were incorporated into CPC. Absorbable fibers were used to provide mechanical reinforcement to CPC scaffolds. Six CPC groups were tested in rats: (1) Control CPC without macropores and microbeads; (2) Macroporous CPC + large fiber; (3) Macroporous CPC + large fiber + nanofiber; (4) Same as (3), but with rhBMP2 in CPC matrix; (5) Same as (3), but with rhBMP2 in CPC matrix + rhTGF-β1 in microbeads; (6) Same as (3), but with rhBMP2 in CPC matrix + VEGF in microbeads. Rats were sacrificed at 4 and 24 weeks for histological and micro-CT analyses. Results The macroporous CPC scaffolds containing porogen, absorbable fibers and hydrogel microbeads had mechanical properties similar to cancellous bone. At 4 weeks, the new bone area fraction (mean ± sd; n = 5) in CPC control group was the lowest at (14.8 ± 3.3)%, and that of group 6 (rhBMP2 + VEGF) was (31.0 ± 13.8)% (p < 0.05). At 24 weeks, group 4 (rhBMP2) had the most new bone of (38.8 ± 15.6)%, higher than (12.7 ± 5.3)% of CPC control (p < 0.05). Micro-CT revealed nearly complete bridging of the critical-sized defects with new bone for several macroporous CPC groups, compared to much less new bone formation for CPC control. Significance Macroporous CPC scaffolds containing porogen, fibers and microbeads with growth factors were investigated in rat cranial defects for the first time. Macroporous CPCs had new bone up to 2-fold that of traditional CPC control at 4 weeks, and 3-fold that of traditional CPC at 24 weeks

  2. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.

    PubMed

    Stubbs, D; Deakin, M; Chapman-Sheath, P; Bruce, W; Debes, J; Gillies, R M; Walsh, W R

    2004-09-01

    Calcium sulfate as a bone graft substitute is rapidly resorbed in vivo releasing calcium ions but fails to provide long-term three-dimensional framework to support osteoconduction. The setting properties of calcium sulfate however allow it to be applied in a slurry form making it easier to handle and apply in different situations. This study examines the in vivo response of calcium sulfate alone and as a carrier for a coralline hydroxyapatite in an established bilateral corticocancellous defect model in rabbits. Defects were filled flush to the anterior cortex with a resorbable porous ceramic alone and in combination with calcium sulfate slurry, calcium sulfate slurry alone or calcium sulfate pellets and examined at time points up to 52 weeks. Specimens where assessed using Faxitron X-ray, light and electron microscopy. Calcium sulfate in either slurry or pellet form does indeed support new bone formation alone however, complete filling of the bone defect is not observed. Calcium sulfate in slurry form does however improve the surgical handling of particulate bone graft substitutes such as Pro Osteon 200 R, which remained as an osteoconductive scaffold for up to 52 weeks and may have played an important role in the ultimate closure of the cortical windows.

  3. Behavior of bioactive glass-ceramic implanted into long bone defects: a scintigraphic study.

    PubMed

    Sponer, Pavel; Urban, Karel; Urbanová, Elen; Karpas, Karel; Mathew, Pradeep George

    2010-01-01

    The purpose of the study was to assess the long-term behavior and incorporation of the bioactive oxyhydroxyapatite glass-ceramic used to fill defects of long bones after curettage of bone cysts in 17 patients. The method of evaluation was a three-phase bone scintigraphy combined with radiographic and clinical evaluation. At a mean follow-up of 7 years, the glass-ceramic material had been completely incorporated. Mean uptake ratio was 1.31+/-0.25 after implantation of glass-ceramic in the metaphyseal region and 2.07+/-0.62 after implantation of glass-ceramic in the diaphyseal region (P<0.05). Mean uptake ratio was 1.40+/-0.30 in patients without persistent pain and 2.07+/-0.69 in patients who complained of pain in the area of synthetic filling (P<0.05). The bioactive glass-ceramic can be implanted into the metaphyseal defects of long bones, but this material is not suitable for filling the diaphyseal defects.

  4. Regenerative behavior of biomineral/agarose composite gels as bone grafting materials in rat cranial defects.

    PubMed

    Suzawa, Yoshika; Funaki, Takafumi; Watanabe, Junji; Iwai, Soichi; Yura, Yoshiaki; Nakano, Takayoshi; Umakoshi, Yukichi; Akashi, Mitsuru

