Science.gov

Sample records for alzheimer-like amyloid pathology

  1. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution.

    PubMed

    Calderón-Garcidueñas, Lilian; Reed, William; Maronpot, Robert R; Henríquez-Roldán, Carlos; Delgado-Chavez, Ricardo; Calderón-Garcidueñas, Ana; Dragustinovis, Irma; Franco-Lira, Maricela; Aragón-Flores, Mariana; Solt, Anna C; Altenburg, Michael; Torres-Jardón, Ricardo; Swenberg, James A

    2004-01-01

    Air pollution is a complex mixture of gases (e.g., ozone), particulate matter, and organic compounds present in outdoor and indoor air. Dogs exposed to severe air pollution exhibit chronic inflammation and acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by pollutants. We investigated whether residency in cities with high levels of air pollution is associated with human brain inflammation. Expression of cyclooxygenase-2 (COX2), an inflammatory mediator, and accumulation of the 42-amino acid form of beta-amyloid (Abeta42), a cause of neuronal dysfunction, were measured in autopsy brain tissues of cognitively and neurologically intact lifelong residents of cities having low (n:9) or high (n:10) levels of air pollution. Genomic DNA apurinic/apyrimidinic sites, nuclear factor-kappaB activation and apolipoprotein E genotype were also evaluated. Residents of cities with severe air pollution had significantly higher COX2 expression in frontal cortex and hippocampus and greater neuronal and astrocytic accumulation of Abeta42 compared to residents in low air pollution cities. Increased COX2 expression and Abeta42 accumulation were also observed in the olfactory bulb. These findings suggest that exposure to severe air pollution is associated with brain inflammation and Abeta42 accumulation, two causes of neuronal dysfunction that precede the appearance of neuritic plaques and neurofibrillary tangles, hallmarks of Alzheimer's disease.

  2. Cnga2 Knockout Mice Display Alzheimer's-Like Behavior Abnormities and Pathological Changes.

    PubMed

    Xie, Ao-Ji; Liu, En-Jie; Huang, He-Zhou; Hu, Yu; Li, Ke; Lu, Youming; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2016-09-01

    Olfactory dysfunction is recognized as a potential risk factor for Alzheimer's disease (AD). We have reported previously that olfactory deprivation by olfactory bulbectomy (OBX) induced Alzheimer's-like pathological changes and behavioral abnormalities. However, the acute OBX model undergoes surgical-induced brain parenchyma loss and unexpected massive hemorrhage so that it cannot fully mimic the progressive olfactory loss and neurodegeneration in AD. Here, we employed the mice loss of cyclic nucleotide-gated channel alpha 2 (Cnga2) which is critical for olfactory sensory transduction, to investigate the role of olfactory dysfunction in AD pathological process. We found that impaired learning and memory abilities, loss of dendrite spines, as well as decrement of synaptic proteins were displayed in Cnga2 knockout mice. Moreover, Aβ overproduction, tau hyperphosphorylation, and somatodendritic translocation were also found in Cnga2 knockout mice. Our findings suggest that progressive olfactory loss leads to Alzheimer's-like behavior abnormities and pathological changes.

  3. Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits.

    PubMed

    Kim, Hye Yun; Lee, Dongkeun K; Chung, Bo-Ryehn; Kim, Hyunjin V; Kim, YoungSoo

    2016-03-16

    Amyloid-β (Aβ) is a major pathological mediator of both familial and sporadic Alzheimer's disease (AD). In the brains of AD patients, progressive accumulation of Aβ oligomers and plaques is observed. Such Aβ abnormalities are believed to block long-term potentiation, impair synaptic function, and induce cognitive deficits. Clinical and experimental evidences have revealed that the acute increase of Aβ levels in the brain allows development of Alzheimer-like phenotypes. Hence, a detailed protocol describing how to acutely generate an AD mouse model via the intracerebroventricular (ICV) injection of Aβ is necessary in many cases. In this protocol, the steps of the experiment with an Aβ-injected mouse are included, from the preparation of peptides to the testing of behavioral abnormalities. The process of preparing the tools and animal subjects before the injection, of injecting the Aβ into the mouse brain via ICV injection, and of assessing the degree of cognitive impairment are easily explained throughout the protocol, with an emphasis on tips for effective ICV injection of Aβ. By mimicking certain aspects of AD with a designated injection of Aβ, researchers can bypass the aging process and focus on the downstream pathology of Aβ abnormalities.

  4. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  5. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease.

    PubMed

    Cifuentes, Diana; Poittevin, Marine; Dere, Ekrem; Broquères-You, Dong; Bonnin, Philippe; Benessiano, Joëlle; Pocard, Marc; Mariani, Jean; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I

    2015-01-01

    Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm(2); P<0.05) and a 2-fold increase in soluble amyloid levels in the brain and in plasma. Hypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice; P<0.05). Our results indicate that hypertension accelerates the development of Alzheimer disease-related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production.

  6. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology.

    PubMed

    Herring, Arne; Ambrée, Oliver; Tomm, Manuel; Habermann, Henrik; Sachser, Norbert; Paulus, Werner; Keyvani, Kathy

    2009-03-01

    Alzheimer's disease (AD) is accompanied by hippocampal neuronal loss and abnormal neurogenesis, both of which probably contributing to AD-related cognitive deficits. Mounting evidence indicates that cognitive and physical stimulation provided by environmental enrichment improves neurogenesis in healthy animals and counteracts beta-amyloid pathology in mouse models of AD. Here, we hypothesized that environmental enrichment has also an impact on hippocampal neurogenesis in mice with AD-like pathology. Therefore, TgCRND8 mice and wild type littermates were either housed under standard conditions or in an enriched environment for 4 months. Standard housed TgCRND8 mice revealed diminished hippocampal cell proliferation and reduced number of mature newborn neurons compared to wild type littermates under the same housing condition. However, environmental enrichment reversed this genotype effect. Here, we show that cognitive and physical stimulation is capable of increasing the number of newborn mature hippocampal neurons in transgenic mice to wild type levels. Moreover, the expression of various plasticity associated molecules was enhanced in transgenic mice due to enriched housing. This study identifies that environmental enrichment improves diminished cellular plasticity in AD brain, probably enhancing the brain capacity to better compensate for neurodegeneration.

  7. Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring.

    PubMed

    Herring, Arne; Donath, Anja; Yarmolenko, Maksym; Uslar, Ellen; Conzen, Catharina; Kanakis, Dimitrios; Bosma, Claudius; Worm, Karl; Paulus, Werner; Keyvani, Kathy

    2012-01-01

    Physical activity protects brain function in healthy individuals and those with Alzheimer's disease (AD). Evidence for beneficial effects of parental exercise on the health status of their progeny is sparse and limited to nondiseased individuals. Here, we questioned whether maternal running interferes with offspring's AD-like pathology and sought to decipher the underlying mechanisms in TgCRND8 mice. Maternal stimulation was provided by voluntary wheel running vs. standard housing during pregnancy. Following 5 mo of standard housing of transgenic and wild-type offspring, their brains were examined for AD-related pathology and/or plasticity changes. Running during pregnancy reduced β-amyloid (Aβ) plaque burden (-35%, P=0.017) and amyloidogenic APP processing in transgenic offspring and further improved the neurovascular function by orchestrating different Aβ transporters and increasing angiogenesis (+29%, P=0.022). This effect was accompanied by diminished inflammation, as indicated by reduced microgliosis (-20%, P=0.002) and down-regulation of other proinflammatory mediators, and resulted in less oxidative stress, as nitrotyrosine levels declined (-28%, P=0.029). Moreover, plasticity changes (in terms of up-regulation of reelin, synaptophysin, and ARC) were found not only in transgenic but also in wild-type offspring. We conclude that exercise during pregnancy provides long-lasting protection from neurodegeneration and improves brain plasticity in the otherwise unstimulated progeny.

  8. Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells.

    PubMed

    Yang, Xifei; He, Chun'e; Li, Jie; Chen, Hongbin; Ma, Quan; Sui, Xiaojing; Tian, Shengli; Ying, Ming; Zhang, Qian; Luo, Yougen; Zhuang, Zhixiong; Liu, Jianjun

    2014-08-17

    Growing concern has been raised over the potential adverse effects of engineered nanoparticles on human health due to their increasing use in commercial and medical applications. Silica nanoparticles (SiNPs) are one of the most widely used nanoparticles in industry and have been formulated for cellular and non-viral gene delivery in the central nerve system. However, the potential neurotoxicity of SiNPs remains largely unclear. In this study, we investigated the cellular uptake of SiNPs in human SK-N-SH and mouse neuro2a (N2a) neuroblastoma cells treated with 10.0 μg/ml of 15-nm SiNPs for 24 h by transmission electron microscopy. We found that SiNPs were mainly localized in the cytoplasm of the treated cells. The treatment of SiNPs at various concentrations impaired the morphology of SK-N-SH and N2a cells, characterized by increased number of round cells, diminishing of dendrite-like processes and decreased cell density. SiNPs significantly decreased the cell viability, induced cellular apoptosis, and elevated the levels of intracellular reactive oxygen species (ROS) in a dose-dependent manner in both cell lines. Additionally, increased deposit of intracellular β-amyloid 1-42 (Aβ(1-42)) and enhanced phosphorylation of tau at Ser262 and Ser396, two specific pathological hallmarks of Alzheimer's disease (AD), were observed in both cell lines with SiNPs treatment. Concomitantly, the expression of amyloid precursor protein (APP) was up-regulated, while amyloid-β-degrading enzyme neprilysin was down-regulated in SiNP-treated cells. Finally, activity-dependent phosphorylation of glycogen syntheses kinase (GSK)-3β at Ser9 (inactive form) was significantly decreased in SiNP-treated SK-N-SH cells. Taken together, these data demonstrated that exposure to SiNPs induced neurotoxicity and pathological signs of AD. The pre-Alzheimer-like pathology induced by SiNPs might result from the dys-regulated expression of APP/neprilysin and activation of GSK-3β. This is the first

  9. Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations.

    PubMed

    Safar, Marwa M; Arab, Hany H; Rizk, Sherine M; El-Maraghy, Shohda A

    2016-04-01

    Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory

  10. Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology.

    PubMed

    Sparks, D L; Friedland, R; Petanceska, S; Schreurs, B G; Shi, J; Perry, G; Smith, M A; Sharma, A; Derosa, S; Ziolkowski, C; Stankovic, G

    2006-01-01

    Mounting evidence suggests copper may influence the progression of Alzheimer's disease by reducing clearance of the amyloid beta protein (Abeta) from the brain. Previous experiments show that addition of only 0.12 PPM copper (one-tenth the Environmental Protection Agency Human consumption limits) to distilled water was sufficient to precipitate the accumulation of Abeta in the brains of cholesterol-fed rabbits (1). Here we report that addition of copper to the drinking water of spontaneously hypercholesterolemic Watanabe rabbits, cholesterol-fed beagles and rabbits, PS1/APP transgenic mice produced significantly enhanced brain levels of Abeta. In contrast to the effects of copper, we found that aluminum- or zinc-ion-supplemented distilled water did not have a significant effect on brain Ab accumulation in cholesterol-fed rabbits. We also report that administration of distilled water produced a reduction in the expected accumulation of Ab in three separate animal models. Collectively, these data suggest that water quality may have a significant influence on disease progression and Ab neuropathology in AD.

  11. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice.

    PubMed

    Mori, Takashi; Rezai-Zadeh, Kavon; Koyama, Naoki; Arendash, Gary W; Yamaguchi, Haruyasu; Kakuda, Nobuto; Horikoshi-Sakuraba, Yuko; Tan, Jun; Town, Terrence

    2012-02-24

    Amyloid precursor protein (APP) proteolysis is essential for production of amyloid-β (Aβ) peptides that form β-amyloid plaques in brains of Alzheimer disease (AD) patients. Recent focus has been directed toward a group of naturally occurring anti-amyloidogenic polyphenols known as flavonoids. We orally administered the flavonoid tannic acid (TA) to the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) and evaluated cognitive function and AD-like pathology. Consumption of TA for 6 months prevented transgene-associated behavioral impairment including hyperactivity, decreased object recognition, and defective spatial reference memory, but did not alter nontransgenic mouse behavior. Accordingly, brain parenchymal and cerebral vascular β-amyloid deposits and abundance of various Aβ species including oligomers were mitigated in TA-treated PSAPP mice. These effects occurred with decreased cleavage of the β-carboxyl-terminal APP fragment, lowered soluble APP-β production, reduced β-site APP cleaving enzyme 1 protein stability and activity, and attenuated neuroinflammation. As in vitro validation, we treated well characterized mutant human APP-overexpressing murine neuron-like cells with TA and found significantly reduced Aβ production associated with less amyloidogenic APP proteolysis. Taken together, these results raise the possibility that dietary supplementation with TA may be prophylactic for AD by inhibiting β-secretase activity and neuroinflammation and thereby mitigating AD pathology.

  12. Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia

    PubMed Central

    Jansen, Willemijn J.; Ossenkoppele, Rik; Knol, Dirk L.; Tijms, Betty M.; Scheltens, Philip; Verhey, Frans R. J.; Visser, Pieter Jelle

    2015-01-01

    IMPORTANCE Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES Relevant biomarker studies identified by searching studies published before April 2015 using the MEDLINE and Web of Science databases and through personal communication with investigators. STUDY SELECTION Studies were included if they provided individual participant data for participants without dementia and used an a priori defined cutoff for amyloid positivity. DATA EXTRACTION AND SYNTHESIS Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES Prevalence of amyloid pathology on positron emission tomography or in cerebrospinal fluid according to AD risk factors (age, apolipoprotein E [APOE] genotype, sex, and education) estimated by generalized estimating equations. RESULTS The prevalence of amyloid pathology increased from age 50 to 90 years from 10% (95% CI, 8%-13%) to 44% (95% CI, 37%-51%) among participants with normal cognition; from 12% (95% CI, 8%-18%) to 43% (95% CI, 32%-55%) among patients with SCI; and from 27% (95% CI, 23%-32%) to 71% (95% CI, 66%-76%) among patients with MCI. APOE-ε4 carriers had 2 to 3 times higher prevalence estimates than noncarriers. The age at which 15% of the participants with normal cognition were amyloid positive was approximately 40 years for APOEε4ε4 carriers, 50 years for ε2ε4 carriers, 55 years for ε3ε4 carriers, 65 years for ε3ε3 carriers, and

  13. Subcutaneous liraglutide ameliorates methylglyoxal-induced Alzheimer-like tau pathology and cognitive impairment by modulating tau hyperphosphorylation and glycogen synthase kinase-3β

    PubMed Central

    Qi, Liqin; Chen, Zhou; Wang, Yanping; Liu, Xiaoying; Liu, Xiaohong; Ke, Linfang; Zheng, Zhongjie; Lin, Xiaowei; Zhou, Yu; Wu, Lijuan; Liu, Libin

    2017-01-01

    Memory deterioration and synapse damage with accumulation of β-amyloid and hyperphosphorylated tau are hallmark lesions of Alzheimer’s disease (AD). Methylglyoxal (MG), a key intermediate of glucose metabolism, is elevated in AD brains and modifies Aβ42, increasing misfolding and leading to the accumulation of senile plaques. Liraglutide, an analog of glucagon-like peptide-1 (GLP-1), is neurotrophic and neuroprotective. However, whether liraglutide can protect against AD-like memory-related deficits and tau hyperphosphorylation caused by MG in vivo is not known. Here, we report that MG induces tau hyperphosphorylation and causes ultrastructural hippocampal damage and cognitive impairment in C57BL/6J mice. Liraglutide reduced these effects via activation of the protein kinase B and glycogen synthase kinase-3β pathways. Our data reveal that liraglutide may alleviate AD-like cognitive impairment by decreasing the phosphorylation of tau. PMID:28337257

  14. Genetic deletion of TNFRII gene enhances the Alzheimer-like pathology in an APP transgenic mouse model via reduction of phosphorylated IκBα.

    PubMed

    Jiang, Hong; He, Ping; Xie, Junxia; Staufenbiel, Matthias; Li, Rena; Shen, Yong

    2014-09-15

    Tumor necrosis factor receptor II (TNFRII) is one of the TNF receptor superfamily members and our recent pathological studies show that TNFRII is deficient in the brains of Alzheimer's disease (AD). However, the mechanisms of TNFRII in AD pathogenesis remain unclear. In the present study, by using the gene-targeting approach to delete TNFRII in AD transgenic mouse model, we found that, in the brain of APP23 mice with TNFRII deletion (APP23/TNFRII(-/-)), AD-like pathology, i.e. plaque formation and microglial activation, occurs as early as 6 months of age. To test whether the increased levels of Aβ plaques was due to elevated Aβ, we measured Aβ and found that Aβ levels indeed were significantly increased at this age. Because β-secretase, BACE1, is critical enzyme for Aβ production, we have examined BACE1 and found that BACE1 is increased in both protein levels and enzymatic activity as early as 6 months of age; Having shown that BACE1 promoter region contains NF-κB binding sites, we found that cytoplasmic NF-κB was elevated and SUMO1 binding to IκBα was decreased. To further verify these findings, we have overexpressed TNFRII and identified that overexpressing TNFRII can reverse the findings from APP23/TNFRII(-/-) mice. Altogether, our results demonstrate novel roles of TNFRII in the regulation of Aβ production, suggesting a potential therapeutic strategy for AD by up-regulating TNFRII levels and elevating phosphorylated IκBα by SUMOylation.

  15. Cerebral Amyloid Angiopathy Pathology and Cognitive Domains in Older Persons

    PubMed Central

    Arvanitakis, Zoe; Leurgans, Sue E.; Wang, Zhenxin; Wilson, Robert S.; Bennett, David A.; Schneider, Julie A.

    2011-01-01

    Objective To examine the relation of cerebral amyloid angiopathy (CAA) to cognitive domains in older community-dwelling persons with and without dementia. Methods Subjects were 404 persons in the Religious Orders Study, a cohort study of aging, who underwent annual clinical evaluations, including 19 neuropsychological tests from which 5 cognitive domain and global summary scores were derived, and brain autopsy at time-of-death (mean age-at-death 86). Using amyloid-β immunostaining, CAA severity was graded in 5 regions (midfrontal, inferior temporal, angular, calcarine, and hippocampal cortices), as 0 = none, 1 = mild, 2 = moderate, 3 = severe, and 4 = very severe. Because severity was related across regions (all rs > 0.63), and almost all persons had some CAA, we averaged regional CAA scores and created class variable predictors for no-to-minimal (<0.5), mild-to-moderate (0.5-2.5) and moderate-to-very severe CAA (>2.5). Results CAA was very common (84.9%; 94 had no-to-minimal, 233 mild-to-moderate, and 76 moderate-to-very severe disease) and was related to AD pathology (rs = 0.68). In linear regression analyses controlling for age, sex, education, AD pathology, infarcts, and Lewy bodies, moderate-to-very severe CAA was associated with lower perceptual speed (p = 0.012) and episodic memory (p = 0.047), but not semantic memory, working memory, visuospatial skills, or a composite of all cognitive measures. No associations of mild-to-moderate CAA with cognition were found. Dementia did not modify these findings. Interpretation CAA pathology is very common in older community-dwelling persons and is associated with AD pathology. Moderate-to-very severe CAA, but not mild-to-moderate CAA, is associated with lower performance in specific cognitive domains, most notably perceptual speed, separately from the effect of AD pathology. PMID:21387377

  16. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates

    PubMed Central

    Huang, Cho‐Min; Chiang, Hao‐Hua; Luo, Kai‐Ren; Kan, Hung‐Wei; Yang, Naomi Chu‐Chiao; Chiang, Hao; Lin, Whei‐Min; Lai, Shu‐Mei; Lee, Ming‐Jen; Shun, Chia‐Tung; Hsieh, Sung‐Tsang

    2015-01-01

    Objective Autonomic neuropathy is a major component of familial amyloid polyneuropathy (FAP) due to mutated transthyretin, with sudomotor failure as a common manifestation. This study aimed to investigate the pathology and clinical significance of sudomotor denervation. Methods Skin biopsies were performed on the distal leg of FAP patients with a follow‐up duration of 3.8 ± 1.6 years. Sudomotor innervation was stained with 2 markers: protein gene product 9.5 (PGP 9.5), a general neuronal marker, and vasoactive intestinal peptide (VIP), a sudomotor nerve functional marker, followed by quantitation according to sweat gland innervation index (SGII) for PGP 9.5 (SGIIPGP 9.5) and VIP (SGIIVIP). Results There were 28 patients (25 men) with Ala97Ser transthyretin and late onset (59.9 ± 6.0 years) disabling neuropathy. Autonomic symptoms were present in 22 patients (78.6%) at the time of skin biopsy. The SGIIPGP 9.5 and SGIIVIP of FAP patients were significantly lower than those of age‐ and gender‐matched controls. The reduction of SGIIVIP was more severe than that of SGIIPGP 9.5 (p = 0.002). Patients with orthostatic hypotension or absent sympathetic skin response at palms were associated with lower SGIIPGP 9.5 (p = 0.019 and 0.002, respectively). SGIIPGP 9.5 was negatively correlated with the disability grade at the time of skin biopsy (p = 0.004), and was positively correlated with the interval from the time of skin biopsy to the time of wheelchair usage (p = 0.029). Interpretation This study documented the pathological evidence of sudomotor denervation in FAP. SGIIPGP 9.5 was functionally correlated with autonomic symptoms, autonomic tests, ambulation status, and progression of disability. Ann Neurol 2015;78:272℃283 PMID:25973863

  17. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly

    PubMed Central

    Lesnick, Timothy G.; Przybelski, Scott A.; Knopman, David S.; Preboske, Greg M.; Kantarci, Kejal; Raman, Mekala R.; Machulda, Mary M.; Mielke, Michelle M.; Lowe, Val J.; Senjem, Matthew L.; Gunter, Jeffrey L.; Rocca, Walter A.; Roberts, Rosebud O.; Petersen, Ronald C.; Jack, Clifford R.

    2015-01-01

    Our primary objective was to investigate a biomarker driven model for the interrelationships between vascular disease pathology, amyloid pathology, and longitudinal cognitive decline in cognitively normal elderly subjects between 70 and 90 years of age. Our secondary objective was to investigate the beneficial effect of cognitive reserve on these interrelationships. We used brain amyloid-β load measured using Pittsburgh compound B positron emission tomography as a marker for amyloid pathology. White matter hyperintensities and brain infarcts were measured using fluid-attenuated inversion recovery magnetic resonance imaging as a marker for vascular pathology. We studied 393 cognitively normal elderly participants in the population-based Mayo Clinic Study of Aging who had a baseline 3 T fluid-attenuated inversion recovery magnetic resonance imaging assessment, Pittsburgh compound B positron emission tomography scan, baseline cognitive assessment, lifestyle measures, and at least one additional clinical follow-up. We classified subjects as being on the amyloid pathway if they had a global cortical amyloid-β load of ≥1.5 standard uptake value ratio and those on the vascular pathway if they had a brain infarct and/or white matter hyperintensities load ≥1.11% of total intracranial volume (which corresponds to the top 25% of white matter hyperintensities in an independent non-demented sample). We used a global cognitive z-score as a measure of cognition. We found no evidence that the presence or absence of vascular pathology influenced the presence or absence of amyloid pathology and vice versa, suggesting that the two processes seem to be independent. Baseline cognitive performance was lower in older individuals, in males, those with lower education/occupation, and those on the amyloid pathway. The rate of cognitive decline was higher in older individuals (P < 0.001) and those with amyloid (P = 0.0003) or vascular (P = 0.0037) pathologies. In those subjects with

  18. Adeno-associated Virus Gene Therapy With Cholesterol 24-Hydroxylase Reduces the Amyloid Pathology Before or After the Onset of Amyloid Plaques in Mouse Models of Alzheimer's Disease

    PubMed Central

    Hudry, Eloise; Van Dam, Debby; Kulik, Wim; De Deyn, Peter P; Stet, Femke S; Ahouansou, Ornella; Benraiss, Abdellatif; Delacourte, André; Bougnères, Pierre; Aubourg, Patrick; Cartier, Nathalie

    2009-01-01

    The development of Alzheimer's disease (AD) is closely connected with cholesterol metabolism. Cholesterol increases the production and deposition of amyloid-β (Aβ) peptides that result in the formation of amyloid plaques, a hallmark of the pathology. In the brain, cholesterol is synthesized in situ but cannot be degraded nor cross the blood–brain barrier. The major exportable form of brain cholesterol is 24S-hydroxycholesterol, an oxysterol generated by the neuronal cholesterol 24-hydroxylase encoded by the CYP46A1 gene. We report that the injection of adeno-associated vector (AAV) encoding CYP46A1 in the cortex and hippocampus of APP23 mice before the onset of amyloid deposits markedly reduces Aβ peptides, amyloid deposits and trimeric oligomers at 12 months of age. The Morris water maze (MWM) procedure also demonstrated improvement of spatial memory at 6 months, before the onset of amyloid deposits. AAV5-wtCYP46A1 vector injection in the cortex and hippocampus of amyloid precursor protein/presenilin 1 (APP/PS) mice after the onset of amyloid deposits also reduced markedly the number of amyloid plaques in the hippocampus, and to a less extent in the cortex, 3 months after the injection. Our data demonstrate that neuronal overexpression of CYP46A1 before or after the onset of amyloid plaques significantly reduces Aβ pathology in mouse models of AD. PMID:19654569

  19. Blocking the Apolipoprotein E/Amyloid β Interaction in Triple Transgenic Mice Ameliorates Alzheimer’s Disease Related Amyloid β and Tau Pathology

    PubMed Central

    Liu, Shan; Breitbart, Ariel; Sun, Yanjie; Mehta, Pankaj D.; Boutajangout, Allal; Scholtzova, Henrieta; Wisniewski, Thomas

    2013-01-01

    Inheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late-onset Alzheimer’s disease (AD). Studies have shown that the binding between apoE and amyloid-β (Aβ) peptides occurs at residues 244–272 of apoE and residues 12–28 of Aβ. ApoE4 has been implicated in promoting Aβ deposition and impairing clearance of Aβ. We hypothesized that blocking the apoE/Aβ interaction would serve as an effective new approach to AD therapy. We have previously shown that treatment with Aβ12–28P can reduce amyloid plaques in APP/PS1 transgenic (Tg) mice and vascular amyloid in TgSwDI mice with congophilic amyloid angiopathy (CAA). In the present study, we investigated whether the Aβ12–28P elicits a therapeutic effect on tau-related pathology in addition to amyloid pathology using old triple transgenic Alzheimer’s disease mice (3xTg, with PS1M146V, APPSwe and tauP30IL transgenes) with established pathology from the ages of 21 to 26 months. We show that treatment with Aβ12–28P substantially reduces tau pathology both immunohistochemically and biochemically, as well as reducing the amyloid burden and suppressing the activation of astrocytes and microglia. These affects correlate with a behavioral amelioration in the treated Tg mice. PMID:24117759

  20. Synaptic Amyloid-β Oligomers Precede p-Tau and Differentiate High Pathology Control Cases

    PubMed Central

    Bilousova, Tina; Miller, Carol A.; Poon, Wayne W.; Vinters, Harry V.; Corrada, Maria; Kawas, Claudia; Hayden, Eric Y.; Teplow, David B.; Glabe, Charles; Albay, Ricardo; Cole, Gregory M.; Teng, Edmond; Gylys, Karen H.

    2017-01-01

    Amyloid-β (Aβ) and hyperphosphorylated tau (p-tau) aggregates form the two discrete pathologies of Alzheimer disease (AD), and oligomeric assemblies of each protein are localized to synapses. To determine the sequence by which pathology appears in synapses, Aβ and p-tau were quantified across AD disease stages in parietal cortex. Nondemented cases with high levels of AD-related pathology were included to determine factors that confer protection from clinical symptoms. Flow cytometric analysis of synaptosome preparations was used to quantify Aβ and p-tau in large populations of individual synaptic terminals. Soluble Aβ oligomers were assayed by a single antibody sandwich enzyme-linked immunosorbent assay. Total in situ Aβ was elevated in patients with early- and late-stage AD dementia, but not in high pathology nondemented controls compared with age-matched normal controls. However, soluble Aβ oligomers were highest in early AD synapses, and this assay distinguished early AD cases from high pathology controls. Overall, synapse-associated p-tau did not increase until late-stage disease in human and transgenic rat cortex, and p-tau was elevated in individual Aβ-positive synaptosomes in early AD. These results suggest that soluble oligomers in surviving neocortical synaptic terminals are associated with dementia onset and suggest an amyloid cascade hypothesis in which oligomeric Aβ drives phosphorylated tau accumulation and synaptic spread. These results indicate that antiamyloid therapies will be less effective once p-tau pathology is developed. PMID:26718979

  1. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease

    PubMed Central

    Sundgren, Pia C.; Strandberg, Olof; Zetterberg, Henrik; Minthon, Lennart; Blennow, Kaj; Wahlund, Lars-Olof; Westman, Eric

    2016-01-01

    Objective: We aimed to test whether in vivo levels of magnetic resonance spectroscopy (MRS) metabolites myo-inositol (mI), N-acetylaspartate (NAA), and choline are abnormal already during preclinical Alzheimer disease (AD), relating these changes to amyloid or tau pathology, and functional connectivity. Methods: In this cross-sectional multicenter study (a subset of the prospective Swedish BioFINDER study), we included 4 groups, representing the different stages of predementia AD: (1) cognitively healthy elderly with normal CSF β-amyloid 42 (Aβ42), (2) cognitively healthy elderly with abnormal CSF Aβ42, (3) patients with subjective cognitive decline and abnormal CSF Aβ42, (4) patients with mild cognitive decline and abnormal CSF Aβ42 (Ntotal = 352). Spectroscopic markers measured in the posterior cingulate/precuneus were considered alongside known disease biomarkers: CSF Aβ42, phosphorylated tau, total tau, [18F]-flutemetamol PET, f-MRI, and the genetic risk factor APOE. Results: Amyloid-positive cognitively healthy participants showed a significant increase in mI/creatine and mI/NAA levels compared to amyloid-negative healthy elderly (p < 0.05). In amyloid-positive healthy elderly, mI/creatine and mI/NAA correlated with cortical retention of [18F] flutemetamol tracer ( = 0.44, p = 0.02 and = 0.51, p = 0.01, respectively). Healthy elderly APOE ε4 carriers with normal CSF Aβ42 levels had significantly higher mI/creatine levels (p < 0.001) than ε4 noncarriers. Finally, elevated mI/creatine was associated with decreased functional connectivity within the default mode network (rpearson = −0.16, p = 0.02), independently of amyloid pathology. Conclusions: mI levels are elevated already at asymptomatic stages of AD. Moreover, mI/creatine concentrations were increased in healthy APOE ε4 carriers with normal CSF Aβ42 levels, suggesting that mI levels may reveal regional brain consequences of APOE ε4 before detectable amyloid pathology. PMID:27164711

  2. Disrupted Intrinsic Networks Link AmyloidPathology and Impaired Cognition in Prodromal Alzheimer's Disease.

    PubMed

    Koch, Kathrin; Myers, Nicholas E; Göttler, Jens; Pasquini, Lorenzo; Grimmer, Timo; Förster, Stefan; Manoliu, Andrei; Neitzel, Julia; Kurz, Alexander; Förstl, Hans; Riedl, Valentin; Wohlschläger, Afra M; Drzezga, Alexander; Sorg, Christian

    2015-12-01

    Amyloidpathology (Aβ) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aβ-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aβ-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aβ-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aβ-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aβ-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aβ-pathology with cognitive impairment in early AD.

  3. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota.

    PubMed

    Harach, T; Marungruang, N; Duthilleul, N; Cheatham, V; Mc Coy, K D; Frisoni, G; Neher, J J; Fåk, F; Jucker, M; Lasser, T; Bolmont, T

    2017-02-08

    Alzheimer's disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer's disease is not known. To this end we sequenced bacterial 16S rRNA from fecal samples of Aβ precursor protein (APP) transgenic mouse model and found a remarkable shift in the gut microbiota as compared to non-transgenic wild-type mice. Subsequently we generated germ-free APP transgenic mice and found a drastic reduction of cerebral Aβ amyloid pathology when compared to control mice with intestinal microbiota. Importantly, colonization of germ-free APP transgenic mice with microbiota from conventionally-raised APP transgenic mice increased cerebral Aβ pathology, while colonization with microbiota from wild-type mice was less effective in increasing cerebral Aβ levels. Our results indicate a microbial involvement in the development of Abeta amyloid pathology, and suggest that microbiota may contribute to the development of neurodegenerative diseases.

  4. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota

    PubMed Central

    Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K. D.; Frisoni, G.; Neher, J. J.; Fåk, F.; Jucker, M.; Lasser, T.; Bolmont, T.

    2017-01-01

    Alzheimer’s disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer’s disease is not known. To this end we sequenced bacterial 16S rRNA from fecal samples of Aβ precursor protein (APP) transgenic mouse model and found a remarkable shift in the gut microbiota as compared to non-transgenic wild-type mice. Subsequently we generated germ-free APP transgenic mice and found a drastic reduction of cerebral Aβ amyloid pathology when compared to control mice with intestinal microbiota. Importantly, colonization of germ-free APP transgenic mice with microbiota from conventionally-raised APP transgenic mice increased cerebral Aβ pathology, while colonization with microbiota from wild-type mice was less effective in increasing cerebral Aβ levels. Our results indicate a microbial involvement in the development of Abeta amyloid pathology, and suggest that microbiota may contribute to the development of neurodegenerative diseases. PMID:28176819

  5. Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD.

    PubMed

    Kitazawa, Masashi; Cheng, David; Laferla, Frank M

    2009-03-01

    Excess copper exposure is thought to be linked to the development of Alzheimer's disease (AD) neuropathology. However, the mechanism by which copper affects the CNS remains unclear. To investigate the effect of chronic copper exposure on both beta-amyloid and tau pathologies, we treated young triple transgenic (3xTg-AD) mice with 250 ppm copper-containing water for a period of 3 or 9 months. Copper exposure resulted in altered amyloid precursor protein processing; increased accumulation of the amyloid precursor protein and its proteolytic product, C99 fragment, along with increased generation of amyloid-beta peptides and oligomers. These changes were found to be mediated via up-regulation of BACE1 as significant increases in BACE1 levels and deposits were detected around plaques in mice following copper exposure. Furthermore, tau pathology within hippocampal neurons was exacerbated in copper-exposed 3xTg-AD group. Increased tau phosphorylation was closely correlated with aberrant cdk5/p25 activation, suggesting a role for this kinase in the development of copper-induced tau pathology. Taken together, our data suggest that chronic copper exposure accelerates not only amyloid pathology but also tau pathology in a mouse model of AD.

  6. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice.

    PubMed

    Alves, Sandro; Churlaud, Guillaume; Audrain, Mickael; Michaelsen-Preusse, Kristin; Fol, Romain; Souchet, Benoit; Braudeau, Jérôme; Korte, Martin; Klatzmann, David; Cartier, Nathalie

    2016-12-20

    Interleukin-2 (IL-2)-deficient mice have cytoarchitectural hippocampal modifications and impaired learning and memory ability reminiscent of Alzheimer's disease. IL-2 stimulates regulatory T cells whose role is to control inflammation. As neuroinflammation contributes to neurodegeneration, we investigated IL-2 in Alzheimer's disease. Therefore, we investigated IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease relative to age-matched control individuals. We then treated APP/PS1ΔE9 mice having established Alzheimer's disease with IL-2 for 5 months using single administration of an AAV-IL-2 vector. We first found decreased IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease. In mice, IL-2-induced systemic and brain regulatory T cells expansion and activation. In the hippocampus, IL-2 induced astrocytic activation and recruitment of astrocytes around amyloid plaques, decreased amyloid-β42/40 ratio and amyloid plaque load, improved synaptic plasticity and significantly rescued spine density. Of note, this tissue remodelling was associated with recovery of memory deficits, as assessed in the Morris water maze task. Altogether, our data strongly suggest that IL-2 can alleviate Alzheimer's disease hallmarks in APP/PS1ΔE9 mice with established pathology. Therefore, this should prompt the investigation of low-dose IL-2 in Alzheimer's disease and other neuroinflammatory/neurodegenerative disorders.

  7. Amyloid Plaque and Neurofibrillary Tangle Pathology in a Regulatable Mouse Model of Alzheimer’s Disease

    PubMed Central

    Paulson, Jennifer B.; Ramsden, Martin; Forster, Colleen; Sherman, Mathew A.; McGowan, Eileen; Ashe, Karen H.

