Science.gov

Sample records for alzheimer disease brains

  1. Brain imaging in Alzheimer disease.

    PubMed

    Johnson, Keith A; Fox, Nick C; Sperling, Reisa A; Klunk, William E

    2012-04-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies.

  2. Metabolic profiling of Alzheimer's disease brains

    NASA Astrophysics Data System (ADS)

    Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa

    2013-08-01

    Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.

  3. Robust gene dysregulation in Alzheimer's disease brains.

    PubMed

    Feng, Xuemei; Bai, Zhouxian; Wang, Jiajia; Xie, Bin; Sun, Jiya; Han, Guangchun; Song, Fuhai; Crack, Peter J; Duan, Yong; Lei, Hongxing

    2014-01-01

    The brain transcriptome of Alzheimer's disease (AD) reflects the prevailing disease mechanism at the gene expression level. However, thousands of genes have been reported to be dysregulated in AD brains in existing studies, and the consistency or discrepancy among these studies has not been thoroughly examined. Toward this end, we conducted a comprehensive survey of the brain transcriptome datasets for AD and other neurological diseases. We first demonstrated that the frequency of observed dysregulation in AD was highly correlated with the reproducibility of the dysregulation. Based on this observation, we selected 100 genes with the highest frequency of dysregulation to illustrate the core perturbation in AD brains. The dysregulation of these genes was validated in several independent datasets for AD. We further identified 12 genes with strong correlation of gene expression with disease progression. The relevance of these genes to disease progression was also validated in an independent dataset. Interestingly, we found a transcriptional "cushion" for these 100 genes in the less vulnerable visual cortex region, which may be a critical component of the protection mechanism for less vulnerable brain regions. To facilitate the research in this field, we have provided the expression information of ~8000 relevant genes on a publicly accessible web server AlzBIG (http://alz.big.ac.cn).

  4. Alzheimer disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000760.htm Alzheimer disease To use the sharing features on this page, ... of brain function that occurs with certain diseases. Alzheimer disease is one form of dementia. It affects memory, ...

  5. Expression of Alzheimer's disease risk genes in ischemic brain degeneration.

    PubMed

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Januszewski, Sławomir; Kocki, Janusz; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-12-01

    We review the Alzheimer-related expression of genes following brain ischemia as risk factors for late-onset of sporadic Alzheimer's disease and their role in Alzheimer's disease ischemia-reperfusion pathogenesis. More recent advances in understanding ischemic etiology of Alzheimer's disease have revealed dysregulation of Alzheimer-associated genes including amyloid protein precursor, β-secretase, presenilin 1 and 2, autophagy, mitophagy and apoptosis. We review the relationship between these genes dysregulated by brain ischemia and the cellular and neuropathological characteristics of Alzheimer's disease. Here we summarize the latest studies supporting the theory that Alzheimer-related genes play an important role in ischemic brain injury and that ischemia is a needful and leading supplier to the onset and progression of sporadic Alzheimer's disease. Although the exact molecular mechanisms of ischemic dependent neurodegenerative disease and neuronal susceptibility finally are unknown, a downregulated expression of neuronal defense genes like alfa-secretase in the ischemic brain makes the neurons less able to resist injury. The recent challenge is to find ways to raise the adaptive reserve of the brain to overcome such ischemic-associated deficits and support and/or promote neuronal survival. Understanding the mechanisms underlying the association of these genes with risk for Alzheimer's disease will provide the most meaningful targets for therapeutic development to date.

  6. Graph Theory and Brain Connectivity in Alzheimer's Disease.

    PubMed

    delEtoile, Jon; Adeli, Hojjat

    2017-04-01

    This article presents a review of recent advances in neuroscience research in the specific area of brain connectivity as a potential biomarker of Alzheimer's disease with a focus on the application of graph theory. The review will begin with a brief overview of connectivity and graph theory. Then resent advances in connectivity as a biomarker for Alzheimer's disease will be presented and analyzed.

  7. Evidence for a membrane defect in Alzheimer disease brain

    NASA Technical Reports Server (NTRS)

    Nitsch, R. M.; Blusztajn, J. K.; Pittas, A. G.; Slack, B. E.; Growdon, J. H.; Wurtman, R. J.

    1992-01-01

    To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease.

  8. Evidence for a membrane defect in Alzheimer disease brain.

    PubMed Central

    Nitsch, R M; Blusztajn, J K; Pittas, A G; Slack, B E; Growdon, J H; Wurtman, R J

    1992-01-01

    To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease. PMID:1311847

  9. Brain injury, neuroinflammation and Alzheimer's disease.

    PubMed

    Breunig, Joshua J; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and 'spreading' of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems.

  10. Brain injury, neuroinflammation and Alzheimer's disease

    PubMed Central

    Breunig, Joshua J.; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems. PMID:23874297

  11. Therapeutic Noninvasive Brain Stimulation in Alzheimer's Disease.

    PubMed

    Gonsalvez, Irene; Baror, Roey; Fried, Peter; Santarnecchi, Emiliano; Pascual-Leone, Alvaro

    2017-01-01

    Alzheimer's disease (AD) is a looming public health crisis that currently lacks an effective treatment. Noninvasive Brain Stimulation (NBS), particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), offers a promising alternative approach to pharmacological interventions for an increasing number of neurological and psychiatric conditions. The aim of this review is summarize data from therapeutic trials of NBS in AD and other dementing illnesses. Despite the potential of NBS, there is limited theoretical framework and a lack of guidelines for its applications to AD. Several published clinical trials failed to report key parameters of the interventions thus limiting the utility of the study to assess efficacy and safety. Our review concludes with some suggestions for future studies aimed to advance research into NBS as a potential treatment for the symptoms and disabilities caused by AD and to enable comparison of results across trials. Ultimately, appropriately powered, and controlled, multi-site randomized clinical trials will be needed to evaluate the therapeutic potential of NBS in AD.

  12. Aluminium in brain tissue in familial Alzheimer's disease.

    PubMed

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease.

  13. Oligomeric Neuronal Protein Aggregates as Biomarkers for Traumatic Brain Injury (TBI) and Alzheimer Disease (AD)

    DTIC Science & Technology

    2013-10-01

    as Biomarkers for Traumatic Brain Injury (TBI) and Alzheimer Disease (AD) PRINCIPAL INVESTIGATOR: Michael Sierks CONTRACTING...Oligomeric Neuronal Protein Aggregates as Biomarkers for Traumatic Brain Injury (TBI) and Alzheimer Disease (AD) 5b. GRANT NUMBER 12109023 5c

  14. Alzheimer's Disease

    MedlinePlus

    Alzheimer's disease (AD) is the most common form of dementia among older people. Dementia is a brain disorder that seriously affects a person's ability to carry out daily activities. AD begins slowly. It first involves the parts of ...

  15. CARS microscopy of Alzheimer's diseased brain tissue

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Kiskis, Juris; Fink, Helen; Nyberg, Lena; Thyr, Jakob; Li, Jia-Yi

    2014-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder currently without cure, characterized by the presence of extracellular plaques surrounded by dystrophic neurites. In an effort to understand the underlying mechanisms, biochemical analysis (protein immunoblot) of plaque extracts reveals that they consist of amyloid-beta (Aβ) peptides assembled as oligomers, protofibrils and aggregates. Their spatial distribution has been confirmed by Thioflavin-S or immuno-staining with fluorescence microscopy. However, it is increasingly understood that the protein aggregation is only one of several mechanism that causes neuronal dysfunction and death. This raises the need for a more complete biochemical analysis. In this study, we have complemented 2-photon fluorescence microscopy of Thioflavin-S and Aβ immuno-stained human AD plaques with CARS microscopy. We show that the chemical build-up of AD plaques is more complex and that Aβ staining does not provide the complete picture of the spatial distribution or the molecular composition of AD plaques. CARS images provide important complementary information to that obtained by fluorescence microscopy, motivating a broader introduction of CARS microscopy in the AD research field.

  16. Lipidomics of human brain aging and Alzheimer's disease pathology.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.

  17. Alzheimer's disease.

    PubMed

    Scheltens, Philip; Blennow, Kaj; Breteler, Monique M B; de Strooper, Bart; Frisoni, Giovanni B; Salloway, Stephen; Van der Flier, Wiesje Maria

    2016-07-30

    Although the prevalence of dementia continues to increase worldwide, incidence in the western world might have decreased as a result of better vascular care and improved brain health. Alzheimer's disease, the most prevalent cause of dementia, is still defined by the combined presence of amyloid and tau, but researchers are gradually moving away from the simple assumption of linear causality as proposed in the original amyloid hypothesis. Age-related, protective, and disease-promoting factors probably interact with the core mechanisms of the disease. Amyloid β42, and tau proteins are established core cerebrospinal biomarkers; novel candidate biomarkers include amyloid β oligomers and synaptic markers. MRI and fluorodeoxyglucose PET are established imaging techniques for diagnosis of Alzheimer's disease. Amyloid PET is gaining traction in the clinical arena, but validity and cost-effectiveness remain to be established. Tau PET might offer new insights and be of great help in differential diagnosis and selection of patients for trials. In the search for understanding the disease mechanism and keys to treatment, research is moving increasingly into the earliest phase of disease. Preclinical Alzheimer's disease is defined as biomarker evidence of Alzheimer's pathological changes in cognitively healthy individuals. Patients with subjective cognitive decline have been identified as a useful population in whom to look for preclinical Alzheimer's disease. Moderately positive results for interventions targeting several lifestyle factors in non-demented elderly patients and moderately positive interim results for lowering amyloid in pre-dementia Alzheimer's disease suggest that, ultimately, there will be a future in which specific anti-Alzheimer's therapy will be combined with lifestyle interventions targeting general brain health to jointly combat the disease. In this Seminar, we discuss the main developments in Alzheimer's research.

  18. Alzheimer S Disease and Brain Development: Common Molecular Pathways

    PubMed Central

    Jordan-Sciutto, Kelly; Bowser, Robert

    2013-01-01

    Research on the causes and treatments of Alzheimer's disease (AD) has led investigators down numerous avenues. Although many models have been proposed, no single model of AD satisfactorily accounts for all neuropathologic findings as well as the requirement of aging for disease onset. The mechanisms of disease progression are equally unclear. We hypothesize that alternative gene expression during AD plays a critical role in disease progression. Numerous developmentally regulated genes and cell cycle proteins have been shown to be re-expressed or activated during AD. These proteins include transcription factors, members of the cell cycle regulatory machinery, and programmed cell death genes. Such proteins play an important role during brain development and would likely exert powerful effects if re-expressed in the adult brain. We propose that the re-expression or activation of developmentally regulated genes define molecular mechanisms active both during brain development and in AD PMID:9422711

  19. Benefits from dietary polyphenols for brain aging and Alzheimer's disease.

    PubMed

    Rossi, L; Mazzitelli, S; Arciello, M; Capo, C R; Rotilio, G

    2008-12-01

    Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood-brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer's disease.

  20. Brain sex matters: estrogen in cognition and Alzheimer's disease.

    PubMed

    Li, Rena; Cui, Jie; Shen, Yong

    2014-05-25

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer's disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function.

  1. Structural changes in Alzheimer's disease brain microvessels.

    PubMed

    Christov, Alexander; Ottman, J; Hamdheydari, L; Grammas, Paula

    2008-08-01

    Brain microvascular alterations are thought to contribute to the development of stroke and dementia. Structural changes in capillaries of elderly patients correlate positively with advanced age and dementia. The objective of this study is to use laser-induced fluorescence spectroscopy to compare structural (collagen content) and functional (apoptosis) parameters in brain tissues and isolated vessels of AD patients to age-matched controls. Our results show significantly higher fluorescent labeling for apoptosis in AD vessels compared to controls. Also, there is significantly higher autofluorescence (reflecting levels of collagen and other proteins that autofluoresce) in AD brain and vessels compared to controls. Western blot analysis of collagen subtypes shows elevated type I and type III and reduced type IV levels in AD vessels. These data demonstrate that changes in the amount and type of collagen occur in AD brain and suggest that cerebral vessel injury is part of AD pathology.

  2. Genetic mouse models of brain ageing and Alzheimer's disease.

    PubMed

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed.

  3. Genetic variants in Alzheimer disease - molecular and brain network approaches.

    PubMed

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher J; De Jager, Philip L; Bennett, David A

    2016-07-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models.

  4. Molecular mechanisms of regeneration in Alzheimer's disease brain.

    PubMed

    Uchida, Yoko

    2010-07-01

    Regenerative responses, including re-expression of developmentally regulated proteins, occur in Alzheimer's disease (AD) brain and in beta-amyloid (Abeta)-treated neuronal cultures. Brain microenvironment might also be altered by Abeta or by unknown materials in AD brain to make neurons or progenitor cells regenerative. However, these responses and alterations might not be sufficient to replace neuronal loss, but rather might act as an effecter of cell death. For instance, downregulation of growth inhibitory factor/metallothionein-III and upregulation of MAP1B result in both neurite sprouting and neuronal death. The deteriorative regulation of Mash1 and Olig2 by Abeta also leads to differentiation and death of progenitor cells. Clarifying the cell death mechanism accompanied with regenerative responses might be necessary for repairing the nervous system or slowing disease progression in AD.

  5. Different Brain Regions are Infected with Fungi in Alzheimer's Disease.

    PubMed

    Pisa, Diana; Alonso, Ruth; Rábano, Alberto; Rodal, Izaskun; Carrasco, Luis

    2015-10-15

    The possibility that Alzheimer's disease (AD) has a microbial aetiology has been proposed by several researchers. Here, we provide evidence that tissue from the central nervous system (CNS) of AD patients contain fungal cells and hyphae. Fungal material can be detected both intra- and extracellularly using specific antibodies against several fungi. Different brain regions including external frontal cortex, cerebellar hemisphere, entorhinal cortex/hippocampus and choroid plexus contain fungal material, which is absent in brain tissue from control individuals. Analysis of brain sections from ten additional AD patients reveals that all are infected with fungi. Fungal infection is also observed in blood vessels, which may explain the vascular pathology frequently detected in AD patients. Sequencing of fungal DNA extracted from frozen CNS samples identifies several fungal species. Collectively, our findings provide compelling evidence for the existence of fungal infection in the CNS from AD patients, but not in control individuals.

  6. Brain amyloid-β oligomers in ageing and Alzheimer's disease.

    PubMed

    Lesné, Sylvain E; Sherman, Mathew A; Grant, Marianne; Kuskowski, Michael; Schneider, Julie A; Bennett, David A; Ashe, Karen H

    2013-05-01

    Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models-amyloid-β trimers, Aβ*56 and amyloid-β dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic

  7. Converging perturbed microvasculature and microglial clusters characterize Alzheimer disease brain.

    PubMed

    Jantaratnotai, N; Schwab, C; Ryu, J K; McGeer, P L; McLarnon, J G

    2010-11-01

    We have investigated physical properties of microvasculature and vessel association with microglial clusters in cortical tissue from Alzheimer disease individuals, classified as severe (ADsev) or mild (ADmild), and nondemented controls (ND). Immunostaining with laminin or von Willerbrand factor demonstrated numbers of microvessels and microvascular density were significantly higher in ADsev cases compared with levels in ADmild or ND cases suggesting proangiogenic activity in ADsev brain. Evidence for extravascular laminin immunoreactivity was found in ADsev tissue and was largely absent in ADmild and ND cases suggesting vascular remodeling in ADsev brain included abnormalities in blood vessels. Microgliosis was progressively increased from ND to ADmild to ADsev with the latter demonstrating areas of clustered microglia (groupings of three or more cells) rarely observed in ADmild or ND cases. Microglial clusters in ADsev brain were in close proximity with extravascular laminin and also plasma protein, fibrinogen, implicating vascular perturbation as a component of inflammatory reactivity. ADsev brain also exhibited elevated levels of the pro-inflammatory/angiogenic factors tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) in association, relative to non-association, with microglial clusters. The presence of extravascular laminin and fibrinogen and the vascular modifying factors, TNF-α and VEGF in localization with clusters of activated microglia, is consistent with microglial-induced vascular remodeling in ADsev brain. Microglial-vascular reciprocal interactions could serve a critical role in the amplification and perpetuation of inflammatory reactivity in AD brain.

  8. Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment.

    PubMed

    Wang, Jun; Ferruzzi, Mario G; Ho, Lap; Blount, Jack; Janle, Elsa M; Gong, Bing; Pan, Yong; Gowda, G A Nagana; Raftery, Daniel; Arrieta-Cruz, Isabel; Sharma, Vaishali; Cooper, Bruce; Lobo, Jessica; Simon, James E; Zhang, Chungfen; Cheng, Alice; Qian, Xianjuan; Ono, Kenjiro; Teplow, David B; Pavlides, Constantine; Dixon, Richard A; Pasinetti, Giulio M

    2012-04-11

    While polyphenolic compounds have many health benefits, the potential development of polyphenols for the prevention/treatment of neurological disorders is largely hindered by their complexity as well as by limited knowledge regarding their bioavailability, metabolism, and bioactivity, especially in the brain. We recently demonstrated that dietary supplementation with a specific grape-derived polyphenolic preparation (GP) significantly improves cognitive function in a mouse model of Alzheimer's disease (AD). GP is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric forms. In this study, we report that following oral administration of the independent GP forms, only Mo is able to improve cognitive function and only Mo metabolites can selectively reach and accumulate in the brain at a concentration of ∼400 nM. Most importantly, we report for the first time that a biosynthetic epicatechin metabolite, 3'-O-methyl-epicatechin-5-O-β-glucuronide (3'-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promotes basal synaptic transmission and long-term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. Our studies suggest that select brain-targeted PAC metabolites benefit cognition by improving synaptic plasticity in the brain, and provide impetus to develop 3'-O-Me-EC-Gluc and other brain-targeted PAC metabolites to promote learning and memory in AD and other forms of dementia.

  9. Loss of functional GABAA receptors in the Alzheimer diseased brain

    PubMed Central

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Miledi, Ricardo

    2012-01-01

    The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain. PMID:22691495

  10. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    PubMed

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  11. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-05

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.

  12. Alzheimer's disease pattern of brain atrophy predicts cognitive decline in Parkinson's disease.

    PubMed

    Weintraub, Daniel; Dietz, Nicole; Duda, John E; Wolk, David A; Doshi, Jimit; Xie, Sharon X; Davatzikos, Christos; Clark, Christopher M; Siderowf, Andrew

    2012-01-01

    Research suggests overlap in brain regions undergoing neurodegeneration in Parkinson's and Alzheimer's disease. To assess the clinical significance of this, we applied a validated Alzheimer's disease-spatial pattern of brain atrophy to patients with Parkinson's disease with a range of cognitive abilities to determine its association with cognitive performance and decline. At baseline, 84 subjects received structural magnetic resonance imaging brain scans and completed the Dementia Rating Scale-2, and new robust and expanded Dementia Rating Scale-2 norms were applied to cognitively classify participants. Fifty-nine non-demented subjects were assessed annually with the Dementia Rating Scale-2 for two additional years. Magnetic resonance imaging scans were quantified using both a region of interest approach and voxel-based morphometry analysis, and a method for quantifying the presence of an Alzheimer's disease spatial pattern of brain atrophy was applied to each scan. In multivariate models, higher Alzheimer's disease pattern of atrophy score was associated with worse global cognitive performance (β = -0.31, P = 0.007), including in non-demented patients (β = -0.28, P = 0.05). In linear mixed model analyses, higher baseline Alzheimer's disease pattern of atrophy score predicted long-term global cognitive decline in non-demented patients [F(1, 110) = 9.72, P = 0.002], remarkably even in those with normal cognition at baseline [F(1, 80) = 4.71, P = 0.03]. In contrast, in cross-sectional and longitudinal analyses there was no association between region of interest brain volumes and cognitive performance in patients with Parkinson's disease with normal cognition. These findings support involvement of the hippocampus and parietal-temporal cortex with cognitive impairment and long-term decline in Parkinson's disease. In addition, an Alzheimer's disease pattern of brain atrophy may be a preclinical biomarker of cognitive decline in

  13. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    PubMed Central

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  14. Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease

    PubMed Central

    Supekar, Kaustubh; Menon, Vinod; Rubin, Daniel; Musen, Mark; Greicius, Michael D.

    2008-01-01

    Functional brain networks detected in task-free (“resting-state”) functional magnetic resonance imaging (fMRI) have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimer's disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01), indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01) in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging. PMID:18584043

  15. Brain-derived neurotrophic factor levels in Alzheimer's disease.

    PubMed

    O'Bryant, Sid E; Hobson, Valerie; Hall, James R; Waring, Stephen C; Chan, Wenyan; Massman, Paul; Lacritz, Laura; Cullum, C Munro; Diaz-Arrastia, Ramon

    2009-01-01

    The current search for biomarkers that are diagnostic and/or prognostic of Alzheimer's disease (AD) is of vital importance given the rapidly aging population. It was recently reported that brain-derived neurotrophic factor (BDNF) fluctuated according to AD severity, suggesting that BDNF might have utility for diagnostics and monitoring of therapeutic efficacy. The current study sought to examine whether BDNF levels varied according to AD severity, as previously reported. There were 196 participants (Probable AD, n = 98; Controls, n = 98) in the Texas Alzheimer's Research Consortium (TARC) Longitudinal Research Cohort available for analysis. BDNF levels were assayed via multiplex immunoassay. Regression analyses were utilized to examine the relation between BDNF levels, Mini-Mental Status Examination, and Clinical Dementia Rating scores adjusting for age and gender. In adjusted models, BDNF levels did not distinguish between AD patients and normal controls and did not significantly predict AD severity or global cognitive functioning. In conclusion, these findings do not support the notion that BDNF serves as a diagnostic marker for AD or disease severity. It is likely that the most accurate approach to identifying biomarkers of AD will be through an algorithmic approach that combines multiple markers reflective of various pathways.

  16. Increased caveolin-1 expression in Alzheimer's disease brain.

    PubMed

    Gaudreault, Sophie B; Dea, Doris; Poirier, Judes

    2004-07-01

    Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.

  17. Directed Progression Brain Networks in Alzheimer's Disease: Properties and Classification

    PubMed Central

    Young, Karl; Asif, Danial; Jutla, Inderjit; Liang, Michael; Wilson, Scott; Landsberg, Adam S.; Schuff, Norbert

    2014-01-01

    Abstract This article introduces a new approach in brain connectomics aimed at characterizing the temporal spread in the brain of pathologies like Alzheimer's disease (AD). The main instrument is the development of “directed progression networks” (DPNets), wherein one constructs directed edges between nodes based on (weakly) inferred directions of the temporal spreading of the pathology. This stands in contrast to many previously studied brain networks where edges represent correlations, physical connections, or functional progressions. In addition, this is one of a few studies showing the value of using directed networks in the study of AD. This article focuses on the construction of DPNets for AD using longitudinal cortical thickness measurements from magnetic resonance imaging data. The network properties are then characterized, providing new insights into AD progression, as well as novel markers for differentiating normal cognition (NC) and AD at the group level. It also demonstrates the important role of nodal variations for network classification (i.e., the significance of standard deviations, not just mean values of nodal properties). Finally, the DPNets are utilized to classify subjects based on their global network measures using a variety of data-mining methodologies. In contrast to most brain networks, these DPNets do not show high clustering and small-world properties. PMID:24901258

  18. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    SciTech Connect

    Nilsson, Tatjana . E-mail: Tatjana.Nilsson@ki.se; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-06-02

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm.

  19. Brain tocopherols related to Alzheimer's disease neuropathology in humans.

    PubMed

    Morris, Martha Clare; Schneider, Julie A; Li, Hong; Tangney, Christy C; Nag, Sukriti; Bennett, David A; Honer, William G; Barnes, Lisa L

    2015-01-01

    Randomized trials of α-tocopherol supplements on cognitive decline are negative, whereas studies of dietary tocopherols have shown benefit. We investigated these inconsistencies by analyzing the relations of α- and γ-tocopherol brain concentrations to Alzheimer's disease (AD) neuropathology among 115 deceased participants of the prospective Rush Memory and Aging Project. Associations of amyloid load and neurofibrillary tangle severity with brain tocopherol concentrations were examined in separate adjusted linear regression models. γ-Tocopherol concentrations were associated with lower amyloid load (β = -2.10, P = .002) and lower neurofibrillary tangle severity (β = -1.16, P = .02). Concentrations of α-tocopherol were not associated with AD neuropathology, except as modified by γ-tocopherol: high α-tocopherol was associated with higher amyloid load when γ-tocopherol levels were low and with lower amyloid levels when γ-tocopherol levels were high (P for interaction = 0.03). Brain concentrations of γ- and α-tocopherols may be associated with AD neuropathology in interrelated, complex ways. Randomized trials should consider the contribution of γ-tocopherol.

  20. Brain SPECT findings of anosognosia in Alzheimer's disease.

    PubMed

    Sedaghat, Fereshteh; Dedousi, Eleni; Baloyannis, Ioannis; Tegos, Thomas; Costa, Vasiliki; Dimitriadis, Athanasios S; Baloyannis, Stavros J

    2010-01-01

    Anosognosia is a common symptom of dementia. The aim of this study was to evaluate the contribution of different regions of the brain to anosognosia in Alzheimer's disease (AD) brains using single photon emission computed tomography (SPECT). Forty-two patients with AD were included in this study. After clinical interviews with the patients and their relatives, the patients were divided into two groups: Anosognosia and No-anosognosia. The patients were studied regarding the severity of dementia. They underwent SPECT with HMPAO and regional cerebral blood flow (rCBF) was measured. Regional CBF significantly differed between Anosognosia and No-anosognosia groups in right prefrontal (P < or = 0.02), right inferior parietal (P < or = 0.00), and right (P < or = 0.01) and left (P < or = 0.01) medial temporal cortex. There was a significant correlation between the severity of dementia and rCBF in medial temporal regions. When comparisons were made between mild and moderate stages separately, the 'right inferior parietal region' was the common region which showed hypoperfusion in both anosognosia subgroups. We conclude that anosognosia may be a reflection of functional impairment in right prefrontal, right frontal and especially right inferior parietal regions in AD.

  1. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer's disease

    PubMed Central

    Rombouts, S; Barkhof, F; van Meel, C S; Scheltens, P

    2002-01-01

    Background: Rivastigmine enhances cholinergic activity and has been shown in clinical trials to decrease the rate of deterioration in Alzheimer's disease. It remains unclear where in the brain it exerts its effect. Functional magnetic resonance imaging (fMRI) can be used to measure changes in brain function and relate these to cognition. Objectives: To use fMRI to study brain activation with rivastigmine treatment. Methods: The effect on brain activation of a single dose of rivastigmine was tested in seven patients with mild Alzheimer's disease using fMRI during face encoding, and in five patients during a parametric working memory task. Results: During face encoding, rivastigmine increased bilateral activation in the fusiform gyrus. Brain activation was also enhanced in the prefrontal cortex in a simple working memory task. When working memory load was further increased, not only was increased activation seen, but in certain areas there was also decreased activation. Conclusions: These findings link the previously observed increase in cognitive performance in Alzheimer's disease after treatment with a cholinesterase inhibitor to altered brain activation. Although the results cannot be generalised to the Alzheimer's disease population at large, they provide evidence that in mild Alzheimer's disease, rivastigmine enhances brain activation in the fusiform and frontal cortices. This is compatible with the concept of cholinergic circuitry. PMID:12438467

  2. A derangement of the brain wound healing process may cause some cases of Alzheimer's disease.

    PubMed

    Lehrer, Steven; Rheinstein, Peter H

    2016-08-01

    A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process.

  3. Imaging the Alzheimer Brain

    PubMed Central

    Ashford, J. Wesson; Salehi, Ahmad; Furst, Ansgar; Bayley, Peter; Frisoni, Giovanni B.; Jack, Clifford R.; Sabri, Osama; Adamson, Maheen M.; Coburn, Kerry L.; Olichney, John; Schuff, Norbert; Spielman, Daniel; Edland, Steven D.; Black, Sandra; Rosen, Allyson; Kennedy, David; Weiner, Michael; Perry, George

    2013-01-01

    This supplement to the Journal of Alzheimer's Disease contains more than half of the chapters from The Handbook of Imaging the Alzheimer Brain, which was first presented at the International Conference on Alzheimer's Disease in Paris, in July, 2011. While the Handbook contains 27 chapters that are modified articles from 2009, 2010, and 2011 issues of the Journal of Alzheimer's Disease, this supplement contains the 31 new chapters of that book and an introductory article drawn from the introductions to each section of the book. The Handbook was designed to provide a multilevel overview of the full field of brain imaging related to Alzheimer's disease (AD). The Handbook, as well as this supplement, contains both reviews of the basic concepts of imaging, the latest developments in imaging, and various discussions and perspectives of the problems of the field and promising directions. The Handbook was designed to be useful for students and clinicians interested in AD as well as scientists studying the brain and pathology related to AD. PMID:21971448

  4. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease.

    PubMed

    Griffin, W S; Stanley, L C; Ling, C; White, L; MacLeod, V; Perrot, L J; White, C L; Araoz, C

    1989-10-01

    Interleukin 1, an immune response-generated cytokine that stimulates astrocyte proliferation and reactivity (astrogliosis), was present in up to 30 times as many glial cells in tissue sections of brain from patients with Down syndrome and Alzheimer disease compared with age-matched control subjects. Most interleukin 1-immunoreactive glia in Down syndrome and Alzheimer disease were classified as microglia. The number of interleukin 1 immunoreactive neurons did not appear to differ in Down syndrome and Alzheimer disease compared with control brain. Numerous temporal lobe astrocytes in Alzheimer disease and postnatal Down syndrome were intensely interleukin 1-, S-100-, and glial fibrillary acidic protein-immunoreactive and had reactive structure. Interleukin 1 levels in Alzheimer disease temporal lobe homogenates were elevated, as were the levels of S-100 and glial fibrillary acidic protein, two proteins reportedly elevated in reactive astrocytes. These data suggest that increased expression of S-100 in Down syndrome, resulting from duplication of the gene on chromosome 21 that encodes the beta subunit of S-100, may be augmented by elevation of interleukin 1. As a corollary, the astrogliosis in Alzheimer disease may be promoted by elevation of interleukin 1.

  5. Blood-brain barrier P-glycoprotein function in Alzheimer's disease.

    PubMed

    van Assema, Daniëlle M E; Lubberink, Mark; Bauer, Martin; van der Flier, Wiesje M; Schuit, Robert C; Windhorst, Albert D; Comans, Emile F I; Hoetjes, Nikie J; Tolboom, Nelleke; Langer, Oliver; Müller, Markus; Scheltens, Philip; Lammertsma, Adriaan A; van Berckel, Bart N M

    2012-01-01

    A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic

  6. Immunotherapy for Alzheimer disease.

    PubMed

    Gouras, Gunnar K

    2009-01-01

    Immunotherapy approaches for Alzheimer disease currently are among the leading therapeutic directions for the disease. Active and passive immunotherapy against the beta-amyloid peptides that aggregate and accumulate in the brain of those afflicted by the disease have been shown by numerous groups to reduce plaque pathology and improve behavior in transgenic mouse models of the disease. Several ongoing immunotherapy clinical trials for Alzheimer disease are in progress. The background and ongoing challenges for these immunological approaches for the treatment of Alzheimer disease are discussed.

  7. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    PubMed

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  8. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    PubMed Central

    Klosinski, Lauren P.; Yao, Jia; Yin, Fei; Fonteh, Alfred N.; Harrington, Michael G.; Christensen, Trace A.; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-01-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. PMID:26844268

  9. Platelets in the Alzheimer's disease brain: do they play a role in cerebral amyloid angiopathy?

    PubMed

    Kniewallner, Kathrin M; Ehrlich, Daniela; Kiefer, Andreas; Marksteiner, Josef; Humpel, Christian

    2015-01-01

    Alzheimer's disease (AD) is characterized by extracellular beta-amyloid plaques and intracellular tau tangles. AD-related pathology is often accompanied by vascular changes. The predominant vascular lesions in AD are cerebral amyloid angiopathy (CAA) and arteriosclerosis. Platelets circulate along the vessel wall responding immediately to vascular injury. The aim of the present study was to explore the presence and migration of platelets (thrombocytes) to sites of small vascular bleedings and/or to beta-amyloid plaques in the brain. We infused fluorescently labeled red PKH26 mouse platelets into transgenic Alzheimer mice overexpressing APP with Swedish/Dutch/Iowa mutations (APP_SDI) and explored if platelets migrate into the brain. Further we studied whether platelets accumulate in the vicinity of β-amyloid plaques. Our animal data shows that infused platelets are found in the liver and partly in the lung, while in the brain platelets were visible to a minor degree. In mice, we did not observe a significant association of platelets with beta-amyloid plaques or vessels. In the brain of Alzheimer postmortem patients platelets could be detected by immunohistochemistry for CD41 and CD62P, but the majority was found in vessels with or without beta-amyloid load, and only a few single platelets migrated deeper into the brain. Our findings suggest that platelets do not migrate into the brains of Alzheimer disease but are concentrated in brain vessels.

  10. Neuroimaging and genetic risk for Alzheimer's disease and addiction-related degenerative brain disorders.

    PubMed

    Roussotte, Florence F; Daianu, Madelaine; Jahanshad, Neda; Leonardo, Cassandra D; Thompson, Paul M

    2014-06-01

    Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer's disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.

  11. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.; Del Bigio, M.; Westaway, D.; Yang, J.; Julian, R.; Gough, K.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  12. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease.

    PubMed

    Murer, M G; Yan, Q; Raisman-Vozari, R

    2001-01-01

    Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.

  13. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    PubMed

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs.

  14. Clock Drawing Performance and Brain Morphology in Mild Cognitive Impairment and Alzheimer's Disease

    ERIC Educational Resources Information Center

    Thomann, Philipp A.; Toro, Pablo; Santos, Vasco Dos; Essig, Marco; Schroder, Johannes

    2008-01-01

    The Clock Drawing Test (CDT) is a widely used instrument in the neuropsychological assessment of Alzheimer's disease (AD). As CDT performance necessitates several cognitive functions (e.g., visuospatial and constructional abilities, executive functioning), an interaction of multiple brain regions is likely. Fifty-one subjects with mild cognitive…

  15. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease.

    PubMed

    Yarchoan, Mark; Arnold, Steven E

    2014-07-01

    A growing body of clinical and epidemiological research suggests that two of the most common diseases of aging, type 2 diabetes (T2DM) and Alzheimer disease (AD), are linked. The nature of the association is not known, but this observation has led to the notion that drugs developed for the treatment of T2DM may be beneficial in modifying the pathophysiology of AD and maintaining cognitive function. Recent advances in the understanding of the biology of T2DM have resulted in a growing number of therapies that are approved or in clinical development for this disease. This review summarizes the evidence that T2DM and AD are linked, with a focus on the cellular and molecular mechanisms in common, and then assesses the various clinical-stage diabetes drugs for their potential activity in AD. At a time when existing therapies for AD offer only limited symptomatic benefit for some patients, additional clinical trials of diabetes drugs are needed to at least advance the care of T2DM patients at risk for or with comorbid AD and also to determine their value for AD in general.

  16. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain.

    PubMed

    Narayan, Pritika J; Lill, Claire; Faull, Richard; Curtis, Maurice A; Dragunow, Mike

    2015-02-01

    Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue. Changes in acetyl histone levels were proportional to changes in total histone levels. The increase in acetyl histone H3 and H4 was observed in Neuronal N immunopositive pyramidal neurons in Alzheimer's disease brain. Using immunolabelling, histone markers correlated significantly with the level of glial fibrillary acidic protein and HLA-DP, -DQ and -DR immunopositive cells and with the pathological hallmarks of Alzheimer's disease (hyperphosphorylated tau load and β-amyloid plaques). Given that histone acetylation changes were correlated with changes in total histone protein, it was important to evaluate if protein degradation pathways may be compromised in Alzheimer's disease. Consequently, significant positive correlations were also found between ubiquitin load and histone modifications. The relationship between histone acetylation and ubiquitin levels was further investigated in an in vitro model of SK-N-SH cells treated with the proteasome inhibitor Mg132 and the histone deacetylase inhibitor valproic acid. In this model, compromised protein degradation caused by Mg132 lead to elevated histone

  17. Synchrotron FTIR microspectroscopy of Alzheimer's diseased brain tissue at the SRC beamline

    NASA Astrophysics Data System (ADS)

    Bromberg, Pam S.; Gough, Kathleen M.; Ogg, Mandy; Del Bigio, M. R.; Julian, Robert

    1999-10-01

    Alzheimer's Disease is a neurodegenerative disorder marked by progressive cognitive decline. AD presents with many of the same clinical symptoms as senile dementia, but the diagnosis of AD must be confirmed by post-mortem examination of the morphological and histopathological features of the brain. The two classical lesions found in the cortical and hippocampal regions of the brain are the (beta) -amyloid- bearing neuritic plaques and the intraneuronal neurofibrillary tangles.

  18. Acidity and Acid-Sensing Ion Channels in the Normal and Alzheimer's Disease Brain.

    PubMed

    Gonzales, Eric B; Sumien, Nathalie

    2017-02-15

    Alzheimer's disease prevalence has reached epidemic proportion with very few treatment options, which are associated with a multitude of side effects. A potential avenue of research for new therapies are protons, and their associated receptor: acid-sensing ion channels (ASIC). Protons are often overlooked neurotransmitters, and proton-gated currents have been identified in the brain. Furthermore, ASICs have been determined to be crucial for proper brain function. While there is more work to be done, this review is intended to highlight protons as neurotransmitters and their role along with the role of ASICs within physiological functioning of the brain. We will also cover the pathophysiological associations between ASICs and modulators of ASICs. Finally, this review will sum up how the studies of protons, ASICs and their modulators may generate new therapeutic molecules for Alzheimer's disease and other neurodegenerative diseases.

  19. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases.

    PubMed

    Murray, Alison D; Staff, Roger T; McNeil, Christopher J; Salarirad, Sima; Ahearn, Trevor S; Mustafa, Nazahah; Whalley, Lawrence J

    2011-12-01

    The cognitive reserve hypothesis explains the disparity between clinical and pathological phenotypes and why, in two individuals with the same extent of neuropathology, one may be demented while the other remains cognitively intact. We examined the balance between brain magnetic resonance imaging measures of the two most common pathologies associated with brain ageing, cerebrovascular disease and Alzheimer's disease, and parameters of cerebral reserve in well-characterized participants born in 1936, for whom childhood intelligence is known. Brain magnetic resonance imaging was carried out at 1.5T using fluid attenuation inversion recovery and T(1)-weighted volumetric sequences in 249 participants. Cerebrovascular disease was quantified by measuring brain white matter hyperintensities on fluid attenuation inversion recovery images using Scheltens' scale and Alzheimer's disease was measured from volumetric data using FreeSurfer to extract whole brain volume and hippocampal volumes in turn. The effect of these measures of brain burden on life-long cognitive ageing from the age of 11 to 68 years was compared with the effect of educational attainment and occupational grade using structural equation modelling. Complete brain burden and reserve data were available in 224 participants. We found that educational attainment, but not occupation, has a measurable and positive effect, with a standardized regression weight of +0.23, on late life cognitive ability in people without cognitive impairment aged 68 years, allowing for the influence of childhood intelligence and the two most common subclinical brain pathological burdens in the ageing brain. In addition, we demonstrate that the magnitude of the contribution of education is greater than the negative impact of either neuropathological burden alone, with standardized regression weights of -0.14 for white matter hyperintensities and -0.20 for hippocampal atrophy. This study illustrates how education counteracts the

  20. Treatments for Alzheimer's Disease

    MedlinePlus

    ... 3900 Find your chapter: search by state Home > Alzheimer's Disease > Treatments Overview What Is Dementia? What Is Alzheimer's? ... and move closer to a cure. Treatments for Alzheimer's disease Currently, there is no cure for Alzheimer's. But ...

  1. Pathogenesis and Therapeutic Strategies in Alzheimer's Disease: From Brain to Periphery.

    PubMed

    Yu, Jin-Tai; Zhang, Can

    2016-02-01

    Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disorder. At present, there are no effective disease-modifying therapies, and the cause of the disease remains unclear. Previously, almost all researchers focus on the brain for exploring the pathogenesis and therapeutic strategies in AD. A recent study by Xiang et al. (Acta Neuropathol 130:487-499, 2015) reported the significance of the physiological capacity of peripheral tissues and organs in clearing brain-derived amyloid-beta (Aβ), which opens a novel avenue to understand the AD pathogenesis and develop therapies for AD.

  2. [Alzheimer and the discovery of Alzheimer's disease].

    PubMed

    Zhagn, Lili; Li, Zhiping

    2014-09-01

    Alzheimer was born in Germany in 1864. In 1887, Alzheimer graduated with a medical doctor degree at the University of Würzburg. In 1888, Alzheimer began to work in the Community Hospital for Mental and Epileptic Patients in Frankfurt am Main for 14 years. During this time, Alzheimer published the six-volume Histologic and Histopathologic Studies of the Cerebral Cortex, with co-author Franz Nissl. In 1903, Alzheimer came to work in the Royal Psychiatric Clinic of the University of Munich. One year later, he published his postdoctoral paper of Histological Studies about the Differential Diagnosis of Progressive Paralysis in 1904. In 1912, Alzheimer was provided the chair of psychiatry at the University of Breslau. On the way to Breslau, Alzheimer got sick, and eventually died in 1915. In 1906, Alzheimer found numerous amyloid plaques and neurofibrillary tangles in the brain of a patient called Auguste under the microscope. In November of the same year, Alzheimer gave a lecture about Auguste's case at the 37(th) Conference of South-West German Psychiatrists in Tübingen, which received little attention. In 1910, Kraepelin mentioned "Alzheimer's disease" for the first time to name the disease of what Auguste got in the 8th edition of Handbook of Psychiatry. Therefore, Alzheimer achieved worldwide recognition.

  3. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease.

    PubMed

    Djelti, Fathia; Braudeau, Jerome; Hudry, Eloise; Dhenain, Marc; Varin, Jennifer; Bièche, Ivan; Marquer, Catherine; Chali, Farah; Ayciriex, Sophie; Auzeil, Nicolas; Alves, Sandro; Langui, Dominique; Potier, Marie-Claude; Laprevote, Olivier; Vidaud, Michel; Duyckaerts, Charles; Miles, Richard; Aubourg, Patrick; Cartier, Nathalie

    2015-08-01

    Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease.

  4. Neuroinflammation in Alzheimer's disease.

    PubMed

    Heneka, Michael T; Carson, Monica J; El Khoury, Joseph; Landreth, Gary E; Brosseron, Frederic; Feinstein, Douglas L; Jacobs, Andreas H; Wyss-Coray, Tony; Vitorica, Javier; Ransohoff, Richard M; Herrup, Karl; Frautschy, Sally A; Finsen, Bente; Brown, Guy C; Verkhratsky, Alexei; Yamanaka, Koji; Koistinaho, Jari; Latz, Eicke; Halle, Annett; Petzold, Gabor C; Town, Terrence; Morgan, Dave; Shinohara, Mari L; Perry, V Hugh; Holmes, Clive; Bazan, Nicolas G; Brooks, David J; Hunot, Stéphane; Joseph, Bertrand; Deigendesch, Nikolaus; Garaschuk, Olga; Boddeke, Erik; Dinarello, Charles A; Breitner, John C; Cole, Greg M; Golenbock, Douglas T; Kummer, Markus P

    2015-04-01

    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.

  5. Differential phosphorylation of tau proteins during kitten brain development and Alzheimer's disease.

    PubMed

    Riederer, B M; Mourton-Gilles, C; Frey, P; Delacourte, A; Probst, A

    2001-02-01

    Differential distribution and phosphorylation of tau proteins were studied in developing kitten brain by using several antibodies, and was compared to phosphorylation in Alzheimer's disease. Several antibodies demonstrated the presence of phosphorylated tau proteins during kitten brain development and identified pathological structures in human brain tissue. Antibody AD2, recognized tau in kittens and adult cats, but reacted in Alzheimer's tissue only with a pathological tau form. Antibody AT8 was prominent in developing kitten neurons and was found in axons and dendrites. After the first postnatal month this phosphorylation type disappeared from axons. Furthermore, dephosphorylation of kitten tau with alkaline phosphatase abolished immunoreactivity of AT8, but not that of AD2, pointing to a protection of the AD2 epitope in cats. Tau proteins during early cat brain development are phosphorylated at several sites that are also phosphorylated in paired helical filaments during Alzheimer's disease. In either event, phosphorylation of tau may play a crucial role to modulate microtubule dynamics, contributing to increased microtubule instability and promoting growth of processes during neuronal development or changing dynamic properties of the cytoskeleton and contributing to the formation of pathological structures in neurodegenerative diseases.

  6. The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update.

    PubMed

    Hoyer, S

    2002-03-01

    Nosologically, Alzheimer disease may not be considered to be a single disorder in spite of a common clinical phenotype. Only a small proportion of about 5% to 10% of all Alzheimer cases is due to genetic mutations (type I) whereas the great majority of patients was found to be sporadic in origin. It may be assumed that susceptibility genes along with lifestyle risk factors contribute to the causation of the age-related sporadic Alzheimer disease (type II). In this context, the desensitization of the neuronal insulin receptor similar to not-insulin dependent diabetes mellitus may be of pivotal significance. This abnormality along with a reduction in brain insulin concentration is assumed to induce a cascade-like process of disturbances including cellular glucose, acetylcholine, cholesterol, and ATP associated with abnormalities in membrane pathology and the formation of both amyloidogenic derivatives and hyperphosphorylated tau protein. Sporadic Alzheimer disease may, thus, be considered to be the brain type of diabetes mellitus II. Experimental evidence is provided and discussed.

  7. PIXE analysis of low concentration aluminum in brain tissues of an Alzheimer's disease patient

    NASA Astrophysics Data System (ADS)

    Ishihara, R.; Hanaichi, T.; Takeuchi, T.; Ektessabi, A. M.

    1999-06-01

    An excess accumulation and presence of metal ions may significantly alter a brain cell's normal functions. There have been increasing efforts in recent years to measure and quantify the density and distribution of excessive accumulations of constituent elements (such as Fe, Zn, Cu, and Ca) in the brain, as well as the presence and distribution of contaminating elements (such as Al). This is particularly important in cases of neuropathological disorders such as Alzheimer's disease, Parkinson's disease and ALS. The aim of this paper was to measure the Al present in the temporal cortex of the brain of an Alzheimer's disease patient. The specimens were taken from an unfixed autopsy brain which has been preserved for a period of 4 years in the deep freezer at -80 °C. Proton Induced X-ray Emission Spectroscopy was used for the measurement of Al concentration in this brain tissue. A tandem accelerator with 2 MeV of energy was also used. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorbers were removed. The results show that the peak height depends on the measurement site. However, in certain cases an extremely high concentration of Al was observed in the PIXE spectra, with an intensity higher than those in the other major elements of the brain's matrix element. Samples from tissues affected by the same disease were analyzed using the EDX analyzer. The results are quantitatively in very good agreement with those of the PIXE analysis.

  8. PIXE analysis of low concentration aluminum in brain tissues of an Alzheimer's disease patient

    SciTech Connect

    Ishihara, R.; Takeuchi, T.; Hanaichi, T.; Ektessabi, A. M.

    1999-06-10

    An excess accumulation and presence of metal ions may significantly alter a brain cell's normal functions. There have been increasing efforts in recent years to measure and quantify the density and distribution of excessive accumulations of constituent elements (such as Fe, Zn, Cu, and Ca) in the brain, as well as the presence and distribution of contaminating elements (such as Al). This is particularly important in cases of neuropathological disorders such as Alzheimer's disease, Parkinson's disease and ALS. The aim of this paper was to measure the Al present in the temporal cortex of the brain of an Alzheimer's disease patient. The specimens were taken from an unfixed autopsy brain which has been preserved for a period of 4 years in the deep freezer at -80 degree sign C. Proton Induced X-ray Emission Spectroscopy was used for the measurement of Al concentration in this brain tissue. A tandem accelerator with 2 MeV of energy was also used. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorbers were removed. The results show that the peak height depends on the measurement site. However, in certain cases an extremely high concentration of Al was observed in the PIXE spectra, with an intensity higher than those in the other major elements of the brain's matrix element. Samples from tissues affected by the same disease were analyzed using the EDX analyzer. The results are quantitatively in very good agreement with those of the PIXE analysis.

  9. Energy and the Alzheimer brain.

    PubMed

    Mamelak, Mortimer

    2017-04-01

    The high energy demands of the poorly myelinated long axon hippocampal and cortical neurons render these neurons selectively vulnerable to degeneration in Alzheimer's disease. However, pathology engages all of the major elements of the neurovascular unit of the mature Alzheimer brain, the neurons, glia and blood vessels. Neurons present with retrograde degeneration of the axodendritic tree, capillaries with string vessels and markedly reduced densities and glia with signs of inflammatory activation. The neurons, capillaries and astrocytes of the mature Alzheimer brain harbor structurally defective mitochondria. Clinically, reduced glucose utilization, decades before cognitive deterioration, betrays ongoing energy insufficiency. β-hydroxybutyrate and γ-hydroxybutyrate can both provide energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's disease demonstrate their ability to reverse the pathological changes in the Alzheimer brain and initial clinical trials reveal their ability to improve cognition and every day function. Supplying the brain with energy holds great promise for delaying the onset of Alzheimer's disease and slowing its progress.

  10. A culture-brain link: Negative age stereotypes predict Alzheimer's disease biomarkers.

    PubMed

    Levy, Becca R; Ferrucci, Luigi; Zonderman, Alan B; Slade, Martin D; Troncoso, Juan; Resnick, Susan M

    2016-02-01

    Although negative age stereotypes have been found to predict adverse outcomes among older individuals, it was unknown whether the influence of stereotypes extends to brain changes associated with Alzheimer's disease. To consider this possibility, we drew on dementia-free participants, in the Baltimore Longitudinal Study of Aging, whose age stereotypes were assessed decades before yearly magnetic resonance images and brain autopsies were performed. Those holding more-negative age stereotypes earlier in life had significantly steeper hippocampal-volume loss and significantly greater accumulation of neurofibrillary tangles and amyloid plaques, adjusting for relevant covariates. These findings suggest a new pathway to identifying mechanisms and potential interventions related to the pathology of Alzheimer's disease.

  11. Drug delivery to the brain in Alzheimer's disease: consideration of the blood-brain barrier.

    PubMed

    Banks, William A

    2012-05-15

    The successful treatment of Alzheimer's disease (AD) will require drugs that can negotiate the blood-brain barrier (BBB). However, the BBB is not simply a physical barrier, but a complex interface that is in intimate communication with the rest of the central nervous system (CNS) and influenced by peripheral tissues. This review examines three aspects of the BBB in AD. First, it considers how the BBB may be contributing to the onset and progression of AD. In this regard, the BBB itself is a therapeutic target in the treatment of AD. Second, it examines how the BBB restricts drugs that might otherwise be useful in the treatment of AD and examines strategies being developed to deliver drugs to the CNS for the treatment of AD. Third, it considers how drug penetration across the AD BBB may differ from the BBB of normal aging. In this case, those differences can complicate the treatment of CNS diseases such as depression, delirium, psychoses, and pain control in the AD population.

  12. Useful Information on...Alzheimer's Disease.

    ERIC Educational Resources Information Center

    Cohen, Gene D.

    This brochure provides information on Alzheimer's disease by examining who gets Alzheimer's disease and what to expect when someone has Alzheimer's disease. Abnormal brain tissue findings are discussed and three clinical features of Alzheimer's disease are listed: dementia; insidious onset of symptoms; and exclusion of all other specific causes of…

  13. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    PubMed

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-01-11

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  14. Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative.

    PubMed

    Weiner, Michael W; Veitch, Dallas P; Hayes, Jacqueline; Neylan, Thomas; Grafman, Jordan; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford; Jagust, William; Trojanowski, John Q; Shaw, Leslie M; Saykin, Andrew J; Green, Robert C; Harvey, Danielle; Toga, Arthur W; Friedl, Karl E; Pacifico, Anthony; Sheline, Yvette; Yaffe, Kristine; Mohlenoff, Brian

    2014-06-01

    Both traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are common problems resulting from military service, and both have been associated with increased risk of cognitive decline and dementia resulting from Alzheimer's disease (AD) or other causes. This study aims to use imaging techniques and biomarker analysis to determine whether traumatic brain injury (TBI) and/or PTSD resulting from combat or other traumas increase the risk for AD and decrease cognitive reserve in Veteran subjects, after accounting for age. Using military and Department of Veterans Affairs records, 65 Vietnam War veterans with a history of moderate or severe TBI with or without PTSD, 65 with ongoing PTSD without TBI, and 65 control subjects are being enrolled in this study at 19 sites. The study aims to select subject groups that are comparable in age, gender, ethnicity, and education. Subjects with mild cognitive impairment (MCI) or dementia are being excluded. However, a new study just beginning, and similar in size, will study subjects with TBI, subjects with PTSD, and control subjects with MCI. Baseline measurements of cognition, function, blood, and cerebrospinal fluid biomarkers; magnetic resonance images (structural, diffusion tensor, and resting state blood-level oxygen dependent (BOLD) functional magnetic resonance imaging); and amyloid positron emission tomographic (PET) images with florbetapir are being obtained. One-year follow-up measurements will be collected for most of the baseline procedures, with the exception of the lumbar puncture, the PET imaging, and apolipoprotein E genotyping. To date, 19 subjects with TBI only, 46 with PTSD only, and 15 with TBI and PTSD have been recruited and referred to 13 clinics to undergo the study protocol. It is expected that cohorts will be fully recruited by October 2014. This study is a first step toward the design and statistical powering of an AD prevention trial using at-risk veterans as subjects, and provides the

  15. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloid-β pathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA

  16. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    NASA Astrophysics Data System (ADS)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  17. Changes in brain gene expression shared by scrapie and Alzheimer disease.