    2010-06-01

    The main objective of this study was to evaluate the biological behavior of Hydroxyapatite (HAp)/agarose and calcium carbonate (CaCO3)/agarose composite gels by an alternate soaking process used for the treatment of surgically produced bone defects in rat cranium. We designed the following four groups: (i) HAp (HAp/agarose composite gel), (ii) CaCO3 (CaCO3/agarose composite gel), (iii) Agarose (bare agarose gel), and (iv) Defect (no filling materials). We subdivided (i) (ii) (iii) into two application types as a (I) Homogenized Group (homogenized materials) and a (II) Disk Group (disk shaped materials). We assessed samples by radiological and histological analyses 0, 4, and 8 weeks after implantation. The results indicated that the composite gels showed higher radiopacity in microfocus-computed tomography (muCT) images and showed higher volume in quantitative analyses using Dual Energy X-ray Absorptiometry (DEXA) and Peripheral Quantitative Computed Tomography (pQCT) than the Agarose and Defect groups. The histological examination showed characteristic images due to each application form. Consequently, HAp and CaCO3/agarose composite gels can be expected to accelerate the speed of producing more new bone associated with osteogenesis. These novel biomaterials play an important role as an alternative biocompatible and biodegradable bone grafting filler material for autogenous bone.

  5. Citrate-Based Biphasic Scaffolds for the Repair of Large Segmental Bone Defects

    PubMed Central

    Guo, Ying; Tran, Richard T.; Xie, Denghui; Nguyen, Dianna Y.; Gerhard, Ethan; Guo, Jinshan; Wang, Yuchen; Tang, Jiajun; Zhang, Zhongming; Bai, Xiaochun; Yang, Jian

    2014-01-01

    Attempts to replicate native tissue architecture have lead to the design of biomimetic scaffolds focused on improving functionality. In this study, biomimetic citrate-based poly (octanediol citrate) – click hydroxyapatite (POC-Click-HA) scaffolds were developed to simultaneously replicate the compositional and architectural properties of native bone tissue while providing immediate structural support for large segmental defects following implantation. Biphasic scaffolds were fabricated with 70% internal phase porosity and various external phase porosities (between 5–50%) to mimic the bimodal distribution of cancellous and cortical bone, respectively. Biphasic POC-Click-HA scaffolds displayed compressive strengths up to 37.45 ± 3.83 MPa, which could be controlled through the external phase porosity. The biphasic scaffolds were also evaluated in vivo for the repair of 10-mm long segmental radial defects in rabbits and compared to scaffolds of uniform porosity as well as autologous bone grafts after 5, 10, and 15 weeks of implantation. The results showed that all POC-Click-HA scaffolds exhibited good biocompatibility and extensive osteointegration with host bone tissue. Biphasic scaffolds significantly enhanced new bone formation with higher bone densities in the initial stages after implantation. Biomechanical and histomorphometric analysis supported a similar outcome with biphasic scaffolds providing increased compression strength, interfacial bone ingrowth, and periosteal remodeling in early time points, but were comparable to all experimental groups after 15 weeks. These results confirm the ability of biphasic scaffold architectures to restore bone tissue and physiological functions in the early stages of recovery, and the potential of citrate-based biomaterials in orthopedic applications. PMID:24829094

  6. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects

    PubMed Central

    Kim, Sungwoo; Bedigrew, Katherine; Guda, Teja; Maloney, William J.; Park, Sangwon; Wenke, Joseph C.; Yang, Yunzhi Peter

    2014-01-01

    The purpose of this study was to develop and characterize a novel photo-cross-linkable chitosan-lactide-fibrinogen (CLF) hydrogel and evaluate the efficacy of bone morphogenetic protein-2 (BMP-2) containing CLF hydrogel for osteogenesis in vitro and in vivo. We synthesized the CLF hydrogels and characterized their chemical structure, degradation rate, compressive modulus, and in vitro BMP-2 release kinetics. We evaluated bioactivities of the BMP-2 containing CLF hydrogels (0, 50, 100, and 500 ng/ml) in vitro using W-20-17 preosteoblast mouse bone marrow stromal cells and C2C12 mouse myoblast cells. The effect of BMP-2 containing CLF gels (0, 0.5, 1, 2, and 5μg) on bone formation was evaluated using rat critical size segmental bone defects for 4 weeks. FTIR spectra and SEM images showed chemical and structural changes by addition of fibrinogen into chitosan-lactide copolymer. Incorporation of fibrinogen molecules significantly increased compressive modulus of the hydrogels. In vitro BMP-2 release study showed initial burst releases from the CLF hydrogels followed by sustained releases, regardless of the concentration of the BMP-2 over 4 weeks. Cells in all groups were viable in the presence of the hydrogels regardless of BMP-2 doses, indicating non-cytotoxicity of hydrogels. Alkaline phosphate activity and mineralization of cells exhibited dose dependence on BMP-2 containing CLF hydrogels. Radiographs, microcomputed tomography, and histology confirmed that the BMP-2 containing CLF hydrogels prompted neo-osteogenesis and accelerated healing of the defects in a dose-dependent manner. Thus the CLF hydrogel is a promising delivery system of growth factors for bone regeneration. PMID:25174669

  7. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  8. Methods to Analyze Bone Regenerative Response to Different rhBMP-2 Doses in Rabbit Craniofacial Defects