    2008-01-01

    Transgenic mouse models that independently express mutations in amyloid precursor protein (APP) and tau have proven useful for the study of the neurological consequences of amyloid-β (Aβ) plaque and neurofibrillary tangle pathologies. Studies using these mice have yielded essential discoveries with regard to specific aspects of neuronal dysfunction and degeneration that characterize the brain during Alzheimer’s disease (AD) and other age-dependent tauopathies. Most recent transgenic studies have focused on the creation of regulatable models that allow the temporal control of transgene expression. To study a more complete model of AD pathology, we designed a new regulatable transgenic mouse that harbors both APP and tau transgenes. Here, we present a novel transgenic mouse model, rTg3696AB, which expresses human APPNLI and tauP301L driven by the CaMKII promoter system. Subsequent generation of Aβ and 4R0N tau in the brain resulted in the development of three neuropathological features of AD: Aβ plaques, neurofibrillary tangles, and neurodegeneration. Importantly, transgene expression in these mice is regulatable, permitting temporal control of gene expression and the investigation of transgene suppression. PMID:18669616

  8. Amyloid-beta and tau pathology following repetitive mild traumatic brain injury.

    PubMed

    Edwards, George; Moreno-Gonzalez, Ines; Soto, Claudio

    2017-02-19

    Neurodegenerative diseases are characterized by distinctive neuropathological alterations, including the cerebral accumulation of misfolded protein aggregates, neuroinflammation, synaptic dysfunction, and neuronal loss, along with behavioral impairments. Traumatic brain injury (TBI) is believed to be an important risk factor for certain neurodegenerative diseases, such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). TBI represents a ubiquitous problem in the world and could play a major role in the pathogenesis and etiology of AD or CTE later in life. TBI events appear to trigger and exacerbate some of the pathological processes in these diseases, in particular, the formation and accumulation of misfolded protein aggregates composed of amyloid-beta (Aβ) and tau. Here, we describe the relationship between repetitive mild TBI and the development of Aβ and tau pathology in patients affected by AD or CTE on the basis of epidemiological and pathological studies in human cases, and a thorough overview of data obtained in experimental animal models. We also discuss the possibility that TBI may contribute to initiate the formation of misfolded oligomeric species that may subsequently spread the pathology through a prion-like process of seeding of protein misfolding.

  9. Pathology associated memory deficits in Swedish mutant genome-based amyloid precursor protein transgenic mice.

    PubMed

    Hock, Brian J; Lattal, K Matthew; Kulnane, Laura Shapiro; Abel, Ted; Lamb, Bruce T

    2009-12-01

    To gain insight into the relationship between pathological alterations and memory deficits observed in Alzheimer's disease (AD), a number of amyloid precursor protein (APP) transgenic animal models have been generated containing familial AD mutations. The most commonly utilized method involves a cDNA-based approach, utilizing heterologous promoters to drive expression of specific APP isoforms. As a result of the assumptions inherent in the design of each model, the different cDNA-based transgenic mouse models have revealed different relationships between the biochemical, pathological and behavioral alterations observed in these models. Here we provide further characterization of a genomic-based, amyloid precursor protein yeast artificial chromosome transgenic mouse model of AD, R1.40, that makes few assumptions regarding disease pathogenesis to study the relationship between brain pathology and altered behavior. Aged R1.40 transgenic and control mice were tested for learning and memory in the Morris water maze and for working memory in the Y maze. Results from the water maze demonstrated intact learning in the both control and R1.40 mice, but impairments in the long-term retention of this information in the transgenic mice, but not controls. Interestingly, however, long-term memory deficits did not correlate with the presence of Abeta deposits within the group of animals examined. By contrast, age-related working memory impairments were also observed in the Y maze in the R1.40 mice, and these deficits correlated with the presence of Abeta deposits. Our results demonstrate unique behavioral alterations in the R1.40 mouse model of AD that are likely both dependent and independent of Abeta deposition.

  10. An Amyloid-Like Pathological Conformation of TDP-43 Is Stabilized by Hypercooperative Hydrogen Bonds

    PubMed Central

    Mompeán, Miguel; Baralle, Marco; Buratti, Emanuele; Laurents, Douglas V.

    2016-01-01

    TDP-43 is an essential RNA-binding protein forming aggregates in almost all cases of sporadic amyotrophic lateral sclerosis (ALS) and many cases of frontotemporal lobar dementia (FTLD) and other neurodegenerative diseases. TDP-43 consists of a folded N-terminal domain with a singular structure, two RRM RNA-binding domains, and a long disordered C-terminal region which plays roles in functional RNA regulatory assemblies as well as pernicious aggregation. Evidence from pathological mutations and seeding experiments strongly suggest that TDP-43 aggregates are pathologically relevant through toxic gain-of-harmful-function and/or harmful loss-of-native-function mechanisms. Recent, but not early, microscopy studies and the ability of TDP-43 aggregates to resist harsh treatment and to seed new pathological aggregates in vitro and in cells strongly suggest that TDP-43 aggregates have a self-templating, amyloid-like structure. Based on the importance of the Gln/Asn-rich 341–367 residue segment for efficient aggregation of endogenous TDP-43 when presented as a 12X-repeat and extensive spectroscopic and computational experiments, we recently proposed that this segment adopts a beta-hairpin structure that assembles in a parallel with a beta-turn configuration to form an amyloid-like structure. Here, we propose that this conformer is stabilized by an especially strong class of hypercooperative hydrogen bonding unique to Gln and Asn sidechains. The clinical existence of this conformer is supported by very recent LC-MS/MS characterization of TDP-43 from ex vivo aggregates, which show that residues 341–367 were protected in vivo from Ser phosphorylation, Gln/Asn deamidation and Met oxidation. Its distinct pattern of SDS-PAGE bands allows us to link this conformer to the exceptionally stable seed of the Type A TDP-43 proteinopathy. PMID:27909398

  11. Suspected non Alzheimer's pathology - Is it non-Alzheimer's or non-amyloid?

    PubMed

    Dani, Melanie; Brooks, David J; Edison, Paul

    2017-02-21

    Neurodegeneration, the progressive loss of neurons, is a major process involved in dementia and age-related cognitive impairment. It can be detected clinically using currently available biomarker tests. Suspected Non Alzheimer Pathology (SNAP) is a biomarker-based concept that encompasses a group of individuals with neurodegeneration, but no evidence of amyloid deposition (thereby distinguishing it from Alzheimer's disease (AD)). These individuals may often have a clinical diagnosis of AD, but their clinical features, genetic susceptibility and progression can differ significantly, carrying crucial implications for precise diagnostics, clinical management, and efficacy of clinical drug trials. SNAP has caused wide interest in the dementia research community, because it is still unclear whether it represents distinct pathology separate from AD, or whether in some individuals, it could represent the earliest stage of AD. This debate has raised pertinent questions about the pathways to AD, the need for biomarkers, and the sensitivity of current biomarker tests. In this review, we discuss the biomarker and imaging trials that first recognised SNAP. We describe the pathological correlates of SNAP and comment on the different causes of neurodegeneration. Finally, we discuss the debate around the concept of SNAP, and further unanswered questions that are emerging.

  12. Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice.

    PubMed

    Currais, Antonio; Prior, Marguerite; Lo, David; Jolivalt, Corinne; Schubert, David; Maher, Pamela

    2012-12-01

    Mounting evidence supports a link between diabetes, cognitive dysfunction, and aging. However, the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. To determine how diabetes contributes to cognitive dysfunction and age-associated pathology, we used streptozotocin to induce type 1 diabetes (T1D) in senescence-accelerated prone 8 (SAMP8) and senescence-resistant 1 (SAMR1) mice. Contextual fear conditioning demonstrated that T1D resulted in the development of cognitive deficits in SAMR1 mice similar to those seen in age-matched, nondiabetic SAMP8 mice. No further cognitive deficits were observed when the SAMP8 mice were made diabetic. T1D dramatically increased Aβ and glial fibrillary acidic protein immunoreactivity in the hippocampus of SAMP8 mice and to a lesser extent in age-matched SAMR1 mice. Further analysis revealed aggregated Aβ within astrocyte processes surrounding vessels. Western blot analyses from T1D SAMP8 mice showed elevated amyloid precursor protein processing and protein glycation along with increased inflammation. T1D elevated tau phosphorylation in the SAMR1 mice but did not further increase it in the SAMP8 mice where it was already significantly higher. These data suggest that aberrant glucose metabolism potentiates the aging phenotype in old mice and contributes to early stage central nervous system pathology in younger animals.

  13. Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study.

    PubMed

    Iulita, M Florencia; Allard, Simon; Richter, Luise; Munter, Lisa-Marie; Ducatenzeiler, Adriana; Weise, Christoph; Do Carmo, Sonia; Klein, William L; Multhaup, Gerhard; Cuello, A Claudio

    2014-06-05

    Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP. Our microscopy studies with quantitative co-localization analysis revealed the presence of intraneuronal Aβ in transgenic rats, with an immunological signal that was clearly distinguished from that of the amyloid precursor protein (APP) and its C-terminal fragments (CTFs). The early intraneuronal pathology was accompanied by a significant elevation of soluble Aβ42 peptides that paralleled the presence and progression of early cognitive deficits, several months prior to amyloid plaque deposition. Aβ38, Aβ39, Aβ40 and Aβ42 peptides were detected in the rat CSF by MALDI-MS analysis even at the plaque-free stages; suggesting that a combination of intracellular and soluble extracellular Aβ may be responsible for impairing cognition at early time points. Taken together, our results demonstrate that the intraneuronal development of AD-like amyloid pathology includes a mixture of molecular species (Aβ, APP and CTFs) of which a considerable component is Aβ; and that the early presence of these species within neurons has deleterious effects in the CNS, even before the development of full-blown AD-like pathology.

  14. Nigral Tau pathology and striatal amyloid-β deposition does not correlate with striatal dopamine deficit in Alzheimer's disease.

    PubMed

    Schauer, Tabea H; Lochner, Maximilian; Kovacs, Gabor G

    2012-12-01

    Extrapyramidal symptoms may appear in Alzheimer's disease (AD). In the present study, using morphometric immunohistochemistry in 34 cases with AD-related pathology, we evaluated whether nigral burden of tau pathology or striatal burden of amyloid-β deposition correlates with dopamine transporter (DAT) expression in the striatum. Our observations show a lack of correlation between these variables and support the notion that lower striatal DAT expression in AD patients suggests concomitant nigral α-synuclein pathology. Extrapyramidal symptoms may have a complex background in AD.

  15. Angiotensin type 1a receptor deficiency decreases amyloid β-protein generation and ameliorates brain amyloid pathology

    PubMed Central

    Liu, Junjun; Liu, Shuyu; Matsumoto, Yukino; Murakami, Saki; Sugakawa, Yusuke; Kami, Ayako; Tanabe, Chiaki; Maeda, Tomoji; Michikawa, Makoto; Komano, Hiroto; Zou, Kun

    2015-01-01

    Alzheimer’s disease is characterized by neuronal loss and cerebral accumulation of amyloid-β protein (Aβ) and lowering the generation of Aβ is a pivotal approach in the strategy of Alzheimer’s disease treatment. Midlife hypertension is a major risk factor for the future onset of sporadic Alzheimer’s disease and the use of some antihypertensive drugs may decrease the incidence of Alzheimer’s disease. However, it is largely unknown how the blood pressure regulation system is associated with the pathogenesis of Alzheimer’s disease. Here we found that the deficiency of angiotensin type 1a receptor (AT1a), a key receptor for regulating blood pressure, significantly decreased Aβ generation and amyloid plaque formation in a mouse model of Alzheimer’s disease. The lack of AT1a inhibited the endocleavage of presenilin-1 (PS1), which is essential for γ-secretase complex formation and Aβ generation. Notably, the ligand of AT1a, angiotensin II, enhanced Aβ generation, PS1 endocleavage and γ-secretase complex formation. Our results suggest that AT1a activation is closely associated with Aβ generation and brain amyloid accumulation by regulating γ-secretase complex formation. Thus, removal of life style factors or stresses that stimulate AT1a to elevate blood pressure may decrease Aβ generation and brain amyloid accumulation, thereby preventing the pathogenesis of Alzheimer’s disease. PMID:26154270

  16. Opposing effects of Apoe/Apoa1 double deletion on amyloidpathology and cognitive performance in APP mice

    PubMed Central

    Fitz, Nicholas F.; Tapias, Victor; Cronican, Andrea A.; Castranio, Emilie L.; Saleem, Muzamil; Carter, Alexis Y.; Lefterova, Martina

    2015-01-01

    See Corona and Landreth (doi:10.1093/awv300) for a scientific commentary on this article. ATP binding cassette transporter A1 (encoded by ABCA1) regulates cholesterol efflux from cells to apolipoproteins A-I and E (ApoA-I and APOE; encoded by APOA1 and APOE, respectively) and the generation of high density lipoproteins. In Abca1 knockout mice (Abca1ko), high density lipoproteins and ApoA-I are virtually lacking, and total APOE and APOE-containing lipoproteins in brain substantially decreased. As the ε4 allele of APOE is the major genetic risk factor for late-onset Alzheimer’s disease, ABCA1 role as a modifier of APOE lipidation is of significance for this disease. Reportedly, Abca1 deficiency in mice expressing human APP accelerates amyloid deposition and behaviour deficits. We used APP/PS1dE9 mice crossed to Apoe and Apoa1 knockout mice to generate Apoe/Apoa1 double-knockout mice. We hypothesized that Apoe/Apoa1 double-knockout mice would mimic the phenotype of APP/Abca1ko mice in regards to amyloid plaques and cognitive deficits. Amyloid pathology, peripheral lipoprotein metabolism, cognitive deficits and dendritic morphology of Apoe/Apoa1 double-knockout mice were compared to APP/Abca1ko, APP/PS1dE9, and single Apoa1 and Apoe knockouts. Contrary to our prediction, the results demonstrate that double deletion of Apoe and Apoa1 ameliorated the amyloid pathology, including amyloid plaques and soluble amyloid. In double knockout mice we show that 125I-amyloid-β microinjected into the central nervous system cleared at a rate twice faster compared to Abca1 knockout mice. We tested the effect of Apoe, Apoa1 or Abca1 deficiency on spreading of exogenous amyloid-β seeds injected into the brain of young pre-depositing APP mice. The results show that lack of Abca1 augments dissemination of exogenous amyloid significantly more than the lack of Apoe. In the periphery, Apoe/Apoa1 double-knockout mice exhibited substantial atherosclerosis and very high levels of low

  17. Early and progressive deficit of neuronal activity patterns in a model of local amyloid pathology in mouse prefrontal cortex

    PubMed Central

    Koukouli, Fani; Rooy, Marie; Maskos, Uwe

    2016-01-01

    Alzheimer's Disease (AD) is the most common form of dementia. The condition predominantly affects the cerebral cortex and hippocampus and is characterized by the spread of amyloid plaques and neurofibrillary tangles (NFTs). But soluble amyloid-β (Aβ) oligomers have also been identified to accumulate in the brains of AD patients and correlate with cognitive dysfunction more than the extent of plaque deposition. Here, we developed an adeno-associated viral vector expressing the human mutated amyloid precursor protein (AAV-hAPP). Intracranial injection of the AAV into the prefrontal cortex (PFC) allowed the induction of AD-like deficits in adult mice, thereby modelling human pathology. AAV-hAPP expression caused accumulation of Aβ oligomers, microglial activation, astrocytosis and the gradual formation of amyloid plaques and NFTs. In vivo two-photon imaging revealed an increase in neuronal activity, a dysfunction characteristic of the pathology, already during the accumulation of soluble oligomers. Importantly, we found that Aβ disrupts the synchronous spontaneous activity of neurons in PFC that, as in humans, is characterized by ultraslow fluctuation patterns. Our work allowed us to track brain activity changes during disease progression and provides new insight into the early deficits of synchronous ongoing brain activity, the “default network”, in the presence of Aβ peptide. PMID:27999185

  18. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease.

    PubMed

    Helmfors, Linda; Boman, Andrea; Civitelli, Livia; Nath, Sangeeta; Sandin, Linnea; Janefjord, Camilla; McCann, Heather; Zetterberg, Henrik; Blennow, Kaj; Halliday, Glenda; Brorsson, Ann-Christin; Kågedal, Katarina

    2015-11-01

    The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.

  19. Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease.

    PubMed

    Rijal Upadhaya, Ajeet; Kosterin, Irina; Kumar, Sathish; von Arnim, Christine A F; Yamaguchi, Haruyasu; Fändrich, Marcus; Walter, Jochen; Thal, Dietmar Rudolf

    2014-03-01

    Alzheimer's disease is characterized by the deposition of amyloid-β peptide in the brain. N-terminal truncation resulting in the formation of AβN3pE and phosphorylation at serine 8 have been reported to modify aggregation properties of amyloid-β. Biochemically, soluble, dispersible, membrane-associated, and insoluble, plaque-associated amyloid-β aggregates have been distinguished. Soluble and dispersible amyloid-β aggregates are both in mixture with the extracellular or intracellular fluid but dispersible aggregates can be cleared from proteins in solution by ultracentrifugation. To clarify the role of phosphorylated amyloid-β and AβN3pE in soluble, dispersible, membrane-associated, and plaque-associated amyloid-β aggregates in the pathogenesis of Alzheimer's disease we studied brains from 21 cases with symptomatic Alzheimer's disease, 33 pathologically preclinical Alzheimer's disease cases, and 20 control cases. Western blot analysis showed that soluble, dispersible, membrane-associated and plaque-associated amyloid-β aggregates in the earliest preclinical stage of Alzheimer's disease did not exhibit detectable amounts of AβN3pE and phosphorylated amyloid-β. This stage was referred to as biochemical stage 1 of amyloid-β aggregation and accumulation. In biochemical amyloid-β stage 2, AβN3pE was additionally found whereas phosphorylated amyloid-β was restricted to biochemical amyloid-β stage 3, the last stage of amyloid-β aggregation. Phosphorylated amyloid-β was seen in the dispersible, membrane-associated, and plaque-associated fraction. All cases with symptomatic Alzheimer's disease in our sample fulfilled biochemical amyloid-β stage 3 criteria, i.e. detection of phosphorylated amyloid-β. Most, but not all, cases with pathologically preclinical Alzheimer's disease had biochemical amyloid-β stages 1 or 2. Immunohistochemistry confirmed the hierarchical occurrence of amyloid-β, AβN3pE, and phosphorylated amyloid-β in amyloid plaques

  20. Rescue of Early bace-1 and Global DNA Demethylation by S-Adenosylmethionine Reduces Amyloid Pathology and Improves Cognition in an Alzheimer’s Model

    PubMed Central

    Do Carmo, Sonia; Hanzel, Cecilia E.; Jacobs, Marie L.; Machnes, Ziv; Iulita, M. Florencia; Yang, Jingyun; Yu, Lei; Ducatenzeiler, Adriana; Danik, Marc; Breuillaud, Lionel S.; Bennett, David A.; Szyf, Moshe; Cuello, A. Claudio

    2016-01-01

    General DNA hypomethylation is associated with Alzheimer’s disease (AD), but it is unclear when DNA hypomethylation starts or plays a role in AD pathology or whether DNA re-methylation would rescue early amyloid-related cognitive impairments. In an APP transgenic mouse model of AD-like amyloid pathology we found that early intraneuronal amyloid beta build-up is sufficient to unleash a global and beta-site amyloid precursor protein cleaving enzyme 1 (bace-1) DNA demethylation in AD-vulnerable brain regions. S-adenosylmethionine administration at these early stages abolished this hypomethylation, diminished the amyloid pathology and restored cognitive capabilities. To assess a possible human significance of findings, we examined the methylation at 12 CpGs sites in the bace-1 promoter, using genome-wide DNA methylation data from 740 postmortem human brains. Thus, we found significant associations of bace-1 promoter methylation with β-amyloid load among persons with AD dementia, and PHFtau tangle density. Our results support a plausible causal role for the earliest amyloid beta accumulation to provoke DNA hypomethylation, influencing AD pathological outcomes. PMID:27681803

  1. Tocotrienol-Rich Fraction Modulates Amyloid Pathology and Improves Cognitive Function in AβPP/PS1 Mice

    PubMed Central

    Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Durani, Lina Wati; Hamezah, Hamizah Shahirah; Damanhuri, Hanafi Ahmad; Wan Ngah, Wan Zurinah; Tsuji, Mayumi; Kiuchi, Yuji; Ono, Kenjiro; Tooyama, Ikuo

    2016-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD. PMID:27716672

  2. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology.

    PubMed

    Revett, Timothy J; Baker, Glen B; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid ß peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid ß and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid ß production, but also amyloid ß can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness.

  3. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Koppel, Jeremy; Vingtdeux, Valerie; Marambaud, Philippe; d'Abramo, Cristina; Jimenez, Heidy; Stauber, Mark; Friedman, Rachel; Davies, Peter

    2014-03-14

    The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-) mice. Seventeen J20 CNR2(+/+) mice (12 females, 5 males) and 16 J20 CNR2(-/-) mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2(-/-) mice relative to CNR2(+/+) mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2(-/-) mice. Total tau was significantly suppressed in J20 CNR2(-/-) mice relative to J20 CNR2(+/+) mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.

  4. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model.

    PubMed

    Garcia-Alloza, M; Borrelli, L A; Rozkalne, A; Hyman, B T; Bacskai, B J

    2007-08-01

    Alzheimer's disease (AD) is characterized by senile plaques and neurodegeneration although the neurotoxic mechanisms have not been completely elucidated. It is clear that both oxidative stress and inflammation play an important role in the illness. The compound curcumin, with a broad spectrum of anti-oxidant, anti-inflammatory, and anti-fibrilogenic activities may represent a promising approach for preventing or treating AD. Curcumin is a small fluorescent compound that binds to amyloid deposits. In the present work we used in vivo multiphoton microscopy (MPM) to demonstrate that curcumin crosses the blood-brain barrier and labels senile plaques and cerebrovascular amyloid angiopathy (CAA) in APPswe/PS1dE9 mice. Moreover, systemic treatment of mice with curcumin for 7 days clears and reduces existing plaques, as monitored with longitudinal imaging, suggesting a potent disaggregation effect. Curcumin also led to a limited, but significant reversal of structural changes in dystrophic dendrites, including abnormal curvature and dystrophy size. Together, these data suggest that curcumin reverses existing amyloid pathology and associated neurotoxicity in a mouse model of AD. This approach could lead to more effective clinical therapies for the prevention of oxidative stress, inflammation and neurotoxicity associated with AD.

  5. A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology.

    PubMed

    Matarin, Mar; Salih, Dervis A; Yasvoina, Marina; Cummings, Damian M; Guelfi, Sebastian; Liu, Wenfei; Nahaboo Solim, Muzammil A; Moens, Thomas G; Paublete, Rocio Moreno; Ali, Shabinah S; Perona, Marina; Desai, Roshni; Smith, Kenneth J; Latcham, Judy; Fulleylove, Michael; Richardson, Jill C; Hardy, John; Edwards, Frances A

    2015-02-03

    We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of "amyloid" transgenic mice (mutant human APP, PSEN1, or APP/PSEN1) and "TAU" transgenic mice (mutant human MAPT gene). Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS) hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  6. Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Human intravenous immunoglobulin (hIVIG) preparation is indicated for treating primary immunodeficiency disorders associated with impaired humoral immunity. hIVIG is known for its anti-inflammatory properties and a decent safety profile. Therefore, by virtue of its constituent natural anti-amyloid beta antibodies and anti-inflammatory effects, hIVIG is deemed to mediate beneficial effects to patients of Alzheimer’s disease (AD). Here, we set out to explore the effects of hIVIG in a mouse model of AD. Methods We treated APP/PS1dE9 transgenic and wild-type mice with weekly injections of a high hIVIG dose (1 g/kg) or saline for 3 or 8 months. Treatment effect on brain amyloid pathology and microglial reactivity was assessed by ELISA, immunohistochemistry, RT-PCR, and confocal microscopy. Results We found no evidence for reduction in Aβ pathology; instead 8 months of hIVIG treatment significantly increased soluble levels of Aβ40 and Aβ42. In addition, we noticed a significant reduction in CD45 and elevation of Iba-1 markers in specific sub-populations of microglial cells. Long-term hIVIG treatment also resulted in significant suppression of TNF-α and increase in doublecortin positive adult-born neurons in the dentate gyrus. Conclusions Our data indicate limited ability of hIVIG to impact amyloid burden but shows changes in microglia, pro-inflammatory gene expression, and neurogenic effects. Immunomodulation by hIVIG may account for its beneficial effect in AD patients. PMID:22642812

  7. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease.

    PubMed

    Hutter-Paier, Birgit; Huttunen, Henri J; Puglielli, Luigi; Eckman, Christopher B; Kim, Doo Yeon; Hofmeister, Alexander; Moir, Robert D; Domnitz, Sarah B; Frosch, Matthew P; Windisch, Manfred; Kovacs, Dora M

    2004-10-14

    Amyloid beta-peptide (Abeta) accumulation in specific brain regions is a pathological hallmark of Alzheimer's disease (AD). We have previously reported that a well-characterized acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, CP-113,818, inhibits Abeta production in cell-based experiments. Here, we assessed the efficacy of CP-113,818 in reducing AD-like pathology in the brains of transgenic mice expressing human APP(751) containing the London (V717I) and Swedish (K670M/N671L) mutations. Two months of treatment with CP-113,818 reduced the accumulation of amyloid plaques by 88%-99% and membrane/insoluble Abeta levels by 83%-96%, while also decreasing brain cholesteryl-esters by 86%. Additionally, soluble Abeta(42) was reduced by 34% in brain homogenates. Spatial learning was slightly improved and correlated with decreased Abeta levels. In nontransgenic littermates, CP-113,818 also reduced ectodomain shedding of endogenous APP in the brain. Our results suggest that ACAT inhibition may be effective in the prevention and treatment of AD by inhibiting generation of the Abeta peptide.

  8. Extracellular vesicles of the blood-brain barrier: Role in the HIV-1 associated amyloid beta pathology.

    PubMed

    András, Ibolya E; Leda, Ana; Contreras, Marta Garcia; Bertrand, Luc; Park, Minseon; Skowronska, Marta; Toborek, Michal

    2017-03-01

    HIV-infected brains are characterized by increased amyloid beta (Aβ) deposition. It is believed that the blood-brain barrier (BBB) is critical for Aβ homeostasis and contributes to Aβ accumulation in the brain. Extracellular vesicles (ECV), like exosomes, recently gained a lot of attention as potentially playing a significant role in Aβ pathology. In addition, HIV-1 hijacks the exosomal pathway for budding and release. Therefore, we investigated the involvement of BBB-derived ECV in the HIV-1-induced Aβ pathology in the brain. Our results indicate that HIV-1 increases ECV release from brain endothelial cells as well as elevates their Aβ cargo when compared to controls. Interestingly, brain endothelial cell-derived ECV transferred Aβ to astrocytes and pericytes. Infusion of brain endothelial ECV carrying fluorescent Aβ into the internal carotid artery of mice resulted in Aβ fluorescence associated with brain microvessels and in the brain parenchyma. These results suggest that ECV carrying Aβ can be successfully transferred across the BBB into the brain. Based on these observations, we conclude that HIV-1 facilitates the shedding of brain endothelial ECV carrying Aβ; a process that may increase Aβ exposure of cells of neurovascular unit, and contribute to amyloid deposition in HIV-infected brain.

  9. Longitudinal Assessment of Amyloid Pathology in Transgenic ArcAβ Mice Using Multi-Parametric Magnetic Resonance Imaging.

    PubMed

    Klohs, Jan; Politano, Igna Wojtyna; Deistung, Andreas; Grandjean, Joanes; Drewek, Anna; Dominietto, Marco; Keist, Ruth; Schweser, Ferdinand; Reichenbach, Jürgen R; Nitsch, Roger M; Knuesel, Irene; Rudin, Markus

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to monitor pathological changes in Alzheimer's disease (AD). The objective of this longitudinal study was to assess the effects of progressive amyloid-related pathology on multiple MRI parameters in transgenic arcAβ mice, a mouse model of cerebral amyloidosis. Diffusion-weighted imaging (DWI), T1-mapping and quantitative susceptibility mapping (QSM), a novel MRI based technique, were applied to monitor structural alterations and changes in tissue composition imposed by the pathology over time. Vascular function and integrity was studied by assessing blood-brain barrier integrity with dynamic contrast-enhanced MRI and cerebral microbleed (CMB) load with susceptibility weighted imaging and QSM. A linear mixed effects model was built for each MRI parameter to incorporate effects within and between groups (i.e. genotype) and to account for changes unrelated to the disease pathology. Linear mixed effects modelling revealed a strong association of all investigated MRI parameters with age. DWI and QSM in addition revealed differences between arcAβ and wt mice over time. CMBs became apparent in arcAβ mice with 9 month of age; and the CMB load reflected disease stage. This study demonstrates the benefits of linear mixed effects modelling of longitudinal imaging data. Moreover, the diagnostic utility of QSM and assessment of CMB load should be exploited further in studies of AD.

  10. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease

    PubMed Central

    Lian, Hong; Litvinchuk, Alexandra; Chiang, Angie C.-A.; Aithmitti, Nadia; Jankowsky, Joanna L.

    2016-01-01

    Increasing evidence supports a role of neuroinflammation in the pathogenesis of Alzheimer's disease (AD). Previously, we identified a neuron–glia signaling pathway whereby Aβ acts as an upstream activator of astroglial nuclear factor kappa B (NF-κB), leading to the release of complement C3, which acts on the neuronal C3a receptor (C3aR) to influence dendritic morphology and cognitive function. Here we report that astrocytic complement activation also regulates Aβ dynamics in vitro and amyloid pathology in AD mouse models through microglial C3aR. We show that in primary microglial cultures, acute C3 or C3a activation promotes, whereas chronic C3/C3a treatment attenuates, microglial phagocytosis and that the effect of chronic C3 exposure can be blocked by cotreatment with a C3aR antagonist and by genetic deletion of C3aR. We further demonstrate that Aβ pathology and neuroinflammation in amyloid precursor protein (APP) transgenic mice are worsened by astroglial NF-κB hyperactivation and resulting C3 elevation, whereas treatment with the C3aR antagonist (C3aRA) ameliorates plaque load and microgliosis. Our studies define a complement-dependent intercellular cross talk in which neuronal overproduction of Aβ activates astroglial NF-κB to elicit extracellular release of C3. This promotes a pathogenic cycle by which C3 in turn interacts with neuronal and microglial C3aR to alter cognitive function and impair Aβ phagocytosis. This feedforward loop can be effectively blocked by C3aR inhibition, supporting the therapeutic potential of C3aR antagonists under chronic neuroinflammation conditions. SIGNIFICANCE STATEMENT The complement pathway is activated in Alzheimer's disease. Here we show that the central complement factor C3 secreted from astrocytes interacts with microglial C3a receptor (C3aR) to mediate β-amyloid pathology and neuroinflammation in AD mouse models. Our study provides support for targeting C3aR as a potential therapy for Alzheimer's disease. PMID

  11. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype.

    PubMed

    Janelidze, Shorena; Hertze, Joakim; Nägga, Katarina; Nilsson, Karin; Nilsson, Christer; Wennström, Malin; van Westen, Danielle; Blennow, Kaj; Zetterberg, Henrik; Hansson, Oskar

    2017-03-01

    Blood-brain barrier (BBB) dysfunction might be an important component of many neurodegenerative disorders. In this study, we investigated its role in dementia using large clinical cohorts. The cerebrospinal fluid (CSF)/plasma albumin ratio (Qalb), an indicator of BBB (and blood-CSF barrier) permeability, was measured in a total of 1015 individuals. The ratio was increased in patients with Alzheimer's disease, dementia with Lewy bodies or Parkinson's disease dementia, subcortical vascular dementia, and frontotemporal dementia compared with controls. However, this measure was not changed during preclinical or prodromal Alzheimer's disease and was not associated with amyloid positron emission tomography or APOE genotype. The Qalb was increased in diabetes mellitus and correlated positively with CSF biomarkers of angiogenesis and endothelial dysfunction (vascular endothelial growth factor, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1). In healthy elderly, high body mass index and waist-hip ratio predicted increased Qalb 20 years later. In summary, BBB permeability is increased in major dementia disorders but does not relate to amyloid pathology or APOE genotype. Instead, BBB impairment may be associated with diabetes and brain microvascular damage.

  12. CB₂ receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Koppel, Jeremy; Vingtdeux, Valerie; Marambaud, Philippe; d'Abramo, Cristina; Jimenez, Heidy; Stauber, Mark; Friedman, Rachel; Davies, Peter

    2013-11-08

    The endocannabinoid CB₂ receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB₂ receptor system on AD pathology, a colony of mice with a deleted CB₂ receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB₂ receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2⁻/⁻ (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2⁺/⁺ and J20 CNR2⁻/⁻ mice. Seventeen J20 CNR2⁺/⁺ mice (12 females, 5 males) and 16 J20 CNR2⁻/⁻ mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2⁻/⁻ mice relative to CNR2⁺/⁺ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2⁻/⁻ mice. Total tau was significantly suppressed in J20 CNR2⁻/⁻ mice relative to J20 CNR2⁺/⁺ mice. The results confirm the constitutive role of the CB₂ receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB₂ to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.

  13. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline.

    PubMed

    Thal, Dietmar Rudolf; Ghebremedhin, Estifanos; Orantes, Mario; Wiestler, Otmar D

    2003-12-01

    Sporadic, late-onset Alzheimer disease (AD) constitutes the most frequent cause of dementia in the elderly population. AD-related pathology is often accompanied by vascular changes. The predominant vascular lesions in AD are cerebral amyloid angiopathy (CAA) and arteriosclerosis/lipohyalinosis (AS/LH). The present study was carried out to examine the coincidence of these small vessel pathologies during the development of cognitive deficits, amyloid beta-protein (A beta) deposition, and neurofibrillary tangle (NFT) formation in sporadic late-onset AD. We correlated the clinical dementia rating (CDR) score, the sequential extension of AD-related A beta deposition into different parts of the brain, and the extension of NFTs to involve more brain regions with the distribution of CAA and AS/LH in 52 human autopsy brains. The extension of CAA and AS/LH to involve different areas of the brain was associated with a rise of CDR scores and an increase in the extension of A beta deposition and NFT generation. AD cases showed a higher number of regions with CAA and AS/LH compared to nondemented patients with AD-related pathology and controls. Moreover, we demonstrated a hierarchical sequence in which the different regions of the brain exhibited CAA and AS/LH-affected vessels, allowing the distinction of 3 stages in the development of CAA and AS/LH. The first stage of CAA involved leptomeningeal and neocortical vessels. The second stage was characterized by additional A beta deposition in allocortical and midbrain vessels. Finally, in a third stage, CAA was observed in the basal ganglia, the thalamus, and in the lower brainstem. In contrast, AS/LH initially affected the basal ganglia in stage A. In stage B this pathology made inroads into the deep white matter, the leptomeningeal arteries of the cortex, the cerebellum, and into the thalamus. Stage C was characterized by AS/LH in brainstem vessels. Our results demonstrate widespread CAA and AS/LH to be associated with the

  14. Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease.

    PubMed

    Silva, D F F; Esteves, A R; Oliveira, C R; Cardoso, S M

    2011-08-01

    Mitochondrial dysfunction has been widely implicated in the etiology of Alzheimer's disease (AD). Evidence shows a mitochondrial-mediated impairment of autophagy that potentiates amyloid-β (Aβ) deposition. Accordingly, recent data obtained from AD models, in which mitochondrial alterations are a prominent feature, demonstrated abnormalities in microtubule network, involving tubulin and tau post-translational modifications. In this review we will discuss mitochondrial-regulated processes where mitochondrial malfunction is likely to start a sequence of events leading to sirtuin-2 activation, microtubule network breakdown, and impairment of the autophagic pathway. Because sirtuin-2 activity depends on cellular NAD+ availability, mitochondrial regulation of NAD+ levels may contribute to an increase in sirtuin-mediated tubulin deacetylation. A vicious cycle become installed which potentiates tau hyperphosphorylation, together with Aβ overproduction and deposition. Overall, targeting microtubule network constitutes a promising strategy for pharmacological therapy in AD.

  15. Smart Soup, a Traditional Chinese Medicine Formula, Ameliorates Amyloid Pathology and Related Cognitive Deficits

    PubMed Central

    Li, Xiaohang; Cui, Jin; Ding, Jianqing; Wang, Ying; Zeng, Xianglu; Ling, Yun; Shen, Xiaoheng; Chen, Shengdi; Huang, Chenggang; Pei, Gang

    2014-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe disease-modifying treatment and symptomatic intervention alternatives against AD. Smart Soup (SS), a Chinese medicine formula composed of Rhizoma Acori Tatarinowii (AT), Poria cum Radix Pini (PRP) and Radix Polygalae (RP), is a typical prescription against memory deficits. Here, we assessed the efficacy of SS against AD. Oral administration of SS ameliorated the cognitive impairment of AD transgenic mice, with reduced Aβ levels, retarded Aβ amyloidosis and reduced Aβ-induced gliosis and neuronal loss in the brains of AD mice. Consistently, SS treatment reduced amyloid-related locomotor dysfunctions and premature death of AD transgenic Drosophila. Mechanistic studies showed that RP reduced Aβ generation, whereas AT and PRP exerted neuroprotective effects against Aβ. Taken together, our study indicates that SS could be effective against AD, providing a practical therapeutic strategy against the disease. PMID:25386946

  16. Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology

    DOE PAGES

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; ...