    PubMed Central

    Duguid, J R; Bohmont, C W; Liu, N G; Tourtellotte, W W

    1989-01-01

    We have isolated two recombinant cDNAs whose corresponding RNAs have an increased abundance in scrapie-infected hamster brain. DNA sequence analysis has shown that these two recombinants represent the genes for sulfated glycoprotein 2 and transferrin. The abundance of sulfated glycoprotein 2 RNA is increased in hippocampus from patients with Alzheimer disease and Pick disease, whereas transferrin RNA is not strongly modulated in these conditions. Expression of two previously identified scrapie-modulated genes, encoding glial fibrillary acidic protein and metallothionein, is also increased in both of these neurodegenerative diseases. Images PMID:2780570

  18. Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis

    PubMed Central

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD. PMID:24967286

  19. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain.

    PubMed

    Barrachina, Marta; Ferrer, Isidre

    2009-08-01

    DNA methylation occurs predominantly at cytosines that precede guanines in dinucleotide CpG sites; it is one of the most important mechanisms for epigenetic DNA regulation during normal development and for aberrant DNA in cancer. To determine the feasibility of DNA methylation studies in the postmortem human brain, we evaluated brain samples with variable postmortem artificially increased delays up to 48 hours. DNA methylation was analyzed in selected regions of MAPT, APP, and PSEN1 in the frontal cortex and hippocampus of controls (n=26) and those with Alzheimer disease at Stages I to II (n=17); Alzheimer disease at Stages III to IV (n=15); Alzheimer disease at Stages V to VI (n=12); argyrophilic grain disease (n=10); frontotemporal lobar degeneration linked to tau mutations (n=6); frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions (n=4); frontotemporal lobar degeneration with motor neuron disease (n=3); Pick disease (n=3); Parkinson disease (n=8); dementia with Lewy bodies, pure form (n=5); and dementia with Lewy bodies, common form (n=15). UCHL1 (ubiquitin carboxyl-terminal hydrolase 1 gene) was analyzed in the frontal cortex of controls and those with Parkinson disease and related synucleinopathies. DNA methylation sites were very reproducible in every case. No differences in the percentage of CpG methylation were found between control and disease samples or among the different pathological entities in any region analyzed. Because small changes in methylation of DNA promoters in vulnerable cells might have not been detected in total homogenates, however, these results should be interpreted with caution, particularly as they relate to chronic degenerative diseases in which small modifications may be sufficient to modulate disease progression.

  20. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease

    SciTech Connect

    Leskovjan, A.C.; Miller, L.; Kretlow, A.; Lanzirotti, A.; Barrea,R.; Vogt, S.

    2010-11-23

    Elevated brain iron content, which has been observed in late-stage human Alzheimer's disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the cortex and hippocampus using X-ray fluorescence microscopy (XFM). We found that iron in the cortex was 34% higher than age-matched controls at an early stage, corresponding to the commencement of plaque formation. The elevated iron was not associated with the amyloid plaques. Interestingly, none of the metal ions were elevated in the amyloid plaques until the latest time point (56 weeks), where only the Zn content was significantly elevated by 38%. Since neuropathological changes in human Alzheimer's disease are presumed to occur years before the first cognitive symptoms appear, quantification of brain iron content could be a powerful marker for early diagnosis of Alzheimer's disease.

  1. Transcranial magnetic stimulation of degenerating brain: a comparison of normal aging, Alzheimer's, Parkinson's and Huntington's disease.

    PubMed

    Ljubisavljevic, M R; Ismail, F Y; Filipovic, S

    2013-07-01

    Although the brain's ability to change constantly in response to external and internal inputs is now well recognized the mechanisms behind it in normal aging and neurodegeneration are less well understood. To gain a better understanding, transcranial magnetic stimulation (TMS) has been used extensively to characterize non-invasively the cortical neurophysiology of the aging and degenerating brain. Furthermore, there has been a surge of studies examining whether repetitive TMS (rTMS) can be used to improve functional deficits in various conditions including normal aging, Alzheimer's and Parkinson's disease. The results of these studies in normal aging and neurodegeneration have emerged reasonably coherent in delineating the main pathology in spite of considerable technical limitations, omnipresent methodological variability, and extraordinary patient heterogeneity. Nevertheless, comparing and integrating what is known about TMS measurements of cortical excitability and plasticity in disorders that predominantly affect cortical brain structures with disorders that predominantly affect subcortical brain structures may provide better understanding of normal and abnormal brain aging fostering new. The present review provides a TMS perspective of changes in cortical neurophysiology and neurochemistry in normal aging and neurodegeneration by integrating what is revealed in individual TMS measurements of cortical excitability and plasticity in physiological aging, Alzheimer's, Parkinson's, and Huntington's, disease. The paper also reflects on current developments in utilizing TMS as a physiologic biomarker to discriminate physiologic aging from neurodegeneration and its potential as a method of therapeutic intervention.

  2. Predicting brain network changes in Alzheimer's disease with link prediction algorithms.

    PubMed

    Sulaimany, Sadegh; Khansari, Mohammad; Zarrineh, Peyman; Daianu, Madelaine; Jahanshad, Neda; Thompson, Paul M; Masoudi-Nejad, Ali

    2017-03-28

    Link prediction is a promising research area for modeling various types of networks and has mainly focused on predicting missing links. Link prediction methods may be valuable for describing brain connectivity, as it changes in Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI). Here, we analyzed 3-tesla whole-brain diffusion-weighted images from 202 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) - 50 healthy controls, 72 with earlyMCI (eMCI) and 38 with lateMCI (lMCI) and 42 AD patients. We introduce a novel approach for Mixed Link Prediction (MLP) to test and define the percent of predictability of each heightened stage of dementia from its previous, less impaired stage, in the simplest case. Using well-known link prediction algorithms as the core of MLP, we propose a new approach that predicts stages of cognitive impairment by simultaneously adding and removing links in the brain networks of elderly individuals. We found that the optimal algorithm, called "Adamic and Adar", had the best fit and most accurately predicted the stages of AD from their previous stage. When compared to the other link prediction algorithms, that mainly only predict the added links, our proposed approach can more inclusively simulate the brain changes during disease by both adding and removing links of the network. Our results are also in line with computational neuroimaging and clinical findings and can be improved for better results.

  3. Epidemiology of Alzheimer disease.

    PubMed

    Mayeux, Richard; Stern, Yaakov

    2012-08-01

    The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease.

  4. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain.

    PubMed

    Brady, D R; Mufson, E J

    1997-10-01

    The number and topographic distribution of immunocytochemically stained parvalbumin interneurons was determined in the hippocampal formation of control and Alzheimer's diseased brain. In control hippocampus, parvalbumin interneurons were aspiny and pleomorphic, with extensive dendritic arbors. In dentate gyrus, parvalbumin cells, as well as a dense plexus of fibers and puncta, were associated with the granule cell layer. A few cells also occupied the molecular layer. In strata oriens and pyramidale of CA1-CA3 subfields, parvalbumin neurons gave rise to dendrites that extended into adjacent strata. Densely stained puncta and beaded fibers occupied stratum pyramidale, with less dense staining in adjacent strata oriens and radiatum. Virtually no parvalbumin profiles were observed in stratum lacunosum-moleculare or the alveus. Numerous polymorphic parvalbumin neurons and a dense plexus of fibers and puncta characterized the deep layer of the subiculum and the lamina principalis externa of the presubiculum. In Alzheimer's diseased hippocampus, there was an approximate 60% decrease in the number of parvalbumin interneurons in the dentate gyrus/CA4 subfield (P<0.01) and subfields CA1-CA2 (P<0.01). In contrast, parvalbumin neurons did not statistically decline in subfields CA3, subiculum or presubiculum in Alzheimer's diseased brains relative to controls. Concurrent staining with Thioflavin-S histochemistry did not reveal degenerative changes within parvalbumin-stained profiles. These findings reveal that parvalbumin interneurons within specific hippocampal subfields are selectively vulnerable in Alzheimer's disease. This vulnerability may be related to their differential connectivity, e.g., those regions connectionally related to the cerebral cortex (dentate gyrus and CA1) are more vulnerable than those regions connectionally related to subcortical loci (subiculum and presubiculum).

  5. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  6. Genetic variants in Alzheimer disease – molecular and brain network approaches

    PubMed Central

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  7. A Structural Parametrization of the Brain Using Hidden Markov Models-Based Paths in Alzheimer's Disease.

    PubMed

    Martinez-Murcia, Francisco J; Górriz, Juan M; Ramírez, Javier; Ortiz, Andres

    2016-11-01

    The usage of biomedical imaging in the diagnosis of dementia is increasingly widespread. A number of works explore the possibilities of computational techniques and algorithms in what is called computed aided diagnosis. Our work presents an automatic parametrization of the brain structure by means of a path generation algorithm based on hidden Markov models (HMMs). The path is traced using information of intensity and spatial orientation in each node, adapting to the structure of the brain. Each path is itself a useful way to characterize the distribution of the tissue inside the magnetic resonance imaging (MRI) image by, for example, extracting the intensity levels at each node or generating statistical information of the tissue distribution. Additionally, a further processing consisting of a modification of the grey level co-occurrence matrix (GLCM) can be used to characterize the textural changes that occur throughout the path, yielding more meaningful values that could be associated to Alzheimer's disease (AD), as well as providing a significant feature reduction. This methodology achieves moderate performance, up to 80.3% of accuracy using a single path in differential diagnosis involving Alzheimer-affected subjects versus controls belonging to the Alzheimer's disease neuroimaging initiative (ADNI).

  8. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain.

    PubMed

    Condliffe, Daniel; Wong, Andrew; Troakes, Claire; Proitsi, Petroula; Patel, Yogen; Chouliaras, Leonidas; Fernandes, Cathy; Cooper, Jonathan; Lovestone, Simon; Schalkwyk, Leonard; Mill, Jonathan; Lunnon, Katie

    2014-08-01

    Epigenetic processes play a key role in the central nervous system and altered levels of 5-methylcytosine have been associated with a number of neurologic phenotypes, including Alzheimer's disease (AD). Recently, 3 additional cytosine modifications have been identified (5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine), which are thought to be intermediate steps in the demethylation of 5-methylcytosine to unmodified cytosine. Little is known about the frequency of these modifications in the human brain during health or disease. In this study, we used immunofluorescence to confirm the presence of each modification in human brain and investigate their cross-tissue abundance in AD patients and elderly control samples. We identify a significant AD-associated decrease in global 5-hydroxymethylcytosine in entorhinal cortex and cerebellum, and differences in 5-formylcytosine levels between brain regions. Our study further implicates a role for epigenetic alterations in AD.

  9. DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease.

    PubMed

    Sanchez-Mut, Jose V; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G; Fernandez, Agustin F; Astudillo, Aurora; Martin-Subero, Jose I; Balint, Balazs; Fraga, Mario F; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K; Ferrer, Isidre; Esteller, Manel

    2013-10-01

    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer's disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5'-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer's disease. We were able to translate these findings to patients with Alzheimer's disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.

  10. [Biomarkers of Alzheimer disease].

    PubMed

    Rachel, Wojciech; Grela, Agatha; Zyss, Tomasz; Zieba, Andrzej; Piekoszewski, Wojciech

    2014-01-01

    Cognitive impairment is one of the most abundant age-related psychiatric disorders. The outcome of cognitive impairment in Alzheimer's disease has both individual (the patients and their families) and socio-economic effects. The prevalence of Alzheimer's disease doubles after the age of 65 years, every 4.5 years. An etiologically heterogenic group of disorders related to aging as well as genetic and environmental interactions probably underlie the impairment in Alzheimer's disease. Those factors cause the degeneration of brain tissue which leads to significant cognitive dysfunction. There are two main hypotheses that are linked to the process of neurodegeneration: (i) amyloid cascade and (ii) the role of secretases and dysfunction of mitochondria. From the therapeutic standpoint it is crucial to get an early diagnosis and start with an adequate treatment. The undeniable progress in the field of biomarker research should lead to a better understanding of the early stages of the disorder. So far, the best recognised and described biomarkers of Alzheimer's disease, which can be detected in both cerebrospinal fluid and blood, are: beta-amyloid, tau-protein and phosphorylated tau-protein (phospho-tau). The article discusses the usefulness of the known biomarkers of Alzheimer's disease in early diagnosis.

  11. Rubidium and potassium levels are altered in Alzheimer's disease brain and blood but not in cerebrospinal fluid.

    PubMed

    Roberts, Blaine R; Doecke, James D; Rembach, Alan; Yévenes, L Fernanda; Fowler, Christopher J; McLean, Catriona A; Lind, Monica; Volitakis, Irene; Masters, Colin L; Bush, Ashley I; Hare, Dominic J

    2016-11-14

    Loss of intracellular compartmentalization of potassium is a biochemical feature of Alzheimer's disease indicating a loss of membrane integrity and mitochondrial dysfunction. We examined potassium and rubidium (a biological proxy for potassium) in brain tissue, blood fractions and cerebrospinal fluid from Alzheimer's disease and healthy control subjects to investigate the diagnostic potential of these two metal ions. We found that both potassium and rubidium levels were significantly decreased across all intracellular compartments in the Alzheimer's disease brain. Serum from over 1000 participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL), showed minor changes according to disease state. Potassium and rubidium levels in erythrocytes and cerebrospinal fluid were not significantly different according to disease state, and rubidium was slightly decreased in Alzheimer's disease patients compared to healthy controls. Our data provides evidence that contrasts the hypothesized disruption of the blood-brain barrier in Alzheimer's disease, with the systemic decrease in cortical potassium and rubidium levels suggesting influx of ions from the blood is minimal and that the observed changes are more likely indicative of an internal energy crisis within the brain. These findings may be the basis for potential diagnostic imaging studies using radioactive potassium and rubidium tracers.

  12. Distribution of PSA-NCAM in normal, Alzheimer's and Parkinson's disease human brain.

    PubMed

    Murray, Helen C; Low, Victoria F; Swanson, Molly E V; Dieriks, Birger V; Turner, Clinton; Faull, Richard L M; Curtis, Maurice A

    2016-08-25

    Polysialated neural cell adhesion molecule (PSA-NCAM) is a membrane bound glycoprotein widely expressed during nervous system development. While commonly described in the neurogenic niches of the adult human brain, there is limited evidence of its distribution in other brain regions. PSA-NCAM is an important regulator of cell-cell interactions and facilitates cell migration and plasticity. Recent evidence suggests these functions may be altered in neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). This study provides a detailed description of the PSA-NCAM distribution throughout the human brain and quantitatively compares the staining load in cortical regions and sub-cortical structures between the control, AD and PD brain. Our results provide evidence of widespread, yet specific, PSA-NCAM expression throughout the human brain including regions devoid of PSA-NCAM in the rodent brain such as the caudate nucleus (CN) and cerebellum (CB). We also detected a significant reduction in PSA-NCAM load in the entorhinal cortex (EC) of cases that was inversely correlated with hyperphosphorylated tau load. These results demonstrate that PSA-NCAM-mediated structural plasticity may not be limited to neurogenic niches and is conserved in the aged brain. We also provide evidence that PSA-NCAM is reduced in the EC, a region severely affected by AD pathology.

  13. Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers

    NASA Astrophysics Data System (ADS)

    Matoug, S.; Abdel-Dayem, A.; Passi, K.; Gross, W.; Alqarni, M.

    2012-02-01

    Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and cognitive tests, often followed by a brain scan. Advanced medical imaging and pattern recognition techniques are good tools to create a learning database in the first step and to predict the class label of incoming data in order to assess the development of the disease, i.e., the conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease, which is the most critical brain disease for the senior population. Advanced medical imaging such as the volumetric MRI can detect changes in the size of brain regions due to the loss of the brain tissues. Measuring regions that atrophy during the progress of Alzheimer's disease can help neurologists in detecting and staging the disease. In the present investigation, we present a pseudo-automatic scheme that reads volumetric MRI, extracts the middle slices of the brain region, performs segmentation in order to detect the region of brain's ventricle, generates a feature vector that characterizes this region, creates an SQL database that contains the generated data, and finally classifies the images based on the extracted features. For our results, we have used the MRI data sets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

  14. Cerebrolysin in Alzheimer's disease.

    PubMed

    Antón Álvarez, X; Fuentes, Patricio

    2011-07-01

    Cerebrolysin is a neuropeptide preparation mimicking the action of endogenous neurotrophic factors. Positive effects of Cerebrolysin on β-amyloid- and tau-related pathologies, neuroinflammation, neurotrophic factors, oxidative stress, excitotoxicity, neurotransmission, brain metabolism, neuroplasticity, neuronal apoptosis and degeneration, neurogenesis and cognition were demonstrated in experimental conditions. These pleiotropic effects of Cerebrolysin on Alzheimer's disease-related pathogenic events are consistent with a neurotrophic-like mode of action, and seems to involve the activation of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 β intracellular signaling pathway. The clinical efficacy of Cerebrolysin in Alzheimer's disease was evaluated in several randomized, double-blind, clinical trials, showing consistent benefits on global clinical function and cognition, improvements in behavior at high doses, and minor effects on daily living activities in patients with mild to moderate Alzheimer's disease, as well as in subgroups of moderate to moderately severe patients. In addition, the clinical benefits of Cerebrolysin were largely maintained for several months after ending treatment, a finding that supports its discontinuous administration. Cerebrolysin was generally well tolerated and did not induce significant adverse events in Alzheimer's patients. Although long-term studies are needed, the data available suggest that Cerebrolysin is effective as monotherapy and constitutes a promising option for combined therapy in Alzheimer's disease.

  15. Training-related brain plasticity in subjects at risk of developing Alzheimer's disease.

    PubMed

    Belleville, Sylvie; Clément, Francis; Mellah, Samira; Gilbert, Brigitte; Fontaine, Francine; Gauthier, Serge

    2011-06-01

    Subjects with mild cognitive impairment are at risk of developing Alzheimer's disease. Cognitive stimulation is an emerging intervention in the field of neurology and allied sciences, having already been shown to improve cognition in subjects with mild cognitive impairment. Yet no studies have attempted to unravel the brain mechanisms that support such improvement. This study uses functional magnetic resonance imaging to measure the effect of memory training on brain activation in older adults with mild cognitive impairment and to assess whether it can reverse the brain changes associated with mild cognitive impairment. Brain activation associated with verbal encoding and retrieval was recorded twice prior to training and once after training. In subjects with mild cognitive impairment, increased activation was found after training within a large network that included the frontal, temporal and parietal areas. Healthy controls showed mostly areas of decreased activation following training. Comparison with pre-training indicated that subjects with mild cognitive impairment used a combination of specialized areas; that is, areas activated prior to training and new alternative areas activated following training. However, only activation of the right inferior parietal lobule, a new area of activation, correlated with performance. Furthermore, the differences between the brain activation patterns of subjects with mild cognitive impairment and those of healthy controls were attenuated by training in a number of brain regions. These results indicate that memory training can result in significant neural changes that are measurable with brain imaging. They also show that the brains of people with mild cognitive impairment remain highly plastic.

  16. Instrumental neutron activation analysis of brain aluminum in Alzheimer disease and aging.

    PubMed

    Markesbery, W R; Ehmann, W D; Hossain, T I; Alauddin, M; Goodin, D T

    1981-12-01

    Instrumental neutron activation analysis procedures were used to determine the aluminum content of various brain regions in histologically verified Alzheimer disease (AD) and in controls. The grand mean aluminum level for 74 AD specimens was 0.372 +/- 0.058 microgram/gm and for 137 adult controls, 0.467 +/- 0.033 microgram/gm, both on a wet weight basis. No difference was found at the bulk sample level between AD and adult controls, corrected for age and sex, or when frontal, temporal, and hippocampal specimens were compared. Control specimens (infancy to 85 years) showed an increase in brain aluminum concentration with age. Comparison of freeze-dried to wet weight ratios of AD and controls revealed a small increase in water content in AD brains.

  17. Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain.

    PubMed

    Korolainen, Minna A; Goldsteins, Gundars; Nyman, Tuula A; Alafuzoff, Irina; Koistinaho, Jari; Pirttilä, Tuula

    2006-01-01

    There is a large body of evidence highlighting the importance of oxidative stress in the pathogenesis of Alzheimer's disease (AD). We have previously standardised a method that can be applied to study oxidative changes in individual brain proteins by using two-dimensional oxyblots (Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J, Pirttilä T. Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 2002;23(19):3428-33). Here we have identified proteins that exhibited oxidative changes in AD when compared to age-matched controls and these protein changes have been further examined in relation to the neuropathological data. Indeed, several Tris-HCl soluble proteins tended to be less oxidised in AD when compared to controls. Two enzymes, mitochondrial glutamate dehydrogenase and cytosolic malate dehydrogenase, were increased in amount but showed significantly decreased degree of oxidation in AD brains when compared to controls. Furthermore, some changes related to the amounts or oxidation statuses of proteins were associated with the duration of the clinical impairment and also with the neuropathology. These results do not contradict the hypothesis of increased oxidative stress in AD but may represent co-existing compensatory changes in response to oxidative stress.

  18. Tool use in left brain damage and Alzheimer's disease: What about function and manipulation knowledge?

    PubMed

    Jarry, Christophe; Osiurak, François; Besnard, Jérémy; Baumard, Josselin; Lesourd, Mathieu; Croisile, Bernard; Etcharry-Bouyx, Frédérique; Chauviré, Valérie; Le Gall, Didier

    2016-03-01

    Tool use disorders are usually associated with difficulties in retrieving function and manipulation knowledge. Here, we investigate tool use (Real Tool Use, RTU), function (Functional Association, FA) and manipulation knowledge (Gesture Recognition, GR) in 17 left-brain-damaged (LBD) patients and 14 AD patients (Alzheimer disease). LBD group exhibited predicted deficit on RTU but not on FA and GR while AD patients showed deficits on GR and FA with preserved tool use skills. These findings question the role played by function and manipulation knowledge in actual tool use.

  19. Properties of glutamate receptors of Alzheimer's disease brain transplanted to frog oocytes

    PubMed Central

    Bernareggi, Annalisa; Dueñas, Zulma; Reyes-Ruiz, Jorge Mauricio; Ruzzier, Fabio; Miledi, Ricardo

    2007-01-01

    It is known that Alzheimer's disease (AD) is a synaptic disease that involves various neurotransmitter systems, particularly those where synaptic transmission is mediated by acetylcholine or glutamate (Glu). Nevertheless, very little is known about the properties of neurotransmitter receptors of the AD human brain. We have shown previously that cell membranes, carrying neurotransmitter receptors from the human postmortem brain, can be transplanted to frog oocytes, and their receptors will still be functional. Taking advantage of this fact, we have now studied the properties of Glu receptors (GluRs) from the cerebral cortices of AD and non-AD brains and found that oocytes injected with AD membranes acquired GluRs that have essentially the same functional properties as those of oocytes injected with membranes from non-AD brains. However, the amplitudes of the currents elicited by Glu were always smaller in the oocytes injected with membranes from AD brains. Western blot analyses of the same membrane preparations used for the electrophysiological studies showed that AD membranes contained significantly fewer GluR2/3 subunit proteins. Furthermore, the corresponding mRNAs were also diminished in the AD brain. Therefore, the smaller amplitude of membrane currents elicited by Glu in oocytes injected with membranes from an AD brain is a consequence of a reduced number of GluRs in cell membranes transplanted from the AD brain. Thus, using the comparatively simple method of microtransplantation of receptors, it is now possible to determine the properties of neurotransmitter receptors of normal and diseased human brains. That knowledge may help to decipher the etiology of the diseases and also to develop new treatments. PMID:17301224

  20. Brain expression of presenilins in sporadic and early-onset, familial Alzheimer's disease.

    PubMed Central

    Mathews, P. M.; Cataldo, A. M.; Kao, B. H.; Rudnicki, A. G.; Qin, X.; Yang, J. L.; Jiang, Y.; Picciano, M.; Hulette, C.; Lippa, C. F.; Bird, T. D.; Nochlin, D.; Walter, J.; Haass, C.; Lévesque, L.; Fraser, P. E.; Andreadis, A.; Nixon, R. A.

    2000-01-01

    BACKGROUND: Mutations in the presenilin proteins cause early-onset, familial Alzheimer's disease (FAD). MATERIALS AND METHODS: We characterized the cellular localization and endoproteolysis of presenilin 2 (PS2) and presenilin 1 (PS1) in brains from 25 individuals with presenilin-mutations causing FAD, as well as neurologically normal individuals and individuals with sporadic Alzheimer's disease (AD). RESULTS: Amino-terminal antibodies to both presenilins predominantly decorated large neurons. Regional differences between the broad distributions of the two presenilins were greatest in the cerebellum, where most Purkinje cells showed high levels of only PS2 immunoreactivity. PS2 endoproteolysis in brain yielded multiple amino-terminal fragments similar in size to the PS1 amino-terminal fragments detected in brain. In addition, two different PS2 amino-terminal antibodies also detected a prominent 42 kDa band that may represent a novel PS2 form in human brain. Similar to PS1 findings, neither amino-terminal nor antiloop PS2 antibodies revealed substantial full-length PS2 in brain. Immunocytochemical examination of brains from individuals with the N141I PS2 mutation or eight different PS1 mutations, spanning the molecule from the second transmembrane domain to the large cytoplasmic loop domain, revealed immunodecoration of no senile plaques and only neurofibrillary tangles in the M139I PS1 mutation stained with PS1 antibodies. CONCLUSIONS: Overall presenilin expression and the relative abundance of full-length and amino-terminal fragments in presenilin FAD cases were similar to control cases and sporadic AD cases. Thus, accumulation of full-length protein or other gross mismetabolism of neither PS2 nor PS1 is a consequence of the FAD mutations examined. PMID:11126202

  1. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.

    PubMed

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina

    2017-03-01

    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  2. Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.

    PubMed

    Espuny-Camacho, Ira; Arranz, Amaia M; Fiers, Mark; Snellinx, An; Ando, Kunie; Munck, Sebastian; Bonnefont, Jerome; Lambot, Laurie; Corthout, Nikky; Omodho, Lorna; Vanden Eynden, Elke; Radaelli, Enrico; Tesseur, Ina; Wray, Selina; Ebneth, Andreas; Hardy, John; Leroy, Karelle; Brion, Jean-Pierre; Vanderhaeghen, Pierre; De Strooper, Bart

    2017-03-08

    Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.

  3. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease.

    PubMed

    Gaser, Christian; Franke, Katja; Klöppel, Stefan; Koutsouleris, Nikolaos; Sauer, Heinrich

    2013-01-01

    Alzheimer's disease (AD), the most common form of dementia, shares many aspects of abnormal brain aging. We present a novel magnetic resonance imaging (MRI)-based biomarker that predicts the individual progression of mild cognitive impairment (MCI) to AD on the basis of pathological brain aging patterns. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated age is higher than the chronological age, a positive brain age gap estimation (BrainAGE) score indicates accelerated atrophy and is considered a risk factor for conversion to AD. Here, the BrainAGE framework was applied to predict the individual brain ages of 195 subjects with MCI at baseline, of which a total of 133 developed AD during 36 months of follow-up (corresponding to a pre-test probability of 68%). The ability of the BrainAGE framework to correctly identify MCI-converters was compared with the performance of commonly used cognitive scales, hippocampus volume, and state-of-the-art biomarkers derived from cerebrospinal fluid (CSF). With accuracy rates of up to 81%, BrainAGE outperformed all cognitive scales and CSF biomarkers in predicting conversion of MCI to AD within 3 years of follow-up. Each additional year in the BrainAGE score was associated with a 10% greater risk of developing AD (hazard rate: 1.10 [CI: 1.07-1.13]). Furthermore, the post-test probability was increased to 90% when using baseline BrainAGE scores to predict conversion to AD. The presented framework allows an accurate prediction even with multicenter data. Its fast and fully automated nature facilitates the integration into the clinical workflow. It can be exploited as a tool for screening as well as for monitoring treatment options.

  4. Agrin in Alzheimer's Disease: Altered Solubility and Abnormal Distribution within Microvasculature and Brain Parenchyma

    NASA Astrophysics Data System (ADS)

    Donahue, John E.; Berzin, Tyler M.; Rafii, Michael S.; Glass, David J.; Yancopoulos, George D.; Fallon, Justin R.; Stopa, Edward G.

    1999-05-01

    Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with β -amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to β -amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.

  5. Brain changes in Alzheimer's disease patients with implanted encapsulated cells releasing nerve growth factor.

    PubMed

    Ferreira, Daniel; Westman, Eric; Eyjolfsdottir, Helga; Almqvist, Per; Lind, Göran; Linderoth, Bengt; Seiger, Ake; Blennow, Kaj; Karami, Azadeh; Darreh-Shori, Taher; Wiberg, Maria; Simmons, Andrew; Wahlund, Lars-Olof; Wahlberg, Lars; Eriksdotter, Maria

    2015-01-01

    New therapies with disease-modifying effects are urgently needed for treating Alzheimer's disease (AD). Nerve growth factor (NGF) protein has demonstrated regenerative and neuroprotective effects on basal forebrain cholinergic neurons in animal studies. In addition, AD patients treated with NGF have previously shown improved cognition, EEG activity, nicotinic binding, and glucose metabolism. However, no study to date has analyzed brain atrophy in patients treated with NGF producing cells. In this study we present MRI results of the first clinical trial in patients with AD using encapsulated NGF biodelivery to the basal forebrain. Six AD patients received the treatment during twelve months. Patients were grouped as responders and non-responders according to their twelve-months change in MMSE. Normative values were created from 131 AD patients from ADNI, selecting 36 age- and MMSE-matched patients for interpreting the longitudinal changes in MMSE and brain atrophy. Results at baseline indicated that responders showed better clinical status and less pathological levels of cerebrospinal fluid (CSF) Aβ1-42. However, they showed more brain atrophy, and neuronal degeneration as evidenced by higher CSF levels of T-tau and neurofilaments. At follow-up, responders showed less brain shrinkage and better progression in the clinical variables and CSF biomarkers. Noteworthy, two responders showed less brain shrinkage than the normative ADNI group. These results together with previous evidence supports the idea that encapsulated biodelivery of NGF might have the potential to become a new treatment strategy for AD with both symptomatic and disease-modifying effects.

  6. Effects of polyphenols on brain ageing and Alzheimer's disease: focus on mitochondria.

    PubMed

    Schaffer, Sebastian; Asseburg, Heike; Kuntz, Sabine; Muller, Walter E; Eckert, Gunter P

    2012-08-01

    The global trend of the phenomenon of population ageing has dramatic consequences on public health and the incidence of neurodegenerative diseases. Physiological changes that occur during normal ageing of the brain may exacerbate and initiate pathological processes that may lead to neurodegenerative disorders, especially Alzheimer's disease (AD). Hence, the risk of AD rises exponentially with age. While there is no cure currently available, sufficient intake of certain micronutrients and secondary plant metabolites may prevent disease onset. Polyphenols are highly abundant in the human diet, and several experimental and epidemiological evidences indicate that these secondary plant products have beneficial effects on AD risks. This study reviews current knowledge on the potential of polyphenols and selected polyphenol-rich diets on memory and cognition in human subjects, focusing on recent data showing in vivo efficacy of polyphenols in preventing neurodegenerative events during brain ageing and in dementia. Concentrations of polyphenols in animal brains following oral administration have been consistently reported to be very low, thus eliciting controversial discussion on their neuroprotective effects and potential mechanisms. Whether polyphenols exert any direct antioxidant effects in the brain or rather act by evoking alterations in regulatory systems of the brain or even the body periphery is still unclear. To understand the mechanisms behind the protective abilities of polyphenol-rich foods, an overall understanding of the biotransformation of polyphenols and identification of the various metabolites arising in the human body is also urgently needed.

  7. Neuroinhibitory molecules in Alzheimer's disease.

    PubMed

    Larner, A J; Keynes, R J

    2006-09-01

    Aberrant neurite growth is one of the neuropathological signatures of the Alzheimer's disease brain, both around amyloid plaques and in the cortical neuropil. Disruption of neuroinhibitory or repulsive growth and guidance signals, as well as of neurotrophic or permissive signals, may contribute to this dystrophic growth. Hence, therapeutic efforts directed exclusively at restoring neurotrophic activity are unlikely to meet with success. The molecular species responsible for neuroinhibitory effects in the Alzheimer's disease brain are beginning to be elucidated.

  8. Natural distribution of environmental radon daughters in the different brain areas of an Alzheimer Disease victim

    PubMed Central

    Momčilović, Berislav; Lykken, Glenn I; Cooley, Marvin

    2006-01-01

    Background Radon is a ubiquitous noble gas in the environment and a primary source of harmful radiation exposure for humans; it decays in a cascade of daughters (RAD) by releasing the cell damaging high energy alpha particles. Results We studied natural distribution of RAD 210Po and 210Bi in the different parts of the postmortem brain of 86-year-old woman who had suffered from Alzheimer's disease (AD). A distinct brain map emerged, since RAD distribution was different among the analyzed brain areas. The highest RAD irradiation (mSv·year-1) occurred in the decreasing order of magnitude: amygdale (Amy) >> hippocampus (Hip) > temporal lobe (Tem) ~ frontal lobe (Fro) > occipital lobe (Occ) ~ parietal lobe (Par) > substantia nigra (SN) >> locus ceruleus (LC) ~ nucleus basalis (NB); generally more RAD accumulated in the proteins than lipids of gray and white (gray > white) brain matter. Amy and Hip are particularly vulnerable brain structure targets to significant RAD internal radiation damage in AD (5.98 and 1.82 mSv·year-1, respectively). Next, naturally occurring RAD radiation for Tem and Fro, then Occ and Par, and SN was an order of magnitude higher than that in LC and NB; the later was within RAD we observed previously in the healthy control brains. Conclusion Naturally occurring environmental RAD exposure may dramatically enhance AD deterioration by selectively targeting brain areas of emotions (Amy) and memory (Hip). PMID:16965619

  9. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.

    PubMed

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta

    2015-01-01

    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning.

  10. Antioxidant therapies for Alzheimer's disease.

    PubMed

    Feng, Ye; Wang, Xiaochuan

    2012-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease featuring progressive impairments in memory, cognition, and behavior and ultimately leads to death. The histopathological changes of Alzheimer's disease include neuronal and synaptic loss, formation of extracellular senile plaques and intracellular neurofibrillary tangles in brain. Multiple lines of evidence indicate that oxidative stress not only strongly participates in an early stage of Alzheimer's disease prior to cytopathology, but plays an important role in inducing and activating multiple cell signaling pathways that contribute to the lesion formations of toxic substances and then promotes the development of Alzheimer's disease. Many years of studies show that antioxidant therapies have enjoyed general success in preclinical studies. Therefore, this paper mainly focuses on the recent developments of common used antioxidant therapies for Alzheimer's disease and thus provides indications for future potential antioxidant therapeutic strategies of neurodegenerative diseases.

  11. Is Alzheimer's Disease Autoimmune Inflammation of the Brain That Can be Treated With Nasal Nonsteroidal Anti-Inflammatory Drugs?

    PubMed

    Lehrer, Steven; Rheinstein, Peter H

    2015-05-01

    The Alzheimer's Association recently reported that a woman's estimated lifetime risk of developing Alzheimer's at age 65 is 1 in 6, compared to nearly 1 in 11 for a man (ie, female to male ratio 1.8). Based on female to male ratio, Alzheimer's disease could well be an autoimmune disorder. Like Alzheimer's, multiple sclerosis, an autoimmune inflammation of the central nervous system, has a female to male ratio of 2.3. Also based on female to male ratio, Alzheimer's resembles the autoimmune inflammatory disease rheumatoid arthritis, which has a female to male ratio of 2.7. The reasons for the female preponderance in autoimmune disease are unclear, but nonsteroidal anti-inflammatory drugs (NSAIDs) are widely and successfully employed to treat autoimmune anti-inflammatory disease and dramatically relieve symptoms. Moreover, oral NSAIDs consistently reduce the risk of Alzheimer's disease, although they have been totally ineffective as a treatment in multiple failed clinical trials. A basis for this failure might well be that the brain dose after oral administration is too small and not sufficiently early in the pathogenesis of the disorder. But NSAID brain dose could be significantly increased by delivering the NSAIDs intranasally.

  12. Alzheimer's disease and the "Valley Of Death": not enough guidance from human brain tissue?

    PubMed

    Beach, Thomas G

    2013-01-01

    Medical science is currently perceived as underperforming. This is because of the relatively slow recent rate of development of new disease treatments. This has been blamed on cultural, regulatory, and economic factors that generate a so-called "Valley of Death", hindering new drug candidates from being moved into clinical trials and eventually approved for use. We propose, however, that for neurodegenerative diseases, a relative decline of human brain tissue research is also a contributor. The present pharmacological agents for treating Alzheimer's disease (AD) were identified through direct examination of postmortem human brain tissue more than 30 years ago. Since that time the percentage of research grants awarded to human brain tissue-using projects has dropped precipitously and publication rates have stagnated. As human brain tissue research has played a central and often initiating role in identifying most of the targets that have gone to AD clinical trials, it is proposed that the rate of discovery of new targets has been curtailed. Additionally, the continued rejection of cortical biopsy as a diagnostic method for AD has most probably depressed the perceived effect sizes of new medications and contributed to the high Phase II clinical trial failure rates. Despite the relative lack of funding, human brain discovery research has continued to make important contributions to our understanding of neurodegenerative disease, and brain banks have played an essential role. It is likely that the pace of discovery will dramatically accelerate over the coming decades as increasingly powerful tools including genomics, epigenetics, transcriptomics, regulatory RNA, gene expression profiling, proteomics, and metabolomics are applied. To optimize the promise of these new technologies, however, it is critical that brain banks are rejuvenated by enhanced governmental and/or private support.

  13. Classification of Alzheimer's disease using regional saliency maps from brain MR volumes

    NASA Astrophysics Data System (ADS)

    Pulido, Andrea; Rueda, Andrea; Romero, Eduardo

    2013-02-01

    Accurate diagnosis of Alzheimer's disease (AD) from structural Magnetic Resonance (MR) images is difficult due to the complex alteration of patterns in brain anatomy that could indicate the presence or absence of the pathology. Currently, an effective approach that allows to interpret the disease in terms of global and local changes is not available in the clinical practice. In this paper, we propose an approach for classification of brain MR images, based on finding pathology-related patterns through the identification of regional structural changes. The approach combines a probabilistic Latent Semantic Analysis (pLSA) technique, which allows to identify image regions through latent topics inferred from the brain MR slices, with a bottom-up Graph-Based Visual Saliency (GBVS) model, which calculates maps of relevant information per region. Regional saliency maps are finally combined into a single map on each slice, obtaining a master saliency map of each brain volume. The proposed approach includes a one-to-one comparison of the saliency maps which feeds a Support Vector Machine (SVM) classifier, to group test subjects into normal or probable AD subjects. A set of 156 brain MR images from healthy (76) and pathological (80) subjects, splitted into a training set (10 non-demented and 10 demented subjects) and one testing set (136 subjects), was used to evaluate the performance of the proposed approach. Preliminary results show that the proposed method reaches a maximum classification accuracy of 87.21%.

  14. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    PubMed

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  15. The construction of common and specific significance subnetworks of Alzheimer's disease from multiple brain regions.

    PubMed

    Kong, Wei; Mou, Xiaoyang; Zhang, Na; Zeng, Weiming; Li, Shasha; Yang, Yang

    2015-01-01

    Alzheimer's disease (AD) is a progressively and fatally neurodegenerative disorder and leads to irreversibly cognitive and memorial damage in different brain regions. The identification and analysis of the dysregulated pathways and subnetworks among affected brain regions will provide deep insights for the pathogenetic mechanism of AD. In this paper, commonly and specifically significant subnetworks were identified from six AD brain regions. Protein-protein interaction (PPI) data were integrated to add molecular biological information to construct the functional modules of six AD brain regions by Heinz algorithm. Then, the simulated annealing algorithm based on edge weight is applied to predicting and optimizing the maximal scoring networks for common and specific genes, respectively, which can remove the weak interactions and add the prediction of strong interactions to increase the accuracy of the networks. The identified common subnetworks showed that inflammation of the brain nerves is one of the critical factors of AD and calcium imbalance may be a link among several causative factors in AD pathogenesis. In addition, the extracted specific subnetworks for each brain region revealed many biologically functional mechanisms to understand AD pathogenesis.

  16. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Cunnane, Stephen C; Schneider, Julie A; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare

    2012-01-01

    Alzheimer's disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g for brain). Differences in plasma fatty acid profiles between AD, mild cognitive impairment (MCI), and those with no cognitive impairment (NCI) were most apparent in the plasma free fatty acids (lower oleic acid isomers and omega-6 fatty acids in AD) and phospholipids (lower omega-3 fatty acids in AD). In brain, % DHA was lower only in phosphatidylserine of mid-frontal cortex and superior temporal cortex in AD compared to NCI (-14% and -12%, respectively; both p < 0.05). The only significant correlation between plasma and brain fatty acids was between % DHA in plasma total lipids and % DHA in phosphatidylethanolamine of the angular gyrus, but only in the NCI group (+0.77, p < 0.05). We conclude that AD is associated with altered plasma status of both DHA and other fatty acids unrelated to DHA, and that the lipid class-dependent nature of these differences reflects a combination of differences in intake and metabolism.

  17. Glucose Metabolic Brain Networks in Early-Onset vs. Late-Onset Alzheimer's Disease

    PubMed Central

    Chung, Jinyong; Yoo, Kwangsun; Kim, Eunjoo; Na, Duk L.; Jeong, Yong

    2016-01-01

    Objective: Early-onset Alzheimer's disease (EAD) shows distinct features from late-onset Alzheimer's disease (LAD). To explore the characteristics of EAD, clinical, neuropsychological, and functional imaging studies have been conducted. However, differences between EAD and LAD are not clear, especially in terms of brain connectivity and networks. In this study, we investigated the differences in metabolic connectivity between EAD and LAD by adopting graph theory measures. Methods: We analyzed 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) images to investigate the distinct features of metabolic connectivity between EAD and LAD. Using metabolic connectivity and graph theory analysis, metabolic network differences between LAD and EAD were explored. Results: Results showed the decreased connectivity centered in the cingulate gyri and occipital regions in EAD, whereas decreased connectivity in the occipital and temporal regions as well as increased connectivity in the supplementary motor area were observed in LAD when compared with age-matched control groups. Global efficiency and clustering coefficients were decreased in EAD but not in LAD. EAD showed progressive network deterioration as a function of disease severity and clinical dementia rating (CDR) scores, mainly in terms of connectivity between the cingulate gyri and occipital regions. Global efficiency and clustering coefficients were also decreased along with disease severity. Conclusion: These results indicate that EAD and LAD have distinguished features in terms of metabolic connectivity, with EAD demonstrating more extensive and progressive deterioration. PMID:27445800

  18. Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease.

    PubMed

    Schweizer, Tom A; Ware, Jenna; Fischer, Corinne E; Craik, Fergus I M; Bialystok, Ellen

    2012-09-01

    Much of the research on delaying the onset of symptoms of Alzheimer's disease (AD) has focused on pharmacotherapy, but environmental factors have also been acknowledged to play a significant role. Bilingualism may be one factor contributing to 'cognitive reserve' (CR) and therefore to a delay in symptom onset. If bilingualism is protective, then the brains of bilinguals should show greater atrophy in relevant areas, since their enhanced CR enables them to function at a higher level than would be predicted from their level of disease. We analyzed a number of linear measurements of brain atrophy from the computed tomography (CT) scans of monolingual and bilingual patients diagnosed with probable AD who were matched on level of cognitive performance and years of education. Bilingual patients with AD exhibited substantially greater amounts of brain atrophy than monolingual patients in areas traditionally used to distinguish AD patients from healthy controls, specifically, the radial width of the temporal horn and the temporal horn ratio. Other measures of brain atrophy were comparable for the two groups. Bilingualism appears to contribute to increased CR, thereby delaying the onset of AD and requiring the presence of greater amounts of neuropathology before the disease is manifest.

  19. Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains

    PubMed Central

    2010-01-01

    Background Alzheimer's disease (AD) is a major neurodegenerative disorder leading to amnesia, cognitive impairment and dementia in the elderly. Usually this type of lesions results from dysfunctional protein cooperations in the biological pathways. In addition, AD progression is known to occur in different brain regions with particular features. Thus identification and analysis of crosstalk among dysregulated pathways as well as identification of their clusters in various diseased brain regions are expected to provide deep insights into the pathogenetic mechanism. Results Here we propose a network-based systems biology approach to detect the crosstalks among AD related pathways, as well as their dysfunctions in the six brain regions of AD patients. Through constructing a network of pathways, the relationships among AD pathway and its neighbor pathways are systematically investigated and visually presented by their intersections. We found that the significance degree of pathways related to the fatal disorders and the pathway overlapping strength can indicate the impacts of these neighbored pathways to AD development. Furthermore, the crosstalks among pathways reveal some evidence that the neighbor pathways of AD pathway closely cooperate and play important tasks in the AD progression. Conclusions Our study identifies the common and distinct features of the dysfunctional crosstalk of pathways in various AD brain regions. The global pathway crosstalk network and the clusters of relevant pathways of AD provide evidence of cooperativity among pathways for potential pathogenesis of the neuron complex disease. PMID:20840725

  20. Alzheimer's disease drug development and the problem of the blood-brain barrier

    PubMed Central

    Pardridge, William M.

    2009-01-01

    Alzheimer's disease (AD) drug development is limited by the presence of the blood-brain barrier (BBB). More than 98% of all small molecule drugs, and ∼100% of all large molecule drugs, do not cross the BBB. Despite the fact that the vast majority of AD drug candidates do not cross the BBB, the present-day AD drug development effort is characterized by an imbalance, whereby >99% of the drug development effort is devoted to CNS drug discovery, and <1% of drug development is devoted to CNS drug delivery. Future AD drug development needs a concerted effort to incorporate the BBB sciences early in the CNS drug discovery process. This can be accomplished by a reallocation of resources, and an expansion of the effort in the pure science of BBB biology and the applied science of brain drug targeting technology. PMID:19751922

  1. Contribution of brain imaging to the understanding of gait disorders in Alzheimer's disease: a systematic review.

    PubMed

    Annweiler, Cédric; Beauchet, Olivier; Celle, Sébastien; Roche, Frédéric; Annweiler, Thierry; Allali, Gilles; Bartha, Robert; Montero-Odasso, Manuel

    2012-09-01

    Although gait disorders are common in Alzheimer's disease (AD), determining which brain structures and related lesions are specifically involved is a goal yet to be reached. Our objective was to systematically review all published data that examined associations between gait disorders and brain imaging in AD. Of 486 selected studies, 4 observational studies met the selection criteria. The number of participants ranged from 2 to 61 community dwellers (29%-100% female) with prodromal or dementia-stage AD. Quantitative gait disorders (ie, slower gait velocity explained by shorter stride length) were associated with white matter lesions, mainly in the medial frontal lobes and basal ganglia. The nigrostriatal dopamine system was unaffected. Qualitative gait disorders (ie, higher stride length variability) correlated with lower hippocampal volume and function. Gait disorders in AD could be explained by a high burden of age-related subcortical hyperintensities on the frontal-subcortical circuits (nonspecific) together with hippocampal atrophy and hypometabolism (specific).

  2. Effects of cholinesterase inhibition on brain white matter volume in Alzheimer's disease.

    PubMed

    Venneri, Annalena; Lane, Roger

    2009-02-18

    Brain white matter volume changes were quantified by using voxel-based morphometry in 26 minimal-to-mild Alzheimer's disease patients receiving cholinesterase inhibitors over 20 weeks. Patients treated with rivastigmine, an inhibitor of acetylcholinesterase and butyrylcholinesterase, did not show those reductions in white matter volume that were observed in patients treated with acetylcholinesterase-selective agents, donepezil and galantamine. This is the first time that dual cholinesterase inhibition has been shown to influence white matter volume specifically. The findings are consistent with a thesis that dual cholinesterase inhibition may have neuroprotective potential. Attenuated loss of brain volumes and delayed/slower long-term clinical decline in patients treated with agents such as rivastigmine may be due to less extensive white matter damage and loss of corticosubcortical connectivity.

  3. Loss of functional GABA(A) receptors in the Alzheimer diseased brain.

    PubMed

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Miledi, Ricardo

    2012-06-19

    The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain.

  4. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain.

    PubMed

    Busser, J; Geldmacher, D S; Herrup, K

    1998-04-15

    Alzheimer's disease (AD) is a major dementing illness characterized by regional concentrations of senile plaques, neurofibrillary tangles, and extensive neuronal cell death. Although cell and synaptic loss is most directly linked to the severity of symptoms, the mechanisms leading to the neuronal death remain unclear. Based on evidence linking neuronal death during development to unexpected reappearance of cell cycle events, we investigated the brains of 12 neuropathologically verified cases of Alzheimer's disease and eight age-matched, disease-free controls for the presence of cell cycle proteins. Aberrant expression of cyclin D, cdk4, proliferating cell nuclear antigen, and cyclin B1 were identified in the hippocampus, subiculum, locus coeruleus, and dorsal raphe nuclei, but not inferotemporal cortex or cerebellum of AD cases. With only one exception, control subjects showed no significant expression of cell cycle markers in any of the six regions. We propose that disregulation of various components of the cell cycle is a significant contributor to regionally specific neuronal death in AD.

  5. Alzheimer's disease-like pathology has transient effects on the brain and blood metabolome.

    PubMed

    Pan, Xiaobei; Nasaruddin, Muhammad Bin; Elliott, Christopher T; McGuinness, Bernadette; Passmore, Anthony P; Kehoe, Patrick G; Hölscher, Christian; McClean, Paula L; Graham, Stewart F; Green, Brian D

    2016-02-01

    The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing factors. The extent to which AD pathology affects the metabolome is still not understood nor is it known how disturbances change as the disease progresses. For the first time, we have profiled longitudinally (6, 8, 10, 12, and 18 months) both the brain and plasma metabolome of APPswe/PS1deltaE9 double transgenic and wild-type mice. A total of 187 metabolites were quantified using a targeted metabolomic methodology. Multivariate statistical analysis produced models that distinguished APPswe/PS1deltaE9 from wild-type mice at 8, 10, and 12 months. Metabolic pathway analysis found perturbed polyamine metabolism in both brain and blood plasma. There were other disturbances in essential amino acids, branched-chain amino acids, and also in the neurotransmitter serotonin. Pronounced imbalances in phospholipid and acylcarnitine homeostasis were evident in 2 age groups. AD-like pathology, therefore, affects greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood.

  6. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    PubMed

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease.

  7. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    NASA Astrophysics Data System (ADS)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  8. Amyloid precursor protein mRNA levels in Alzheimer's disease brain.

    PubMed

    Preece, Paul; Virley, David J; Costandi, Moheb; Coombes, Robert; Moss, Stephen J; Mudge, Anne W; Jazin, Elena; Cairns, Nigel J

    2004-03-17

    Insoluble beta-amyloid deposits in Alzheimer's disease (AD) brain are proteolytically derived from the membrane bound amyloid precursor protein (APP). The APP gene is differentially spliced to produce isoforms that can be classified into those containing a Kunitz-type serine protease inhibitor domain (K(+), APP(751), APP(770), APRP(365) and APRP(563)), and those without (K(-), APP(695) and APP(714)). Given the hypothesis that Abeta is a result of aberrant catabolism of APP, differential expression of mRNA isoforms containing protease inhibitors might play an active role in the pathology of AD. We took 513 cerebral cortex samples from 90 AD and 81 control brains and quantified the mRNA isoforms of APP with TaqMan real-time RT-PCR. After adjustment for age at death, brain pH and gender we found a change in the ratio of KPI(+) to KPI(-) mRNA isoforms of APP. Three separate probes, designed to recognise only KPI(+) mRNA species, gave increases of between 28% and 50% in AD brains relative to controls (p=0.002). There was no change in the mRNA levels of KPI-(APP 695) (p=0.898). Therefore, whilst KPI-mRNA levels remained stable the KPI(+) species increased specifically in the AD brains.

  9. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice.

    PubMed

    Cao, Chuanhai; Cirrito, John R; Lin, Xiaoyang; Wang, Li; Wang, Lilly; Verges, Deborah K; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W; Holtzman, David M; Potter, Huntington

    2009-01-01

    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.

  10. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease

    PubMed Central

    Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J

    2016-01-01

    Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410

  11. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease.

    PubMed

    Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J

    2016-10-04

    Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy.