    DTIC Science & Technology

    2014-02-28

    counterstained with van Gieson’s picrofuchsin, to stain soft tissue blue and stain bone pink /red. Complete histology slide images were acquired at 2.5...area, the mineralized tissue was selected by color threshold of the pink /red stain and the number of bone pixels was measured. The percent mineralized...and bone staining pink /red. Colored rectangles highlight the defect area. (C) A representation of the re- generated bone area fraction per slice from

  9. Characterization of zebrafish mutants with defects in bone calcification during development.

    PubMed

    Xi, Yang; Chen, Dongyan; Sun, Lei; Li, Yuhao; Li, Lei

    2013-10-11

    Using the fluorescent dyes calcein and alcian blue, we stained the F3 generation of chemically (ENU) mutagenized zebrafish embryos and larvae, and screened for mutants with defects in bone development. We identified a mutant line, bone calcification slow (bcs), which showed delayed axial vertebra calcification during development. Before 4-5 days post-fertilization (dpf), the bcs embryos did not display obvious abnormalities in bone development (i.e., normal number, size and shape of cartilage and vertebrae). At 5-6 dpf, when vertebrae calcification starts, bcs embryos began to show defects. At 7 dpf, for example, in most of the bcs embryos examined, calcein staining revealed no signals of vertebrae mineralization, whereas during the same developmental stages, 2-14 mineralized vertebrae were observed in wild-type animals. Decreases in the number of calcified vertebrae were also observed in bcs mutants when examined at 9 and 11 dpf, respectively. Interestingly, by 13 dpf the defects in bcs mutants were no longer evident. There were no significant differences in the number of calcified vertebrae between wild-type and mutant animals. We examined the expression of bone development marker genes (e.g., Sox9b, Bmp2b, and Cyp26b1, which play important roles in bone formation and calcification). In mutant fish, we observed slight increases in Sox9b expression, no alterations in Bmp2b expression, but significant increases in Cyp26b1 expression. Together, the data suggest that bcs delays axial skeletal calcification, but does not affect bone formation and maturation.

  10. Potential of mesenchymal stem cells by adenovirus-mediated erythropoietin gene therapy approaches for bone defect.

    PubMed

    Li, Chen; Ding, Jian; Jiang, Liming; Shi, Ce; Ni, Shilei; Jin, Han; Li, Daowei; Sun, Hongchen

    2014-11-01

    Regeneration of large bone defects is a common clinical problem. Recent studies have shown that mesenchymal stem cells (MSCs) have emerged as a promising alternative to traditional surgical techniques. However, it is still a key question how to enhance the osteogenic potential of MSCs for possible clinical trials. The aim of the present study was to investigate the effect of adenovirus-mediated erythropoietin (Ad-EPO) transfer on BMSCs, we performed extensive in vitro/in vivo assays in this study. Flow cytometry analysis and the result of MTT showed that EPO could promote BMSCs proliferation. QPCR data demonstrated that EPO increased expressions of Runx2, Sp7, and Col1 in osteoblast at various time points and also increased alkaline phosphatase activity and the calcium deposition. These results indicate that EPO can increase the differentiation of osteoblast. Importantly, in vivo assays clearly demonstrate that EPO can efficiently induce new bone formation in the bone defect model. Our results strongly suggest that EPO can affect osteoblast differentiation and play important roles in bone regeneration leading to an increase in bone formation.

  11. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    PubMed

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration.

  12. In vitro comparison of chlorhexidine and povidone-iodine on the long-term proliferation and functional activity of human alveolar bone cells.

    PubMed

    Cabral, Cristina Trigo; Fernandes, Maria Helena

    2007-06-01

    This work reports the behaviour of osteoblastic human alveolar bone cells (first subculture) in the presence of chlorhexidine (CHX) and povidone-iodine (PI). Short contact (2 min) of 24-h cultures with CHX, at 0.12 and 0.2%, and PI, at 5 and 10%, caused cell death within minutes; contact with 1% PI resulted in loss of the elongated characteristic cell shape. Cell adhesion was adversely affected at concentrations higher than 5 x 10(-5)% CHX or 0.05% PI. Long-term exposure to CHX at 10(-5) and 10(-4)% or PI at 10(-4)% had little effect on cell growth and caused an induction in the synthesis of alkaline phosphatase (ALP). Concentrations of CHX and PI similar and higher than, respectively, 5 x 10(-4)% or 0.05% caused dose-dependent deleterious effects. CHX affected mainly the cell growth, whereas the effects of PI were observed mostly in ALP production and matrix mineralization. Considering the levels of CHX and PI used routinely in the oral cavity, results suggest that CHX has a higher cytotoxicity profile than PI. This observation might have some clinical relevance regarding the potential utility of PI in the prevention of alveolar osteitis.