    2015-09-08

    Amyloid beta (Aβ) oligomers associated with Alzheimer’s disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individualmore » pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. As a result, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.« less

  17. Reduced pathology and improved behavioral performance in Alzheimer’s disease mice vaccinated with HSV amplicons expressing amyloid-beta and interleukin-4

    PubMed Central

    Frazer, Maria E.; Hughes, Jennifer E.; Mastrangelo, Michael A.; Tibbens, Jennifer L.; Federoff, Howard J.; Bowers, William J.

    2008-01-01

    Immunotherapeutics designed to dissolve existing amyloid plaques or to interrupt amyloid-beta (Aβ) accumulation may be feasible for treatment and/or prevention of Alzheimer’s disease (AD). “Shaping” immune responses elicited against Aβ is requisite to generate an efficacious and safe outcome by minimizing the possibility of deleterious inflammatory reactions in the brain as observed in clinical testing of Aβ peptide/adjuvant-based modalities. Herpes Simplex Virus (HSV)-based amplicons can co-express multiple antigens and/or immunomodulatory genes due to their large genetic size capacity, thereby facilitating antigen-specific immune response shaping. We have constructed an amplicon (HSVIEAβCMVIL-4) that co-delivers Aβ1-42 with interleukin-4, a cytokine that promotes the generation of Th2-like T cell responses, which are favored in the setting of AD immunotherapy. Triple-transgenic AD (3xTg-AD) mice, which progressively develop both amyloid and neurofibrillary tangle pathology, were vaccinated thrice with HSVIEAβCMVIL-4, or a set of control amplicon vectors. Increased Th2-related, Aβ-specific antibodies, improved learning and memory functioning, and prevention of AD-related amyloid and tau pathological progression were observed in HSVIEAβCMVIL-4 vaccinated mice as compared to the other experimental groups. Our study underscores the potential of Aβ immunotherapy for AD and highlights the potency of amplicons to facilitate immune response modulation to a disease-relevant antigen. PMID:18388924

  18. Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology

    SciTech Connect

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; Pearson, John E.; Xu, Shang -Zhong

    2015-09-08

    Amyloid beta (Aβ) oligomers associated with Alzheimer’s disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. As a result, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  19. Regional correlations between [(11)C]PIB PET and post-mortem burden of amyloid-beta pathology in a diverse neuropathological cohort.

    PubMed

    Seo, Sang Won; Ayakta, Nagehan; Grinberg, Lea T; Villeneuve, Sylvia; Lehmann, Manja; Reed, Bruce; DeCarli, Charles; Miller, Bruce L; Rosen, Howard J; Boxer, Adam L; O'Neil, James P; Jin, Lee-Way; Seeley, William W; Jagust, William J; Rabinovici, Gil D

    2017-01-01

    Imaging-pathological correlation studies show that in vivo amyloid-β (Aβ) positron emission tomography (PET) strongly predicts the presence of significant Aβ pathology at autopsy. We sought to determine whether regional PiB-PET uptake would improve sensitivity for amyloid detection in comparison with global measures (experiment 1), and to estimate the relative contributions of different Aβ aggregates to in vivo PET signal (experiment 2). In experiment 1, 54 subjects with [(11)C] PiB-PET during life and postmortem neuropathologic examination (85.2% with dementia, interval from PET to autopsy 3.1 ± 1.9 years) were included. We assessed Thal amyloid phase (N = 36) and CERAD score (N = 54) versus both global and regional PiB SUVRs. In experiment 2 (N = 42), PiB SUVR and post-mortem amyloid β burden was analyzed in five customized regions of interest matching regions sampled at autopsy. We assessed the relative contribution of neuritic plaques (NPs), diffuse plaques (DPs) and cerebral amyloid angiopathy (CAA) to regional PIB SUVR using multi-linear regression. In experiment 1, there were no differences in Area Under the Curve for amyloid phase ≥ A2 and CERAD score ≥ C2 between global and highest regional PiB SUVR (p = 0.186 and 0.230). In experiment 2, when NPs, DPs, and/or CAA were included in the same model, moderate to severe NPs were independently correlated with PiB SUVR in all regions except for the inferior temporal and calcarine ROI (β = 0.414-0.804, p < 0.05), whereas DPs were independently correlated with PiB SUVR in the angular gyrus ROI (β = 0.446, p = 0.010). CAA was also associated with PiB SUVR in the inferior temporal and calcarine ROI (β = 0.222-0.355, p < 0.05). In conclusion, global PiB-PET SUVR performed as well as regional values for amyloid detection in our cohort. The substrate-specific binding of PiB might differ among the brain specific regions.

  20. Preventing Effect of L-Type Calcium Channel Blockade on Electrophysiological Alterations in Dentate Gyrus Granule Cells Induced by Entorhinal Amyloid Pathology

    PubMed Central

    Pourbadie, Hamid Gholami; Naderi, Nima; Mehranfard, Nasrin; Janahmadi, Mahyar; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-01-01

    The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer’s disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were investigated. The amyloid beta (Aβ) 1–42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin) accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days), almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer’s disease. PMID:25689857

  1. Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology

    PubMed Central

    Desai, Maya K.; Sudol, Kelly L.; Janelsins, Michelle C.; Mastrangelo, Michael A.; Frazer, Maria E.; Bowers, William J.

    2008-01-01

    Alzheimer's disease (AD) is a progressively debilitating brain disorder pathologically defined by extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and synaptic disintegrity. AD has not been widely considered a disease of white matter, but more recent evidence suggests the existence of abnormalities in myelination patterns and myelin attrition in AD-afflicted human brains. Herein, we demonstrate that triple-transgenic AD (3xTg-AD) mice, which harbor the human amyloid precursor protein Swedish mutant transgene, presenilin knock-in mutation, and tau P301L mutant transgene, exhibit significant region-specific alterations in myelination patterns and in oligodendrocyte marker expression profiles at time points preceding the appearance of amyloid and tau pathology. These immunohistochemical signatures are coincident with age-related alterations in axonal and myelin sheath ultrastructure as visualized by comparative electron microscopic examination of 3xTg-AD and non-transgenic mouse brain tissue. Overall, these findings indicate 3xTg-AD mice represent a viable model in which to examine mechanisms underlying AD-related myelination and neural transmission defects that occur early during pre-symptomatic stages of the disease process. PMID:18661556

  2. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Baranger, Kévin; Marchalant, Yannick; Bonnet, Amandine E; Crouzin, Nadine; Carrete, Alex; Paumier, Jean-Michel; Py, Nathalie A; Bernard, Anne; Bauer, Charlotte; Charrat, Eliane; Moschke, Katrin; Seiki, Mothoharu; Vignes, Michel; Lichtenthaler, Stefan F; Checler, Frédéric; Khrestchatisky, Michel; Rivera, Santiago

    2016-01-01

    Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer's disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP(-/-) mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aβ) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP(-/-), compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1β (IL-1β) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, β- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aβ and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP(-/-) mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.

  3. Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice.

    PubMed

    Yanagisawa, Daijiro; Ibrahim, Nor Faeizah; Taguchi, Hiroyasu; Morikawa, Shigehiro; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Tooyama, Ikuo

    2015-01-01

    Recent evidence supports the amyloid cascade hypothesis that a pathological change of amyloid β (Aβ) in the brain is an initiating event in Alzheimer's disease (AD). Accordingly, modulating the abnormal Aβ aggregation is considered a potential therapeutic target in AD. Curcumin, a low-molecular-weight polyphenol derived from the well-known curry spice turmeric, has shown favorable effects on preventing or treating AD pathology. The present study investigated the effects of curcumin and 2 novel curcumin derivatives, FMeC1 and FMeC2, on AD pathology in APPswe/PS1dE9 double transgenic mice. Mice fed a chow diet that contained FMeC1 for 6 months showed a reduction in insoluble Aβ deposits and glial cell activity together with reduced cognitive deficits, compared to animals receiving a control diet or with curcumin or FMeC2 in their diet. Both curcumin and FMeC1 modulated the formation of Aβ aggregates; however, only FMeC1 significantly attenuated the cell toxicity of Aβ. These results indicate that FMeC1 may have potential for preventing AD.

  4. Extra-Virgin Olive Oil Attenuates Amyloid-β and Tau Pathologies in the Brains of TgSwDI Mice

    PubMed Central

    Qosa, Hisham; Mohamed, Loqman A.; Batarseh, Yazan S.; Alqahtani, Saeed; Ibrahim, Baher; LeVine, Harry; Keller, Jeffrey N.; Kaddoumi, Amal

    2015-01-01

    Extra-virgin olive oil (EVOO) is one of the main elements of Mediterranean diet. Several studies have suggested that EVOO has several health promoting effects that could protect from and decrease the risk of Alzheimer’s disease (AD). In this study, we investigated the effect of consumption of EVOO-enriched diet on amyloid- and tau- related pathological alterations that are associated with the progression of AD and cerebral amyloid angiopathy (CAA) in TgSwDI mice. Feeding mice with EVOO-enriched diet for 6 months, beginning at an age before amyloid-β (Aβ) accumulation starts, has significantly reduced total Aβ and tau brain levels with a significant improvement in mouse cognitive behavior. This reduction in brain Aβ was explained by the enhanced Aβ clearance pathways and reduced brain production of Aβ via modulation of APP processing. On the other hand, although feeding mice with EVOO-enriched diet for 3 months, beginning at an age after Aβ accumulation starts, showed improved clearance across the BBB and significant reduction in Aβ levels, it did not affect tau levels or improve cognitive functions of TgSwDI mouse. Collectively, results of this study suggest the long-term consumption of EVOO-containing diet starting at early age provides a protective effect against AD and its related disorder CAA. PMID:26344778

  5. Prolonged diet induced obesity has minimal effects towards brain pathology in mouse model of cerebral amyloid angiopathy: implications for studying obesity-brain interactions in mice.

    PubMed

    Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Freeman, Linnea R; Pepping, Jennifer K; Beckett, Tina L; Murphy, M Paul; Keller, Jeffrey N

    2013-09-01

    Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease.

  6. Cigarette smoking accelerated brain aging and induced pre-Alzheimer-like neuropathology in rats.

    PubMed

    Ho, Yuen-Shan; Yang, Xifei; Yeung, Sze-Chun; Chiu, Kin; Lau, Chi-Fai; Tsang, Andrea Wing-Ting; Mak, Judith Choi-Wo; Chang, Raymond Chuen-Chung

    2012-01-01

    Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β-amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia.

  7. Amyloid Beta Mediates Memory Formation

    ERIC Educational Resources Information Center

    Garcia-Osta, Ana; Alberini, Cristina M.

    2009-01-01

    The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…

  8. The Significance of α-Synuclein, Amyloid-β and Tau Pathologies in Parkinson’s Disease Progression and Related Dementia

    PubMed Central

    Compta, Y.; Parkkinen, L.; Kempster, P.; Selikhova, M.; Lashley, T.; Holton, J.L.; Lees, A.J.; Revesz, T.

    2014-01-01

    Background Dementia is one of the milestones of advanced Parkinson’s disease (PD), with its neuropathological substrate still being a matter of debate, particularly regarding its potential mechanistic implications. Objective The aim of this study was to review the relative importance of Lewy-related α-synuclein and Alzheimer’s tau and amyloid-β (Aβ) pathologies in disease progression and dementia in PD. Methods We reviewed studies conducted at the Queen Square Brain Bank, Institute of Neurology, University College London, using large PD cohorts. Results Cortical Lewy- and Alzheimer-type pathologies are associated with milestones of poorer prognosis and with non-tremor predominance, which have been, in turn, linked to dementia. The combination of these pathologies is the most robust neuropathological substrate of PD-related dementia, with cortical Aβ burden determining a faster progression to dementia. Conclusion The shared relevance of these pathologies in PD progression and dementia is in line with experimental data suggesting synergism between α-synuclein, tau and Aβ and with studies testing these proteins as disease biomarkers, hence favouring the eventual testing of therapeutic strategies targeting these proteins in PD. PMID:24028925

  9. Functional amyloids in bacteria.

    PubMed

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end.

  10. Tetracyclic Truncated Analogue of the Marine Toxin Gambierol Modifies NMDA, Tau, and Amyloid β Expression in Mice Brains: Implications in AD Pathology.

    PubMed

    Alonso, Eva; Vieira, Andrés C; Rodriguez, Inés; Alvariño, Rebeca; Gegunde, Sandra; Fuwa, Haruhiko; Suga, Yuto; Sasaki, Makoto; Alfonso, Amparo; Cifuentes, José Manuel; Botana, Luis M

    2017-02-13

    Gambierol and its two, tetra- and heptacyclic, analogues have been previously proved as promising molecules for the modulation of Alzheimer's disease (AD) hallmarks in primary cortical neurons of 3xTg-AD fetuses. In this work, the effect of the tetracyclic analogue of gambierol was tested in vivo in 3xTg-AD mice (10 months old) after 1 month of weekly treatment with 50 μg/kg. Adverse effects were not reported throughout the whole treatment period and no pathological signs were observed for the analyzed organs. The compound was found in brain samples after intraperitoneal injection. The tetracyclic analogue of gambierol elicited a decrease of amyloid β1-42 levels and a dose-dependent inhibition of β-secretase enzyme-1 activity. Moreover, this compound also reduced the phosphorylation of tau at the 181 and 159/163 residues with an increase of the inactive isoform of the glycogen synthase kinase-3β. In accordance with our in vitro neuronal model, this compound produced a reduction in the N2A subunit of the N-methyl-d-aspartate (NMDA) receptor. The combined effect of this compound on amyloid β1-42 and tau phosphorylation represents a multitarget therapeutic approach for AD which might be more effective for this multifactorial and complex neurodegenerative disease than the current treatments.

  11. Genetic ablation of luteinizing hormone receptor improves the amyloid pathology in a mouse model of Alzheimer disease.

    PubMed

    Lin, Jing; Li, Xian; Yuan, Fangping; Lin, Ling; Cook, Christine L; Rao, Ch V; Lei, Zhenmin

    2010-03-01

    Amyloid-beta peptide (Abeta) plays an essential pathophysiologic role in Alzheimer disease, and elevation of luteinizing hormone (LH) levels during aging has been implicated in its pathogenesis. To assess the effect of LH receptor deficiency on Abeta accumulation, we generated a bigenic mouse model, APPsw(+)/Lhr(-/-), which expresses human amyloid precursor protein (APPsw) in the background of LH receptor (Lhr) knockout. Genetic ablation of Lhr resulted in a significant decrease in the number of Abeta plaques and protein content in the hippocampus and cerebral cortex in both male and female mice. Accordingly, several Abeta deposition-related neuropathologic features and functionally relevant molecules were markedly improved, including decreased astrogliosis, reductions of elevated phosphorylated tau, c-fos, alpha7-nicotinic acetylcholine receptor, and restoration of the altered neuropeptide Y receptors Y1 and Y2. Diminution of Abeta accumulation in the absence of LH receptor supports the contention that dysregulation of LH may impact the pathogenesis of Alzheimer disease. The APPsw(+)/Lhr(-/-) mouse may be a useful tool for advancing understanding of the role of LH-mediated events in Alzheimer disease and a model in which to test therapeutic interventions.

  12. Red wine micronutrients as protective agents in Alzheimer-like induced insult.

    PubMed

    Russo, A; Palumbo, M; Aliano, C; Lempereur, L; Scoto, G; Renis, M

    2003-04-11

    Plant extract micronutrients are commonly added to diets for health and prevention of degenerative disease. However, there are barriers to the introduction of these products as antioxidant therapies in counteracting chronic human diseases, probably because the molecular bases of their therapeutic potential are poorly clarified. The present study was designed to evaluate the possible protective effect of combined micronutrients present in black grape skin on toxicity induced by 25-35 beta-amyloid peptid or by serum of Alzheimer's disease patients, in human umbilical vein endothelial cells (HUVECs). The hypothesis was tested by examining the results of lactic dehydrogenase (LDH) release to estimate cytoplasmic membrane breakdown; activity of mitochondrial complexes, reactive oxygen species (ROS) production and malonyl dialdehyde (MDA) levels as markers of oxidative stress induction and COMET assay to evaluate DNA fragmentation. The results demonstrate that black grape skin extract reduces the ROS production, protects the cellular membrane from oxidative damage, and consequently prevents DNA fragmentation. The experimental results suggest that this natural compound may be used to ameliorate the progression of pathology in AD disease therapy.

  13. Oxidative Stress during the Progression of β-Amyloid Pathology in the Neocortex of the Tg2576 Mouse Model of Alzheimer's Disease

    PubMed Central

    Porcellotti, Sara; Fanelli, Francesca; Fracassi, Anna; Sepe, Sara; Cecconi, Francesco; Bernardi, Cinzia; Cimini, AnnaMaria; Cerù, Maria Paola; Moreno, Sandra

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive neurodegeneration. Pathogenetic mechanisms, triggered by β-amyloid (Aβ) accumulation, include oxidative stress, derived from energy homeostasis deregulation and involving mitochondria and peroxisomes. We here addressed the oxidative stress status and the elicited cellular response at the onset and during the progression of Aβ pathology, studying the neocortex of Tg2576 model of AD. Age-dependent changes of oxidative damage markers, antioxidant enzymes, and related transcription factors were analysed in relation to the distribution of Aβ peptide and oligomers, by a combined molecular/morphological approach. Nucleic acid oxidative damage, accompanied by defective antioxidant defences, and decreased PGC1α expression are already detected in 3-month-old Tg2576 neurons. Conversely, PPARα is increased in these cells, with its cytoplasmic localization suggesting nongenomic, anti-inflammatory actions. At 6 months, when intracellular Aβ accumulates, PMP70 is downregulated, indicating impairment of fatty acids peroxisomal translocation and their consequent harmful accumulation. In 9-month-old Tg2576 neocortex, Aβ oligomers and acrolein deposition correlate with GFAP, GPX1, and PMP70 increases, supporting a compensatory response, involving astroglial peroxisomes. At severe pathological stages, when senile plaques disrupt cortical cytoarchitecture, antioxidant capacity is gradually lost. Overall, our data suggest early therapeutic intervention in AD, also targeting peroxisomes. PMID:25973140

  14. Oxidative Stress during the Progression of β-Amyloid Pathology in the Neocortex of the Tg2576 Mouse Model of Alzheimer's Disease.

    PubMed

    Porcellotti, Sara; Fanelli, Francesca; Fracassi, Anna; Sepe, Sara; Cecconi, Francesco; Bernardi, Cinzia; Cimini, AnnaMaria; Cerù, Maria Paola; Moreno, Sandra

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive neurodegeneration. Pathogenetic mechanisms, triggered by β-amyloid (Aβ) accumulation, include oxidative stress, derived from energy homeostasis deregulation and involving mitochondria and peroxisomes. We here addressed the oxidative stress status and the elicited cellular response at the onset and during the progression of Aβ pathology, studying the neocortex of Tg2576 model of AD. Age-dependent changes of oxidative damage markers, antioxidant enzymes, and related transcription factors were analysed in relation to the distribution of Aβ peptide and oligomers, by a combined molecular/morphological approach. Nucleic acid oxidative damage, accompanied by defective antioxidant defences, and decreased PGC1α expression are already detected in 3-month-old Tg2576 neurons. Conversely, PPARα is increased in these cells, with its cytoplasmic localization suggesting nongenomic, anti-inflammatory actions. At 6 months, when intracellular Aβ accumulates, PMP70 is downregulated, indicating impairment of fatty acids peroxisomal translocation and their consequent harmful accumulation. In 9-month-old Tg2576 neocortex, Aβ oligomers and acrolein deposition correlate with GFAP, GPX1, and PMP70 increases, supporting a compensatory response, involving astroglial peroxisomes. At severe pathological stages, when senile plaques disrupt cortical cytoarchitecture, antioxidant capacity is gradually lost. Overall, our data suggest early therapeutic intervention in AD, also targeting peroxisomes.

  15. The pathological cross talk between apolipoprotein E and amyloid-beta peptide in Alzheimer's disease: emerging gene-based therapeutic approaches.

    PubMed

    Iurescia, Sandra; Fioretti, Daniela; Mangialasche, Francesca; Rinaldi, Monica

    2010-01-01

    Apolipoprotein E (ApoE) plays a key role in lipid transport in the plasma and in the central nervous system through its interaction with members of the low-density lipoprotein receptor family. The three common isoforms of ApoE (ApoE2, ApoE3, and ApoE4) differ in their ability to perform neuronal maintenance and repair functions and differentially affect the risk of developing neurodegenerative disorders. The ApoE4 isoform is a strong genetic risk factor for Alzheimer's disease. Up-to-date knowledge about the structural and biophysical features of ApoE4 shed light on the molecular basis underlying the isoform-specific pathogenic role of ApoE4 and its contribution to AD pathology through several different mechanisms. ApoE4 impacts on amyloid-beta (Abeta) production, Abeta clearance, Abeta fibrillation, and tangle formation as well as on mitochondrial functions leading to neuronal toxicity and synaptic damage. This review summarizes the pathological cross talk between ApoE and Abeta peptide in Alzheimer's disease. Lastly, we examine emerging gene-based therapeutic approaches encompassing the use of ApoE and their potential opportunities to preventing or treating Alzheimer's disease.

  16. Peripherally administered sera antibodies recognizing amyloid-β oligomers mitigate Alzheimer's disease-like pathology and cognitive decline in aged 3× Tg-AD mice.

    PubMed

    Wang, Hai-Chao; Yu, Yun-Zhou; Liu, Si; Zhao, Meng; Xu, Qing

    2016-04-04

    Active and passive immunotherapy targeting amyloid-β (Aβ) may be the most promising strategy to prevent or treat Alzheimer's disease (AD). Previously, immunization with the recombinant 6Aβ15-T antigen generated robust anti-Aβ serum antibodies that strongly recognized Aβ42 oligomers in different mice, markedly reduced the amyloid burden, and improved behavioral performance of immunized older AD mice. Here, we further determined that these anti-6Aβ15-T serum antibodies from different strains of mice displayed anti-Aβ antibody responses against the same epitopes in the Aβ1-15 region. Peripheral administration of anti-6Aβ15-T serum antibodies was also effective to mitigate AD-like pathology and cognitive decline in aged 3× Tg-AD mice. Specifically, the levels of Aβ and tau in the brains of 3× Tg-AD mice were significantly reduced after passive immunotherapy, which seemed necessary or beneficial to ameliorate memory impairment. In addition, our results showed that this immunotherapy also prevented presynaptic dynamin 1 degradation, which might help to further protect synaptic functions and allow functional recovery of cognition. Moreover, immunization with 6Aβ15-T in rabbits induced a similar antibody response as that in mice, and the rabbit serum antibodies reacted strongly with Aβ42 oligomers and inhibited oligomer-mediated neurotoxicity. We concluded that passive immunization with Aβ42 oligomer conformation-sensitive anti-6Aβ15-T serum antibodies is effective in providing potentially therapeutic effects in aged 3× Tg-AD mice by reducing Aβ and tau.

  17. Anti-11[E]-pyroglutamate-modified amyloid β antibodies cross-react with other pathological Aβ species: relevance for immunotherapy.

    PubMed

    Perez-Garmendia, Roxanna; Ibarra-Bracamontes, Vanessa; Vasilevko, Vitaly; Luna-Muñoz, Jose; Mena, Raul; Govezensky, Tzipe; Acero, Gonzalo; Manoutcharian, Karen; Cribbs, David H; Gevorkian, Goar

    2010-12-15

    N-truncated/modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as animal models of AD, and represent highly desirable therapeutic targets. In the present study we have focused on N-truncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 11 (AβN11(pE)). We identified two B-cell epitopes recognized by rabbit anti-AβN11(pE) polyclonal antibodies. Interestingly, rabbit anti-AβN11(pE) polyclonal antibodies bound also to full-length Aβ1-42 and N-truncated/modified AβN3(pE), suggesting that the three peptides may share a common B-cell epitope. Importantly, rabbit anti-AβN11(pE) antibodies bound to naturally occurring Aβ aggregates present in brain samples from AD patients. These results are potentially important for developing novel immunogens for targeting N-truncated/modified Aβ aggregates as well, since the most commonly used immunogens in the majority of vaccine studies have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides.

  18. ANTI-11[E]-PYROGLUTAMATE-MODIFIED AMYLOID β ANTIBODIES CROSS-REACT WITH OTHER PATHOLOGICAL Aβ SPECIES: RELEVANCE FOR IMMUNOTHERAPY

    PubMed Central

    Perez-Garmendia, Roxanna; Ibarra-Bracamontes, Vanessa; Vasilevko, Vitaly; Luna-Muñoz, Jose; Mena, Raul; Govezensky, Tzipe; Acero, Gonzalo; Manoutcharian, Karen; Cribbs, David H.; Gevorkian, Goar

    2010-01-01

    N-truncated/modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as animal models of AD, and represent highly desirable therapeutic targets. In the present study we have focused on Ntruncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 11 (AβN11(pE)). We identified two B-cell epitopes recognized by rabbit anti-AβN11(pE) polyclonal antibodies. Interestingly, rabbit anti-AβN11(pE) polyclonal antibodies bound also to full-length Aβ1-42 and N-truncated/modified AβN3(pE), suggesting that the three peptides may share a common B-cell epitope. Importantly, rabbit anti-AβN11(pE) antibodies bound to naturally occurring Aβ aggregates present in brain samples from AD patients. These results are potentially important for developing novel immunogens for targeting N-truncated/modified Aβ aggregates as well, since the most commonly used immunogens in the majority of vaccine studies have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides. PMID:20864186

  19. [Amyloid beta-related angiitis: brain lesions showing leptomeningeal gadolinium enhancement on MRI and characteristic surgical pathologic features].

    PubMed

    Koike, Yuka; Ouchi, Haruka; Sato, Tomoe; Shimbo, Junsuke; Sato, Aki; Sasaki, Osamu; Shibuya, Hiroyuki; Okamoto, Kouichirou; Kakita, Akiyoshi; Igarashi, Shuichi

    2013-06-01

    Amyloid-β-related angiitis (ABRA) of the CNS occurs in association with vasculitis of small-and medium-sized leptomeningeal arteries. Here, we describe the clinicopathological features of a 76-year-old man with ABRA. The patient suffered progressive truncal oscillation, aphasia, and recent memory disturbance with a subacute disease onset. His cerebrospinal fluid showed a mild increase in protein levels (101 mg/dL) and pleocytosis (8/mm(3)). High-intensity brain lesion were detected on T(2)-weighted and FLAIR MRI scans, and prominent spread of gadolinium enhancement spreading was observed through the sulci of the left occipital and temporal lobes and left cerebellar hemisphere. A biopsy of the left temporal lesion showed a granulomatous and angiodestructive inflammation with infiltration of many CD4(+) T-lymphocytes and multinucleated giant cells and with fibrinoid necrosis of the arterial walls in the subarachnoid space. Immunolabeling for Aβ(1-40) revealed the abundant deposition of this protein in the affected arteries. On the basic of the diagnosis of ABRA, immunosuppressive therapy was conducted, and it ameliorated the clinical course.

  20. Redox Proteomics Analysis to Decipher the Neurobiology of Alzheimer-like Neurodegeneration: Overlaps in Down Syndrome and Alzheimer Disease Brain

    PubMed Central

    Butterfield, D. Allan; Di Domenico, Fabio; Swomley, Aaron M.; Head, Elizabeth; Perluigi, Marzia

    2015-01-01

    Accumulation of oxidative damage is a common feature of neurodegeneration that together with mitochondrial dysfunction point to the fact that reactive oxygen species are major contributors to loss of neuronal homeostasis and cell death. Among several targets of oxidative stress, free radical-mediated damage to proteins is particularly important in aging and age-related neurodegenerative diseases. In the majority of cases, oxidative stress mediated post-translational modifications cause non-reversible modifications of protein structure that consistently lead to impaired function. Redox proteomics methods are powerful tools to unravel the complexity of neurodegeneration, by identifying brain proteins with oxidative post-translational modifications that are detrimental for protein function. The present review discusses the current literature showing evidence of impaired pathways linked to oxidative stress possibly involved in the neurodegenerative process leading to the development of Alzheimer-like dementia. In particular, we focus attention on dysregulated pathways that underlie neurodegeneration in both aging adults with Down syndrome (DS) and AD. Since AD pathology is age-dependent in DS and shows similarities with AD, identification of common oxidized proteins by redox proteomics in both DS and AD can improve our understanding of the overlapping mechanisms that lead from normal aging to development of AD. The most relevant proteomics findings highlight that disturbance of protein homeostasis and energy production are central mechanisms of neurodegeneration and overlap in aging DS and AD. Protein oxidation impacts crucial intracellular functions and may be considered a “leitmotif” of degenerating neurons. Therapeutic strategies aimed at preventing/reducing multiple components of processes leading to accumulation of oxidative damage will be critical in future studies. PMID:25242166

  1. Multiple system atrophy of the cerebellar type (MSA-C) with concomitant beta-amyloid and tau pathology.

    PubMed

    Bujan, Bartosz; Hofer, Markus J; Oertel, Wolfgang H; Pagenstecher, Axel; Bürk, Katrin

    2013-01-01

    Multiple system atrophy (MSA) is a rapidly progressive sporadic α-synucleinopathy with adult onset characterized by progressive cerebellar ataxia, basal ganglia symptoms, autonomic dysfunction and pyramidal tract signs. While full-blown dementia is considered an exclusion criterion according to Consensus Guidelines, mild cognitive deficits such as fronto-executive dysfunction have been reported in some MSA individuals. However, the underlying anatomic correlate still has to be elucidated. We here report a 74-year-old patient with a clinical diagnosis of "probable MSA of the cerebellar type (MSA-C)" who developed pronounced clinical symptoms of fronto-executive dysfunction. Neuropathologic investigations revealed (1) numerous glial cytoplasmic inclusions (GCI) in the putamen, mesencephalon and cerebellum, (2) pronounced betaamyloid pathology in the frontal lobe and (3) mild hippocampal τ-pathology. In this patient, fronto-executive dysfunction can easily be explained by frontal degeneration typical for AD. These findings challenge the concept of cognitive dysfunction as a core feature of MSA as long as concomitant pathology other than MSA has not been reliably excluded by post mortem analysis.

  2. Trehalose protects from aggravation of amyloid pathology induced by isoflurane anesthesia in APP(swe) mutant mice.

    PubMed

    Perucho, Juan; Casarejos, Maria J; Gomez, Ana; Solano, Rosa M; de Yébenes, Justo Garcia; Mena, Maria A

    2012-03-01

    There is an open controversy about the role of surgery and anesthesia in the pathogenesis of Alzheimer's disease (AD). Clinical studies have shown a high prevalence of these procedures in subjects with AD but the interpretation of these studies is difficult because of the co-existence of multiple variables. Experimental studies in vitro and in vivo have shown that small molecular weight volatile anesthetics enhance amyloidogenesis in vitro and produce behavioral deficits and brain lesions similar to those found in patients with AD. We examined the effect of co-treatment with trehalose on isoflurane-induced amyloidogenesis in mice. WT and APP(swe) mice, of 11 months of age, were exposed to 1% isoflurane, 3 times, for 1.5 hours each time and sacrificed 24 hours after their last exposure to isoflurane. The right hemi-brain was used for histological analysis and the contra-lateral hemi-brain used for biochemical studies. In this study, we have shown that repetitive exposure to isoflurane in pre-symptomatic mature APP(swe) mice increases apoptosis in hippocampus and cerebral cortex, enhances astrogliosis and the expression of GFAP and that these effects are prevented by co-treatment with trehalose, a disaccharide with known effects as enhancer of autophagy. We have also confirmed that in our model the co-treatment with trehalose increases the expression of autophagic markers as well as the expression of chaperones. Cotreatment with trehalose reduces the levels of β amyloid peptide aggregates, tau plaques and levels of phospho-tau. Our study, therefore, provides new therapeutic avenues that could help to prevent the putative pro-amyloidogenic properties of small volatile anesthetics.

  3. Potential role of PCTAIRE-2, PCTAIRE-3 and P-Histone H4 in amyloid precursor protein-dependent Alzheimer pathology

    PubMed Central

    Chaput, Dale; Kirouac, Lisa; Stevens, Stanley M.; Padmanabhan, Jaya

    2016-01-01

    Amyloid Precursor Protein (APP) is regulated in a mitosis-specific manner and plays a role in proliferative signaling in cells. Though APP-derived Aβ generation has a well-established role in neurodegeneration, the mechanistic role of APP in this process is not fully understood. Here, we performed an unbiased, comprehensive analysis of the phosphoproteome signature in APP-null neuroblastoma cells (B103) compared to those expressing APP-695 isoform (B103-695) to determine if APP expression affects protein phosphorylation. Stable isotope labeling by amino acids in cell culture (SILAC) followed by mass spectrometry-based phosphoproteomic analysis with PolyMAC identified a total of 2,478 phosphopeptides in the B103 and B103-695 cell culture model system. We observed that phosphorylation of PCTAIRE-2 (CDK17), PCTAIRE-3 (CDK18), and Histone H4 are significantly elevated in B103-695 cells; western blot analysis confirmed overexpression of PCTAIREs and increased phosphorylation of Histone H4. More importantly, analysis of primary neurons treated with Aβ, as well as brain samples from MCI (mild cognitive impaired) and AD patients recapitulated these results, showing increased levels of PCTAIREs and P-Histone H4. These novel findings identify a hitherto uncharacterized mechanism by which APP and/or Aβ may promote AD neurodegeneration, and raises the possibility that their inhibition may protect against pathology development in AD. PMID:26885753

  4. Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer's disease.

    PubMed

    Fernandez-Martos, Carmen M; King, Anna E; Atkinson, Rachel A K; Woodhouse, Adele; Vickers, James C

    2015-10-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with the loss of cognitive function. Neurofilament (NF) triplet proteins, the major structural (intermediate filament) proteins of neurons, are expressed in a subset of pyramidal cells that show a high degree of vulnerability to degeneration in AD. Alterations in the NF triplet proteins in amyloid-beta (Aβ) plaque-associated dystrophic neurites (DNs) represent the first cytoskeletal aberration to occur in the neocortex in the earliest stages of AD. We generated transgenic APP/PS1 (APPswe/PSEN1dE9) mice on the neurofilament light knockout (NFL KO) background to explore the role of NFL deletion in the context of DN formation, synaptic changes, and other neuropathologic features. Our analysis demonstrated that NFL deficiency significantly increased neocortical DN pathology, Aβ deposition, synapse vulnerability, and microgliosis in APP/PS1 mice. Thus, NFs may have a role in protecting neurites from dystrophy and in regulating cellular pathways related to the generation of Aβ plaques.

  5. Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer's disease.

    PubMed

    Zhang, Wei; Wang, Pei-Jun; Sha, Hong-ying; Ni, Jiong; Li, Ming-hua; Gu, Guo-jun

    2014-10-01

    Neural stem cells (NSCs) are capable of self-renewal and are multipotent. Transplantation of NSCs may represent a promising approach for treating neurodegenerative disorders associated with cognitive decline, such as Alzheimer disease (AD) characterized by extensive loss of neurons. In this study, we investigated the effect of NSC transplantation on cognitive function in the amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mouse, an AD mouse model with age-dependent cognitive deficits. We found that NSCs bilaterally transplanted into hippocampal regions improved spatial learning and memory function in these mice, but did not alter Aβ pathology. Immunohistochemical analyses determined that NSCs proliferated, migrated, and differentiated into three neuronal cell types. The improvement in cognitive function was correlated with enhanced long-term potentiation (LTP) and an increase in the neuron expression of proteins related to cognitive function: N-methyl-D-aspartate (NMDA) 2B unit, synaptophysin (SYP), protein kinase C ζ subtypes (PKCζ), tyrosine receptor kinase B (TrkB), and brain-derived neurotrophic factor (BDNF). Taken together, our data indicated that injected NSCs can rescue cognitive deficits in APP/PS1 transgenic mice by replacing neuronal cell types expressing multiple cognition-related proteins that enhance LTP.

  6. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer's disease.

    PubMed

    Kashiwaya, Yoshihiro; Bergman, Christian; Lee, Jong-Hwan; Wan, Ruiqian; King, M Todd; Mughal, Mohamed R; Okun, Eitan; Clarke, Kieran; Mattson, Mark P; Veech, Richard L

    2013-06-01

    Alzheimer's disease (AD) involves progressive accumulation of amyloid β-peptide (Aβ) and neurofibrillary pathologies, and glucose hypometabolism in brain regions critical for memory. The 3xTgAD mouse model was used to test the hypothesis that a ketone ester-based diet can ameliorate AD pathogenesis. Beginning at a presymptomatic age, 2 groups of male 3xTgAD mice were fed a diet containing a physiological enantiomeric precursor of ketone bodies (KET) or an isocaloric carbohydrate diet. The results of behavioral tests performed at 4 and 7 months after diet initiation revealed that KET-fed mice exhibited significantly less anxiety in 2 different tests. 3xTgAD mice on the KET diet also exhibited significant, albeit relatively subtle, improvements in performance on learning and memory tests. Immunohistochemical analyses revealed that KET-fed mice exhibited decreased Aβ deposition in the subiculum, CA1 and CA3 regions of the hippocampus, and the amygdala. KET-fed mice exhibited reduced levels of hyperphosphorylated tau deposition in the same regions of the hippocampus, amygdala, and cortex. Thus, a novel ketone ester can ameliorate proteopathic and behavioral deficits in a mouse AD model.