  12. Docosahexaenoic acid homeostasis, brain aging and Alzheimer's disease: Can we reconcile the evidence?

    PubMed

    Cunnane, Stephen C; Chouinard-Watkins, Raphael; Castellano, Christian A; Barberger-Gateau, Pascale

    2013-01-01

    A crossroads has been reached on research into docosahexaenoic acid (DHA) and Alzheimer's disease (AD). On the one hand, several prospective observational studies now clearly indicate a protective effect of higher fish and DHA intake against risk of AD. On the other hand, once AD is clinically evident, supplementation trials demonstrate essentially no benefit of DHA in AD. Despite apparently low DHA intake in AD, brain DHA levels are frequently the same as in controls, suggesting that low DHA intake results in low plasma DHA but does not necessarily reduce brain DHA in humans. Animal models involving dietary omega-3 fatty acid deficiency to deplete brain DHA may therefore not be appropriate in AD research. Studies in the healthy elderly suggest that DHA homeostasis changes during aging. Tracer methodology now permits estimation of DHA half-life in the human brain and whole body. Apolipoprotein E alleles have an important impact not only on AD but also on DHA homeostasis in humans. We therefore encourage further development of innovative approaches to the study of DHA metabolism and its role in human brain function. A better understanding of DHA metabolism in humans will hopefully help explain how higher habitual DHA intake protects against the risk of deteriorating cognition during aging and may eventually give rise to a breakthrough in the treatment of AD.

  13. Protective Effects of Liquiritin on the Brain of Rats with Alzheimer's Disease

    PubMed Central

    Huang, X; Wang, Y; Ren, K

    2015-01-01

    ABSTRACT Background: Alzheimer's disease (AD) is a sort of nerve degenerative disease with clinical manifestation of memory damage and cognitive dysfunction. Its typical pathological change is the abnormal deposition of amyloid-beta (Aβ). Method: In this study, a rat AD model with liquiritin (LQ) interference was established to observe the effects of LQ on the AD rats’ behavioural memory and primary hippocampus cells. Results: Liquiritin had the effect of improving the rats’ learning and memory ability, enhancing the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in rats’ brain tissues, increasing the antioxidant ability, protecting the primary cultured hippocampal neurons and inhibiting the apoptosis induced by Aβ25–35. Conclusion: The protective effects of LQ can be related to the enhancement of antioxidase activity and clearance of oxygen radicals. PMID:27399208

  14. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.

    PubMed

    Hardas, Sarita S; Sultana, Rukhsana; Clark, Amy M; Beckett, Tina L; Szweda, Luke I; Murphy, M Paul; Butterfield, D Allan

    2013-01-01

    Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  15. Apolipoprotein E ε4 modulates functional brain connectome in Alzheimer's disease.

    PubMed

    Wang, Jinhui; Wang, Xiao; He, Yi; Yu, Xin; Wang, Huali; He, Yong

    2015-05-01

    The apolipoprotein E (APOE) ɛ4 allele is a well-established genetic risk factor for Alzheimer's disease (AD). Recent research has demonstrated an APOE ɛ4-mediated modulation of intrinsic functional brain networks in cognitively normal individuals. However, it remains largely unknown whether and how APOE ɛ4 affects the brain's functional network architecture in patients with AD. Using resting-state functional MRI and graph-theory approaches, we systematically investigated the topological organization of whole-brain functional networks in 16 APOE ɛ4 carriers and 26 matched noncarriers with AD at three levels: global whole-brain, intermediate module, and regional node/connection. Neuropsychological analysis showed that the APOE ɛ4 carriers performed worse on delayed memory but better on a late item generation of a verbal fluency task (associated with executive function) than noncarriers. Whole-brain graph analyses revealed that APOE ɛ4 significantly disrupted whole-brain topological organization as characterized by (i) reduced parallel information transformation efficiency; (ii) decreased intramodular connectivity within the posterior default mode network (pDMN) and intermodular connectivity of the pDMN and executive control network (ECN) with other neuroanatomical systems; and (iii) impaired functional hubs and their rich-club connectivities that primarily involve the pDMN, ECN, and sensorimotor systems. Further simulation analysis indicated that these altered connectivity profiles of the pDMN and ECN largely accounted for the abnormal global network topology. Finally, the changes in network topology exhibited significant correlations with the patients' cognitive performances. Together, our findings suggest that the APOE genotype modulates large-scale brain networks in AD and shed new light on the gene-connectome interaction in this disease.

  16. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease.

    PubMed

    Aliev, Gjumrakch; Palacios, Hector H; Walrafen, Brianna; Lipsitt, Amanda E; Obrenovich, Mark E; Morales, Ludis

    2009-10-01

    Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.

  17. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise.

    PubMed

    Tarumi, Takashi; Zhang, Rong

    2014-01-01

    Alzheimer disease (AD) and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  18. Detection of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Longitudinal Brain MRI

    PubMed Central

    Sun, Zhuo; van de Giessen, Martijn; Lelieveldt, Boudewijn P. F.; Staring, Marius

    2017-01-01

    Mild Cognitive Impairment (MCI) is an intermediate stage between healthy and Alzheimer's disease (AD). To enable early intervention it is important to identify the MCI subjects that will convert to AD in an early stage. In this paper, we provide a new method to distinguish between MCI patients that either convert to Alzheimer's Disease (MCIc) or remain stable (MCIs), using only longitudinal T1-weighted MRI. Currently, most longitudinal studies focus on volumetric comparison of a few anatomical structures, thereby ignoring more detailed development inside and outside those structures. In this study we propose to exploit the anatomical development within the entire brain, as found by a non-rigid registration approach. Specifically, this anatomical development is represented by the Stationary Velocity Field (SVF) from registration between the baseline and follow-up images. To make the SVFs comparable among subjects, we use the parallel transport method to align them in a common space. The normalized SVF together with derived features are then used to distinguish between MCIc and MCIs subjects. This novel feature space is reduced using a Kernel Principal Component Analysis method, and a linear support vector machine is used as a classifier. Extensive comparative experiments are performed to inspect the influence of several aspects of our method on classification performance, specifically the feature choice, the smoothing parameter in the registration and the use of dimensionality reduction. The optimal result from a 10-fold cross-validation using 36 month follow-up data shows competitive results: accuracy 92%, sensitivity 95%, specificity 90%, and AUC 94%. Based on the same dataset, the proposed approach outperforms two alternative ones that either depends on the baseline image only, or uses longitudinal information from larger brain areas. Good results were also obtained when scans at 6, 12, or 24 months were used for training the classifier. Besides the

  19. Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes.

    PubMed

    Santa-Maria, Ismael; Varghese, Merina; Ksiezak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M

    2012-06-08

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology.

  20. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  1. Neuropharmacological effect of Mangiferin on brain cholinesterase and brain biogenic amines in the management of Alzheimer's disease.

    PubMed

    Biradar, Siddaruda M; Joshi, Hanumanthachar; Chheda, Tarak K

    2012-05-15

    The present study was conducted to evaluate the neuropharmacological effect of Mangiferin on brain cholinesterase and brain biogenic amines along with its antioxidant status. Scopolamine and natural aging were employed as an experimental amnesia inducing agents. The tested dose of Mangiferin (40, 20 and 10 mg/kg) significantly improved the learning ability and retention of learned memory in Elevated plus Maze and Passive Shock Avoidance exteroceptive behavioural models. Pre-treatment with Mangiferin restored increased whole brain acetylcholinestrease, lipid peroxidation and reduced glutathione due to scopolamine and natural aging. Whole brain increased dopamine and nor-adrenaline content in brain in the inducing groups were reversed by tested doses of Mangiferin insignificantly. Moreover the cerebroprotective effect of Mangiferin was well supported by photomicrographs of Hippocampus of brain, where as severity of cell damage, number of pyknotic black neurons, formation of karyorrhexis, karyolysis and number of neuronal cell death were less comparative to scopolamine group. The observed effects of Mangiferin claim that it would be worthwhile to utilize in the treatment of Alzheimer's disease.

  2. Regional and Gender Study of Neuronal Density in Brain during Aging and in Alzheimer's Disease

    PubMed Central

    Martínez-Pinilla, Eva; Ordóñez, Cristina; del Valle, Eva; Navarro, Ana; Tolivia, Jorge

    2016-01-01

    Background: Learning processes or language development are only some of the cognitive functions that differ qualitatively between men and women. Gender differences in the brain structure seem to be behind these variations. Indeed, this sexual dimorphism at neuroanatomical level is accompanied unequivocally by differences in the way that aging and neurodegenerative diseases affect men and women brains. Objective: The aim of this study is the analysis of neuronal density in four areas of the hippocampus, and entorhinal and frontal cortices to analyze the possible gender influence during normal aging and in Alzheimer's disease (AD). Methods: Human brain tissues of different age and from both sexes, without neurological pathology and with different Braak's stages of AD, were studied. Neuronal density was quantified using the optical dissector. Results: Our results showed the absence of a significant neuronal loss during aging in non-pathological brains in both sexes. However, we have demonstrated specific punctual significant variations in neuronal density related with the age and gender in some regions of these brains. In fact, we observed a higher neuronal density in CA3 and CA4 hippocampal areas of non-pathological brains of young men compared to women. During AD, we observed a negative correlation between Braak's stages and neuronal density in hippocampus, specifically in CA1 for women and CA3 for men, and in frontal cortex for both, men and women. Conclusion: Our data demonstrated a sexual dimorphism in the neuronal vulnerability to degeneration suggesting the need to consider the gender of the individuals in future studies, regarding neuronal loss in aging and AD, in order to avoid problems in interpreting data. PMID:27679571

  3. Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer's disease.

    PubMed

    Bajo, R; Pusil, S; López, M E; Canuet, L; Pereda, E; Osipova, D; Maestú, F; Pekkonen, E

    2015-07-01

    Scopolamine administration may be considered as a psychopharmacological model of Alzheimer's disease (AD). Here, we studied a group of healthy elderly under scopolamine to test whether it elicits similar changes in brain connectivity as those observed in AD, thereby verifying a possible model of AD impairment. We did it by testing healthy elderly subjects in two experimental conditions: glycopyrrolate (placebo) and scopolamine administration. We then analyzed magnetoencephalographic (MEG) data corresponding to both conditions in resting-state with eyes closed. This analysis was performed in source space by combining a nonlinear frequency band-specific measure of functional connectivity (phase locking value, PLV) with network analysis methods. Under scopolamine, functional connectivity between several brain areas was significantly reduced as compared to placebo, in most frequency bands analyzed. Besides, regarding the two complex network indices studied (clustering and shortest path length), clustering significantly decreased in the alpha band while shortest path length significantly increased also in alpha band both after scopolamine administration. Overall our findings indicate that both PLV and graph analysis are suitable tools to measure brain connectivity changes induced by scopolamine, which causes alterations in brain connectivity apparently similar to those reported in AD.

  4. Construction and Analysis of Weighted Brain Networks from SICE for the Study of Alzheimer's Disease

    PubMed Central

    Munilla, Jorge; Ortiz, Andrés; Górriz, Juan M.; Ramírez, Javier; Weiner, Michael W.

    2017-01-01

    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people, and current drugs, unfortunately, do not represent yet a cure but only slow down its progression. This is explained, at least in part, because the understanding of the neurodegenerative process is still incomplete, being sometimes mistaken, particularly at the first steps of the illness, with the natural aging process. A better identification of how the functional activity deteriorates is thus crucial to develop new and more effective treatments. Sparse inverse covariance estimates (SICE) have been recently employed for deriving functional connectivity patterns from Positron Emission Tomography (PET) of brains affected by Alzheimer's Disease. SICE, unlike the traditional covariance methods, allows to analyze the interdependencies between brain regions factoring out the influence of others. To analyze the effects of the illness, connectivity patterns of brains affected by AD are compared with those obtained for control groups. These comparisons are, however, carried out for binary (undirected and unweighted) adjacency matrices with the same number of arcs. Additionally, the effect of the number of subjects employed or the validity of the regularization parameter used to compute the SICE have been not hitherto analyzed. In this paper, we delve into the construction of connectivity patterns from PET using SICE. In particular, we describe the effect that the number of subjects employed has on the results and identify, based on the reconstruction error of linear regression systems, a range of valid values for the regularization parameter. The amount of arcs is also proved as a discriminant value, and we show that it is possible to pass from unweighted (binary) to weighted adjacency matrices, where the weight of a connection corresponding to the existence of a relationship between two brain areas can be correlated to the persistence of this relationship when computed for different

  5. Construction and Analysis of Weighted Brain Networks from SICE for the Study of Alzheimer's Disease.

    PubMed

    Munilla, Jorge; Ortiz, Andrés; Górriz, Juan M; Ramírez, Javier

    2017-01-01

    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people, and current drugs, unfortunately, do not represent yet a cure but only slow down its progression. This is explained, at least in part, because the understanding of the neurodegenerative process is still incomplete, being sometimes mistaken, particularly at the first steps of the illness, with the natural aging process. A better identification of how the functional activity deteriorates is thus crucial to develop new and more effective treatments. Sparse inverse covariance estimates (SICE) have been recently employed for deriving functional connectivity patterns from Positron Emission Tomography (PET) of brains affected by Alzheimer's Disease. SICE, unlike the traditional covariance methods, allows to analyze the interdependencies between brain regions factoring out the influence of others. To analyze the effects of the illness, connectivity patterns of brains affected by AD are compared with those obtained for control groups. These comparisons are, however, carried out for binary (undirected and unweighted) adjacency matrices with the same number of arcs. Additionally, the effect of the number of subjects employed or the validity of the regularization parameter used to compute the SICE have been not hitherto analyzed. In this paper, we delve into the construction of connectivity patterns from PET using SICE. In particular, we describe the effect that the number of subjects employed has on the results and identify, based on the reconstruction error of linear regression systems, a range of valid values for the regularization parameter. The amount of arcs is also proved as a discriminant value, and we show that it is possible to pass from unweighted (binary) to weighted adjacency matrices, where the weight of a connection corresponding to the existence of a relationship between two brain areas can be correlated to the persistence of this relationship when computed for different

  6. Brain structure and function related to depression in Alzheimer's disease: contributions from neuroimaging research.

    PubMed

    Brommelhoff, Jessica A; Sultzer, David L

    2015-01-01

    The development of minimally invasive in vivo methods for imaging the brain has allowed for unprecedented advancement in our understanding of brain-behavior relationships. Structural, functional, and multimodal neuroimaging techniques have become more sophisticated in detecting structural and physiological abnormalities that may underlie various affective disorders and neurological illnesses such as depression in Alzheimer's disease (AD). In general, neuroimaging studies of depression in AD investigate whether depression is associated with damage to structures in specific neural networks involving frontal and subcortical structures or with functional disruption of cortical neural systems. This review provides an overview of how various imaging modalities have contributed to our understanding of the neurobiology of depression in AD. At present, the literature does not conclusively support any specific pathogenesis for depression, and it is not clear whether patients with AD and depression have histopathological and neurochemical characteristics that contribute to mood symptoms that are different from cognitively intact individuals with depression. Neuroimaging studies suggest that atrophy of temporal or frontal structures, white matter lesions in frontal lobe or subcortical systems, reduced activity in dorsolateral frontal cortex, or small vessel cerebrovascular disease may be associated with depression in AD. Conceptual, clinical, and methodological challenges in studying this relationship are discussed. Further work is needed to understand the specific brain structures, relevant white matter tracts, and interactions among them that are most important. This review concludes with potential directions for future research.

  7. [Theoretic basis on the same therapeutic program for different degenerative brain diseases in terms of the Governor Vessel: Alzheimer's disease and Parkinson's disease].

    PubMed

    Wu, Junyan; Wang, Jie; Zhang, Junlong

    2015-05-01

    Through the consultation of TCM ancient classical theory, the relationship of kidney essence, marrow and brain is analyzed. It is discovered that the degenerative brain diseases, represented by Alzheimer's disease (AD) and Parkinson's disease (PD) share the same etiological basis as "kidney essence deficiency and brain marrow emptiness" and have the mutual pathological outcomes as yang qi declining. The Governor Vessel gathers yang qi of the whole body and maintains the normal functional activity of zangfu organs in the human body through the storage, regulation and invigoration of yang qi. It is viewed that the theory of the Governor Vessel is applied to treat the different degenerative brain diseases, which provides the theoretic support and practice guide for the thought of TCM as the same therapeutic program for the different diseases. As a result, the degenerative brain diseases can be retarded and the approach is provided to the effective prevention and treatment of degenerative diseases in central nerve system:

  8. A proposed strategy for international collaborative research in brain aging and Alzheimer's disease.

    PubMed

    Khachaturian, Z S; Radebaugh, T S

    1990-01-01

    A description and discussion are given of several of the programmes initiated by the United States' National Institute on Aging that could be expanded to facilitate multicentre collaboration studies. It includes: the Alzheimer's Disease Research Centers; the Alzheimer's Disease Patient Registry Program; the World Health Organization Special Programme for Research on Aging; and how collaborative links with scientists working on this disease in other countries may be established.

  9. Developing drugs that can cross the blood-brain barrier: applications to Alzheimer's disease.

    PubMed

    Banks, William A

    2008-12-10

    Development of therapeutics for the central nervous system is one of the most challenging areas in drug development. This is primarily because, in addition to all of the other complications one faces in developing new drugs targeting peripheral sites, one must also negotiate the blood-brain barrier (BBB). There are dozens of strategies to overcome the obstacle of the BBB, but many of these are bound to fail, barring extreme serendipity, because they are based on an inaccurate or incomplete picture of the BBB. This article therefore starts with a brief review of the BBB as it pertains to drug development. It then examines some examples of the delivery of drugs to the central nervous system that are relevant to Alzheimer's disease, placing emphasis on peptides, antibodies, and antisense oligonucleotides.

  10. PSEN1 and PSEN2 gene expression in Alzheimer's disease brain: a new approach.

    PubMed

    Delabio, Roger; Rasmussen, Lucas; Mizumoto, Igor; Viani, Gustavo-Arruda; Chen, Elizabeth; Villares, João; Costa, Isabela-Bazzo; Turecki, Gustavo; Linde, Sandra Aparecido; Smith, Marilia Cardoso; Payão, Spencer-Luiz

    2014-01-01

    Presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes encode the major component of y-secretase, which is responsible for sequential proteolytic cleavages of amyloid precursor proteins and the subsequent formation of amyloid-β peptides. 150 RNA samples from the entorhinal cortex, auditory cortex and hippocampal regions of individuals with Alzheimer's disease (AD) and controls elderly subjects were analyzed with using real-time rtPCR. There were no differences between groups for PSEN1 expression. PSEN2 was significantly downregulated in the auditory cortex of AD patients when compared to controls and when compared to other brain regions of the patients. Alteration in PSEN2 expression may be a risk factor for AD.

  11. Voxel-based discriminant map classification on brain ventricles for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Wang, Jingnan; de Haan, Gerard; Unay, Devrim; Soldea, Octavian; Ekin, Ahmet

    2009-02-01

    One major hallmark of the Alzheimer's disease (AD) is the loss of neurons in the brain. In many cases, medical experts use magnetic resonance imaging (MRI) to qualitatively measure the neuronal loss by the shrinkage or enlargement of the structures-of-interest. Brain ventricle is one of the popular choices. It is easily detectable in clinical MR images due to the high contrast of the cerebro-spinal fluid (CSF) with the rest of the parenchyma. Moreover, atrophy in any periventricular structure will directly lead to ventricle enlargement. For quantitative analysis, volume is the common choice. However, volume is a gross measure and it cannot capture the entire complexity of the anatomical shape. Since most existing shape descriptors are complex and difficult-to-reproduce, more straightforward and robust ways to extract ventricle shape features are preferred in the diagnosis. In this paper, a novel ventricle shape based classification method for Alzheimer's disease has been proposed. Training process is carried out to generate two probability maps for two training classes: healthy controls (HC) and AD patients. By subtracting the HC probability map from the AD probability map, we get a 3D ventricle discriminant map. Then a matching coefficient has been calculated between each training subject and the discriminant map. An adjustable cut-off point of the matching coefficients has been drawn for the two classes. Generally, the higher the cut-off point that has been drawn, the higher specificity can be achieved. However, it will result in relatively lower sensitivity and vice versa. The benchmarked results against volume based classification show that the area under the ROC curves for our proposed method is as high as 0.86 compared with only 0.71 for volume based classification method.

  12. Cellular model studies of brain-mediated phototherapy on Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Liu, Timon Cheng-Yi; Hu, Bina; Li, Xiao-Yun; Wang, Yong-Qing

    2008-12-01

    Alzheimer's disease (AD) is now the most common neurodegenerative disease. Despite approval of several drugs for AD, the disease continues to rob millions of their memories and their lives. We have studied the cellular models of brain-mediated phototherapy on AD, and the studies will be reviewed in this paper. Genetic studies have shown that dysfunction of amyloid β-protein (Aβ) or tau is sufficient to cause AD. Aβ or Aβ induced redox stress induced neuron apoptosis might be as a cellular model of AD. We found red light at 640+/-15 nm from light emitting diode array (RLED640) might inhibit Aβ 25-35 induced PC12 cell apoptosis, which is mediated by cyclic adenosine monophosphate, and it might inhibit hydrogen peroxide (H2O2) induced differentiated PC12 cell (dPC12) apoptosis, which is mediated by tyrosine hydroxylase. There is rhythm dysfunction in AD. We found low intensity 810 nm laser irradiation might rehabilitate TNF-alpha induced inhibition of clock gen expression of NIH 3T3 fibroblasts. Our studies provide a foundation for photobiomodulation on brain to rehabilitate AD.

  13. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease.

    PubMed

    Zhang, Chi; Chen, Jie; Feng, Chengcheng; Shao, Xiayan; Liu, Qingfeng; Zhang, Qizhi; Pang, Zhiqing; Jiang, Xinguo

    2014-01-30

    Disabilities caused by neurodegeneration have become one of the main causes of mortality in elderly population, with drug distribution to the brain remaining one of the most difficult challenges in the treatment of the central nervous system (CNS) diseases due to the existence of blood-brain barrier. Lectins modified polyethylene glycol-polylactide-polyglycolide (PEG-PLGA) nanoparticles could enhance the drug delivery to the brain following intranasal administration. In this study, basic fibroblast growth factor (bFGF) was entrapped in nanoparticles conjugated with Solanum tuberosum lectin (STL), which selectively binds to N-acetylglucosamine on the nasal epithelial membrane for its brain delivery. The resulting nanoparticles had uniform particle size and negative zeta potential. The brain distribution of the formulations following intranasal administration was assessed using radioisotopic tracing method. The areas under the concentration-time curve of (125)I-bFGF in the olfactory bulb, cerebrum, and cerebellum of rats following nasal application of STL modified nanoparticles (STL-bFGF-NP) were 1.79-5.17 folds of that of rats with intravenous administration, and 0.61-2.21 and 0.19-1.07 folds higher compared with intranasal solution and unmodified nanoparticles, respectively. Neuroprotective effect was evaluated using Mirror water maze task in rats with intracerebroventricular injection of β-amyloid25-35 and ibotenic acid. The spatial learning and memory of Alzheimer's disease (AD) rats in STL-bFGF-NP group were significantly improved compared with AD model group, and were also better than other preparations. The results were consistent with the value of choline acetyltransferase activity of rat hippocampus as well as the histological observations of rat hippocampal region. The histopathology assays also confirmed the in vivo safety of STL-bFGF-NP. These results clearly indicated that STL-NP was a promising drug delivery system for peptide and protein drugs such as

  14. [Study on Brain Functional Connectivity Using Resting State Electroencephalogram Based on Synchronization Likelihood in Alzheimer's Disease].

    PubMed

    Li, Li; Chen, Jingjing; Zheng, Xuyuan

    2015-10-01

    Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disease with progressive cognitive dysfunction as the main feature. How to identify the early changes of cognitive dysfunction and give appropriate treatments is of great significance to delay the onset of dementia. Some other researches have shown that AD is associated with abnormal changes of brain networks. To study human brain functional connectivity characteristics in AD, 16 channels electroencephalogram (EEG) were recorded under resting and eyes-closed condition in 15 AD patients and 15 subjects in the control group. The synchronization likelihood of the full-band and alpha-band (8-13 Hz) data were evaluated, which resulted in the synchronization likelihood coefficient matrices. Considering a threshold T, the matrices were converted into binary graphs. Then the graphs of two groups were measured by topological parameters including the clustering coefficient and global efficiency. The results showed that the global efficiency of the network in full-band EEG was significantly smaller in AD group for the values of T = 0.06 and T = 0.07, but there was no statistically significant difference in the clustering coefficients between the two groups for the values of T (0.05-0.07). However, the clustering coefficient and global efficiency were significantly lower in AD patients at alpha-band for the same threshold range than those of subjects in the control group. It suggests that there may be decreases of the brain connectivity strength in AD patients at alpha-band of the resting-state EEG. This study provides a support for quantifying functional brain state of AD from the brain network perspective.

  15. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease.

    PubMed

    Mancini, Simona; Minniti, Stefania; Gregori, Maria; Sancini, Giulio; Cagnotto, Alfredo; Couraud, Pierre-Olivier; Ordóñez-Gutiérrez, Lara; Wandosell, Francisco; Salmona, Mario; Re, Francesca

    2016-01-01

    We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aβ in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aβ peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aβ oligomers (Aβo), but not of Aβ fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aβo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aβo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aβ level, suggesting that Aβ-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-β (Aβ) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease.

  16. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  17. Alzheimer's disease: connecting findings from graph theoretical studies of brain networks.

    PubMed

    Tijms, Betty M; Wink, Alle Meije; de Haan, Willem; van der Flier, Wiesje M; Stam, Cornelis J; Scheltens, Philip; Barkhof, Frederik

    2013-08-01

    The interrelationships between pathological processes and emerging clinical phenotypes in Alzheimer's disease (AD) are important yet complicated to study, because the brain is a complex network where local disruptions can have widespread effects. Recently, properties in brain networks obtained with neuroimaging techniques have been studied in AD with tools from graph theory. However, the interpretation of graph alterations remains unclear, because the definition of connectivity depends on the imaging modality used. Here we examined which graph properties have been consistently reported to be disturbed in AD studies, using a heuristically defined "graph space" to investigate which theoretical models can best explain graph alterations in AD. Findings from structural and functional graphs point to a loss of highly connected areas in AD. However, studies showed considerable variability in reported group differences of most graph properties. This suggests that brain graphs might not be isometric, which complicates the interpretation of graph measurements. We highlight confounding factors such as differences in graph construction methods and provide recommendations for future research.

  18. A Spherical Brain Mapping of MR Images for the Detection of Alzheimer's Disease.

    PubMed

    Martinez-Murcia, F J; Górriz, J M; Ramírez, J; Ortiz, A; For The Alzheimer's Disease Neuroimaging Initiative

    2016-01-01

    Magnetic Resonance Imaging (MRI) is of fundamental importance in neuroscience, providing good contrast and resolution, as well as not being considered invasive. Despite the development of newer techniques involving radiopharmaceuticals, it is still a recommended tool in Alzheimer's Disease (AD) neurological practice to assess neurodegeneration, and recent research suggests that it could reveal changes in the brain even before the symptomatology appears. In this paper we propose a method that performs a Spherical Brain Mapping, using different measures to project the three-dimensional MR brain images onto two-dimensional maps revealing statistical characteristics of the tissue. The resulting maps could be assessed visually, but also perform a significant feature reduction that will allow further supervised or unsupervised processing, reducing the computational load while maintaining a large amount of the original information. We have tested our methodology against a MRI database comprising 180 AD affected patients and 180 normal controls, where some of the mappings have revealed as an optimum strategy for the automatic processing and characterization of AD patterns, achieving up to a 90.9% of accuracy, as well as significantly reducing the computational load. Additionally, our maps allow the visual analysis and interpretation of the images, which can be of great help in the diagnosis of this and other types of dementia.

  19. Fungal Enolase, β-Tubulin, and Chitin Are Detected in Brain Tissue from Alzheimer's Disease Patients.

    PubMed

    Pisa, Diana; Alonso, Ruth; Rábano, Alberto; Horst, Michael N; Carrasco, Luis

    2016-01-01

    Recent findings provide evidence that fungal structures can be detected in brain tissue from Alzheimer's disease (AD) patients using rabbit polyclonal antibodies raised against whole fungal cells. In the present work, we have developed and tested specific antibodies that recognize the fungal proteins, enolase and β-tubulin, and an antibody that recognizes the fungal polysaccharide chitin. Consistent with our previous studies, a number of rounded yeast-like and hyphal structures were detected using these antibodies in brain sections from AD patients. Some of these structures were intracellular and, strikingly, some were found to be located inside nuclei from neurons, whereas other fungal structures were detected extracellularly. Corporya amylacea from AD patients also contained enolase and β-tubulin as revealed by these selective antibodies, but were devoid of fungal chitin. Importantly, brain sections from control subjects were usually negative for staining with the three antibodies. However, a few fungal structures can be observed in some control individuals. Collectively, these findings indicate the presence of two fungal proteins, enolase and β-tubulin, and the polysaccharide chitin, in CNS tissue from AD patients. These findings are consistent with our hypothesis that AD is caused by disseminated fungal infection.

  20. Direct visualization of fungal infection in brains from patients with Alzheimer's disease.

    PubMed

    Pisa, Diana; Alonso, Ruth; Juarranz, Angeles; Rábano, Alberto; Carrasco, Luis

    2015-01-01

    Recently, we have reported the presence of fungal infections in patients with Alzheimer's disease (AD). Accordingly, fungal proteins and DNA were found in brain samples, demonstrating the existence of infection in the central nervous system. In the present work, we raised antibodies to specific fungal species and performed immunohistochemistry to directly visualize fungal components inside neurons from AD patients. Mice infected with Candida glabrata were initially used to assess whether yeast can be internalized in mammalian tissues. Using polyclonal rabbit antibodies against C. glabrata, rounded immunopositive cells could be detected in the cytoplasm of cells from liver, spleen, and brain samples in infected, but not uninfected, mice. Immunohistochemical analyses of tissue from the frontal cortex of AD patients revealed the presence of fungal material in a small percentage (~10%) of cells, suggesting the presence of infection. Importantly, this immunopositive material was absent in control samples. Confocal microscopy indicated that this fungal material had an intracellular localization. The specific morphology of this material varied between patients; in some instances, disseminated material was localized to the cytoplasm, whereas small punctate bodies were detected in other patients. Interestingly, fungal material could be revealed using different anti-fungal antibodies, suggesting multiple infections. In summary, fungal infection can only be observed using specific anti-fungal antibodies and only a small percentage of cells contain fungi. Our findings provide an explanation for the hitherto elusive detection of fungi in AD brains, and are consistent with the idea that fungal cells are internalized inside neurons.

  1. The role of calsyntenin-3 in dystrophic neurite formation in Alzheimer's disease brain.

    PubMed

    Uchida, Yoko; Gomi, Fujiya

    2016-03-01

    β-Amyloid (Aβ) oligomers may play an important role in the early pathogenesis of Alzheimer's disease: cognitive impairment caused by synaptic dysfunction. Dystrophic neurites surrounding Aβ plaques, another pathological feature of Alzheimer's disease, are plaque-associated neuritic alterations preceding the appearance of synaptic loss. In the present review, we focus on the mechanism of dystrophic neurite formation by Aß oligomers, and discuss the neurotoxic role of Aβ-induced calsyntenin-3 in mediating dystrophic neurite formation.

  2. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    PubMed Central

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  3. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease

    PubMed Central

    Lipinski, Marta M.; Zheng, Bin; Lu, Tao; Yan, Zhenyu; Py, Bénédicte F.; Ng, Aylwin; Xavier, Ramnik J.; Li, Cheng; Yankner, Bruce A.; Scherzer, Clemens R.; Yuan, Junying

    2010-01-01

    Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as common mediators upstream of the activation of the type III PI3 kinase, which is critical for the initiation of autophagy. Furthermore, ROS play an essential function in the induction of the type III PI3 kinase and autophagy in response to amyloid β peptide, the main pathogenic mediator of Alzheimer's disease (AD). However, lysosomal blockage also caused by Aβ is independent of ROS. In addition, we demonstrate that autophagy is transcriptionally down-regulated during normal aging in the human brain. Strikingly, in contrast to normal aging, we observe transcriptional up-regulation of autophagy in the brains of AD patients, suggesting that there might be a compensatory regulation of autophagy. Interestingly, we show that an AD drug and an AD drug candidate have inhibitory effects on autophagy, raising the possibility that decreasing input into the lysosomal system may help to reduce cellular stress in AD. Finally, we provide a list of candidate drug targets that can be used to safely modulate levels of autophagy without causing cell death. PMID:20660724

  4. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain.

    PubMed

    Varnum, Megan M; Ikezu, Tsuneya

    2012-08-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function. There is no therapy that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states in AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules such as interleukin-4 and CD200 have proven to be important anti-inflammatory mediators in the regulation of neuroinflammation in the brain, which will be discussed in detail for their therapeutic potential.

  5. Genetics of Alzheimer's Disease

    PubMed Central

    Ridge, Perry G.; Ebbert, Mark T. W.; Kauwe, John S. K.

    2013-01-01

    Alzheimer's disease is the most common form of dementia and is the only top 10 cause of death in the United States that lacks disease-altering treatments. It is a complex disorder with environmental and genetic components. There are two major types of Alzheimer's disease, early onset and the more common late onset. The genetics of early-onset Alzheimer's disease are largely understood with variants in three different genes leading to disease. In contrast, while several common alleles associated with late-onset Alzheimer's disease, including APOE, have been identified using association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset Alzheimer's disease. PMID:23984328

  6. Alzheimer disease: focus on computed tomography.

    PubMed

    Reynolds, April

    2013-01-01

    Alzheimer disease is the most common type of dementia, affecting approximately 5.3 million Americans. This debilitating disease is marked by memory loss, confusion, and loss of cognitive ability. The exact cause of Alzheimer disease is unknown although research suggests that it might result from a combination of factors. The hallmarks of Alzheimer disease are the presence of beta-amyloid plaques and neurofibrillary tangles in the brain. Radiologic imaging can help physicians detect these structural characteristics and monitor disease progression and brain function. Computed tomography and magnetic resonance imaging are considered first-line imaging modalities for the routine evaluation of Alzheimer disease.

  7. Toward a brain-computer interface for Alzheimer's disease patients by combining classical conditioning and brain state classification.

    PubMed

    Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha

    2012-01-01

    Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.

  8. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    PubMed Central

    Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat

    2015-01-01

    Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497

  9. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

    PubMed

    Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C

    2017-02-28

    Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional

  10. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis.

    PubMed

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer

    2014-06-20

    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials.

  11. Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer's disease.

    PubMed

    Bozzali, Marco; Parker, Geoffrey J M; Serra, Laura; Embleton, Karl; Gili, Tommaso; Perri, Roberta; Caltagirone, Carlo; Cercignani, Mara

    2011-02-01

    Previous studies suggest that the clinical manifestations of Alzheimer's disease (AD) are not only associated with regional gray matter damage but also with abnormal functional integration of different brain regions by disconnection mechanisms. A measure of anatomical connectivity (anatomical connectivity mapping or ACM) can be obtained by initiating diffusion tractography streamlines from all parenchymal voxels and then counting the number of streamlines passing through each voxel of the brain. In order to assess the potential of this parameter for the study of disconnection in AD, we computed it in a group of patients with AD (N=9), in 16 patients with amnestic mild cognitive impairment (a-MCI, which is considered the prodromal stage of AD) and in 12 healthy volunteers. All subjects had an MRI scan at 3T, and diffusion MRI data were analyzed to obtain fractional anisotropy (FA) and ACM. Two types of ACM maps, absolute count (ac-ACM) and normalized by brain size count (nc-ACM), were obtained. No between group differences in FA surviving correction for multiple comparison were found, while areas of both decreased (in the supramarginal gyrus) and increased (in the putamen) ACM were found in patients with AD. Similar results were obtained with ac-ACM and nc-ACM. ACM of the supramarginal gyrus was strongly associated with measures of short-term memory in healthy subjects. This study shows that ACM provides information that is complementary to that offered by FA and appears to be more sensitive than FA to brain changes in patients with AD. The increased ACM in the putamen was unexpected. Given the nature of ACM, an increase of this parameter may reflect a change in any of the areas connected to it. One intriguing possibility is that this increase of ACM in AD patients might reflect processes of brain plasticity driven by cholinesterase inhibitors.

  12. Redox Proteomics Analysis to Decipher the Neurobiology of Alzheimer-like Neurodegeneration: Overlaps in Down Syndrome and Alzheimer Disease Brain

    PubMed Central

    Butterfield, D. Allan; Di Domenico, Fabio; Swomley, Aaron M.; Head, Elizabeth; Perluigi, Marzia

    2015-01-01

    Accumulation of oxidative damage is a common feature of neurodegeneration that together with mitochondrial dysfunction point to the fact that reactive oxygen species are major contributors to loss of neuronal homeostasis and cell death. Among several targets of oxidative stress, free radical-mediated damage to proteins is particularly important in aging and age-related neurodegenerative diseases. In the majority of cases, oxidative stress mediated post-translational modifications cause non-reversible modifications of protein structure that consistently lead to impaired function. Redox proteomics methods are powerful tools to unravel the complexity of neurodegeneration, by identifying brain proteins with oxidative post-translational modifications that are detrimental for protein function. The present review discusses the current literature showing evidence of impaired pathways linked to oxidative stress possibly involved in the neurodegenerative process leading to the development of Alzheimer-like dementia. In particular, we focus attention on dysregulated pathways that underlie neurodegeneration in both aging adults with Down syndrome (DS) and AD. Since AD pathology is age-dependent in DS and shows similarities with AD, identification of common oxidized proteins by redox proteomics in both DS and AD can improve our understanding of the overlapping mechanisms that lead from normal aging to development of AD. The most relevant proteomics findings highlight that disturbance of protein homeostasis and energy production are central mechanisms of neurodegeneration and overlap in aging DS and AD. Protein oxidation impacts crucial intracellular functions and may be considered a “leitmotif” of degenerating neurons. Therapeutic strategies aimed at preventing/reducing multiple components of processes leading to accumulation of oxidative damage will be critical in future studies. PMID:25242166

  13. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy.

    PubMed

    Desai, Brinda S; Monahan, Angela J; Carvey, Paul M; Hendey, Bill

    2007-01-01

    The blood-brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.

  14. Physical activity, body mass index, and brain atrophy in Alzheimer's disease.

    PubMed

    Boyle, Christina P; Raji, Cyrus A; Erickson, Kirk I; Lopez, Oscar L; Becker, James T; Gach, H Michael; Longstreth, W T; Teverovskiy, Leonid; Kuller, Lewis H; Carmichael, Owen T; Thompson, Paul M

    2015-01-01

    The purpose of this study was to use a novel imaging biomarker to assess associations between physical activity (PA), body mass index (BMI), and brain structure in normal aging, mild cognitive impairment, and Alzheimer's dementia. We studied 963 participants (mean age: 74.1 ± 4.4 years) from the multisite Cardiovascular Health Study including healthy controls (n = 724), Alzheimer's dementia patients (n = 104), and people with mild cognitive impairment (n = 135). Volumetric brain images were processed using tensor-based morphometry to analyze regional brain volumes. We regressed the local brain tissue volume on reported PA and computed BMI, and performed conjunction analyses using both variables. Covariates included age, sex, and study site. PA was independently associated with greater whole brain and regional brain volumes and reduced ventricular dilation. People with higher BMI had lower whole brain and regional brain volumes. A PA-BMI conjunction analysis showed brain preservation with PA and volume loss with increased BMI in overlapping brain regions. In one of the largest voxel-based cross-sectional studies to date, PA and lower BMI may be beneficial to the brain across the spectrum of aging and neurodegeneration.

  15. Rapidly progressive Alzheimer disease.

    PubMed

    Schmidt, Christian; Wolff, Martin; Weitz, Michael; Bartlau, Thomas; Korth, Carsten; Zerr, Inga

    2011-09-01

    Different rates of progression have been observed among patients with Alzheimer disease. Risk factors that accelerate deterioration have been identified and some are being discussed, such as genetics, comorbidity, and the early appearance of Alzheimer disease motor signs. Progressive forms of Alzheimer disease have been reported with rapid cognitive decline and disease duration of only a few years. This short review aims to provide an overview of the current knowledge of rapidly progressive Alzheimer disease. Furthermore, we suggest that rapid, in this context, should be defined as a Mini-Mental State Examination score decrease of 6 points per year.

  16. [Proceeding memory in Alzheimer's disease].

    PubMed

    Arroyo-Anlló, Eva Ma; Chamorro-Sánchez, Jorge; Díaz-Marta, Juan Poveda; Gil, Roger

    2013-01-01

    Procedural learning can acquire or develop skills through performance and repetition of a task unconsciously or unintentionally. Procedural skills are considered as the cornerstone in the neuropsychological rehabilitation to promote the autonomy of patients with brain damage, as those with Alzheimer's disease. This review presents data about procedural skills in Alzheimer's disease. Over the past three decades, we have found 40 articles studying various procedural skills in the Alzheimer's disease: motor, perceptual-motor, cognitive, perceptual-cognitive and those developed through serial reaction-time paradigm. We analyzed every study evaluating a procedural skill, indicating the used task and preservation or no preservation of procedural learning. Overall, most of the papers published describe conservation of learning procedures or relatively conserved in Alzheimer's disease, which could be used to promote patient autonomy.

  17. Multifunctional Roles of Enolase in Alzheimer Disease Brain: Beyond Altered Glucose Metabolism

    PubMed Central

    Butterfield, D. Allan; Bader Lange, Miranda L.

    2015-01-01

    Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, since there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified α-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD (EOAD), and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, α-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, EOAD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder. PMID:19780894

  18. Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers.

    PubMed

    Carvalho, Cristina; Santos, Maria S; Oliveira, Catarina R; Moreira, Paula I

    2015-08-01

    We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D.

  19. CFH Variants Affect Structural and Functional Brain Changes and Genetic Risk of Alzheimer's Disease.

    PubMed

    Zhang, Deng-Feng; Li, Jin; Wu, Huan; Cui, Yue; Bi, Rui; Zhou, He-Jiang; Wang, Hui-Zhen; Zhang, Chen; Wang, Dong; Kong, Qing-Peng; Li, Tao; Fang, Yiru; Jiang, Tianzi; Yao, Yong-Gang

    2016-03-01

    The immune response is highly active in Alzheimer's disease (AD). Identification of genetic risk contributed by immune genes to AD may provide essential insight for the prognosis, diagnosis, and treatment of this neurodegenerative disease. In this study, we performed a genetic screening for AD-related top immune genes identified in Europeans in a Chinese cohort, followed by a multiple-stage study focusing on Complement Factor H (CFH) gene. Effects of the risk SNPs on AD-related neuroimaging endophenotypes were evaluated through magnetic resonance imaging scan, and the effects on AD cerebrospinal fluid biomarkers (CSF) and CFH expression changes were measured in aged and AD brain tissues and AD cellular models. Our results showed that the AD-associated top immune genes reported in Europeans (CR1, CD33, CLU, and TREML2) have weak effects in Chinese, whereas CFH showed strong effects. In particular, rs1061170 (P(meta)=5.0 × 10(-4)) and rs800292 (P(meta)=1.3 × 10(-5)) showed robust associations with AD, which were confirmed in multiple world-wide sample sets (4317 cases and 16 795 controls). Rs1061170 (P=2.5 × 10(-3)) and rs800292 (P=4.7 × 10(-4)) risk-allele carriers have an increased entorhinal thickness in their young age and a higher atrophy rate as the disease progresses. Rs800292 risk-allele carriers have higher CSF tau and Aβ levels and severe cognitive decline. CFH expression level, which was affected by the risk-alleles, was increased in AD brains and cellular models. These comprehensive analyses suggested that CFH is an important immune factor in AD and affects multiple pathological changes in early life and during disease progress.

  20. Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer's disease.

    PubMed

    Ewers, Michael; Schmitz, Susanne; Hansson, Oskar; Walsh, Cathal; Fitzpatrick, Annette; Bennett, David; Minthon, Lennart; Trojanowski, John Q; Shaw, Leslie M; Faluyi, Yetunde O; Vellas, Bruno; Dubois, Bruno; Blennow, Kaj; Buerger, Katharina; Teipel, Stefan J; Weiner, Michael; Hampel, Harald

    2012-08-01

    Weight changes are common in aging and Alzheimer's disease (AD) and postmortem findings suggest a relation between lower body mass index (BMI) and increased AD brain pathology. In the current multicenter study, we tested whether lower BMI is associated with higher core AD brain pathology as assessed by cerebrospinal fluid (CSF)-based biological markers of AD in 751 living subjects: 308 patients with AD, 296 subjects with amnestic mild cognitive impairment (MCI), and 147 elderly healthy controls (HC). Based upon a priori cutoff values on CSF concentration of total tau and beta-amyloid (Aβ(1-42)), subjects were binarized into a group with abnormal CSF biomarker signature (CSF+) and those without (CSF-). Results showed that BMI was significantly lower in the CSF+ when compared with the CSF- group (F = 27.7, df = 746, p < 0.001). There was no interaction between CSF signature and diagnosis or apolipoprotein E (ApoE) genotype. In conclusion, lower BMI is indicative of AD pathology as assessed with CSF-based biomarkers in demented and nondemented elderly subjects.

  1. Rab6 is increased in Alzheimer's disease brain and correlates with endoplasmic reticulum stress.

    PubMed

    Scheper, W; Hoozemans, J J M; Hoogenraad, C C; Rozemuller, A J M; Eikelenboom, P; Baas, F

    2007-10-01

    Alzheimer's disease (AD) is characterized by deposits of aggregated proteins. Accumulation of aggregation-prone proteins activates protein quality control mechanisms, such as the unfolded protein response (UPR) in the endoplasmic reticulum (ER). We previously reported upregulation of the UPR marker BiP in AD brain. In this study, we investigated the small GTPase Rab6, which is involved in retrograde Golgi-ER trafficking and may function as a post-ER quality control system. Using immunohistochemistry and semiquantitative Western blotting, the expression of Rab6 was analysed in hippocampus, entorhinal and temporal cortex of 10 AD patients and six nondemented control subjects. Rab6 is upregulated in AD temporal cortex from Braak stage 3/4, the same stage that UPR activation is found. We observe increased neuronal Rab6 immunoreactivity in all brain areas examined. Although some neurones show colocalization of immunoreactivity for Rab6 and hyperphosphorylated tau, strong Rab6 staining does not colocalize with tangles. We find a highly significant correlation between the Rab6 and BiP levels. In vitro data show that Rab6 is not upregulated as a result of UPR activation or proteasome inhibition indicating an independent regulatory mechanism. Our data suggest that ER and post-ER protein quality control mechanisms are activated early in the pathology of AD.

  2. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain.

    PubMed

    García-Ayllón, María-Salud; Botella-López, Arancha; Cuchillo-Ibañez, Inmaculada; Rábano, Alberto; Andreasen, Niels; Blennow, Kaj; Ávila, Jesús; Sáez-Valero, Javier

    2017-01-01

    The human natural killer-1 (HNK-1), 3-sulfonated glucuronic acid, is a glycoepitope marker of cell adhesion that participates in cell-cell and cell-extracellular matrix interactions and in neurite growth. Very little is known about the regulation of the HNK-1 glycan in neurodegenerative disease, particularly in Alzheimer's disease (AD). In this study, we investigate changes in the levels of HNK-1 carrier glycoproteins in AD. We demonstrate an overall decrease in HNK-1 immunoreactivity in glycoproteins extracted from the frontal cortex of AD subjects, compared with levels from non-demented controls (NDC). Immunoblotting of ventricular post-mortem and lumbar ante-mortem cerebrospinal fluid with HNK-1 antibodies indicate similar levels of carrier glycoproteins in AD and NDC samples. Decrease in HNK-1 carrier glycoproteins were not paralleled by changes in messenger RNA (mRNA) levels of the enzymes involved in the synthesis of the glycoepitope, β-1,4-galactosyltransferase (β4GalT), glucuronyltransferases GlcAT-P and GlcAT-S, or sulfotransferase HNK-1ST. Over-expression of amyloid precursor protein in Tg2576 transgenic mice and in vitro treatment of SH-SY5Y neuroblastoma cells with the amyloidogenic Aβ42 peptide resulted in a decrease in HNK-1 immunoreactivity levels in brain and cellular extracts, whereas the levels of soluble HNK-1 glycoproteins detected in culture media were not affected by Aβ treatment. HNK-1 levels remain unaffected in the brain extracts of Tg-VLW mice, a model of mutant hyperphosphorylated tau, and in SH-SY5Y cells over-expressing hyperphosphorylated wild-type tau. These results provide evidence that cellular levels of HNK-1 carrier glycoforms are decreased in the brain of AD subjects, probably influenced by the β-amyloid protein.

  3. Multifunctional Liposomes Reduce Brain β-Amyloid Burden and Ameliorate Memory Impairment in Alzheimer's Disease Mouse Models

    PubMed Central

    Balducci, Claudia; Mancini, Simona; Minniti, Stefania; La Vitola, Pietro; Zotti, Margherita; Sancini, Giulio; Mauri, Mario; Cagnotto, Alfredo; Colombo, Laura; Fiordaliso, Fabio; Grigoli, Emanuele; Salmona, Mario; Snellman, Anniina; Haaparanta-Solin, Merja; Forloni, Gianluigi; Re, Francesca

    2014-01-01

    Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood–brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1–42 (−33%), assessed by ELISA, and the number and total area of plaques (−34%) detected histologically. Also, brain Aβ oligomers were reduced (−70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [11C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood–brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease. PMID:25319699

  4. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models.

    PubMed

    Balducci, Claudia; Mancini, Simona; Minniti, Stefania; La Vitola, Pietro; Zotti, Margherita; Sancini, Giulio; Mauri, Mario; Cagnotto, Alfredo; Colombo, Laura; Fiordaliso, Fabio; Grigoli, Emanuele; Salmona, Mario; Snellman, Anniina; Haaparanta-Solin, Merja; Forloni, Gianluigi; Masserini, Massimo; Re, Francesca

    2014-10-15

    Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood-brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1-42 (-33%), assessed by ELISA, and the number and total area of plaques (-34%) detected histologically. Also, brain Aβ oligomers were reduced (-70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [(11)C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood-brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease.

  5. Ultrasound Delivery of an Anti-Aβ Therapeutic Agent to the Brain in a Mouse Model of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Jordão, Jessica F.; Ayala-Grosso, Carlos A.; Chopra, Rajiv; McLaurin, JoAnne; Aubert, Isabelle; Hynynen, Kullervo

    2009-04-01

    Plaques composed of amyloid-beta (Aβ) peptides represent a pathological hallmark in the brain of patients with Alzheimer's disease. Aβ oligomers are considered cytotoxic and several therapeutic approaches focus on reducing Aβ load in the brain of Alzheimer's patients. The efficacy of most anti-Aβ agents is significantly limited because they do not cross the blood-brain-barrier. Innovative technologies capable of enhancing the permeability of the blood-brain barrier, thereby allowing entry of therapeutic agents into the brain, show great promise in circumventing this problem. The application of low-intensity focused ultrasound in the presence of an ultrasound contrast agent causes localized and transient permeability of the blood-brain barrier. We demonstrate the value of this technology for the delivery of anti-Aβ antibodies to the brain of TgCRND8 mice, a mouse model of Alzheimer's disease exhibiting Aβ plaques. BAM-10, an anti-Aβ antibody, was injected into the tail vein simultaneously with exposure to MRI-guided, low-intensity focused ultrasound (FUS) to one hemisphere of TgCNRD8 mice. Four hours after treatment, antibodies were detected at significant amounts only in the brain of mice receiving FUS in addition to BAM-10. This data provides a proof-of-concept that FUS allows anti-Aβ therapeutics to efficiently enter the brain and target Aβ plaques. Four days following a single treatment with BAM-10 and MRI-guided FUS, a significant decrease in the number of Aβ plaques on the side of the treated hemisphere was observed in TgCRND8 mice. In conclusion low-intensity, focused ultrasound is effective in delivering Aβ antibodies to the brain. This technology has the potential to enhance current anti-Aβ treatments by allowing increased exposure of amyloid plaques to treatment agents.

  6. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682

  7. Microwaves and Alzheimer's disease.

    PubMed

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-10-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review.

  8. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease.

    PubMed

    Erickson, Michelle A; Banks, William A

    2013-10-01

    The blood-brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.

  9. Type II fuzzy systems for amyloid plaque segmentation in transgenic mouse brains for Alzheimer's disease quantification

    NASA Astrophysics Data System (ADS)

    Khademi, April; Hosseinzadeh, Danoush

    2014-03-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly characterized by extracellular deposition of amyloid plaques (AP). Using animal models, AP loads have been manually measured from histological specimens to understand disease etiology, as well as response to treatment. Due to the manual nature of these approaches, obtaining the AP load is labourious, subjective and error prone. Automated algorithms can be designed to alleviate these challenges by objectively segmenting AP. In this paper, we focus on the development of a novel algorithm for AP segmentation based on robust preprocessing and a Type II fuzzy system. Type II fuzzy systems are much more advantageous over the traditional Type I fuzzy systems, since ambiguity in the membership function may be modeled and exploited to generate excellent segmentation results. The ambiguity in the membership function is defined as an adaptively changing parameter that is tuned based on the local contrast characteristics of the image. Using transgenic mouse brains with AP ground truth, validation studies were carried out showing a high degree of overlap and low degree of oversegmentation (0.8233 and 0.0917, respectively). The results highlight that such a framework is able to handle plaques of various types (diffuse, punctate), plaques with varying Aβ concentrations as well as intensity variation caused by treatment effects or staining variability.

  10. Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease.