  13. Salvianolic acid B improves bone marrow-derived mesenchymal stem cell differentiation into alveolar epithelial cells type I via Wnt signaling.

    PubMed

    Gao, Peng; Yang, Jingxian; Gao, Xi; Xu, Dan; Niu, Dongge; Li, Jinglin; Wen, Qingping

    2015-08-01

    Acute lung injury (ALI) is among the most common causes of mortality in intensive care units. Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMSCs) may attenuate pulmonary edema. In addition, alveolar epithelial cells type I (ATI) are involved in reducing the alveolar edema in response to ALI. However, the mechanism involved in improving the efficiency of differentiation of MSCs into ATI remains to be elucidated. In the present study, the effect of salvianolic acid B (Sal B) on the differentiation of BMSCs into ATI and the activities of the Wnt signaling pathways were investigated. The BMSCs were supplemented with conditioned medium (CM). The groups were as follows: i) CM group: BMSCs were supplemented with CM; ii) lithium chloride (LiCl) group: BMSCs were supplemented with CM and 5 mM LiCl; iii) Sal B group: BMSCs were supplemented with CM and 10 mM Sal B. The samples were collected and assessed on days 7 and 14. It was revealed that aquaporin (AQP)-5 and T1α were expressed in BMSCs, and induction with LiCl or Sal B increased the expression of AQP-5 and T1α. Furthermore, the Wnt-1 and Wnt-3a signaling pathways were activated during the differentiation of BMSCs into ATI. In conclusion, it was suggested that the promotive effects of Sal B on the differentiation of BMSCs into ATI occurred through the activation of Wnt signaling pathways.

  14. Bone regeneration in dentistry

    PubMed Central

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  15. Reconstruction of Mandibular Defects Using Nonvascularized Autogenous Bone Graft in Nigerians

    PubMed Central

    Ndukwe, Kizito Chioma; Aregbesola, Stephen Babatunde; Ikem, Innocent Chinedu; Ugboko, Vincent I; Adebiyi, Kehinde Emmanuel; Fatusi, Olawunmi Adedoyin; Owotade, Foluso John; Braimah, Ramat Oyebunmi

    2014-01-01

    Objectives: The aim of this study is to evaluate the success rate and complications of mandibular reconstruction with nonvascularized bone graft in Ile-Ife, Nigeria. Patients and Methods: A total of 25 patients who underwent reconstruction of mandibular discontinuity defects between January 2003 and February 2012, at the Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife constituted the study sample. Relevant information was retrieved from the patients’ records. This information include patients’ demographics (age and sex) as well as the type of mandibular defect, cause of the defect, type of mandibular resection done, source of the bone graft used, and the method of graft immobilization. Morbidity associated with the graft procedures were assessed by retrieving information on graft failures, length of hospital stay following surgery, rehabilitation device used and associated graft donor and recipient site complications. Result: There were 12 males and 13 females with a male:female ratio was 1:1.1. The age of the patients ranged from 13 to 73 years with a mean age for males 32.7 ± standard deviation (SD) 12.9 and for females 35.0 ± SD 17.1. Jaw defect was caused by resection for tumours and other jaw pathologies in 92% of cases. Complete symphyseal involvement defect was the most common defect recorded 11 (44%). Reconstruction with nonvascularized rib graft accounted for 68% of cases while iliac crest graft was used in 32% of the patients. Successful take of the grafts was recorded in 22 patients while three cases failed. Wound dehiscence (two patients) and postoperative wound infection (eight patients) were the most common complications recorded. Conclusion: The use of nonvascularized graft is still relevant in the reconstruction of large mandibular defects caused by surgical ablation of benign conditions in Nigerians. Precise surgical planning and execution, extended antibiotic therapy, and meticulous postoperative care contributed to the good

  16. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    PubMed

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.

  17. A treatment algorithm for patients with large skull bone defects and first results.

    PubMed

    Lethaus, Bernd; Ter Laak, Marielle Poort; Laeven, Paul; Beerens, Maikel; Koper, David; Poukens, Jules; Kessler, Peter

    2011-09-01

    Large skull bone defects resulting from craniotomies due to cerebral insults, trauma or tumours create functional and aesthetic disturbances to the patient. The reconstruction of large osseous defects is still challenging. A treatment algorithm is presented based on the close interaction of radiologists, computer engineers and cranio-maxillofacial surgeons. From 2004 until today twelve consecutive patients have been operated on successfully according to this treatment plan. Titanium and polyetheretherketone (PEEK) were used to manufacture the implants. The treatment algorithm is proved to be reliable. No corrections had to be performed either to the skull bone or to the implant. Short operations and hospitalization periods are essential prerequisites for treatment success and justify the high expenses.

  18. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    PubMed

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  19. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing.