  7. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease

    PubMed Central

    Kashiwaya, Yoshihiro; Bergman, Christian; Lee, Jong-Hwan; Wan, Ruiqian; King, M. Todd; Mughal, Mohamed R.; Okun, Eitan; Clarke, Kieran; Mattson, Mark P.; Veech, Richard L.

    2013-01-01

    Alzheimer’s disease (AD) involves progressive accumulation of amyloid β-peptide (Aβ) and neurofibrillary pathologies, and glucose hypometabolism in brain regions critical for memory. The 3xTgAD mouse model was used to test the hypothesis that a ketone ester–based diet can ameliorate AD pathogenesis. Beginning at a presymptomatic age, 2 groups of male 3xTgAD mice were fed a diet containing a physiological enantiomeric precursor of ketone bodies (KET) or an isocaloric carbohydrate diet. The results of behavioral tests performed at 4 and 7 months after diet initiation revealed that KET-fed mice exhibited significantly less anxiety in 2 different tests. 3xTgAD mice on the KET diet also exhibited significant, albeit relatively subtle, improvements in performance on learning and memory tests. Immunohistochemical analyses revealed that KET-fed mice exhibited decreased Aβ deposition in the subiculum, CA1 and CA3 regions of the hippocampus, and the amygdala. KET-fed mice exhibited reduced levels of hyperphosphorylated tau deposition in the same regions of the hippocampus, amygdala, and cortex. Thus, a novel ketone ester can ameliorate proteopathic and behavioral deficits in a mouse AD model. PMID:23276384

  8. Structural Similarities and Differences between Amyloidogenic and Non-Amyloidogenic Islet Amyloid Polypeptide (IAPP) Sequences and Implications for the Dual Physiological and Pathological Activities of These Peptides

    PubMed Central

    Wu, Chun; Shea, Joan-Emma

    2013-01-01

    IAPP, a 37 amino-acid peptide hormone belonging to the calcitonin family, is an intrinsically disordered protein that is coexpressed and cosecreted along with insulin by pancreatic islet β-cells in response to meals. IAPP plays a physiological role in glucose regulation; however, in certain species, IAPP can aggregate and this process is linked to β-cell death and Type II Diabetes. Using replica exchange molecular dynamics with extensive sampling (16 replicas per sequence and 600 ns per replica), we investigate the structure of the monomeric state of two species of aggregating peptides (human and cat IAPP) and two species of non-aggregating peptides (pig and rat IAPP). Our simulations reveal that the pig and rat conformations are very similar, and consist of helix-coil and helix-hairpin conformations. The aggregating sequences, on the other hand, populate the same helix-coil and helix-hairpin conformations as the non-aggregating sequence, but, in addition, populate a hairpin structure. Our exhaustive simulations, coupled with available peptide-activity data, leads us to a structure-activity relationship (SAR) in which we propose that the functional role of IAPP is carried out by the helix-coil conformation, a structure common to both aggregating and non-aggregating species. The pathological role of this peptide may have multiple origins, including the interaction of the helical elements with membranes. Nonetheless, our simulations suggest that the hairpin structure, only observed in the aggregating species, might be linked to the pathological role of this peptide, either as a direct precursor to amyloid fibrils, or as part of a cylindrin type of toxic oligomer. We further propose that the helix-hairpin fold is also a possible aggregation prone conformation that would lead normally non-aggregating variants of IAPP to form fibrils under conditions where an external perturbation is applied. The SAR relationship is used to suggest the rational design of therapeutics

  9. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William

    2007-01-01

    Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.

  10. Ablation of Prion Protein in Wild Type Human Amyloid Precursor Protein (APP) Transgenic Mice Does Not Alter The Proteolysis of APP, Levels of Amyloid-β or Pathologic Phenotype

    PubMed Central

    Baybutt, Herbert; Diack, Abigail B.; Kellett, Katherine A. B.; Piccardo, Pedro; Manson, Jean C.

    2016-01-01

    The cellular prion protein (PrPC) has been proposed to play an important role in the pathogenesis of Alzheimer’s disease. In cellular models PrPC inhibited the action of the β-secretase BACE1 on wild type amyloid precursor protein resulting in a reduction in amyloid-β (Aβ) peptides. Here we have assessed the effect of genetic ablation of PrPC in transgenic mice expressing human wild type amyloid precursor protein (line I5). Deletion of PrPC had no effect on the α- and β-secretase proteolysis of the amyloid precursor protein (APP) nor on the amount of Aβ38, Aβ40 or Aβ42 in the brains of the mice. In addition, ablation of PrPC did not alter Aβ deposition or histopathology phenotype in this transgenic model. Thus using this transgenic model we could not provide evidence to support the hypothesis that PrPC regulates Aβ production. PMID:27447728

  11. Origins of amyloid

    PubMed Central

    2013-01-01

    Background Amyloid-β plaques are a defining characteristic of Alzheimer Disease. However, Amyloid-β deposition is also found in other forms of dementia and in non-pathological contexts. Amyloid-β deposition is variable among vertebrate species and the evolutionary emergence of the amyloidogenic property is currently unknown. Evolutionary persistence of a pathological peptide sequence may depend on the functions of the precursor gene, conservation or mutation of nucleotides or peptide domains within the precursor gene, or a species-specific physiological environment. Results In this study, we asked when amyloidogenic Amyloid-β first arose using phylogenetic trees constructed for the Amyloid-β Precursor Protein gene family and by modeling the potential for Amyloid-β aggregation across species in silico. We collected the most comprehensive set of sequences for the Amyloid-β Precursor Protein family using an automated, iterative meta-database search and constructed a highly resolved phylogeny. The analysis revealed that the ancestral gene for invertebrate and vertebrate Amyloid-β Precursor Protein gene families arose around metazoic speciation during the Ediacaran period. Synapomorphic frequencies found domain-specific conservation of sequence. Analyses of aggregation potential showed that potentially amyloidogenic sequences are a ubiquitous feature of vertebrate Amyloid-β Precursor Protein but are also found in echinoderm, nematode, and cephalochordate, and hymenoptera species homologues. Conclusions The Amyloid-β Precursor Protein gene is ancient and highly conserved. The amyloid forming Amyloid-β domains may have been present in early deuterostomes, but more recent mutations appear to have resulted in potentially unrelated amyoid forming sequences. Our results further highlight that the species-specific physiological environment is as critical to Amyloid-β formation as the peptide sequence. PMID:23627794

  12. A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer's disease: effect on Tau and amyloid pathologies in vitro.

    PubMed

    Coutadeur, Séverine; Benyamine, Hélène; Delalonde, Laurence; de Oliveira, Catherine; Leblond, Bertrand; Foucourt, Alicia; Besson, Thierry; Casagrande, Anne-Sophie; Taverne, Thierry; Girard, Angélique; Pando, Matthew P; Désiré, Laurent

    2015-05-01

    The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aβ) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Aβ production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ-induced Tau phosphorylation and DYRK1A-stimulated Aβ production. DYRK1A is thus as a key element of Aβ-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies. Inhibition of the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is a new high-potential therapeutic approach for Alzheimer disease. Here we describe EHT 5372, a novel potent and selective DYRK1A inhibitor. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation, Aβ production and Aβ effects on phospho-Tau, including Tau aggregation.

  13. The yin and yang of amyloid aggregation

    PubMed Central

    Falsone, S Fabio

    2015-01-01

    Intra- and extra-cellular amyloid protein fibers are traditionally coupled to a series of devastating and incurable neurodegenerative disorders. Since the discovery of physiologically useful amyloids, our attention has been shifting from pure pathology to function, as amyloid aggregation seems to constitute a basis for the functional and dynamic assembly of biological structures. The following article summarizes how the cell profits from such an unconventional high-risk aggregation at the rim of physiologic utility and pathologic catastrophe. PMID:28031869

  14. Early AD pathology in a [C-11]PiB-negative case: a PiB-amyloid imaging, biochemical, and immunohistochemical study.

    PubMed

    Ikonomovic, Milos D; Abrahamson, Eric E; Price, Julie C; Hamilton, Ronald L; Mathis, Chester A; Paljug, William R; Debnath, Manik L; Cohen, Anne D; Mizukami, Katsuyoshi; DeKosky, Steven T; Lopez, Oscar L; Klunk, William E

    2012-03-01

    Amyloid-β (Aβ) deposits are detectable in the brain in vivo using positron emission tomography (PET) and [C-11]-labeled Pittsburgh Compound B ([C-11]PiB); however, the sensitivity of this technique is not well understood. In this study, we examined Aβ pathology in an individual who had clinical diagnoses of probable dementia with Lewy bodies and possible Alzheimer's disease (AD) but with no detectable [C-11]PiB PET retention ([C-11]PiB(-)) when imaged 17 months prior to death. Brain samples were processed in parallel with region-matched samples from an individual with a clinical diagnosis of probable AD and a positive [C-11]PiB PET scan ([C-11]PiB(+)) when imaged 10 months prior to death. In the [C-11]PiB(-) case, Aβ plaques were sparse, occupying less than 2% cortical area, and were weakly labeled with 6-CN-PiB, a highly fluorescent derivative of PiB. In contrast, Aβ plaques occupied up to 12% cortical area in the [C-11]PiB(+) case, and were intensely labeled with 6-CN-PIB. The [C-11]PiB(-) case had low levels of [H-3]PiB binding (< 100 pmol/g) and Aβ1-42 (< 500 pmol/g) concentration except in the frontal cortex where Aβ1-42 values (788 pmol/g) approached cortical values in the [C-11]PiB(+) case (800-1, 700 pmol/g). In several cortical regions of the [C-11]PiB(-) case, Aβ1-40 levels were within the range of cortical Aβ1-40 values in the [C-11]PiB(+) case. Antemortem [C-11]PiB DVR values correlated well with region-matched postmortem measures of Aβ1-42 and Aβ1-40 in the [C-11]PiB(+), and with Aβ1-42 only in the [C-11]PiB(-) case. The low ratios of [H-3]PiB binding levels to Aβ concentrations and 6-CN-PiB to Aβ plaque loads in the [C-11]PiB(-) case indicate that Aβ pathology in the brain may be associated with low or undetectable levels of [C-11]PiB retention. Studies in greater numbers of [C-11]PiB PET autopsy cases are needed to define the Aβ concentration and [H-3]PiB binding levels required to produce a positive [C-11]PiB PET signal.

  15. Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics.

    PubMed

    Maetzler, Walter; Liepelt, Inga; Reimold, Matthias; Reischl, Gerald; Solbach, Christoph; Becker, Clemens; Schulte, Claudia; Leyhe, Thomas; Keller, Stefanie; Melms, Arthur; Gasser, Thomas; Berg, Daniela

    2009-04-01

    About one fourth of Lewy body disease (LBD) patients show cortical beta-amyloid load, basically a hallmark of Alzheimer disease (AD). Using [11C]PIB-PET, we tested whether LBD patients with beta-amyloid burden differ from those without with respect to demographic, clinical, biochemical and genetic parameters. Thirty-five LBD subjects (9 patients with Lewy body dementia, DLB; 12 demented Parkinson patients, PDD; 14 non-demented PD, PDND) underwent [11C]PIB-PET, and were classified as either PIB(+) or PIB(-) according to cortical PIB uptake. PIB+ and PIB(-) patients were then compared according to demographic, clinical, biochemical and genetic parameters. None of the PDND, but four PDD and four DLB subjects were PIB+. In PIB+ subjects, ApoE4 prevalence was higher, CSF Abeta42 levels were lower and, among demented patients, PIB-binding was associated with a lower MMSE score. Motor symptoms were not associated with PIB binding. Thus, LBD patients with cortical beta-amyloid show characteristics usually observed in AD.

  16. Nanomechanical properties of single amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Sweers, K. K. M.; Bennink, M. L.; Subramaniam, V.

    2012-06-01

    Amyloid fibrils are traditionally associated with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease or Creutzfeldt-Jakob disease. However, the ability to form amyloid fibrils appears to be a more generic property of proteins. While disease-related, or pathological, amyloid fibrils are relevant for understanding the pathology and course of the disease, functional amyloids are involved, for example, in the exceptionally strong adhesive properties of natural adhesives. Amyloid fibrils are thus becoming increasingly interesting as versatile nanobiomaterials for applications in biotechnology. In the last decade a number of studies have reported on the intriguing mechanical characteristics of amyloid fibrils. In most of these studies atomic force microscopy (AFM) and atomic force spectroscopy play a central role. AFM techniques make it possible to probe, at nanometer length scales, and with exquisite control over the applied forces, biological samples in different environmental conditions. In this review we describe the different AFM techniques used for probing mechanical properties of single amyloid fibrils on the nanoscale. An overview is given of the existing mechanical studies on amyloid. We discuss the difficulties encountered with respect to the small fibril sizes and polymorphic behavior of amyloid fibrils. In particular, the different conformational packing of monomers within the fibrils leads to a heterogeneity in mechanical properties. We conclude with a brief outlook on how our knowledge of these mechanical properties of the amyloid fibrils can be exploited in the construction of nanomaterials from amyloid fibrils.

  17. Functional amyloid formation within mammalian tissue.

    PubMed

    Fowler, Douglas M; Koulov, Atanas V; Alory-Jost, Christelle; Marks, Michael S; Balch, William E; Kelly, Jeffery W

    2006-01-01

    Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  18. Chronic neuron- and age-selective down-regulation of TNF receptor expression in triple-transgenic Alzheimer disease mice leads to significant modulation of amyloid- and Tau-related pathologies.

    PubMed

    Montgomery, Sara L; Narrow, Wade C; Mastrangelo, Michael A; Olschowka, John A; O'Banion, M Kerry; Bowers, William J

    2013-06-01

    Neuroinflammation, through production of proinflammatory molecules and activated glial cells, is implicated in Alzheimer's disease (AD) pathogenesis. One such proinflammatory mediator is tumor necrosis factor α (TNF-α), a multifunctional cytokine produced in excess and associated with amyloid β-driven inflammation and cognitive decline. Long-term global inhibition of TNF receptor type I (TNF-RI) and TNF-RII signaling without cell or stage specificity in triple-transgenic AD mice exacerbates hallmark amyloid and neurofibrillary tangle pathology. These observations revealed that long-term pan anti-TNF-α inhibition accelerates disease, cautions against long-term use of anti-TNF-α therapeutics for AD, and urges more selective regulation of TNF signaling. We used adeno-associated virus vector-delivered siRNAs to selectively knock down neuronal TNF-R signaling. We demonstrate divergent roles for neuronal TNF-RI and TNF-RII where loss of opposing TNF-RII leads to TNF-RI-mediated exacerbation of amyloid β and Tau pathology in aged triple-transgenic AD mice. Dampening of TNF-RII or TNF-RI+RII leads to a stage-independent increase in Iba-1-positive microglial staining, implying that neuronal TNF-RII may act nonautonomously on the microglial cell population. These results reveal that TNF-R signaling is complex, and it is unlikely that all cells and both receptors will respond positively to broad anti-TNF-α treatments at various stages of disease. In aggregate, these data further support the development of cell-, stage-, and/or receptor-specific anti-TNF-α therapeutics for AD.

  19. Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice.

    PubMed

    Chen, Yanxing; Liang, Zhihou; Tian, Zhu; Blanchard, Julie; Dai, Chun-Ling; Chalbot, Sonia; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2014-02-01

    Alzheimer's disease (AD) involves several possible molecular mechanisms, including impaired brain insulin signaling and glucose metabolism. To investigate the role of metabolic insults in AD, we injected streptozotocin (STZ), a diabetogenic compound if used in the periphery, into the lateral ventricle of the 6-month-old 3xTg-AD mice and studied the cognitive function as well as AD-like brain abnormalities, such as tau phosphorylation and Aβ accumulation, 3-6 weeks later. We found that STZ exacerbated impairment of short-term and spatial reference memory in 3xTg-AD mice. We also observed an increase in tau hyperphosphorylation and neuroinflammation, a disturbance of brain insulin signaling, and a decrease in synaptic plasticity and amyloid β peptides in the brain after STZ treatment. The expression of 20 AD-related genes, including those involved in the processing of amyloid precursor protein, cytoskeleton, glucose metabolism, insulin signaling, synaptic function, protein kinases, and apoptosis, was altered, suggesting that STZ disturbs multiple metabolic and cell signaling pathways in the brain. These findings provide experimental evidence of the role of metabolic insult in AD.

  20. Regulation of astrocyte pathology by fluoxetine prevents the deterioration of Alzheimer phenotypes in an APP/PS1 mouse model.

    PubMed

    Qiao, Jinping; Wang, Junhui; Wang, Hongxing; Zhang, Yanbo; Zhu, Shenghua; Adilijiang, Abulimiti; Guo, Huining; Zhang, Ruiguo; Guo, Wei; Luo, Gang; Qiu, Yiqing; Xu, Haiyun; Kong, Jiming; Huang, Qingjun; Li, Xin-Min

    2016-02-01

    Studies have implicated astrocytic dysfunction in Alzheimer's disease (AD). However, the role of astrocytes in the pathophysiology and treatment of the disease is poorly characterized. Here, we identified astrocytes as independent key factors involved in several Alzheimer-like phenotypes in an APP/PS1 mouse model, including amyloid pathology, altered neuronal and synaptic properties, and impaired cognition. In vitro astrocytes from APP/PS1 mice induced synaptotoxicity as well as reduced dendritic complexity and axonal branching of hippocampal neurons. These astrocytes produced high levels of soluble β-amyloid (Aβ) which could be significantly inhibited by fluoxetine (FLX) via activating serotonin 5-HT2 receptors. FLX could also protect hippocampal neurons against astrocyte-induced neuronal damage in vitro. In the same APP/PS1 mice, FLX inhibited activation of astrocytes, lowered Aβ products, ameliorated neurotoxicity, and improved behavioral performance. These findings may provide a basis for the clinical application of FLX in patients, and may also lay the groundwork for exploration of other novel astrocyte-based therapies of AD.

  1. A novel approach to the identification and quantitative elemental analysis of amyloid deposits-Insights into the pathology of Alzheimer's disease

    SciTech Connect

    Rajendran, Reshmi; Minqin, Ren; Ynsa, Maria Dolores; Casadesus, Gemma; Smith, Mark A.; Perry, George; Halliwell, Barry; Watt, Frank

    2009-04-24

    There is considerable interest in the role of metals such as iron, copper, and zinc in amyloid plaque formation in Alzheimer's disease. However to convincingly establish their presence in plaques in vivo, a sensitive technique is required that is both quantitatively accurate and avoids isolation of plaques or staining/fixing brain tissue, since these processes introduce contaminants and redistribute elements within the tissue. Combining the three ion beam techniques of scanning transmission ion microscopy, Rutherford back scattering spectrometry and particle induced X-ray emission in conjunction with a high energy (MeV) proton microprobe we have imaged plaques in freeze-dried unstained brain sections from CRND-8 mice, and simultaneously quantified iron, copper, and zinc. Our results show increased metal concentrations within the amyloid plaques compared with the surrounding tissue: iron (85 ppm compared with 42 ppm), copper (16 ppm compared to 6 ppm), and zinc (87 ppm compared to 34 ppm).

  2. The Polyphenol Oleuropein Aglycone Protects TgCRND8 Mice against Aß Plaque Pathology

    PubMed Central

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and “fluffy”; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet. PMID:23951225

  3. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology.

    PubMed

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and "fluffy"; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.

  4. Cerebral Amyloid Angiopathy: Emerging Concepts

    PubMed Central

    2015-01-01

    Cerebral amyloid angiopathy (CAA) involves cerebrovascular amyloid deposition and is classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer's disease (AD). Cerebrovascular Aβ deposits accompany functional and pathological changes in cerebral blood vessels (CAA-associated vasculopathies). CAA-associated vasculopathies lead to development of hemorrhagic lesions [lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis (cSS)/focal convexity subarachnoid hemorrhage (SAH)], ischemic lesions (cortical infarction and ischemic changes of the white matter), and encephalopathies that include subacute leukoencephalopathy caused by CAA-associated inflammation/angiitis. Thus, CAA is related to dementia, stroke, and encephalopathies. Recent advances in diagnostic procedures, particularly neuroimaging, have enabled us to establish a clinical diagnosis of CAA without brain biopsies. Sensitive magnetic resonance imaging (MRI) methods, such as gradient-echo T2* imaging and susceptibility-weighted imaging, are useful for detecting cortical microhemorrhages and cSS. Amyloid imaging with amyloid-binding positron emission tomography (PET) ligands, such as Pittsburgh Compound B, can detect CAA, although they cannot discriminate vascular from parenchymal amyloid deposits. In addition, cerebrospinal fluid markers may be useful, including levels of Aβ40 for CAA and anti-Aβ antibody for CAA-related inflammation. Moreover, cSS is closely associated with transient focal neurological episodes (TFNE). CAA-related inflammation/angiitis shares pathophysiology with amyloid-related imaging abnormalities (ARIA) induced by Aβ immunotherapies in AD patients. This article reviews CAA and CAA-related disorders with respect to their epidemiology, pathology, pathophysiology, clinical features, biomarkers, diagnosis

  5. Deficiency of Neuronal p38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1.

    PubMed

    Schnöder, Laura; Hao, Wenlin; Qin, Yiren; Liu, Shirong; Tomic, Inge; Liu, Xu; Fassbender, Klaus; Liu, Yang

    2016-01-29

    Amyloid β (Aβ) damages neurons and triggers microglial inflammatory activation in the Alzheimer disease (AD) brain. BACE1 is the primary enzyme in Aβ generation. Neuroinflammation potentially up-regulates BACE1 expression and increases Aβ production. In Alzheimer amyloid precursor protein-transgenic mice and SH-SY5Y cell models, we specifically knocked out or knocked down gene expression of mapk14, which encodes p38α MAPK, a kinase sensitive to inflammatory and oxidative stimuli. Using immunological and biochemical methods, we observed that reduction of p38α MAPK expression facilitated the lysosomal degradation of BACE1, decreased BACE1 protein and activity, and subsequently attenuated Aβ generation in the AD mouse brain. Inhibition of p38α MAPK also enhanced autophagy. Blocking autophagy by treating cells with 3-methyladenine or overexpressing dominant-negative ATG5 abolished the deficiency of the p38α MAPK-induced BACE1 protein reduction in cultured cells. Thus, our study demonstrates that p38α MAPK plays a critical role in the regulation of BACE1 degradation and Aβ generation in AD pathogenesis.

  6. Superresolution Imaging of Amyloid Fibrils with Binding-Activated Probes

    PubMed Central

    2013-01-01

    Protein misfolding into amyloid-like aggregates underlies many neurodegenerative diseases. Thus, insights into the structure and function of these amyloids will provide valuable information on the pathological mechanisms involved and aid in the design of improved drugs for treating amyloid-based disorders. However, determining the structure of endogenous amyloids at high resolution has been difficult. Here we employ binding-activated localization microscopy (BALM) to acquire superresolution images of α-synuclein amyloid fibrils with unprecedented optical resolution. We propose that BALM imaging can be extended to study the structure of other amyloids, for differential diagnosis of amyloid-related diseases and for discovery of drugs that perturb amyloid structure for therapy. PMID:23594172

  7. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART).

    PubMed

    Josephs, Keith A; Murray, Melissa E; Tosakulwong, Nirubol; Whitwell, Jennifer L; Knopman, David S; Machulda, Mary M; Weigand, Stephen D; Boeve, Bradley F; Kantarci, Kejal; Petrucelli, Leonard; Lowe, Val J; Jack, Clifford R; Petersen, Ronald C; Parisi, Joseph E; Dickson, Dennis W

    2017-02-03

    We investigate whether there is any association between the Braak neurofibrillary tangle (NFT) stage and clinical and MRI features in definite primary age-related tauopathy (PART). We analysed 52 cases with a Braak NFT tangle stage >0 and ≤IV, and a Thal phase of 0 (no beta-amyloid present). Twenty-nine (56%) were female. Median age at death was 88 years (IQR 82-92 years). Fifteen (29%) were TDP-positive (75% TDP stage I), 16 (31%) had argyrophilic grain disease and three (6%) had alpha-synuclein-positive Lewy bodies. TDP-43 inclusion when present were rare and predominantly perivascular. Of the 15 with TDP-43, three showed a moderate number of inclusions and also had hippocampal sclerosis, neuronal intranuclear inclusions and fine neurites of the CA1 region of the hippocampus. Four cases (8%) had an apolipoprotein epsilon 4 (APOE4) allele. There was a significant correlation between age at death and Braak NFT stage (r = 0.32, p = 0.02). After accounting for age at clinical examination, there were significant associations between Braak NFT stage, and WAIS-R Block Design and Trail Making Tests A and B, with higher Braak stage associated with poorer performances. Thirty of the 52 cases had completed an antemortem volumetric head MRI. Two separate MRI analyses revealed an association between higher Braak NFT stage and grey matter atrophy in the head of the left hippocampus. There were no significant clinical or radiologic associations with TDP-43. Findings from this study demonstrate that aggregated tau distribution is associated with poorer cognitive performance, as well as atrophy, in the absence of beta-amyloid. These findings support the parcellation of definite PART as a useful construct. The relatively low frequencies of APOE4, TDP-43, Lewy bodies, and hippocampal sclerosis, and the rarity and morphology of TDP-43 lesions are noted contrasts to what is typically observed in Alzheimer's disease of the old.

  8. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes.

    PubMed

    Gupta, Amit; Bisht, Bharti; Dey, Chinmoy Sankar

    2011-05-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Pharmacological treatments presently available can slow down the progression of symptoms but can not cure the disease. Currently there is widening recognition that AD is closely associated with impaired insulin signaling and glucose metabolism in brain, suggesting it to be a brain-specific form of diabetes and so also termed as "type 3 diabetes". Hence investigating the role of pharmacological agents that could ameliorate neuronal insulin resistance merit attention in AD therapeutics, however the therapeutics for pathophysiological condition like neuronal insulin resistance itself is largely unknown. In the present study we have determined the effect of metformin on neuronal insulin resistance and AD-associated characteristics in an in vitro model of "type 3 diabetes" by differentiating neuronal cell line Neuro-2a under prolonged presence of insulin. We observed that prolonged hyperinsulinemic conditions in addition to generating insulin resistance also led to development of hallmark AD-associated neuropathological changes. Treatment with metformin sensitized the impaired insulin actions and also prevented appearance of molecular and pathological characteristics observed in AD. The results thus demonstrate possible therapeutic efficacy of peripheral insulin-sensitizer drug metformin in AD by its ability to sensitize neuronal insulin resistance. These findings also provide direct evidences linking hyperinsulinemia and AD and suggest a unique opportunity for prevention and treatment of "type 3 diabetes".

  9. Alpha7 nicotinic acetylcholine receptor is required for amyloid pathology in brain endothelial cells induced by Glycoprotein 120, methamphetamine and nicotine

    PubMed Central

    Liu, Liqun; Yu, Jingyi; Li, Li; Zhang, Bao; Liu, Lingjuan; Wu, Chun-Hua; Jong, Ambrose; Mao, Ding-An; Huang, Sheng-He

    2017-01-01

    One of the most challenging issues in HIV-associated neurocognitive disorders (HAND) caused by HIV-1 virotoxins and drug abuse is the lack of understanding the underlying mechanisms that are commonly associated with disorders of the blood-brain barrier (BBB), which mainly consists of brain microvascular endothelial cells (BMEC). Here, we hypothesized that Glycoprotein 120 (gp120), methamphetamine (METH) and nicotine (NT) can enhance amyloid-beta (Aβ) accumulation in BMEC through Alpha7 nicotinic acetylcholine receptor (α7 nAChR). Both in vitro (human BMEC) (HBMEC) and in vivo (mice) models of BBB were used to dissect the role of α7 nAChR in up-regulation of Aβ induced by gp120, METH and NT. Aβ release from and transport across HBMEC were significantly increased by these factors. Methyllycaconitine (MLA), an antagonist of α7 nAChR, could efficiently block these pathogenic effects. Furthermore, our animal data showed that these factors could significantly increase the levels of Aβ, Tau and Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in mouse cerebrospinal fluid (CSF) and Aβ in the mouse brains. These pathogenicities were significantly reduced by MLA, suggesting that α7 nAChR may play an important role in neuropathology caused by gp120, METH and NT, which are the major pathogenic factors contributing to the pathogenesis of HAND. PMID:28074940

  10. Oral TNFα Modulation Alters Neutrophil Infiltration, Improves Cognition and Diminishes Tau and Amyloid Pathology in the 3xTgAD Mouse Model

    PubMed Central

    Gabbita, S. Prasad; Johnson, Ming F.; Kobritz, Naomi; Eslami, Pirooz; Poteshkina, Aleksandra; Varadarajan, Sridhar; Turman, John; Zemlan, Frank; Harris-White, Marni E.

    2015-01-01

    Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer’s Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer’s disease. PMID:26436670

  11. Postmortem 3-D brain hemisphere cortical tau and amyloidpathology mapping and quantification as a validation method of neuropathology imaging.

    PubMed

    Smid, Lojze M; Kepe, Vladimir; Vinters, Harry V; Bresjanac, Mara; Toyokuni, Tatsushi; Satyamurthy, Nagichettiar; Wong, Koon-Pong; Huang, Sung-Cheng; Silverman, Daniel H S; Miller, Karen; Small, Gary W; Barrio, Jorge R

    2013-01-01

    This work is aimed at correlating pre-mortem [18F]FDDNP positron emission tomography (PET) scan results in a patient with dementia with Lewy bodies (DLB), with cortical neuropathology distribution determined postmortem in three physical dimensions in whole brain coronal sections. Analysis of total amyloid-β (Aβ) distribution in frontal cortex and posterior cingulate gyrus confirmed its statistically significant correlation with cortical [18F]FDDNP PET binding values (distribution volume ratios, DVR) (p < 0.001, R = 0.97, R2 = 0.94). Neurofibrillary tangle (NFT) distribution correlated significantly with cortical [18F]FDDNP PET DVR in the temporal lobe (p < 0.001, R = 0.87, R2 = 0.76). Linear combination of Aβ and NFT densities was highly predictive of [18F]FDDNP PET DVR through all analyzed regions of interest (p < 0.0001, R = 0.92, R2 = 0.85), and both densities contributed significantly to the model. Lewy bodies were present at a much lower level than either Aβ or NFTs and did not significantly contribute to the in vivo signal. [18F]FDG PET scan results in this patient were consistent with the distinctive DLB pattern of hypometabolism. This work offers a mapping brain model applicable to all imaging probes for verification of imaging results with Aβ and/or tau neuropathology brain distribution using immunohistochemistry, fluorescence microscopy, and autoradiography.

  12. The Protective Role of microRNA-200c in Alzheimer's Disease Pathologies Is Induced by Beta Amyloid-Triggered Endoplasmic Reticulum Stress

    PubMed Central

    Wu, Qi; Ye, Xiaoyang; Xiong, Yi; Zhu, Haili; Miao, Jianting; Zhang, Wei; Wan, Jun

    2016-01-01

    MicroRNAs are small non-coding RNAs that repress the expression of their target proteins. The roles of microRNAs in the development of Alzheimer's disease (AD) are not clear. In this study we show that miR-200c represses the expression of PTEN protein. PTEN downregulation by miR-200c supports the survival and differentiation of cultured neurons. AD is a progressive neurodegenerative disease signified by beta amyloid (Aβ) peptide aggregation and deposition. In a mouse model of AD that is induced by APPswe and PS1ΔE9 double transgenes, we found Aβ deposition results in neuronal ER stress that induces miR200c. Pharmacological blockade of ER stress inhibited Aβ-induced miR-200c overexpression in AD brains. MiR-200c was detected in the serum of both AD mice and human AD patients. These findings suggest that miR-200c functions as part of the neuronal cell-intrinsic adaptive machinery, and supports neuronal survival and differentiation in response to Aβ induced ER-stress by downregulating PTEN. PMID:28008308

  13. Amyloid fibrils compared to peptide nanotubes.

    PubMed

    Zganec, Matjaž; Zerovnik, Eva

    2014-09-01

    Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.

  14. Brain amyloid-β oligomers in ageing and Alzheimer's disease.

    PubMed

    Lesné, Sylvain E; Sherman, Mathew A; Grant, Marianne; Kuskowski, Michael; Schneider, Julie A; Bennett, David A; Ashe, Karen H

    2013-05-01

    Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models-amyloid-β trimers, Aβ*56 and amyloid-β dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic

  15. A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer's amyloid precursor protein beta-secretase.

    PubMed

    Solans, A; Estivill, X; de La Luna, S

    2000-01-01

    Down syndrome individuals develop abnormalities of most organs, including all the pathological and neurochemical features of Alzheimer's disease, by the early age of 30 yr. Here, we report the isolation and characterization of BACE2, a gene mapping on human chromosome 21q22.3, which is highly similar to a transmembrane aspartyl protease, BACE (for beta-site APP-cleaving enzyme), which is able to catalyze the beta-secretase cleavage of Alzheimer's amyloid precursor protein (APP). BACE2 is expressed in a wide variety of organs and tissues, with several transcripts due to alternative splicing and the use of two polyadenylation signals. The BACE2 gene product is a 518 amino acid protein with the signature of an aspartic protease, a 20-residue signal peptide, and two putative N-glycosylation sites. In addition, and similarly to BACE, BACE2 differs from the other members of the human aspartic protease family in the number and distribution of putative disulfide bonds and in the presence of an extended C-terminal region which contains a predicted transmembrane segment. BACE2 could be involved in the Alzheimer-like neuropathology of Down syndrome, as well as in Alzheimer's disease linked to chromosome 21 but not showing mutations in APP.

  16. APOE and Cerebral Amyloid Angiopathy in Community Dwelling Older Persons

    PubMed Central

    Yu, Lei; Boyle, Patricia A.; Nag, Sukriti; Leurgans, Sue; Buchman, Aron S.; Wilson, Robert S.; Arvanitakis, Zoe; Farfel, Jose M.; De Jager, Philip L.; Bennett, David A.; Schneider, Julie A.

    2015-01-01

    Both cerebral amyloid angiopathy and Alzheimer’s disease pathology involve abnormal β-amyloid processing. We aim to elucidate the relationship of the apolipoprotein E (APOE) genotypes with amyloid angiopathy in the presence of variable amounts of Alzheimer’s pathology. Data came from 1,062 autopsied subjects from two community-based studies of aging. Common neuropathologies including Alzheimer’s disease and amyloid angiopathy were assessed using uniform methods. APOE was genotyped by sequencing the two polymorphisms in codons 112 and 158 of exon 4. We examined the associations of APOE with amyloid angiopathy using ordinal logistic regression analyses, controlling for demographics and subsequently Alzheimer’s and other common pathologies. Moderate to severe amyloid angiopathy was identified in 35.2% (n=374) of the subjects. 15.3% (n=162) of the subjects were APOE ε2 carriers and 26.1% (n=277) ε4 carriers. Adjusting for demographics, the presence of ε4 allele, but not ε2, was associated with more severe amyloid angiopathy. After further adjustment for Alzheimer’s pathology, both ε2 (odds ratio 1.707, 95% confidence interval 1.236–2.358, p=0.001) and ε4 (odds ratio 2.284, 95% confidence interval 1.730–3.014, p<0.001) were independently associated with amyloid angiopathy. The results were confirmed by path analysis. Further, APOE ε4 carriers, but not ε2 carriers, were more likely to have capillary amyloid angiopathy. Accounting for capillary involvement did not alter the APOE associations with amyloid angiopathy. We conclude that both APOE ε2 and ε4 alleles are associated with more severe cerebral amyloid angiopathy, and the direct effect of ε2 is masked by the allele’s negative association with comorbid Alzheimer’s pathology. APOE ε4, but not ε2, is associated with capillary amyloid angiopathy. PMID:26341746

  17. Amyloid beta peptide immunotherapy in Alzheimer disease.

    PubMed

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation.