    PubMed

    Mosch, Birgit; Morawski, Markus; Mittag, Anja; Lenz, Dominik; Tarnok, Attila; Arendt, Thomas

    2007-06-27

    Reactivation of the cell cycle, including DNA replication, might play a major role in Alzheimer's disease (AD). A more than diploid DNA content in differentiated neurons might alternatively result from chromosome mis-segregation during mitosis in neuronal progenitor cells. It was our objective to distinguish between these two mechanisms for aneuploidy and to provide evidence for a functional cell cycle in AD. Using slide-based cytometry, chromogenic in situ hybridization, and PCR amplification of alu-repeats, we quantified the DNA amount of identified cortical neurons in normal human brain and AD and analyzed the link between a tetraploid DNA content and expression of the early mitotic marker cyclin B1. In the normal brain, the number of neurons with a more than diploid content amounts to approximately 10%. Less than 1% of neurons contains a tetraploid DNA content. These neurons do not express cyclin B1, most likely representing constitutional tetraploidy. This population of cyclin B1-negative tetraploid neurons, at a reduced number, is also present in AD. In addition, a population of cyclin B1-positive tetraploid neurons of approximately 2% of all neurons was observed in AD. Our results indicate that at least two different mechanisms need to be distinguished giving rise to a tetraploid DNA content in the adult brain. Constitutional aneuploidy in differentiated neurons might be more frequent than previously thought. It is, however, not elevated in AD. In addition, in AD some neurons have re-entered the cell cycle and entirely passed through a functional interphase with a complete DNA replication.

  11. Tau Pathology Distribution in Alzheimer's disease Corresponds Differentially to Cognition-Relevant Functional Brain Networks.

    PubMed

    Hansson, Oskar; Grothe, Michel J; Strandberg, Tor Olof; Ohlsson, Tomas; Hägerström, Douglas; Jögi, Jonas; Smith, Ruben; Schöll, Michael

    2017-01-01

    Neuropathological studies have shown that the typical neurofibrillary pathology of hyperphosphorylated tau protein in Alzheimer's disease (AD) preferentially affects specific brain regions whereas others remain relatively spared. It has been suggested that the distinct regional distribution profile of tau pathology in AD may be a consequence of the intrinsic network structure of the human brain. The spatially distributed brain regions that are most affected by the spread of tau pathology may hence reflect an interconnected neuronal system. Here, we characterized the brain-wide regional distribution profile of tau pathology in AD using (18)F-AV 1451 tau-sensitive positron emission tomography (PET) imaging, and studied this pattern in relation to the functional network organization of the human brain. Specifically, we quantified the spatial correspondence of the regional distribution pattern of PET-evidenced tau pathology in AD with functional brain networks characterized by large-scale resting state functional magnetic resonance imaging (rs-fMRI) data in healthy subjects. Regional distribution patterns of increased PET-evidenced tau pathology in AD compared to controls were characterized in two independent samples of prodromal and manifest AD cases (the Swedish BioFINDER study, n = 44; the ADNI study, n = 35). In the BioFINDER study we found that the typical AD tau pattern involved predominantly inferior, medial, and lateral temporal cortical areas, as well as the precuneus/posterior cingulate, and lateral parts of the parietal and occipital cortex. This pattern overlapped primarily with the dorsal attention, and to some extent with higher visual, limbic and parts of the default-mode network. PET-evidenced tau pathology in the ADNI replication sample, which represented a more prodromal group of AD cases, was less pronounced but showed a highly similar spatial distribution profile, suggesting an earlier-stage snapshot of a consistently progressing regional pattern

  12. Tau Pathology Distribution in Alzheimer's disease Corresponds Differentially to Cognition-Relevant Functional Brain Networks

    PubMed Central

    Hansson, Oskar; Grothe, Michel J.; Strandberg, Tor Olof; Ohlsson, Tomas; Hägerström, Douglas; Jögi, Jonas; Smith, Ruben; Schöll, Michael

    2017-01-01

    Neuropathological studies have shown that the typical neurofibrillary pathology of hyperphosphorylated tau protein in Alzheimer's disease (AD) preferentially affects specific brain regions whereas others remain relatively spared. It has been suggested that the distinct regional distribution profile of tau pathology in AD may be a consequence of the intrinsic network structure of the human brain. The spatially distributed brain regions that are most affected by the spread of tau pathology may hence reflect an interconnected neuronal system. Here, we characterized the brain-wide regional distribution profile of tau pathology in AD using 18F-AV 1451 tau-sensitive positron emission tomography (PET) imaging, and studied this pattern in relation to the functional network organization of the human brain. Specifically, we quantified the spatial correspondence of the regional distribution pattern of PET-evidenced tau pathology in AD with functional brain networks characterized by large-scale resting state functional magnetic resonance imaging (rs-fMRI) data in healthy subjects. Regional distribution patterns of increased PET-evidenced tau pathology in AD compared to controls were characterized in two independent samples of prodromal and manifest AD cases (the Swedish BioFINDER study, n = 44; the ADNI study, n = 35). In the BioFINDER study we found that the typical AD tau pattern involved predominantly inferior, medial, and lateral temporal cortical areas, as well as the precuneus/posterior cingulate, and lateral parts of the parietal and occipital cortex. This pattern overlapped primarily with the dorsal attention, and to some extent with higher visual, limbic and parts of the default-mode network. PET-evidenced tau pathology in the ADNI replication sample, which represented a more prodromal group of AD cases, was less pronounced but showed a highly similar spatial distribution profile, suggesting an earlier-stage snapshot of a consistently progressing regional pattern. In

  13. Role of methylglyoxal in Alzheimer's disease.

    PubMed

    Angeloni, Cristina; Zambonin, Laura; Hrelia, Silvana

    2014-01-01

    Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.

  14. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer's disease

    PubMed Central

    Liao, Fan; Yoon, Hyejin; Kim, Jungsu

    2017-01-01

    Purpose of review APOE4 genotype is the strongest genetic risk factor for Alzheimer's disease. Prevailing evidence suggests that amyloid β plays a critical role in Alzheimer's disease. The objective of this article is to review the recent findings about the metabolism of apolipoprotein E (ApoE) and amyloid β and other possible mechanisms by which ApoE contributes to the pathogenesis of Alzheimer's disease. Recent findings ApoE isoforms have differential effects on amyloid β metabolism. Recent studies demonstrated that ApoE-interacting proteins, such as ATP-binding cassette A1 (ABCA1) and LDL receptor, may be promising therapeutic targets for Alzheimer's disease treatment. Activation of liver X receptor and retinoid X receptor pathway induces ABCA1 and other genes, leading to amyloid β clearance. Inhibition of the negative regulators of ABCA1, such as microRNA-33, also induces ABCA1 and decreases the levels of ApoE and amyloid β. In addition, genetic inactivation of an E3 ubiquitin ligase, myosin regulatory light chain interacting protein, increases LDL receptor levels and inhibits amyloid accumulation. Although amyloid β-dependent pathways have been extensively investigated, there have been several recent studies linking ApoE with vascular function, neuroinflammation, metabolism, synaptic plasticity, and transcriptional regulation. For example, ApoE was identified as a ligand for a microglial receptor, TREM2, and studies suggested that ApoE may affect the TREM2-mediated microglial phagocytosis. Summary Emerging data suggest that ApoE affects several amyloid β-independent pathways. These underexplored pathways may provide new insights into Alzheimer's disease pathogenesis. However, it will be important to determine to what extent each mechanism contributes to the pathogenesis of Alzheimer's disease. PMID:27922847

  15. Clinical Evaluation of Brain Perfusion SPECT with Brodmann Areas Mapping in Early Diagnosis of Alzheimer's Disease.

    PubMed

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Fezoulidis, Ioannis; Kapsalaki, Eftychia; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2015-01-01

    Early diagnosis of Alzheimer's disease (AD) based on clinical criteria alone may be problematic, while current and future treatments should be administered earlier in order to be more effective. Thus, various disease biomarkers could be used for early detection of AD. We evaluated brain perfusion with 99mTc-HMPAO single photon emission computed tomography (SPECT) and Brodmann areas (BAs) mapping in mild AD using an automated software (NeuroGam) for the semi-quantitative evaluation of perfusion in BAs and the comparison with the software's normal database. We studied 34 consecutive patients with mild AD: 9 men, 25 women, mean age 70.9 ± 8.1 years, mean Mini-Mental State Examination 22.6 ± 2.5. BAs 25L, 25R, 38L, 38R, 28L, 28R, 36L, and 36R had the lower mean perfusion values, while BAs 31L, 31R, 19R, 18L, 18R, 17L, and 17R had the higher mean values. Compared with healthy subjects of the same age, perfusion values in BAs 25L, 25R, 28R, 28L, 36L, and 36R had the greatest deviations from the healthy sample, while the lowest deviations were found in BAs 32L, 32R, 19R, 24L, 17L, 17R, 18L, and 18R. A percentage of ≥94% of patients had perfusion values more than -2SDs below the mean of healthy subjects in BAs 38R, 38L, 36L, 36R, 23L, 23R, 22L, 44L, 28L, 28R, 25L, and 25R. The corresponding proportion was less than 38% for BAs 11L, 19R, 32L, 32R, 18L, 18R, 24L, and 17R. In conclusion, brain SPECT studies with automated perfusion mapping could be useful as an ancillary tool in daily practice, revealing perfusion impairments in early AD.

  16. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease.

    PubMed

    Kishimoto, Yasushi; Shishido, Hajime; Sawanishi, Mayumi; Toyota, Yasunori; Ueno, Masaki; Kubota, Takashi; Kirino, Yutaka; Tamiya, Takashi; Kawai, Nobuyuki

    2016-12-01

    This data article contains supporting information regarding the research article entitled "Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease" (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016) [1]. Triple-transgenic (3×Tg)-Alzheimer׳s disease (AD) model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI). Correspondingly, amyloid-β (Aβ) deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP) accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs) during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  17. Adrenomedullin Expression in Alzheimer's Brain.

    PubMed

    Fernandez, Ana Patricia; Masa, Julia Serrano; Guedan, María Atocha; Futch, Hunter S; Martínez-Murillo, Ricardo

    2016-01-01

    Adrenomedullin (AM) is a potent vasodilator peptide highly expressed throughout the brain and originally isolated from pheochromocytoma cells. In addition to its vasoactive properties, AM is considered a neuromodulator that possesses antiapoptotic and antioxidant properties that suggest that this peptide can protect the brain from damage. In a previous study, we found that AM exerts a neuroprotective action in the brain and that this effect may be mediated by regulation of nitric oxide synthases, matrix metalloproteases, and inflammatory mediators. AM upregulation contributes to neuroprotection, but understanding the precise roles played by AM and its receptor (RAMP2) in neurodegenerative diseases including Alzheimer's disease (AD), awaits further research. In search of Alzheimer's biomarkers, the expression levels of peptides with endothelial vasodilatory action, including AM, were found to be significantly altered in mild AD or during pre-dementia stage of mild cognitive impairment. These studies concluded that ratio of AM or its precursor fragment mid-regional proAM in blood hold promise as diagnostic marker for AD. We are now presenting a study regarding the hypothesis that the AMRAMP2 system might be implicated in the pathophysiology of AD.

  18. Preventing schizophrenia and Alzheimer disease: comparative ethics.

    PubMed

    Post, S G

    2001-08-01

    Schizophrenia and Alzheimer disease are both diseases of the brain that involve genetic susceptibility factors and for which the prevention or delay of symptom onset are important research goals. This paper provides some comparisons between current preventive efforts in schizophrenia and Alzheimer disease, focusing on certain ethical features of these endeavors such as potential discrimination, misdiagnosis, and stigma.

  19. Optical fiber spectroscopy measures perfusion of the brain in a murine Alzheimer's disease model

    NASA Astrophysics Data System (ADS)

    Ahn, Hyung Jin; Strickland, Sidney; Krueger, James; Gareau, Daniel

    2014-02-01

    Optical fiber spectroscopy is a versatile tool for measuring diffuse reflectance and extracting absorption information that can noninvasively quantify the presence of chromophores such as oxyhemoglobin and deoxy-hemoglobin in tissues. Cerebrovascular abnormalities were widely recognized in Alzheimer's disease (AD) patients. We analyzed blood volume fraction and level of oxygenated hemoglobin in Tg6799 mice, which are transgenic mice expressing five different familial Alzheimer disease-associated mutations in the human amyloid precursor protein and presenilin-1 genes. Diffuse reflectance spectra were iteratively fit as weighted sums of oxy- and deoxy-hemoglobin. Our observations showed slightly hypoxic conditions and significantly increased blood volume in the Alzheimer's mice versus wild type. These results suggest that hyperperfusion of our AD mice may be a compensating mechanism for impaired cerebral vascular function and somehow relevant with early stage of AD patients. Ongoing work focuses on developing a cannula fixture that allows measurement in awake, behaving animals.

  20. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease.

    PubMed

    Bradley, M A; Markesbery, W R; Lovell, M A

    2010-06-15

    Previous studies demonstrate increased levels of 4-hydroxynonenal (HNE) and acrolein in vulnerable brain regions of subjects with mild cognitive impairment and late-stage Alzheimer disease (LAD). Recently preclinical AD (PCAD) subjects, who demonstrate normal antemortem neuropsychological test scores but abundant AD pathology at autopsy, have become the focus of increased study. Levels of extractable HNE and acrolein were quantified by gas chromatography-mass spectrometry with negative chemical ionization, and protein-bound HNE and acrolein were quantified by dot-blot immunohistochemistry in the hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyri (SMTG), and cerebellum (CER) of 10 PCAD and 10 age-matched normal control (NC) subjects. Results of the analyses show a significant (P<0.05) increase in levels of extractable acrolein in the HPG of PCAD subjects compared to age-matched NC subjects and a significant decrease in extractable acrolein in PCAD CER. Significant increases in protein-bound HNE in HPG and a significant decrease in CER of PCAD subjects compared to NC subjects were observed. No significant alterations were observed in either extractable or protein-bound HNE or acrolein in the SMTG of PCAD subjects. Additionally, no significant differences in levels of protein carbonyls were observed in the HPG, SMTG, or CER of PCAD subjects compared to NC subjects.

  1. Effect of Transcranial Brain Stimulation for the Treatment of Alzheimer Disease: A Review

    PubMed Central

    Nardone, Raffaele; Bergmann, Jürgen; Christova, Monica; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Trinka, Eugen; Golaszewski, Stefan

    2012-01-01

    Available pharmacological treatments for Alzheimer disease (AD) have limited effectiveness, are expensive, and sometimes induce side effects. Therefore, alternative or complementary adjuvant therapeutic strategies have gained increasing attention. The development of novel noninvasive methods of brain stimulation has increased the interest in neuromodulatory techniques as potential therapeutic tool for cognitive rehabilitation in AD. In particular, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive approaches that induce prolonged functional changes in the cerebral cortex. Several studies have begun to therapeutically use rTMS or tDCS to improve cognitive performances in patients with AD. However, most of them induced short-duration beneficial effects and were not adequately powered to establish evidence for therapeutic efficacy. Therefore, TMS and tDCS approaches, seeking to enhance cognitive function, have to be considered still very preliminary. In future studies, multiple rTMS or tDCS sessions might also interact, and metaplasticity effects could affect the outcome. PMID:22114748

  2. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    PubMed

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  3. Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimer's disease.

    PubMed

    Mury, Fábio B; da Silva, Weber C; Barbosa, Nádia R; Mendes, Camila T; Bonini, Juliana S; Sarkis, Jorge Eduardo Souza; Cammarota, Martin; Izquierdo, Ivan; Gattaz, Wagner F; Dias-Neto, Emmanuel

    2016-10-01

    Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.

  4. Voxel-based Morphometry of Brain MRI in Normal Aging and Alzheimer's Disease.

    PubMed

    Matsuda, Hiroshi

    2013-02-01

    Voxel-based morphometry (VBM) using structural brain MRI has been widely used for assessment of normal aging and Alzheimer's disease (AD). VBM of MRI data comprises segmentation into gray matter, white matter, and cerebrospinal fluid partitions, anatomical standardization of all the images to the same stereotactic space using linear affine transformation and further non-linear warping, smoothing, and finally performing a statistical analysis. Two techniques for VBM are commonly used, optimized VBM using statistical parametric mapping (SPM) 2 or SPM5 with non-linear warping based on discrete cosine transforms and SPM8 plus non-linear warping based on diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL). In normal aging, most cortical regions prominently in frontal and insular areas have been reported to show age-related gray matter atrophy. In contrast, specific structures such as amygdala, hippocampus, and thalamus have been reported to be preserved in normal aging. On the other hand, VBM studies have demonstrated progression of atrophy mapping upstream to Braak's stages of neurofibrillary tangle deposition in AD. The earliest atrophy takes place in medial temporal structures. Stand-alone VBM software using SPM8 plus DARTEL running on Windows has been newly developed as an adjunct to the clinical assessment of AD. This software provides a Z-score map as a consequence of comparison of a patient's MRI with a normal database.

  5. Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy.

    PubMed

    Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

  6. Redox Proteomic Analysis of Carbonylated Brain Proteins in Mild Cognitive Impairment and Early Alzheimer's Disease

    PubMed Central

    Sultana, Rukhsana; Perluigi, Marzia; Newman, Shelley F.; Pierce, William M.; Cini, Chiara; Coccia, Raffaella

    2010-01-01

    Abstract Previous studies indicated increased levels of protein oxidation in brain from subjects with Alzheimer's disease (AD), raising the question of whether oxidative damage is a late effect of neurodegeneration or precedes and contributes to the pathogenesis of AD. Hence, in the present study we used a parallel proteomic approach to identify oxidatively modified proteins in inferior parietal lobule (IPL) from subjects with mild cognitive impairment (MCI) and early stage-AD (EAD). By comparing to age-matched controls, we reasoned that such analysis could help in understanding potential mechanisms involved in upstream processes in AD pathogenesis. We have identified four proteins that showed elevated levels of protein carbonyls: carbonic anhydrase II (CA II), heat shock protein 70 (Hsp70), mitogen-activated protein kinase I (MAPKI), and syntaxin binding protein I (SBP1) in MCI IPL. In EAD IPL we identified three proteins: phosphoglycerate mutase 1 (PM1), glial fibrillary acidic protein, and fructose bisphospate aldolase C (FBA-C). Our results imply that some of the common targets of protein carbonylation correlated with AD neuropathology and suggest a possible involvement of protein modifications in the AD progression. Antioxid. Redox Signal. 12, 327–336. PMID:19686046

  7. Effect of transcranial brain stimulation for the treatment of Alzheimer disease: a review.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; Christova, Monica; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Trinka, Eugen; Golaszewski, Stefan

    2012-01-01

    Available pharmacological treatments for Alzheimer disease (AD) have limited effectiveness, are expensive, and sometimes induce side effects. Therefore, alternative or complementary adjuvant therapeutic strategies have gained increasing attention. The development of novel noninvasive methods of brain stimulation has increased the interest in neuromodulatory techniques as potential therapeutic tool for cognitive rehabilitation in AD. In particular, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive approaches that induce prolonged functional changes in the cerebral cortex. Several studies have begun to therapeutically use rTMS or tDCS to improve cognitive performances in patients with AD. However, most of them induced short-duration beneficial effects and were not adequately powered to establish evidence for therapeutic efficacy. Therefore, TMS and tDCS approaches, seeking to enhance cognitive function, have to be considered still very preliminary. In future studies, multiple rTMS or tDCS sessions might also interact, and metaplasticity effects could affect the outcome.

  8. The pancreas-brain axis: insight into disrupted mechanisms associating type 2 diabetes and Alzheimer's disease.

    PubMed

    Desai, Gauri S; Zheng, Chen; Geetha, Thangiah; Mathews, Suresh T; White, B Douglas; Huggins, Kevin W; Zizza, Claire A; Broderick, Tom L; Babu, Jeganathan Ramesh

    2014-01-01

    Epidemiological and observational studies indicate a positive correlation between type 2 diabetes (T2DM) and dementia, with an increased risk of dementia and Alzheimer's disease (AD) associated with insulin-treated diabetes patients. The purpose of this review is to reveal the molecular mechanisms that connect physiological and pathological processes commonly observed in T2DM and AD. Conformational modifications in peptide residues, such as amyloid-β peptide in AD and amylin in T2DM have been shown to instigate formation of insoluble protein aggregates that get deposited in extracellular spaces of brain and pancreatic tissue thus disrupting their normal function. Impaired insulin signaling plays a critical role in AD pathogenesis by reducing IRS-associated PI3 kinase activity and increasing GSK-3β activity. GSK-3β has been suggested to be a component of the γ-secretase complex and is involved in amyloid-β protein precursor processing. GSK-3β along with CDK5 is responsible for hyperphosphorylation of tau leading to the formation of neurofibrillary tangles. In summary, there is evidence to believe that a molecular link connects AD and T2DM and has potential for further investigation toward development of an effective therapeutic target.

  9. Automated Classification to Predict the Progression of Alzheimer's Disease Using Whole-Brain Volumetry and DTI

    PubMed Central

    Jung, Won Beom; Lee, Young Min; Kim, Young Hoon

    2015-01-01

    Objective This study proposes an automated diagnostic method to classify patients with Alzheimer's disease (AD) of degenerative etiology using magnetic resonance imaging (MRI) markers. Methods Twenty-seven patients with subjective memory impairment (SMI), 18 patients with mild cognitive impairment (MCI), and 27 patients with AD participated. MRI protocols included three dimensional brain structural imaging and diffusion tensor imaging to assess the cortical thickness, subcortical volume and white matter integrity. Recursive feature elimination based on support vector machine (SVM) was conducted to determine the most relevant features for classifying abnormal regions and imaging parameters, and then a factor analysis for the top-ranked factors was performed. Subjects were classified using nonlinear SVM. Results Medial temporal regions in AD patients were dominantly detected with cortical thinning and volume atrophy compared with SMI and MCI patients. Damage to white matter integrity was also accredited with decreased fractional anisotropy and increased mean diffusivity (MD) across the three groups. The microscopic damage in the subcortical gray matter was reflected in increased MD. Classification accuracy between pairs of groups (SMI vs. MCI, MCI vs. AD, SMI vs. AD) and among all three groups were 84.4% (±13.8), 86.9% (±10.5), 96.3% (±4.6), and 70.5% (±11.5), respectively. Conclusion This proposed method may be a potential tool to diagnose AD pathology with the current clinical criteria. PMID:25670951

  10. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease.

    PubMed

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D

    2015-07-01

    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.

  11. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    SciTech Connect

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung; Kim, Chan-Wha

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study

  12. Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease.

    PubMed

    Moradi, Elaheh; Hallikainen, Ilona; Hänninen, Tuomo; Tohka, Jussi

    2017-01-01

    Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

  13. Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer's disease

    PubMed Central

    Subash, Selvaraju; Essa, Musthafa Mohamed; Al-Asmi, Abdullah; Al-Adawi, Samir; Vaishnav, Ragini; Braidy, Nady; Manivasagam, Thamilarasan; Guillemin, Gilles J.

    2014-01-01

    Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Pomegranates (石榴 Shí Liú) contain very high levels of antioxidant polyphenolic substances, as compared to other fruits and vegetables. Polyphenols have been shown to be neuroprotective in different model systems. Here, the effects of the antioxidant-rich pomegranate fruit grown in Oman on brain oxidative stress status were tested in the AD transgenic mouse. The 4-month-old mice with double Swedish APP mutation (APPsw/Tg2576) were purchased from Taconic Farm, NY, USA. Four-month-old Tg2576 mice were fed with 4% pomegranate or control diet for 15 months and then assessed for the influence of diet on oxidative stress. Significant increase in oxidative stress was found in terms of enhanced levels of lipid peroxidation (LPO) and protein carbonyls. Concomitantly, decrease in the activities of antioxidant enzymes was observed in Tg2576 mice treated with control diet. Supplementation with 4% pomegranate attenuated oxidative damage, as evidenced by decreased LPO and protein carbonyl levels and restoration in the activities of the antioxidant enzymes [superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione (GSH), and Glutathione S transferase (GST)]. The activities of membrane-bound enzymes [Na+ K+-ATPase and acetylcholinesterase (AChE)] were altered in the brain regions of Tg2576 mouse treated with control diet, and 4% pomegranate supplementation was able to restore the activities of enzymes to comparable values observed in controls. The results suggest that the therapeutic potential of 4% pomegranate in the treatment of AD might be associated with counteracting the oxidative stress by the presence of active phytochemicals in it. PMID:25379464

  14. Altered whole-brain white matter networks in preclinical Alzheimer's disease.

    PubMed

    Fischer, Florian Udo; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2015-01-01

    Surrogates of whole-brain white matter (WM) networks reconstructed using diffusion tensor imaging (DTI) are novel markers of structural brain connectivity. Global connectivity of networks has been found impaired in clinical Alzheimer's disease (AD) compared to cognitively healthy aging. We hypothesized that network alterations are detectable already in preclinical AD and investigated major global WM network properties. Other structural markers of neurodegeneration typically affected in prodromal AD but seeming largely unimpaired in preclinical AD were also examined. 12 cognitively healthy elderly with preclinical AD as classified by florbetapir-PET (mean age 73.4 ± 4.9) and 31 age-matched controls without cerebral amyloidosis (mean age 73.1 ± 6.7) from the ADNI were included. WM networks were reconstructed from DTI using tractography and graph theory. Indices of network capacity and the established imaging markers of neurodegeneration hippocampal volume, and cerebral glucose utilization as measured by fludeoxyglucose-PET were compared between the two groups. Additionally, we measured surrogates of global WM integrity (fractional anisotropy, mean diffusivity, volume). We found an increase of shortest path length and a decrease of global efficiency in preclinical AD. These results remained largely unchanged when controlling for WM integrity. In contrast, neither markers of neurodegeneration nor WM integrity were altered in preclinical AD subjects. Our results suggest an impairment of WM networks in preclinical AD that is detectable while other structural imaging markers do not yet indicate incipient neurodegeneration. Moreover, these findings are specific to WM networks and cannot be explained by other surrogates of global WM integrity.

  15. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T

    2016-04-01

    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.

  16. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer's disease mouse.

    PubMed

    Wang, Yan-Jiang; Thomas, Philip; Zhong, Jin-Hua; Bi, Fang-Fang; Kosaraju, Shantha; Pollard, Anthony; Fenech, Michael; Zhou, Xin-Fu

    2009-01-01

    Polyphenols extracted from grape seeds are able to inhibit amyloid-beta (Abeta) aggregation, reduce Abeta production and protect against Abeta neurotoxicity in vitro. We aimed to investigate the therapeutic effects of a polyphenol-rich grape seed extract (GSE) in Alzheimer's disease (AD) mice. APP(Swe)/PS1dE9 transgenic mice were fed with normal AIN-93G diet (control diet), AIN-93G diet with 0.07% curcumin or diet with 2% GSE beginning at 3 months of age for 9 months. Total phenolic content of GSE was 592.5 mg/g dry weight, including gallic acid (49 mg/g), catechin (41 mg/g), epicatechin (66 mg/g) and proanthocyanidins (436.6 mg catechin equivalents/g). Long-term feeding of GSE diet was well tolerated without fatality, behavioural abnormality, changes in food consumption, body weight or liver function. The Abeta levels in the brain and serum of the mice fed with GSE were reduced by 33% and 44%, respectively, compared with the Alzheimer's mice fed with the control diet. Amyloid plaques and microgliosis in the brain of Alzheimer's mice fed with GSE were also reduced by 49% and 70%, respectively. Curcumin also significantly reduced brain Abeta burden and microglia activation. Conclusively, polyphenol-rich GSE prevents the Abeta deposition and attenuates the inflammation in the brain of a transgenic mouse model, and this thus is promising in delaying development of AD.

  17. Brain Substrates of Learning and Retention in Mild Cognitive Impairment Diagnosis and Progression to Alzheimer's Disease

    ERIC Educational Resources Information Center

    Chang, Yu-Ling; Bondi, Mark W.; Fennema-Notestine, Christine; McEvoy, Linda K.; Hagler, Donald J., Jr.; Jacobson, Mark W.; Dale, Anders M.

    2010-01-01

    Understanding the underlying qualitative features of memory deficits in mild cognitive impairment (MCI) can provide critical information for early detection of Alzheimer's disease (AD). This study sought to investigate the utility of both learning and retention measures in (a) the diagnosis of MCI, (b) predicting progression to AD, and (c)…

  18. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer's disease.

    PubMed

    Zhang, Fang; Kang, Zhilong; Li, Wen; Xiao, Zhicheng; Zhou, Xinfu

    2012-07-01

    Alzheimer's disease (AD) is one of the most common causes of dementia in the elderly. It is characterized by extracellular deposition of the neurotoxic peptide, amyloid-beta (Aβ) peptide fibrils, and is accompanied by extensive loss of neurons in the brains of affected individuals. However, the pathogenesis of AD is not fully understood. The aim of this review is to discuss the possible role of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signalling in the development of AD, focusing on BDNF/TrkB signalling in the production of Aβ, tau hyperphosphorylation and cognition decline, and exploring new possibilities for AD intervention.

  19. Biomarkers for Alzheimer's Disease Diagnosis.

    PubMed

    Mantzavinosa, Vasileios; Alexiou, Athanasios; Greig, Nigel H; Kamal, Mohammad A

    2017-02-03

    The dramatic increase in the population with dementia expected in the next decades is accompanied by the establishment of novel and innovated methods that will offer accurate and efficient detection of the disease in its early stages. While Alzheimer's disease is the most common cause of dementia, by the time is typically diagnosed substantial neuronal loss and neuropathological lesions can damaged many brain regions. The aim of this study is to investigate the main risk factors that affect and increase Alzheimer's disease progression over time even in cases with no significant memory impairment present. Several potential markers are discussed such as oxidative stress, metal ions, vascular disorders, protein dysfunctions and alterations in the mitochondrial populations. A multiparametric model of Alzheimer's biomarkers is presented according to the latest classification of the disease.

  20. Exploring Patterns of Alteration in Alzheimer's Disease Brain Networks: A Combined Structural and Functional Connectomics Analysis

    PubMed Central

    Palesi, Fulvia; Castellazzi, Gloria; Casiraghi, Letizia; Sinforiani, Elena; Vitali, Paolo; Gandini Wheeler-Kingshott, Claudia A. M.; D'Angelo, Egidio

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the “disconnection syndrome” hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks (RSNs) in patients affected by AD and mild cognitive impairment (MCI). However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC). In the default mode network (DMN), that was the most affected, axonal loss, and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN), disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN), neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI) but also with subcortical alterations (revealed by diffusion MRI) that extend beyond the areas primarily damaged by neurodegeneration, toward the support of an emerging concept of AD as a

  1. Integrating Genome-Wide Association Study and Brain Expression Data Highlights Cell Adhesion Molecules and Purine Metabolism in Alzheimer's Disease.

    PubMed

    Xiang, Zimin; Xu, Meiling; Liao, Mingzhi; Jiang, Yongshuai; Jiang, Qinghua; Feng, Rennan; Zhang, Liangcai; Ma, Guoda; Wang, Guangyu; Chen, Zugen; Zhao, Bin; Sun, Tiansheng; Li, Keshen; Liu, Guiyou

    2015-08-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly. Recently, genome-wide association studies (GWAS) have been used to investigate AD pathogenesis. However, a large proportion of AD heritability has yet to be explained. We previously identified the cell adhesion molecule (CAM) pathway as a consistent signal in two AD GWAS. However, it is unclear whether CAM is present in the Genetic and Environmental Risk for Alzheimer's Disease Consortium (GERAD) GWAS and brain expression GWAS. Meanwhile, we think integrating AD GWAS and AD brain expression datasets may provide complementary information to identify important pathways involved in AD. Here, we conducted a systems analysis using (1) KEGG pathways, (2) large-scale AD GWAS from GERAD (n = 11,789), (3) two brain expression GWAS datasets (n = 399) from the AD cerebellum and temporal cortex, and (4) previous results from pathway analysis of AD GWAS. Our results indicate that (1) CAM is a consistent signal in five AD GWAS; (2) CAM is the most significant signal in AD; (3) we confirmed previous AD risk pathways related to immune system and diseases, and cardiovascular disease, etc.; and (4) we highlighted the purine metabolism pathway in AD for the first time. We believe that our results may advance our understanding of AD mechanisms and will be very informative for future genetic studies in AD.

  2. Deep brain stimulation for Alzheimer disease: a decision and cost-effectiveness analysis.

    PubMed

    Mirsaeedi-Farahani, Keyvan; Halpern, C H; Baltuch, G H; Wolk, D A; Stein, S C

    2015-05-01

    Alzheimer disease (AD) is characterized by impairments in memory function. Standard AD treatment provides marginal improvements in this domain. Recent reports, however, suggested that deep brain stimulation (DBS) may result in improved memory. Given significant equipment costs and health expenses required for DBS surgery, we determine clinical and economic thresholds required for it to be as effective as standard AD treatment. Literature review yielded annual AD progression probabilities, health-related quality of life (QoL), and costs by AD stage. Our 5-year decision analysis model compared cumulative QoL in quality-adjusted life years (QALYs) and costs of standard therapy to theoretical DBS treatment of various success rates, using known complication rates and QoL data. The base case was a patient with mild-stage AD. DBS success was defined as regression to and maintenance of minimal stage AD, which was defined as midway between mild and no dementia, for the first year, and continuation of the natural course of AD for the remaining 4 years. Compared to standard treatment alone, DBS for mild-stage AD requires a success rate of 3% to overcome effects of possible surgical complications on QoL. If DBS can be delivered with success rates above 20% ($200 K/QALY) or 74% ($50 K/QALY) for mild AD, it can be considered cost-effective. Above a success rate of 80%, DBS treatment is both clinically more effective and more cost-effective than standard treatment. Our findings demonstrate that clinical and economic thresholds required for DBS to be cost-effective for AD are relatively low.

  3. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  4. Brain local and regional neuroglial alterations in Alzheimer's Disease: cell types, responses and implications.

    PubMed

    Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio

    2016-01-01

    From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.

  5. Alzheimer's disease and blood-brain barrier function - Why have anti-β-amyloid therapies failed to prevent dementia progression?

    PubMed Central

    Pahnke, Jens; Walker, Lary C.; Scheffler, Katja; Krohn, Markus

    2009-01-01

    Proteopathies of the brain are defined by abnormal, disease-inducing protein deposition that leads to functional abrogation and death of neurons. Immunization trials targeting the removal of amyloid-β plaques in Alzheimer's disease have so far failed to stop the progression of dementia, despite autopsy findings of reduced plaque load. Here, we summarize current knowledge of the relationship between AD pathology and blood-brain barrier function, and propose that the activation of the excretion function of the blood-brain barrier might help to achieve better results in trials targeting the dissolution of cerebral amyloid-β aggregates. We further discuss a possible role of oligomers in limiting the efficacy of immunotherapy. PMID:19481107

  6. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease.

    PubMed

    Mourtas, Spyridon; Lazar, Adina N; Markoutsa, Eleni; Duyckaerts, Charles; Antimisiaris, Sophia G

    2014-06-10

    With the objective to formulate multifunctional nanosized liposomes to target amyloid deposits in Alzheimer Disease (AD) brains, a lipid-PEG-curcumin derivative was synthesized and characterized. Multifunctional liposomes incorporating the curcumin derivative and additionally decorated with a Blood Brain Barrier (BBB) transport mediator (anti-Transferin antibody) were prepared and characterized. The fluorescence intensity of curcumin derivative was found to increase notably when the curcumin moiety was in the form of a diisopropylethylamine (DIPEA) salt. Both curcumin-derivative liposomes and curcumin-derivative Anti-TrF liposomes showed a high affinity for the amyloid deposits, on post-mortem brains samples of AD patients. The ability of both liposomes to delay Aβ1-42 peptide aggregation was confirmed by Thioflavin assay. However, the decoration of the curcumin-derivative liposomes with the Anti-TrF improved significantly the intake by the BBB cellular model. Results verify that the attachment of an antibody on the curcumin-liposome surface does not block deposit staining or prevention of Aβ aggregation, while the presence of the curcumin-PEG-lipid conjugate does not reduce their brain-targeting capability substantially, proving the potential of such multifunctional NLs for application in Alzheimer disease treatment and diagnosis.

  7. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease.

    PubMed

    Deane, Rashid; Singh, Itender; Sagare, Abhay P; Bell, Robert D; Ross, Nathan T; LaRue, Barbra; Love, Rachal; Perry, Sheldon; Paquette, Nicole; Deane, Richard J; Thiyagarajan, Meenakshisundaram; Zarcone, Troy; Fritz, Gunter; Friedman, Alan E; Miller, Benjamin L; Zlokovic, Berislav V

    2012-04-01

    In Alzheimer disease (AD), amyloid β peptide (Aβ) accumulates in plaques in the brain. Receptor for advanced glycation end products (RAGE) mediates Aβ-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a high-affinity RAGE-specific inhibitor (FPS-ZM1) that blocked Aβ binding to the V domain of RAGE and inhibited Aβ40- and Aβ42-induced cellular stress in RAGE-expressing cells in vitro and in the mouse brain in vivo. FPS-ZM1 was nontoxic to mice and readily crossed the blood-brain barrier (BBB). In aged APPsw/0 mice overexpressing human Aβ-precursor protein, a transgenic mouse model of AD with established Aβ pathology, FPS-ZM1 inhibited RAGE-mediated influx of circulating Aβ40 and Aβ42 into the brain. In brain, FPS-ZM1 bound exclusively to RAGE, which inhibited β-secretase activity and Aβ production and suppressed microglia activation and the neuroinflammatory response. Blockade of RAGE actions at the BBB and in the brain reduced Aβ40 and Aβ42 levels in brain markedly and normalized cognitive performance and cerebral blood flow responses in aged APPsw/0 mice. Our data suggest that FPS-ZM1 is a potent multimodal RAGE blocker that effectively controls progression of Aβ-mediated brain disorder and that it may have the potential to be a disease-modifying agent for AD.

  8. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  9. Nanotechnology for Alzheimer Disease.

    PubMed

    Leszek, Jerzy; Tse, Wai Hei; Zhang, Jin; Ávila-Rodriguez, Marco Fidel; Tarasov, Vadim V; Barreto, George E; Bachurin, Sergey O; Aliev, Gjumrakch

    2017-02-03

    Dementia of Alzheimer disease (AD) type affects memory, thinking and behavior. Researchers believe that changes in the brain may begin 10-20 years before symptoms appear and AD is diagnosed. The need to diagnose and treat the devastating disease at an early stage is critical to manage and treat AD. Unfortunately, the lack of validated biomarkers limits the possibility of the earlier stages of AD. The advance of nanotechnology could offer huge opportunities in early-stage diagnosis and well treatment of AD. Biocompatible nanoparticles with diameter in the range of 1-100 nm could be used as targeted delivery system for drugs (e.g. Rivastigmine) to overcome the blood-brain barrier (BBB), and to minimize the side effects caused by over-dosage. In addition, biocompatible nanomaterials with enhanced optical and magnetic properties may allow them being excellent alternative contrast agents for early-stage diagnosis. With more studies on using nanomaterials and nanotechnology in complex biochemical environment of the central nervous system, it is most likely that nanomaterials and nanotechnology can be give significant impact on the early-stage diagnosis and treatment of AD. In this review we discuss the challenges of current treatment and diagnosis of AD and the development on biocompatible nanoparticles, and provide the rational and potentials of using nanoparticles for both drug carrier and imaging contrast agent for diagnosis and treatment of AD. .

  10. Epigenomics of Alzheimer's disease.

    PubMed

    Bennett, David A; Yu, Lei; Yang, Jingyun; Srivastava, Gyan P; Aubin, Cristin; De Jager, Philip L

    2015-01-01

    Alzheimer's disease (AD) is a large and growing public health problem. It is characterized by the accumulation of amyloid β peptides and abnormally phosphorylated tau proteins that are associated with cognitive decline and dementia. Much has been learned about the genomics of AD from linkage analyses and, more recently, genome-wide association studies. Several but not all aspects of the genomic landscape are involved in amyloid β metabolism. The moderate concordance of disease among twins suggests other factors, potentially epigenomic factors, are related to AD. We are at the earliest stages of examining the relation of the epigenome to the clinical and pathologic phenotypes that characterize AD. Our literature review suggests that there is some evidence of age-related changes in human brain methylation. Unfortunately, studies of AD have been relatively small with limited coverage of methylation sites and microRNA, let alone other epigenomic marks. We are in the midst of 2 large studies of human brains including coverage of more than 420,000 autosomal cytosine-guanine dinucleotides with the Illumina Infinium HumanMethylation450 BeadArray, and histone acetylation with chromatin immunoprecipitation sequencing. We present descriptive data to help inform other researchers what to expect from these approaches to better design and power their studies. We then discuss future directions to inform on the epigenomic architecture of AD.

  11. β-methylamino-L-alanine (BMAA) is not found in the brains of patients with confirmed Alzheimer's disease.

    PubMed

    Meneely, Julie P; Chevallier, Olivier P; Graham, Stewart; Greer, Brett; Green, Brian D; Elliott, Christopher T

    2016-11-08

    Controversy surrounds the proposed hypothesis that exposure to β-methylamino-L-alanine (BMAA) could play a role in various neurodegenerative conditions including Alzheimer's disease (AD). Here we present the results of the most comprehensive scientific study on BMAA detection ever undertaken on brain samples from patients pathologically confirmed to have suffered from AD, and those from healthy volunteers. Following the full validation of a highly accurate and sensitive mass spectrometric method, no trace of BMAA was detected in the diseased brain or in the control specimens. This contradicts the findings of other reports and calls into question the significance of this compound in neurodegenerative disease. We have attempted to explain the potential causes of misidentification of BMAA in these studies.

  12. Interlaboratory comparison of assessments of Alzheimer disease-related lesions: a study of the BrainNet Europe Consortium.

    PubMed

    Alafuzoff, Irina; Pikkarainen, Maria; Al-Sarraj, Safa; Arzberger, Thomas; Bell, Jeanne; Bodi, Istvan; Bogdanovic, Nenad; Budka, Herbert; Bugiani, Orso; Ferrer, Isidro; Gelpi, Ellen; Giaccone, Giorgio; Graeber, Manuel B; Hauw, Jean-Jacques; Kamphorst, Wouter; King, Andrew; Kopp, Nicolas; Korkolopoulou, Penelope; Kovács, Gábor G; Meyronet, David; Parchi, Piero; Patsouris, Efstratios; Preusser, Matthias; Ravid, Rivka; Roggendorf, Wolfgang; Seilhean, Danielle; Streichenberger, Nathalie; Thal, Dietmar R; Kretzschmar, Hans

    2006-08-01

    This interlaboratory study evaluated the reproducibility of the assessments of neuritic plaques and neurofibrillary tangles (NFTs)--the hallmark lesions of Alzheimer disease--and compared the staining between the BrainNet Europe centers. To reduce the topography-related inconsistencies in assessments, we used a 2-mm tissue microarray (TMA) technique. The TMA block included 42 core samples taken from 21 paraffin blocks. The assessments were done on Bielschowsky and Gallyas silver stains using an immunohistochemical (IHC) method with antibodies directed to beta-amyloid (IHC/Abeta) and hyperphosphorylated tau (IHC/HPtau). The staining quality and the assessments differed between the participants, being most diverse with Bielschowsky (good/acceptable stain in 53% of centers) followed by Gallyas (good/acceptable stain in 57%) and IHC/Abeta (good/acceptable stain in 71%). The most uniform staining quality and assessment was obtained with the IHC/HPtau method (good/acceptable stain in 94% of centers). The neuropathologic diagnostic protocol (Consortium to Establish a Registry for Alzheimer Disease, Braak and Braak, and the National Institute of Aging and Reagan [NIA-Reagan] Institute) that was used significantly influenced the agreement, being highest with NIA-Reagan (54%) recommendations. This agreement was improved by visualization of NFTs using the IHC/HPtau method. Therefore, the IHC/HPtau methodology to visualize NFTs and neuropil threads should be considered as a method of choice in a future diagnostic protocol for Alzheimer disease.

  13. Brain expression of Kv3 subunits during development, adulthood and aging and in a murine model of Alzheimer's disease.

    PubMed

    Boda, Enrica; Hoxha, Eriola; Pini, Alessandro; Montarolo, Francesca; Tempia, Filippo

    2012-03-01

    In neurons, voltage-dependent Kv3 potassium channels are essential for the generation of action potentials at high frequency. A dysregulation of the Kv3.1 and Kv3.4 channel subunits has been suggested to contribute to neuronal and glial alterations in Alzheimer's disease, but a quantitative evaluation of these subunits in a mouse model of the pathology is still lacking. We analysed the profile of expression of the four Kv3 subunits by quantitative reverse transcription PCR and Western blot in the whole mouse brain and in dissected brain regions (olfactory bulb, septum, neocortex, hippocampus, brainstem and cerebellum) from 14 days after conception to 18 months after birth. In addition, we measured the levels of Kv3.1 and Kv3.4 messenger RNAs (mRNAs) and proteins in neocortex and hippocampus of APPPS1 mice, a transgenic model of Alzheimer's disease. Although all Kv3 transcripts were significantly expressed in embryonic age in whole brain extracts, only Kv3.1, Kv3.2 and Kv3.4 subunit proteins were present, suggesting a novel role for Kv3 channels at this developmental stage. With the exception of Kv3.4, during postnatal development, Kv3 transcripts and proteins showed a progressive increase in expression and reached an asymptote in adulthood, suggesting that the increase in Kv3 expression during development might contribute to the maturation of the electrical activity of neurons. During aging, Kv3 expression was rather stable. In contrast, in the neocortex of aged APPPS1 mice, Kv3.1 mRNA and protein levels were significantly lower compared to wild type, suggesting that a decrease in Kv3 currents could play a role in the cognitive symptoms of Alzheimer's disease.

  14. Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: the example of Alzheimer's disease.

    PubMed

    Andrieux, K; Couvreur, P

    2013-07-01

    Targeting of the central nervous system (CNS) in order to treat disorders is actually challenging due to the necessity to cross the blood brain barrier (BBB). This review aims to show how nanomedicine can propose new approach for the treatment and the diagnosis of CNS diseases focusing on Alzheimer's disease (AD). AD is a neurodegenerative disorder prevalent in the senile population. It is characterized by severe neuronal loss and proliferation of plaques composed of β-amyloid peptide (Aβ) and Tau protein deposites. An imbalance between production and clearance leading to the aggregation of Aβ peptides especially in neurotoxic forms, may be the initiating factor in AD. The absence of an effective therapeutic approach nowadays could be, in part, due to the bad knowledge of AD physiopathology and the lack of early diagnosis. Many drawbacks such as poor bioavailability or limited BBB arising of tested molecules in the current or new therapeutic strategies explain their failure but can be resolved by the use of nanotechnology. Examples of recently published works using nanoparticles for improving diagnosis and therapy of AD are presented. Ideal nanocarriers for this aim must be able to pass through the BBB and to interact with an AD marker as soluble extracellular Aβ forms which are known as the most toxic ones. These first results, even if many ones were obtained in vitro, brought to light the potential of nanoparticles for this challenging issue.

  15. Glucagon-Like Peptide-1-Mediated Modulation of Inflammatory Pathways in the Diabetic Brain: Relevance to Alzheimer's Disease.

    PubMed

    Qin, LiMei; Chong, Thomas; Rodriguez, Richard; Pugazhenthi, Subbiah

    2016-01-01

    Neuroinflammation has emerged as an important cause of cognitive decline during aging and in Alzheimer's disease (AD). Chronic low-grade inflammation is observed in obesity and diabetes, which are important risk factors for AD. Therefore, we examined the markers of inflammation in the brain hippocampal samples of Zucker diabetic fatty (ZDF) rats. Pathway-specific gene expression profiling revealed significant increases in the expression of oxidative stress and inflammatory genes. Western blot analysis further showed the activation of NF-kB, defective CREB phosphorylation, and decreases in the levels of neuroprotective CREB target proteins, including Bcl-2, BDNF, and BIRC3 in the diabetic rat brain samples, all of which are related to AD pathology. As therapies based on glucagon-like peptide-1 (GLP-1) are effective in controlling blood glucose levels in type 2 diabetic patients, we tested the in vivo actions of GLP-1 in the diabetic brain by a 10-wk treatment of ZDF rats with alogliptin, an inhibitor of dipeptidyl peptidase. Alogliptin increased the circulating levels of GLP-1 by 125% and decreased blood glucose in diabetic rats by 59%. Normalization of defective signaling to CREB in the hippocampal samples of treated diabetic rats resulted in the increased expression of CREB targets. Dual actions of GLP-1 in the pancreatic beta cells and in the brain suggest that incretin therapies may reduce cognitive decline in the aging diabetic patients and also have the potential to be used in treating Alzheimer's patients.

  16. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  17. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy.

    PubMed

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research

  18. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease.

    PubMed

    Huang, Xiao-Tian; Qian, Zhong-Ming; He, Xuan; Gong, Qi; Wu, Ka-Chun; Jiang, Li-Rong; Lu, Li-Na; Zhu, Zhou-Jing; Zhang, Hai-Yan; Yung, Wing-Ho; Ke, Ya

    2014-05-01

    Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease.

  19. Treatment of Alzheimer disease.

    PubMed

    Winslow, Bradford T; Onysko, Mary K; Stob, Christian M; Hazlewood, Kathleen A

    2011-06-15

    Alzheimer disease is the most common form of dementia, affecting nearly one-half [corrected] of Americans older than 85 years. It is characterized by progressive memory loss and cognitive decline. Amyloid plaque accumulation, neurofibrillary tau tangles, and depletion of acetylcholine are among the pathologic manifestations of Alzheimer disease. Although there are no proven modalities for preventing Alzheimer disease, hypertension treatment, omega-3 fatty acid supplementation, physical activity, and cognitive engagement demonstrate modest potential. Acetylcholinesterase inhibitors are first-line medications for the treatment of Alzheimer disease, and are associated with mild improvements in cognitive function, behavior, and activities of daily living; however, the clinical relevance of these effects is unclear. The most common adverse effects of acetylcholinesterase inhibitors are nausea, vomiting, diarrhea, dizziness, confusion, and cardiac arrhythmias. Short-term use of the N-methyl-D-aspartate receptor antagonist memantine can modestly improve measures of cognition, behavior, and activities of daily living in patients with moderate to severe Alzheimer disease. Memantine can also be used in combination with acetylcholinesterase inhibitors. Memantine is generally well tolerated, but whether its benefits produce clinically meaningful improvement is controversial. Although N-methyl-D-aspartate receptor antagonists and acetylcholinesterase inhibitors can slow the progression of Alzheimer disease, no pharmacologic agents can reverse the progression. Atypical antipsychotics can improve some behavioral symptoms, but have been associated with increased mortality rates in older patients with dementia. There is conflicting evidence about the benefit of selegiline, testosterone, and ginkgo for the treatment of Alzheimer disease. There is no evidence supporting the beneficial effects of vitamin E, estrogen, or nonsteroidal anti-inflammatory drug therapy.

  20. Alpha1-chimaerin, a Rac1 GTPase-activating protein, is expressed at reduced mRNA levels in the brain of Alzheimer's disease patients

    PubMed Central

    Kato, Tomoko; Konishi, Yoshihiro; Shimohama, Shun; Beach, Thomas G.; Akatsu, Hiroyasu; Tooyama, Ikuo

    2015-01-01

    Alpha1-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase family, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer's disease, but little is known about the role of α1-chimaerin. In this study, we investigated the expression and localization of α1-chimaerin mRNA in postmortem human brains from patients with Alzheimer's disease and control subjects. In situ hybridization studies demonstrated that α1-chimaerin was expressed by neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer's disease cases, with the signal intensity dramatically decreased in patients with Alzheimer's disease. Real-time PCR analysis confirmed a significant reduction of α1-chimaerin mRNA expression in the temporal cortex of Alzheimer's disease cases. In contrast, α2-chimaerin mRNA levels showed no significant difference between the groups. The present study showed reduced α1-chimaerin expression in the brain of Alzheimer's disease cases, suggesting a role in the upregulation of Rac1 activity during the disease process. PMID:25676811

  1. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain

    PubMed Central

    Takeda, Shuko; Wegmann, Susanne; Cho, Hansang; DeVos, Sarah L.; Commins, Caitlin; Roe, Allyson D.; Nicholls, Samantha B.; Carlson, George A.; Pitstick, Rose; Nobuhara, Chloe K.; Costantino, Isabel; Frosch, Matthew P.; Müller, Daniel J.; Irimia, Daniel; Hyman, Bradley T.

    2015-01-01

    Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices. Here we show that PBS-soluble phosphorylated high-molecular-weight (HMW) tau, though very low in abundance, is taken up, axonally transported, and passed on to synaptically connected neurons. Our findings suggest that a rare species of soluble phosphorylated HMW tau is the endogenous form of tau involved in propagation and could be a target for therapeutic intervention and biomarker development. PMID:26458742

  2. Currents of memory: recent progress, translational challenges, and ethical considerations in fornix deep brain stimulation trials for Alzheimer's disease.

    PubMed

    Viaña, John Noel M; Vickers, James C; Cook, Mark J; Gilbert, Frederic

    2017-03-11

    The serendipitous discovery of triggered autobiographical memories and eventual memory improvement in an obese patient who received fornix deep brain stimulation in 2008 paved the way for several phase I and phase II clinical trials focused on the safety and efficacy of this potential intervention for people with Alzheimer's disease. In this article, we summarize clinical trials and case reports on fornix deep brain stimulation for Alzheimer's disease and review experiments on animal models evaluating the physiological or behavioral effects of this intervention. Based on information from these reports and studies, we identify potential translational challenges of this approach and determine practical and ethical considerations for clinical trials, focusing on issues regarding selection criteria, trial design, and outcome evaluation. Based on initial results suggesting greater benefit for those with milder disease stage, we find it essential that participant expectations are carefully managed to avoid treatment disenchantment and/or frustration from participants and caregivers. Finally, we urge for collaboration between centers to establish proper clinical standards and to promote better trial results comparison.