    PubMed

    Liu, Tie; Zheng, Yuanna; Wu, Gang; Wismeijer, Daniel; Pathak, Janak L; Liu, Yuelian

    2017-01-31

    Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.

  20. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing

    PubMed Central

    Liu, Tie; Zheng, Yuanna; Wu, Gang; Wismeijer, Daniel; Pathak, Janak L.; Liu, Yuelian

    2017-01-01

    Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic. PMID:28139726

  1. Diffraction enhanced imaging of controlled defects within bone, including bone-metal gaps.

    PubMed

    Connor, D M; Sayers, D; Sumner, D R; Zhong, Z

    2006-06-21

    Gap regions between a bone and an implant, whether existing upon insertion or developing over time, can lead to implant failure. Currently, planar x-ray imaging and CT are the most commonly used methods to evaluate the gap region. An alternative to these available clinical imaging modalities could help to better evaluate bone resorption. Previous experiments with diffraction enhanced imaging (DEI) have shown significant contrast advantages over monochromatic synchrotron radiation (SR) imaging. DEI and planar SR radiography images of bone samples with drill holes and gap regions of known geometry were acquired at the NSLS beamline X15A (Upton, NY, USA). The images acquired with DEI show measurable contrast-to-noise gains when compared to the images acquired using SR radiography.

  2. Histomorhological and clinical evaluation of maxillary alveolar ridge reconstruction after craniofacial trauma by applying combination of allogeneic and autogenous bone graft.

    PubMed

    De Ponte, Francesco Saverio; Falzea, Roberto; Runci, Michele; Siniscalchi, Enrico Nastro; Lauritano, Floriana; Bramanti, Ennio; Cervino, Gabriele; Cicciu, Marco

    2017-02-01

    A variety of techniques and materials for the rehabilitation and reconstruction of traumatized maxillary ridges prior to dental implants placement have been described in literature. Autogenous bone grafting is considered ideal by many researchers and it still remains the most predictable and documented method. The aim of this report is to underline the effectiveness of using allogeneic bone graft for managing maxillofacial trauma. A case of a 30-year-old male with severely atrophic maxillary ridge as a consequence of complex craniofacial injury is presented here. Augmentation procedure in two stages was performed using allogeneic and autogenous bone grafts in different areas of the osseous defect. Four months after grafting, during the implants placement surgery, samples of both sectors were withdrawn and submitted to histological evaluation. On the examination of the specimens, treated by hematoxylin and eosin staining, the morphology of integrated allogeneic bone grafts was revealed to be similar to the autologous bone. Our clinical experience shows how the allogeneic bone graft presented normal bone tissue architecture and is highly vascularized, and it can be used for reconstruction of severe trauma of the maxilla.

  3. Reconstruction of irradiated bone segmental defects with a biomaterial associating MBCP+(R), microstructured collagen membrane and total bone marrow grafting: an experimental study in rabbits.

    PubMed

    Jégoux, Franck; Goyenvalle, Eric; Cognet, Ronan; Malard, Olivier; Moreau, Francoise; Daculsi, Guy; Aguado, Eric

    2009-12-15

    The bone tissue engineering models used today are still a long way from any oncologic application as immediate postimplantation irradiation would decrease their osteoinductive potential. The aim of this study was to reconstruct a segmental critical size defect in a weight-bearing bone irradiated after implantation. Six white New Zealand rabbits were immediately implanted with a biomaterial associating resorbable collagen membrane EZ(R) filled and micro-macroporous biphasic calcium phosphate granules (MBCP+(R)). After a daily schedule of radiation delivery, and within 4 weeks, a total autologous bone marrow (BM) graft was injected percutaneously into the center of the implant. All the animals were sacrificed at 16 weeks. Successful osseous colonization was found to have bridged the entire length of the defects. Identical distribution of bone ingrowth and residual ceramics at the different levels of the implant suggests that the BM graft plays an osteoinductive role in the center of the defect. Periosteum-like formation was observed at the periphery, with the collagen membrane most likely playing a role. This model succeeded in bridging a large segmental defect in weight-bearing bone with immediate postimplantation fractionated radiation delivery. This has significant implications for the bone tissue engineering approach to patients with cancer-related bone defects.

  4. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat.