  18. Amyloid Beta as a Modulator of Synaptic Plasticity

    PubMed Central

    Parihar, Mordhwaj S; Brewer, Gregory J

    2011-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is present in the brain of symptom-free people where it likely performs important physiological roles. New evidence indicates that synaptic activity directly evokes the release of amyloid beta at the synapse. At physiological levels, amyloid beta is a normal, soluble product of neuronal metabolism that regulates synaptic function beginning early in life. Monomeric amyloid beta 40 and 42 are the predominant forms required for synaptic plasticity and neuronal survival. With age, some assemblies of amyloid beta are associated with synaptic failure and Alzheimer’s disease pathology, possibly targeting the N-methyl-D-aspartic acid (NMDA) receptor through the α7-nicotinic acetylcholine receptor (α7-nAChR), mitochondrial amyloid-β alcohol dehydrogenase (ABAD) and cyclophilin D. But emerging data suggests a distinction between age effects on the target response in contrast to the assembly state or the accumulation of the peptide. Both aging and beta amyloid independently decrease neuronal plasticity. Our laboratory has reported that amyloid beta, glutamate and lactic acid are each increasingly toxic with neuron age. The basis of the age-related toxicity partly resides in age-related mitochondrial dysfunction and an oxidative shift in mitochondrial and cytoplasmic redox potential. In turn, signaling through phosphorylated extracellular signal-regulated protein kinases (pERK) is affected along with an age-independent increase in phosphorylated cAMP response element-binding protein (p

  19. Protein folding pathology in domestic animals*

    PubMed Central

    Gruys, Erik

    2004-01-01

    Fibrillar proteins form structural elements of cells and the extracellular matrix. Pathological lesions of fibrillar microanatomical structures, or secondary fibrillar changes in globular proteins are well known. A special group concerns histologically amorphous deposits, amyloid. The major characteristics of amyloid are: apple green birefringence after Congo red staining of histological sections, and non-branching 7–10 nm thick fibrils on electron microscopy revealing a high content of cross beta pleated sheets. About 25 different types of amyloid have been characterised. In animals, AA-amyloid is the most frequent type. Other types of amyloid in animals represent: AIAPP (in cats), AApoAI, AApoAII, localised AL-amyloid, amyloid in odontogenic or mammary tumors and amyloid in the brain. In old dogs Aβ and in sheep APrPsc-amyloid can be encountered. AA-amyloidosis is a systemic disorder with a precursor in blood, acute phase serum amyloid A (SAA). In chronic inflammatory processes AA-amyloid can be deposited. A rapid crystallization of SAA to amyloid fibrils on small beta-sheeted fragments, the ‘amyloid enhancing factor’ (AEF), is known and the AEF has been shown to penetrate the enteric barrier. Amyloid fibrils can aggregate from various precursor proteins in vitro in particular at acidic pH and when proteolytic fragments are formed. Molecular chaperones influence this process. Tissue data point to amyloid fibrillogenesis in lysosomes and near cell surfaces. A comparison can be made of the fibrillogenesis in prion diseases and in enhanced AA-amyloidosis. In the reactive form, acute phase SAA is the supply of the precursor protein, whereas in the prion diseases, cell membrane proteins form a structural source. Aβ-amyloid in brain tissue of aged dogs showing signs of dementia forms a canine counterpart of senile dementia of the Alzheimer type (ccSDAT) in man. Misfolded proteins remain potential food hazards. Developments concerning prevention of

  20. AMYLOID NEUROPATHIES

    PubMed Central

    Shin, Susan C.; Robinson-Papp, Jessica

    2012-01-01

    Peripheral neuropathy is a common complication of many of the systemic amyloidoses. Although the cause of neuropathy is not entirely clear, it is likely related to amyloid deposition within the nerve. This may lead to focal, multifocal, or diffuse neuropathies involving sensory, motor and/or autonomic fibers. The presenting symptoms depend on the distribution of nerves affected. One of the most common phenotypes is sensorimotor polyneuropathy, which is characterized by symptoms of neuropathic pain, numbness, and in advanced cases weakness. Symptoms begin in the feet and ultimately progress to the proximal legs and hands. The most common focal neuropathy is a median neuropathy at the wrist, or clinically known as carpal tunnel syndrome. Carpal tunnel symptoms may include pain and sensory disturbances in the lateral palm and fingers; hand weakness may ensue if the focal neuropathy is severe. Autonomic neuropathy may affect a variety of organ systems such as the cardiovascular, gastrointestinal, and genitourinary systems. Symptoms may be non-specific making the diagnosis of autonomic neuropathy more difficult to identify. However, it is important to recognize and distinguish autonomic neuropathy from diseases of the end-organs themselves. This chapter reviews the inherited and acquired amyloidoses that affect the peripheral nervous system including familial amyloid polyneuropathy, and primary, secondary and senile amyloidosis. We emphasize the clinical presentation of the neurologic aspects of these diseases, physical examination findings, appropriate diagnostic evaluation, treatment and prognosis. PMID:23239211

  1. Chiral recognition in amyloid fiber growth.

    PubMed

    Torbeev, Vladimir; Grogg, Marcel; Ruiz, Jérémy; Boehringer, Régis; Schirer, Alicia; Hellwig, Petra; Jeschke, Gunnar; Hilvert, Donald

    2016-05-01

    Insoluble amyloid fibers represent a pathological signature of many human diseases. To treat such diseases, inhibition of amyloid formation has been proposed as a possible therapeutic strategy. d-Peptides, which possess high proteolytic stability and lessened immunogenicity, are attractive candidates in this context. However, a molecular understanding of chiral recognition phenomena for d-peptides and l-amyloids is currently incomplete. Here we report experiments on amyloid growth of individual enantiomers and their mixtures for two distinct polypeptide systems of different length and structural organization: a 44-residue covalently-linked dimer derived from a peptide corresponding to the [20-41]-fragment of human β2-microglobulin (β2m) and the 99-residue full-length protein. For the dimeric [20-41]β2m construct, a combination of electron paramagnetic resonance of nitroxide-labeled constructs and (13) C-isotope edited FT-IR spectroscopy of (13) C-labeled preparations was used to show that racemic mixtures precipitate as intact homochiral fibers, i.e. undergo spontaneous Pasteur-like resolution into a mixture of left- and right-handed amyloids. In the case of full-length β2m, the presence of the mirror-image d-protein affords morphologically distinct amyloids that are composed largely of enantiopure domains. Removal of the l-component from hybrid amyloids by proteolytic digestion results in their rapid transformation into characteristic long straight d-β2m amyloids. Furthermore, the full-length d-enantiomer of β2m was found to be an efficient inhibitor of l-β2m amyloid growth. This observation highlights the potential of longer d-polypeptides for future development into inhibitors of amyloid propagation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  2. Amyloid in dementia associated with familial FTLD: Not an innocent bystander

    PubMed Central

    Naasan, Georges; Rabinovici, Gil D.; Ghosh, Pia; Elofson, Jonathan D.; Miller, Bruce L.; Coppola, Giovanni; Karydas, Anna; Fong, Jamie; Perry, David; Lee, Suzee E.; Yokoyama, Jennifer S.; Seeley, William W.; Kramer, Joel H.; Weiner, Michael W.; Schuff, Norbert; Jagust, William J.; Grinberg, Lea T.; Pribadi, Mochtar; Yang, Zhongan; Sears, Renee; Klein, Eric; Wojta, Kevin; Rosen, Howard J.

    2015-01-01

    Patients with frontotemporal lobar degeneration (FTLD) can show superimposed amyloid pathology, though the impact of amyloid on the clinical presentation of FTLD is not well characterized. This cross-sectional case-control study compared clinical features, FDG-PET metabolism and gray matter volume loss in 30 patients with familial FTLD in whom amyloid status was confirmed with autopsy or PiB-PET. Compared to the amyloid negative patients, the amyloid positive patients performed significantly worse on several cognitive tests and showed hypometabolism and volume loss in more temporoparietal regions. Our results suggest that in FTLD, amyloid positivity is associated with a more AD-like pattern of neurodegeneration. PMID:26040468

  3. Spatially controlled amyloid reactions using organic electronics.

    PubMed

    Gabrielsson, Erik O; Tybrandt, Klas; Hammarström, Per; Berggren, Magnus; Nilsson, K Peter R

    2010-10-04

    Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well-ordered self-assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid-like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p-FTAA) and one conducting (PEDOT-S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.

  4. Direct observation of amyloid nucleation under nanomechanical stretching

    NASA Astrophysics Data System (ADS)

    Varongchayakul, Nitinun

    Self-assembly of amyloid nanofiber is associated with functional and pathological processes such as in neurodegenerative diseases. Despite intensive studies, stochastic nature of the process has made it difficult to elucidate molecular mechanisms for the key amyloid nucleation. Here, we investigated the amyloid nucleation of silk-elastin-like peptide (SELP) using time-lapse lateral force microscopy (LFM). By repeated scanning a single line on a SELP-coated mica surface, we observed sudden stepwise height increases, corresponds to nucleation of an amyloid fiber. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction, serves as the template for further self-assembly perpendicular to the scan direction. Such mechanically induced nucleation of amyloid fibrils allows positional and directional control of amyloid assembly in vitro , which we demonstrate by generating single nanofibers at predetermined nucleation sites.

  5. Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies

    PubMed Central

    Shaham-Niv, Shira; Adler-Abramovich, Lihi; Schnaider, Lee; Gazit, Ehud

    2015-01-01

    The accumulation of amyloid fibrils is the hallmark of several major human diseases. Although the formation of these supramolecular entities has previously been associated with proteins and peptides, it was later demonstrated that even phenylalanine, a single amino acid, can form fibrils that have amyloid-like biophysical, biochemical, and cytotoxic properties. Moreover, the generation of antibodies against these assemblies in phenylketonuria patients and the correlating mice model suggested a pathological role for the assemblies. We determine that several other metabolites that accumulate in metabolic disorders form ordered amyloid-like ultrastructures, which induce apoptotic cell death, as observed for amyloid structures. The formation of amyloid-like assemblies by metabolites implies a general phenomenon of amyloid formation, not limited to proteins and peptides, and offers a new paradigm for metabolic diseases. PMID:26601224

  6. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice.

    PubMed

    Ribé, Elena M; Pérez, Mar; Puig, Berta; Gich, Ignasi; Lim, Filip; Cuadrado, Mar; Sesma, Teresa; Catena, Silvia; Sánchez, Belén; Nieto, María; Gómez-Ramos, Pilar; Morán, M Asunción; Cabodevilla, Felipe; Samaranch, Lluis; Ortiz, Lourdes; Pérez, Alberto; Ferrer, Isidro; Avila, Jesús; Gómez-Isla, Teresa

    2005-12-01

    Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo.

  7. Cerebral vascular amyloid seeds drive amyloid β-protein fibril assembly with a distinct anti-parallel structure

    PubMed Central

    Xu, Feng; Fu, Ziao; Dass, Sharmila; Kotarba, AnnMarie E.; Davis, Judianne; Smith, Steven O.; Van Nostrand, William E.

    2016-01-01

    Cerebrovascular accumulation of amyloid β-protein (Aβ), a condition known as cerebral amyloid angiopathy (CAA), is a common pathological feature of patients with Alzheimer's disease. Familial Aβ mutations, such as Dutch-E22Q and Iowa-D23N, can cause severe cerebrovascular accumulation of amyloid that serves as a potent driver of vascular cognitive impairment and dementia. The distinctive features of vascular amyloid that underlie its unique pathological properties remain unknown. Here, we use transgenic mouse models producing CAA mutants (Tg-SwDI) or overproducing human wild-type Aβ (Tg2576) to demonstrate that CAA-mutant vascular amyloid influences wild-type Aβ deposition in brain. We also show isolated microvascular amyloid seeds from Tg-SwDI mice drive assembly of human wild-type Aβ into distinct anti-parallel β-sheet fibrils. These findings indicate that cerebrovascular amyloid can serve as an effective scaffold to promote rapid assembly and strong deposition of Aβ into a unique structure that likely contributes to its distinctive pathology. PMID:27869115

  8. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis.

    PubMed

    Glabe, Charles G; Kayed, Rakez

    2006-01-24

    Recent findings indicate that soluble amyloid oligomers may represent the primary pathologic species in degenerative diseases. These amyloid oligomers share common structural features and the ability to permeabilize membranes, suggesting that they also share a common primary mechanism of pathogenesis. Membrane permeabilization by amyloid oligomers may initiate a common group of downstream pathologic processes, including intracellular calcium dyshomeostasis, production of reactive oxygen species, altered signaling pathways, and mitochondrial dysfunction that represent key effectors of cellular dysfunction and cell death in amyloid-associated degenerative disease, such as sporadic inclusion-body myositis.

  9. Laser-induced propagation and destruction of amyloid beta fibrils.

    PubMed

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  10. Determination of amyloid core structure using chemical shifts.

    PubMed

    Skora, Lukasz; Zweckstetter, Markus

    2012-12-01

    Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative disorders. The structural characterization of amyloid fibrils, however, is challenging due to their non-crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of many proteins is still unknown. We here show that the structure calculation program CS-Rosetta can be used to obtain insight into the core structure of amyloid fibrils. Driven by experimental solid-state NMR chemical shifts and taking into account the polymeric nature of fibrils CS-Rosetta allows modeling of the core of amyloid fibrils. Application to the Y145X stop mutant of the human prion protein reveals a left-handed β-helix.

  11. Amyloid detection using a Peltier-based device.

    PubMed

    Cabrera, Miguel A; Ferreyra, Martin G; Cortez, Leonardo; Grupalli, Silvina A; Alvarez, L Leguina; Chehin, Rosana

    2012-01-01

    Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. At present, it is clear that any proteins submitted to appropriate physicochemical environment can acquire fibrilar conformation. Fourier transform infrared spectroscopy (FTIR) has been a widely used technique to study temperature- induced amyloid-fibrils formation in vitro. In this way, strict changes and temperature controls are required to characterize the physicochemical basis of the amyloid-fibrils formation. In this article, the development of a highly efficient and accurate Peltier-based system to improve FTIR measurements is presented (see An Old Physics Phenomenon Applied to a Serious Biomedical Pathology. The accuracy of the thermostatic control was tested with biophysical parameters on biological samples probing its reproducibility. The design of the present device contributes to maintain the FTIR environment stable, which represents a real contribution to improve the spectral quality and thus, the reliability of the results.

  12. Amyloid Imaging in Mild Cognitive Impairment Subtypes

    PubMed Central

    Wolk, David A.; Price, Julie C.; Saxton, Judy A.; Snitz, Beth E.; James, Jeffrey A.; Lopez, Oscar L.; Aizenstein, Howard J.; Cohen, Ann D.; Weissfeld, Lisa A.; Mathis, Chester A.; Klunk, William E.; DeKosky, Steven T.

    2010-01-01

    Objective We utilized the amyloid imaging ligand Pittsburgh Compound-B (PiB) to determine the presence of AD pathology in different MCI subtypes and to relate elevated PiB binding to other markers of early AD and longitudinal outcome. Methods Twenty-six patients with MCI – 13 single domain amnestic-MCI (sd a-MCI), 6 multiple domain amnestic-MCI (md a-MCI), and 7 non-amnestic MCI (na-MCI) – underwent PiB imaging. Twenty-three had clinical follow-up [21.2 ± 16.0 (SD) months] subsequent to their PiB scan. Results Using cutoffs established from a control cohort, 14 (54%) had elevated levels of PiB retention and were considered “amyloid-positive.” All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 sd a-MCI, 5/6 md a-MCI, 3/7 na-MCI). There were no obvious differences in the distribution of PiB retention in the na-MCI group despite their atypical early AD phenotype. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, increased age, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up revealed 5/13 amyloid-positive patients, but 0/10 amyloid-negative patients, converted to clinical AD. Further, 3/10 amyloid-negative patients “reverted to normal” on follow-up. Interpretation These data support the notion that amyloid-positive patients are likely to have early AD and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data is consistent with longitudinal studies suggesting that a significant percentage of all MCI subtypes will develop clinical AD. PMID:19475670

  13. Self-assembled amyloid fibrils with controllable conformational heterogeneity

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-11-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled.

  14. PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation

    PubMed Central

    Bissig, Christin; Rochin, Leila; van Niel, Guillaume

    2016-01-01

    In pigment cells, melanin synthesis takes place in specialized organelles, called melanosomes. The biogenesis and maturation of melanosomes is initiated by an unpigmented step that takes place prior to the initiation of melanin synthesis and leads to the formation of luminal fibrils deriving from the pigment cell-specific pre-melanosomal protein (PMEL). In the lumen of melanosomes, PMEL fibrils optimize sequestration and condensation of the pigment melanin. Interestingly, PMEL fibrils have been described to adopt a typical amyloid-like structure. In contrast to pathological amyloids often associated with neurodegenerative diseases, PMEL fibrils represent an emergent category of physiological amyloids due to their beneficial cellular functions. The formation of PMEL fibrils within melanosomes is tightly regulated by diverse mechanisms, such as PMEL traffic, cleavage and sorting. These mechanisms revealed increasing analogies between the formation of physiological PMEL fibrils and pathological amyloid fibrils. In this review we summarize the known mechanisms of PMEL fibrillation and discuss how the recent understanding of physiological PMEL amyloid formation may help to shed light on processes involved in pathological amyloid formation. PMID:27589732

  15. An amyloid lung

    PubMed Central

    Zundel, W. E.; Prior, A. P.

    1971-01-01

    A 55-year-old housewife died from an illness characterized by progressive respiratory incapacity. Changes were confined to the lungs and consisted of a diffuse infiltration by amyloid. No adequate cause was found for this amyloid, and we suggest that this is a case of primary alveolar septal amyloidosis. Images PMID:5559913

  16. Regional brain hypometabolism is unrelated to regional amyloid plaque burden

    PubMed Central

    Altmann, Andre; Ng, Bernard; Landau, Susan M.; Jagust, William J.

    2015-01-01

    See Sorg and Grothe (doi:10.1093/brain/awv302) for a scientific commentary on this article. In its original form, the amyloid cascade hypothesis of Alzheimer’s disease holds that fibrillar deposits of amyloid are an early, driving force in pathological events leading ultimately to neuronal death. Early clinicopathological investigations highlighted a number of inconsistencies leading to an updated hypothesis in which amyloid plaques give way to amyloid oligomers as the driving force in pathogenesis. Rather than focusing on the inconsistencies, amyloid imaging studies have tended to highlight the overlap between regions that show early amyloid plaque signal on positron emission tomography and that also happen to be affected early in Alzheimer’s disease. Recent imaging studies investigating the regional dependency between metabolism and amyloid plaque deposition have arrived at conflicting results, with some showing regional associations and other not. We extracted multimodal neuroimaging data from the Alzheimer’s disease neuroimaging database for 227 healthy controls and 434 subjects with mild cognitive impairment. We analysed regional patterns of amyloid deposition, regional glucose metabolism and regional atrophy using florbetapir (18F) positron emission tomography, 18F-fluordeoxyglucose positron emission tomography and T1-weighted magnetic resonance imaging, respectively. Specifically, we derived grey matter density and standardized uptake value ratios for both positron emission tomography tracers in 404 functionally defined regions of interest. We examined the relation between regional glucose metabolism and amyloid plaques using linear models. For each region of interest, correcting for regional grey matter density, age, education and disease status, we tested the association of regional glucose metabolism with (i) cortex-wide florbetapir uptake; (ii) regional (i.e. in the same region of interest) florbetapir uptake; and (iii) regional florbetapir uptake

  17. Activated ADF/cofilin sequesters phosphorylated microtubule-associated-protein during the assembly of Alzheimer-like neuritic cytoskeletal striations

    PubMed Central

    Whiteman, Ineka T.; Gervasio, Othon L.; Cullen, Karen M.; Guillemin, Gilles J.; Jeong, Erica V.; Witting, Paul K.; Antao, Shane T.; Minamide, Laurie S.; Bamburg, James R.; Goldsbury, Claire

    2009-01-01

    In Alzheimer disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads) and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence Resonance Energy Transfer (FRET) analysis revealed co-localization of cofilin-GFP and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and siRNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous Aβ peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction or Aβ peptides, all suspected initiators of synaptic loss and neurodegeneration in AD. PMID:19828813

  18. Molecular imaging of Alzheimer disease pathology.

    PubMed

    Kantarci, K

    2014-06-01

    Development of molecular imaging agents for fibrillar β-amyloid positron-emission tomography during the past decade has brought molecular imaging of Alzheimer disease pathology into the spotlight. Large cohort studies with longitudinal follow-up in cognitively normal individuals and patients with mild cognitive impairment and Alzheimer disease indicate that β-amyloid deposition can be detected many years before the onset of symptoms with molecular imaging, and its progression can be followed longitudinally. The utility of β-amyloid PET in the differential diagnosis of Alzheimer disease is greatest when there is no pathologic overlap between 2 dementia syndromes, such as in frontotemporal lobar degeneration and Alzheimer disease. However β-amyloid PET alone may be insufficient in distinguishing dementia syndromes that commonly have overlapping β-amyloid pathology, such as dementia with Lewy bodies and vascular dementia, which represent the 2 most common dementia pathologies after Alzheimer disease. The role of molecular imaging in Alzheimer disease clinical trials is growing rapidly, especially in an era when preventive interventions are designed to eradicate the pathology targeted by molecular imaging agents.

  19. Current and future treatment of amyloid diseases.

    PubMed

    Ankarcrona, M; Winblad, B; Monteiro, C; Fearns, C; Powers, E T; Johansson, J; Westermark, G T; Presto, J; Ericzon, B-G; Kelly, J W

    2016-08-01

    There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.

  20. Peptide Amyloid Surface Display

    PubMed Central

    2015-01-01

    Homomeric self-assembly of peptides into amyloid fibers is a feature of many diseases. A central role has been suggested for the lateral fiber surface affecting gains of toxic function. To investigate this, a protein scaffold that presents a discrete, parallel β-sheet surface for amyloid subdomains up to eight residues in length has been designed. Scaffolds that present the fiber surface of islet amyloid polypeptide (IAPP) were prepared. The designs show sequence-specific surface effects apparent in that they gain the capacity to attenuate rates of IAPP self-assembly in solution and affect IAPP-induced toxicity in insulin-secreting cells. PMID:25541905

  1. Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer's-like dementia: Involvement of acetylcholinesterase and cell death.

    PubMed

    de Oliveira, Juliana Sorraila; Abdalla, Fátima Husein; Dornelles, Guilherme Lopes; Adefegha, Stephen Adeniyi; Palma, Taís Vidal; Signor, Cristiane; da Silva Bernardi, Jamile; Baldissarelli, Jucimara; Lenz, Luana Suéling; Magni, Luana Pereira; Rubin, Maribel Antonello; Pillat, Micheli Mainardi; de Andrade, Cinthia Melazzo

    2016-12-01

    The present study aimed to investigate the effects of berberine (BRB) on spatial and learning memory, anxiety, acetylcholinesterase activity and cell death in an experimental model of intracerebroventricular streptozotocin (ICV-STZ) induced sporadic Alzheimer's-like dementia. Sixty male Wistar rats were randomly divided into six groups: control (CTR), BRB 50mg/kg (BRB 50), BRB 100mg/kg (BRB 100), streptozotocin (STZ), streptozotocin plus BRB 50mg/kg (STZ+BRB 50), and streptozotocin plus BRB 100mg/kg (STZ+BRB 100). Rats were injected with ICV-STZ (3mg/kg) or saline, and daily oral BRB treatment began on day 4 for a period of 21days. Behavioral tests were carried out on day 17, and rats were euthanized on day 24. Cell death analysis and determination of acetylcholinesterase activity was performed on the cerebral cortex and hippocampus of the brain. Administration of BRB prevented the memory loss, anxiogenic behavior, increased acetylcholinesterase activity and cell death induced by ICV-STZ. This may be explained, in part, by a protective effect of BRB on ameliorating the progression of neurodegenerative diseases, including Alzheimer's disease, and the results of this study provide a better understanding of the effect of BRB on the brain. Thus, BRB may act as a potential neuroprotective agent.

  2. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    SciTech Connect

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division; Queen's Univ.

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normal protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.

  3. Alzheimer's Disease and the Amyloid Cascade Hypothesis: A Critical Review

    PubMed Central

    Reitz, Christiane

    2012-01-01

    Since 1992, the amyloid cascade hypothesis has played the prominent role in explaining the etiology and pathogenesis of Alzheimer's disease (AD). It proposes that the deposition of β-amyloid (Aβ) is the initial pathological event in AD leading to the formation of senile plaques (SPs) and then to neurofibrillary tangles (NFTs), neuronal cell death, and ultimately dementia. While there is substantial evidence supporting the hypothesis, there are also limitations: (1) SP and NFT may develop independently, and (2) SPs and NFTs may be the products rather than the causes of neurodegeneration in AD. In addition, randomized clinical trials that tested drugs or antibodies targeting components of the amyloid pathway have been inconclusive. This paper provides a critical overview of the evidence for and against the amyloid cascade hypothesis in AD and provides suggestions for future directions. PMID:22506132

  4. Bacterial enzymes effectively digest Alzheimer's β-amyloid peptide.

    PubMed

    Danilova, Yuliya Vasilyevna; Shagimardanova, Elena Ilyasovna; Margulis, Anna Borisovna; Toymentseva, Anna Aleksandrovna; Balaban, Nelly Pavlovna; Rudakova, Nataliya Leonidovna; Rizvanov, Albert Anatolyevich; Sharipova, Margarita Rashidovna; Palotás, András

    2014-09-01

    Aggregated β-amyloid peptides play key roles in the development of Alzheimer's disease, and recent evidence suggests that microbial particles, among others, can facilitate their polymerization. Bacterial enzymes, however, have been proved to be beneficial in degrading pathological fibrillar structures in clinical settings, such as strepto-kinases in resolving blood-clots. The purpose of this study was to investigate the ability of bacterial substances to effectively hydrolyze β-amyloid peptides. Degrading products of several proteinases from Bacillus pumilus were evaluated using MALDI-TOF mass-spectrometry, and their toxicity was assessed in vitro using cell-culture assays and morphological studies. These enzymes have proved to be non-toxic and were demonstrated to cleave through the functional domains of β-amyloid peptide. By yielding inactive fragments, proteinases of Bacillus pumilus may be used as candidate anti-amyloid agents.

  5. Amyloid A amyloidosis secondary to rheumatoid arthritis: pathophysiology and treatments.

    PubMed

    Nakamura, Tadashi

    2011-01-01

    The introduction of biological therapies targeting specific inflammatory mediators revolutionised the treatment of rheumatoid arthritis (RA). Targeting key components of the immune system allows efficient suppression of the pathological inflammatory cascade that leads to RA symptoms and subsequent joint destruction. Reactive amyloid A (AA) amyloidosis, one of the most severe complications of RA, is a serious, potentially life-threatening disorder caused by deposition of AA amyloid fibrils in multiple organs. These AA amyloid fibrils derive from the circulatory acute-phase reactant serum amyloid A protein (SAA), and may be controlled by treatment. New biologics may permit AA amyloidosis secondary to RA to become a treatable, manageable disease. Rheumatologists, when diagnosing and treating patients with AA amyloidosis secondary to RA, must understand the pathophysiology and clinical factors related to development and progression of the disease, including genetic predisposition and biological versatility of SAA.

  6. When amyloids become prions.

    PubMed

    Sabate, Raimon

    2014-01-01

    The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid.

  7. When amyloids become prions

    PubMed Central

    Sabate, Raimon

    2014-01-01

    The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer's disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid. PMID:24831240

  8. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders

    PubMed Central

    Batarseh, Yazan S.; Duong, Quoc-Viet; Mousa, Youssef M.; Al Rihani, Sweilem B.; Elfakhri, Khaled; Kaddoumi, Amal

    2016-01-01

    Amyloid-β (Aβ) pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer’s disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia. PMID:26959008

  9. β-sheet interfering molecules acting against β-amyloid aggregation and fibrillogenesis.

    PubMed

    Francioso, Antonio; Punzi, Pasqualina; Boffi, Alberto; Lori, Clorinda; Martire, Sara; Giordano, Cesare; D'Erme, Maria; Mosca, Luciana

    2015-04-15

    β-Sheet aggregates and amyloid fibrils rising from conformational changes of proteins are observed in several pathological human conditions. These structures are organized in β-strands that can reciprocally interact by hydrophobic and π-π interactions. The amyloid aggregates can give rise to pathological conditions through complex biochemical mechanisms whose physico-chemical nature has been understood in recent times. This review focuses on the various classes of natural and synthetic small molecules able to act against β-amyloid fibrillogenesis and toxicity that may represent new pharmacological tools in Alzheimer's diseases. Some peptides, named 'β-sheet breaker peptides', are able to hamper amyloid aggregation and fibrillogenesis by interfering with and destabilizing the non native β-sheet structures. Other natural compounds, like polyphenols or indolic molecules such as melatonin, can interfere with β-amyloid peptide pathogenicity by inhibiting aggregation and counteracting oxidative stress that is a key hallmark in Alzheimer's disease.

  10. Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity

    NASA Astrophysics Data System (ADS)

    Bernini, Fabrizio; Malferrari, Daniele; Pignataro, Marcello; Bortolotti, Carlo Augusto; di Rocco, Giulia; Lancellotti, Lidia; Brigatti, Maria Franca; Kayed, Rakez; Borsari, Marco; Del Monte, Federica; Castellini, Elena

    2016-10-01

    The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.

  11. A Human Monoclonal IgG That Binds Aβ Assemblies and Diverse Amyloids Exhibits Anti-Amyloid Activities In Vitro and In Vivo

    PubMed Central

    O'Nuallain, Brian; Puligedda, Rama Devudu; Ondrejcak, Tomas; Adekar, Sharad P.; Chen, Cindy; Cruz, Pedro E.; Rosario, Awilda M.; Macy, Sallie; Mably, Alexandra J.; Walsh, Dominic M.; Vidal, Ruben; Solomon, Alan; Brown, Daniel; Rowan, Michael J.; Golde, Todd E.

    2015-01-01

    Alzheimer's disease (AD) and familial Danish dementia (FDD) are degenerative neurological diseases characterized by amyloid pathology. Normal human sera contain IgG antibodies that specifically bind diverse preamyloid and amyloid proteins and have shown therapeutic potential in vitro and in vivo. We cloned one of these antibodies, 3H3, from memory B cells of a healthy individual using a hybridoma method. 3H3 is an affinity-matured IgG that binds a pan-amyloid epitope, recognizing both Aβ and λ Ig light chain (LC) amyloids, which are associated with AD and primary amyloidosis, respectively. The pan-amyloid-binding properties of 3H3 were demonstrated using ELISA, immunohistochemical studies, and competition binding assays. Functional studies showed that 3H3 inhibits both Aβ and LC amyloid formation in vitro and abrogates disruption of hippocampal synaptic plasticity by AD-patient-derived soluble Aβ in vivo. A 3H3 single-chain variable fragment (scFv) retained the binding specificity of the 3H3 IgG and, when expressed in the brains of transgenic mice using an adeno-associated virus (AAV) vector, decreased parenchymal Aβ amyloid deposition in TgCRND8 mice and ADan (Danish Amyloid) cerebral amyloid angiopathy in the mouse model of FDD. These data indicate that naturally occurring human IgGs can recognize a conformational, amyloid-specific epitope and have potent anti-amyloid activities, providing a rationale to test their potential as antibody therapeutics for diverse neurological and other amyloid diseases. PMID:25904780

  12. Characterization of amyloid in equine recurrent uveitis as AA amyloid.

    PubMed

    Ostevik, L; de Souza, G A; Wien, T N; Gunnes, G; Sørby, R

    2014-01-01

    Two horses with chronic uveitis and histological lesions consistent with equine recurrent uveitis (ERU) were examined. Microscopical findings in the ciliary body included deposits of amyloid lining the non-pigmented epithelium, intracytoplasmic, rod-shaped, eosinophilic inclusions and intraepithelial infiltration of T lymphocytes. Ultrastructural examination of the ciliary body of one horse confirmed the presence of abundant extracellular deposits of non-branching fibrils (9-11 nm in diameter) consistent with amyloid. Immunohistochemistry revealed strong positive labelling for AA amyloid and mass spectrometry showed the amyloid to consist primarily of serum amyloid A1 in both cases. The findings suggest that localized, intraocular AA amyloidosis may occur in horses with ERU.

  13. Amyloid Fibril Solubility.

    PubMed

    Rizzi, L G; Auer, S

    2015-11-19

    It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain-side-chain interactions, backbone hydrogen bonding, and temperature affect amyloid fibril solubility, which might prove to be a powerful tool to design protein fibrils with desired solubility and aggregation properties in general.

  14. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation

    PubMed Central

    Mander, Bryce A.; Marks, Shawn M.; Vogel, Jacob W.; Rao, Vikram; Lu, Brandon; Saletin, Jared M.; Ancoli-Israel, Sonia; Jagust, William J.; Walker, Matthew P.

    2015-01-01

    Independent evidence associates β-amyloid pathology with both NREM sleep disruption and memory impairment in older adults. However, whether the influence of β-amyloid pathology on hippocampus-dependent memory is, in part, driven by impairments of NREM slow wave activity (SWA) and associated overnight memory consolidation is unknown. Here, we show that β-amyloid burden within medial prefrontal cortex (mPFC) is significantly correlated with the severity of impairment in NREM SWA generation. Moreover, reduced NREM SWA generation was further associated with impaired overnight memory consolidation and impoverished hippocampal-neocortical memory transformation. Furthermore, structural equation models revealed that the association between mPFC β-amyloid pathology and impaired hippocampus-dependent memory consolidation is not direct, but instead, statistically depends on the intermediary factor of diminished NREM SWA. By linking β-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a novel mechanistic pathway through which β-amyloid pathology may contribute to hippocampus-dependent cognitive decline in the elderly. PMID:26030850

  15. Direct observation of amyloid nucleation under nanomechanical stretching.

    PubMed

    Varongchayakul, Nitinun; Johnson, Sara; Quabili, Trina; Cappello, Joseph; Ghandehari, Hamidreza; Solares, Santiago De Jesus; Hwang, Wonmuk; Seog, Joonil

    2013-09-24

    Self-assembly of amyloid nanofiber is associated with both functional biological and pathological processes such as those in neurodegenerative diseases. Despite intensive studies, the stochastic nature of the process has made it difficult to elucidate a molecular mechanism for the key amyloid nucleation event. Here we investigated nucleation of the silk-elastin-like peptide (SELP) amyloid using time-lapse lateral force microscopy (LFM). By repeated scanning of a single line on a SELP-coated mica surface, we observed a sudden stepwise height increase. This corresponds to nucleation of an amyloid fiber, which subsequently grew perpendicular to the scanning direction. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction. The probability of nucleation correlated with the maximum stretching force and extension, implying that stretching of SELP molecules is a key molecular event for amyloid nucleation. The mechanically induced nucleation allows for positional and directional control of amyloid assembly in vitro, which we demonstrate by generating single nanofibers at predetermined nucleation sites.

  16. Nanomaterials for reducing amyloid cytotoxicity.

    PubMed

    Zhang, Min; Mao, Xiaobo; Yu, Yue; Wang, Chen-Xuan; Yang, Yan-Lian; Wang, Chen

    2013-07-26

    This review is intended to reflect the recent progress on therapeutic applications of nanomaterials in amyloid diseases. The progress on anti-amyloid functions of various nanomaterials including inorganic nanoparticles, polymeric nanoparticles, carbon nanomaterials and biomolecular aggregates, is reviewed and discussed. The main functionalization strategies for general nanoparticle modifications are reviewed for potential applications of targeted therapeutics. The interaction mechanisms between amyloid peptides and nanomaterials are discussed from the perspectives of dominant interactions and kinetics. The encapsulation of anti-amyloid drugs, targeted drug delivery, controlled drug release and drug delivery crossing blood brain barrier by application of nanomaterials would also improve the therapeutics of amyloid diseases.

  17. Common molecular mechanism of amyloid pore formation by Alzheimer's β-amyloid peptide and α-synuclein.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-06-29

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer's and Parkinson's diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca(2+)-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined "membrane therapy") targeting amyloid pores formed by Aβ1-42 and α-synuclein.

  18. Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein

    PubMed Central

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer’s and Parkinson’s diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca2+-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined “membrane therapy”) targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  19. Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection.

    PubMed

    Ikonomovic, Milos D; Buckley, Chris J; Heurling, Kerstin; Sherwin, Paul; Jones, Paul A; Zanette, Michelle; Mathis, Chester A; Klunk, William E; Chakrabarty, Aruna; Ironside, James; Ismail, Azzam; Smith, Colin; Thal, Dietmar R; Beach, Thomas G; Farrar, Gill; Smith, Adrian P L

    2016-12-12

    In vivo imaging of fibrillar β-amyloid deposits may assist clinical diagnosis of Alzheimer's disease (AD), aid treatment selection for patients, assist clinical trials of therapeutic drugs through subject selection, and be used as an outcome measure. A recent phase III trial of [(18)F]flutemetamol positron emission tomography (PET) imaging in 106 end-of-life subjects demonstrated the ability to identify fibrillar β-amyloid by comparing in vivo PET to post-mortem histopathology. Post-mortem analyses demonstrated a broad and continuous spectrum of β-amyloid pathology in AD and other dementing and non-dementing disease groups. The GE067-026 trial demonstrated 91% sensitivity and 90% specificity of [(18)F]flutemetamol PET by majority read for the presence of moderate or frequent plaques. The probability of an abnormal [(18)F]flutemetamol scan increased with neocortical plaque density and AD diagnosis. All dementia cases with non-AD neurodegenerative diseases and those without histopathological features of β-amyloid deposits were [(18)F]flutemetamol negative. Majority PET assessments accurately reflected the amyloid plaque burden in 90% of cases. However, ten cases demonstrated a mismatch between PET image interpretations and post-mortem findings. Although tracer retention was best associated with amyloid in neuritic plaques, amyloid in diffuse plaques and cerebral amyloid angiopathy best explain three [(18)F]flutemetamol positive cases with mismatched (sparse) neuritic plaque burden. Advanced cortical atrophy was associated with the seven false negative [(18)F]flutemetamol images. The interpretation of images from pathologically equivocal cases was associated with low reader confidence and inter-reader agreement. Our results support that amyloid in neuritic plaque burden is the primary form of β-amyloid pathology detectable with [(18)F]flutemetamol PET imaging. ClinicalTrials.gov NCT01165554. Registered June 21, 2010; NCT02090855. Registered March 11, 2014.