  3. Aberrant Functional Connectivity Architecture in Alzheimer's Disease and Mild Cognitive Impairment: A Whole-Brain, Data-Driven Analysis.

    PubMed

    Zhou, Bo; Yao, Hongxiang; Wang, Pan; Zhang, Zengqiang; Zhan, Yafeng; Ma, Jianhua; Xu, Kaibin; Wang, Luning; An, Ningyu; Liu, Yong; Zhang, Xi

    2015-01-01

    The purpose of our study was to investigate whether the whole-brain functional connectivity pattern exhibits disease severity-related alterations in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Resting-state functional magnetic resonance imaging data were acquired in 27 MCI subjects, 35 AD patients, and 27 age- and gender-matched subjects with normal cognition (NC). Interregional functional connectivity was assessed based on a predefined template which parcellated the brain into 90 regions. Altered whole-brain functional connectivity patterns were identified via connectivity comparisons between the AD and NC subjects. Finally, the relationship between functional connectivity strength and cognitive ability according to the mini-mental state examination (MMSE) was evaluated in the MCI and AD groups. Compared with the NC group, the AD group exhibited decreased functional connectivities throughout the brain. The most significantly affected regions included several important nodes of the default mode network and the temporal lobe. Moreover, changes in functional connectivity strength exhibited significant associations with disease severity-related alterations in the AD and MCI groups. The present study provides novel evidence and will facilitate meta-analysis of whole-brain analyses in AD and MCI, which will be critical to better understand the neural basis of AD.

  4. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice.

    PubMed

    Liu, Yang; An, Sai; Li, Jianfeng; Kuang, Yuyang; He, Xi; Guo, Yubo; Ma, Haojun; Zhang, Yu; Ji, Bin; Jiang, Chen

    2016-02-01

    Multifunctional nanocarriers are increasingly promising for disease treatment aimed to regulate multiple pathological dysfunctions and overcome barriers in drug delivery. Here we develop a multifunctional nanocarrier for Alzheimer's disease (AD) treatment by achieving therapeutic gene and peptide co-delivery to brain based on PEGylated dendrigraft poly-l-lysines (DGLs) via systemic administration. The dendritic amine-rich structure of DGLs provides plenty reaction sites and positive charge for drug loading. Successful co-delivery of drugs overcoming the blood-brain barrier by brain-targeted ligand modification was demonstrated both in vitro and in vivo. The pharmacodynamics study of the system following multiple-dosing treatment was verified in transgenic AD mice. Down-regulation of the key enzyme in amyloid-β formation was achieved by delivering non-coding RNA plasmid. Simultaneous delivery of the therapeutic peptide into brain leads to reduction of neurofibrillary tangles. Meanwhile, memory loss rescue in AD mice was also observed. Taken together, the multifunctional nanocarrier provides an excellent drug co-delivery platform for brain diseases.

  5. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer's and Parkinson's diseases.

    PubMed

    Chen, Xuesong; Ghribi, Othman; Geiger, Jonathan D

    2010-01-01

    Sporadic Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common neurodegenerative diseases and as such they represent major public health problems. Finding effective treatments for AD and PD represents an unmet and elusive goal largely because these diseases are chronic and progressive, and have a complicated and ill-understood pathogenesis. Although the underlying mechanisms are not fully understood, caffeine, the most commonly ingested psychoactive drug in the world, has been shown in human and animal studies to be protective against AD and PD. One mechanism implicated in the pathogenesis of AD and PD is blood-brain barrier (BBB) dysfunction and we reported recently that caffeine exerts protective effects against AD and PD at least in part by keeping the BBB intact. The present review focuses on the role of BBB dysfunction in the pathogenesis of AD and PD, caffeine's protective effects against AD and PD, and potential mechanisms whereby caffeine protects against BBB leakage.

  6. Fungal infection in patients with Alzheimer's disease.

    PubMed

    Alonso, Ruth; Pisa, Diana; Marina, Ana Isabel; Morato, Esperanza; Rábano, Alberto; Carrasco, Luis

    2014-01-01

    Alzheimer's disease is a progressive neurodegenerative disorder that leads to dementia mainly among the elderly. This disease is characterized by the presence in the brain of amyloid plaques and neurofibrillary tangles that provoke neuronal cell death, vascular dysfunction, and inflammatory processes. In the present work, we have analyzed the existence of fungal infection in Alzheimer's disease patients. A proteomic analysis provides compelling evidence for the existence of fungal proteins in brain samples from Alzheimer's disease patients. Furthermore, PCR analysis reveals a variety of fungal species in these samples, dependent on the patient and the tissue tested. DNA sequencing demonstrated that several fungal species can be found in brain samples. Together, these results show that fungal macromolecules can be detected in brain from Alzheimer's disease patients. To our knowledge these findings represent the first evidence that fungal infection is detectable in brain samples from Alzheimer's disease patients. The possibility that this may represent a risk factor or may contribute to the etiological cause of Alzheimer's disease is discussed.

  7. p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer's disease

    PubMed Central

    Yao, X-Q; Jiao, S-S; Saadipour, K; Zeng, F; Wang, Q-H; Zhu, C; Shen, L-L; Zeng, G-H; Liang, C-R; Wang, J; Liu, Y-H; Hou, H-Y; Xu, X; Su, Y-P; Fan, X-T; Xiao, H-L; Lue, L-F; Zeng, Y-Q; Giunta, B; Zhong, J-H; Walker, D G; Zhou, H-D; Tan, J; Zhou, X-F; Wang, Y-J

    2015-01-01

    In Alzheimer's disease (AD), neurodegenerative signals such as amyloid-beta (Aβ) and the precursors of neurotrophins, outbalance neurotrophic signals, causing synaptic dysfunction and neurodegeneration. The neurotrophin receptor p75 (p75NTR) is a receptor of Aβ and mediates Aβ-induced neurodegenerative signals. The shedding of its ectodomain from the cell surface is physiologically regulated; however, the function of the diffusible p75NTR ectodomain (p75ECD) after shedding remains largely not known. Here, we show that p75ECD levels in cerebrospinal fluid and in the brains of Alzheimer's patients and amyloid-beta precursor protein (APP)/PS1 transgenic mice were significantly reduced, due to inhibition of the sheddase-tumor necrosis factor-alpha-converting enzyme by Aβ. Restoration of p75ECD to the normal level by brain delivery of the gene encoding human p75ECD before or after Aβ deposition in the brain of APP/PS1 mice reversed the behavioral deficits and AD-type pathologies, such as Aβ deposit, apoptotic events, neuroinflammation, Tau phosphorylation and loss of dendritic spine, neuronal structures and synaptic proteins. Furthermore, p75ECD can also reduce amyloidogenesis by suppressing β-secretase expression and activities. Our data demonstrate that p75ECD is a physiologically neuroprotective molecule against Aβ toxicity and would be a novel therapeutic target and biomarker for AD. PMID:25917367

  8. p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer's disease.

    PubMed

    Yao, X-Q; Jiao, S-S; Saadipour, K; Zeng, F; Wang, Q-H; Zhu, C; Shen, L-L; Zeng, G-H; Liang, C-R; Wang, J; Liu, Y-H; Hou, H-Y; Xu, X; Su, Y-P; Fan, X-T; Xiao, H-L; Lue, L-F; Zeng, Y-Q; Giunta, B; Zhong, J-H; Walker, D G; Zhou, H-D; Tan, J; Zhou, X-F; Wang, Y-J

    2015-11-01

    In Alzheimer's disease (AD), neurodegenerative signals such as amyloid-beta (Aβ) and the precursors of neurotrophins, outbalance neurotrophic signals, causing synaptic dysfunction and neurodegeneration. The neurotrophin receptor p75 (p75NTR) is a receptor of Aβ and mediates Aβ-induced neurodegenerative signals. The shedding of its ectodomain from the cell surface is physiologically regulated; however, the function of the diffusible p75NTR ectodomain (p75ECD) after shedding remains largely not known. Here, we show that p75ECD levels in cerebrospinal fluid and in the brains of Alzheimer's patients and amyloid-beta precursor protein (APP)/PS1 transgenic mice were significantly reduced, due to inhibition of the sheddase-tumor necrosis factor-alpha-converting enzyme by Aβ. Restoration of p75ECD to the normal level by brain delivery of the gene encoding human p75ECD before or after Aβ deposition in the brain of APP/PS1 mice reversed the behavioral deficits and AD-type pathologies, such as Aβ deposit, apoptotic events, neuroinflammation, Tau phosphorylation and loss of dendritic spine, neuronal structures and synaptic proteins. Furthermore, p75ECD can also reduce amyloidogenesis by suppressing β-secretase expression and activities. Our data demonstrate that p75ECD is a physiologically neuroprotective molecule against Aβ toxicity and would be a novel therapeutic target and biomarker for AD.

  9. Neurogenesis in Alzheimer's disease

    PubMed Central

    Rodríguez, José J; Verkhratsky, Alexei

    2011-01-01

    It is widely acknowledged that neural stem cells generate new neurons through the process of neurogenesis in the adult brain. In mammals, adult neurogenesis occurs in two areas of the CNS: the subventricular zone and the subgranular zone of the dentate gyrus of the hippocampus. The newly generated cells display neuronal morphology, generate action potentials and receive functional synaptic inputs, their properties being equivalent to those of mature neurons. Alzheimer's disease (AD) is the widespread cause of dementia, and is an age-related, progressive and irreversible neurodegenerative disease that results in massive neuronal death and deterioration of cognitive functions. Here, we overview the relations between adult neurogenesis and AD, and try to analyse the controversies in the field. We also summarise recent data obtained in the triple transgenic model of AD that show time- and region-specific impairment of neurogenesis, which may account for the early changes in synaptic plasticity and cognitive impairments that develop prior to gross neurodegenerative alterations and that could underlie new rescue therapies. PMID:21323664

  10. Neuronutrition and Alzheimer's Disease

    PubMed Central

    Ramesh, Balenahalli N.; Rao, T.S. Sathyanarayana; Prakasam, Annamalai; Sambamurti, Kumar; Rao, K.S. Jagannatha

    2010-01-01

    Alzheimer's disease (AD) is a complex neurological disorder with several unequivocally identified genetic risk factors. Among the several environmental factors proposed for AD, dietary protective and risk factors have been most compelling. In particular, diets rich in saturated fatty acids and alcohol, and deficient in antioxidants and vitamins appear to promote the onset of the disease, while diets rich in unsaturated fatty acids, vitamins, antioxidants, and wine likely suppress its onset. Evidence suggests that diets rich in polyphenols and some spices suppress the onset of AD by scavenging free radicals and preventing oxidative damage. Metal ions are known to catalyze the production of free radicals and induce mental retardation or dementia. Several studies have also identified metals such as Pb, Fe, Al, Cu and Zn in AD pathogenesis. While specific chelators have been tested for therapy, they have not been very successful probably due to late administration after brain damage has been triggered. Since several dietary polyphenols are known to chelate metals, their routine use may also be protective against the onset of AD. PMID:20308778

  11. [Biomarkers in Alzheimer's disease].

    PubMed

    García-Ribas, G; López-Sendón Moreno, J L; García-Caldentey, J

    2014-04-01

    The new diagnostic criteria for Alzheimer's disease (AD) include brain imaging and cerebrospinal fluid (CSF) biomarkers, with the aim of increasing the certainty of whether a patient has an ongoing AD neuropathologic process or not. Three CSF biomarkers, Aß42, total tau, and phosphorylated tau, reflect the core pathological features of AD. It is already known that these pathological processes of AD starts decades before the first symptoms, so these biomarkers may provide means of early disease detection. At least three stages of AD could be identified: preclinical AD, mild cognitive impairment due to AD, and dementia due to AD. In this review, we aim to summarize the CSF biomarker data available for each of these stages. We also review the actual research on blood-based biomarkers. Recent studies on healthy elderly subjects and on carriers of dominantly inherited AD mutations have also found biomarker changes that allow separate groups in these preclinical stages. These studies may aid for segregate populations in clinical trials and objectively evaluate if there are changes over the pathological processes of AD. Limits to widespread use of CSF biomarkers, apart from the invasive nature of the process itself, is the higher coefficient of variation for the analyses between centres. It requires strict pre-analytical and analytical procedures that may make feasible multi-centre studies and global cut-off points for the different stages of AD.

  12. Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer's disease brain tissue.

    PubMed

    Drummond, Eleanor S; Nayak, Shruti; Ueberheide, Beatrix; Wisniewski, Thomas

    2015-10-21

    The vast majority of human tissue specimens are formalin-fixed, paraffin embedded (FFPE) archival samples, making this type of tissue a potential gold mine for medical research. It is now accepted that proteomics can be done using FFPE tissue and can generate similar results as snap-frozen tissue. However, the current methodology requires a large amount of starting protein, limiting the questions that can be answered in these types of proteomics studies and making cell-type specific proteomics studies difficult. Cell-type specific proteomics has the potential to greatly enhance understanding of cell functioning in both normal and disease states. Therefore, here we describe a new method that allows localized proteomics on individual cell populations isolated from FFPE tissue sections using laser capture microdissection. To demonstrate this technique we microdissected neurons from archived tissue blocks of the temporal cortex from patients with Alzheimer's disease. Using this method we identified over 400 proteins in microdissected neurons; on average 78% that were neuronal and 50% that were associated with Alzheimer's disease. Therefore, this technique is able to provide accurate and meaningful data and has great potential for any future study that wishes to perform localized proteomics using very small amounts of archived FFPE tissue.

  13. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder

    PubMed Central

    Xu, Jingshu; Begley, Paul; Church, Stephanie J.; Patassini, Stefano; Hollywood, Katherine A.; Jüllig, Mia; Curtis, Maurice A.; Waldvogel, Henry J.; Faull, Richard L.M.; Unwin, Richard D.; Cooper, Garth J.S.

    2016-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism. PMID:26957286

  14. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights.

    PubMed

    Acquaah-Mensah, George K; Taylor, Ronald C

    2016-07-15

    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen Brain Atlas mouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networks were learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations in mouse whole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, and Syn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.

  15. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights

    SciTech Connect

    Acquaah-Mensah, George K.; Taylor, Ronald C.

    2016-07-01

    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen BrainAtlasmouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networkswere learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations inmousewhole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, andSyn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.

  16. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer's disease.

    PubMed

    Padilla, P; López, M; Górriz, J M; Ramírez, J; Salas-González, D; Álvarez, I

    2012-02-01

    This paper presents a novel computer-aided diagnosis (CAD) technique for the early diagnosis of the Alzheimer's disease (AD) based on nonnegative matrix factorization (NMF) and support vector machines (SVM) with bounds of confidence. The CAD tool is designed for the study and classification of functional brain images. For this purpose, two different brain image databases are selected: a single photon emission computed tomography (SPECT) database and positron emission tomography (PET) images, both of them containing data for both Alzheimer's disease (AD) patients and healthy controls as a reference. These databases are analyzed by applying the Fisher discriminant ratio (FDR) and nonnegative matrix factorization (NMF) for feature selection and extraction of the most relevant features. The resulting NMF-transformed sets of data, which contain a reduced number of features, are classified by means of a SVM-based classifier with bounds of confidence for decision. The proposed NMF-SVM method yields up to 91% classification accuracy with high sensitivity and specificity rates (upper than 90%). This NMF-SVM CAD tool becomes an accurate method for SPECT and PET AD image classification.

  17. MS4A6A genotypes are associated with the atrophy rates of Alzheimer's disease related brain structures

    PubMed Central

    Tan, Lin; Wang, Hui-Fu; Wan, Yu; Sun, Fu-Rong; Tan, Chen-Chen; Yu, Jin-Tai; Tan, Lan

    2016-01-01

    Membrane-spanning 4-domains, subfamily A, member 6A (MS4A6A) has been identified as susceptibility loci of Alzheimer's disease (AD) by several recent genome-wide association studies (GWAS), whereas little is known about the potential roles of these variants in the brain structure and function of AD. In this study, we included a total of 812 individuals from the Alzheimer's disease Neuroimaging Initiative (ADNI) database. Using multiple linear regression models, we found MS4A6A genotypes were strongly related to atrophy rate of left middle temporal (rs610932: Pc = 0.017, rs7232: Pc = 0.022), precuneus (rs610932: Pc = 0.015) and entorhinal (rs610932, Pc = 0.022) on MRI in the entire group. In the subgroup analysis, MS4A6A SNPs were significantly accerlated the percentage of volume loss of middle temporal, precuneus and entorhinal, especially in the MCI subgroup. These findings reveal that MS4A6A genotypes affect AD specific brain structures which supported the possible role of MS4A6A polymorphisms in influencing AD-related neuroimaging phenotypes. PMID:27244883

  18. Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Vitorica, Javier; Gómez-Ariza, José Luis

    2014-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, but its etiology is still not completely understood. The identification of underlying pathological mechanisms is becoming increasingly important for the discovery of biomarkers and therapies, for which metabolomics presents a great potential. In this work, we studied metabolic alterations in different brain regions of the APP/PS1 mice by using a high-throughput metabolomic approach based on the combination of gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry. Multivariate statistics showed that metabolomic perturbations are widespread, affecting mainly the hippocampus and the cortex, but are also present in regions not primarily associated with AD such as the striatum, cerebellum and olfactory bulbs. Multiple metabolic pathways could be linked to the development of AD-type disorders in this mouse model, including abnormal purine metabolism, bioenergetic failures, dyshomeostasis of amino acids and disturbances in membrane lipids, among others. Interestingly, region-specific alterations were observed for some of the potential markers identified, associated with abnormal fatty acid composition of phospholipids and sphingomyelins, or differential regulation of neurotransmitter amino acids (e.g. glutamate, glycine, serine, N-acetyl-aspartate), not previously described to our knowledge. Therefore, these findings could provide a new insight into brain pathology in Alzheimer's disease.

  19. Trends in brain oxygenation during mental and physical exercise measured using near-infrared spectroscopy (NIRS): potential for early detection of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Allen, Monica S.; Allen, Jeffery W.; Mikkilineni, Shweta; Liu, Hanli

    2005-04-01

    Motivation: Early diagnosis of Alzheimer's disease (AD) is crucial because symptoms respond best to available treatments in the initial stages of the disease. Recent studies have shown that marked changes in brain oxygenation during mental and physical tasks can be used for noninvasive functional brain imaging to detect Alzheimer"s disease. The goal of our study is to explore the possibility of using near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for AD before the onset of significant morphological changes in the brain. Methods: A 16-channel NIRS brain imager was used to noninvasively measure spatial and temporal changes in cerebral hemodynamics induced during verbal fluency task and physical activity. The experiments involved healthy subjects (n = 10) in the age range of 25+/-5 years. The NIRS signals were taken from the subjects' prefrontal cortex during the activities. Results and Conclusion: Trends of oxygenated and deoxygenated hemoglobin in the prefrontal cortex of the brain were observed. During the mental stimulation, the subjects showed significant increase in oxygenated hemoglobin [HbO2] with a simultaneous decrease in deoxygenated hemoglobin [Hb]. However, physical exercise caused a rise in levels of HbO2 with small variations in Hb. This study basically demonstrates that NIRM taken from the prefrontal cortex of the human brain is sensitive to both mental and physical tasks and holds potential to serve as a diagnostic means for early detection of Alzheimer's disease.

  20. T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers

    PubMed Central

    Mietelska-Porowska, Anna

    2017-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers. PMID:28293644

  1. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    PubMed

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (<200nm) as determined by dynamic light scattering technique and transmission electron microscopy, assured transcellular transport across olfactory axons whose diameter was ≈200nm and then paving a direct path to brain. TFB-NPs and TFB-SLNs resulted in 64.11±2.21% and 57.81±5.32% entrapment efficiencies respectively which again asserted protection of drug from chemical and biological degradation in nasal cavity. In vitro release studies proved the sustained release of TFB from TFB-NPs and TFB-SLNs in comparison with pure drug, indicating prolonged residence times of drug at targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles.

  2. Down Syndrome and Alzheimer's Disease

    MedlinePlus

    ... as a Therapeutic Target in Alzheimer's Disease 2007 Michael Vitek Novel Therapeutic Reduces Abeta Deposition and Alzheimer's ... Disease Read past editions . Sign up for our e-newsletter Stay up-to-date on the latest ...

  3. Altered beta-secretase enzyme kinetics and levels of both BACE1 and BACE2 in the Alzheimer's disease brain.

    PubMed

    Stockley, John H; Ravid, Rivka; O'Neill, Cora

    2006-12-11

    beta-Secretase is the rate limiting enzymatic activity in the production of amyloid-beta peptide, the primary component of senile plaque pathology in Alzheimer's disease (AD). This study performed the first comparative analysis of beta-secretase enzyme kinetics in AD and control brain tissue. Results found V(max) values for beta-secretase to be significantly increased, and K(m) values unchanged in AD temporal cortex compared to matched control temporal cortex. The increased V(max) in AD cases, did not correlate with levels of BACE1, and decreased BACE1 and BACE2 levels correlated with the severity of neurofibrillary pathology (I-VI), and synaptic loss in AD. These results indicate that increased V(max) for beta-secretase is a feature of AD pathogenesis and this increase does not correlate directly with levels of BACE1, the principal beta-secretase in brain.

  4. Alzheimer's disease markers from structural MRI and FDG-PET brain images

    NASA Astrophysics Data System (ADS)

    Chincarini, Andrea; Bosco, Paolo; Gemme, Gianluca; Morbelli, Silvia; Arnaldi, Dario; Sensi, Francesco; Solano, Ilaria; Amoroso, Nicola; Tangaro, Sabina; Longo, Renata; Squarcia, Sandro; Nobili, Flavio

    2012-11-01

    Despite the widespread use of neuroimaging tools (morphological and functional) in the routine diagnostic of cerebral diseases, the information available by the end user -the clinician- remains largely limited to qualitative visual analysis. This restriction greatly reduces the diagnostic impact of neuroimaging in routine clinical practice and increases the risk of misdiagnosis. In this context, researches are focussing on the development of sophisticated automatic analyses able to extract clinically relevant information from the captured data. The identification of biological markers at early stages of Alzheimer's disease (AD) contributes to diagnostic accuracy and adds prognostic value. However, in spite of recent developments, results of structural and functional imaging studies on predicting conversion to AD are not uniform. We provide here an overview of analysis methods and approaches, discussing their contribution to clinical assessment.

  5. β-Amyloid precursor protein: function in stem cell development and Alzheimer's disease brain.

    PubMed

    Small, David H; Hu, Yanling; Bolós, Marta; Dawkins, Edgar; Foa, Lisa; Young, Kaylene M

    2014-01-01

    Stem cell therapy may be a suitable approach for the treatment of many neurodegenerative diseases. However, one major impediment to the development of successful cell-based therapies is our limited understanding of the mechanisms that instruct neural stem cell behaviour, such as proliferation and cell fate specification. The β-amyloid precursor protein (APP) of Alzheimer's disease (AD) may play an important role in neural stem cell proliferation and differentiation. Our recent work shows that in vitro, APP stimulates neural stem or progenitor cell proliferation and neuronal differentiation. The effect on proliferation is mediated by an autocrine factor that we have identified as cystatin C. As cystatin C expression is also reported to inhibit the development of amyloid pathology in APP transgenic mice, our finding has implications for the possible use of cystatin C for the therapy of AD.

  6. The clinical significance of brain microbleeds in patients with Alzheimer's disease: Preliminary study

    PubMed Central

    Heo, Jae-Hyeok; Im, Dong-Gyu; Lee, Seung-Hyeon; Ahn, Jin-Young

    2016-01-01

    Background: Microbleeds (MBs) are observed frequently in Alzheimer's disease (AD) and suggested to play a crucial role in the pathophysiology, but their clinical significance remains unclear. Materials and Methods: The study recruited 100 patients with AD who were diagnosed at the memory clinic in Seoul Medical Center in 2014. For each patient, baseline characteristics, neuropsychological tests, cerebrovascular risk factors, medial temporal lobe atrophy (MTLA), and severity of small vessel disease (SVD) according to the existence of MBs were evaluated. Results: The prevalence of MBs in patients with AD was 33%. The percentage of male gender, the severity of SVD and MTLA were significantly increased in MB(+) group. The MB(+) group showed more severe MTLA and SVD than MB(−) group. Conclusions: These results suggested that MBs might reflect the burden of amyloid and ischemic vascular pathology. PMID:27994360

  7. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Mattsson, Niklas; Tosun, Duygu; Insel, Philip S; Simonson, Alix; Jack, Clifford R; Beckett, Laurel A; Donohue, Michael; Jagust, William; Schuff, Norbert; Weiner, Michael W

    2014-05-01

    Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to

  8. The proteins BACE1 and BACE2 and beta-secretase activity in normal and Alzheimer's disease brain.

    PubMed

    Stockley, J H; O'Neill, C

    2007-06-01

    The insidious progression of AD (Alzheimer's disease) is believed to be linked closely to the production, accumulation and aggregation of the approximately 4.5 kDa protein fragment called Abeta (amyloid beta-peptide). Abeta is produced by sequential cleavage of the amyloid precursor protein by two enzymes referred to as beta- and gamma-secretase. beta-Secretase is of central importance, as it catalyses the rate-limiting step in the production of Abeta and was identified 7 years ago as BACE1 (beta-site APP-cleaving enzyme 1). Soon afterwards, its homologue BACE2 was discovered, and both proteins represent a new subclass of the aspartyl protease family. Studies examining the regulation and function of beta-secretase in the normal and AD brain are central to the understanding of excessive production of Abeta in AD, and in targeting and normalizing this beta-secretase process if it has gone awry in the disease. Several reports indicate this, showing increased beta-secretase activity in AD, with recent findings by our group showing changes in beta-secretase enzyme kinetics in AD brain caused by an increased V(max). This article gives a brief review of studies which have examined BACE1 protein levels and beta-secretase activity in control and AD brain, considering further the expression of BACE2 in the human brain.

  9. P3 beta-amyloid peptide has a unique and potentially pathogenic immunohistochemical profile in Alzheimer's disease brain.

    PubMed Central

    Higgins, L. S.; Murphy, G. M.; Forno, L. S.; Catalano, R.; Cordell, B.

    1996-01-01

    The presence of beta-amyloid in brain tissue is characteristic of Alzheimer's disease (AD). A naturally occurring derivative of the beta-amyloid peptide, p3, possesses all of the structural determinants required for fibril assembly and neurotoxicity. p3-specific antibodies were used to examine the distribution of this peptide in brain. p3 reactivity was absent or sparse in aged non-AD brains but was prevalent in selected areas of AD brain in diffuse deposits and in a subset of dystrophic neurites. p3-reactive dystrophic neurites were found both independent in the neuropil and associated with plaques. Little or no reactivity was observed to amyloid cores in classical plaques or to amyloid in the cerebral vasculature. The exclusive appearance of p3 reactivity in AD brain plus the selective localization of p3 reactivity to abnormal structures in the temporal lobe limbic system suggests that p3 may be a contributing factor to AD pathology. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8701997

  10. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model.

    PubMed

    Washington, Patricia M; Morffy, Nicholas; Parsadanian, Maia; Zapple, David N; Burns, Mark P

    2014-01-01

    Soluble amyloid-beta (Aβ) oligomers are hypothesized to be the pathogenic species in Alzheimer's disease (AD), and increased levels of oligomers in the brain subsequent to traumatic brain injury (TBI) may exacerbate secondary injury pathways and underlie increased risk of developing AD in later life. To determine whether TBI causes Aβ aggregation and oligomerization in the brain, we exposed triple transgenic AD model mice to controlled cortical impact injury and measured levels of soluble, insoluble, and oligomeric Aβ by enzyme-linked immunosorbent assay (ELISA) at 1, 3, and 7 days postinjury. TBI rapidly increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 day postinjury. We confirmed previous findings that identified damaged axons as a major site of Aβ accumulation using both immunohistochemistry and biochemistry. We also report that soluble Aβ oligomers were significantly increased in the injured cortex, as demonstrated by both ELISA and Western blot. Interestingly, the mouse brain is able to rapidly clear trauma-induced Aβ, with both soluble and insoluble Aβ species returning to sham levels by 7 days postinjury. In conclusion, we demonstrate that TBI causes acute accumulation and aggregation of Aβ in the brain, including the formation of low- and high-molecular-weight Aβ oligomers. The formation and aggregation of Aβ into toxic species acutely after injury may play a role in secondary injury cascades after trauma and, chronically, may contribute to increased risk of developing AD in later life.

  11. Alzheimer's Disease and Depression.

    ERIC Educational Resources Information Center

    Teri, Linda; Wagner, Amy

    1992-01-01

    Reviews research on depression in Alzheimer's disease (AD). Discusses evidence suggesting that depression affects many AD patients and can have profound effects on patient long-term functioning and caregiver well-being. Notes that field is dominated by studies of prevalence, as opposed to studies of etiology, association with other aspects of…

  12. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease.

    PubMed

    Ho, Lap; Ferruzzi, Mario G; Janle, Elsa M; Wang, Jun; Gong, Bing; Chen, Tzu-Ying; Lobo, Jessica; Cooper, Bruce; Wu, Qing Li; Talcott, Stephen T; Percival, Susan S; Simon, James E; Pasinetti, Giulio Maria

    2013-02-01

    Epidemiological and preclinical studies indicate that polyphenol intake from moderate consumption of red wines may lower the relative risk for developing Alzheimer's disease (AD) dementia. There is limited information regarding the specific biological activities and cellular and molecular mechanisms by which wine polyphenolic components might modulate AD. We assessed accumulations of polyphenols in the rat brain following oral dosage with a Cabernet Sauvignon red wine and tested brain-targeted polyphenols for potential beneficial AD disease-modifying activities. We identified accumulations of select polyphenolic metabolites in the brain. We demonstrated that, in comparison to vehicle-control treatment, one of the brain-targeted polyphenol metabolites, quercetin-3-O-glucuronide, significantly reduced the generation of β-amyloid (Aβ) peptides by primary neuron cultures generated from the Tg2576 AD mouse model. Another brain-targeted metabolite, malvidin-3-O-glucoside, had no detectable effect on Aβ generation. Moreover, in an in vitro analysis using the photo-induced cross-linking of unmodified proteins (PICUP) technique, we found that quercetin-3-O-glucuronide is also capable of interfering with the initial protein-protein interaction of Aβ(1-40) and Aβ(1-42) that is necessary for the formation of neurotoxic oligomeric Aβ species. Lastly, we found that quercetin-3-O-glucuronide treatment, compared to vehicle-control treatment, significantly improved AD-type deficits in hippocampal formation basal synaptic transmission and long-term potentiation, possibly through mechanisms involving the activation of the c-Jun N-terminal kinases and the mitogen-activated protein kinase signaling pathways. Brain-targeted quercetin-3-O-glucuronide may simultaneously modulate multiple independent AD disease-modifying mechanisms and, as such, may contribute to the benefits of dietary supplementation with red wines as an effective intervention for AD.

  13. Reflections on Alzheimer's disease.

    PubMed

    Kushnir, S L

    1982-02-01

    As longevity increases, society will face a silent epidemic of idiopathic dementias. The concept, Alzheimer's disease, reflects a cumbersome and vaguely-defined cluster of signs, symptoms and other variables which might more appropriately be labelled as the idiopathic dementias, Alzheimer-type or IDAT. Diagnosis, which is made by exclusion and treatment, primarily custodial, demonstrates the complex nature and unfortunate prognosis of the problem. Dramatic progress, nevertheless, has been made in various scientific aspects of the issue, namely, in histology, genetics and neurochemistry. The resulting evidence warrants further speculation on the role of central cholinergic neurotransmission in cognitive functioning.

  14. Emerging concepts in Alzheimer's disease.

    PubMed

    Vinters, Harry V

    2015-01-01

    Alzheimer's disease/senile dementia of the Alzheimer type (AD/SDAT) is the most common neuropathologic substrate of dementia. It is characterized by synapse loss (predominantly within neocortex) as well as deposition of certain distinctive lesions (the result of protein misfolding) throughout the brain. The latter include senile plaques, composed mainly of an amyloid (Aβ) core and a neuritic component; neurofibrillary tangles, composed predominantly of hyperphosphorylated tau; and cerebral amyloid angiopathy, a microangiopathy affecting both cerebral cortical capillaries and arterioles and resulting from Aβ deposition within their walls or (in the case of capillaries) immediately adjacent brain parenchyma. In this article, I discuss the hypothesized role these lesions play in causing cerebral dysfunction, as well as CSF and neuroimaging biomarkers (for dementia) that are especially relevant as immunotherapeutic approaches are being developed to remove Aβ from the brain parenchyma. In addition, I address the role of neuropathology in characterizing the sequelae of new AD/SDAT therapies and helping to validate CSF and neuroimaging biomarkers of disease. Comorbidity of AD/SDAT and various types of cerebrovascular disease is a major theme in dementia research, especially as cognitive impairment develops in the oldest old, who are especially vulnerable to ischemic and hemorrhagic brain lesions.

  15. NMF-Based Analysis of SPECT Brain Images for the Diagnosis of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Padilla, Pablo; Górriz, Juan-Manuel; Ramírez, Javier; Lang, Elmar; Chaves, Rosa; Segovia, Fermin; Álvarez, Ignacio; Salas-González, Diego; López, Miriam

    This paper offers a computer-aided diagnosis (CAD) technique for early diagnosis of Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The SPECT database for different patients is analyzed by applying the Fisher discriminant ratio (FDR) and non-negative matrix factorization (NMF) for the selection and extraction of the most significative features of each patient SPECT data, in order to reduce the large dimensionality of the input data and the problem of the curse of dimensionality, extracting score features. The NMF-transformed set of data, with reduced number of features, is classified by means of support vector machines (SVM) classification. The proposed NMF+SVM method yields up to 94% classification accuracy, thus becoming an accurate method for SPECT image classification. For the sake of completeness, comparison between conventional PCA+SVM method and the proposed method is also provided.

  16. Novel role of red wine-derived polyphenols in the prevention of Alzheimer's disease dementia and brain pathology: experimental approaches and clinical implications.

    PubMed

    Pasinetti, Giulio Maria

    2012-10-01

    Recent studies suggest that by the middle of this century, as many as 14 million Americans will have Alzheimer's disease, creating an enormous strain on families, the health care system and the federal budget. There are still widespread misconceptions about issues related to the prevention and/or treatment of disease pathogenesis, leaving us unprepared to deal with the disease. To address these challenges, several therapeutic approaches are currently under investigation, mainly in an attempt to delay disease onset and eventually slow down its progression. Recent epidemiological evidence has implicated the protective role of dietary polyphenols from grape products against Alzheimer's disease. Furthermore, experimental evidence supports the hypothesis that certain bioactive grape-derived polyphenols may protect against Alzheimer's disease-type cognitive deterioration, in part by interfering with the generation and assembly of β-amyloid peptides into neurotoxic oligomeric aggregated species. Brain-targeting polyphenols have been shown to significantly reduce the generation of β-amyloid peptides in primary cortico-hippocampal neuron cultures, and preliminary results indicate that they may influence neuronal synaptic plasticity. Recent evidence has also implicated the role of certain grape-derived preparations in beneficially modulating tau neuropathology, including reducing tau aggregation. Studies suggest that dietary polyphenolics may benefit Alzheimer's disease by modulating multiple disease-modifying modalities, both β-amyloid-dependent and independent mechanisms, and provide impetus for the development of polyphenolic compounds for Alzheimer's disease prevention and/or therapy.

  17. Design, synthesis and biological evaluation of trimethine cyanine dyes as fluorescent probes for the detection of tau fibrils in Alzheimer's disease brain and olfactory epithelium.

    PubMed

    Gu, Jiamin; Anumala, Upendra Rao; Heyny-von Haußen, Roland; Hölzer, Jana; Goetschy-Meyer, Valérie; Mall, Gerhard; Hilger, Ingrid; Czech, Christian; Schmidt, Boris

    2013-06-01

    Shedding light on grey matter: Fluorescent trimethine cyanines were evaluated as imaging probes for neurofibrillary tangles in post-mortem brain sections of Alzheimer's disease patients. These probes bind to neurofibrillary tangles with high contrast and selectivity over amyloid β plaques.

  18. Neurons in Vulnerable Regions of the Alzheimer's Disease Brain Display Reduced ATM Signaling.

    PubMed

    Shen, Xuting; Chen, Jianmin; Li, Jiali; Kofler, Julia; Herrup, Karl

    2016-01-01

    Ataxia telangiectasia (A-T) is a multisystemic disease caused by mutations in the ATM (A-T mutated) gene. It strikes before 5 years of age and leads to dysfunctions in many tissues, including the CNS, where it leads to neurodegeneration, primarily in cerebellum. Alzheimer's disease (AD), by contrast, is a largely sporadic neurodegenerative disorder that rarely strikes before the 7th decade of life with primary neuronal losses in hippocampus, frontal cortex, and certain subcortical nuclei. Despite these differences, we present data supporting the hypothesis that a failure of ATM signaling is involved in the neuronal death in individuals with AD. In both, partially ATM-deficient mice and AD mouse models, neurons show evidence for a loss of ATM. In human AD, three independent indices of reduced ATM function-nuclear translocation of histone deacetylase 4, trimethylation of histone H3, and the presence of cell cycle activity-appear coordinately in neurons in regions where degeneration is prevalent. These same neurons also show reduced ATM protein levels. And though they represent only a fraction of the total neurons in each affected region, their numbers significantly correlate with disease stage. This previously unknown role for the ATM kinase in AD pathogenesis suggests that the failure of ATM function may be an important contributor to the death of neurons in AD individuals.

  19. Comparison of histological techniques to visualize iron in paraffin-embedded brain tissue of patients with Alzheimer's disease.

    PubMed

    van Duijn, Sara; Nabuurs, Rob J A; van Duinen, Sjoerd G; Natté, Remco

    2013-11-01

    Better knowledge of the distribution of iron in the brains of Alzheimer's disease (AD) patients may facilitate the development of an in vivo magnetic resonance (MR) marker for AD and may cast light on the role of this potentially toxic molecule in the pathogenesis of AD. Several histological iron staining techniques have been used in the past but they have not been systematically tested for sensitivity and specificity. This article compares three histochemical techniques and ferritin immunohistochemistry to visualize iron in paraffin-embedded human AD brain tissue. The specificity of the histochemical techniques was tested by staining sections after iron extraction. Iron was demonstrated in the white matter, in layers IV/V of the frontal neocortex, in iron containing plaques, and in microglia. In our hands, these structures were best visualized using the Meguro iron stain, a method that has not been described for iron staining in human brain or AD in particular. Ferritin immunohistochemistry stained microglia and iron containing plaques similar to the Meguro method but was less intense in myelin-associated iron. The Meguro method is most suitable for identifying iron-positive structures in paraffin-embedded human AD brain tissue.

  20. Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, PreP peptidasome, in Alzheimer's disease brain mitochondria.

    PubMed

    Alikhani, Nyosha; Guo, Lan; Yan, Shiqiang; Du, Heng; Pinho, Catarina Moreira; Chen, John Xi; Glaser, Elzbieta; Yan, Shirley ShiDu

    2011-01-01

    Accumulation of amyloid-β peptide (Aβ), the neurotoxic peptide implicated in the pathogenesis of Alzheimer's disease (AD), has been shown in brain mitochondria of AD patients and of AD transgenic mouse models. The presence of Aβ in mitochondria leads to free radical generation and neuronal stress. Recently, we identified the presequence protease, PreP, localized in the mitochondrial matrix in mammalian mitochondria as the novel mitochondrial Aβ-degrading enzyme. In the present study, we examined PreP activity in the mitochondrial matrix of the human brain's temporal lobe, an area of the brain highly susceptible to Aβ accumulation and reactive oxygen species (ROS) production. We found significantly lower hPreP activity in AD brains compared with non-AD age-matched controls. By contrast, in the cerebellum, a brain region typically spared from Aβ accumulation, there was no significant difference in hPreP activity when comparing AD samples to non-AD controls. We also found significantly reduced PreP activity in the mitochondrial matrix of AD transgenic mouse brains (Tg mAβPP and Tg mAβPP/ABAD) when compared to non-transgenic aged-matched mice. Furthermore, mitochondrial fractions isolated from AD brains and Tg mAβPP mice had higher levels of 4-hydroxynonenal, an oxidative product, as compared with those from non-AD and nonTg mice. Accordingly, activity of cytochrome c oxidase was significantly reduced in the AD mitochondria. These findings suggest that decreased PreP proteolytic activity, possibly due to enhanced ROS production, contributes to Aβ accumulation in mitochondria leading to the mitochondrial toxicity and neuronal death that is exacerbated in AD. Clearance of mitochondrial Aβ by PreP may thus be of importance in the pathology of AD.

  1. Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer's disease.

    PubMed

    Faure, A; Verret, L; Bozon, B; El Tannir El Tayara, N; Ly, M; Kober, F; Dhenain, M; Rampon, C; Delatour, B

    2011-03-01

    Amyloid-β peptide species accumulating in the brain of patients with Alzheimer's disease are assumed to have a neurotoxic action and hence to be key actors in the physiopathology of this neurodegenerative disease. We have studied a new mouse mutant (APPxPS1-Ki) line developing both early-onset brain amyloid-β deposition and, in contrast to most of transgenic models, subsequent neuronal loss. In 6-month-old mice, we observed cell layer atrophies in the hippocampus, together with a dramatic decrease in neurogenesis and a reduced brain blood perfusion as measured in vivo by magnetic resonance imaging. In these mice, neurological impairments and spatial hippocampal dependent memory deficits were also substantiated and worsened with aging. We described here a phenotype of APPxPS1-Ki mice that summarizes several neuroanatomical alterations and functional deficits evocative of the human pathology. Such a transgenic model that displays strong face validity might be highly beneficial to future research on AD physiopathogeny and therapeutics.

  2. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    PubMed Central

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Background/Aims Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Methods Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction. PMID:28101102

  3. Alzheimer's disease: early diagnosis and treatment.

    PubMed

    Chu, L W

    2012-06-01

    With ageing of populations, the worldwide population of persons with dementia will reach over 81 million by 2040, of which the most common cause is Alzheimer's disease. In recent years, there have been major advances in the understanding of its pathogenesis, methods to diagnose it, and treatment. Magnetic resonance brain imaging, cerebrospinal fluid biomarkers, and Pittsburgh compound B and fluorodeoxyglucose positron emission tomography of the brain can facilitate an accurate diagnosis of Alzheimer's disease in its early stage, and diagnose the mild cognitive impairment stage of Alzheimer's disease. At present, only symptomatic but not disease-modifying drug treatments are available. Donepezil, rivastigmine and galantamine are the currently approved cholinesterase inhibitors for the treatment of mild, moderate, and severe Alzheimer's disease. Overall, cholinesterase inhibitors show beneficial effects on cognition, activity of daily living, behaviour, and overall clinical rating. Memantine is another symptomatic treatment for moderate-to-severe Alzheimer's disease patients. It has a small beneficial effect on cognition, activity of daily living, behaviour, and overall clinical rating. Vitamin E has antioxidant properties, and may be used in some Alzheimer's disease patients without vascular risk factors. Concurrent non-pharmacological and psychosocial management of patients and their caregivers have a very important role. Disease-modifying therapies are still under development, whilst immunotherapy may be a viable option in the near future.

  4. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer's disease.

    PubMed

    Boggio, Paulo Sérgio; Valasek, Claudia Aparecida; Campanhã, Camila; Giglio, Ana Carolina Alem; Baptista, Nathalia Ishikawa; Lapenta, Olivia Morgan; Fregni, Felipe

    2011-10-01

    Alzheimer's disease (AD) is a neurodegenerative and progressive disease related to a gradual decline in cognitive functions such as memory, attention, perceptual-spatial abilities, language, and executive functions. Recent evidence has suggested that interventions promoting neural plasticity can induce significant cognitive gains especially in subjects at risk of or with mild AD. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive techniques that can induce significant and long-lasting changes in focal and non-focal neuroplasticity. In this review, we present initial preliminary evidence that TMS and tDCS can enhance performance in cognitive functions typically impaired in AD. Also, we reviewed the initial six studies on AD that presented early findings showing cognitive gains such as in recognition memory and language associated with TMS and tDCS treatment. In addition, we showed that TMS has also been used to assess neuroplasticity changes in AD supporting the notion that cortical excitability is changed in AD due to the neurodegenerative process. Due to the safe profile, cost of these tools, and initial clinical trials results, further studies are warranted in order to replicate and extend the initial findings of rTMS and tDCS as cognitive enhancers in AD. Further trials should explore different targets of stimulation along with different paradigms of stimulation including combination with behavioural interventions.

  5. "Small World" architecture in brain connectivity and hippocampal volume in Alzheimer's disease: a study via graph theory from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Piludu, Francesca; Granata, Giuseppe; Romanello, Roberto; Caulo, Massimo; Onofrj, Valeria; Bramanti, Placido; Colosimo, Cesare; Rossini, Paolo Maria

    2016-03-09

    Brain imaging plays an important role in the study of Alzheimer's disease (AD), where atrophy has been found to occur in the hippocampal formation during the very early disease stages and to progress in parallel with the disease's evolution. The aim of the present study was to evaluate a possible correlation between "Small World" characteristics of the brain connectivity architecture-as extracted from EEG recordings-and hippocampal volume in AD patients. A dataset of 144 subjects, including 110 AD (MMSE 21.3) and 34 healthy Nold (MMSE 29.8) individuals, was evaluated. Weighted and undirected networks were built by the eLORETA solutions of the cortical sources' activities moving from EEG recordings. The evaluation of the hippocampal volume was carried out on a subgroup of 60 AD patients who received a high-resolution T1-weighted sequence and underwent processing for surface-based cortex reconstruction and volumetric segmentation using the Freesurfer image analysis software. Results showed that, quantitatively, more correlation was observed in the right hemisphere, but the same trend was seen in both hemispheres. Alpha band connectivity was negatively correlated, while slow (delta) and fast-frequency (beta, gamma) bands positively correlated with hippocampal volume. Namely, the larger the hippocampal volume, the lower the alpha and the higher the delta, beta, and gamma Small World characteristics of connectivity. Accordingly, the Small World connectivity pattern could represent a functional counterpart of structural hippocampal atrophying and related-network disconnection.

  6. Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease.

    PubMed

    Kim, Won Hwa; Adluru, Nagesh; Chung, Moo K; Okonkwo, Ozioma C; Johnson, Sterling C; B Bendlin, Barbara; Singh, Vikas

    2015-09-01

    There is significant interest, both from basic and applied research perspectives, in understanding how structural/functional connectivity changes can explain behavioral symptoms and predict decline in neurodegenerative diseases such as Alzheimer's disease (AD). The first step in most such analyses is to encode the connectivity information as a graph; then, one may perform statistical inference on various 'global' graph theoretic summary measures (e.g., modularity, graph diameter) and/or at the level of individual edges (or connections). For AD in particular, clear differences in connectivity at the dementia stage of the disease (relative to healthy controls) have been identified. Despite such findings, AD-related connectivity changes in preclinical disease remain poorly characterized. Such preclinical datasets are typically smaller and group differences are weaker. In this paper, we propose a new multi-resolution method for performing statistical analysis of connectivity networks/graphs derived from neuroimaging data. At the high level, the method occupies the middle ground between the two contrasts - that is, to analyze global graph summary measures (global) or connectivity strengths or correlations for individual edges similar to voxel based analysis (local). Instead, our strategy derives a Wavelet representation at each primitive (connection edge) which captures the graph context at multiple resolutions. We provide extensive empirical evidence of how this framework offers improved statistical power by analyzing two distinct AD datasets. Here, connectivity is derived from diffusion tensor magnetic resonance images by running a tractography routine. We first present results showing significant connectivity differences between AD patients and controls that were not evident using standard approaches. Later, we show results on populations that are not diagnosed with AD but have a positive family history risk of AD where our algorithm helps in identifying potentially

  7. Multi-resolution Statistical Analysis of Brain Connectivity Graphs in Preclinical Alzheimer's Disease

    PubMed Central

    Kim, Won Hwa; Adluru, Nagesh; Chung, Moo K.; Okonkwo, Ozioma C.; Johnson, Sterling C.; Bendlin, Barbara; Singh, Vikas

    2015-01-01

    There is significant interest, both from basic and applied research perspectives, in understanding how structural/functional connectivity changes can explain behavioral symptoms and predict decline in neurodegenerative diseases such as Alzheimer's disease (AD). The first step in most such analyses is to encode the connectivity information as a graph; then, one may perform statistical inference on various ‘global’ graph theoretic summary measures (e.g., modularity, graph diameter) and/or at the level of individual edges (or connections). For AD in particular, clear differences in connectivity at the dementia stage of the disease (relative to healthy controls) have been identified. Despite such findings, AD-related connectivity changes in preclinical disease remain poorly characterized. Such preclinical datasets are typically smaller and group differences are weaker. In this paper, we propose a new multi-resolution method for performing statistical analysis of connectivity networks/graphs derived from neuroimaging data. At the high level, the method occupies the middle ground between the two contrasts — that is, to analyze global graph summary measures (global) or connectivity strengths or correlations for individual edges similar to voxel based analysis (local). Instead, our strategy derives a Wavelet representation at each primitive (connection edge) which captures the graph context at multiple resolutions. We provide extensive empirical evidence of how this framework offers improved statistical power by analyzing two distinct AD datasets. Here, connectivity is derived from diffusion tensor magnetic resonance images by running a tractography routine. We first present results showing significant connectivity differences between AD patients and controls that were not evident using standard approaches. Later, we show results on populations that are not diagnosed with AD but have a positive family history risk of AD where our algorithm helps in identifying

  8. Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients.

    PubMed

    Bertram, Sebastian; Brixius, Klara; Brinkmann, Christian

    2016-08-01

    Epidemiological studies indicate that patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing dementia/Alzheimer's disease (AD). This review, which is based on recent studies, presents a molecular framework that links the two diseases and explains how physical training could help counteract neurodegeneration in T2DM patients. Inflammatory, oxidative, and metabolic changes in T2DM patients cause cerebrovascular complications and can lead to blood-brain-barrier (BBB) breakdown. Peripherally increased pro-inflammatory molecules can then pass the BBB more easily and activate stress-activated pathways, thereby promoting key pathological features of dementia/AD such as brain insulin resistance, mitochondrial dysfunction, and accumulation of neurotoxic beta-amyloid (Aβ) oligomers, leading to synaptic loss, neuronal dysfunction, and cell death. Ceramides can also pass the BBB, induce pro-inflammatory reactions, and disturb brain insulin signaling. In a vicious circle, oxidative stress and the pro-inflammatory environment intensify, leading to further cognitive decline. Low testosterone levels might be a common risk factor in T2DM and AD. Regular physical exercise reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. It improves endothelial function and might increase brain capillarization. Physical training can further counteract dyslipidemia and reduce increased ceramide levels. It might also improve Aβ clearance by up-regulating Aβ transporters and, in some cases, increase basal testosterone levels. In addition, regular physical activity can induce neurogenesis. Physical training should therefore be emphasized as a part of prevention programs developed for diabetic patients to minimize the risk of the onset of neurodegenerative diseases among this specific patient group.

  9. [Driving and Alzheimer's disease].

    PubMed

    Roche, Jean

    2005-09-01

    Although most aged people remain safe drivers, a greater risk for crashes due to medical conditions is observed in the elderly. Impairment of important functions for safe driving such as visuospatial skills, attention, memory and judgement are observed in dementia, particularly in Alzheimer's disease. The accident rate increases from 9.4 accidents per million vehicle kilometers traveled for 80 to 85 year-old drivers, but raises to 163.6 for drivers with moderate AD. Patients and their families should be informed that patients with mild dementia related to Alzheimer's disease (stage 1 on the Clinical Dementia Rating, CDR), have a substantially increased rate of traffic accidents and therefore should not drive. But subjects in the pre-dementia phase (stage 0.5 at the CDR, mild cognitive impairment) also pose significant driving safety problems. In most States of the USA, and many European countries, but not in France, law requires regular investigating of driving performance in the elderly.

  10. [Calcium hypothesis of Alzheimer disease].

    PubMed

    Riazantseva, M A; Mozhaeva, G N; Kaznacheeva, E V

    2012-01-01

    Alzheimer's disease is the most common neurodegenerative disorder characterized by progressive memory and cognitive abilities loss. The etiology of Alzheimer's disease is poorly understood. In this regard, there is no effective treatment for the disease. Various hypotheses to explain the nature of the pathology of Alzheimer's disease led to the development of appropriate therapeutics. Despite of decades of research and clinical trials available therapeutics, at best, can only slow down the progression of the disease, but cannot cure it. This review dedicated to the one of modern hypotheses of Alzheimer's disease pathogenesis implied the impairment of calcium homeostasis as a key event for the development of neurodegenerative processes.

  11. Role of Methylglyoxal in Alzheimer's Disease

    PubMed Central

    Zambonin, Laura; Hrelia, Silvana

    2014-01-01

    Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease. PMID:24734229

  12. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    PubMed

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice.

  13. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer's Disease: Optimization, Biological Efficacy, and Potential Toxicity.