    PubMed

    Nandi, Samit Kumar; Kundu, Biswanath; Ghosh, Samir Kumar; De, Dipak Kumar; Basu, Debabrata

    2008-06-01

    The present study was undertaken to evaluate porous hydroxyapatite (HAp), the powder of which was prepared by a novel aqueous solution combustion technique, as a bone substitute in healing bone defects in vivo, as assessed by radiologic and histopathologic methods, oxytetracycline labeling, and angiogenic features in Bengal goat. Bone defects were created in the diaphysis of the radius and either not filled (group I) or filled with a HAp strut (group II). The radiologic study in group II showed the presence of unabsorbed implants which acted as a scaffold for new bone growth across the defect, and the quality of healing of the bone defect was almost indistinguishable from the control group, in which the defect was more or less similar, although the newly formed bony tissue was more organized when HAp was used. Histologic methods showed complete normal ossification with development of Haversian canals and well-defined osteoblasts at the periphery in group II, whereas the control group had moderate fibro-collagenization and an adequate amount of marrow material, fat cells, and blood vessels. An oxytetracycline labeling study showed moderate activity of new bone formation with crossing-over of new bone trabeculae along with the presence of resorption cavities in group II, whereas in the control group, the process of new bone formation was active from both ends and the defect site appeared as a homogenous non-fluoroscent area. Angiograms of the animals in the control group showed uniform angiogenesis in the defect site with establishment of trans-transplant angiogenesis, whereas in group II there was complete trans-transplant shunting of blood vessel communication. Porous HAp ceramic prepared by an aqueous combustion technique promoted bone formation over the defect, confirming their biologic osteoconductive property.

  5. Bone transport through an induced membrane in the management of tibial bone defects resulting from chronic osteomyelitis.

    PubMed

    Marais, Leonard Charles; Ferreira, Nando

    2015-04-01

    Wide resection of infected bone improves the odds of achieving remission of infection in patients with chronic osteomyelitis. Aggressive debridement is followed by the creation of large bone defects. The use of antibiotic-impregnated PMMA spacers, as a customized dead space management tool, has grown in popularity. In addition to certain biological advantages, the spacer offers a therapeutic benefit by serving as a vehicle for delivery of local adjuvant antibiotics. In this study, we investigate the efficacy of physician-directed antibiotic-impregnated PMMA spacers in achieving remission of chronic tibial osteomyelitis. This retrospective case series involves eight patients with chronic osteomyelitis of the tibial diaphysis managed with bone transport through an induced membrane using circular external fixation. All patients were treated according to a standardized treatment protocol. A review of the anatomical nature of the disease, the physiological status of the host and the outcome of treatment in terms of remission of infection, time to union and the complications that occurred was carried out. Seven patients, with a mean bone defect of 7 cm (range 5-8 cm), were included in the study. At a mean follow-up of 28 months (range 18-45 months), clinical eradication of osteomyelitis was achieved in all patients without the need for further reoperation. The mean total external fixation time was 77 weeks (range 52-104 weeks), which equated to a mean external fixation index of 81 days/cm (range 45-107). Failure of the skeletal reconstruction occurred in one patient who was not prepared to continue with further reconstructive surgery and requested amputation. Four major and four minor complications occurred. The temporary insertion of antibiotic-impregnated PMMA appears to be a useful dead space management technique in the treatment of post-infective tibial bone defects. Although the technique does not appear to offer an advantage in terms of the external fixation

  6. [Experimental study on application recombinant human bone morphogenetic protein 2(rhBMP-2)/poly-lactide-co-glycolic acid (PLGA)/fibrin sealant(FS) on repair of rabbit radial bone defect].

    PubMed

    Fan, Zhongkai; Cao, Yang; Zhang, Zhe; Zhang, Mingchao; Lu, Wei; Tang, Lei; Yao, Qi; Lu, Gang

    2012-10-01

    This paper is aimed to investigate the repair of rabbit radial bone defect by the recombinant human bone morphogenetic protein 2/poly-lactideco-glycolic acid microsphere with fibrin sealant (rhBMP-2/PLGA/FS). The radial bone defect models were prepared using New Zealand white rabbits, which were randomly divided into 3 groups, experiment group which were injected with eMP-2/PLGA/FS at bone defect location, control group which were injected with FS at bone defect location, and blank control group without treatment. The ability of repairing bone defect was evaluated with X-ray radiograph. Bone mineral density in the defect regions was analysed using the level of ossification. The osteogenetic ability of repairing bone defect, the degradation of the material, the morphologic change and the bone formation were assessed by HE staining and Masson staining. The result showed that rhBMP-2/PLGA/FS had overwhelming superiority in the osteogenetic ability and quality of bone defect over the control group, and it could promote the repair of bone defect and could especially repair the radial bone defect of rabbit well. It may be a promising and efficient synthetic bone graft.