  20. BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells.

    PubMed

    Rochin, Leila; Hurbain, Ilse; Serneels, Lutgarde; Fort, Cecile; Watt, Brenda; Leblanc, Pascal; Marks, Michael S; De Strooper, Bart; Raposo, Graça; van Niel, Guillaume

    2013-06-25

    Amyloids are often associated with pathologic processes such as in Alzheimer's disease (AD), but can also underlie physiological processes such as pigmentation. Formation of pathological and functional amyloidogenic substrates can require precursor processing by proteases, as exemplified by the generation of Aβ peptide from amyloid precursor protein (APP) by beta-site APP cleaving enzyme (BACE)1 and γ-secretase. Proteolytic processing of the pigment cell-specific Melanocyte Protein (PMEL) is also required to form functional amyloid fibrils during melanogenesis, but the enzymes involved are incompletely characterized. Here we show that the BACE1 homologue BACE2 processes PMEL to generate functional amyloids. BACE2 is highly expressed in pigment cells and Bace2(-/-) but not Bace1(-/-) mice display coat color defects, implying a specific role for BACE2 during melanogenesis. By using biochemical and morphological analyses, combined with RNA silencing, pharmacologic inhibition, and BACE2 overexpression in a human melanocytic cell line, we show that BACE2 cleaves the integral membrane form of PMEL within the juxtamembrane domain, releasing the PMEL luminal domain into endosomal precursors for the formation of amyloid fibrils and downstream melanosome morphogenesis. These studies identify an amyloidogenic substrate of BACE2, reveal an important physiological role for BACE2 in pigmentation, and highlight analogies in the generation of PMEL-derived functional amyloids and APP-derived pathological amyloids.

  1. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity

    PubMed Central

    Yuan, Peng

    2016-01-01

    Aberrant neural hyperactivity has been observed in early stages of Alzheimer's disease (AD) and may be a driving force in the progression of amyloid pathology. Evidence for this includes the findings that neural activity may modulate β-amyloid (Aβ) peptide secretion and experimental stimulation of neural activity can increase amyloid deposition. However, whether long-term attenuation of neural activity prevents the buildup of amyloid plaques and associated neural pathologies remains unknown. Using viral-mediated delivery of designer receptors exclusively activated by designer drugs (DREADDs), we show in two AD-like mouse models that chronic intermittent increases or reductions of activity have opposite effects on Aβ deposition. Neural activity reduction markedly decreases Aβ aggregation in regions containing axons or dendrites of DREADD-expressing neurons, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Importantly, activity attenuation is associated with a reduction in axonal dystrophy and synaptic loss around amyloid plaques. Thus, modulation of neural activity could constitute a potential therapeutic strategy for ameliorating amyloid-induced pathology in AD. SIGNIFICANCE STATEMENT A novel chemogenetic approach to upregulate and downregulate neuronal activity in Alzheimer's disease (AD) mice was implemented. This led to the first demonstration that chronic intermittent attenuation of neuronal activity in vivo significantly reduces amyloid deposition. The study also demonstrates that modulation of β-amyloid (Aβ) release can occur at both axonal and dendritic fields, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Activity reductions also led to attenuation of the synaptic pathology associated with amyloid plaques. Therefore, chronic attenuation of neuronal activity could constitute a novel therapeutic approach for AD. PMID:26758850

  2. Melanosomal formation of PMEL core amyloid is driven by aromatic residues

    PubMed Central

    Hee, Jia Shee; Mitchell, Susan M.; Liu, Xinran; Leonhardt, Ralf M.

    2017-01-01

    PMEL is a pigment cell protein that forms physiological amyloid in melanosomes. Many amyloids and/or their oligomeric precursors are toxic, causing or contributing to severe, incurable diseases including Alzheimer’s and prion diseases. Striking similarities in intracellular formation pathways between PMEL and various pathological amyloids including Aβ and PrPSc suggest PMEL is an excellent model system to study endocytic amyloid. Learning how PMEL fibrils assemble without apparent toxicity may help developing novel therapies for amyloid diseases. Here we identify the critical PMEL domain that forms the melanosomal amyloid core (CAF). An unbiased alanine-scanning screen covering the entire region combined with quantitative electron microscopy analysis of the full set of mutants uncovers numerous essential residues. Many of these rely on aromaticity for function suggesting a role for π-stacking in melanosomal amyloid assembly. Various mutants are defective in amyloid nucleation. This extensive data set informs the first structural model of the CAF and provides insights into how the melanosomal amyloid core forms. PMID:28272432

  3. Identification of Inhibitors of CD36-Amyloid Beta Binding as Potential Agents for Alzheimer's Disease.

    PubMed

    Doens, Deborah; Valiente, Pedro A; Mfuh, Adelphe M; X T Vo, Anh; Tristan, Adilia; Carreño, Lizmar; Quijada, Mario; Nguyen, Vu T; Perry, George; Larionov, Oleg V; Lleonart, Ricardo; Fernández, Patricia L

    2017-02-15

    Neuroinflammation is one of the hallmarks of Alzheimer's disease pathology. Amyloid β has a central role in microglia activation and the subsequent secretion of inflammatory mediators that are associated with neuronal toxicity. The recognition of amyloid β by microglia depends on the expression of several receptors implicated in the clearance of amyloid and in cell activation. CD36 receptor expressed on microglia interacts with fibrils of amyloid inducing the release of proinflammatory cytokines and amyloid internalization. The interruption of the interaction CD36-amyloid β compromises the activation of microglia cells. We have developed and validated a new colorimetric assay to identify potential inhibitors of the binding of amyloid β to CD36. We have found seven molecules, structural analogues of the Trichodermamide family of natural products that interfere with the interaction CD36-amyloid β. By combining molecular docking and dynamics simulations, we suggested the second fatty acids binding site within the large luminal hydrophobic tunnel, present in the extracellular domain of CD36, as the binding pocket of these compounds. Free energy calculations predicted the nonpolar component as the driving force for the binding of these inhibitors. These molecules also inhibited the production of TNF-α, IL-6, and IL-1β by peritoneal macrophages stimulated with fibrils of amyloid β. This work serves as a platform for the identification of new potential anti-inflammatory agents for the treatment of Alzheimer's disease.

  4. Amyloid Aggregation and Membrane Disruption by Amyloid Proteins

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2013-03-01

    Amyloidogenesis has been the focus of intense basic and clinical research, as an increasing number of amyloidogenic proteins have been linked to common and incurable degenerative diseases including Alzheimer's, type II diabetes, and Parkinson's. Recent studies suggest that the cell toxicity is mainly due to intermediates generated during the assembly process of amyloid fibers, which have been proposed to attack cells in a variety of ways. Disruption of cell membranes is believed to be one of the key components of amyloid toxicity. However, the mechanism by which this occurs is not fully understood. Our research in this area is focused on the investigation of the early events in the aggregation and membrane disruption of amyloid proteins, Islet amyloid polypeptide protein (IAPP, also known as amylin) and amyloid-beta peptide, on the molecular level. Structural insights into the mechanisms of membrane disruption by these amyloid proteins and the role of membrane components on the membrane disruption will be presented.

  5. Computational Pathology

    PubMed Central

    Louis, David N.; Feldman, Michael; Carter, Alexis B.; Dighe, Anand S.; Pfeifer, John D.; Bry, Lynn; Almeida, Jonas S.; Saltz, Joel; Braun, Jonathan; Tomaszewski, John E.; Gilbertson, John R.; Sinard, John H.; Gerber, Georg K.; Galli, Stephen J.; Golden, Jeffrey A.; Becich, Michael J.

    2016-01-01

    Context We define the scope and needs within the new discipline of computational pathology, a discipline critical to the future of both the practice of pathology and, more broadly, medical practice in general. Objective To define the scope and needs of computational pathology. Data Sources A meeting was convened in Boston, Massachusetts, in July 2014 prior to the annual Association of Pathology Chairs meeting, and it was attended by a variety of pathologists, including individuals highly invested in pathology informatics as well as chairs of pathology departments. Conclusions The meeting made recommendations to promote computational pathology, including clearly defining the field and articulating its value propositions; asserting that the value propositions for health care systems must include means to incorporate robust computational approaches to implement data-driven methods that aid in guiding individual and population health care; leveraging computational pathology as a center for data interpretation in modern health care systems; stating that realizing the value proposition will require working with institutional administrations, other departments, and pathology colleagues; declaring that a robust pipeline should be fostered that trains and develops future computational pathologists, for those with both pathology and non-pathology backgrounds; and deciding that computational pathology should serve as a hub for data-related research in health care systems. The dissemination of these recommendations to pathology and bioinformatics departments should help facilitate the development of computational pathology. PMID:26098131

  6. Amyloid myopathy: characteristic features of a still underdiagnosed disease.

    PubMed

    Chapin, John E; Kornfeld, Mario; Harris, Alexis

    2005-02-01

    A 62-year-old man with progressive proximal weakness underwent extensive evaluation including muscle biopsy without a clear diagnosis being established. A repeat muscle biopsy including Congo red-stained sections revealed infiltration of blood-vessel walls and endomysium with amyloid protein, as well as an unusual pattern of pathologic changes to muscle fibers. From a review of 79 cases of amyloid myopathy reported in the English-language literature, the characteristic features of this disorder are described. Congo red-stained sections of muscle biopsy viewed under fluorescent or polarized optics, and serum or urine protein immunoelectrophoresis, play an important role in the evaluation of myopathy. Amyloid myopathy should be a consideration in adults with progressive neuromuscular weakness of uncertain cause.

  7. 18F-AV-1451 PET Imaging in Three Patients with Probable Cerebral Amyloid Angiopathy.

    PubMed

    Kim, Hee Jin; Cho, Hanna; Werring, David J; Jang, Young Kyoung; Kim, Yeo Jin; Lee, Jin San; Lee, Juyoun; Jun, Soomin; Park, Seongbeom; Ryu, Young Hoon; Choi, Jae Yong; Cho, Young Seok; Moon, Seung Hwan; Na, Duk L; Lyoo, Chul Hyoung; Seo, Sang Won

    2017-03-06

    Cerebrovascular deposition of amyloid-β, known as cerebral amyloid angiopathy (CAA), is associated with MRI findings of lobar hemorrhage, cerebral microbleeds, and cortical superficial siderosis. Although pathological studies suggest that tau may co-localize with vascular amyloid, this has not yet been investigated in CAA in vivo. Three patients with probable CAA underwent 11C-Pittsburgh Compound B (PiB) PET or 18F-florbetaben PET to evaluate amyloid burden, and 18F-AV-1451 PET to evaluate paired helical filament tau burden. Regions that had cerebral microbleeds or cortical superficial siderosis largely overlapped with those showing increased 18F-AV-1451 and increased 11C-PiB uptake. Our preliminary study raised the possibility that lobar cerebral microbleeds, and cortical superficial siderosis, which are characteristic markers of vascular amyloid, may be associated with local production of paired helical filament tau.

  8. Imaging amyloid in Parkinson's disease dementia and dementia with Lewy bodies with positron emission tomography.

    PubMed

    Brooks, David J

    2009-01-01

    Although Parkinson's disease with later dementia (PDD) and dementia with Lewy bodies (DLB) are pathologically characterized by the presence of intraneuronal Lewy inclusion bodies, amyloid deposition is also associated to varying degrees with both these disorders. Fibrillar amyloid load can now be quantitated in vivo with positron emission tomography (PET) using imaging biomarkers. Here the reported findings of 11C-PIB PET studies concerning the amyloid load associated with PD and its influence on dementia are reviewed. It is concluded that the presence of amyloid acts to accelerate the dementia process in Lewy body disorders, though has little influence on its nature. Anti-amyloid strategies could be a relevant approach for slowing dementia in a number of DLB and PDD cases.

  9. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials.

    PubMed

    Knowles, Tuomas P J; Mezzenga, Raffaele

    2016-08-01

    Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self-assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self-assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials.

  10. Accumulation of amyloid in cognitive impairment after mild traumatic brain injury.

    PubMed

    Yang, Shun-Tai; Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Chiang, Yung-Hsiao; Yen, Tzu-Chen; Chiu, Wen-Ta; Lin, Kun-Ju; Hu, Chaur-Jong

    2015-02-15

    Recent epidemiology studies have indicated that traumatic brain injury (TBI) can increase the risk of developing neurodegenerative diseases such as Alzheimer's disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles are pathological indicators of AD. The accumulation of Aβ is considered the first step of AD pathophysiology. Compelling studies have supported the hypothesis that TBI accelerates the formation and accumulation of Aβ. These findings could link TBI with AD, although the research that reported these findings had limitations, particularly regarding mild TBI (mTBI) patients. The effects of mTBI on Aβ accumulation remain uncertain because of a lack of mTBI pathology data. Using amyloid-positron emission tomography (amyloid-PET), researchers can help to determine whether mTBI increases the accumulation of Aβ, which might be involved in the pathophysiological mechanisms of mTBI in AD, and could be a target for the treatment of neurodegenerative diseases associated with TBI. In this study, we recruited 27 mTBI patients with mTBI in mean 6years before this study (21 mTBI patients without cognitive impairment, 6 mTBI patients with cognitive impairment,) and 10 controls. All of them underwent mini-mental state examination, apolipoprotein E (APOE) genotyping, and amyloid-PET. The results show an increase of amyloid accumulation and allele frequency of APOE4 in the mTBI patients with cognitive impairment. These findings indicate that amyloid accumulation is an important indicator of cognitive impairment, and amyloid-PET should be a safe and useful tool for diagnosing amyloid-related cognitive impairment. APOE allele might play a role in the occurrence of cognitive impairment after mTBI. The contribution of mTBI to the amyloid accumulation requires further study, and mTBI patients should be recruited for longitudinal research with repeated amyloid-PET studies.

  11. Brain amyloid and cognition in Lewy body diseases.

    PubMed

    Gomperts, Stephen N; Locascio, Joseph J; Marquie, Marta; Santarlasci, Andrea L; Rentz, Dorene M; Maye, Jacqueline; Johnson, Keith A; Growdon, John H

    2012-07-01

    Many patients with PD develop PD with dementia (PDD), a syndrome that overlaps clinically and pathologically with dementia with Lewy bodies (DLB); PDD and DLB differ chiefly in the relative timing of dementia and parkinsonism. Brain amyloid deposition is an early feature of DLB and may account, in part, for its early dementia. We sought to confirm this hypothesis and also to determine whether amyloid accumulation contributes to cognitive impairment and dementia in the broad range of parkinsonian diseases. Twenty-nine cognitively healthy PD, 14 PD subjects with mild cognitive impairment (PD-MCI), 18 with DLB, 12 with PDD, and 85 healthy control subjects (HCS) underwent standardized neurologic and neuropsychological examinations and Pittsburgh compound B (PiB) imaging with PET. Apolipoprotein E (ApoE) genotypes were obtained in many patients. PiB retention was expressed as the distribution volume ratio using a cerebellar tissue reference. PiB retention was significantly higher in DLB than in any of the other diagnostic groups. PiB retention did not differ across PDD, PD-MCI, PD, and HCS. Amyloid burden increased with age and with the presence of the ApoE ε4 allele in all patient groups. Only in the DLB group was amyloid deposition associated with impaired cognition. DLB subjects have higher amyloid burden than subjects with PDD, PD-MCI, PD, or HCS; amyloid deposits are linked to cognitive impairment only in DLB. Early amyloid deposits in DLB relative to PDD may account for their difference in the timing of dementia and parkinsonism.

  12. Amyloids: from Pathogenesis to Function.

    PubMed

    Nizhnikov, A A; Antonets, K S; Inge-Vechtomov, S G

    2015-09-01

    The term "amyloids" refers to fibrillar protein aggregates with cross-β structure. They have been a subject of intense scrutiny since the middle of the previous century. First, this interest is due to association of amyloids with dozens of incurable human diseases called amyloidoses, which affect hundreds of millions of people. However, during the last decade the paradigm of amyloids as pathogens has changed due to an increase in understanding of their role as a specific variant of quaternary protein structure essential for the living cell. Thus, functional amyloids are found in all domains of the living world, and they fulfill a variety of roles ranging from biofilm formation in bacteria to long-term memory regulation in higher eukaryotes. Prions, which are proteins capable of existing under the same conditions in two or more conformations at least one of which having infective properties, also typically have amyloid features. There are weighty reasons to believe that the currently known amyloids are only a minority of their real number. This review provides a retrospective analysis of stages in the development of amyloid biology that during the last decade resulted, on one hand, in reinterpretation of the biological role of amyloids, and on the other hand, in the development of systems biology of amyloids, or amyloidomics.

  13. The role of β-amyloid peptide in neurodegenerative diseases.

    PubMed

    Maltsev, A V; Bystryak, S; Galzitskaya, O V

    2011-09-01

    Studies of neurodegenerative disorders (NDDs) are drawing more attention of researchers worldwide due to the high incidence of Alzheimer's disease (AD). The pathophysiology of such disorders is, in part, characterized by the transition of a wild-type peptide from its native conformation into a very stable pathological isoform. Subsequently, these abnormal proteins form aggregates of amyloid fibrils that continuously increase in size. Changes in the metabolic processes of neurons (e.g. oxidative stress, hyperphosphorylation of the tau protein, and resulting secondary changes in the cell metabolism) ultimately lead to cell death. We hypothesize that extracellular deposition of β-amyloid peptide fibrils and neurofibrillary tangles represents the body's adaptation mechanism, aimed at preservation of autonomic functioning; while the cognitive decline is severe, the rest of the organ systems remain unaffected and continue to function. This hypothesis is supported by the fact that destruction of pathological plaques, fibrils, and tangles and the use of vaccines targeting β-amyloid result in undesirable side effects. To gain a better understanding of the pathophysiology of Alzheimer's disease and to develop novel therapies, continued studies of the sporadic form of disease and the mechanisms triggering conformational changes in β-amyloid peptide fragments are essential. This review is focused on studies investigating the formation of amyloid fibrils and their role in the pathogenesis of neurodegenerative diseases. In addition, we discuss a related disorder--amyloidosis--where formation of fibrils, tangles, and plaques leads to neuronal death which may occur as a result of a failed adaptation process. Further in-depth investigation and comprehensive analysis of alterations in the metabolism of APP, β-amyloid, and tau protein, which have a pathological effect on cell membrane, alter phosphate exchange, and impair other key metabolic functions of the cell long before the

  14. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation

    SciTech Connect

    Sievers, Stuart A.; Karanicolas, John; Chang, Howard W.; Zhao, Anni; Jiang, Lin; Zirafi, Onofrio; Stevens, Jason T.; Münch, Jan; Baker, David; Eisenberg, David

    2011-09-20

    Many globular and natively disordered proteins can convert into amyloid fibrils. These fibrils are associated with numerous pathologies as well as with normal cellular functions, and frequently form during protein denaturation. Inhibitors of pathological amyloid fibril formation could be useful in the development of therapeutics, provided that the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibrils as templates, we have designed and characterized an all-D-amino-acid inhibitor of the fibril formation of the tau protein associated with Alzheimer's disease, and a non-natural L-amino-acid inhibitor of an amyloid fibril that enhances sexual transmission of human immunodeficiency virus. Our results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures. Because the inhibiting peptides have been designed on structures of dual-{beta}-sheet 'steric zippers', the successful inhibition of amyloid fibril formation strengthens the hypothesis that amyloid spines contain steric zippers.

  15. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology.

    PubMed

    Bradshaw, Elizabeth M; Chibnik, Lori B; Keenan, Brendan T; Ottoboni, Linda; Raj, Towfique; Tang, Anna; Rosenkrantz, Laura L; Imboywa, Selina; Lee, Michelle; Von Korff, Alina; Morris, Martha C; Evans, Denis A; Johnson, Keith; Sperling, Reisa A; Schneider, Julie A; Bennett, David A; De Jager, Philip L

    2013-07-01

    In our functional dissection of the CD33 Alzheimer's disease susceptibility locus, we found that the rs3865444(C) risk allele was associated with greater cell surface expression of CD33 in the monocytes (t50 = 10.06, P(joint) = 1.3 × 10(-13)) of young and older individuals. It was also associated with diminished internalization of amyloid-β 42 peptide, accumulation of neuritic amyloid pathology and fibrillar amyloid on in vivo imaging, and increased numbers of activated human microglia.

  16. Effects of injected Alzheimer beta-amyloid cores in rat brain.

    PubMed Central

    Frautschy, S A; Baird, A; Cole, G M

    1991-01-01

    Although amyloid deposits have long been known to accumulate in Alzheimer disease (AD) brain, their origin and significance remain speculative. Because of the lack of an in vivo model where amyloid deposits can be induced, the relationship of the extracellular beta-amyloid deposits to other AD pathology has never been directly investigated. Therefore, we injected SDS-isolated amyloid cores into rat cortex and hippocampus. Similarly isolated lipofuscin fractions from control human brains were injected on the contralateral side. Rats were perfused and brains were examined immunohistochemically at 2 days, 7 days, and 1 month after injection. Alz-50, a monoclonal antibody against abnormally phosphorylated tau proteins, stained neurons along the cortical needle track at 2 but not 7 days after injection of either amyloid or lipofuscin. At 1 month, however, ubiquitin, Alz-50 antigen, and silver-positive structures were observed only in response to amyloid. In 7 of 10 animals, there was considerable neuronal loss in the hippocampal layers. In each instance, these effects were in the immediate vicinity of beta-protein immunoreactive material. Marked neuronal loss was never observed at any time after lipofuscin injection. These results indicate a neuronal response to amyloid. When preparations of mature plaque amyloid isolated from the AD brain are injected into the rat brain, they exert neurotoxic effects and induce antigens found in the AD brain. Images PMID:1924295

  17. Betaine suppressed Aβ generation by altering amyloid precursor protein processing.

    PubMed

    Liu, Xiu-Ping; Qian, Xiang; Xie, Yue; Qi, Yan; Peng, Min-Feng; Zhan, Bi-Cui; Lou, Zheng-Qing

    2014-07-01

    Betaine was an endogenous catabolite of choline, which could be isolated from vegetables and marine products. Betaine could promote the metabolism of homocysteine in healthy subjects and was used for hyperlipidemia, coronary atherosclerosis, and fatty liver in clinic. Recent findings shown that Betaine rescued neuronal damage due to homocysteine induced Alzheimer's disease (AD) like pathological cascade, including tau hyperphosphorylation and amyloid-β (Aβ) deposition. Aβ was derived from amyloid precursor protein (APP) processing, and was a triggering factor for AD pathological onset. Here, we demonstrated that Betaine reduced Aβ levels by altering APP processing in N2a cells stably expressing Swedish mutant of APP. Betaine increased α-secretase activity, but decreased β-secretase activity. Our data indicate that Betaine might play a protective role in Aβ production.

  18. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide

    PubMed Central

    Jean, Létitia; Lee, Chiu Fan; Hodder, Peter; Hawkins, Nick; Vaux, David J.

    2016-01-01

    Many chronic degenerative diseases result from aggregation of misfolded polypeptides to form amyloids. Many amyloidogenic polypeptides are surfactants and their assembly can be catalysed by hydrophobic-hydrophilic interfaces (an air-water interface in-vitro or membranes in-vivo). We recently demonstrated the specificity of surface-induced amyloidogenesis but the mechanisms of amyloidogenesis and more specifically of adsorption at hydrophobic-hydrophilic interfaces remain poorly understood. Thus, it is critical to determine how amyloidogenic polypeptides behave at interfaces. Here we used surface tensiometry, rheology and electron microscopy to demonstrate the complex dynamics of gelation by full-length human islet amyloid polypeptide (involved in type II diabetes) both in the bulk solution and at hydrophobic-hydrophilic interfaces (air-water interface and phospholipids). We show that the hydrogel consists of a 3D supramolecular network of fibrils. We also assessed the role of solvation and dissected the evolution over time of the assembly processes. Amyloid gelation could have important pathological consequences for membrane integrity and cellular functions. PMID:27535008

  19. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    PubMed

    Bhatt, Dhaval P; Puig, Kendra L; Gorr, Matthew W; Wold, Loren E; Combs, Colin K

    2015-01-01

    Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  20. Towards a Pharmacophore for Amyloid

    SciTech Connect

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds

  1. Hacking the code of amyloid formation: the amyloid stretch hypothesis.

    PubMed

    Pastor, M Teresa; Esteras-Chopo, Alexandra; Serrano, Luis

    2007-01-01

    Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.

  2. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer's disease

    PubMed Central

    Insel, Philip S.; Donohue, Michael; Landau, Susan; Jagust, William J.; Shaw, Leslie M.; Trojanowski, John Q.; Zetterberg, Henrik; Blennow, Kaj; Weiner, Michael W.

    2015-01-01

    Reduced cerebrospinal fluid amyloid-β42 and increased retention of florbetapir positron emission tomography are biomarkers reflecting cortical amyloid load in Alzheimer's disease. However, these measurements do not always agree and may represent partly different aspects of the underlying Alzheimer's disease pathology. The goal of this study was therefore to test if cerebrospinal fluid and positron emission tomography amyloid-β biomarkers are independently related to other Alzheimer's disease markers, and to examine individuals who are discordantly classified by these two biomarker modalities. Cerebrospinal fluid and positron emission tomography amyloid-β were measured at baseline in 769 persons [161 healthy controls, 68 subjective memory complaints, 419 mild cognitive impairment and 121 Alzheimer's disease dementia, mean age 72 years (standard deviation 7 years), 47% females] and used to predict diagnosis, APOE ε4 carriage status, cerebral blood flow, cerebrospinal fluid total-tau and phosphorylated-tau levels (cross-sectionally); and hippocampal volume, fluorodeoxyglucose positron emission tomography results and Alzheimer's Disease Assessment Scale-cognitive subscale scores (longitudinally). Cerebrospinal fluid and positron emission tomography amyloid-β were highly correlated, but adjusting one of these predictors for the other revealed that they both provided partially independent information when predicting diagnosis, APOE ε4, hippocampal volume, metabolism, cognition, total-tau and phosphorylated-tau (the 95% confidence intervals of the adjusted effects did not include zero). Cerebrospinal fluid amyloid-β was more strongly related to APOE ε4 whereas positron emission tomography amyloid-β was more strongly related to tau levels (P < 0.05). Discordance (mainly isolated cerebrospinal fluid amyloid-β positivity) differed by diagnostic group (P < 0.001) and was seen in 21% of cognitively healthy people but only 6% in dementia patients. The finding that

  3. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer's disease.

    PubMed

    Mattsson, Niklas; Insel, Philip S; Donohue, Michael; Landau, Susan; Jagust, William J; Shaw, Leslie M; Trojanowski, John Q; Zetterberg, Henrik; Blennow, Kaj; Weiner, Michael W

    2015-03-01

    Reduced cerebrospinal fluid amyloid-β42 and increased retention of florbetapir positron emission tomography are biomarkers reflecting cortical amyloid load in Alzheimer's disease. However, these measurements do not always agree and may represent partly different aspects of the underlying Alzheimer's disease pathology. The goal of this study was therefore to test if cerebrospinal fluid and positron emission tomography amyloid-β biomarkers are independently related to other Alzheimer's disease markers, and to examine individuals who are discordantly classified by these two biomarker modalities. Cerebrospinal fluid and positron emission tomography amyloid-β were measured at baseline in 769 persons [161 healthy controls, 68 subjective memory complaints, 419 mild cognitive impairment and 121 Alzheimer's disease dementia, mean age 72 years (standard deviation 7 years), 47% females] and used to predict diagnosis, APOE ε4 carriage status, cerebral blood flow, cerebrospinal fluid total-tau and phosphorylated-tau levels (cross-sectionally); and hippocampal volume, fluorodeoxyglucose positron emission tomography results and Alzheimer's Disease Assessment Scale-cognitive subscale scores (longitudinally). Cerebrospinal fluid and positron emission tomography amyloid-β were highly correlated, but adjusting one of these predictors for the other revealed that they both provided partially independent information when predicting diagnosis, APOE ε4, hippocampal volume, metabolism, cognition, total-tau and phosphorylated-tau (the 95% confidence intervals of the adjusted effects did not include zero). Cerebrospinal fluid amyloid-β was more strongly related to APOE ε4 whereas positron emission tomography amyloid-β was more strongly related to tau levels (P < 0.05). Discordance (mainly isolated cerebrospinal fluid amyloid-β positivity) differed by diagnostic group (P < 0.001) and was seen in 21% of cognitively healthy people but only 6% in dementia patients. The finding that

  4. Familial amyloid polyneuropathy.

    PubMed

    Planté-Bordeneuve, Violaine; Said, Gerard

    2011-12-01

    Familial amyloid polyneuropathies (FAPs) are a group of life-threatening multisystem disorders transmitted as an autosomal dominant trait. Nerve lesions are induced by deposits of amyloid fibrils, most commonly due to mutated transthyretin (TTR). Less often the precursor of amyloidosis is mutant apolipoprotein A-1 or gelsolin. The first identified cause of FAP-the TTR Val30Met mutation-is still the most common of more than 100 amyloidogenic point mutations identified worldwide. The penetrance and age at onset of FAP among people carrying the same mutation vary between countries. The symptomatology and clinical course of FAP can be highly variable. TTR FAP typically causes a nerve length-dependent polyneuropathy that starts in the feet with loss of temperature and pain sensations, along with life-threatening autonomic dysfunction leading to cachexia and death within 10 years on average. TTR is synthesised mainly in the liver, and liver transplantation seems to have a favourable effect on the course of neuropathy, but not on cardiac or eye lesions. Oral administration of tafamidis meglumine, which prevents misfolding and deposition of mutated TTR, is under evaluation in patients with TTR FAP. In future, patients with FAP might benefit from gene therapy; however, genetic counselling is recommended for the prevention of all types of FAP.

  5. The biochemical aftermath of anti-amyloid immunotherapy

    PubMed Central

    2010-01-01

    Background Active and passive immunotherapy in both amyloid-beta precursor protein (APP) transgenic mice and Alzheimer's Disease (AD) patients have resulted in remarkable reductions in amyloid plaque accumulation, although the degree of amyloid regression has been highly variable. Nine individuals with a clinical diagnosis of AD dementia were actively immunized with the Aβ peptide 1-42 (AN-1792) and subjected to detailed postmortem biochemical analyses. These patients were compared to 6 non-immunized AD cases and 5 non-demented control (NDC) cases. Results All patients were assessed for the presence of AD pathology including amyloid plaques, neurofibrillary tangles and vascular amyloidosis. This effort revealed that two immunotherapy recipients had dementia as a consequence of diseases other than AD. Direct neuropathological examination consistently demonstrated small to extensive areas in which amyloid plaques apparently were disrupted. Characterization of Aβ species remnants by ELISA suggested that total Aβ levels may have been reduced, although because the amounts of Aβ peptides among treated individuals were extremely variable, those data must be regarded as tentative. Chromatographic analysis and Western blots revealed abundant dimeric Aβ peptides. SELDI-TOF mass spectrometry demonstrated a substantive number of Aβ-related peptides, some of them with elongated C-terminal sequences. Pro-inflammatory TNF-α levels were significantly increased in the gray matter of immunized AD cases compared to the NDC and non-immunized AD groups. Conclusions Immunotherapy responses were characterized by extreme variability. Considering the broad range of biological variation that characterizes aging and complicates the recognition of reliable AD biomarkers, such disparities will make the interpretation of outcomes derived from epidemiologic and therapeutic investigations challenging. Although in some cases the apparent removal of amyloid plaques by AN-1792 was impressive

  6. [Carpal tunnel syndrome, amyloid tenosynovitis and periodic hemodialysis].

    PubMed

    Clanet, M; Mansat, M; Durroux, R; Testut, M F; Guiraud, B; Rascol, A; Conte, J

    1981-01-01

    Since 1975, various entrapment neuropathies have been reported in patients undergoing periodic haemodialysis, the most frequent being the carpal tunnel syndrome. Ten patients on chronic haemodialysis developing 15 carpal tunnel syndromes (5 unilateral and 5 bilateral) are reported. Various causes for the renal failure were present and clinical signs of the carpal tunnel syndrome developed at a late stage. The arteriovenous fistula required for extrarenal epuration was antebrachial and of the laterolateral type, except in one case when it was lateroterminal. The carpal tunnel syndrome was always on the same side as the fistula, developing at a later stage on th contralateral side in the 5 cases of bilateral disorders. Lesions were severe, in 11 of the 15 cases. Some patients noted fluctuations in pain symptoms during haemodialysis, either improving or becoming worse. Gross pathological findings during operation (13 cases) were tenosynovitis with epineural hypervascularisation on the opposite side. In 9 cases, however, atypical hypertrophic tenosynovitis was observed. Histological examination in 12 cases demonstrated typical tenosynovitis in 3 patients, but granulomatous tenosynovitis with amyloid deposits was reported in 9 patients. Lesions were bilateral in 2 cases thus present, on the side opposite to the fistula. Ultrastructural study confirmed the amyloid nature of the deposits in 3 cases, the microfibrillary appearance (80 to 100 A) being characteristic of amyloid substance. This rare complication does not represent a common carpal tunnel syndrome, and three mechanisms may be involved in its induction : peripheral uraemic neuropathy, haemodynamic modifications resulting from the antebrachial arteriovenous shunt, and amyloid formation in the flexor synovial sheaths. In the latter case, the type of amyloid disease may be a primary systemic amyloidosis not previously detected, or an elective amyloid process localised to the tenosynovial and periarticular tissues.

  7. Structural origin of polymorphism of Alzheimer's amyloid β-fibrils.

    PubMed

    Agopian, Audrey; Guo, Zhefeng

    2012-10-01

    Formation of senile plaques containing amyloid fibrils of Aβ (amyloid β-peptide) is a pathological hallmark of Alzheimer's disease. Unlike globular proteins, which fold into unique structures, the fibrils of Aβ and other amyloid proteins often contain multiple polymorphs. Polymorphism of amyloid fibrils leads to different toxicity in amyloid diseases and may be the basis for prion strains, but the structural origin for fibril polymorphism is still elusive. In the present study we investigate the structural origin of two major fibril polymorphs of Aβ40: an untwisted polymorph formed under agitated conditions and a twisted polymorph formed under quiescent conditions. Using electron paramagnetic resonance spectroscopy, we studied the inter-strand side-chain interactions at 14 spin-labelled positions in the Aβ40 sequence. The results of the present study show that the agitated fibrils have stronger inter-strand spin-spin interactions at most of the residue positions investigated. The two hydrophobic regions at residues 17-20 and 31-36 have the strongest interactions in agitated fibrils. Distance estimates on the basis of the spin exchange frequencies suggest that inter-strand distances at residues 17, 20, 32, 34 and 36 in agitated fibrils are approximately 0.2 Å (1 Å=0.1 nm) closer than in quiescent fibrils. We propose that the strength of inter-strand side-chain interactions determines the degree of β-sheet twist, which then leads to the different association patterns between different cross β-units and thus distinct fibril morphologies. Therefore the inter-strand side-chain interaction may be a structural origin for fibril polymorphism in Aβ and other amyloid proteins.

  8. Novel effects of FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone] on amyloid precursor protein processing.

    PubMed

    Connop, B P; Thies, R L; Beyreuther, K; Ida, N; Reiner, P B

    1999-04-01

    Amyloidogenic processing of the beta-amyloid precursor protein (APP) has been implicated in the pathology of Alzheimer's disease. Because it has been suggested that catabolic processing of the APP holoprotein occurs in acidic intracellular compartments, we studied the effects of the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) and the H+-ATPase inhibitor bafilomycin A1 on APP catabolism in human embryonic kidney 293 cells expressing either wild-type or "Swedish" mutant APP. Unlike bafilomycin A1, which inhibits beta-amyloid production in cells expressing mutant but not wild-type APP, FCCP inhibited beta-amyloid production in both cell types. Moreover, the effects of FCCP were independent of alterations in total cellular APP levels or APP maturation, and the concentrations used did not alter either cellular ATP levels or cell viability. Bafilomycin A1, which had no effect on beta-amyloid production in wild-type cells, inhibited endocytosis of fluorescent transferrin, whereas concentrations of FCCP that inhibited beta-amyloid production in these cells had no effect on endosomal function. Thus, in wild-type-expressing cells it appears that the beta-amyloid peptide is not produced in the classically defined endosome. Although bafilomycin A1 decreased beta-amyloid release from cells expressing mutant APP but not wild-type APP, it altered lysosomal function in both cell types, suggesting that in normal cells beta-amyloid is not produced in the lysosome. Although inhibition of beta-amyloid production by bafilomycin A1 in mutant cells may occur via changes in endosomal/lysosomal pH, our data suggest that FCCP inhibits wild-type beta-amyloid production by acting on a bafilomycin A1-insensitive acidic compartment that is distinct from either the endosome or the lysosome.