    PubMed

    Elnaggar, Yosra S R; Etman, Samar M; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    2015-10-01

    Piperine (PIP) is a phytopharmaceutical with reported neuroprotective potential in Alzheimer's disease (AD). Oral PIP delivery suffers from its hydrophobicity and pre-systemic metabolism. In this article, mono-disperse intranasal chitosan nanoparticles (CS-NPs) were elaborated for brain targeting of PIP. Formula optimization was based on particle size (PS), zeta potential (ZP), polydispersity index (PDI), % entrapment efficiency (% EE), release studies, and transmission electron microscopy. AD was induced in 48 male Wistar rats on which full behavioral and biochemical testing was conducted. Brain toxicity was assessed based on Caspase-3 assay for apoptosis and tumor necrosis factor for inflammation. Spherical NPs with optimum % EE (81.70), PS (248.50 nm), PDI (0.24), and ZP (+56.30 mV) were elaborated. PIP-NPs could significantly improve cognitive functions as efficient as standard drug (donpezil injection) with additional advantages of dual mechanism (Ach esterase inhibition and antioxidant effect). CS-NPs could significantly alleviate PIP nasal irritation and showed no brain toxicity. This work was the first to report additional mechanism of PIP in AD via anti-apoptosis and anti-inflammatory effects. To conclude, mucoadhesive CS-NPs were successfully tailored for effective, safe, and non-invasive PIP delivery with 20-folds decrease in oral dose, opening a gate for a future with lower AD morbidity.

  14. Methylene Blue Improves Brain Mitochondrial ABAD Functions and Decreases Aβ in a Neuroinflammatory Alzheimer's Disease Mouse Model.

    PubMed

    Zakaria, Aya; Hamdi, Nabila; Abdel-Kader, Reham Mahmoud

    2016-03-01

    Methylene blue (MB) phase II clinical trials reported improvements in cognitive functions of Alzheimer's disease (AD) patients. Regarding MB mechanism of action, its antioxidant and mitochondrial protective effects have been previously described. In relation to AD, it has been recently reported that MB reduced amyloid beta (Aβ) levels in AD models. The mitochondrial enzyme amyloid-binding alcohol dehydrogenase (ABAD) has been shown to bind Aβ inducing mitochondrial dysfunction, providing a direct relation between Aβ toxicity and mitochondrial dysfunction occurring in AD. Since it has been reported that inhibiting ABAD protects mitochondrial functions and prevents Aβ-induced toxicity, the aim of the current study was to investigate if the protective effects of MB could be associated with an effect on ABAD levels and functions. The current study shows that MB is able to enhance cell viability, reduce both reactive oxygen species levels and importantly Aβ oligomers in a lipopolysaccharide (LPS) mouse model. Interestingly, ABAD levels were increased in the brains of the LPS mouse model and MB treatment was able to reduce its levels. Given that regulation of the estradiol level is a well-established function of ABAD, brain estradiol level was compared in LPS mouse model and in MB-treated mice. The results of the current study show that MB treatment is able to improve significantly the LPS-induced decrease of estradiol levels in mice brains, indicating its ability to modulate both levels and function of ABAD. These results give a new insight to possible mechanisms of MB in AD.

  15. Pharmacogenomics in Alzheimer's disease.

    PubMed

    Cacabelos, Ramón

    2008-01-01

    Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior

  16. Patients that have Undergone Hemodialysis Exhibit Lower Amyloid Deposition in the Brain: Evidence Supporting a Therapeutic Strategy for Alzheimer's Disease by Removal of Blood Amyloid.

    PubMed

    Sakai, Kazuyoshi; Senda, Takao; Hata, Ryuji; Kuroda, Makoto; Hasegawa, Midori; Kato, Masao; Abe, Masato; Kawaguchi, Kazunori; Nakai, Shigeru; Hiki, Yoshiyuki; Yuzawa, Yukio; Kitaguchi, Nobuya

    2016-01-01

    As a proof of concept that removal of blood amyloid-β (Aβ) can reduce Aβ deposition in the brains of patients with Alzheimer's disease, cortices of patients who had undergone hemodialysis (HD), which removes Aβ from the blood, were histochemically analyzed; postmortem brain sections were stained with anti-Aβ antibodies. Brains from patients who had undergone HD had significantly fewer senile plaques than those of patient who had not undergone HD. This significant difference was also confirmed by silver staining. Our findings suggest that removal of blood Aβ by hemodialysis results in lower accumulation of Aβ in the brain.

  17. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain.

    PubMed

    Thomas, Stefani N; Yang, Austin J

    2017-01-01

    Recent advances in mass spectrometry (MS)-based proteomics have greatly facilitated the robust identification and quantification of posttranslational modifications (PTMs), including those that are present at substoichiometric site occupancies. The abnormal posttranslational modification and accumulation of the microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer's disease (AD), and it is thought that the primary mode of regulation of tau occurs through PTMs. Several studies have been published regarding tau phosphorylation; however, other tau PTMs such as ubiquitylation, acetylation, methylation, oxidation, sumoylation, nitration, and glycosylation have not been analyzed as extensively. The comprehensive detection and delineation of these PTMs is critical for drug target discovery and validation. Lysine-directed PTMs including ubiquitylation, acetylation, and methylation play key regulatory roles with respect to the rates of tau turnover and aggregation. MS-based analytical approaches have been used to gain insight into the tau lysine-directed PTM signature that is most closely associated with neurofibrillary lesion formation. This chapter provides details pertaining to the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based analysis of the lysine-directed posttranslational modification of tau.

  18. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain.

    PubMed

    Sultana, Rukhsana; Perluigi, Marzia; Allan Butterfield, D

    2013-09-01

    Lipid peroxidation involves a cascade of reactions in which production of free radicals occurs selectively in the lipid components of cellular membranes. Polyunsaturated fatty acids easily undergo lipid peroxidation chain reactions, which, in turn, lead to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. Proteins are susceptible to posttranslational modifications caused by aldehydes binding covalently to specific amino acid residues, in a process called Michael adduction, and these types of protein adducts, if not efficiently removed, may be, and generally are, dangerous for cellular homeostasis. In the present review, we focused the discussion on the selective proteins that are identified, by redox proteomics, as selective targets of HNE modification during the progression and pathogenesis of Alzheimer disease (AD). By comparing results obtained at different stages of the AD, it may be possible to identify key biochemical pathways involved and ideally identify therapeutic targets to prevent, delay, or treat AD.

  19. In Situ FTIR Microspectroscopy of Brain Tissue from a Transgenic Mouse Model of Alzheimer Disease

    SciTech Connect

    Rak,M.; Del Bigio, M.; Mai, S.; Westaway, D.; Gough, K.

    2007-01-01

    Plaques composed of the A{beta} peptide are the main pathological feature of Alzheimer's disease. Dense-core plaques are fibrillar deposits of A{beta}, showing all the classical properties of amyloid including {beta}-sheet secondary structure, while diffuse plaques are amorphous deposits. We studied both plaque types, using synchrotron infrared (IR) microspectroscopy, a technique that allows the chemical composition and average protein secondary structure to be investigated in situ. We examined plaques in hippocampal, cortical and caudal tissue from 5- to 21-month-old TgCRND8 mice, a transgenic model expressing doubly mutant amyloid precursor protein, and displaying impaired hippocampal function and robust pathology from an early age. Spectral analysis confirmed that the congophilic plaque cores were composed of protein in a {beta}-sheet conformation. The amide I maximum of plaque cores was at 1623 cm-1, and unlike for in vitro A{beta} fibrils, the high-frequency (1680-1690 cm-1) component attributed to antiparallel {beta}-sheet was not observed. A significant elevation in phospholipids was found around dense-core plaques in TgCRND8 mice ranging in age from 5 to 21 months. In contrast, diffuse plaques were not associated with IR detectable changes in protein secondary structure or relative concentrations of any other tissue components.

  20. Transthyretin and the brain re-visited: Is neuronal synthesis of transthyretin protective in Alzheimer's disease?

    PubMed Central

    2011-01-01

    Since the mid-1990's a trickle of publications from scattered independent laboratories have presented data suggesting that the systemic amyloid precursor transthyretin (TTR) could interact with the amyloidogenic β-amyloid (Aβ) peptide of Alzheimer's disease (AD). The notion that one amyloid precursor could actually inhibit amyloid fibril formation by another seemed quite far-fetched. Further it seemed clear that within the CNS, TTR was only produced in choroid plexus epithelial cells, not in neurons. The most enthusiastic of the authors proclaimed that TTR sequestered Aβ in vivo resulting in a lowered TTR level in the cerebrospinal fluid (CSF) of AD patients and that the relationship was salutary. More circumspect investigators merely showed in vitro interaction between the two molecules. A single in vivo study in Caenorhabditis elegans suggested that wild type human TTR could suppress the abnormalities seen when Aβ was expressed in the muscle cells of the worm. Subsequent studies in human Aβ transgenic mice, including those from our laboratory, also suggested that the interaction reduced the Aβ deposition phenotype. We have reviewed the literature analyzing the relationship including recent data examining potential mechanisms that could explain the effect. We have proposed a model which is consistent with most of the published data and current notions of AD pathogenesis and can serve as a hypothesis which can be tested. PMID:22112803

  1. Alzheimer's disease and gut microbiota.

    PubMed

    Hu, Xu; Wang, Tao; Jin, Feng

    2016-10-01

    Alzheimer's disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut microbiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the "hygiene hypothesis". All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD.

  2. Amyloid imaging in prodromal Alzheimer's disease

    PubMed Central

    2011-01-01

    Patients with mild cognitive impairment are at an increased risk of progression to Alzheimer's disease. However, not all patients with mild cognitive impairment progress, and it is difficult to accurately identify those patients who are in the prodromal stage of Alzheimer's disease. In a recent paper, Koivunen and colleagues report that Pittsburgh compound-B, an amyloid-beta positron emission tomography ligand, predicts the progression of patients with mild cognitive impairment to Alzheimer's disease. Of 29 subjects with mild cognitive impairment, 21 (72%) had a positive Pittsburgh compound-B positron emission tomography baseline scan. In their study, 15 of these 21 (71%) patients progressed to Alzheimer's disease, whilst only 1 out of 8 (12.5%) Pittsburgh compound-B-negative patients with mild cognitive impairment did so. Moreover, in these mild cognitive impairment patients, the overall amyloid burden increased approximately 2.5% during the follow-up period. This is consistent with other longitudinal amyloid imaging studies that found a similar increase in amyloid deposition over time in patients with mild cognitive impairment. These studies together challenge current theories that propose a flattening of the increase of brain amyloid deposition already in the preclinical stage of Alzheimer's disease. These findings may have important implications for the design of future clinical trials aimed at preventing progression to Alzheimer's disease by lowering the brain amyloid-beta burden in patients with mild cognitive impairment. PMID:21936965

  3. Sequence variants of IDE are associated with the extent of beta-amyloid deposition in the Alzheimer's disease brain.

    PubMed

    Blomqvist, Mia E-L; Chalmers, Katy; Andreasen, Niels; Bogdanovic, Nenad; Wilcock, Gordon K; Cairns, Nigel J; Feuk, Lars; Brookes, Anthony J; Love, Seth; Blennow, Kaj; Kehoe, Patrick G; Prince, Jonathan A

    2005-06-01

    Insulin degrading enzyme, encoded by IDE, plays a primary role in the degradation of amyloid beta-protein (A beta), the deposition of which in senile plaques is one of the defining hallmarks of Alzheimer's disease (AD). We recently identified haplotypes in a broad linkage disequilibrium (LD) block encompassing IDE that associate with several AD-related quantitative traits. Here, by examining 32 polymorphic markers extending across IDE and testing quantitative measures of plaque density and cognitive function in three independent Swedish AD samples, we have refined the probable position of pathogenic sequences to a 3' region of IDE, with local maximum effects in the proximity of marker rs1887922. To replicate these findings, a subset of variants were examined against measures of brain A beta load in an independent English AD sample, whereby maximum effects were again observed for rs1887922. For both Swedish and English autopsy materials, variation at rs1887922 explained approximately 10% of the total variance in the respective histopathology traits. However, across all clinical materials studied to date, this variant site does not appear to associate directly with disease, suggesting that IDE may affect AD severity rather than risk. Results indicate that alleles of IDE contribute to variability in A beta deposition in the AD brain and suggest that this relationship may have relevance for the degree of cognitive dysfunction in AD patients.

  4. Oxidative modification of brain proteins in Alzheimer's disease: perspective on future studies based on results of redox proteomics studies.

    PubMed

    Sultana, Rukhsana; Butterfield, D Allan

    2013-01-01

    Aging is the major risk factor associated with neurodegenerative diseases, including Alzheimer's disease (AD). Until now no clear understanding of the mechanisms of initiation and progression of this dementing disorder exists. Based on the studies that have been conducted so far amyloid β-peptide (Aβ), a protein found in senile plaques, one of the key pathological hallmarks of AD, has been reported to be critical in the pathogenesis of AD. Studies from our laboratory and others showed that Aβ can induce oxidative stress, which leads to oxidative modification of biomolecules, thereby diminishing the normal functions of neuronal cells and eventually leading to loss of neurons and AD. In this review paper, we summarize evidence of oxidative stress in brains of AD and mild cognitive impairment patients, as well as the results from redox proteomics studies. The investigations have provided insights into the downstream effects of oxidative modification of key brain proteins in the pathogenesis of AD. Based on these redox proteomics results, we suggest future areas of research that could be considered to better understand this devastating dementing disorder.

  5. Constructional apraxia as a distinctive cognitive and structural brain feature of pre-senile Alzheimer's disease.

    PubMed

    Serra, Laura; Fadda, Lucia; Perri, Roberta; Spanò, Barbara; Marra, Camillo; Castelli, Diana; Torso, Mario; Makovac, Elena; Cercignani, Mara; Caltagirone, Carlo; Bozzali, Marco

    2014-01-01

    Constructional apraxia (CA) is often, but not always, observed in patients with Alzheimer's disease (AD). CA is usually explained by impairment of either basic perceptual and motor abilities, or executive functions. This study aims to evaluate the structural correlates of CA in AD. Forty-eight patients with AD and 20 healthy age-matched controls underwent a thorough neuropsychological investigation and an MRI scan to collect high-resolution T1-weighted data. Patients were classified as having (ADca) or not having (ADnonca) CA based on performance on the Freehand copying of drawings task. T1-weighted volumes were process according to the voxel based morphometry protocol, to assess the presence of significant differences in local to grey matter volumes in patients compared to controls and in ADca compared to ADnonca. Post-hoc, the mean grey matter volume of clusters that resulted significantly different between groups was regressed against the neuropsychological scores in which the two patient groups performed differently. A pre-senile disease onset was significantly more frequent in patients with CA compared to ADnonca. ADca patients also showed worse performances than patients with ADnonca at some tests requiring the processing of visuo-spatial data and testing working memory. They also showed widespread reductions in grey matter volume, mainly located in areas known to be implicated in object recognition and localization, and in maintenance and re-orienting of spatial attention. These findings suggest that the occurrence of CA in AD is often associated with a peculiar clinical onset (i.e., pre-senile), neuropsychological profile, and distribution of grey matter atrophy.

  6. Alzheimer's disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs.

    PubMed

    Zolezzi, Juan M; Bastías-Candia, Sussy; Santos, Manuel J; Inestrosa, Nibaldo C

    2014-01-01

    Alzheimer's disease (AD) is the most common form of age-related dementia. With the expected aging of the human population, the estimated morbidity of AD suggests a critical upcoming health problem. Several lines of research are focused on understanding AD pathophysiology, and although the etiology of the disease remains a matter of intense debate, increased brain levels of amyloid-β (Aβ) appear to be a critical event in triggering a wide range of molecular alterations leading to AD. It has become evident in recent years that an altered balance between production and clearance is responsible for the accumulation of brain Aβ. Moreover, Aβ clearance is a complex event that involves more than neurons and microglia. The status of the blood-brain barrier (BBB) and choroid plexus, along with hepatic functionality, should be considered when Aβ balance is addressed. Furthermore, it has been proposed that exposure to sub-toxic concentrations of metals, such as copper, could both directly affect these secondary structures and act as a seeding or nucleation core that facilitates Aβ aggregation. Recently, we have addressed peroxisomal proliferator-activated receptors (PPARs)-related mechanisms, including the direct modulation of mitochondrial dynamics through the PPARγ-coactivator-1α (PGC-1α) axis and the crosstalk with critical aging- and neurodegenerative-related cellular pathways. In the present review, we revise the current knowledge regarding the molecular aspects of Aβ production and clearance and provide a physiological context that gives a more complete view of this issue. Additionally, we consider the different structures involved in AD-altered Aβ brain balance, which could be directly or indirectly affected by a nuclear receptor (NR)/PPAR-related mechanism.

  7. Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies

    PubMed Central

    Su, L; Blamire, A M; Watson, R; He, J; Hayes, L; O'Brien, J T

    2016-01-01

    Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB. PMID:27576166

  8. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease.

    PubMed

    Meng, Fanfei; Asghar, Sajid; Gao, Shiya; Su, Zhigui; Song, Jue; Huo, Meirong; Meng, Weidong; Ping, Qineng; Xiao, Yanyu

    2015-10-01

    In this study, a novel low density lipoprotein (LDL)-mimic nanostructured lipid carrier (NLC) modified with lactoferrin (Lf) and loaded with curcumin (Cur) was designed for brain-targeted delivery, and its effect on controlling the progression of Alzheimer's disease (AD) in rats was evaluated. NLC with the composition resembling the lipid portion of LDL was prepared by using solvent evaporation method. Lf was adsorbed onto the surface of NLC via electrostatic interaction to yield Lf modified-NLC (Lf-mNLC) as the LDL-mimic nanocarrier. In order to make sure more Lf was adsorbed on the surface of NLC, negatively charged carboxylated polyethylene glycol (100) monostearate (S100-COOH) was synthesized and anchored into NLC. Different levels of S100-COOH (0-0.02 mmol) and Lf modified NLC (0.5-2.5 mg/mL of Lf solution) were prepared and characterized. The uptake and potential cytotoxicities of different preparations were investigated in the brain capillary endothelial cells (BCECs). An AD model of rats was employed to evaluate the therapeutic effects of Lf-mNLC. The results indicate that Lf-mNLC with a high level of Lf showed the maximum uptake in BCECs (1.39 folds greater than NLC) as cellular uptake of Lf-mNLC by BCECs was found to be mediated by the Lf receptor. FRET studies showed Cur still wrapped inside NLC after uptake by BCECs, demonstrating stability of the carrier as it moved across the BBB. Ex vivo imaging studies exposed Lf-mNLC could effectively permeate BBB and preferentially accumulate in the brain (2.78 times greater than NLC). Histopathological evaluation confirmed superior efficacy of Lf-mNLC in controlling the damage associated with AD. In conclusion, Lf-mNLC is a promising drug delivery system for targeting therapy of brain disease.

  9. BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics.

    PubMed

    Roberds, S L; Anderson, J; Basi, G; Bienkowski, M J; Branstetter, D G; Chen, K S; Freedman, S B; Frigon, N L; Games, D; Hu, K; Johnson-Wood, K; Kappenman, K E; Kawabe, T T; Kola, I; Kuehn, R; Lee, M; Liu, W; Motter, R; Nichols, N F; Power, M; Robertson, D W; Schenk, D; Schoor, M; Shopp, G M; Shuck, M E; Sinha, S; Svensson, K A; Tatsuno, G; Tintrup, H; Wijsman, J; Wright, S; McConlogue, L

    2001-06-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major components of plaque, beta-amyloid peptides (Abetas), are produced from amyloid precursor protein (APP) by the activity of beta- and gamma-secretases. beta-secretase activity cleaves APP to define the N-terminus of the Abeta1-x peptides and, therefore, has been a long- sought therapeutic target for treatment of AD. The gene encoding a beta-secretase for beta-site APP cleaving enzyme (BACE) was identified recently. However, it was not known whether BACE was the primary beta-secretase in mammalian brain nor whether inhibition of beta-secretase might have effects in mammals that would preclude its utility as a therapeutic target. In the work described herein, we generated two lines of BACE knockout mice and characterized them for pathology, beta-secretase activity and Abeta production. These mice appeared to develop normally and showed no consistent phenotypic differences from their wild-type littermates, including overall normal tissue morphology and brain histochemistry, normal blood and urine chemistries, normal blood-cell composition, and no overt behavioral and neuromuscular effects. Brain and primary cortical cultures from BACE knockout mice showed no detectable beta-secretase activity, and primary cortical cultures from BACE knockout mice produced much less Abeta from APP. The findings that BACE is the primary beta-secretase activity in brain and that loss of beta-secretase activity produces no profound phenotypic defects with a concomitant reduction in beta-amyloid peptide clearly indicate that BACE is an excellent therapeutic target for treatment of AD.

  10. [Therapy of Alzheimer disease].

    PubMed

    Kovács, Tibor

    2009-03-01

    Dementia is one of the most important health problems in the aging populations. The most frequent cause of it is Alzheimer's disease (AD) which is characterized by intracellular neuro-fibrillary tangles (NFT) and the extracellular senile plaques. The NFTs are mainly formed by the hyperphosphorylated microtubule-binding protein, the tau, while the senile plaques are composed of beta-amyloid protein cleaved from the amyloid precursor protein (APP) by the beta- and gamma-secretases. The pharmacotherapy of AD consists of symptomatic and disease-modifying therapies. The most frequently used therapeutic agents are the nootropic drugs supported by personal rather evidence based experiences. The leading-edge therapy of AD at present is the inhibition of the acetylcholine-esterase enzyme (AChEI) with mainly cognitive symptomatic and weak disease-modifying effects; they are licensed in the mild and middle stages of AD (MMSE 26-10), but their effect is proved in the severe stage of the disease and they are effective in the management of the neuropsychiatric symptoms too. Memantine (which is an inhibitor of the N-metil-D-aspartate receptor) is used in the middle and severe stages of AD and it can be effectively combined with AChEIs. The future therapy of AD will possibly be a "causative" therapy. The most frequent directions are therapies aiming to decrease the production or the deposition of beta-amyloid peptide. The active vaccination study of AN-1792 was terminated because of immunological side-effects, but several active and passive immunisation therapies are in development nowadays. It is also possible to inhibit the aggregation of the beta-amyloid peptide with peptide fragments or with Cu2+ and Zn2+ ion chelators. A promising direction is the inhibition of the enzymes responsible for the production of the beta-amyloid peptide: beta-secretase inhibitors with low molecular weight and penetrability through the blood-brain barrier are developed while the inhibitors of the

  11. Raman spectroscopy of Alzheimer's diseased tissue

    NASA Astrophysics Data System (ADS)

    Sudworth, Caroline D.; Krasner, Neville

    2004-07-01

    Alzheimer's disease is one of the most common forms of dementia, and causes steady memory loss and mental regression. It is also accompanied by severe atrophy of the brain. However, the pathological biomarkers of the disease can only be confirmed and examined upon the death of the patient. A commercial (Renishaw PLC, UK) Raman system with an 830 nm NIR diode laser was used to analyse brain samples, which were flash frozen at post-mortem. Ethical approval was sought for these samples. The Alzheimer's diseased samples contained a number of biomarkers, including neuritic plaques and tangles. The Raman spectra were examined by order to differentiate between normal and Alzheimer's diseased brain tissues. Preliminary results indicate that Alzheimer's diseased tissues can be differentiated from control tissues using Raman spectroscopy. The Raman spectra differ in terms of peak intensity, and the presence of a stronger amide I band in the 1667 cm-1 region which occurs more prominently in the Alzheimer's diseased tissue. These preliminary results indicate that the beta-amyloid protein originating from neuritic plaques can be identified with Raman spectroscopy.

  12. Brain interstitial oligomeric amyloid β increases with age and is resistant to clearance from brain in a mouse model of Alzheimer's disease.

    PubMed

    Takeda, Shuko; Hashimoto, Tadafumi; Roe, Allyson D; Hori, Yukiko; Spires-Jones, Tara L; Hyman, Bradley T

    2013-08-01

    There is a growing body of evidence that soluble oligomeric forms of amyloid β (Aβ) play a critical role in Alzheimer's disease (AD). Despite the importance of soluble Aβ oligomers as a therapeutic target for AD, the dynamic metabolism of these Aβ species in vivo has not been elucidated because of the difficulty in monitoring brain Aβ oligomers in living animals. Here, using a unique large pore-sized membrane microdialysis, we characterized soluble Aβ oligomers in brain interstitial fluid (ISF) of awake, freely moving APP/PS1 transgenic and control WT mice. We could detect high-molecular-weight (HMW) and low-molecular-weight (LMW) Aβ oligomers in the brain ISF of living animals, which increased dramatically in an age-dependent manner (5- to 8-fold increase, 4 vs. 17-18 mo). Notably, HMW Aβ decreased more slowly than other forms of Aβ after acute γ-secretase inhibition [% decrease from the baseline (HMW vs. LMW) was 36.9 vs. 74.1% (Aβ40, P<0.05) and 25.4 vs. 88.0% (Aβ42, P<0.01)], suggesting that HMW Aβ oligomers clear more slowly than other forms from the brain. These data reveal the dynamic metabolism of neurotoxic Aβ oligomers in AD brain and could provide new insights into Aβ-targeted therapies for AD.

  13. Memory loss in Alzheimer's disease.

    PubMed

    Jahn, Holger

    2013-12-01

    Loss of memory is among the first symptoms reported by patients suffering from Alzheimer's disease (AD) and by their caretakers. Working memory and long-term declarative memory are affected early during the course of the disease. The individual pattern of impaired memory functions correlates with parameters of structural or functional brain integrity. AD pathology interferes with the formation of memories from the molecular level to the framework of neural networks. The investigation of AD memory loss helps to identify the involved neural structures, such as the default mode network, the influence of epigenetic and genetic factors, such as ApoE4 status, and evolutionary aspects of human cognition. Clinically, the analysis of memory assists the definition of AD subtypes, disease grading, and prognostic predictions. Despite new AD criteria that allow the earlier diagnosis of the disease by inclusion of biomarkers derived from cerebrospinal fluid or hippocampal volume analysis, neuropsychological testing remains at the core of AD diagnosis.

  14. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns

    PubMed Central

    Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C

    2016-01-01

    We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20–90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD. PMID:27045845

  15. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns.

    PubMed

    Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C

    2016-04-05

    We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.

  16. Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer's Disease.

    PubMed

    Hao, Xiaoke; Li, Chanxiu; Du, Lei; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Saykin, Andrew J; Shen, Li; Zhang, Daoqiang

    2017-03-14

    Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene APOE, imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.

  17. The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease.

    PubMed

    Wright, John W; Harding, Joseph W

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease increasing in frequency as life expectancy of the world's population increases. There are an estimated 5 million diagnosed AD patients in the U.S. and 16 million worldwide with no adequate treatment presently available. New therapeutic approaches are needed to slow, and hopefully reverse, disease progression. This review summarizes available information regarding an overlooked therapeutic target that may offer a treatment to slow and hopefully halt AD, namely the hepatocyte growth factor (HGF)/c-Met receptor system. Activation of the c-Met receptor stimulates mitogenesis, motogenesis, morphogenesis, the ability to mediate stem cell differentiation and neurogenesis, and protects against tissue insults in a wide range of cells including neurons. This growth factor system has recently been shown to induce dendritic arborization and synaptogenesis when stimulated by a newly developed angiotensin-based analogue, N-hexanoic-Tyr-Ile-(6) amino hexanoic amide (Dihexa). This small molecule was derived from the pre-prototype molecule Nle1-angiotensin IV and has shown promise in facilitating the formation of new functional synaptic connections and augmenting memory consolidation in animal models of AD. Dihexa is a first-in-class compound that is orally active, penetrates the blood-brain barrier, and facilitates memory consolidation and retrieval. This angiotensin-based small molecule may be efficacious as a treatment for AD.

  18. Posterior cortical atrophy and Alzheimer's disease: a meta-analytic review of neuropsychological and brain morphometry studies.

    PubMed

    Alves, Jorge; Soares, José Miguel; Sampaio, Adriana; Gonçalves, Oscar F

    2013-09-01

    This paper presents the first systematic review and meta-analysis of neuropsychological and brain morphometry studies comparing posterior cortical atrophy (PCA) to typical Alzheimer's disease (tAD). Literature searches were conducted for brain morphometry and neuropsychological studies including a PCA and a tAD group. Compared to healthy controls (HC), PCA patients exhibited significant decreases in temporal, occipital and parietal gray matter (GM) volumes, whereas tAD patients showed extensive left temporal atrophy. Compared to tAD patients, participants with PCA showed greater GM volume reduction in the right occipital gyrus extending to the posterior lobule. In addition, PCA patients showed less GM volume loss in the left parahippocampal gyrus and left hippocampus than tAD patients. PCA patients exhibit significantly greater impairment in Immediate Visuospatial Memory as well as Visuoperceptual and Visuospatial Abilities than patients with tAD. However, tAD patients showed greater impairment in Delayed Auditory/Verbal Memory than patients with PCA. PCA is characterized by significant atrophy of the occipital and parietal regions and severe impairments in visuospatial functioning.

  19. New approach for automatic classification of Alzheimer's disease, mild cognitive impairment and healthy brain magnetic resonance images.

    PubMed

    Lahmiri, Salim; Boukadoum, Mounir

    2014-01-01

    Explored is the utility of modelling brain magnetic resonance images as a fractal object for the classification of healthy brain images against those with Alzheimer's disease (AD) or mild cognitive impairment (MCI). More precisely, fractal multi-scale analysis is used to build feature vectors from the derived Hurst's exponents. These are then classified by support vector machines (SVMs). Three experiments were conducted: in the first the SVM was trained to classify AD against healthy images. In the second experiment, the SVM was trained to classify AD against MCI and, in the third experiment, a multiclass SVM was trained to classify all three types of images. The experimental results, using the 10-fold cross-validation technique, indicate that the SVM achieved 97.08% ± 0.05 correct classification rate, 98.09% ± 0.04 sensitivity and 96.07% ± 0.07 specificity for the classification of healthy against MCI images, thus outperforming recent works found in the literature. For the classification of MCI against AD, the SVM achieved 97.5% ± 0.04 correct classification rate, 100% sensitivity and 94.93% ± 0.08 specificity. The third experiment also showed that the multiclass SVM provided highly accurate classification results. The processing time for a given image was 25 s. These findings suggest that this approach is efficient and may be promising for clinical applications.

  20. New approach for automatic classification of Alzheimer's disease, mild cognitive impairment and healthy brain magnetic resonance images

    PubMed Central

    Boukadoum, Mounir

    2014-01-01

    Explored is the utility of modelling brain magnetic resonance images as a fractal object for the classification of healthy brain images against those with Alzheimer's disease (AD) or mild cognitive impairment (MCI). More precisely, fractal multi-scale analysis is used to build feature vectors from the derived Hurst's exponents. These are then classified by support vector machines (SVMs). Three experiments were conducted: in the first the SVM was trained to classify AD against healthy images. In the second experiment, the SVM was trained to classify AD against MCI and, in the third experiment, a multiclass SVM was trained to classify all three types of images. The experimental results, using the 10-fold cross-validation technique, indicate that the SVM achieved 97.08% ± 0.05 correct classification rate, 98.09% ± 0.04 sensitivity and 96.07% ± 0.07 specificity for the classification of healthy against MCI images, thus outperforming recent works found in the literature. For the classification of MCI against AD, the SVM achieved 97.5% ± 0.04 correct classification rate, 100% sensitivity and 94.93% ± 0.08 specificity. The third experiment also showed that the multiclass SVM provided highly accurate classification results. The processing time for a given image was 25 s. These findings suggest that this approach is efficient and may be promising for clinical applications. PMID:26609373

  1. Plasma protein biomarkers of Alzheimer's disease endophenotypes in asymptomatic older twins: early cognitive decline and regional brain volumes

    PubMed Central

    Kiddle, S J; Steves, C J; Mehta, M; Simmons, A; Xu, X; Newhouse, S; Sattlecker, M; Ashton, N J; Bazenet, C; Killick, R; Adnan, J; Westman, E; Nelson, S; Soininen, H; Kloszewska, I; Mecocci, P; Tsolaki, M; Vellas, B; Curtis, C; Breen, G; Williams, S C R; Lovestone, S; Spector, T D; Dobson, R J B

    2015-01-01

    There is great interest in blood-based markers of Alzheimer's disease (AD), especially in its pre-symptomatic stages. Therefore, we aimed to identify plasma proteins whose levels associate with potential markers of pre-symptomatic AD. We also aimed to characterise confounding by genetics and the effect of genetics on blood proteins in general. Panel-based proteomics was performed using SOMAscan on plasma samples from TwinsUK subjects who are asymptomatic for AD, measuring the level of 1129 proteins. Protein levels were compared with 10-year change in CANTAB-paired associates learning (PAL; n=195), and regional brain volumes (n=34). Replication of proteins associated with regional brain volumes was performed in 254 individuals from the AddNeuroMed cohort. Across all the proteins measured, genetic factors were found to explain ~26% of the variability in blood protein levels on average. The plasma level of the mitogen-activated protein kinase (MAPK) MAPKAPK5 protein was found to positively associate with the 10-year change in CANTAB-PAL in both the individual and twin difference context. The plasma level of protein MAP2K4 was found to suggestively associate negatively (Q<0.1) with the volume of the left entorhinal cortex. Future studies will be needed to assess the specificity of MAPKAPK5 and MAP2K4 to eventual conversion to AD. PMID:26080319

  2. The Gut-Brain Axis, Including the Microbiome, Leaky Gut and Bacterial Translocation: Mechanisms and Pathophysiological Role in Alzheimer's Disease.

    PubMed

    Köhler, Cristiano A; Maes, Michael; Slyepchenko, Anastasiya; Berk, Michael; Solmi, Marco; Lanctôt, Krista L; Carvalho, André F

    2016-01-01

    Alzheimer's disease (AD), the most common form of dementia, is a progressive disorder manifested by gradual memory loss and subsequent impairment in mental and behavioral functions. Though the primary risk factor for AD is advancing age, other factors such as diabetes mellitus, hyperlipidemia, obesity, vascular factors and depression play a role in its pathogenesis. The human gastrointestinal tract has a diverse commensal microbial population, which has bidirectional interactions with the human host that are symbiotic in health, and in addition to nutrition, digestion, plays major roles in inflammation and immunity. The most prevalent hypothesis for AD is the amyloid hypothesis, which states that changes in the proteolytic processing of the amyloid precursor protein leads to the accumulation of the amyloid beta (Aβ) peptide. Aβ then triggers an immune response that drives neuroinflammation and neurodegeneration in AD. The specific role of gut microbiota in modulating neuro-immune functions well beyond the gastrointestinal tract may constitute an important influence on the process of neurodegeneration. We first review the main mechanisms involved in AD physiopathology. Then, we review the alterations in gut microbiota and gut-brain axis that might be relevant to mediate or otherwise affect AD pathogenesis, especially those associated with aging. We finally summarize possible mechanisms that could mediate the involvement of gut-brain axis in AD physiopathology, and propose an integrative model.

  3. Plasma tau in Alzheimer disease

    PubMed Central

    Zetterberg, Henrik; Janelidze, Shorena; Insel, Philip S.; Andreasson, Ulf; Stomrud, Erik; Palmqvist, Sebastian; Baker, David; Tan Hehir, Cristina A.; Jeromin, Andreas; Hanlon, David; Song, Linan; Shaw, Leslie M.; Trojanowski, John Q.; Weiner, Michael W.; Hansson, Oskar; Blennow, Kaj

    2016-01-01

    Objective: To test whether plasma tau is altered in Alzheimer disease (AD) and whether it is related to changes in cognition, CSF biomarkers of AD pathology (including β-amyloid [Aβ] and tau), brain atrophy, and brain metabolism. Methods: This was a study of plasma tau in prospectively followed patients with AD (n = 179), patients with mild cognitive impairment (n = 195), and cognitive healthy controls (n = 189) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and cross-sectionally studied patients with AD (n = 61), mild cognitive impairment (n = 212), and subjective cognitive decline (n = 174) and controls (n = 274) from the Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study at Lund University, Sweden. A total of 1284 participants were studied. Associations were tested between plasma tau and diagnosis, CSF biomarkers, MRI measures, 18fluorodeoxyglucose-PET, and cognition. Results: Higher plasma tau was associated with AD dementia, higher CSF tau, and lower CSF Aβ42, but the correlations were weak and differed between ADNI and BioFINDER. Longitudinal analysis in ADNI showed significant associations between plasma tau and worse cognition, more atrophy, and more hypometabolism during follow-up. Conclusions: Plasma tau partly reflects AD pathology, but the overlap between normal aging and AD is large, especially in patients without dementia. Despite group-level differences, these results do not support plasma tau as an AD biomarker in individual people. Future studies may test longitudinal plasma tau measurements in AD. PMID:27694257

  4. Alzheimer disease update.

    PubMed

    Matthews, Brandy R

    2010-04-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder affecting more than 37 million people worldwide and increasing in incidence based on its primary risk factor, advancing age. A growing body of knowledge regarding amyloid and tau neuropathology, genetic and environmental risk modifiers, early and atypical clinical presentations, and the use of symptom-modifying medical and psychosocial therapies is available to aid in the diagnosis and management of patients with AD. Exciting recent advances in neurobiology render the areas of genetic susceptibility, biomarkers for early disease detection and assessment of disease progression, and novel therapeutic strategies to modify the natural history of the disease compelling, but in need of further study before implementation into routine clinical practice is feasible.

  5. Genetic aspects of Alzheimer disease.

    PubMed

    Bird, Thomas D

    2008-04-01

    Alzheimer disease is the most common cause of dementia and represents a major public health problem. The neuropathologic findings of amyloid-beta plaques and tau containing neurofibrillary tangles represent important molecular clues to the underlying pathogenesis. Genetic factors are well recognized, but complicated. Three rare forms of autosomal-dominant early-onset familial Alzheimer disease have been identified and are associated with mutations in amyloid precursor protein, presenilin 1, and presenilin 2 genes. The more common late-onset form of Alzheimer disease is assumed to be polygenic/multifactorial. However, thus far the only clearly identified genetic risk factor for Alzheimer disease is Apo lipoprotein E. The epsilon4 allele of Apo lipoprotein E influences age at onset of Alzheimer disease, but is neither necessary nor sufficient for the disease. The search continues for the discovery of additional genetic influences.

  6. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains

    PubMed Central

    Bushman, Diane M; Kaeser, Gwendolyn E; Siddoway, Benjamin; Westra, Jurgen W; Rivera, Richard R; Rehen, Stevens K; Yung, Yun C; Chun, Jerold

    2015-01-01

    Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ∼8% over non-diseased controls that were unrelated to trisomy 21. Two independent single-cell copy number analyses identified amplifications at the APP locus. The use of single-cell qPCR identified up to 12 copies of APP in sampled neurons. Peptide nucleic acid (PNA) probes targeting APP, combined with super-resolution microscopy detected primarily single fluorescent signals of variable intensity that paralleled single-cell qPCR analyses. These data identify somatic genomic changes in single neurons, affecting known and unknown loci, which are increased in sporadic AD, and further indicate functionality for genomic mosaicism in the CNS. DOI: http://dx.doi.org/10.7554/eLife.05116.001 PMID:25650802

  7. Elevated Risk of Type 2 Diabetes for Development of Alzheimer Disease: a Key Role for Oxidative Stress in Brain

    PubMed Central

    Butterfield, D. Allan; Di Domenico, Fabio; Barone, Eugenio

    2014-01-01

    Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggest that oxidative stress play a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data and interpreted from the point of view of oxidative stress with the aim to highlight progresses in this field. PMID:24949886

  8. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain.

    PubMed

    Butterfield, D Allan; Di Domenico, Fabio; Barone, Eugenio

    2014-09-01

    Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field.

  9. Calculating the number of people with Alzheimer's disease in any country using saturated mutation models of brain cell loss that also predict widespread natural immunity to the disease.

    PubMed

    Kramer, Ivan

    2010-06-01

    The series of mutations that cause brain cells to spontaneously and randomly die leading to Alzheimer's disease (AD) is modelled. The prevalence of AD as a function of age in males and females is calculated from two very different mutation models of brain cell death. Once the prevalence functions are determined, the number of people with AD in any country or city can be estimated. The models developed here depend on three independent parameters: the number of mutations necessary for a brain cell associated with AD to spontaneously die, the average time between mutations, and the fraction of the risk population that is immune to developing the disease, if any. The values of these parameters are determined by fitting the model's AD incidence function to the incidence data. The best fits to the incidence rate data predict that as much as 74.1% of males and 79.5% of females may be naturally immune to developing AD. Thus, the development of AD is not a normal or inevitable result of the aging process. These fits also predict that males and females develop AD through different pathways, requiring a different number of mutations to cause the disease. The number of people in the USA with AD in the year 2000 is estimated to be 451,000. It is of paramount importance to determine the nature of the immunity to AD predicted here. Finding ways of blocking the mutations leading to the random, spontaneous death of memory brain cells would prevent AD from developing altogether.

  10. Genetics Home Reference: Alzheimer disease

    MedlinePlus

    ... 23(3):157-65. Review. Citation on PubMed Bird TD. Genetic aspects of Alzheimer disease. Genet Med. ... on PubMed or Free article on PubMed Central Bird TD. Genetic factors in Alzheimer's disease. N Engl ...

  11. A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease.

    PubMed

    Hori, Yukiko; Takeda, Shuko; Cho, Hansang; Wegmann, Susanne; Shoup, Timothy M; Takahashi, Kazue; Irimia, Daniel; Elmaleh, David R; Hyman, Bradley T; Hudry, Eloise

    2015-01-23

    Interfering with the assembly of Amyloid β (Aβ) peptides from monomer to oligomeric species and fibrils or promoting their clearance from the brain are targets of anti-Aβ-directed therapies in Alzheimer disease. Here we demonstrate that cromolyn sodium (disodium cromoglycate), a Food and Drug Administration-approved drug already in use for the treatment of asthma, efficiently inhibits the aggregation of Aβ monomers into higher-order oligomers and fibrils in vitro without affecting Aβ production. In vivo, the levels of soluble Aβ are decreased by over 50% after only 1 week of daily intraperitoneally administered cromolyn sodium. Additional in vivo microdialysis studies also show that this compound decreases the half-life of soluble Aβ in the brain. These data suggest a clear effect of a peripherally administered, Food and Drug Administration-approved medication on Aβ economy, supporting further investigation of the potential long-term efficacy of cromolyn sodium in Alzheimer disease.

  12. Brain MRI, apoliprotein E genotype, and plasma homocysteine in American Indian Alzheimer disease patients and Indian controls.

    PubMed

    Weiner, Myron F; de la Plata, Carlos Marquez; Fields, B A Julie; Womack, Kyle B; Rosenberg, Roger N; Gong, Yun-Hua; Qu, Bao-Xi; Diaz-Arrastia, Ramon; Hynan, Linda S

    2009-02-01

    We obtained brain MRIs, plasma homocysteine levels and apolipoprotein E genotyping for 11 American Indian Alzheimer disease (AD) subjects and 10 Indian controls. We calculated white matter hyperintensity volume (WMHV), whole brain volume (WBV), and ratio of white matter hyperintensity volume to whole brain volume (WMHV/WBV). There were no significant differences between AD subjects and controls in gender, history of hypertension, diabetes, or history of high cholesterol, but hypertension and diabetes were more common among AD subjects. There was no difference between AD and control groups in age (range for all subjects was 61-89 years), % Indian heritage, waist size or body mass index. Median Indian heritage was 50% or greater in both groups. Range of education was 5-13 years in the AD group and 12-16 years in controls. Median plasma homocysteine concentration was higher in AD subjects (11 micromol/L vs. 9.8 micromol/L), but did not achieve statistical significance. Significantly more AD subjects had apolipoprotein Eepsilon4 alleles than did controls (63% vs.10%). Neuroimaging findings were not significantly different between the 2 groups, but AD subjects had greater WMHV (median 15.64 vs. 5.52 cc) and greater WMHV/WBV ratio (median 1.63 vs. 0.65 %) and a far greater range of WMHV. In combined AD subjects and controls, WBV correlated with BMI and age. WMHV and WMHV/WBV correlated inversely with MMSE scores (p = 0.001, 0.002, respectively). In addition, WMHV correlated positively with % Indian heritage (p = 0.047).

  13. Effects of Alzheimer's disease transgenes on neurochemical expression in the mouse brain determined by ¹H MRS in vitro.

    PubMed

    Forster, D M; James, M F; Williams, S R

    2012-01-01

    Transgenic models of human disease can be used to understand pathology and to discover biomarkers of disease presence, progression and response to therapy. Here we report a study of longitudinal metabolic differences between TASTPM transgenic Alzheimer's disease (AD) mice and their wild type counterparts using (1)H magnetic resonance spectroscopy (MRS) to look for potential biomarkers for use in AD research and drug discovery. Chloroform methanol extractions were performed on the brains of mice aged between 3 and 18 months. (1)H MR spectra were recorded from the aqueous fractions. Absolute metabolite concentrations, determined from resonance integrals relative to an internal standard, were analysed by 2-way ANOVA (genotype x age). Significant effects of age alone were identified for creatine, glutamine and total choline-containing compounds. There was a marked increase in creatine in the oldest (15-18 mo) TASTPM mice. The increase in creatine was unexpected and may be caused by osmotic stress in older animals as plaque load increases. Care should be taken when using creatine as a reference metabolite during scans of these animals in vivo. A significant effect of genotype alone was identified for myo-inositol (MI), which was higher in TASTPM mice at all ages. Succinate, glycerophosphocholine and choline all showed significant effects of age and genotype. No significant effects were detected in N-acetylaspartate (NAA) levels. Increased MI could be a marker of gliosis or microglial activation in TASTPM mice, but the absence of an age dependence for MI levels means it may be a biomarker of disease, but not of disease progression. Decreased succinate is indicative of disrupted neuronal energy metabolism, an effect that has been seen in human AD.

  14. Why do we get Alzheimer's disease?

    SciTech Connect

    Wyss-Coray, Tony

    2006-10-02

    Neurodegenerative diseases and Alzheimer's disease (AD) in particular, are among the major health concerns of the elderly in industrialized societies. The cause of AD is unknown and no disease-modifying treatments are available. The disease is characterized clinically by a progressive dementia and pathologically by the accumulation of protein aggregates in the brain and a profound loss of nerve cells. It has also become clear recently that local immune responses are activated in the AD brain and may have a role in the disease. Our laboratory uses genetic mouse models to understand the disease process and to identify potential therapeutic targets.

  15. Why Do We Get Alzheimer's Disease?

    SciTech Connect

    Wyss-Coray, Tony

    2006-01-02

    Neurodegenerative diseases and Alzheimer's disease (AD) in particular, are among the major health concerns of the elderly in industrialized societies. The cause of AD is unknown and no disease-modifying treatments are available. The disease is characterized clinically by a progressive dementia and pathologically by the accumulation of protein aggregates in the brain and a profound loss of nerve cells. It has also become clear recently that local immune responses are activated in the AD brain and may have a role in the disease. Our laboratory uses genetic mouse models to understand the disease process and to identify potential therapeutic targets.

  16. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    SciTech Connect

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  17. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study

    PubMed Central

    An, Yang; Pletnikova, Olga; O’Brien, Richard; Troncoso, John; Legido-Quigley, Cristina; Thambisetty, Madhav

    2017-01-01

    Background The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. Methods and findings We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and “asymptomatic Alzheimer’s disease” (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10−8, FC = 0.52, q = 1.03 x 10−6), linolenic acid (p = 2.5 x 10−4, FC = 0.84, q = 4.03 x 10−4), docosahexaenoic acid (p = 1.7 x 10−7, FC = 1.45, q = 1.24 x 10−6), eicosapentaenoic acid (p = 4.4 x 10−4, FC = 0.16, q = 6.48 x 10−4), oleic acid (p = 3.3 x 10−7, FC = 0.34, q = 1.46 x 10−6), and arachidonic acid (p = 2.98 x 10−5, FC = 0.75, q = 7.95 x 10−5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p < 0.0001, p = 0.0006), linolenic acid (p < 0.0001, p = 0.002), docosahexaenoic acid (p < 0.0001, p = 0.0024), eicosapentaenoic acid (p = 0.0002, p = 0.0008), oleic acid (p < 0.0001, p = 0.0003), and arachidonic acid (p = 0.0001, p = 0.001). Significant associations were also observed between the abundance of these

  18. [Management of Alzheimer disease].

    PubMed

    Belmin, Joël; Péquignot, Renaud; Konrat, Cécile; Pariel-Madjlessi, Sylvie

    2007-10-01

    Management of Alzheimer disease is based on drug and nondrug treatments. Specific drug treatment includes acetylcholinesterase inhibitors and memantine. They show moderate efficacy superior to that of placebo for global condition, cognitive disorders, need for care, and behavioral problems, but do not prevent further decline. These treatments remain underused. The efficacy of psychotropic drugs (antidepressants, neuroleptics, and antipsychotic agents) in treating behavioral problems is not well documented. Nondrug activities and interventions have not been sufficiently evaluated scientifically. These involve interventions against the consequences of the disease (loss of autonomy, malnutrition) and helping patients' family caregivers. Among these activities, the best evaluated and most interesting are: educational programs for caregivers, occupational therapy at home, and interventions at home by nurses specially trained as case managers.

  19. Causes of Alzheimer's disease

    PubMed Central

    Munoz, D G; Feldman, H

    2000-01-01

    It is now understood that genetic factors play a crucial role in the risk of developing Alzheimer's disease (AD). Rare mutations in at least 3 genes are responsible for early-onset familial AD. A common polymorphism in the apolipoprotein E gene is the major determinant of risk in families with late-onset AD, as well as in the general population. Advanced age, however, remains the major established risk factor for AD, although environmental variables may also have some role in disease expression. Some pathogenic factors directly associated with aging include oxidative damage and mutations in messenger RNA. Other factors unrelated to the aging process may, in the future, be amenable to therapeutic intervention by way of estrogen replacement therapy for postmenopausal women, anti-inflammatory drug therapy and reducing vascular risk factors. Older theories, such as aluminum playing a role in the pathogenesis of AD, have been mostly discarded as our understanding of pathogenic mechanisms of AD has advanced. PMID:11216203

  20. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    PubMed Central

    Mannu, Piero; Rinaldi, Salvatore; Fontani, Vania; Castagna, Alessandro

    2011-01-01

    Purpose: Behavioral and psychiatric symptoms of dementia (BPSD) are common in Alzheimer’s disease (AD) and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC) in patients who have had a poor response to pharmacological treatment. Patients and methods: Eight patients (five females and three males; mean [±standard deviation] age at study baseline: 69.9 ± 3.0 years) diagnosed with AD according to the DSM-IV-TR criteria (mean onset age of AD: 65.4 ± 3.5 years) were cognitively and psychometrically assessed with the Mini-Mental State Examination (MMSE), the Activity of Daily Living (ADL), the Instrumental Activity of Daily Living (IADL), and the Neuropsychiatric Inventory (NPI), prior to and after each of 2 REAC treatment cycles. Results: Scores on the MMSE and all subscales of the NPI (frequency, severity, and distress), the ADL, and the IADL were significantly improved following the initial REAC treatment. There was further significant improvement in all measurements (with a tendency for improvement in the IADL) after the second REAC treatment cycle. Conclusion: The improvement of cognitive and behavioral/psychiatric functioning following REAC treatment suggests that this innovative approach may be an effective, safe, and tolerable alternative to pharmacological treatment of AD patients, especially in the area of BPSD. Elderly patients suffering from other types of dementia may also benefit from REAC treatment. PMID:21822377

  1. Predictive Models Based on Support Vector Machines: Whole-Brain versus Regional Analysis of Structural MRI in the Alzheimer's Disease.

    PubMed

    Retico, Alessandra; Bosco, Paolo; Cerello, Piergiorgio; Fiorina, Elisa; Chincarini, Andrea; Fantacci, Maria Evelina

    2015-01-01

    Decision-making systems trained on structural magnetic resonance imaging data of subjects affected by the Alzheimer's disease (AD) and healthy controls (CTRL) are becoming widespread prognostic tools for subjects with mild cognitive impairment (MCI). This study compares the performances of three classification methods based on support vector machines (SVMs), using as initial sets of brain voxels (ie, features): (1) the segmented grey matter (GM); (2) regions of interest (ROIs) by voxel-wise t-test filtering; (3) parceled ROIs, according to prior knowledge. The recursive feature elimination (RFE) is applied in all cases to investigate whether feature reduction improves the classification accuracy. We analyzed more than 600 AD Neuroimaging Initiative (ADNI) subjects, training the SVMs on the AD/CTRL dataset, and evaluating them on a trial MCI dataset. The classification performance, evaluated as the area under the receiver operating characteristic curve (AUC), reaches AUC = (88.9 ± .5)% in 20-fold cross-validation on the AD/CTRL dataset, when the GM is classified as a whole. The highest discrimination accuracy between MCI converters and nonconverters is achieved when the SVM-RFE is applied to the whole GM: with AUC reaching (70.7 ± .9)%, it outperforms both ROI-based approaches in predicting the AD conversion.

  2. Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease.

    PubMed

    Inestrosa, Nibaldo C; Ríos, Juvenal A; Cisternas, Pedro; Tapia-Rojas, Cheril; Rivera, Daniela S; Braidy, Nady; Zolezzi, Juan M; Godoy, Juan A; Carvajal, Francisco J; Ardiles, Alvaro O; Bozinovic, Francisco; Palacios, Adrián G; Sachdev, Perminder S

    2015-11-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and the leading cause of age-related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild-type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age-related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative-activated receptor γ coactivator-1α (PGC-1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.