  7. The metaphyseal bone defect predicts outcome in reverse shoulder arthroplasty for proximal humerus fracture sequelae.

    PubMed

    Greiner, Stefan; Uschok, Stephan; Herrmann, Sebastian; Gwinner, Clemens; Perka, Carsten; Scheibel, Markus

    2014-06-01

    Reverse shoulder arthroplasty (RSA) represents an established procedure for treatment of fracture sequelae (FS) after proximal humerus fractures. The present work evaluates which factors are of influence for the clinical outcome. Fifty cases (mean age 69, range 44-89) have been evaluated postoperatively clinically [Constant Score (CS)] and radiographically (mean FU 34; range 24-93 months). The type of primary treatment, the amount of a metaphyseal bone defect, the preoperative status of the rotator cuff, the number of previous operative interventions and the type of FS according to Boileau were analysed whether they are of influence for clinical outcome. The mean CS increased significantly from 16.9 ± 6.7 preoperatively to 54.1 ± 15.7 points postoperatively. The CS of primary conservative treatment was significantly higher in comparison to primary operative treatment. Patients with a metaphyseal bone defect of more than 3 cm had significantly lower CS results. Degenerative changes of the teres minor muscle also had a significant negative influence on clinical results. Score results decreased with increasing number of previous operations. There were no significant difference in between patients classified as Boileau type I and II (category 1) compared to types III and IV (category 2). RSA significantly improved the clinical result. A metaphyseal bone defect and preoperative degeneration of the teres minor showed to be negative prognostic factors. Primary operative treatment and the number of previous operations also negatively influenced the clinical result.

  8. Composition dependent mechanical behaviour of S53P4 bioactive glass putty for bone defect grafting.

    PubMed

    van Gestel, N A P; Hulsen, D J W; Geurts, J; Hofmann, S; Ito, K; Arts, J J; van Rietbergen, B

    2017-05-01

    To improve the handling properties of S53P4 bioactive glass granules for clinical applications, bioactive glass putty formulations were developed. These formulations contain both granules and a synthetic binder to form an injectable material that is easy to shape. To explore its applicability in load-bearing bone defect grafting, the relation between the putty composition and its mechanical behaviour was assessed in this study. Five putty formulations with variations in synthetic binder and granule content were mechanically tested in confined compression. The results showed that the impaction strains significantly decreased and the residual strains significantly increased with an increasing binder content. The stiffness of all tested formulations was found to be in the same range as the reported stiffness of cancellous bone. The measured creep strains were low and no significant differences between formulations were observed. The stiffness significantly increased when the samples were subjected to a second loading stage. The residual strains calculated from this second loading stage were also significantly different from the first loading stage, showing an increasing difference with an increasing binder content. Since residual strains are detrimental for graft layer stability in load-bearing defects, putty compositions with a low binder content would be most beneficial for confined, load-bearing bone defect grafting.

  9. Distraction osteogenesis using combined locking plate and Ilizarov fixator in the treatment of bone defect: A report of 2 cases

    PubMed Central

    Mukhopadhaya, John; Raj, Manish

    2017-01-01

    Distraction osteogenesis and bone transport has been used to reconstruct bone loss defect by allowing new bone to form in the gap. Plate-guided bone transport has been successfully described in literature to treat bone loss defect in the femur, tibia, and mandible. This study reports two cases of fracture of femur with segmental bone loss treated with locking plate fixation and bone transport with Ilizarov ring fixator. At the time of docking, when the transport segment is compressed with bone fragment, the bone fragment is fixed with additional locking or nonlocking screws through the plate. The bone defect size was 7 cm in case 1 and 8 cm in case 2 and the external fixation indexes were 12.7 days/cm and 14 days/cm. No shortening was present in either of our cases. The average radiographic consolidation index was 37 days/cm. Both cases achieved infection-free bone segment regeneration and satisfactorily functional outcome. This technique reduces the duration of external fixation during the consolidation phase, allows correction of length and alignment and provides earlier rehabilitation.

  10. A review of mouse critical size defect models in weight bearing bones.

    PubMed

    Harris, Jonathan S; Bemenderfer, Thomas B; Wessel, Alexander R; Kacena, Melissa A

    2013-07-01

    Current and future advances in orthopedic treatment are aimed at altering biological interactions to enhance bone healing. Currently, several clinical scenarios exist for which there is no definitive treatment, specifically segmental bone loss from high-energy trauma or surgical resection - and it is here that many are aiming to find effective solutions. To test experimental interventions and better understand bone healing, researchers employ critical size defect (CSD) models in animal studies. Here, an overview of CSDs is given that includes the specifications of varying models, a discussion of current scaffold and bone graft designs, and current outcome measures used to determine the extent of bone healing. Many promising graft designs have been discovered along with promising adjunctive treatments, yet a graft that offers biomechanical support while allowing for neovascularization with eventual complete resorption and remodeling remains to be developed. An overview of this important topic is needed to highlight current advances and provide a clear understanding of the ultimate goal in CSD research--develop a graft for clinical use that effectively treats the orthopedic conundrum of segmental bone loss.

  11. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.