  9. Mammalian prion amyloid formation in bacteria

    PubMed Central

    Macedo, Bruno; Cordeiro, Yraima; Ventura, Salvador

    2016-01-01

    ABSTRACT Mammalian prion proteins (PrPs) that cause transmissible spongiform encephalopathies are misfolded conformations of the host cellular PrP. The misfolded form, the scrapie PrP (PrPSc), can aggregate into amyloid fibrils that progressively accumulate in the brain, evolving to a pathological phenotype. A particular characteristic of PrPSc is to be found as different strains, related to the diversity of conformational states it can adopt. Prion strains are responsible for the multiple phenotypes observed in prion diseases, presenting different incubation times and diverse deposition profiles in the brain. PrP biochemical properties are also strain-dependent, such as different digestion pattern after proteolysis and different stability. Although they have long been studied, strain formation is still a major unsolved issue in prion biology. The recreation of strain-specific conformational features is of fundamental importance to study this unique pathogenic phenomenon. In our recent paper, we described that murine PrP, when expressed in bacteria, forms amyloid inclusion bodies that possess different strain-like characteristics, depending on the PrP construct. Here, we present an extra-view of these data and propose that bacteria might become a successful model to generate preparative amounts of prion strain-specific assemblies for high-resolution structural analysis as well as for addressing the determinants of infectivity and transmissibility. PMID:26910379

  10. Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications

    PubMed Central

    2011-01-01

    In the past decade, positron emission tomography (PET) with carbon-11-labeled Pittsburgh Compound B (PIB) has revolutionized the neuroimaging of aging and dementia by enabling in vivo detection of amyloid plaques, a core pathologic feature of Alzheimer's disease (AD). Studies suggest that PIB-PET is sensitive for AD pathology, can distinguish AD from non-AD dementia (for example, frontotemporal lobar degeneration), and can help determine whether mild cognitive impairment is due to AD. Although the short half-life of the carbon-11 radiolabel has thus far limited the use of PIB to research, a second generation of tracers labeled with fluorine-18 has made it possible for amyloid PET to enter the clinical era. In the present review, we summarize the literature on amyloid imaging in a range of neurodegenerative conditions. We focus on potential clinical applications of amyloid PET and its role in the differential diagnosis of dementia. We suggest that amyloid imaging will be particularly useful in the evaluation of mildly affected, clinically atypical or early age-at-onset patients, and illustrate this with case vignettes from our practice. We emphasize that amyloid imaging should supplement (not replace) a detailed clinical evaluation. We caution against screening asymptomatic individuals, and discuss the limited positive predictive value in older populations. Finally, we review limitations and unresolved questions related to this exciting new technique. PMID:22071129

  11. Automatic segmentation of amyloid plaques in MR images using unsupervised support vector machines.

    PubMed

    Iordanescu, Gheorghe; Venkatasubramanian, Palamadai N; Wyrwicz, Alice M

    2012-06-01

    Deposition of the β-amyloid peptide (Aβ) is an important pathological hallmark of Alzheimer's disease (AD). However, reliable quantification of amyloid plaques in both human and animal brains remains a challenge. We present here a novel automatic plaque segmentation algorithm based on the intrinsic MR signal characteristics of plaques. This algorithm identifies plaque candidates in MR data by using watershed transform, which extracts regions with low intensities completely surrounded by higher intensity neighbors. These candidates are classified as plaque or nonplaque by an unsupervised learning method using features derived from the MR data intensity. The algorithm performance is validated by comparison with histology. We also demonstrate the algorithm's ability to detect age-related changes in plaque load ex vivo in amyloid precursor protein (APP) transgenic mice that coexpress five familial AD mutations (5xFAD mice). To our knowledge, this study represents the first quantitative method for characterizing amyloid plaques in MRI data. The proposed method can be used to describe the spatiotemporal progression of amyloid deposition, which is necessary for understanding the evolution of plaque pathology in mouse models of Alzheimer's disease and to evaluate the efficacy of emergent amyloid-targeting therapies in preclinical trials.

  12. Memory deficits correlating with acetylcholinesterase splice shift and amyloid burden in doubly transgenic mice.

    PubMed

    Rees, Tina M; Berson, Amit; Sklan, Ella H; Younkin, Linda; Younkin, Steven; Brimijoin, Stephen; Soreq, Hermona

    2005-07-01

    Current mouse models of Alzheimer's disease show brain pathology that correlates to a degree with memory impairment, but underlying molecular mechanisms remained unknown. Here we report studies with three lines of transgenic mice: animals that doubly express mutated human amyloid precursor protein (APPswe) and human acetylcholinesterase (hAChE); and animals transgenic for only the APPswe or the hAChE. Among these genotypes, variations were observed in expression of mRNA for presenilin-1, which was highest in singly transgenic hAChE mice, and the stress-inducible form of AChE, which was elevated when both transgenes were present. At the age of nine months, both double and single transgenic mice displayed working memory impairment in a radial arm water maze. However, as compared with mice expressing amyloid alone, the double transgenic animals exhibited more numerous plaques and greater amyloid burden in brain (both by histochemistry and by ELISA of amyloid protein). Moreover, the amyloid burden in double transgenics was tightly correlated with memory impairment as measured by total maze errors (r2= 0.78, p = .002). This correlation was markedly stronger than observed in mice with amyloid alone. These new findings support the notion of cholinergic-amyloid interrelationships and highlight the double transgenic mice as a promising alternative for testing Alzheimer's therapies.

  13. A molecular model for self-assembly of amyloid fibrils: Immunoglobulin light chains

    SciTech Connect

    Stevens, F.J.; Myatt, E.A.; Westholm, F.A.

    1995-08-29

    The formation and pathological deposition of amyloid fibrils are defining features of many acquired and inherited disorders, including primary or light-chain-associated amyloidosis, Alzheimer`s disease, and adult-onset diabetes. No pharmacological methods exist to block this process or to effect the removal of fibrils from tissue, and thus, little can be done to prevent organ failure and ultimate death that result from deposition of amyloid. Knowledge of the pathogenesis, treatment, or prevention of these presently incurable diseases is limited due to the relative paucity of information regarding the biophysical basis of amyloid formation. Antibody light chains of different amino acid sequence show differential amyloid-forming tendencies and, as such, can provide insight into the structural organization of amyloid fibrils as well as into basic mechanisms of protein self-assembly. We have compared primary structures of 180 human monoclonal light chains and have identified particular residues and positions within the variable domain that differentiate amyloid-from nonamyloid-associated proteins. We propose a molecular model that accounts for amyloid formation by antibody light chains and might also have implications for other forms of amyloidosis. 24 refs., 2 figs., 1 tab.

  14. Amyloid β-protein oligomers and Alzheimer’s disease

    PubMed Central

    2013-01-01

    The oligomer cascade hypothesis, which states that oligomers are the initiating pathologic agents in Alzheimer’s disease, has all but supplanted the amyloid cascade hypothesis, which suggested that fibers were the key etiologic agents in Alzheimer’s disease. We review here the results of in vivo, in vitro and in silico studies of amyloid β-protein oligomers, and discuss important caveats that should be considered in the evaluation of these results. This article is divided into four sections that mirror the main approaches used in the field to better understand oligomers: (1) attempts to locate and examine oligomers in vivo in situ; that is, without removing these species from their environment; (2) studies involving oligomers extracted from human or animal tissues and the subsequent characterization of their properties ex vivo; (3) studies of oligomers that have been produced synthetically and studied using a reductionist approach in relatively simple in vitro biophysical systems; and (4) computational studies of oligomers in silico. These multiple orthogonal approaches have revealed much about the molecular and cell biology of amyloid β-protein. However, as informative as these approaches have been, the amyloid β-protein oligomer system remains enigmatic. PMID:24289820

  15. Cellular Regulation of Amyloid Formation in Aging and Disease

    PubMed Central

    Stroo, Esther; Koopman, Mandy; Nollen, Ellen A. A.; Mata-Cabana, Alejandro

    2017-01-01

    As the population is aging, the incidence of age-related neurodegenerative diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of neurodegenerative diseases is characterized by the presence of protein aggregates of disease specific proteins in the brain of patients. Under certain conditions these disease proteins can undergo structural rearrangements resulting in misfolded proteins that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells have different mechanisms to deal with this protein aggregation, where the molecular chaperone machinery constitutes the first line of defense against misfolded proteins. Proteins that cannot be refolded are subjected to degradation and compartmentalization processes. Amyloid formation has traditionally been described as responsible for the proteotoxicity associated with different neurodegenerative disorders. Several mechanisms have been suggested to explain such toxicity, including the sequestration of key proteins and the overload of the protein quality control system. Here, we review different aspects of the involvement of amyloid-forming proteins in disease, mechanisms of toxicity, structural features, and biological functions of amyloids, as well as the cellular mechanisms that modulate and regulate protein aggregation, including the presence of enhancers and suppressors of aggregation, and how aging impacts the functioning of these mechanisms, with special attention to the molecular chaperones. PMID:28261044

  16. On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis.

    PubMed

    Castello, Michael A; Soriano, Salvador

    2014-01-01

    The amyloid cascade hypothesis, which implicates the amyloid Aβ peptide as the pathological initiator of both familial and sporadic, late onset Alzheimer's disease (AD), continues to guide the majority of research. We believe that current evidence does not support the amyloid cascade hypothesis for late onset AD. Instead, we propose that Aβ is a key regulator of brain homeostasis. During AD, while Aβ accumulation may occur in the long term in parallel with disease progression, it does not contribute to primary pathogenesis. This view predicts that amyloid-centric therapies will continue to fail, and that progress in developing successful alternative therapies for AD will be slow until closer attention is paid to understanding the physiological function of Aβ and its precursor protein.

  17. Oral pathology.

    PubMed

    Niemiec, Brook A

    2008-05-01

    Oral disease is exceedingly common in small animal patients. In addition, there is a very wide variety of pathologies that are encountered within the oral cavity. These conditions often cause significant pain and/or localized and systemic infection; however, the majority of these conditions have little to no obvious clinical signs. Therefore, diagnosis is not typically made until late in the disease course. Knowledge of these diseases will better equip the practitioner to effectively treat them. This article covers the more common forms of oral pathology in the dog and cat, excluding periodontal disease, which is covered in its own chapter. The various pathologies are presented in graphic form, and the etiology, clinical signs, recommended diagnostic tests, and treatment options are discussed. Pathologies that are covered include: persistent deciduous teeth, fractured teeth, intrinsically stained teeth, feline tooth resorption, caries, oral neoplasia, eosinophilic granuloma complex, lymphoplasmacytic gingivostomatitis, enamel hypoplasia, and "missing" teeth.

  18. Clinical Utility of Amyloid Imaging in a Complex Case of Corticobasal Syndrome Presenting with Psychiatric Symptoms

    PubMed Central

    Bensaïdane, MR; M-P, Fortin; Damasse, G; Chenard, M; Dionne, C; Duclos, M; Bouchard, RW; Laforce, R

    2015-01-01

    Clinical indications of amyloid imaging in atypical dementia remain unclear. We report a 68-year-old female without past psychiatric history who was hospitalized for auditory hallucinations and persecutory delusions associated with cognitive and motor deficits. Although psychotic symptoms resolved with antipsychotic treatment, cognitive and motor impairments remained. She further showed severe visuoconstructive and executive deficits, ideomotor apraxia, elements of Gerstmann’s syndrome, bilateral agraphesthesia and discrete asymmetric motor deficits. Blood tests were unremarkable. Structural brain imaging revealed diffuse fronto-temporo-parietal atrophy, which was most severe in the parietal regions. Meanwhile, FDG-PET suggested asymmetrical fronto-temporo-parietal hypometabolism, with sparing of the posterior cingulate gyrus. A diagnosis of possible corticobasal syndrome (CBS) was made. Amyloid-PET using the novel tracer NAV4694 was ordered, and revealed significant deposition of fibrillar amyloid (SUVR 2.05). The primary diagnosis was CBS with underlying Alzheimer pathology and treatment with a cholinesterase inhibitor was initiated. Determination of underlying pathological CBS subtype is not simple even when based on extensive investigation including clinical presentation, atrophy patterns on MRI, and regional hypometabolism on FDG-PET. By contrast, amyloid imaging quickly confirmed Alzheimer pathology, and allowed rapid initiation of treatment in this complex case with early psychiatric symptoms. This case study illustrates the clinical utility of amyloid imaging in the setting of atypical cases seen in a tertiary memory clinic. PMID:26225355

  19. Clinical Utility of Amyloid Imaging in a Complex Case of Corticobasal Syndrome Presenting with Psychiatric Symptoms.

    PubMed

    Bensaïdane, M R; M-P, Fortin; Damasse, G; Chenard, M; Dionne, C; Duclos, M; Bouchard, R W; Laforce, R

    2014-11-26

    Clinical indications of amyloid imaging in atypical dementia remain unclear. We report a 68-year-old female without past psychiatric history who was hospitalized for auditory hallucinations and persecutory delusions associated with cognitive and motor deficits. Although psychotic symptoms resolved with antipsychotic treatment, cognitive and motor impairments remained. She further showed severe visuoconstructive and executive deficits, ideomotor apraxia, elements of Gerstmann's syndrome, bilateral agraphesthesia and discrete asymmetric motor deficits. Blood tests were unremarkable. Structural brain imaging revealed diffuse fronto-temporo-parietal atrophy, which was most severe in the parietal regions. Meanwhile, FDG-PET suggested asymmetrical fronto-temporo-parietal hypometabolism, with sparing of the posterior cingulate gyrus. A diagnosis of possible corticobasal syndrome (CBS) was made. Amyloid-PET using the novel tracer NAV4694 was ordered, and revealed significant deposition of fibrillar amyloid (SUVR 2.05). The primary diagnosis was CBS with underlying Alzheimer pathology and treatment with a cholinesterase inhibitor was initiated. Determination of underlying pathological CBS subtype is not simple even when based on extensive investigation including clinical presentation, atrophy patterns on MRI, and regional hypometabolism on FDG-PET. By contrast, amyloid imaging quickly confirmed Alzheimer pathology, and allowed rapid initiation of treatment in this complex case with early psychiatric symptoms. This case study illustrates the clinical utility of amyloid imaging in the setting of atypical cases seen in a tertiary memory clinic.

  20. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids.

    PubMed

    de Mena, Lorena; Chhangani, Deepak; Fernandez-Funez, Pedro; Rincon-Limas, Diego E

    2017-02-06

    Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to hereditary mutations, environmental exposures or even normal aging. Cumulative evidence indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various intracellular amyloids in Drosophila and mouse models. However, its protective role against extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly protective against toxicity induced by extracellular deposition of the amyloid-β42 (Aβ42) peptide. In this Extra View article, we extend our analysis to other members of the heat shock protein family. We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and compared their activities in parallel against extracellular Aβ42. Strikingly, only secreted Hsp70 exhibits robust protection against Aβ42-triggered toxicity in the extracellular milieu. These observations indicate that the ability of secHsp70 to suppress Aβ42 insults is quite unique and suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Aβ42 and other extracellular amyloids. The potential applications of this engineered chaperone are discussed.

  1. Glycation in Demetalated Superoxide Dismutase 1 Prevents Amyloid Aggregation and Produces Cytotoxic Ages Adducts

    PubMed Central

    Sirangelo, Ivana; Vella, Filomena M.; Irace, Gaetano; Manco, Giuseppe; Iannuzzi, Clara

    2016-01-01

    Superoxide dismutase 1 (SOD1) has been implicated with familial amyotrophic lateral sclerosis (fALS) through accumulation of protein amyloid aggregates in motor neurons of patients. Amyloid aggregates and protein inclusions are a common pathological feature of many neurological disorders in which protein aggregation seems to be directly related to neurotoxicity. Although, extensive studies performed on the aggregation process of several amyloidogenic proteins in vitro allowed the identification of many physiological factors involved, the molecular mechanisms underlying the formation of amyloid aggregates in vivo and in pathological conditions are still poorly understood. Post-translational modifications are known to affect protein structure and function and, recently, much attention has been devoted to the role played by non-enzymatic glycation in stimulating amyloid aggregation and cellular toxicity. In particular, glycation seems to have a determining role both in sporadic and familial forms of ALS and SOD1 has been shown to be glycated in vivo The aim of this study was to investigate the role of glycation on the amyloid aggregation process of both wild-type SOD1 and its ALS-related mutant G93A. To this aim, the glycation kinetics of both native and demetalated SOD have been followed using two different glycating agents, i.e., D-ribose and methylglyoxal. The effect of glycation on the structure and the amyloid aggregation propensity of native and ApoSOD has been also investigated using a combination of biophysical and biochemical techniques. In addition, the effect of SOD glycated species on cellular toxicity and reactive oxygen species (ROS) production has been evaluated in different cellular models. The results provided by this study contribute to clarify the role of glycation in amyloid aggregation and suggest a direct implication of glycation in the pathology of fALS. PMID:27695694

  2. Polyphenols as therapeutic molecules in Alzheimer's disease through modulating amyloid pathways.

    PubMed

    Lakey-Beitia, Johant; Berrocal, Ruben; Rao, K S; Durant, Armando A

    2015-04-01

    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative condition. The complex pathology of this disease includes oxidative stress, metal deposition, formation of aggregates of amyloid and tau, enhanced immune responses, and disturbances in cholinesterase. Drugs targeted toward reduction of amyloidal load have been discovered, but there is no effective pharmacological treatment for combating the disease so far. Natural products have become an important avenue for drug discovery research. Polyphenols are natural products that have been shown to be effective in the modulation of the type of neurodegenerative changes seen in AD, suggesting a possible therapeutic role. The present review focuses on the chemistry of polyphenols and their role in modulating amyloid precursor protein (APP) processing. We also provide new hypotheses on how these therapeutic molecules may modulate APP processing, prevent Aβ aggregation, and favor disruption of preformed fibrils. Finally, the role of polyphenols in modulating Alzheimer's pathology is discussed.

  3. Stereotaxic Infusion of Oligomeric Amyloid-beta into the Mouse Hippocampus

    PubMed Central

    Jean, Ying Y.; Baleriola, Jimena; Fà, Mauro; Hengst, Ulrich; Troy, Carol M.

    2015-01-01

    Alzheimer’s disease is a neurodegenerative disease affecting the aging population. A key neuropathological feature of the disease is the over-production of amyloid-beta and the deposition of amyloid-beta plaques in brain regions of the afflicted individuals. Throughout the years scientists have generated numerous Alzheimer’s disease mouse models that attempt to replicate the amyloid-beta pathology. Unfortunately, the mouse models only selectively mimic the disease features. Neuronal death, a prominent effect in the brains of Alzheimer’s disease patients, is noticeably lacking in these mice. Hence, we and others have employed a method of directly infusing soluble oligomeric species of amyloid-beta - forms of amyloid-beta that have been proven to be most toxic to neurons - stereotaxically into the brain. In this report we utilize male C57BL/6J mice to document this surgical technique of increasing amyloid-beta levels in a select brain region. The infusion target is the dentate gyrus of the hippocampus because this brain structure, along with the basal forebrain that is connected by the cholinergic circuit, represents one of the areas of degeneration in the disease. The results of elevating amyloid-beta in the dentate gyrus via stereotaxic infusion reveal increases in neuron loss in the dentate gyrus within 1 week, while there is a concomitant increase in cell death and cholinergic neuron loss in the vertical limb of the diagonal band of Broca of the basal forebrain. These effects are observed up to 2 weeks. Our data suggests that the current amyloid-beta infusion model provides an alternative mouse model to address region specific neuron death in a short-term basis. The advantage of this model is that amyloid-beta can be elevated in a spatial and temporal manner. PMID:26132278

  4. Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion

    PubMed Central

    Espargaró, Alba; Busquets, Maria Antònia; Estelrich, Joan; Sabate, Raimon

    2016-01-01

    Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer’s and Parkinson’s diseases (AD/PD) to Creutzfeldt-Jakob disease. Commonly, only prions have been considered as infectious agents with a high capacity of propagation. However, recent publications have shown that many amyloid proteins, including amyloid β-peptide, α-synuclein (α-syn) and tau protein, also propagate in a “prion-like” manner. Meanwhile, no link between propagation of pathological proteins and neurotoxicity has been demonstrated. The extremely low infectivity under natural conditions of most non-prion amyloids is far below the capacity to spread exhibited by prions. Nonetheless, it is important to elucidate the key factors that cause non-prion amyloids to become infectious agents. In recent years, important advances in our understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions) have yielded essential information that can shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidence suggests that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could all be key factors affecting their spread. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would effectively prevent infectivity. PMID:27147962

  5. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Mattsson, Niklas; Tosun, Duygu; Insel, Philip S; Simonson, Alix; Jack, Clifford R; Beckett, Laurel A; Donohue, Michael; Jagust, William; Schuff, Norbert; Weiner, Michael W

    2014-05-01

    Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloidpathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloidpathology affects cerebral blood flow across the span from controls to

  6. Abundant Expression of Zinc Transporters in the Amyloid Plaques of Alzheimer’s Disease Brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathological key features of Alzheimer’s disease (AD) are ß-amyloid peptide (Aß)-containing senile plaques (SP) and neurofibrillary tangles. Previous studies have suggested that an extracellular elevation of zinc concentrations can initiate the deposition of Aß and lead to the formation of SP. I...

  7. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  8. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  9. Inguinoscrotal pathology

    PubMed Central

    Guerra, Luis; Leonard, Michael

    2017-01-01

    Infants, children, and adolescents with inguinoscrotal pathology comprise a significant proportion of emergency department and outpatient visits. Visits to the emergency department primarily comprise individuals presenting with scrotal pain due to testicular torsion or torsion of the testicular appendages. At such time, immediate urological consultation is sought. Outpatient visits comprise those individuals with undescended testes, hydroceles, and varicoceles. Rare, but important problems, such as pediatric testicular tumours, may also present in the office setting. Many of these outpatient visits are to primary care physicians, who should have an appreciation of the timing and need for referral. The purpose of this review is to familiarize the general urologist and primary care physician with these varied pathologies and give insight into their assessment and management. Some of these same conditions are seen in adult patients, but there are some significant differences in their management in the pediatric group. In addition, the utility of imaging studies, such as ultrasound, are discussed within each pathological entity. It is hoped that this overview will assist our general urology and primary care colleagues in patient management for diverse inguinoscrotal pathologies. PMID:28265317

  10. Cytoplasmic Retention of Protein Phosphatase 2A Inhibitor 2 (I2PP2A) Induces Alzheimer-like Abnormal Hyperphosphorylation of Tau*

    PubMed Central

    Arif, Mohammad; Wei, Jianshe; Zhang, Qi; Liu, Fei; Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Iqbal, Khalid

    2014-01-01

    Abnormal hyperphosphorylation of Tau leads to the formation of neurofibrillary tangles, a hallmark of Alzheimer disease (AD), and related tauopathies. The phosphorylation of Tau is regulated by protein phosphatase 2A (PP2A), which in turn is modulated by endogenous inhibitor 2 (I2PP2A). In AD brain, I2PP2A is translocated from neuronal nucleus to cytoplasm, where it inhibits PP2A activity and promotes abnormal phosphorylation of Tau. Here we describe the identification of a potential nuclear localization signal (NLS) in the C-terminal region of I2PP2A containing a conserved basic motif, 179RKR181, which is sufficient for directing its nuclear localization. The current study further presents an inducible cell model (Tet-Off system) of AD-type abnormal hyperphosphorylation of Tau by expressing I2PP2A in which the NLS was inactivated by 179RKR181 → AAA along with 168KR169 → AA mutations. In this model, the mutant NLS (mNLS)-I2PP2A (I2PP2AAA-AAA) was retained in the cell cytoplasm, where it physically interacted with PP2A and inhibited its activity. Inhibition of PP2A was associated with the abnormal hyperphosphorylation of Tau, which resulted in microtubule network instability and neurite outgrowth impairment. Expression of mNLS-I2PP2A activated CAMKII and GSK-3β, which are Tau kinases regulated by PP2A. The immunoprecipitation experiments showed the direct interaction of I2PP2A with PP2A and GSK-3β but not with CAMKII. Thus, the cell model provides insights into the nature of the potential NLS and the mechanistic relationship between I2PP2A-induced inhibition of PP2A and hyperphosphorylation of Tau that can be utilized to develop drugs preventing Tau pathology. PMID:25128526

  11. Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity

    PubMed Central

    Bernini, Fabrizio; Malferrari, Daniele; Pignataro, Marcello; Bortolotti, Carlo Augusto; Di Rocco, Giulia; Lancellotti, Lidia; Brigatti, Maria Franca; Kayed, Rakez; Borsari, Marco; del Monte, Federica; Castellini, Elena

    2016-01-01

    The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology. PMID:27775057

  12. Correlation of Cerebral Microbleed Distribution to Amyloid Burden in Patients with Primary Intracerebral Hemorrhage

    PubMed Central

    Tsai, Hsin-Hsi; Tsai, Li-Kai; Chen, Ya-Fang; Tang, Sung-Chun; Lee, Bo-Ching; Yen, Ruoh-Fang; Jeng, Jiann-Shing

    2017-01-01

    The underlying pathology of cerebral microbleeds (CMBs) with mixed lobar and deep distribution remains contentious. The aim of this study was to correlate CMBs distribution to β-amyloid burden in patients with primary intracerebral hemorrhage (ICH). Fourty-seven ICH patients underwent magnetic resonance susceptibility-weighted imaging and 11C-Pittsburgh Compound B positron emission tomography. The amyloid burden was expressed as standardized uptake value ratio with reference to cerebellum, and presented as median (interquartile range). Patients were categorized into the lobar, mixed (both lobar and deep regions), and deep types of CMB. Comparing the lobar (17%), mixed (59.6%) and deep (23.4%) CMB types, the global amyloid burden was significantly higher in the mixed type than the deep type (1.10 [1.03–1.25] vs 1.00 [0.97–1.09], p = 0.011), but lower than in the lobar type (1.48 [1.18–1.50], p = 0.048). On multivariable analysis, the ratio of lobar to deep CMB number was positively correlated with global (p = 0.028) and occipital (p = 0.031) amyloid burden. In primary ICH, patients with lobar and mixed CMB types are associated with increased amyloid burden than patients with deep type. The ratio of lobar to deep CMB number is an independent indicator of cerebral β-amyloid deposition. PMID:28303922

  13. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    PubMed

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  14. Platelets in the Alzheimer's disease brain: do they play a role in cerebral amyloid angiopathy?

    PubMed

    Kniewallner, Kathrin M; Ehrlich, Daniela; Kiefer, Andreas; Marksteiner, Josef; Humpel, Christian

    2015-01-01

    Alzheimer's disease (AD) is characterized by extracellular beta-amyloid plaques and intracellular tau tangles. AD-related pathology is often accompanied by vascular changes. The predominant vascular lesions in AD are cerebral amyloid angiopathy (CAA) and arteriosclerosis. Platelets circulate along the vessel wall responding immediately to vascular injury. The aim of the present study was to explore the presence and migration of platelets (thrombocytes) to sites of small vascular bleedings and/or to beta-amyloid plaques in the brain. We infused fluorescently labeled red PKH26 mouse platelets into transgenic Alzheimer mice overexpressing APP with Swedish/Dutch/Iowa mutations (APP_SDI) and explored if platelets migrate into the brain. Further we studied whether platelets accumulate in the vicinity of β-amyloid plaques. Our animal data shows that infused platelets are found in the liver and partly in the lung, while in the brain platelets were visible to a minor degree. In mice, we did not observe a significant association of platelets with beta-amyloid plaques or vessels. In the brain of Alzheimer postmortem patients platelets could be detected by immunohistochemistry for CD41 and CD62P, but the majority was found in vessels with or without beta-amyloid load, and only a few single platelets migrated deeper into the brain. Our findings suggest that platelets do not migrate into the brains of Alzheimer disease but are concentrated in brain vessels.

  15. Microbial Manipulation of the Amyloid Fold

    PubMed Central

    DePas, William H.

    2012-01-01

    Microbial biofilms are encased in a protein, DNA and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells to adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review. PMID:23108148

  16. Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer's disease.

    PubMed

    Chételat, Gaël; Ossenkoppele, Rik; Villemagne, Victor L; Perrotin, Audrey; Landeau, Brigitte; Mézenge, Florence; Jagust, William J; Dore, Vincent; Miller, Bruce L; Egret, Stéphanie; Seeley, William W; van der Flier, Wiesje M; La Joie, Renaud; Ames, David; van Berckel, Bart N M; Scheltens, Philip; Barkhof, Frederik; Rowe, Christopher C; Masters, Colin L; de La Sayette, Vincent; Bouwman, Femke; Rabinovici, Gil D

    2016-09-01

    -negative cases whose post-positon emission tomography diagnosis remained Alzheimer's disease. While the non-amnestic and non-specific amyloid-negative cases usually showed patterns of atrophy and hypometabolism suggestive of another degenerative disorder, the amnestic amyloid-negative cases had subtle atrophy and hypometabolism, restricted to the retrosplenial/posterior cingulate cortex. Patients with a negative amyloid positon emission tomography scan following an initial clinical diagnosis of Alzheimer's disease have heterogeneous clinical presentations and neuroimaging profiles; a majority showed a clinical progression that was consistent with a neurodegenerative condition. In contrast, in the subgroup of amnestic amyloid-negative cases, the clinical presentation and follow-up usually remained consistent with Alzheimer's disease. An alternative diagnosis was not made in about half of the amnestic amyloid-negative cases, highlighting the need for a clinical framework and terminology to define these patients, who may have underlying limbic-predominant, non-amyloid-related pathologies.

  17. The Structure of Intrinsically Disordered Peptides Implicated in Amyloid Diseases: Insights from Fully Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Wu, Chun; Shea, Joan-Emma

    Protein aggregation involves the self-assembly of proteins into large β-sheet-rich complexes. This process can be the result of aberrant protein folding and lead to "amyloidosis," a condition characterized by deposits of protein aggregates known as amyloids on various organs of the body [1]. Amyloid-related diseases include, among others, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease, and type II diabetes [2, 3, 4]. In other instances, however, protein aggregation is not a pathological process, but rather a functional one, with aggregates serving as structural scaffolds in a number of organisms [5].

  18. Biomarkers for Early Detection of Alzheimer Pathology

    PubMed Central

    Clark, C.M.; Davatzikos, C.; Borthakur, A.; Newberg, A.; Leight, S.; Lee, V.M.-Y.; Trojanowski, J.Q.

    2010-01-01

    The increasing prevalence of Alzheimer’s disease and the devastating consequences of late-life dementia motivates the drive to develop diagnostic biomarkers to reliably identify the pathology associated with this disorder. Strategies to accomplish this include the detection of altered levels of tau and amyloid in cerebrospinal fluid, the use of structural MRI to identify disease-specific patterns of regional atrophy and MRI T1ρ to detect disease-related macromolecular protein aggregation, and the direct imaging of amyloid deposits using positron emission tomography and single photon emission computerized tomography. Success will facilitate the ability to reliably diagnose Alzheimer’s disease while the symptoms of brain failure are mild and may provide objective measures of disease-modifying treatment efficacy. PMID:18097155

  19. The Alzheimer's Amyloid-Degrading Peptidase, Neprilysin: Can We Control It?

    PubMed Central

    Nalivaeva, N. N.; Belyaev, N. D.; Zhuravin, I. A.; Turner, A. J.

    2012-01-01

    The amyloid cascade hypothesis of Alzheimer's disease (AD) postulates that accumulation in the brain of amyloid β-peptide (Aβ) is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP) and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs). During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP) is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD) opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance. PMID:22900228

  20. Development of amyloid burden in African green monkeys

    PubMed Central

    Kalinin, Sergey; Willard, Stephanie L.; Shively, Carol A; Kaplan, Jay R; Register, Tom; Jorgensen, Matthew J; Polak, Paul E; Rubinstein, Israel; Feinstein, Douglas L

    2013-01-01

    The vervet is an old world monkey increasingly being used as a model for human diseases. In addition to plaques and tangles, an additional hallmark of Alzheimer’s disease is damage to neurons that synthesize noradrenaline (NA). We characterized amyloid burden in the posterior temporal lobe of young and aged vervets, and compared that to changes in NA levels and astrocyte activation. Total Aβ40 and Aβ42 levels were increased in the aged group, as were numbers of amyloid plaques detected using antibody 6E10. Low levels of Aβ42 were detected in 1 of 5 younger animals, although diffusely stained plaques were observed in 4 of these. Increased GFAP staining and mRNA levels were significantly correlated with increased age, as were cortical NA levels. Levels of Aβ42 and Aβ40, and the number of 6E10+ plaques, were correlated with NA levels. Interestingly mRNA levels of glial derived neurotrophic factor, important for noradrenergic neuronal survival, were reduced with age. These findings suggest that amyloid pathology in aged vervets is associated with astrocyte activation and higher NA levels. PMID:23601810

  1. Morphologically distinct types of amyloid plaques point the way to a better understanding of Alzheimer's disease pathogenesis.

    PubMed

    D'Andrea, M R; Nagele, R G

    2010-04-01

    The details of the sequence of pathological events leading to neuron death in Alzheimer's disease (AD) are not known. Even the formation of amyloid plaques, one of the major histopathological hallmarks of AD, is not clearly understood; both the origin of the amyloid and the means of its deposition remain unclear. It is still widely considered, however, that amyloid plaques undergo gradual growth in the interstitial space of the brain via continual extracellular deposition of amyloid beta peptides at "seeding sites," and that these growing plaques encroach progressively on neurons and their axons and dendritic processes, eventually leading to neuronal death. Actually, histopathological evidence to support this mechanism is sparse and of uncertain validity. The fact that the amyloid deposits in AD brains that are collectively referred to as plaques are of multiple types and that each seems to have a different origin often is overlooked. We have shown experimentally that many of the so-called "diffuse amyloid plaques," which lack associated inflammatory cells, are either the result of leaks of amyloid from blood vessels at focal sites of blood-brain barrier breaches or are artifacts resulting from grazing sections through the margins of dense core plaques. In addition, we have provided experimental evidence that neuronal death via necrosis leaves a residue that takes the form of a spheroid "cloud" of amyloid, released by cell lysis, surrounding a dense core that often contains neuronal nuclear material. Support for a neuronal origin for these "dense core amyloid plaques" includes their ability to attract inflammatory cells (microglia and immigrant macrophages) and that they contain nuclear and cytoplasmic components that are somewhat resistant to proteolysis by lysosomes released during neuronal cell lysis. We discuss here the clinical and therapeutic importance of recognizing that amyloid deposition occurs both within neurons (intracellular) and in the interstitial

  2. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    PubMed

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  3. Can BACE1 Inhibition Mitigate Early Axonal Pathology in Neurological Diseases?

    PubMed Central

    Yan, Xiao-Xin; Ma, Chao; Gai, Wei-Ping; Cai, Huaibin; Luo, Xue-Gang

    2014-01-01

    β-Secretase-1 (BACE1) is the rate-limiting enzyme for the genesis of amyloid-β (Aβ) peptides, the main constituents of the amyloid plaques in the brains of Alzheimer’s disease (AD) patients. BACE1 is being evaluated as an anti-Aβ target for AD therapy. Recent studies indicate that BACE1 elevation is associated with axonal and presynaptic pathology during plaque development. Evidence also points to a biological role for BACE1 in axonal outgrowth and synapse formation during development. Axonal, including presynaptic, pathology exists in AD as well as many other neurological disorders such as Parkinson’s disease, epilepsy, stroke, and trauma. In this review, we discuss pharmaceutical BACE1 inhibition as a therapeutic option for axonal pathogenesis, in addition to amyloid pathology. We first introduce the amyloidogenic processing of amyloid-β protein precursor and describe the normal expression pattern of the amyloidogenic proteins in the brain, with an emphasis on BACE1. We then address BACE1 elevation relative to amyloid plaque development, followed by updating recent understanding of a neurotrophic role of BACE1 in axon and synapse development. We further elaborate the occurrence of axonal pathology in some other neurological conditions. Finally, we propose pharmacological inhibition of excessive BACE1 activity as an option to mitigate early axonal pathology occurring in AD and other neurological disorders. PMID:24081378

  4. Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme.

    PubMed

    Eckman, Elizabeth A; Adams, Stephanie K; Troendle, Frederick J; Stodola, Becky A; Kahn, Murad A; Fauq, Abdul H; Xiao, Hong D; Bernstein, Kenneth E; Eckman, Christopher B

    2006-10-13

    The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.

  5. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease.