  3. Analysis of SPECT brain images for the diagnosis of Alzheimer's disease using moments and support vector machines.

    PubMed

    Salas-Gonzalez, Diego; Górriz, Juan M; Ramírez, Javier; López, Miriam; Illan, Ignacio A; Segovia, Fermín; Puntonet, Carlos G; Gómez-Río, Manuel

    2009-09-11

    This paper presents a computer-aided diagnosis technique for improving the accuracy of diagnosing the Alzheimer's type dementia. The proposed methodology is based on the calculation of the skewness for each m-by-m-by-m sliding block of the SPECT brain images. The center pixel in this m-by-m-by-m block is replaced by the skewness value to build a new 3-D brain image which is used for classification purposes. After that, voxels which present a Welch's t-statistic between classes, Normal and Alzheimer's images, higher (or lower) than a threshold are selected. The mean, standard deviation, skewness and kurtosis are calculated for these selected voxels and they are subjected as features to linear kernel based support vector machine classifier. The proposed methodology reaches accuracy higher than 99% in the classification task.

  4. Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis.

    PubMed

    Crews, Leslie; Adame, Anthony; Patrick, Christina; Delaney, Alexandra; Pham, Emiley; Rockenstein, Edward; Hansen, Lawrence; Masliah, Eliezer

    2010-09-15

    During aging and in the progression of Alzheimer's disease (AD), synaptic plasticity and neuronal integrity are disturbed. In addition to the alterations in plasticity in mature neurons, the neurodegenerative process in AD has been shown to be accompanied by alterations in neurogenesis. Members of the bone morphogenetic protein (BMP) family of growth factors have been implicated as important regulators of neurogenesis and neuronal cell fate determination during development; however, their role in adult neurogenesis and in AD is less clear. We show here by qRT-PCR analysis that BMP6 mRNA levels were significantly increased in the hippocampus of human patients with AD and in APP transgenic mice compared to controls. Immunoblot and immunohistochemical analyses confirmed that BMP6 protein levels were increased in human AD brains and APP transgenic mouse brains compared to controls and accumulated around hippocampal plaques. The increased levels of BMP6 were accompanied by defects in hippocampal neurogenesis in AD patients and APP transgenic mice. In support of a role for BMP6 in defective neurogenesis in AD, we show in an in vitro model of adult neurogenesis that treatment with amyloid-β(1-42) protein (Aβ) resulted in increased expression of BMP6, and that exposure to recombinant BMP6 resulted in reduced proliferation with no toxic effects. Together, these results suggest that Aβ-associated increases in BMP6 expression in AD may have deleterious effects on neurogenesis in the hippocampus, and therapeutic approaches could focus on normalization of BMP6 levels to protect against AD-related neurogenic deficits.

  5. Potential fluid biomarkers for pathological brain changes in Alzheimer's disease: Implication for the screening of cognitive frailty

    PubMed Central

    Ruan, Qingwei; D'Onofrio, Grazia; Sancarlo, Daniele; Greco, Antonio; Yu, Zhuowei

    2016-01-01

    Cognitive frailty (CF) overlaps with early neuropathological alterations associated with aging-related major neurocognitive disorders, including Alzheimer's disease (AD). Fluid biomarkers for these pathological brain alterations allow for early diagnosis in the preclinical stages of AD, and for objective prognostic assessments in clinical intervention trials. These biomarkers may also be helpful in the screening of CF. The present study reviewed the literature and identified systematic reviews of cohort studies and other authoritative reports. The selection criteria for potentially suitable fluid biomarkers included: i) Frequent use in studies of fluid-derived markers and ii) evidence of novel measurement techniques for fluid-derived markers. The present study focused on studies that assessed these biomarkers in AD, mild cognitive impairment and non-AD demented subjects. At present, widely used fluid biomarkers include cerebrospinal fluid (CSF), total tau, phosphorylated tau and amyloid-β levels. With the development of novel measurement techniques and improvements in understanding regarding the mechanisms underlying aging-related major neurocognitive disorders, numerous novel biomarkers associated with various aspects of AD neuropathology are being explored. These include specific measurements of Aβ oligomer or monomer forms, tau proteins in the peripheral plasma and CSF, and novel markers of synaptic dysfunction, neuronal damage and apoptosis, neuronal activity alteration, neuroinflammation, blood brain barrier dysfunction, oxidative stress, metabolites, mitochondrial function and aberrant lipid metabolism. The proposed panels of fluid biomarkers may be useful in the early diagnosis of AD, prediction of the progression of AD from preclinical stages to the dementia stage, and the differentiation of AD from non-AD dementia. In combination with physical frailty, the present study surmised that these biomarkers may also be used as biomarkers for CF, thus contribute

  6. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  7. [Prevention and treatment of Alzheimer disease].

    PubMed

    Donoso S, Archibaldo; Delgado D, Carolina

    2009-02-01

    The pharmacological interventions for Alzheimer disease should be based in its pathogenic mechanisms such as amyloidogenesis, tau hyperphosphorilation, disturbances in neurotransmission and changes in neuronal trophism. Other therapies derive from epidemiological observations, such as antioxidants and anti-inflammatory drugs, estrogens, statins and anti hypertensive drugs. Some life style interventions, such as changes in diet, exercise and brain stimulation could also be beneficial for the prevention of Alzheimer disease. Ongoing research on pathogenic mechanisms promises the discovery of more effective therapies. Healthy life style should always be recommended due to its benefit and lack of untoward effects.

  8. Alzheimer's Disease: The Death of the Disease.

    ERIC Educational Resources Information Center

    McBroom, Lynn W.

    1987-01-01

    Alzheimer's disease, a form of dementia in middle-age and older adults is becoming more evident because of growing numbers of older people and better diagnosis and detection methods. Describes the behavioral and physical symptoms of the disease as well as specific suggestions for care of patients with Alzheimer's disease, including dealing with…

  9. Metals and Alzheimer's disease.

    PubMed

    Adlard, Paul A; Bush, Ashley I

    2006-11-01

    There is increasing evidence to support a role for both the amyloid beta-protein precursor (AbetaPP) and its proteolytic fragment, amyloid beta (Abeta), in metal ion homeostasis. Furthermore, metal ions such as zinc and copper can interact with both AbetaPP and Abeta to potentiate Alzheimer's disease by participating in the aggregation of these normal cellular proteins and in the generation of reactive oxygen species. In addition, metal ions may interact on several other AD-related pathways, including those involved in neurofibrillary tangle formation, secretase cleavage of AbetaPP and proteolytic degradation of Abeta. As such, a dysregulation of metal ion homeostasis, as occurs with both aging and in AD, may foster an environment that can both precipitate and accelerate degenerative conditions such as AD. This offers a broad biochemical front for novel therapeutic interventions.

  10. Early Alzheimer's disease genetics.

    PubMed

    Schellenberg, Gerard D

    2006-01-01

    The genetics community working on Alzheimer's disease and related dementias has made remarkable progress in the past 20 years. The cumulative efforts by multiple groups have lead to the identification of three autosomal dominant genes for early onset AD. These are the amyloid-beta protein precursor gene (APP), and the genes encoding presenilin1 and 2. The knowledge derived from this work has firmly established Abeta as a critical disease molecule and lead to candidate drugs currently in treatment trials. Work on a related disease, frontotemporal dementia with parkinsonism - chromosome 17 type has also added to our understanding of pathogenesis by revealing that tau, the protein component of neurofibrillary tangles, is also a critical molecule in neurodegeneration. Lessons learned that still influence work on human genetics include the need to recognize and deal with genetic heterogeneity, a feature common to many genetic disorders. Genetic heterogeneity, if recognized, can be source of information. Another critical lesson is that clinical, molecular, and statistical scientists need to work closely on disease projects to succeed in solving the complex problems of common genetic disorders.

  11. Advancing frontiers in Alzheimer's disease research

    SciTech Connect

    Glenner, G.G.; Wurtman, R.J.

    1987-01-01

    This book contain 16 chapters. Some of the titles are: Transmitter Alterations in Alzheimer's Disease: Relation to Cortical Dysfunction as Suggested by Positron Emission Tomography; Single-Photon Emission Computed Tomography in the Clinical Evaluation of Dementia; Clinical Diagnosis of Alzheimer's Disease; Down's Syndrome and Alzheimer's Disease: What is the Relationship; and Beta Protein: A Possible Marker for Alzheimer's Disease.

  12. Biomarkers for early detection of Alzheimer disease.

    PubMed

    Barber, Robert C

    2010-09-01

    The existence of an effective biomarker for early detection of Alzheimer disease would facilitate improved diagnosis and stimulate therapeutic trials. Multidisciplinary clinical diagnosis of Alzheimer disease is time consuming and expensive and relies on experts who are rarely available outside of specialty clinics. Thus, many patients do not receive proper diagnosis until the disease has progressed beyond stages in which treatments are maximally effective. In the clinical trial setting, rapid, cost-effective screening of patients for Alzheimer disease is of paramount importance for the development of new treatments. Neuroimaging of cortical amyloid burden and volumetric changes in the brain and assessment of protein concentrations (eg, β-amyloid 1-42, total tau, phosphorylated tau) in cerebrospinal fluid are diagnostic tools that are not widely available. Known genetic markers do not provide sufficient discriminatory power between different forms of dementia to be useful in isolation. Recent studies using panels of biomarkers for diagnosis of Alzheimer disease or mild cognitive impairment have been promising, though no such studies have been cross-validated in independent samples of subjects. The ideal biomarker enabling early detection of Alzheimer disease has not yet been identified.

  13. Providing Counseling for Individuals with Alzheimer's Disease and Their Caregivers

    ERIC Educational Resources Information Center

    Granello, Paul F.; Fleming, Matthew S.

    2008-01-01

    Alzheimer's disease is a progressive condition that results in brain wasting and eventual death. With its increasing diagnosis rate, counselors will likely acquire clients with Alzheimer's disease or their caregivers. Important background information and several practical counseling methods are provided that may assist counselors working with this…

  14. Aging and Alzheimer's Disease: Lessons from the Nun Study.

    ERIC Educational Resources Information Center

    Snowdon, David A.

    1997-01-01

    Describes a woman who maintained high cognitive test scores until her death at 101 years of age despite anatomical evidence of Alzheimer's disease. The woman was part of a larger "Nun Study" in which 678 sisters donated their brains to teach others about the etiology of aging and Alzheimer's disease. Findings are discussed. (RJM)

  15. Neural stem cells and Alzheimer's disease: challenges and hope.

    PubMed

    Zhongling Feng; Gang Zhao; Lei Yu

    2009-01-01

    Alzheimer's disease is characterized by degeneration and dysfunction of synapses and neurons in brain regions critical for learning and memory functions. The endogenous generation of new neurons in certain regions of the mature brain, derived from primitive cells termed neural stem cells, has raised hope that neural stem cells may be recruited for structural brain repair. Stem cell therapy has been suggested as a possible strategy for replacing damaged circuitry and restoring learning and memory abilities in patients with Alzheimer's disease. In this review, we outline the promising investigations that are raising hope, and understanding the challenges behind translating underlying stem cell biology into novel clinical therapeutic potential in Alzheimer's disease.

  16. Depletion of vitamin E increases amyloid beta accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease.

    PubMed

    Nishida, Yoichiro; Ito, Shingo; Ohtsuki, Sumio; Yamamoto, Naoki; Takahashi, Tsubura; Iwata, Nobuhisa; Jishage, Kou-Ichi; Yamada, Hiromi; Sasaguri, Hiroki; Yokota, Shigefumi; Piao, Wenying; Tomimitsu, Hiroyuki; Saido, Takaomi C; Yanagisawa, Katsuhiko; Terasaki, Tetsuya; Mizusawa, Hidehiro; Yokota, Takanori

    2009-11-27

    Increased oxidative damage is a prominent and early feature in Alzheimer disease. We previously crossed Alzheimer disease transgenic (APPsw) model mice with alpha-tocopherol transfer protein knock-out (Ttpa(-/-)) mice in which lipid peroxidation in the brain was significantly increased. The resulting double-mutant (Ttpa(-/-)APPsw) mice showed increased amyloid beta (Abeta) deposits in the brain, which was ameliorated with alpha-tocopherol supplementation. To investigate the mechanism of the increased Abeta accumulation, we here studied generation, degradation, aggregation, and efflux of Abeta in the mice. The clearance of intracerebral-microinjected (125)I-Abeta(1-40) from brain was decreased in Ttpa(-/-) mice to be compared with wild-type mice, whereas the generation of Abeta was not increased in Ttpa(-/-)APPsw mice. The activity of an Abeta-degrading enzyme, neprilysin, did not decrease, but the expression level of insulin-degrading enzyme was markedly decreased in Ttpa(-/-) mouse brain. In contrast, Abeta aggregation was accelerated in Ttpa(-/-) mouse brains compared with wild-type brains, and well known molecules involved in Abeta transport from brain to blood, low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein, were up-regulated in the small vascular fraction of Ttpa(-/-) mouse brains. Moreover, the disappearance of intravenously administered (125)I-Abeta(1-40) was decreased in Ttpa(-/-) mice with reduced translocation of LRP-1 in the hepatocytes. These results suggest that lipid peroxidation due to depletion of alpha-tocopherol impairs Abeta clearances from the brain and from the blood, possibly causing increased Abeta accumulation in Ttpa(-/-)APPsw mouse brain and plasma.

  17. Integrative Understanding of Emergent Brain Properties, Quantum Brain Hypotheses, and Connectome Alterations in Dementia are Key Challenges to Conquer Alzheimer's Disease

    PubMed Central

    Kuljiš, Rodrigo O.

    2010-01-01

    The biological substrate for cognition remains a challenge as much as defining this function of living beings. Here, we examine some of the difficulties to understand normal and disordered cognition in humans. We use aspects of Alzheimer's disease and related disorders to illustrate how the wealth of information at many conceptually separate, even intellectually decoupled, physical scales – in particular at the Molecular Neuroscience versus Systems Neuroscience/Neuropsychology levels – presents a challenge in terms of true interdisciplinary integration towards a coherent understanding. These unresolved dilemmas include critically the as yet untested quantum brain hypothesis, and the embryonic attempts to develop and define the so-called connectome in humans and in non-human models of disease. To mitigate these challenges, we propose a scheme incorporating the vast array of scales of the space and time (space–time) manifold from at least the subatomic through cognitive-behavioral dimensions of inquiry, to achieve a new understanding of both normal and disordered cognition, that is essential for a new era of progress in the Generative Sciences and its application to translational efforts for disease prevention and treatment. PMID:21188254

  18. Alzheimer disease and anesthesia.

    PubMed

    Inan, Gözde; Özköse Satirlar, Zerrin

    2015-01-01

    Alzheimer disease (AD) is one of the most common neurodegenerative diseases and the most prevalent form of dementia. Some factors in the development of AD, age being the best-known one, have been suggested; however, no causes have been found yet. The pathophysiology of the disease is highly complex, current therapies are palliative, and a cure is still lacking. Adverse effects of anesthetics in the elderly have been reported since the 1950s; however, awareness of this old problem has recently gained inportance again. Whether exposure to surgery and general anesthesia (GA) is associated with the development of AD has been questioned. As the population is aging, many elderly patients will need to be anesthetized, and maybe some were already anesthetized before they were diagnosed. Exposure to anesthetics has been demonstrated to promote pathogenesis of AD in both in vitro and in vivo studies. However, to date, there have not been any clinical trials to address a link between exposure to GA and the development of AD in humans. Therefore, before making any conclusions we need further studies, but we should be aware of the potential risks and take cautions with vulnerable elderly patients.

  19. Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer's disease.

    PubMed

    Chiu, Ming-Jang; Chen, Ya-Fang; Chen, Ta-Fu; Yang, Shieh-Yueh; Yang, Fan-Pei Gloria; Tseng, Tien-Wen; Chieh, Jen-Jie; Chen, Jia-Chun Rare; Tzen, Kai-Yuan; Hua, Mau-Sun; Horng, Herng-Er

    2014-07-01

    Neurofibrillary tangles are associated with cognitive dysfunction, and hippocampal atrophy with increased CSF tau markers. However, the plasma tau levels of Alzheimer's disease (AD) have not been well studied. We investigated plasma tau by using an immunomagnetic reduction assay in 20 patients with mild cognitive impairment (MCI) due to AD, 10 early AD dementia, and 30 healthy elders (HE). All received a 3D-brain MRI scan and a set of cognitive function test. We explored their relationships with both brain structure and cognitive functions. Images were analyzed to determine the brain volumes and gray matter densities. Patients with MCI or early AD had significantly increased plasma tau levels compared with HE. Plasma tau levels were negatively associated with the performance of logical memory, visual reproduction, and verbal fluency; also negatively associated with volume of total gray matter, hippocampus, amygdala; and gray matter densities of various regions. Regression analyses indicated that logical memory explained 0.394 and hippocampus volume predicted .608 of the variance of plasma tau levels, both P < 0.001. Education years were negatively associated with the gray matter densities of the supramarginal (r = -0.407), middle temporal gyrus (r = -0.40) and precuneus (r = -0.377; all P < 0.05) in HE; and negatively associated with plasma tau levels in patients (r = -0.626). We propose that plasma tau may serve as a window to both structure and function of the brain. Higher education is a protective factor against AD and is associated with lower plasma tau levels in patients.

  20. Communication of brain network core connections altered in behavioral variant frontotemporal dementia but possibly preserved in early-onset Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.

    2015-03-01

    Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.

  1. Auditory spatial processing in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Nicholas, Jennifer M; Yong, Keir X X; Downey, Laura E; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease

  2. Neurogenesis and Alzheimer's disease: at the crossroads.

    PubMed

    Lazarov, Orly; Marr, Robert A

    2010-06-01

    While a massive and progressive neuronal loss in specific areas such as the hippocampus and cortex unequivocally underlies cognitive deterioration and memory loss in Alzheimer's disease, noteworthy alterations take place in the neurogenic microenvironments, namely, the subgranule layer of the dentate gyrus and the subventricular zone. Compromised neurogenesis presumably takes place earlier than onset of hallmark lesions or neuronal loss, and may play a role in the initiation and progression of neuropathology in Alzheimer's disease. Neurogenesis in the adult brain is thought to play a role in numerous forms and aspects of learning and memory and contribute to the plasticity of the hippocampus and olfactory system. Misregulated or impaired neurogenesis on the other hand, may compromise plasticity and neuronal function in these areas and exacerbate neuronal vulnerability. Interestingly, increasing evidence suggests that molecular players in Alzheimer's disease, including PS1, APP and its metabolites, play a role in adult neurogenesis. In addition, recent studies suggest that alterations in tau phosphorylation are pronounced in neurogenic areas, and may interfere with the potential central role of tau proteins in neuronal maturation and differentiation. On the other hand, numerous neurogenic players, such as Notch-1, ErbB4 and L1 are substrates of alpha- beta- and gamma- secretase that play a major role in Alzheimer's disease. This review will discuss current knowledge concerning alterations of neurogenesis in Alzheimer's disease with specific emphasis on the cross-talk between signaling molecules involved in both processes, and the ways by which familial Alzheimer's disease-linked dysfunction of these signaling molecules affect neurogenesis in the adult brain.

  3. Relationship between baseline brain metabolism measured using [¹⁸F]FDG PET and memory and executive function in prodromal and early Alzheimer's disease.

    PubMed

    Habeck, Christian; Risacher, Shannon; Lee, Grace J; Glymour, M Maria; Mormino, Elizabeth; Mukherjee, Shubhabrata; Kim, Sungeun; Nho, Kwangsik; DeCarli, Charles; Saykin, Andrew J; Crane, Paul K

    2012-12-01

    Differences in brain metabolism as measured by FDG-PET in prodromal and early Alzheimer's disease (AD) have been consistently observed, with a characteristic parietotemporal hypometabolic pattern. However, exploration of brain metabolic correlates of more nuanced measures of cognitive function has been rare, particularly in larger samples. We analyzed the relationship between resting brain metabolism and memory and executive functioning within diagnostic group on a voxel-wise basis in 86 people with AD, 185 people with mild cognitive impairment (MCI), and 86 healthy controls (HC) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We found positive associations within AD and MCI but not in HC. For MCI and AD, impaired executive functioning was associated with reduced parietotemporal metabolism, suggesting a pattern consistent with known AD-related hypometabolism. These associations suggest that decreased metabolic activity in the parietal and temporal lobes may underlie the executive function deficits in AD and MCI. For memory, hypometabolism in similar regions of the parietal and temporal lobes were significantly associated with reduced performance in the MCI group. However, for the AD group, memory performance was significantly associated with metabolism in frontal and orbitofrontal areas, suggesting the possibility of compensatory metabolic activity in these areas. Overall, the associations between brain metabolism and cognition in this study suggest the importance of parietal and temporal lobar regions in memory and executive function in the early stages of disease and an increased importance of frontal regions for memory with increasing impairment.

  4. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    SciTech Connect

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.; Hoffmann, R.G.; Palmer, D.W.; Glatt, S.L.; Antuono, P.G.; Isitman, A.T.; Papke, R.A.

    1989-07-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determined from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake.

  5. Prolyl oligopeptidase colocalizes with α-synuclein, β-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson's and Alzheimer's diseases.

    PubMed

    Hannula, M J; Myöhänen, T T; Tenorio-Laranga, J; Männistö, P T; Garcia-Horsman, J A

    2013-07-09

    Prolyl oligopeptidase (EC 3.4.21.26, PREP) is a serine protease that hydrolyzes proline-containing peptides shorter than 30-mer but it has also nonhydrolytic functions. PREP has been shown to accelerate aggregation of wild-type α-synuclein (α-syn) under cell-free conditions, and PREP inhibitors can block this aggregation both in vitro and in vivo. α-syn is the main component of Lewy bodies in Parkinson's disease (PD) and Lewy body dementia. To clarify the possible interaction of PREP with other markers of neurodegenerative diseases, we studied colocalizations of PREP and (1) α-syn, (2) β-amyloid, (3) tau protein and (4) astroglial and microglial cells in human post-mortem brain samples from PD, Alzheimer's disease (AD) patients and in healthy control brain samples. In the substantia nigra of PD brains, an intense colocalization with PREP and α-syn was evident. PREP colocalized also with β-amyloid plaques in AD brains and with tau protein in AD and in healthy brains. PREP was also found in astroglial cells in PD, AD and control brains, but not in the microglia. Our findings are the first ones to demonstrate colocalization of PREP and pathological proteins in the human brain and support the view that, at least in spatial terms, PREP could be associated with pathogenesis of neurodegenerative diseases.

  6. Head trauma and Alzheimer's disease.

    PubMed

    Nandoe, Rishi D S; Scheltens, Philip; Eikelenboom, Piet

    2002-08-01

    The authors describe a case of a 55 year old woman who was diagnosed with Alzheimer's disease 1.5 years after a car accident in which she experienced a mild concussion. Extensive history taking disclosed no cognitive changes prior to the car accident. The case is discussed in view of the inflammation hypothesis regarding Alzheimer's disease and the role of the apolipoprotein E4 genotype of the patient.

  7. Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936☆

    PubMed Central

    Lyall, Donald M.; Harris, Sarah E.; Bastin, Mark E.; Muñoz Maniega, Susana; Murray, Catherine; Lutz, Michael W.; Saunders, Ann M.; Roses, Allen D.; Valdés Hernández, Maria del C.; Royle, Natalie A.; Starr, John M.; Porteous, David. J.; Wardlaw, Joanna M.; Deary, Ian J.

    2014-01-01

    Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 (“523”) variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640–650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p < 0.05). For APOE, deleterious effects of ε4 “risk” allele presence (vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 “short” allele showed lower white matter integrity when compared with carriers of the “long” and “very-long” alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older

  8. Quiz: Alzheimer's Disease Quiz | Alzheimer's disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Quiz Past Issues / Fall 2010 Table of Contents How many people in the United States have Alzheimer's disease? as many as 5.1 million as many ...

  9. Alzheimer's Disease and Prion Protein

    PubMed Central

    Zhou, Jiayi; Liu, Bingqian

    2013-01-01

    Summary Alzheimer's disease (AD) is a devastating neurodegenerative disease with progressive loss of memory and cognitive function, pathologically hallmarked by aggregates of the amyloid-beta (Aβ) peptide and hyperphosphorylated tau in the brain. Aggregation of Aβ under the form of amyloid fibrils has long been considered central to the pathogenesis of AD. However, recent evidence has indicated that soluble Aβ oligomers, rather than insoluble fibrils, are the main neurotoxic species in AD. The cellular prion protein (PrPC) has newly been identified as a cell surface receptor for Aβ oligomers. PrPC is a cell surface glycoprotein that plays a key role in the propagation of prions, proteinaceous infectious agents that replicate by imposing their abnormal conformation to PrPC molecules. In AD, PrPC acts to transduce the neurotoxic signals arising from Aβ oligomers, leading to synaptic failure and cognitive impairment. Interestingly, accumulating evidence has also shown that aggregated Aβ or tau possesses prion-like activity, a property that would allow them to spread throughout the brain. In this article, we review recent findings regarding the function of PrPC and its role in AD, and discuss potential therapeutic implications of PrPC-based approaches in the treatment of AD. PMID:25343100

  10. Alzheimer's disease therapeutics targeted to the control of amyloid precursor protein translation: maintenance of brain iron homeostasis.

    PubMed

    Bandyopadhyay, Sanghamitra; Rogers, Jack T

    2014-04-15

    The neurotoxicity of amyloid beta (Aβ), a major cleavage product of the amyloid precursor protein (APP), is enhanced by iron, as found in the amyloid plaques of Alzheimer's disease (AD) patients. By contrast, the long-known neuroprotective activity of APP is evident after α-secretase cleavage of the precursor to release sAPPα, and depends on the iron export actions of APP itself. The latter underlie its neurotrophic and protective effects in facilitating the homeostatic actions of ferroportin mediated-iron export. Thus APP-dependent iron export may alleviate oxidative stress by minimizing labile iron thus protecting neurons from iron overload during stroke and hemorrhage. Consistent with this, altered phosphorylation of iron-regulatory protein-1 (IRP1) and its signaling processes play a critical role in modulating APP translation via the 5' untranslated region (5'UTR) of its transcript. The APP 5'UTR region encodes a functional iron-responsive element (IRE) RNA stem loop that represents a potential target for modulating APP production. Targeted regulation of APP gene expression via the modulation of 5'UTR sequence function represents a novel approach for the potential treatment of AD since altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. Approved drugs including paroxetine and desferrioxamine and several novel compounds have been identified that suppress abnormal metal-promoted Aβ accumulation with a subset of these acting via APP 5'UTR-dependent mechanisms to modulate APP translation and cleavage to generate the non-toxic sAPPα.

  11. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease.

    PubMed

    Di Domenico, Fabio; Pupo, Gilda; Tramutola, Antonella; Giorgi, Alessandra; Schininà, Maria Eugenia; Coccia, Raffaella; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2014-06-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.

  12. Relationship of aluminum to Alzheimer's disease.

    PubMed Central

    Perl, D P

    1985-01-01

    Alzheimer's disease is a progressive degenerative brain disease of unknown etiology, characterized by the development of large numbers of neurofibrillary tangles and senile plaques in the brain. Aluminum salts may be used experimentally to produce lesions which are similar, but not identical, to the neurofibrillary tangle. Although some studies have reported increased amounts of aluminum in the brains of Alzheimer's disease victims, these bulk analysis studies have been difficult to replicate and remain controversial. Using scanning electron microscopy with X-ray spectrometry, we have investigated this question on the cellular level. We have identified abnormal accumulations of aluminum within neurons derived from Alzheimer's disease patients containing neurofibrillary tangles. Similar accumulations have been detected in the numerous neurofibrillary tangle-bearing neurons seen in the brains of the indigenous native population of the island of Guam who suffer from amyotrophic lateral sclerosis and parkinsonism with dementia. Epidemiologic evidence strongly suggests a causal role for local environmental conditions relating to availability of aluminum, calcium, and magnesium. In view of the fact that a major consequence of acid rain is the liberation of large amounts of aluminum in bioavailable forms, concerns are raised about possible human health risks of this environmental phenomenon. PMID:4076080

  13. Inflammatory signaling in Alzheimer disease and depression.

    PubMed

    Barber, Robert

    2011-08-01

    To help define the relationships among inflammation, Alzheimer disease, and depression, the Texas Alzheimer's Research Consortium analyzed an array of inflammatory biomarkers in a cohort of patients with Alzheimer disease and in controls. Inflammation severity was highly correlated with earlier age at onset of Alzheimer disease and was also associated with cognitive decline. The relationship between inflammation and depression was not as clear, and it varied with aspects of depression, gender, and the presence of Alzheimer disease.

  14. A Common Variant of IL-6R is Associated with Elevated IL-6 Pathway Activity in Alzheimer's Disease Brains.

    PubMed

    Haddick, Patrick C G; Larson, Jessica L; Rathore, Nisha; Bhangale, Tushar R; Phung, Qui T; Srinivasan, Karpagam; Hansen, David V; Lill, Jennie R; Pericak-Vance, Margaret A; Haines, Jonathan; Farrer, Lindsay A; Kauwe, John S; Schellenberg, Gerard D; Cruchaga, Carlos; Goate, Alison M; Behrens, Timothy W; Watts, Ryan J; Graham, Robert R; Kaminker, Joshua S; van der Brug, Marcel

    2017-01-01

    The common p.D358A variant (rs2228145) in IL-6R is associated with risk for multiple diseases and with increased levels of soluble IL-6R in the periphery and central nervous system (CNS). Here, we show that the p.D358A allele leads to increased proteolysis of membrane bound IL-6R and demonstrate that IL-6R peptides with A358 are more susceptible to cleavage by ADAM10 and ADAM17. IL-6 responsive genes were identified in primary astrocytes and microglia and an IL-6 gene signature was increased in the CNS of late onset Alzheimer's disease subjects in an IL6R allele dependent manner. We conducted a screen to identify variants associated with the age of onset of Alzheimer's disease in APOE ɛ4 carriers. Across five datasets, p.D358A had a meta P = 3 ×10-4 and an odds ratio = 1.3, 95% confidence interval 1.12 -1.48. Our study suggests that a common coding region variant of the IL-6 receptor results in neuroinflammatory changes that may influence the age of onset of Alzheimer's disease in APOE ɛ4 carriers.

  15. Immunotherapy for Alzheimer's Disease

    PubMed Central

    Wisniewski, Thomas; Goni, Fernando

    2014-01-01

    Alzheimer's disease (AD) is the most common cause of dementia worldwide. In AD the normal soluble amyloid β (sAβ) peptide is converted into oligomeric/fibrillar Aβ. The oligomeric forms of Aβ are thought to be the most toxic, while fibrillar Aβ becomes deposited as amyloid plaques and congophilic angiopathy, which serve as neuropathological markers of the disease. In addition the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles is a critical part of the pathology. Numerous therapeutic interventions are under investigation to prevent and treat AD. Among the more exciting and advanced of these approaches is vaccination. Active and passive Immunotherapy targeting only Aβ has been successful in many AD model animal trials; however, the more limited human data has shown much less benefit so far, with encephalitis occurring in a minority of patients treated with active immunization and vasogenic edema or amyloid-related imaging abnormalities (ARIA) being a complication in some passive immunization trials. Therapeutic intervention targeting only tau has been tested only in mouse models; and no approaches targeting both pathologies concurrently has been attempted, until very recently. The immune approaches tried so far were targeting a self-protein, albeit in an abnormal conformation; however, effective enhanced clearance of the disease associated conformer has to be balanced with the potential risk of stimulating excessive toxic inflammation. The design of future more effective immunomodulatory approaches will need to target all aspects of AD pathology, as well as specifically targeting pathological oligomeric conformers, without the use of any self-antigen. PMID:24412277

  16. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease

    PubMed Central

    Deane, Rashid; Singh, Itender; Sagare, Abhay P.; Bell, Robert D.; Ross, Nathan T.; LaRue, Barbra; Love, Rachal; Perry, Sheldon; Paquette, Nicole; Deane, Richard J.; Thiyagarajan, Meenakshisundaram; Zarcone, Troy; Fritz, Gunter; Friedman, Alan E.; Miller, Benjamin L.; Zlokovic, Berislav V.

    2012-01-01

    In Alzheimer disease (AD), amyloid β peptide (Aβ) accumulates in plaques in the brain. Receptor for advanced glycation end products (RAGE) mediates Aβ-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a high-affinity RAGE-specific inhibitor (FPS-ZM1) that blocked Aβ binding to the V domain of RAGE and inhibited Aβ40- and Aβ42-induced cellular stress in RAGE-expressing cells in vitro and in the mouse brain in vivo. FPS-ZM1 was nontoxic to mice and readily crossed the blood-brain barrier (BBB). In aged APPsw/0 mice overexpressing human Aβ-precursor protein, a transgenic mouse model of AD with established Aβ pathology, FPS-ZM1 inhibited RAGE-mediated influx of circulating Aβ40 and Aβ42 into the brain. In brain, FPS-ZM1 bound exclusively to RAGE, which inhibited β-secretase activity and Aβ production and suppressed microglia activation and the neuroinflammatory response. Blockade of RAGE actions at the BBB and in the brain reduced Aβ40 and Aβ42 levels in brain markedly and normalized cognitive performance and cerebral blood flow responses in aged APPsw/0 mice. Our data suggest that FPS-ZM1 is a potent multimodal RAGE blocker that effectively controls progression of Aβ-mediated brain disorder and that it may have the potential to be a disease-modifying agent for AD. PMID:22406537

  17. Prevention of Alzheimer disease

    PubMed Central

    Scalco, Monica Zavaloni; van Reekum, Robert

    2006-01-01

    OBJECTIVE To review the evidence regarding prevention of Alzheimer disease (AD) in order to highlight the role of family medicine. QUALITY OF EVIDENCE Most of the evidence relating to prevention of AD is derived from observational (cross-sectional, case-control, or longitudinal) studies. Evidence from randomized controlled trials (RCTs) is available only for blood pressure control and for hormone replacement therapy for menopausal women. MAIN MESSAGE Many preventive approaches to AD have been identified, but no RCTs support their efficacy. Evidence from RCTs supports the effectiveness of blood pressure control in reducing incidence of AD, but demonstrates that postmenopausal women’s use of estrogen is ineffective in reducing it. Observational studies suggest that some preventive approaches, such as healthy lifestyle, ongoing education, regular physical activity, and cholesterol control, play a role in prevention of AD. These approaches can and should be used for every patient because they carry no significant risk. Currently, no effective pharmacologic interventions have been researched enough to support their use in prevention of AD. CONCLUSION Health professionals should educate patients, especially patients at higher risk of AD, about preventive strategies and potentially modifiable risk factors. PMID:16529393

  18. Cadmium concentrations in the brains of Alzheimer cases

    SciTech Connect

    Spyrou, N.M.; Stedman, J.D.

    1996-12-31

    There is ongoing research in relating the concentration of elements in the brain with Alzheimer`s disease. The presence of particular elements, such as aluminum and vanadium, has been considered as a possible environmental factor, creating significant interest and controversy in the field. We have been analyzing brain tissue from the MRC Alzheimer`s Disease Brain Bank, Institute of Psychiatry, from a number of cortical regions of the brain, namely, the frontal, occipital, parietal, and temporal lobes, as well as from the left and right hemispheres of the same brain whenever possible. The techniques employed have been proton-induced X-ray emission (PIXE) analysis, proton-induced gamma-ray emission (PIGE) analysis, Rutherford backscattering (RBS), and instrumental neutron activation analysis. Neutron irradiations were carried out at the Imperial College Consort II reactor, whereas for PIXE, PIGE, and RBS, the University of Surrey Accelerator Laboratories were used employing a Van de Graaff accelerator. In this paper, we present the cadmium results from the frontal lobe of Alzheimer cases and controls determined by PIXE analysis.

  19. The biological substrates of Alzheimer's disease

    SciTech Connect

    Scheibel, A.B.; Wechsler, A.F.; Brazier, M.A.B.

    1986-01-01

    This book contains 21 selections. Some of the titles are: Dementia of the Alzheimer Type: Genetic Aspects; Determination of Cerebral Metabolic Patterns in Dementia Using Positron Emission Tomography; Pathology of the Basal Forebrain in Alzheimer's Disease and Other Dementias; Characterization of Neurofibrillary Tangles with Monoclonal Antibodies Raised Against Alzheimer Neurofibrillary Tangles; and HLA Associations in Alzheimer's Disease.

  20. Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease.

    PubMed

    Rijal Upadhaya, Ajeet; Kosterin, Irina; Kumar, Sathish; von Arnim, Christine A F; Yamaguchi, Haruyasu; Fändrich, Marcus; Walter, Jochen; Thal, Dietmar Rudolf

    2014-03-01

    Alzheimer's disease is characterized by the deposition of amyloid-β peptide in the brain. N-terminal truncation resulting in the formation of AβN3pE and phosphorylation at serine 8 have been reported to modify aggregation properties of amyloid-β. Biochemically, soluble, dispersible, membrane-associated, and insoluble, plaque-associated amyloid-β aggregates have been distinguished. Soluble and dispersible amyloid-β aggregates are both in mixture with the extracellular or intracellular fluid but dispersible aggregates can be cleared from proteins in solution by ultracentrifugation. To clarify the role of phosphorylated amyloid-β and AβN3pE in soluble, dispersible, membrane-associated, and plaque-associated amyloid-β aggregates in the pathogenesis of Alzheimer's disease we studied brains from 21 cases with symptomatic Alzheimer's disease, 33 pathologically preclinical Alzheimer's disease cases, and 20 control cases. Western blot analysis showed that soluble, dispersible, membrane-associated and plaque-associated amyloid-β aggregates in the earliest preclinical stage of Alzheimer's disease did not exhibit detectable amounts of AβN3pE and phosphorylated amyloid-β. This stage was referred to as biochemical stage 1 of amyloid-β aggregation and accumulation. In biochemical amyloid-β stage 2, AβN3pE was additionally found whereas phosphorylated amyloid-β was restricted to biochemical amyloid-β stage 3, the last stage of amyloid-β aggregation. Phosphorylated amyloid-β was seen in the dispersible, membrane-associated, and plaque-associated fraction. All cases with symptomatic Alzheimer's disease in our sample fulfilled biochemical amyloid-β stage 3 criteria, i.e. detection of phosphorylated amyloid-β. Most, but not all, cases with pathologically preclinical Alzheimer's disease had biochemical amyloid-β stages 1 or 2. Immunohistochemistry confirmed the hierarchical occurrence of amyloid-β, AβN3pE, and phosphorylated amyloid-β in amyloid plaques

  1. [Late-onset Neurodegenerative Diseases Following Traumatic Brain Injury: Chronic Traumatic Encephalopathy (CTE) and Alzheimer's Disease Secondary to TBI (AD-TBI)].

    PubMed

    Takahata, Keisuke; Tabuchi, Hajime; Mimura, Masaru

    2016-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease, which is associated with mild repetitive traumatic brain injury (TBI). This long-term and progressive symptom due to TBI was initially called punch-drunk syndrome or dementia pugilistica, since it was believed to be associated with boxing. However, serial neuropathological studies of mild repetitive TBI in the last decade have revealed that CTE occurs not only in boxers but also in a wider population including American football players, wrestlers, and military personnel. CTE has gained large public interest owing to dramatic cases involving retired professional athletes wherein serious behavioral problems and tragic incidents were reported. Unlike mild repetitive TBI, a single episode of severe TBI can cause another type of late-onset neuropsychiatric disease including Alzheimer's disease (AD). Several epidemiological studies have shown that a single episode of severe TBI is one of the major risk factors of AD. Pathologically, both AD and CTE are characterized by abnormal accumulations of hyperphosphorylated tau proteins. However, recent neuropathological studies revealed that CTE demonstrates a unique pattern of tau pathology in neurons and astrocytes, and accumulation of other misfolded proteins such as TDP-43. Currently, no reliable biomarkers of late-onset neurodegenerative diseases following TBI are available, and a definitive diagnosis can be made only via postmortem neuropathological examination. Development in neuroimaging techniques such as tau and amyloid positron emission tomography imaging might not only enable early diagnosis of CTE, but also contribute to the interventions for prevention of late-onset neurodegenerative diseases following TBI. Further studies are necessary to elucidate the mechanisms of neurodegeneration in the living brain of patients with TBI.

  2. [Music therapy and Alzheimer disease].

    PubMed

    Tromeur, Emilie

    2014-01-01

    Music therapy and Alzheimer's dementia. Dementia such as Alzheimer's leads to the deterioration of the patient's global capacities. The cognitive disorders associated with it are disabling and affect every area of the patient's life. Every therapy's session undertaken with and by patients can act as a mirror of the progress of their disease and help to feel better, as described in this article on music therapy.

  3. A case of combined Pick's disease and Alzheimer's disease.

    PubMed Central

    Smith, D A; Lantos, P L

    1983-01-01

    The diagnosis of combined Pick's and Alzheimer's disease is rare, and over the years different authors have used different criteria to arrive at such a diagnosis. A case is reported of presenile dementia in which the histological changes of Pick's disease and Alzheimer's disease were mingled. The brain showed no focal atrophy, but the Pick changes were most numerous in the hippocampus and in the temporal lobe. An antibody against the 155 kilodalton component of neurofilaments demonstrated not only neurofibrillary tangles and components of senile plaques, but also Pick's inclusions. Images PMID:6310050

  4. Validation of Suspected Somatic Single Nucleotide Variations in the Brain of Alzheimer's Disease Patients.

    PubMed

    Gomez-Ramos, Alberto; Picher, Angel J; García, Esther; Garrido, Patricia; Hernandez, Felix; Soriano, Eduardo; Avila, Jesús

    2017-01-01

    Next-generation sequencing techniques and genome-wide association study analyses have provided a huge amount of data, thereby enabling the identification of DNA variations and mutations related to disease pathogenesis. New techniques and software tools have been developed to improve the accuracy and reliability of this identification. Most of these tools have been designed to discover and validate single nucleotide variants (SNVs). However, in addition to germ-line mutations, human tissues bear genomic mosaicism, which implies that somatic events are present only in low percentages of cells within a given tissue, thereby hindering the validation of these variations using standard genetic tools. Here we propose a new method to validate some of these somatic mutations. We combine a recently developed software with a method that cuts DNA by using restriction enzymes at the sites of the variation. The non-cleaved molecules, which bear the SNV, can then be amplified and sequenced using Sanger's technique. This procedure, which allows the detection of alternative alleles present in as few as 10% of cells, could be of value for the identification and validation of low frequency somatic events in a variety of tissues and diseases.

  5. Multiple genetic imaging study of the association between cholesterol metabolism and brain functional alterations in individuals with risk factors for Alzheimer's disease

    PubMed Central

    Bai, Feng; Yuan, Yonggui; Shi, Yongmei; Zhang, Zhijun

    2016-01-01

    Alzheimer's disease (AD) is a clinically and genetically heterogeneous neurodegenerative disease. Genes involved in cholesterol metabolism may play a role in the pathological changes of AD. However, the imaging genetics-based endophenotypes derived from polymorphisms in multiple functionally related genes are unclear in individuals with risk factors for AD. Forty-three amnestic mild cognitive impairment (aMCI) subjects and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) measurements of brain topological organization. Thirty-three previously suggested tagging single nucleotide polymorphisms (SNPs) from 12 candidate genes in the cholesterol metabolism pathway were further investigated. A cholesterol metabolism pathway gene-based imaging genetics approach was then utilized to investigate disease-related differences between the groups based on genotype-by-aMCI interactions. The cholesterol metabolism pathway genes exerted widespread effects on the cortico-subcortical-cerebellar spontaneous brain activity. Meanwhile, left lateralization of global brain connectivity was associated with cholesterol metabolism pathway genes. The APOE rs429358 variation significantly influenced the brain network characteristics, affecting the activation of nodes as well as the connectivity of edges in aMCI subjects. The cholesterol metabolism pathway gene-based imaging genetics approach may provide new opportunities to understand the mechanisms underlying AD and suggested that APOE rs429358 is a core genetic variation that is associated with disease-related differences in brain function. PMID:26985771

  6. [Hearing loss and Alzheimer's disease].

    PubMed

    Bakhos, David; Villeuneuve, Alexandre; Kim, Soo; Hammoudi, Karim; Hommet, Caroline

    2015-06-01

    Recent studies suggest that subjects with hearing loss are more likely to develop Alzheimer's disease. Hearing loss can be consecutive to presbycusis and/or to central auditory dysfunction. Standard audiometric measures (pure tone and speech intelligibility) allow the diagnosis of presbycusis. However, to demonstrate central auditory dysfunction, specific audiometric tests are needed such as noisy and/or dichotic tests. Actually, no consensus exists to investigate hearing loss in people with Alzheimer's disease though hearing loss may be an early manifestation of Alzheimer's disease. Until now, investigations and clinical procedure related to the diagnosis of Alzheimer's disease ignored the hearing ability of the patient. However, the major part of care management and investigations implies the patient's communication ability with the caregivers. Hearing loss may be one of the most unrecognized deficit in subjects with Alzheimer's disease. Auditory rehabilitation could benefit to the patient in order to lessen cognitive decline, but this must be investigated during longitudinal studies in order to clearly demonstrate their efficiency.

  7. [Language Symptoms of Alzheimer's Disease].

    PubMed

    Shinagawa, Shunichiro

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative disorder mainly characterized by progressive memory disturbance. Language symptoms are considered to be less disease specific and therefore did not attract many researchers, interest until recently. Typical patients with AD present amnesic aphasia in the early disease stage followed by transcortical sensory aphasia; however, their language symptoms are varied. Recently, the concept of logopenic variant of primary progressive aphasia (PPA) has been developed, which is reported to have Alzheimer's neuropathology. Clinicians should verify patients' language abilities, as language can be the key to reveal their true cognitive functions.

  8. Alzheimer's Disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Alzheimer's Disease Living with Alzheimer's Disease Past Issues / Winter 2015 Table of Contents ... delay or prevent the disease. Free Guide for Alzheimer's Caregivers Caring for a person with Alzheimer's disease ...

  9. Disruption of Amyloid Plaques Integrity Affects the Soluble Oligomers Content from Alzheimer Disease Brains

    PubMed Central

    Moyano, Javier; Sanchez-Mico, María; Torres, Manuel; Davila, Jose Carlos; Vizuete, Marisa; Gutierrez, Antonia; Vitorica, Javier

    2014-01-01

    The implication of soluble Abeta in the Alzheimer’s disease (AD) pathology is currently accepted. In fact, the content of soluble extracellular Abeta species, such as monomeric and/or oligomeric Abeta, seems to correlate with the clinico-pathological dysfunction observed in AD patients. However, the nature (monomeric, dimeric or other oligomers), the relative abundance, and the origin (extra-/intraneuronal or plaque-associated), of these soluble species are actually under debate. In this work we have characterized the soluble (defined as soluble in Tris-buffered saline after ultracentrifugation) Abeta, obtained from hippocampal samples of Braak II, Braak III–IV and Braak V–VI patients. Although the content of both Abeta40 and Abeta42 peptides displayed significant increase with pathology progression, our results demonstrated the presence of low, pg/µg protein, amount of both peptides. This low content could explain the absence (or below detection limits) of soluble Abeta peptides detected by western blots or by immunoprecipitation-western blot analysis. These data were in clear contrast to those published recently by different groups. Aiming to explain the reasons that determine these substantial differences, we also investigated whether the initial homogenization could mobilize Abeta from plaques, using 12-month-old PS1xAPP cortical samples. Our data demonstrated that manual homogenization (using Dounce) preserved the integrity of Abeta plaques whereas strong homogenization procedures (such as sonication) produced a vast redistribution of the Abeta species in all soluble and insoluble fractions. This artifact could explain the dissimilar and somehow controversial data between different groups analyzing human AD samples. PMID:25485545

  10. New drug treatments show neuroprotective effects in Alzheimer's and Parkinson's diseases.

    PubMed

    Hölscher, Christian

    2014-11-01

    Type 2 diabetes is a risk factor for Alzheimer's disease and Parkinson's disease. Insulin signaling in the brains of people with Alzheimer's disease or Parkinson's disease is impaired. Preclinical studies of growth factors showed impressive neuroprotective effects. In animal models of Alzheimer's disease and Parkinson's disease, insulin, glia-derived neurotrophic factor, or analogues of the incretin glucagon-like peptide-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality in Alzheimer's disease and Parkinson's disease. On the basis of these promising findings, several clinical trials are ongoing with the first encouraging clinical results published. This gives hope for developing effective treatments for Alzheimer's disease and Parkinson's disease that are currently unavailable.

  11. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2013-10-01

    Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease PRINCIPAL INVESTIGATOR: Giulio Maria Pasinetti MD., PhD...TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury 5a. CONTRACT NUMBER Promotes Risk for Alzheimer’s...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s

  12. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    Award Number: W81XWH-12-1-0582 TITLE: Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s...Annual 3. DATES COVERED 25 Sep 2013 - 24 Sep 2014 4. TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury...SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s disease (AD). Abnormal tau

  13. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease

    PubMed Central

    Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246

  14. Alzheimer's Disease. LC Science Tracer Bullet 87-2.

    ERIC Educational Resources Information Center

    Sammons, Vivian O., Comp.

    Alzheimer's disease is characterized by a degeneration and shrinkage of brain tissue; the symptoms include progressive memory loss, bizarre behavior, difficulty in speaking and walking, incontinence, and confusion. Positive diagnosis is possible only upon examination of brain tissue at autopsy. The disease affects not only the patient but also the…

  15. [Neuroimaging for patients with Alzheimer disease in routine practice].

    PubMed

    Matsuda, Hiroshi

    2010-07-01

    In routine practice neuroimaging has been applied as an adjunct technique for early and differential diagnosis of Alzheimer disease in routine practice. Of the several neuroimaging modalities, magnetic resonance imaging (MRI) and brain perfusion single-photon emission computed tomography (SPECT) have been commonly used in Japan; further software programs are used to aid statistical analysis of the imaging results. For example voxel-based specific regional analysis system for Alzheimer disease (VSRAD) for MRI and easy Z-score imaging system (eZIS) are used for the analysis of MRI and SPECT. In the early stage of Alzheimer disease, specific findings of regional atrophy and perfusion reduction are observed in some areas. In the posterior cingulate gyrus precuneus and parietal cortex, perfusion reduction was more frequently observed than atrophy. On the other hand, in the medial temporal structures, perfusion reduction was less frequently observed than atrophy. Perfusion reduction in the the posterior cingulate gyrus precuneus and in the parietal cortex was more prominent in the case of patients with early-onset Alzheimer disease than in the case of patients with late-onset Alzheimer disease. Further, atrophy in the medial temporal structures was more prominent in the case of patients with late-onset Alzheimer disease than in the case of those with early-onset Alzheimer disease. These findings are helpful for differentiating of Alzheimer disease from other diseases characterized by dementia.

  16. A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 × Tg-AD mouse model of Alzheimer disease.

    PubMed

    Hensley, Kenneth; Gabbita, S Prasad; Venkova, Kalina; Hristov, Alexandar; Johnson, Ming F; Eslami, Pirooz; Harris-White, Marni E

    2013-10-01

    Lanthionine ketimine ([LK] 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid) is the archetype for a family of naturally occurring brain sulfur amino acid metabolites, the physiologic function of which is unknown. Lanthionine ketimine and its synthetic derivatives have recently demonstrated neurotrophic, neuroprotective, and antineuroinflammatory properties in vitro through a proposed mechanism involving the microtubule-associated protein collapsin response mediator protein 2. Therefore, studies were undertaken to test the effects of a bioavailable LK ester in the 3 × Tg-AD mouse model of Alzheimer disease. Lanthionine ketimine ester treatment substantially diminished cognitive decline and brain amyloid-β (Aβ) peptide deposition and phospho-Tau accumulation in 3 × Tg-AD mice and also reduced the density of Iba1-positive microglia. Furthermore, LK ester treatment altered collapsin response mediator protein 2 phosphorylation. These findings suggest that LK may not be a metabolic waste but rather a purposeful neurochemical, the synthetic derivatives of which constitute a new class of experimental therapeutics for Alzheimer disease and related entities.

  17. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis.

    PubMed

    Hsu, Wan-Yu; Ku, Yixuan; Zanto, Theodore P; Gazzaley, Adam

    2015-08-01

    The study aimed to evaluate the effects of noninvasive brain stimulation on cognitive function in healthy older adults and patients with Alzheimer's disease. A comprehensive literature search was performed on noninvasive stimulation studies published from January 1990 to November 2014 in Pubmed and Web of Science. Fourteen articles with a total of 331 participants were identified as studies with healthy older adults, and the mean effect size and 95% confidence interval were estimated. A significant effect size of 0.42 was found for the cognitive outcome. Further subgroup analyses demonstrated more prominent effects for studies delivering the stimulation before the execution of the task and studies applying multiple sessions of stimulation. To assess the effects of stimulation on Alzheimer's disease patients, 11 studies with a total of 200 patients were included in the analysis. A significant effect size of 1.35 was found for the cognitive outcomes. Subgroup analyses indicated more pronounced effects for studies applying the stimulation during the execution of the task compared with studies delivering the stimulation before the execution of the task. Noninvasive brain stimulation has a positive effect on cognitive function in physiological and pathological aging.