    PubMed

    Kutikov, Artem B; Skelly, Jordan D; Ayers, David C; Song, Jie

    2015-03-04

    Effective repair of critical-size long bone defects presents a significant clinical challenge. Electrospun scaffolds can be exploited to deliver protein therapeutics and progenitor cells, but their standalone application for long bone repair has not been explored. We have previously shown that electrospun composites of amphiphilic poly(d,l-lactic acid)-co-poly(ethylene glycol)-co-poly(d,l-lactic acid) (PELA) and hydroxyapatite (HA) guide the osteogenic differentiation of bone marrow stromal cells (MSCs), making these scaffolds uniquely suited for evaluating cell-based bone regeneration approaches. Here we examine whether the in vitro bioactivity of these electrospun scaffolds can be exploited for long bone defect repair, either through the participation of exogenous MSCs or through the activation of endogenous cells by a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). In critical-size rat femoral segmental defects, spiral-wrapped electrospun HA-PELA with preseeded MSCs resulted in laminated endochondral ossification templated by the scaffold across the longitudinal span of the defect. Using GFP labeling, we confirmed that the exogenous MSCs adhered to HA-PELA survived at least 7 days postimplantation, suggesting direct participation of these exogenous cells in templated bone formation. When loaded with 500 ng of rhBMP-2, HA-PELA spirals led to more robust but less clearly templated bone formation than MSC-bearing scaffolds. Both treatment groups resulted in new bone bridging over the majority of the defect by 12 weeks. This study is the first demonstration of a standalone bioactive electrospun scaffold for templated bone formation in critical-size long bone defects.

  12. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects.

    PubMed

    Hwang, Hee-Don; Lee, Jung-Tae; Koh, Jeong-Tae; Jung, Hong-Moon; Lee, Heon-Jin; Kwon, Tae-Geon

    2015-07-01

    Stromal cell-derived factor-1 (SDF-1) protein and its receptor, CXCR-4, play an important role in tissue repair and regeneration in various organs, including the bone. SDF-1 is indispensable for bone morphogenetic protein-2 (BMP-2)-induced osteogenic differentiation. However, SDF-1 is not needed after the osteogenic induction has been activated. Since the precise condition for the additive effects of combined DF-1 and BMP-2 in bone healing had not been fully investigated, we aimed to determine the optimal conditions for SDF-1- and BMP-2-mediated bone regeneration. We examined the in vitro osteoblastic differentiation and cell migration after sequential treatments with SDF-1 and BMP-2. Based on the in vitro additive effects of SDF-1 and BMP-2, the critical size defects of mice calvaria were treated with these cytokines in various sequences. Phosphate buffered saline (PBS)-, SDF-1-, or BMP-2-soaked collagen scaffolds were implanted into the calvarial defects (n=36). Periodic percutaneous injections of PBS or the cytokine SDF-1 and BMP-2 into the implanted scaffolds were performed on days 3 and 6, postoperatively. Six experimental groups were used according to the types and sequences of the cytokine treatments. After 28 days, the mice were euthanized and bone formation was evaluated with microcomputed tomography and histology. The molecular mechanism of the additive effect of SDF-1 and BMP-2 was evaluated by analyzing intracellular signal transduction through Smad and Erk phosphorylation. The in vitro experiments revealed that, among all the treatments, the treatment with BMP-2 after SDF-1 showed the strongest osteoblastic differentiation and enhanced cell migration. Similarly, in the animal model, the treatment with SDF-1 followed by BMP-2 treatment showed the highest degree of new bone regeneration than any other groups, including the one with continuous BMP-2 treatment. This new bone formation can be partially explained by the activation of Smad and Erk pathways

  13. [Fully implantable intramedullary distraction nail in shortening deformity and bone defects. Spectrum of indications].

    PubMed

    Baumgart, R; Zeiler, C; Kettler, M; Weiss, S; Schweiberer, L

    1999-12-01

    Since the first clinical experiences with the fully implantable programmable distraction nail nearly ten years ago, the system has been improved in Munich and meanwhile used in 26 patients. During the first 10 cases there has been highest interest in the reliability of the system, while in the following the expansion of indications was more important. At the thigh a good indication beside shortening is the combination of shortening and axis deviation, even if the center of deviation is located near to the knee joint in the supracondylar area. According to preoperative planing the deformity correction can be done acutely while the lengthening procedure follows postoperatively automatically at night-time. If the stabilization with an intramedullary nail is possible, large bone defects can be treated by bone transport using this system also. The fully implantable intramedullary nail has proved its variable functions in cases of large bone defects combined with shortening of the femur. The system is able to perform the bone transport at first and the lengthening procedure automatically without any further operation thereafter.

  14. A modified rabbit ulna defect model for evaluating periosteal substitutes in bone engineering: a pilot study.

    PubMed

    El Backly, Rania M; Chiapale, Danilo; Muraglia, Anita; Tromba, Giuliana; Ottonello, Chiara; Santolini, Federico; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2014-01-01

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX(®)) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12-16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX(®)) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  15. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    PubMed Central

    El Backly, Rania M.; Chiapale, Danilo; Muraglia, Anita; Tromba, Giuliana; Ottonello, Chiara; Sant