  18. Coping & Caring: Living with Alzheimer's Disease.

    ERIC Educational Resources Information Center

    Leroux, Charles

    This guide on Alzheimer's disease is for those who care for Alzheimer's patients, as well as those who want to learn more about the disease. It answers these questions: (1) what is Alzheimer's? (2) how does the disease progress and how long does it last? (3) how do families cope? and (4) who can provide assistance and information? The guide also…

  19. Exploring Symmetry to Assist Alzheimer's Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.

  20. REVIEW: Curcumin and Alzheimer's disease.

    PubMed

    Hamaguchi, Tsuyoshi; Ono, Kenjiro; Yamada, Masahito

    2010-10-01

    Curcumin has a long history of use as a traditional remedy and food in Asia. Many studies have reported that curcumin has various beneficial properties, such as antioxidant, antiinflammatory, and antitumor. Because of the reported effects of curcumin on tumors, many clinical trials have been performed to elucidate curcumin's effects on cancers. Recent reports have suggested therapeutic potential of curcumin in the pathophysiology of Alzheimer's disease (AD). In in vitro studies, curcumin has been reported to inhibit amyloid-β-protein (Aβ) aggregation, and Aβ-induced inflammation, as well as the activities of β-secretase and acetylcholinesterase. In in vivo studies, oral administration of curcumin has resulted in the inhibition of Aβ deposition, Aβ oligomerization, and tau phosphorylation in the brains of AD animal models, and improvements in behavioral impairment in animal models. These findings suggest that curcumin might be one of the most promising compounds for the development of AD therapies. At present, four clinical trials concerning the effects of curcumin on AD has been conducted. Two of them that were performed in China and USA have been reported no significant differences in changes in cognitive function between placebo and curcumin groups, and no results have been reported from two other clinical studies. Additional trials are necessary to determine the clinical usefulness of curcumin in the prevention and treatment of AD.

  1. Alzheimer's Disease in Down Syndrome

    PubMed Central

    Head, Elizabeth; Powell, David; Gold, Brian T.; Schmitt, Frederick A.

    2013-01-01

    SUMMARY A key challenge to adults with Down syndrome (DS) as they age is an increased risk for cognitive decline, dementia, and Alzheimer disease (AD). In DS persons ranging from 40-49 years of age, 5.7-55% may be clinically demented and between 50-59 years, dementia prevalence ranges from 4-55% (reviewed in [1]). Despite the wide ranges reported for dementia prevalence, a consistent feature of aging in DS is the progressive accumulation of AD brain pathologies. By the age of 40 years, virtually all have sufficient senile plaques and neurofibrillary tangles for a neuropathological diagnosis of AD [2]. Thus, there is dissociation between the age of onset of AD neuropathology (40 years) and increasing signs of clinical dementia. We discuss the hypothesis that frontal impairments are a critical factor affecting cognitive function and are associated with white matter (WM) and AD neuropathology. While these may be an early sign of conversion to dementia, we also review several other clinical comorbidities that may also contribute to dementia onset. PMID:25285303

  2. Hemodynamic aspects of Alzheimer's disease.

    PubMed

    Nagata, Ken; Sato, Mika; Satoh, Yuichi; Watahiki, Yasuhito; Kondoh, Yasushi; Sugawara, Maki; Box, Georgia; Wright, David; Leung, Sumie; Yuya, Hiromichi; Shimosegawa, Eku

    2002-11-01

    Neuroradiological functional imaging techniques demonstrate the patterns of hypoperfusion and hypometabolism that are thought to be useful in the differential diagnosis of Alzheimer's disease (AD) from other dementing disorders. Besides the distribution patterns of perfusion or energy metabolism, vascular transit time (VTT), vascular reactivity (VR), and oxygen extraction fraction (OEF), which can be measured with positron emission tomography (PET), provide hemodynamic aspects of brain pathophysiology. In order to evaluate the hemodynamic features of AD, PET studies were carried out in 20 patients with probable AD and 20 patients with vascular dementia (VaD). The PET findings were not included in their diagnostic process of AD. Using oxygen-15-labeled compounds, cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO(2)), OEF, cerebral blood volume, and VTT were measured quantitatively during resting state. To evaluate VR, CBF was also measured during CO(2) inhalation. There was a significant increase in OEF in and around the parietotemporal cortices, but both VTT and VR were well preserved in patients with AD. By contrast, VR was markedly depressed and VTT was mildly prolonged in patients with VaD. Thus, from the hemodynamic point of view, the preservation of vascular reserve may be a distinct difference between AD and VaD. Furthermore, this indicates a hemodynamic integrity of the vasculature in the level of arterioles in AD.

  3. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer's disease using magnetic resonance diffusion tensor imaging.

    PubMed

    Sun, Shu-Wei; Song, Sheng-Kwei; Harms, Michael P; Lin, Shiow-Jiuan; Holtzman, David M; Merchant, Kalpana M; Kotyk, John J

    2005-01-01

    Using magnetic resonance diffusion tensor imaging (DTI), the present study investigates changes in both gray and white matter in the APPsw transgenic mouse (Tg2576), a model of beta-amyloid plaque deposition associated with Alzheimer's disease (AD). DTI analyses were performed in cross-sectional groups of transgene-positive and -negative mice at 8, 12, 16, and 18 months of age to assess the magnitude of water diffusion in gray matter (i.e., Tr(D)) and changes in diffusion in white matter that may be indicative of axonal degeneration (i.e., reduced water diffusion parallel to axonal tracts, lambda(||)) and myelin degradation (i.e., increased water diffusion perpendicular to axonal tracts, lambda(perpendicular)). No appreciable changes in gray or white matter were observed between the APPsw and the age-matched control mice at 8 months of age. Reduced Tr(D) and lambda(||) were observed in gray and white matter, respectively, for the APPsw mice at ages greater than 8 months, which coincides with the time period when appreciable amyloid plaque accumulation was confirmed by ex vivo histopathological studies. The decreases in lambda(||) suggest the presence of axonal injury in multiple white matter tracts of APPsw mice. Unlike lambda(||), lambda(perpendicular) was unaltered between control and APPsw mice in most white matter tracts. However, in the corpus collosum (CC), lambda(perpendicular) increased at 16 and 18 months of age, suggesting the possibility of myelin damage in the CC at these later ages. This work demonstrates the potential for DTI as a noninvasive modality to detect evolving pathology associated with changes in tissue water diffusion properties in brain tissues.

  4. Gene Interactions and Structural Brain Change in Early-Onset Alzheimer's Disease Subjects Using the Pipeline Environment

    PubMed Central

    Dinov, Ivo D.; Zamanyan, Alen; Shi, Ran; Genco, Alex; Hobel, Sam; Thompson, Paul M.; Toga, Arthur W.

    2015-01-01

    Objective This article investigates subjects aged 55 to 65 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to broaden our understanding of early-onset (EO) cognitive impairment using neuroimaging and genetics biomarkers. Methods Nine of the subjects had EO-AD (Alzheimer's disease) and 27 had EO-MCI (mild cognitive impairment). The 15 most important neuroimaging markers were extracted with the Global Shape Analysis (GSA) Pipeline workflow. The 20 most significant single nucleotide polymorphisms (SNPs) were chosen and were associated with specific neuroimaging biomarkers. Results We identified associations between the neuroimaging phenotypes and genotypes for a total of 36 subjects. Our results for all the subjects taken together showed the most significant associations between rs7718456 and L_hippocampus (volume), and between rs7718456 and R_hippocampus (volume). For the 27 MCI subjects, we found the most significant associations between rs6446443 and R_superior_frontal_gyrus (volume), and between rs17029131 and L_Precuneus (volume). For the nine AD subjects, we found the most significant associations between rs16964473 and L_rectus gyrus (surface area), and between rs12972537 and L_rectus_gyrus (surface area). Conclusion We observed significant correlations between the SNPs and the neuroimaging phenotypes in the 36 EO subjects in terms of neuroimaging genetics. However, larger sample sizes are needed to ensure that the effects will be detectable for a reasonable false-positive error rate using the GSA and Plink Pipeline workflows. PMID:25670955

  5. Improved Mitochondrial Function in Brain Aging and Alzheimer Disease – the New Mechanism of Action of the Old Metabolic Enhancer Piracetam

    PubMed Central

    Leuner, Kristina; Kurz, Christopher; Guidetti, Giorgio; Orgogozo, Jean-Marc; Müller, Walter E.

    2010-01-01

    Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g., might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, this new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions. PMID:20877425

  6. Two-photon microscopy for real-time monitoring of focused ultrasound-mediated drug delivery to the brain in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Burgess, Alison; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo

    2013-02-01

    There is substantial evidence that focused ultrasound (FUS) in combination with microbubble contrast agent can cause disruption of the blood-brain barrier (BBB) to aid in drug delivery to the brain. We have previously demonstrated that FUS efficiently delivers antibodies against amyloid-β peptides (Aβ) through the BBB, leading to a reduction in amyloid pathology at 4 days in a mouse model of Alzheimer's disease. In the current study, we used two-photon microscopy to characterize the effect of FUS in real time on amyloid pathology in the mouse brain. Mice were anesthetized and a cranial window was made in the skull. A custom-built ultrasound transducer was fixed to a coverslip and attached to the skull, covering the cranial window. Methoxy-X04 [2-5mg/kg] delivered intravenously 1 hr prior to the experiment clearly labelled the Aβ surrounding the vessels and the amyloid plaques in the cortex. Dextran conjugated Texas Red (70kDa) administered intravenously, confirmed BBB disruption. BBB disruption occurred in transgenic and non-transgenic animals at similar ultrasound pressures tested. However, the time required for BBB closure following FUS was longer in the Tg mice. We have conjugated Aβ antibodies to the fluorescent molecule FITC for real time monitoring of the antibody distribution in the brain. Our current experiments are aimed at optimizing the parameters to achieve maximal fluorescent intensity of the BAM10 antibody at the plaque surface. Two-photon microscopy has proven to be a valuable tool for evaluating the efficacy of FUS mediated drug delivery, including antibodies, to the Alzheimer brain.

  7. Posture Recognition in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Mozaz, Maria; Garaigordobil, Maite; Rothi, Leslie J. Gonzalez; Anderson, Jeffrey; Crucian, Gregory P.; Heilman, Kenneth M.

    2006-01-01

    Background: Apraxia is neurologically induced deficit in the ability perform purposeful skilled movements. One of the most common forms is ideomotor apraxia (IMA) where spatial and temporal production errors are most prevalent. IMA can be associated Alzheimer's disease (AD), even early in its course, but is often not identified possibly because…

  8. Genetic heterogeneity and Alzheimer`s disease

    SciTech Connect

    Schellenberg, G.D.; Wijsman, E.M.; Bird, T.D.

    1994-09-01

    In some early-onset Alzheimer`s disease (AD) families, inheritance is autosomal dominant. (Early-onset AD is arbitarily defined as onset at {le} 60 years.) Two loci have been identified which are causative for early-onset familial AD (FAD). One is the amyloid precursor protein gene in which specific mutation have been identified. The second is a locus at 14q24.3 (AD3) which has been localized by linkage analysis; the gene and specific mutations have not been identified. Linkage studies place this locus between D14S61 and D14S63. These 2 loci, however, do not account for all early-onset FAD. The Volga German (VG) kindreds are descendants of families which emigrated from Germany to the Volga river region of Russia and subsequently to the US; AD in these families is hypothesized to be the result of a common genetic founder. The average age-at-onset in these families is 57 years. Linkage analysis for this group has been negative for the APP gene and for chromosome 14 markers. Thus, there is at least 1 other early-onset FAD locus. Recently, the {epsilon}4 allele of apolipoprotein E (ApoE) was identified as a risk-factor for late-onset AD. In a series of 53 late-onset kindreds, a strong genetic association was observed between the ApoE {epsilon}4 allele and AD. However, when linkage analysis was performed using a highly polymorphic locus at the ApoCII gene, which is within 30 kb of ApoE, significant evidence for co-segregation was not observed. This and other data suggests that while ApoE is an age-at-onset modifying locus, another gene(s), located elsewhere, contribute(s) to late-onset AD. Thus, there is probably at least 1 other late-onset locus. Once the VG locus is identified, it will be possible to determine whether an allelic variant of this locus is responsible for late-onset FAD.

  9. Alzheimer's disease: An acquired neurodegenerative laminopathy

    PubMed Central

    Frost, Bess

    2016-01-01

    ABSTRACT The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a “nucleoplasmic reticulum,” into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination. PMID:27167528

  10. Alzheimer's disease: An acquired neurodegenerative laminopathy.

    PubMed

    Frost, Bess

    2016-05-03

    The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a "nucleoplasmic reticulum," into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination.

  11. [Genetic aspects of Alzheimer's disease (Review)].

    PubMed

    El Kadmiri, N; Hamzi, K; El Moutawakil, B; Slassi, I; Nadifi, S

    2013-12-01

    Alzheimer's disease is a degenerative brain disorder, which concerns memory, cognition and behavior pattern. Its etiology is unknown, it is characterized by typical histological lesions: senile plaques and neuro-fibrillary tangles. Alzheimer's disease is a multifactorial pathology, characterized by interactions between genetic and environmental factors. Genetic factors concern first of all the exceptional monogenic forms, characterized by early onset (<60 years), autosomal dominant forms. Mutations of the genes coding for amyloid-ß precursor protein or preselinins 1 and 2 are involved. The much more frequent sporadic forms also have genetic factors, the best studied being the apolipoprotein E4 coding allele and some more recent genotypes which will be mentioned. No causal, only symptomatic treatments are available.

  12. Alzheimer's disease and euthanasia.

    PubMed

    Alvargonzález, David

    2012-12-01

    Employing the tenets of philosophical materialism, this paper discusses the ethical debate surrounding assisted suicide for persons suffering end-stage Alzheimer's. It first presents a classification of the dissociative situations between "human individual" and "human person". It then moves on to discuss challenges to diagnosed persons and their caregivers in relation to the cardinal virtues of Spinozistic ethics--strength of character (fortitudo), firmness (animositas) and generosity (generositas). Finally, a number of ideas attached to the debate--"right of choice", "death with dignity", "quality of life" and "compassion in dying"--are discussed in order to clarify their foundations.

  13. Perception of Alzheimer Disease in Iranian Traditional Medicine

    PubMed Central

    Saifadini, Rostam; Tajadini, Haleh; Choopani, Rasool; Mehrabani, Mitra; Kamalinegad, Mohamad; Haghdoost, Aliakbar

    2016-01-01

    Context: Alzheimer disease (AD) is the most common cause of dementia. In regards to the world’s aging population, control and treatment of AD will be one of the major concerns of global public health in the next century. Alzheimer disease was not mentioned with the same phrase or its equivalent in traditional medical texts. The main of present paper was to investigate symptoms and causes of alzheimer disease from the view point of Iranian traditional medicine. Evidence Acquisition: In this qualitative study, we searched reliable sources of Iranian traditional medicine such as Canon of Medicide by Avicenna (Al-Quanon fi- tibb), Aghili cure by Aghili’s (Molajat-E-aghili), Tib-E-Akbari, Exire -E-Aazam and Sharh-E-Asbab and some reliable resources of neurology were probed base on keywords to find a disease that had the most overlap in terms of symptoms with alzheimer disease. By taking from the relevant materials, the extracted texts were compared and analyzed. Results: Findings showed that alzheimer disease has the most overlap with Nesyan (fisad-e-zekr, fisad-e-fekr and fisad-e-takhayol) symptoms in Iranian traditional medicine. Although this is not a perfect overlap and there are causes, including coldness and dryness of the brain or coldness and wetness that could also lead to alzheimer disease according to Iranian traditional medicine. Conclusions: According to Iranian traditional medicine, The brain dystemperement is considered the main causes of alzheimer disease. By correcting the brain dystemperement, alzheimer can be well managed. This study helps to suggest a better strategy for preventing and treating alzheimer in the future. PMID:27247784

  14. Neuroprotective effect of the active components of three Chinese herbs on brain iron load in a mouse model of Alzheimer's disease.

    PubMed

    Dong, Xian-Hui; Gao, Wei-Juan; Kong, Wei-Na; Xie, Hong-Lin; Peng, Yan; Shao, Tie-Mei; Yu, Wen-Guo; Chai, Xi-Qing

    2015-04-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on learning and memory impairment, β-amyloid (Aβ) reduction and brain iron load in an APPswe/PS1ΔE9 transgenic mouse model of AD. Increasing evidence indicates that a disturbance of normal iron homeostasis may contribute to the pathology of AD. However, the underlying mechanisms resulting in abnormal iron load in the AD brain remain unclear. It has been hypothesized that the brain iron load is influenced by the deregulation of certain proteins associated with brain iron metabolism, including divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). The present study investigated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on the expression levels of DMT1 and FPN1. The treatment with the active components reduced cognitive deficits, inhibited Aβ plaque accumulation, reversed Aβ burden and reduced the brain iron load in AD model mice. A significant increase was observed in the levels of DMT1-iron-responsive element (IRE) and DMT1-nonIRE in the hippocampus of the AD mouse brain, which was reduced by treatment with the active components. In addition, the levels of FPN1 were significantly reduced in the hippocampus of the AD mouse brain compared with those of control mice, and these levels were increased following treatment with the active components. Thus, the present study indicated that the active components of Epimedium, Astragalus and Radix Puerariae may exert a neuroprotective effect against AD by reducing iron overload in the AD brain and may provide a novel approach for the development of drugs for the treatment of AD.

  15. Immunotherapeutic Approaches to Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Monsonego, Alon; Weiner, Howard L.

    2003-10-01

    Although neurodegenerative diseases such as Alzheimer's disease are not classically considered mediated by inflammation or the immune system, in some instances the immune system may play an important role in the degenerative process. Furthermore, it has become clear that the immune system itself may have beneficial effects in nervous system diseases considered neurodegenerative. Immunotherapeutic approaches designed to induce a humoral immune response have recently been developed for the treatment of Alzheimer's disease. These studies have led to human trials that resulted in both beneficial and adverse effects. In animal models, it has also been shown that immunotherapy designed to induce a cellular immune response may be of benefit in central nervous system injury, although T cells may have either a beneficial or detrimental effect depending on the type of T cell response induced. These areas provide a new avenue for exploring immune system-based therapy of neurodegenerative diseases and will be discussed here with a primary focus on Alzheimer's disease. We will also discuss how these approaches affect microglia activation, which plays a key role in therapy of such diseases.

  16. Evaluation of oxidative stress in the brain of a transgenic mouse model of Alzheimer disease by in vivo electron paramagnetic resonance imaging.

    PubMed

    Matsumura, Akihiro; Emoto, Miho C; Suzuki, Syuuichirou; Iwahara, Naotoshi; Hisahara, Shin; Kawamata, Jun; Suzuki, Hiromi; Yamauchi, Ayano; Sato-Akaba, Hideo; Fujii, Hirotada G; Shimohama, Shun

    2015-08-01

    Alzheimer disease (AD) is a neurodegenerative disease clinically characterized by progressive cognitive dysfunction. Deposition of amyloid-β (Aβ) peptides is the most important pathophysiological hallmark of AD. Oxidative stress induced by reactive oxygen species is prominent in AD, and several reports suggest the relationship between a change in redox status and AD pathology containing progressive Aβ deposition, the activation of glial cells, and mitochondrial dysfunction. Therefore, we performed immunohistochemical analysis using a transgenic mouse model of AD (APdE9) and evaluated the activity of superoxide dismutase in brain tissue homogenates of APdE9 mice in vitro. Together with those analyses, in vivo changes in redox status with age in both wild-type (WT) and APdE9 mouse brains were measured noninvasively by three-dimensional electron paramagnetic resonance (EPR) imaging using nitroxide (3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy) as a redox-sensitive probe. Both methods found similar changes in redox status with age, and in particular a significant change in redox status in the hippocampus was observed noninvasively by EPR imaging between APdE9 mice and age-matched WT mice from 9 to 18 months of age. EPR imaging clearly visualized the accelerated change in redox status of APdE9 mouse brain compared with WT. The evaluation of the redox status in the brain of AD model rodents by EPR imaging should be useful for diagnostic study of AD.

  17. Animal models of Alzheimer disease.

    PubMed

    LaFerla, Frank M; Green, Kim N

    2012-11-01

    Significant insights into the function of genes associated with Alzheimer disease and related dementias have occurred through studying genetically modified animals. Although none of the existing models fully reproduces the complete spectrum of this insidious human disease, critical aspects of Alzheimer pathology and disease processes can be experimentally recapitulated. Genetically modified animal models have helped advance our understanding of the underlying mechanisms of disease and have proven to be invaluable in the preclinical evaluation of potential therapeutic interventions. Continuing refinement and evolution to yield the next generation of animal models will facilitate successes in producing greater translational concordance between preclinical studies and human clinical trials and eventually lead to the introduction of novel therapies into clinical practice.

  18. Behavioral stress causes mitochondrial dysfunction via ABAD up-regulation and aggravates plaque pathology in the brain of a mouse model of Alzheimer disease.

    PubMed

    Seo, Ji-Seon; Lee, Kang-Woo; Kim, Tae-Kyung; Baek, In-Sun; Im, Joo-Young; Han, Pyung-Lim

    2011-06-01

    Basic and clinical studies have reported that behavioral stress worsens the pathology of Alzheimer disease (AD), but the underlying mechanism has not been clearly understood. In this study, we determined the mechanism by which behavioral stress affects the pathogenesis of AD using Tg-APPswe/PS1dE9 mice, a murine model of AD. Tg-APPswe/PS1dE9 mice that were restrained for 2h daily for 16 consecutive days (2-h/16-day stress) from 6.5months of age had significantly increased Aβ(1-42) levels and plaque deposition in the brain. The 2-h/16-day stress increased oxidative stress and induced mitochondrial dysfunction in the brain. Treatment with glucocorticoid (corticosterone) and Aβ in SH-SY5Y cells increased the expression of 17β-hydroxysteroid dehydrogenase (ABAD), mitochondrial dysfunction, and levels of ROS, whereas blockade of ABAD expression by siRNA-ABAD in SH-SY5Y cells suppressed glucocorticoid-enhanced mitochondrial dysfunction and ROS accumulation. The 2-h/16-day stress up-regulated ABAD expression in mitochondria in the brain of Tg-APPswe/PS1dE9 mice. Moreover, all visible Aβ plaques were costained with anti-ABAD in the brains of Tg-APPswe/PS1dE9 mice. Together, these results suggest that behavioral stress aggravates plaque pathology and mitochondrial dysfunction via up-regulation of ABAD in the brain of a mouse model of AD.

  19. Visual system manifestations of Alzheimer's disease.

    PubMed

    Kusne, Yael; Wolf, Andrew B; Townley, Kate; Conway, Mandi; Peyman, Gholam A

    2016-11-19

    Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD.

  20. Angiotensin II, hypertension, and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease.

    PubMed

    Wiesmann, Maximilian; Roelofs, Monica; van der Lugt, Robert; Heerschap, Arend; Kiliaan, Amanda J; Claassen, Jurgen Ahr

    2016-01-01

    Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.

  1. No association between the brain-derived neurotrophic factor 196 G>A or 270 C>T polymorphisms and Alzheimer's or Parkinson's disease.

    PubMed

    Saarela, Marika S; Lehtimaki, Terho; Rinne, Juha O; Huhtala, Heini; Rontu, Riika; Hervonen, Antti; Roytta, Matias; Ahonen, Jukka-Pekka; Mattila, Kari M

    2006-01-01

    The brain-derived neurotrophic factor (BDNF) promotes survival, differentiation and maintenance of neurons in the central nervous system. BDNF 196 G>A and 270 C>T polymorphisms have previously been associated with Alzheimer's disease (AD) and with Parkinson's disease (PD). To study the role of BDNF 196 G>A and 270 C>T polymorphisms in Finnish AD and PD patients we genotyped BDNF 196 G>A and 270 C>T polymorphisms in 97 sporadic AD patients, 52 PD patients and 101 control subjects with polymerase chain reaction. No associations were found between the genotypes studied and AD or PD in Finnish patients. Moreover, no interaction between either BDNF polymorphism and the epsilon 4 allele of apolipoprotein E was found. In conclusion, it seems that the BDNF gene does not contribute significantly to the risk of AD or PD in Finnish patients.

  2. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  3. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease.

    PubMed

    Kamphuis, Willem; Mamber, Carlyn; Moeton, Martina; Kooijman, Lieneke; Sluijs, Jacqueline A; Jansen, Anne H P; Verveer, Monique; de Groot, Lody R; Smith, Vanessa D; Rangarajan, Sindhoo; Rodríguez, José J; Orre, Marie; Hol, Elly M

    2012-01-01

    Glial fibrillary acidic protein (GFAP) is the main astrocytic intermediate filament (IF). GFAP splice isoforms show differential expression patterns in the human brain. GFAPδ is preferentially expressed by neurogenic astrocytes in the subventricular zone (SVZ), whereas GFAP(+1) is found in a subset of astrocytes throughout the brain. In addition, the expression of these isoforms in human brain material of epilepsy, Alzheimer and glioma patients has been reported. Here, for the first time, we present a comprehensive study of GFAP isoform expression in both wild-type and Alzheimer Disease (AD) mouse models. In cortex, cerebellum, and striatum of wild-type mice, transcripts for Gfap-α, Gfap-β, Gfap-γ, Gfap-δ, Gfap-κ, and a newly identified isoform Gfap-ζ, were detected. Their relative expression levels were similar in all regions studied. GFAPα showed a widespread expression whilst GFAPδ distribution was prominent in the SVZ, rostral migratory stream (RMS), neurogenic astrocytes of the subgranular zone (SGZ), and subpial astrocytes. In contrast to the human SVZ, we could not establish an unambiguous GFAPδ localization in proliferating cells of the mouse SVZ. In APPswePS1dE9 and 3xTgAD mice, plaque-associated reactive astrocytes had increased transcript levels of all detectable GFAP isoforms and low levels of a new GFAP isoform, Gfap-ΔEx7. Reactive astrocytes in AD mice showed enhanced GFAPα and GFAPδ immunolabeling, less frequently increased vimentin and nestin, but no GFAPκ or GFAP(+1) staining. In conclusion, GFAPδ protein is present in SVZ, RMS, and neurogenic astrocytes of the SGZ, but also outside neurogenic niches. Furthermore, differential GFAP isoform expression is not linked with aging or reactive gliosis. This evidence points to the conclusion that differential regulation of GFAP isoforms is not involved in the reorganization of the IF network in reactive gliosis or in neurogenesis in the mouse brain.

  4. Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology

    PubMed Central

    Desai, Maya K.; Sudol, Kelly L.; Janelsins, Michelle C.; Mastrangelo, Michael A.; Frazer, Maria E.; Bowers, William J.

    2008-01-01

    Alzheimer's disease (AD) is a progressively debilitating brain disorder pathologically defined by extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and synaptic disintegrity. AD has not been widely considered a disease of white matter, but more recent evidence suggests the existence of abnormalities in myelination patterns and myelin attrition in AD-afflicted human brains. Herein, we demonstrate that triple-transgenic AD (3xTg-AD) mice, which harbor the human amyloid precursor protein Swedish mutant transgene, presenilin knock-in mutation, and tau P301L mutant transgene, exhibit significant region-specific alterations in myelination patterns and in oligodendrocyte marker expression profiles at time points preceding the appearance of amyloid and tau pathology. These immunohistochemical signatures are coincident with age-related alterations in axonal and myelin sheath ultrastructure as visualized by comparative electron microscopic examination of 3xTg-AD and non-transgenic mouse brain tissue. Overall, these findings indicate 3xTg-AD mice represent a viable model in which to examine mechanisms underlying AD-related myelination and neural transmission defects that occur early during pre-symptomatic stages of the disease process. PMID:18661556

  5. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    SciTech Connect

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.; Ehmann, W.D.

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levels to those in the pituitary gland of AD and control subjects.

  6. Genetic insights in Alzheimer's disease.

    PubMed

    Bettens, Karolien; Sleegers, Kristel; Van Broeckhoven, Christine

    2013-01-01

    In the search for new genes in Alzheimer's disease, classic linkage-based and candidate-gene-based association studies have been supplanted by exome sequencing, genome-wide sequencing (for mendelian forms of Alzheimer's disease), and genome-wide association studies (for non-mendelian forms). The identification of new susceptibility genes has opened new avenues for exploration of the underlying disease mechanisms. In addition to detecting novel risk factors in large samples, next-generation sequencing approaches can deliver novel insights with even small numbers of patients. The shift in focus towards translational studies and sequencing of individual patients places each patient's biomaterials as the central unit of genetic studies. The notional shift needed to make the patient central to genetic studies will necessitate strong collaboration and input from clinical neurologists.

  7. Hippocampal atrophy rates in Alzheimer disease

    PubMed Central

    Henneman, W J.P.; Sluimer, J D.; Barnes, J; van der Flier, W M.; Sluimer, I C.; Fox, N C.; Scheltens, P; Vrenken, H; Barkhof, F

    2009-01-01

    Objective: To investigate the added value of hippocampal atrophy rates over whole brain volume measurements on MRI in patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI), and controls. Methods: We included 64 patients with AD (67 ± 9 years; F/M 38/26), 44 patients with MCI (71 ± 6 years; 21/23), and 34 controls (67 ± 9 years; 16/18). Two MR scans were performed (scan interval: 1.8 ± 0.7 years; 1.0 T), using a coronal three-dimensional T1-weighted gradient echo sequence. At follow-up, 3 controls and 23 patients with MCI had progressed to AD. Hippocampi were manually delineated at baseline. Hippocampal atrophy rates were calculated using regional, nonlinear fluid registration. Whole brain baseline volumes and atrophy rates were determined using automated segmentation and registration tools. Results: All MRI measures differed between groups (p < 0.005). For the distinction of MCI from controls, larger effect sizes of hippocampal measures were found compared to whole brain measures. Between MCI and AD, only whole brain atrophy rate differed significantly. Cox proportional hazards models (variables dichotomized by median) showed that within all patients without dementia, hippocampal baseline volume (hazard ratio [HR]: 5.7 [95% confidence interval: 1.5–22.2]), hippocampal atrophy rate (5.2 [1.9–14.3]), and whole brain atrophy rate (2.8 [1.1–7.2]) independently predicted progression to AD; the combination of low hippocampal volume and high atrophy rate yielded a HR of 61.1 (6.1–606.8). Within patients with MCI, only hippocampal baseline volume and atrophy rate predicted progression. Conclusion: Hippocampal measures, especially hippocampal atrophy rate, best discriminate mild cognitive impairment (MCI) from controls. Whole brain atrophy rate discriminates Alzheimer disease (AD) from MCI. Regional measures of hippocampal atrophy are the strongest predictors of progression to AD. GLOSSARY AD = Alzheimer disease; BET = brain

  8. Is brain copper deficiency in Alzheimer's, Lewy body, and Creutzfeldt Jakob diseases the common key for a free radical mechanism and oxidative stress-induced damage?

    PubMed

    Deloncle, Roger; Guillard, Olivier

    2015-01-01

    In Alzheimer's (AD), Lewy body (LBD), and Creutzfeldt Jakob (CJD) diseases, similar pathological hallmarks have been described, one of which is brain deposition of abnormal protease-resistant proteins. For these pathologies, copper bound to proteins is able to protect against free radicals by reduction from cupric Cu++ to cupreous Cu+. We have previously demonstrated in bovine brain homogenate that free radicals produce proteinase K-resistant prion after manganese is substituted for copper. Since low brain copper levels have been described in transmissible spongiform encephalopathies, in substantia nigra in Parkinson's disease, and in various brain regions in AD, LBD, and CJD, a mechanism has been proposed that may underlie the neurodegenerative processes that occur when copper protection against free radicals is impaired. In peptide sequences, the alpha acid proton near the peptide bond is highly mobile and can be pulled out by free radicals. It will produce a trivalent α-carbon radical and induce a free radical chain process that will generate a D-amino acid configuration in the peptide sequence. Since only L-amino acids are physiologically present in mammalian (human) proteins, it may be supposed that only physiological L-peptides can be recycled by physiological enzymes such as proteases. If a D-amino acid is found in the peptide sequence subsequent to deficient copper protection against free radicals, it will not be recognized and might alter the proteasome L-amino acid recycling from brain peptides. In the brain, there will result an accumulation of abnormal protease-resistant proteins such as those observed in AD, LBD, and CJD.

  9. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis.

    PubMed

    Ferretti, M T; Merlini, M; Späni, C; Gericke, C; Schweizer, N; Enzmann, G; Engelhardt, B; Kulic, L; Suter, T; Nitsch, R M

    2016-05-01

    Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease.

  10. Diminished glucose transport and phosphorylation in Alzheimer`s disease determined by dynamic FDG-PET

    SciTech Connect

    Piert, M.; Koeppe, R.A.; Giordani, B.; Berent, S.; Kuhl, D.E.

    1996-02-01

    Using dynamic [{sup 18}F] fluorodeoxyglucose (FDG) and PET, kinetic rate constants that describe influx (K{sub 1}) and efflux (k{sub 2}) of FDG as well s phosphorylation (k{sub 3}) and dephosphorylation (k{sub 4}) were determined in patients with probable Alzheimer`s disease and similarly aged normal controls. The regional cerebral metabolic rate for glucose (CMR{sub glu}) was calculated from individually fitted rate constants in frontal, temporal, parietal and occipital cerebral cortex, caudate nucleus, putamen, thalamus and cerebellar cortex. Dynamic PET scans were obtained in normal controls (n = 10, mean age = 67) and Alzheimer`s disease patients (n = 8, mean age = 67) for 60 min following injection of 10 mCi of FDG. The Alzheimer`s disease group was characterized by decreases of the CMR{sub glu} ranging from 13.3% in the frontal to 40.9% in the parietal cortex, which achieved significance in all regions except the thalamus. K{sub 1} was significantly reduced in the parietal (p < 0.01) and temporal cortices (p < 0.005), temporal and occipital cortex, and in the putamen and cerebellum (p < 0.05). The rate constants k{sub 2} and k{sub 4} were unchanged in the Alzheimer`s disease group. These data suggest that hypometabolism in Alzheimer`s disease is related to reduced glucose phosphorylation activity as well as diminished glucose transport, particularly in the most metabolically affected areas of the brain, the parietal and temporal cortex. 60 refs., 2 figs., 2 tabs.

  11. CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer's disease

    PubMed Central

    Remnestål, Julia; Just, David; Mitsios, Nicholas; Fredolini, Claudia; Mulder, Jan; Schwenk, Jochen M; Uhlén, Mathias; Kultima, Kim; Ingelsson, Martin; Kilander, Lena; Lannfelt, Lars; Svenningsson, Per; Nellgård, Bengt; Zetterberg, Henrik; Blennow, Kaj; Häggmark‐Månberg, Anna

    2016-01-01

    1 Purpose This study is part of a larger effort aiming to expand the knowledge of brain‐enriched proteins in human cerebrospinal fluid (CSF) and to provide novel insight into the relation between such proteins and different neurodegenerative diseases. 2 Experimental design Here 280 brain‐enriched proteins in CSF from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are profiled. In total, 441 human samples of ventricular CSF collected post mortem and lumbar CSF collected ante mortem are analyzed using 376 antibodies in a suspension bead array setup, utilizing a direct labelling approach. 3 Results Among several proteins displaying differentiated profiles between sample groups, we focus here on two synaptic proteins, neuromodulin (GAP43) and neurogranin (NRGN). They are both found at elevated levels in CSF from AD patients in two independent cohorts, providing disease‐associated profiles in addition to verifying and strengthening previously observed patterns. Increased levels are also observed for patients for whom the AD diagnosis was not established at the time of sampling. 4 Conclusions and clinical relevance These findings indicate that analyzing the brain‐enriched proteins in CSF is of particular interest to increase the understanding of the CSF proteome and its relation to neurodegenerative disorders. In addition, this study lends support to the notion that measurements of these synaptic proteins could potentially be of great relevance in future diagnostic tests for AD. PMID:27604409

  12. Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    PubMed Central

    Blom, Elin S.; Wang, Yijing; Skoglund, Lena; Hansson, Anita C.; Ubaldi, Massimo; Lourdusamy, Anbarasu; Sommer, Wolfgang H.; Mielke, Matthew; Hyman, Bradley T.; Heilig, Markus; Lannfelt, Lars; Nilsson, Lars N. G.; Ingelsson, Martin

    2011-01-01

    Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis. PMID:21234373

  13. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer's disease: pharmaceutical, biological, and toxicological studies.

    PubMed

    Elnaggar, Yosra S R; Etman, Samar M; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    2015-01-01

    Alzheimer's disease (AD) is one of the most patient devastating central nervous system diseases with no curative therapy. An effective oral therapy with brain-targeting potential is required that is hampered by blood-brain barrier. Piperine (PIP) is a natural alkaloid with memory enhancing potentials. Oral PIP delivery suffers from its hydrophobicity and first-pass metabolism. In this study, novel Tween-modified monoolein cubosomes (T-cubs) were elaborated as bioactive nanocarriers for brain-targeted oral delivery of PIP. Seven liquid crystalline nanoparticles (cubosomes) were prepared testing different bioactive surfactants (Tween 80, poloxamer, and Cremophor). Full in vitro characterization was carried out based on particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro release. Morphological examination and structure elucidation were performed using transmission and polarizing microscopes. Sporadic dementia of Alzheimer's type was induced in 42 male Wistar rats on which full behavioral and biochemical testing was conducted. Brain toxicity was assessed based on Caspase-3 assay for apoptosis and tumor necrosis factor-α for inflammation. Liver and kidney toxicity studies were conducted as well. Among others, T-cubs exhibited optimum particle size (167.00±10.49 nm), polydispersity index (0.18±0.01), and zeta potential (-34.60±0.47 mv) with high entrapment efficiency (86.67%±0.62%). Cubs could significantly sustain PIP in vitro release. In vivo studies revealed T-cubs potential to significantly enhance PIP cognitive effect and even restore cognitive function to the normal level. Superiority of T-cubs over others suggested brain-targeting effect of Tween. Toxicological studies contended safety of cubs on kidney, liver, and even brain. T-cubs exhibited potential anti-inflammatory and anti-apoptotic activity of loaded PIP, indicating potential to stop AD progression that was first suggested in this article. Novel oral nanoparticles

  14. The superficial white matter in Alzheimer's disease.

    PubMed

    Phillips, Owen R; Joshi, Shantanu H; Piras, Fabrizio; Orfei, Maria Donata; Iorio, Mariangela; Narr, Katherine L; Shattuck, David W; Caltagirone, Carlo; Spalletta, Gianfranco; Di Paola, Margherita

    2016-04-01

    White matter abnormalities have been shown in the large deep fibers of Alzheimer's disease patients. However, the late myelinating superficial white matter comprised of intracortical myelin and short-range association fibers has not received much attention. To investigate this area, we extracted a surface corresponding to the superficial white matter beneath the cortex and then applied a cortical pattern-matching approach which allowed us to register and subsequently sample diffusivity along thousands of points at the interface between the gray matter and white matter in 44 patients with Alzheimer's disease (Age: 71.02 ± 5.84, 16M/28F) and 47 healthy controls (Age 69.23 ± 4.45, 19M/28F). In patients we found an overall increase in the axial and radial diffusivity across most of the superficial white matter (P < 0.001) with increases in diffusivity of more than 20% in the bilateral parahippocampal regions and the temporal and frontal lobes. Furthermore, diffusivity correlated with the cognitive deficits measured by the Mini-Mental State Examination scores (P < 0.001). The superficial white matter has a unique microstructure and is critical for the integration of multimodal information during brain maturation and aging. Here we show that there are major abnormalities in patients and the deterioration of these fibers relates to clinical symptoms in Alzheimer's disease.

  15. Alternative Medicine and Alzheimer's Disease

    PubMed Central

    Kelley, Brendan J.; Knopman, David S.

    2009-01-01

    Background Alternative medicine has an extensive worldwide history and is commonly used by older patients. A number of different alternative medicines are used by patients having Alzheimer's disease. It is both desirable and expected for clinicians to be acquainted with these medications. Review Summary This paper discusses the available clinical trial evidence regarding eight agents commonly used by people having Alzheimer's disease. We provide an overview of the history and basic scientific evidence available for each agent, followed by a critical analysis of the evidence available from clinical trials, including the number of participants, trial duration and specific outcomes evaluated. Conclusion While many of these compounds have been associated with interesting basic science, none has shown clear clinical benefit to date. Data available for some, such as ginkgo biloba, curcumin and huperzine A, suggest that further evaluation is warranted. Familiarity with this literature will allow clinicians to provide meaningful recommendations to patients who wish to use these agents. PMID:18784599

  16. Alzheimer's as a metabolic disease.

    PubMed

    Demetrius, Lloyd A; Driver, Jane

    2013-12-01

    Empirical evidence indicates that impaired mitochondrial energy metabolism is the defining characteristic of almost all cases of Alzheimer's disease (AD). Evidence is reviewed supporting the general hypothesis that the up-regulation of OxPhos activity, a metabolic response to mitochondrial dysregulation, drives the cascade of events leading to AD. This mode of metabolic alteration, called the Inverse Warburg effect, is postulated as an essential compensatory mechanism of energy production to maintain the viability of impaired neuronal cells. This article appeals to the inverse comorbidity of cancer and AD to show that the amyloid hypothesis, a genetic and neuron-centric model of the origin of sporadic forms of AD, is not consistent with epidemiological data concerning the age-incidence rates of AD. A view of Alzheimer's as a metabolic disease-a condition consistent with mitochondrial dysregulation and the Inverse Warburg effect, will entail a radically new approach to diagnostic and therapeutic strategies.

  17. Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer's disease.

    PubMed

    Boots, Elizabeth A; Schultz, Stephanie A; Oh, Jennifer M; Larson, Jordan; Edwards, Dorothy; Cook, Dane; Koscik, Rebecca L; Dowling, Maritza N; Gallagher, Catherine L; Carlsson, Cynthia M; Rowley, Howard A; Bendlin, Barbara B; LaRue, Asenath; Asthana, Sanjay; Hermann, Bruce P; Sager, Mark A; Johnson, Sterling C; Okonkwo, Ozioma C

    2015-09-01

    Cardiorespiratory fitness (CRF) is an objective measure of habitual physical activity (PA), and has been linked to increased brain structure and cognition. The gold standard method for measuring CRF is graded exercise testing (GXT), but GXT is not feasible in many settings. The objective of this study was to examine whether a non-exercise estimate of CRF is related to gray matter (GM) volumes, white matter hyperintensities (WMH), cognition, objective and subjective memory function, and mood in a middle-aged cohort at risk for Alzheimer's disease (AD). Three hundred and fifteen cognitively healthy adults (mean age =58.58 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention underwent structural MRI scanning, cognitive testing, anthropometric assessment, venipuncture for laboratory tests, and completed a self-reported PA questionnaire. A subset (n = 85) underwent maximal GXT. CRF was estimated using a previously validated equation incorporating sex, age, body-mass index, resting heart rate, and self-reported PA. Results indicated that the CRF estimate was significantly associated with GXT-derived peak oxygen consumption, validating its use as a non-exercise CRF measure in our sample. Support for this finding was seen in significant associations between the CRF estimate and several cardiovascular risk factors. Higher CRF was associated with greater GM volumes in several AD-relevant brain regions including the hippocampus, amygdala, precuneus, supramarginal gyrus, and rostral middle frontal gyrus. Increased CRF was also associated with lower WMH and better cognitive performance in Verbal Learning & Memory, Speed & Flexibility, and Visuospatial Ability. Lastly, CRF was negatively correlated with self- and informant-reported memory complaints, and depressive symptoms. Together, these findings suggest that habitual participation in physical activity may provide protection for brain structure and cognitive function, thereby decreasing future risk for AD.

  18. Alzheimer's disease: risk and protection.

    PubMed

    Jorm, A F

    1997-10-20

    Only four risk factors for Alzheimer's disease can be regarded as confirmed--old age, family history of dementia, apo-E genotype and Down syndrome. Other disputed risk factors with some supporting evidence include ethnic group, head trauma and aluminium in drinking water. Possible protection factors, such as anti-inflammatory drugs, oestrogen replacement therapy and a high education level, are of great interest because they suggest possible preventive action.

  19. Association studies in late onset sporadic Alzheimer`s disease

    SciTech Connect

    Goate, A.M.; Lendon, C.; Talbot, C.

    1994-09-01

    Alzheimer`s disease (AD) is characterized by an adult onset progressive dementia and the presence of numerous plaques and tangles within the brain at autopsy. The senile plaques are composed of a proteinaceous core surrounded by dystrophic neurites. The major protein component of the core is {beta}-amyloid but antibodies to many other proteins bind to senile plaques, e.g., antibodies to apolioprotein E (ApoE) and to {alpha}1-antichymotrypsin (AACT). Genetic studies have implicated mutations within the {beta}-amyloid precursor protein gene as the cause of AD in a small number of early onset AD families. More recently, assocition studies in late onset AD have demonstrated a positive association between ApoE-{epsilon}4 and AD. We report evidence for a negative association between ApoE-{epsilon}2 and AD in a large sample of sporadic late onset AD cases and matched controls supporting the role of ApoE in the etiology of AD. Ninety-three patients with sporadic AD (average age = 75 years, s.d. 8 yrs.) and 67 normal controls from the same ethnic background (age = 77 yrs., s.d. 10 yrs.) were recruited through the patient registry of the Washington University Alzheimer`s Disease Research Center. We found a statistically significant increase in ApoE-{epsilon}4 allele frequency in patients compared with controls ({chi}{sup 2}=7.75, 1 d.f., one tailed p=0.0027) and a significant decrease in {epsilon}2 allele frequency (Fisher`s exact test, one tailed p=0.0048), whereas the decreased frequency of {epsilon}3 in the patient groups was not statistically significant. Allele {epsilon}2 conferred a strong protective effect in our sample, with the odds ratio for AD for subjects possessing this allele being 0.08 (85% confidence interval 0.01-0.69). Similar studies using a polymorphism within the AACT gene showed no association with alleles at this locus in the entire AD sample or in AD cases homozygous for ApoE-{epsilon}3.

  20. Cellular basis of Alzheimer's disease.

    PubMed

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  1. Detection of Amyloid β Signature in the Lens and Its Correlation in the Brain to Aid in the Diagnosis of Alzheimer's Disease.

    PubMed

    Kerbage, Charles; Sadowsky, Carl H; Tariot, Pierre N; Agronin, Marc; Alva, Gustavo; Turner, F Darell; Nilan, Dennis; Cameron, Anne; Cagle, Gerald D; Hartung, Paul D

    2015-12-01

    We report the findings from a clinical trial in which a group of patients clinically diagnosed with probable Alzheimer's disease (AD) were discriminated from an age-matched group of healthy volunteers (HVs) with statistical significance (P<.001). The results from 20 patients with AD and 20 HVs were obtained by a Fluorescent Ligand Eye Scanning (FLES) technique that measures a fluorescent signature specific to an exogenous ligand bound to amyloid-β in the lens of the eye. Sensitivity and specificity of 85% and 95%, respectively, have been achieved in predicting clinical diagnosis. Additionally, amyloid brain imaging using florbetapir F18 positron emission tomography shows significant correlation with the results obtained in the eye. Results of the study demonstrate the safety of the FLES system.

  2. Treatment of Alzheimer Disease With CT Scans

    PubMed Central

    Moore, Eugene R.; Hosfeld, Victor D.; Nadolski, David L.

    2016-01-01

    Alzheimer disease (AD) primarily affects older adults. This neurodegenerative disorder is the most common cause of dementia and is a leading source of their morbidity and mortality. Patient care costs in the United States are about 200 billion dollars and will more than double by 2040. This case report describes the remarkable improvement in a patient with advanced AD in hospice who received 5 computed tomography scans of the brain, about 40 mGy each, over a period of 3 months. The mechanism appears to be radiation-induced upregulation of the patient’s adaptive protection systems against AD, which partially restored cognition, memory, speech, movement, and appetite. PMID:27103883

  3. Rodent models of neuroinflammation for Alzheimer's disease.

    PubMed

    Nazem, Amir; Sankowski, Roman; Bacher, Michael; Al-Abed, Yousef

    2015-04-17

    Alzheimer's disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer's disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer's disease. The etiology of late-onset Alzheimer's disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer's disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer's disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer's disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer's disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer's disease.

  4. Incidental findings on brain MRI of cognitively normal first-degree descendants of patients with Alzheimer's disease: a cross-sectional analysis from the ALFA (Alzheimer and Families) project

    PubMed Central

    Brugulat-Serrat, Anna; Rojas, Santiago; Bargalló, Nuria; Conesa, Gerardo; Minguillón, Carolina; Fauria, Karine; Gramunt, Nina; Molinuevo, José Luis; Gispert, Juan Domingo

    2017-01-01

    Objectives To describe the prevalence of brain MRI incidental findings (IF) in a cohort of cognitively normal first-degree descendants of patients with Alzheimer's disease (AD). Design Cross-sectional observational study. Setting All scans were obtained with a 3.0 T scanner. Scans were evaluated by a single neuroradiologist and IF recorded and categorised. The presence of white matter hyperintensities (WMH) was determined with the Fazekas scale and reported as relevant if ≥2. Participants 575 participants (45–75 years) underwent high-resolution structural brain MRI. Participants were cognitively normal and scored over the respective cut-off values in all the following neuropsychological tests: Mini-Mental State Examination (≥26), Memory Impairment Screen (≥6), Time Orientation Subtest of the Barcelona Test II (≥68), verbal semantic fluency (naming animals ≥12). Clinical Dementia Rating (CDR) had to be 0. Results 155 participants (27.0%) presented with at least one IF. Relevant WMH were present in 7.8% of the participants, and vascular abnormalities, cyst and brain volume loss in 10.7%, 3.1% and 6.9% of the study volunteers, respectively. Neoplastic brain findings were found in 2.4% of participants and within these, meningiomas were the most common (1.7%) and more frequently found in women. A positive correlation between increasing age and the presence of IF was found. Additionally, brain atrophy greater than that expected by age was significantly more prevalent in participants without a parental history of AD. Conclusions Brain MRIs of healthy middle-aged participants show a relatively high prevalence of IF even when study participants have been screened for subtle cognitive alterations. Most of our participants are first-degree descendants of patients with AD, and therefore these results are of special relevance for novel imaging studies in the context of AD prevention in cognitively healthy middle-aged participants. Trial registration number NCT

  5. The Role of Mast Cells in Alzheimer's Disease.

    PubMed

    Shaik-Dasthagirisaheb, Yasdani B; Conti, Pio

    2016-01-01

    Immunity and inflammation are deeply involved in Alzheimer's disease. The most important properties of pathological Alzheimer's disease are the extracellular deposits of amyloid â-protein plaque aggregates along with other unknown mutated proteins, which are implicated in immunity and inflammation. Mast cells are found in the brain of all mammalian species and in the periphery, and their biological mediators, including cytokines/chemokines, arachidonic acid products and stored enzymes, play an import role in Alzheimer's disease. Cytokines/chemokines, which are generated mostly by microglia and astrocytes in Alzheimer's disease, contribute to nearly every aspect of neuroinflammation and amyloid â-protein plaque aggregates may induce in mast cells the release of a plethora of mediators, including pro-inflammatory cytokines/chemokines such as interleukin-1, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-alpha, vascular endothelial growth factor, transforming growth factor beta, CXCL8 and CCL2-3-4. These proinflammatory cytokines/chemokines are prominent mediators of neuroinflammation in brain disorders such as Alzheimer's disease, and their inhibition may be associated with improved recovery. In this review, we summarize the current knowledge regarding the roles of mast cell mediators (stored and de novo synthesis) in the pathogenesis of Alzheimer's disease.

  6. Progress Report on Alzheimer Disease: Volume III.

    ERIC Educational Resources Information Center

    National Inst. on Aging (DHHS/PHS), Bethesda, MD.

    This report summarizes advances in the understanding of Alzheimer's disease, the major cause of mental disability among older Americans. The demography of the disease is discussed, noting that approximately 2.5 million American adults are afflicted with the disease and that the large increase in the number of Alzheimer's disease patients is due to…

  7. Alzheimer's disease and chronic periodontitis: is there an association?

    PubMed

    Gaur, Sumit; Agnihotri, Rupali

    2015-04-01

    Alzheimer's disease, an affliction of old age, is one of the leading causes for dementia worldwide. Various risk factors including family history, genetics and infections have been implicated in its pathogenesis. The cognitive decline in this condition is mainly a result of the formation of amyloid deposits that provoke neuroinflammation, ultimately resulting in cell death. Recently, an association between peripheral inflammation and Alzheimer's disease was hypothesized. It was suggested that chronic systemic inflammation worsened the inflammatory processes in the brain. This was mainly attributed to increased levels of pro-inflammatory mediators, such as interleukin-1, interleukin -6 and tumor necrosis factor-α in the plasma. As chronic periodontitis is a widespread peripheral immunoinflammatory condition, it has been proposed to play a significant role in the aggravation of Alzheimer's disease. With this background, the current review focuses on the relationship between Alzheimer's disease and chronic periodontitis, and its therapeutic implications.

  8. Alzheimer's Disease Facts and Figures

    MedlinePlus

    ... a rate twice as high. Invest in a world without Alzheimer's. Donate Caregivers In 2016, 15.9 ... Association ® . All rights reserved. Our vision is a world without Alzheimer's Formed in 1980, the Alzheimer's Association ...

  9. Potential of the Antibody Against cis-Phosphorylated Tau in the Early Diagnosis, Treatment, and Prevention of Alzheimer Disease and Brain Injury.

    PubMed

    Lu, Kun Ping; Kondo, Asami; Albayram, Onder; Herbert, Megan K; Liu, Hekun; Zhou, Xiao Zhen

    2016-11-01

    Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) share a common neuropathologic signature-neurofibrillary tangles made of phosphor