    PubMed

    Minter, Myles R; Taylor, Juliet M; Crack, Peter J

    2016-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Deposition of amyloid-β (Aβ) remains a hallmark feature of the disease, yet the precise mechanism(s) by which this peptide induces neurotoxicity remain unknown. Neuroinflammation has long been implicated in AD pathology, yet its contribution to disease progression is still not understood. Recent evidence suggests that various Aβ complexes interact with microglial and astrocytic expressed pattern recognition receptors that initiate innate immunity. This process involves secretion of pro-inflammatory cytokines, chemokines and generation of reactive oxygen species that, in excess, drive a dysregulated immune response that contributes to neurodegeneration. The mechanisms by which a neuroinflammatory response can influence Aβ production, aggregation and eventual clearance are now becoming key areas where future therapeutic intervention may slow progression of AD. This review will focus on evidence supporting the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD, describing the key cell types, pathways and mediators involved. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. Deposition of intracellular plaques containing amyloid-beta (Aβ) is a hallmark proteinopathy of the disease yet the precise mechanisms by which this peptide induces neurotoxicity remains unknown. A neuroinflammatory response involving polarized microglial activity, enhanced astrocyte reactivity and elevated pro-inflammatory cytokine and chemokine load has long been implicated in AD and proposed to facilitate neurodegeneration. In this issue we discuss key receptor systems of innate immunity that detect Aβ, drive pro-inflammatory cytokine and chemokine production and influence Aβ aggregation and clearance. Evidence summarized in this review supports the combined neuroinflammatory-amyloid hypothesis for

  6. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    PubMed

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  7. Recent approaches targeting beta-amyloid for therapeutic intervention of Alzheimer's disease.

    PubMed

    Cho, Jung-Eun; Kim, Jin Ryoun

    2011-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuropathological features comprising amyloid deposits and neuronal losses in brain. In AD, aggregation of a β amyloid peptide (Aβ), produced from proteolytic cleavage of amyloid precursor protein, is believed to be implicated in the pathophysiological cascade leading to neuronal death. Most AD drugs currently available can only alleviate symptoms rather than modify the underlying molecular cause of AD. In this review, we describe and discuss the recent patents issued within the past two years focusing on therapeutic interventions targeting at various Aβ-associated pathological mechanisms of AD. The described therapeutic strategies include 1) reduction of synthesis of Aβ, 2) inhibition of Aβ aggregation, 3) immunotherapeutic/enzymatic clearance of Aβ, 4) targeting other amyloidogenic proteins interacting with Aβ and 5) amelioration of Aβ downstream toxic effects. Important issues to be considered for further improvement of therapeutic efficacy of these approaches are also discussed.

  8. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    SciTech Connect

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  9. Visual Hallucinations and Amyloid Deposition in Parkinson's Disease Dementia: A Case Report.

    PubMed

    Um, Yoo Hyun; Kim, Tae-Won; Jeong, Jong-Hyun; Seo, Ho-Jun; Han, Jin-Hee; Hong, Seung-Chul; Jung, Won-Sang; Choi, Woo Hee; Lee, Chang-Uk; Lim, Hyun Kook

    2016-05-01

    Parkinson's disease dementia (PDD) is notorious for its debilitating clinical course and high mortality rates. Consequently, various attempts to investigate predictors of cognitive decline in Parkinson's disease (PD) have been made. Here we report a case of a 75-year-old female patient with PD who visited the clinic with complaints of recurrent visual hallucinations and cognitive decline, whose symptoms were ameliorated by the titration of rivastigmine. Imaging results showed pronounced diffuse cortical amyloid deposition evidenced by 18F-florbetaben amyloid positron emission tomography (PET) imaging. This observation suggests that pronounced amyloid deposition and visual hallucinations in PD patients could be clinically significant predictors of cognitive decline in PD patients. Future research should concentrate on accumulating more evidence for possible predictors of cognitive decline and their association with PD pathology that can enable an early intervention and standardized treatment in PDD patients.

  10. Pathological gambling.

    PubMed

    Hollander, E; Buchalter, A J; DeCaria, C M

    2000-09-01

    With increasing access to gambling facilities through casinos, the Internet, and other venues, PG is a rapidly emerging mental health concern. This impulse-control disorder tends to be comorbid with a wide range of other disorders and is reportedly associated with a high rate of suicide. For most gamblers, gambling is a form of entertainment, but for many individuals, the activity leads to far-reaching disruption of family and work. The personal and societal financial ramifications are severe, and many individuals with PG end up in the criminal justice system. An understanding of the neurobiology of PG is beginning to surface. 5-HT is linked to behavioral initiation and disinhibition, which are important in the onset of the gambling cycle and the difficulty in ceasing the behavior. Norepinephrine is associated with the arousal and risk taking in patients with PG. Dopamine is linked to positive and negative reward, the addictive component of this disorder. Effective treatment strategies for pathological gamblers are emerging. Potentially useful pharmacologic agents include SRIs (clomipramine and fluvoxamine), mood stabilizers for pathological gamblers with comorbid bipolar disorders (lithium), and naltrexone. Cognitive-behavioral psychotherapies offer promising results in the treatment of patients with this disorder. To devise prevention and early-intervention programs, research is needed to identify specific features of the individuals at risk for gambling problems. Education targeting vulnerable youth that show early signs of gambling behavior may be worthwhile and should be investigated further. Funding is necessary to support these endeavors, so perhaps a portion of tax revenues generated from the gambling industry should go toward specialized treatment facilities, educational efforts, and research into the neurobiology and treatment of PG.

  11. Amyloid Structures as Biofilm Matrix Scaffolds

    PubMed Central

    Taglialegna, Agustina; Lasa, Iñigo

    2016-01-01

    Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications. PMID:27185827

  12. Insight into Amyloid Structure Using Chemical Probes

    PubMed Central

    Reinke, Ashley A.; Gestwicki, Jason E.

    2011-01-01

    Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by the deposition of amyloids in the brain. One prominent form of amyloid is composed of repeating units of the amyloid-β (Aβ) peptide. Over the past decade, it has become clear that these Aβ amyloids are not homogeneous; rather, they are composed of a series of structures varying in their overall size and shape and the number of Aβ peptides they contain. Recent theories suggest that these different amyloid conformations may play distinct roles in disease, although their relative contributions are still being discovered. Here, we review how chemical probes, such as congo red, thioflavin T and their derivatives, have been powerful tools for better understanding amyloid structure and function. Moreover, we discuss how design and deployment of conformationally selective probes might be used to test emerging models of AD. PMID:21457473

  13. Amyloid deposition in 2 feline thymomas.

    PubMed

    Burrough, E R; Myers, R K; Hostetter, S J; Fox, L E; Bayer, B J; Felz, C L; Waller, K R; Whitley, E M

    2012-07-01

    Two cases of feline thymoma with amyloid deposition were encountered between 1982 and 2010. Neoplastic cells were separated by abundant, pale eosinophilic, homogeneous material that was congophilic and birefringent. Ultrastructurally, the neoplastic cells were connected by desmosomes, and the extracellular deposits were composed of nonbranching, hollow-cored fibrils, 8-10 nm in diameter. In the case with sufficient archived tissue for additional sections, the amyloid remained congophilic following potassium permanganate incubation, and the neoplastic cells were immunoreactive for pancytokeratin. The histologic, histochemical, ultrastructural, and immunohistochemical features of both neoplasms are consistent with epithelial-predominant thymoma with the unusual feature of intratumoral amyloid deposition. The affinity of the amyloid for Congo red following potassium permanganate incubation is consistent with non-AA amyloid. The ultrastructural findings were consistent with amyloid production by the neoplastic epithelial cells.

  14. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  15. Molecular basis for amyloid-[beta] polymorphism

    SciTech Connect

    Colletier, Jacques-Philippe; Laganowsky, Arthur; Landau, Meytal; Zhao, Minglei; Soriaga, Angela B.; Goldschmidt, Lukasz; Flot, David; Cascio, Duilio; Sawaya, Michael R.; Eisenberga, David

    2011-10-19

    Amyloid-beta (A{beta}) aggregates are the main constituent of senile plaques, the histological hallmark of Alzheimer's disease. A{beta} molecules form {beta}-sheet containing structures that assemble into a variety of polymorphic oligomers, protofibers, and fibers that exhibit a range of lifetimes and cellular toxicities. This polymorphic nature of A{beta} has frustrated its biophysical characterization, its structural determination, and our understanding of its pathological mechanism. To elucidate A{beta} polymorphism in atomic detail, we determined eight new microcrystal structures of fiber-forming segments of A{beta}. These structures, all of short, self-complementing pairs of {beta}-sheets termed steric zippers, reveal a variety of modes of self-association of A{beta}. Combining these atomic structures with previous NMR studies allows us to propose several fiber models, offering molecular models for some of the repertoire of polydisperse structures accessible to A{beta}. These structures and molecular models contribute fundamental information for understanding A{beta} polymorphic nature and pathogenesis.

  16. Surgical considerations about amyloid goiter.

    PubMed

    García Villanueva, Augusto; García Villanueva, María Jesús; García Villanueva, Mercedes; Rojo Blanco, Roberto; Collado Guirao, María Vicenta; Cabañas Montero, Jacobo; Beni Pérez, Rafael; Moreno Montes, Irene

    2013-05-01

    Amyloidosis is an uncommon syndrome consisting of a number of disorders having in common an extracellular deposit of fibrillary proteins. This results in functional and structural changes in the affected organs, depending on deposit location and severity. Amyloid infiltration of the thyroid gland may occur in 50% and up to 80% of patients with primary and secondary amyloidosis respectively. Amyloid goiter (AG) is a true rarity, usually found associated to secondary amyloidosis. AG may require surgical excision, usually because of compressive symptoms. We report the case of a patient with a big AG occurring in the course of a secondary amyloidosis associated to polyarticular onset juvenile idiopathic arthritis who underwent total thyroidectomy. Current literature is reviewed, an attempt is made to provide action guidelines, and some surgical considerations on this rare condition are given.

  17. The Human Disease-Associated Aβ Amyloid Core Sequence Forms Functional Amyloids in a Fungal Adhesin

    PubMed Central

    Rameau, Rachele D.; Jackson, Desmond N.; Beaussart, Audrey; Dufrêne, Yves F.

    2016-01-01

    ABSTRACT There is increasing evidence that many amyloids in living cells have physiological functions. On the surfaces of fungal cells, amyloid core sequences in adhesins can aggregate into 100- to 1,000-nm-wide patches to form high-avidity adhesion nanodomains on the cell surface. The nanodomains form through interactions that have amyloid-like properties: binding of amyloid dyes, perturbation by antiamyloid agents, and interaction with homologous sequences. To test whether these functional interactions are mediated by typical amyloid interactions, we substituted an amyloid core sequence, LVFFA, from human Aβ protein for the native sequence IVIVA in the 1,419-residue Candida albicans adhesin Als5p. The chimeric protein formed cell surface nanodomains and mediated cellular aggregation. The native sequence and chimeric adhesins responded similarly to the amyloid dye thioflavin T and to amyloid perturbants. However, unlike the native protein, the nanodomains formed by the chimeric protein were not force activated and formed less-robust aggregates under flow. These results showed the similarity of amyloid interactions in the amyloid core sequences of native Als5p and Aβ, but they also highlighted emergent properties of the native sequence. Also, a peptide composed of the Aβ amyloid sequence flanked by amino acids from the adhesin formed two-dimensional sheets with sizes similar to the cell surface patches of the adhesins. These results inform an initial model for the structure of fungal cell surface amyloid nanodomains. PMID:26758179

  18. Plasma based markers of [11C] PiB-PET brain amyloid burden.

    PubMed

    Kiddle, Steven John; Thambisetty, Madhav; Simmons, Andrew; Riddoch-Contreras, Joanna; Hye, Abdul; Westman, Eric; Pike, Ian; Ward, Malcolm; Johnston, Caroline; Lupton, Michelle Katharine; Lunnon, Katie; Soininen, Hilkka; Kloszewska, Iwona; Tsolaki, Magda; Vellas, Bruno; Mecocci, Patrizia; Lovestone, Simon; Newhouse, Stephen; Dobson, Richard

    2012-01-01

    Changes in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11)C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.

  19. Cognitive and cortical plasticity deficits correlate with altered amyloid-β CSF levels in multiple sclerosis.

    PubMed

    Mori, Francesco; Rossi, Silvia; Sancesario, Giulia; Codecà, Claudia; Mataluni, Giorgia; Monteleone, Fabrizia; Buttari, Fabio; Kusayanagi, Hajime; Castelli, Maura; Motta, Caterina; Studer, Valeria; Bernardi, Giorgio; Koch, Giacomo; Bernardini, Sergio; Centonze, Diego

    2011-02-01

    Cognitive dysfunction is of frequent observation in multiple sclerosis (MS). It is associated with gray matter pathology, brain atrophy, and altered connectivity, and recent evidence showed that acute inflammation can exacerbate mental deficits independently of the primary functional system involved. In this study, we measured cerebrospinal fluid (CSF) levels of amyloid-β(1-42) and τ protein in MS and in clinically isolated syndrome patients, as both proteins have been associated with cognitive decline in Alzheimer's disease (AD). In AD, amyloid-β(1-42) accumulates in the brain as insoluble extracellular plaques, possibly explaining why soluble amyloid-β(1-42) is reduced in the CSF of these patients. In our sample of MS patients, amyloid-β(1-42) levels were significantly lower in patients cognitively impaired (CI) and were inversely correlated with the number of Gadolinium-enhancing (Gd+) lesions at the magnetic resonance imaging (MRI). Positive correlations between amyloid-β(1-42) levels and measures of attention and concentration were also found. Furthermore, abnormal neuroplasticity of the cerebral cortex, explored with θ burst stimulation (TBS), was observed in CI patients, and a positive correlation was found between amyloid-β(1-42) CSF contents and the magnitude of long-term potentiation-like effects induced by TBS. No correlation was conversely found between τ protein concentrations and MRI findings, cognitive parameters, and TBS effects in these patients. Together, our results indicate that in MS, central inflammation is able to alter amyloid-β metabolism by reducing its concentration in the CSF and leading to impairment of synaptic plasticity and cognitive function.

  20. Genetics Home Reference: hereditary cerebral amyloid angiopathy

    MedlinePlus

    ... Testing Registry: Dementia, familial Danish Genetic Testing Registry: Hereditary cerebral amyloid angiopathy, Icelandic type Other Diagnosis and Management Resources (2 links) Johns Hopkins Medicine: ...

  1. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease.

    PubMed

    Baker-Nigh, Alaina; Vahedi, Shahrooz; Davis, Elena Goetz; Weintraub, Sandra; Bigio, Eileen H; Klein, William L; Geula, Changiz

    2015-06-01

    The mechanisms that contribute to selective vulnerability of the magnocellular basal forebrain cholinergic neurons in neurodegenerative diseases, such as Alzheimer's disease, are not fully understood. Because age is the primary risk factor for Alzheimer's disease, mechanisms of interest must include age-related alterations in protein expression, cell type-specific markers and pathology. The present study explored the extent and characteristics of intraneuronal amyloid-β accumulation, particularly of the fibrillogenic 42-amino acid isoform, within basal forebrain cholinergic neurons in normal young, normal aged and Alzheimer's disease brains as a potential contributor to the selective vulnerability of these neurons using immunohistochemistry and western blot analysis. Amyloid-β1-42 immunoreactivity was observed in the entire cholinergic neuronal population regardless of age or Alzheimer's disease diagnosis. The magnitude of this accumulation as revealed by optical density measures was significantly greater than that in cortical pyramidal neurons, and magnocellular neurons in the globus pallidus did not demonstrate a similar extent of amyloid immunoreactivity. Immunoblot analysis with a panel of amyloid-β antibodies confirmed accumulation of high concentration of amyloid-β in basal forebrain early in adult life. There was no age- or Alzheimer-related alteration in total amyloid-β content within this region. In contrast, an increase in the large molecular weight soluble oligomer species was observed with a highly oligomer-specific antibody in aged and Alzheimer brains when compared with the young. Similarly, intermediate molecular weight oligomeric species displayed an increase in aged and Alzheimer brains when compared with the young using two amyloid-β42 antibodies. Compared to cortical homogenates, small molecular weight oligomeric species were lower and intermediate species were enriched in basal forebrain in ageing and Alzheimer's disease. Regional and age

  2. Development of a novel catalytic amyloid displaying a metal-dependent ATPase-like activity.

    PubMed

    Monasterio, Octavio; Nova, Esteban; Diaz-Espinoza, Rodrigo

    2017-01-22

    Amyloids are protein aggregates of highly regular structure that are involved in diverse pathologies such as Alzheimer's and Parkinson's disease. Recent evidence has shown that under certain conditions, small peptides can self-assemble into amyloids that exhibit catalytic reactivity towards certain compounds. Here we report a novel peptide with a sequence derived from the active site of RNA polymerase that displays hydrolytic activity towards ATP. The catalytic reaction proceeds in the presence of the divalent metal manganese and the products are ADP and AMP. The kinetic data shows a substrate-dependent saturation of the activity with a maximum rate achieved at around 1 mM ATP. At higher ATP concentrations, we also observed substrate inhibition of the activity. The self-assembly of the peptide into amyloids is strictly metal-dependent and required for the catalysis. Our results show that aspartate-containing amyloids can also be catalysts under conditions that include interactions with metals. Moreover, we show for the first time an amyloid that exerts reactivity towards a biologically essential molecule.

  3. Amyloid Deposition and Cognition in Older Adults: The Effects of Premorbid Intellect

    PubMed Central

    Duff, Kevin; Foster, Norman L.; Dennett, Kathryn; Hammers, Dustin B.; Zollinger, Lauren V.; Christian, Paul E.; Butterfield, Regan I.; Beardmore, Britney E.; Wang, Angela Y.; Morton, Kathryn A.; Hoffman, John M.

    2013-01-01

    Although amyloid deposition remains a marker of the development of Alzheimer's disease, results linking amyloid and cognition have been equivocal. Twenty-five community-dwelling non-demented older adults were examined with 18F-flutemetamol, an amyloid imaging agent, and a cognitive battery, including an estimate of premorbid intellect and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). In the first model, 18F-flutemetamol uptake significantly correlated with the Delayed Memory Index of the RBANS (r = −.51, p = .02) and premorbid intellect (r = .43, p = .03). In the second model, the relationship between 18F-flutemetamol and cognition was notably stronger when controlling for premorbid intellect (e.g., three of the five RBANS Indexes and its Total score significantly correlated with 18F-flutemetamol, r's = −.41 to −.58). Associations were found between amyloid-binding 18F-flutemetamol and cognitive functioning in non-demented older adults. These associations were greatest with delayed memory and stronger when premorbid intellect was considered, suggesting that cognitive reserve partly compensates for the symptomatic expression of amyloid pathology in community-dwelling elderly. PMID:23817438

  4. Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme.

    PubMed

    Kuo, Chun-Tien; Chen, Yi-Lin; Hsu, Wei-Tse; How, Su-Chun; Cheng, Yu-Hong; Hsueh, Shu-Shun; Liu, Hwai-Shen; Lin, Ta-Hsien; Wu, Josephine W; Wang, Steven S-S

    2017-05-01

    Formation of amyloid fibrils has been associated with at least 30 different protein aggregation diseases. The 129-residue polypeptide hen lysozyme, which is structurally homologous to human lysozyme, has been demonstrated to exhibit amyloid fibril-forming propensity in vitro. This study is aimed at exploring the influence of erythrosine B on the in vitro amyloid fibril formation of hen lysozyme at pH 2.0 and 55°C using ThT binding assay, transmission electron microscopy, far-UV circular dichroism absorption spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, and synchronous fluorescence study. We found that lysozyme fibrillogenesis was dose-dependently suppressed by erythrosine B. In addition, our far-UV CD and ANS fluorescence data showed that, as compared with the untreated lysozyme control, the α-to-ß transition and exposure of hydrophobic clusters in lysozyme were reduced upon treatment with erythrosine B. Moreover, it could be inferred that the binding of erythrosine B occurred in the vicinity of the tryptophan residues. Finally, molecular docking and molecular dynamics simulations were further employed to gain some insights into the possible binding site(s) and interactions between lysozyme and erythrosine B. We believe the results obtained here may contribute to the development of potential strategies/approaches for the suppression of amyloid fibrillogenesis, which is implicated in amyloid pathology.

  5. Alzheimer disease therapy--moving from amyloid-β to tau.

    PubMed

    Giacobini, Ezio; Gold, Gabriel

    2013-12-01

    Disease-modifying treatments for Alzheimer disease (AD) have focused mainly on reducing levels of amyloid-β (Aβ) in the brain. Some compounds have achieved this goal, but none has produced clinically meaningful results. Several methodological issues relating to clinical trials of these agents might explain this failure; an additional consideration is that the amyloid cascade hypothesis--which places amyloid plaques at the heart of AD pathogenesis--does not fully integrate a large body of data relevant to the emergence of clinical AD. Importantly, amyloid deposition is not strongly correlated with cognition in multivariate analyses, unlike hyperphosphorylated tau, neurofibrillary tangles, and synaptic and neuronal loss, which are closely associated with memory deficits. Targeting tau pathology, therefore, might be more clinically effective than Aβ-directed therapies. Furthermore, numerous immunization studies in animal models indicate that reduction of intracellular levels of tau and phosphorylated tau is possible, and is associated with improved cognitive performance. Several tau-related vaccines are in advanced preclinical stages and will soon enter clinical trials. In this article, we present a critical analysis of the failure of Aβ-directed therapies, discuss limitations of the amyloid cascade hypothesis, and suggest the potential value of tau-targeted therapy for AD.

  6. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor

    NASA Astrophysics Data System (ADS)

    Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.

    2012-05-01

    Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.

  7. Amyloid deposition and cognition in older adults: the effects of premorbid intellect.

    PubMed

    Duff, Kevin; Foster, Norman L; Dennett, Kathryn; Hammers, Dustin B; Zollinger, Lauren V; Christian, Paul E; Butterfield, Regan I; Beardmore, Britney E; Wang, Angela Y; Morton, Kathryn A; Hoffman, John M

    2013-11-01

    Although amyloid deposition remains a marker of the development of Alzheimer's disease, results linking amyloid and cognition have been equivocal. Twenty-five community-dwelling non-demented older adults were examined with (18)F-flutemetamol, an amyloid imaging agent, and a cognitive battery, including an estimate of premorbid intellect and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). In the first model, (18)F-flutemetamol uptake significantly correlated with the Delayed Memory Index of the RBANS (r = -.51, p = .02) and premorbid intellect (r = .43, p = .03). In the second model, the relationship between (18)F-flutemetamol and cognition was notably stronger when controlling for premorbid intellect (e.g., three of the five RBANS Indexes and its Total score significantly correlated with (18)F-flutemetamol, r's = -.41 to -.58). Associations were found between amyloid-binding (18)F-flutemetamol and cognitive functioning in non-demented older adults. These associations were greatest with delayed memory and stronger when premorbid intellect was considered, suggesting that cognitive reserve partly compensates for the symptomatic expression of amyloid pathology in community-dwelling elderly.

  8. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease.

    PubMed

    Pistollato, Francesca; Sumalla Cano, Sandra; Elio, Iñaki; Masias Vergara, Manuel; Giampieri, Francesca; Battino, Maurizio

    2016-10-01

    It has been hypothesized that alterations in the composition of the gut microbiota might be associated with the onset of certain human pathologies, such as Alzheimer disease, a neurodegenerative syndrome associated with cerebral accumulation of amyloid-β fibrils. It has been shown that bacteria populating the gut microbiota can release significant amounts of amyloids and lipopolysaccharides, which might play a role in the modulation of signaling pathways and the production of proinflammatory cytokines related to the pathogenesis of Alzheimer disease. Additionally, nutrients have been shown to affect the composition of the gut microbiota as well as the formation and aggregation of cerebral amyloid-β. This suggests that modulating the gut microbiome and amyloidogenesis through specific nutritional interventions might prove to be an effective strategy to prevent or reduce the risk of Alzheimer disease. This review examines the possible role of the gut in the dissemination of amyloids, the role of the gut microbiota in the regulation of the gut-brain axis, the potential amyloidogenic properties of gut bacteria, and the possible impact of nutrients on modulation of microbiota composition and amyloid formation in relation to the pathogenesis of Alzheimer disease.

  9. The amyloid fold of Gad m 1 epitopes governs IgE binding

    PubMed Central

    Sánchez, Rosa; Martínez, Javier; Castro, Ana; Pedrosa, María; Quirce, Santiago; Rodríguez-Pérez, Rosa; Gasset, María

    2016-01-01

    Amyloids are polymeric structural states formed from locally or totally unfolded protein chains that permit surface reorganizations, stability enhancements and interaction properties that are absent in the precursor monomers. β-Parvalbumin, the major allergen in fish allergy, forms amyloids that are recognized by IgE in the patient sera, suggesting a yet unknown pathological role for these assemblies. We used Gad m 1 as the fish β-parvalbumin model and a combination of approaches, including peptide arrays, recombinant wt and mutant chains, biophysical characterizations, protease digestions, mass spectrometry, dot-blot and ELISA assays to gain insights into the role of amyloids in the IgE interaction. We found that Gad m 1 immunoreactive regions behave as sequence-dependent conformational epitopes that provide a 1000-fold increase in affinity and the structural repetitiveness required for optimal IgE binding and cross-linking upon folding into amyloids. These findings support the amyloid state as a key entity in type I food allergy. PMID:27597317

  10. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease

    PubMed Central

    Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau

    2014-01-01

    In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966

  11. IL-1β-Induced Accumulation of Amyloid: Macroautophagy in Skeletal Muscle Depends on ERK

    PubMed Central

    Schmidt, Karsten; Wienken, Magdalena; Keller, Christian W.; Münz, Christian

    2017-01-01

    The pathology of inclusion body myositis (IBM) involves an inflammatory response and β-amyloid deposits in muscle fibres. It is believed that MAP kinases such as the ERK signalling pathway mediate the inflammatory signalling in cells. Further, there is evidence that autophagic activity plays a crucial role in the pathogenesis of IBM. Using a well established in vitro model of IBM, the autophagic pathway, MAP kinases, and accumulation of β-amyloid were examined. We demonstrate that stimulation of muscle cells with IL-1β and IFN-γ led to an increased phosphorylation of ERK. The ERK inhibitor PD98059 diminished the expression of proinflammatory markers as well as the accumulation of β-amyloid. In addition, IL-1β and IFN-γ led to an increase of autophagic activity, upregulation of APP, and subsequent accumulation of β-sheet aggregates. Taken together, the data demonstrate that the ERK pathway contributes to formation of β-amyloid and regulation of autophagic activity in muscle cells exposed to proinflammatory cell stress. This suggests that ERK serves as an important mediator between inflammatory mechanisms and protein deposition in skeletal muscle and is a crucial element of the pathology of IBM. PMID:28167851

  12. Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is 'too big to fail'.

    PubMed

    Castellani, Rudy J; Smith, Mark A

    2011-06-01

    With each failure of anti-amyloid-β therapy in clinical trials, new trials are initiated with no hint of slowing down. This may be due, in part, to the fact that the amyloid cascade hypothesis has been so modified over time that it is now impossible to confirm or deny. The hypothesis now states, in effect, that invisible molecules target invisible structures. Still relevant, however, are multiple factors that surely cast some doubt but have either been rationalized or overlooked. Among these are the poor correlation between amyloid-β deposits and disease, the substantial differences between familial and sporadic disease, pathological assessment that indicates the secondary nature of lesions/proteins/cascades, the fact that soluble species are poorly reproducible laboratory phenomena, and the irrelevance of synaptic assessment to pathological interpretation. Although not yet dogma, the premature addition of mild cognitive impairment as the implied in vivo homologue to the soluble toxin-synapse interaction is also problematic. In either case, the amyloid cascade hypothesis continues to dominate the Alzheimer's disease literature and grant applications. The more the neuroscience community perseverates along these lines in the face of accumulating outcome data to the contrary, the more one is left to wonder whether the hypothesis is too big to fail.

  13. Endoplasmic Reticulum Quality Control and Systemic Amyloid Disease: Impacting Protein Stability from the Inside Out

    PubMed Central

    Chen, John J.; Genereux, Joseph C.; Wiseman, R. Luke

    2015-01-01

    The endoplasmic reticulum (ER) is responsible for regulating proteome integrity throughout the secretory pathway. The ER protects downstream secretory environments such as the extracellular space by partitioning proteins between ER protein folding, trafficking and degradation pathways in a process called ER quality control. In this process, ER quality control factors identify misfolded, aggregation-prone protein conformations and direct them towards ER protein folding or degradation, reducing their secretion to the extracellular space where they could further misfold or aggregate into proteotoxic conformations. Despite the general efficiency of ER quality control, many human diseases, such as the systemic amyloidoses, involve aggregation of destabilized, aggregation-prone proteins in the extracellular space. A common feature for all systemic amyloid diseases is the ability for amyloidogenic proteins to evade ER quality control and be efficiently secreted. The efficient secretion of these amyloidogenic proteins increases their serum concentrations available for the distal proteotoxic aggregation characteristic of these diseases. This indicates that ER quality control, and the regulation thereof, is a critical determinant in defining the onset and pathology of systemic amyloid diseases. Here, we discuss the pathologic and potential therapeutic relationship between ER quality control, protein secretion and distal deposition of amyloidogenic proteins involved in systemic amyloid diseases. Furthermore, we present evidence that the Unfolded Protein Response, the stress-responsive signaling pathway that regulates ER quality control, is involved in the pathogenesis of systemic amyloid diseases and represents a promising emerging therapeutic target to intervene in this class of human disease. PMID:26018985

  14. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum.

    PubMed

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-05-10

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.

  15. Review: history of the amyloid fibril.

    PubMed

    Sipe, J D; Cohen, A S

    2000-06-01

    Rudolph Virchow, in 1854, introduced and popularized the term amyloid to denote a macroscopic tissue abnormality that exhibited a positive iodine staining reaction. Subsequent light microscopic studies with polarizing optics demonstrated the inherent birefringence of amyloid deposits, a property that increased intensely after staining with Congo red dye. In 1959, electron microscopic examination of ultrathin sections of amyloidotic tissues revealed the presence of fibrils, indeterminate in length and, invariably, 80 to 100 A in width. Using the criteria of Congophilia and fibrillar morphology, 20 or more biochemically distinct forms of amyloid have been identified throughout the animal kingdom; each is specifically associated with a unique clinical syndrome. Fibrils, also 80 to 100 A in width, have been isolated from tissue homogenates using differential sedimentation or solubility. X-ray diffraction analysis revealed the fibrils to be ordered in the beta pleated sheet conformation, with the direction of the polypeptide backbone perpendicular to the fibril axis (cross beta structure). Because of the similar dimensions and tinctorial properties of the fibrils extracted from amyloid-laden tissues and amyloid fibrils in tissue sections, they have been assumed to be identical. However, the spatial relationship of proteoglycans and amyloid P component (AP), common to all forms of amyloid, to the putative protein only fibrils in tissues, has been unclear. Recently, it has been suggested that, in situ, amyloid fibrils are composed of proteoglycans and AP as well as amyloid proteins and thus resemble connective tissue microfibrils. Chemical and physical definition of the fibrils in tissues will be needed to relate the in vitro properties of amyloid protein fibrils to the pathogenesis of amyloid fibril formation in vivo.

  16. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.; Del Bigio, M.; Westaway, D.; Yang, J.; Julian, R.; Gough, K.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  17. Characterization of Amyloid Cores in Prion Domains

    PubMed Central

    Sant’Anna, Ricardo; Fernández, Maria Rosario; Batlle, Cristina; Navarro, Susanna; de Groot, Natalia S.; Serpell, Louise; Ventura, Salvador

    2016-01-01

    Amyloids consist of repetitions of a specific polypeptide chain in a regular cross-β-sheet conformation. Amyloid propensity is largely determined by the protein sequence, the aggregation process being nucleated by specific and short segments. Prions are special amyloids that become self-perpetuating after aggregation. Prions are responsible for neuropathology in mammals, but they can also be functional, as in yeast prions. The conversion of these last proteins to the prion state is driven by prion forming domains (PFDs), which are generally large, intrinsically disordered, enriched in glutamines/asparagines and depleted in hydrophobic residues. The self-assembly of PFDs has been thought to rely mostly on their particular amino acid composition, rather than on their sequence. Instead, we have recently proposed that specific amyloid-prone sequences within PFDs might be key to their prion behaviour. Here, we demonstrate experimentally the existence of these amyloid stretches inside the PFDs of the canonical Sup35, Swi1, Mot3 and Ure2 prions. These sequences self-assemble efficiently into highly ordered amyloid fibrils, that are functionally competent, being able to promote the PFD amyloid conversion in vitro and in vivo. Computational analyses indicate that these kind of amyloid stretches may act as typical nucleating signals in a number of different prion domains. PMID:27686217

  18. Antagonistic effects of beta-site amyloid precursor protein-cleaving enzymes 1 and 2 on beta-amyloid peptide production in cells.

    PubMed

    Basi, Guriqbal; Frigon, Normand; Barbour, Robin; Doan, Tam; Gordon, Grace; McConlogue, Lisa; Sinha, Sukanto; Zeller, Michelle

    2003-08-22

    The deposition of extracellular beta-amyloid peptide (A beta) in the brain is a pathologic feature of Alzheimer's disease. The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), an integral membrane aspartyl protease responsible for cleavage of amyloid precursor protein (APP) at the beta-site, promotes A beta production. A second integral membrane aspartyl protease related to BACE1, referred to as beta-site amyloid precursor protein cleaving enzyme 2 (BACE2) has also been demonstrated to cleave APP at the beta-cleavage site in transfected cells. The role of endogenous BACE2 in A beta production remains unresolved. We investigated the role of endogenous BACE2 in A beta production in cells by selective inactivation of its transcripts using RNA interference. We are able to reduce steady state levels for mRNA for each enzyme by >85%, and protein amounts by 88-94% in cells. Selective inactivation of BACE1 by RNA interference results in decreased beta-cleaved secreted APP and A beta peptide secretion from cells, as expected. Selective inactivation of BACE2 by RNAi results in increased beta-cleaved secreted APP and A beta peptide secretion from cells. Simultaneous targeting of both enzymes by RNA interference does not have any net effect on A beta released from cells. Our observations of changes in APP metabolism and A beta are consistent with a role of BACE2 in suppressing A beta production in cells that co-express both enzymes.

  19. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  20. Hydrogen Sulfide Inhibits Amyloid Formation

    PubMed Central

    2015-01-01

    Amyloid fibrils are large aggregates of misfolded proteins, which are often associated with various neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and vascular dementia. The amount of hydrogen sulfide (H2S) is known to be significantly reduced in the brain tissue of people diagnosed with Alzheimer’s disease relative to that of healthy individuals. These findings prompted us to investigate the effects of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL). HEWL forms typical β-sheet rich fibrils during the course of 70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational modes in the 550–500 cm–1 spectral range decrease in intensity and are accompanied by the appearance of a new 490 cm–1 band assigned to the trisulfide group (RSSSR) based on the comparison with model compounds. The formation of RSSSR was proven further using a reaction with TCEP reduction agent and LC-MS analysis of the products. Intrinsic tryptophan fluorescence study shows a strong denaturation of HEWL containing trisulfide bonds. The presented evidence indicates that H2S causes the formation of trisulfide bridges, which destabilizes HEWL structure, preventing protein fibrillation. As a result, small spherical aggregates of unordered protein form, which exhibit no cytotoxicity by contrast with HEWL fibrils. PMID:25545790

  1. Common benzothiazole and benzoxazole fluorescent DNA intercalators for studying Alzheimer Aβ1-42 and prion amyloid peptides.

    PubMed

    Stefansson, Steingrimur; Adams, Daniel L; Tang, Cha-Mei

    2012-05-01

    Amyloids are fibrillar protein aggregates associated with a number of neurodegenerative pathologies including Alzheimer and Creutzfeldt-Jakob disease. The study of amyloids is usually based on fluorescence with the dye thioflavin-T. Although a number of amyloid binding compounds have been synthesized, many are nonfluorescent or not readily available for research use. Here we report on a class of commercial benzothiazole/benzoxazole containing fluorescent DNA intercalators from Invitrogen that possess the ability to bind amyloid Aβ1-42 peptide and hamster prion. These dyes fluoresce from 500-750 nm and are available as dimers or monomers. We demonstrate that these dyes can be used as acceptors for thioflavin-T fluorescence resonance energy transfer as well as reporter groups for binding studies with Congo red and chrysamine G. As more potential therapeutic compounds for these diseases are generated, there is a need for simple and inexpensive methods to monitor their interactions with amyloids. The fluorescent dyes reported here are readily available and can be used as tools for biochemical studies of amyloid structures and in vitro screening of potential therapeutics.

  2. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1–42 Species into Nontoxic Amyloid Fibers with Altered Properties*

    PubMed Central

    Civitelli, Livia; Sandin, Linnea; Nelson, Erin; Khattak, Sikander Iqbal; Kågedal, Katarina

    2016-01-01

    Aggregation of the amyloid-β peptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential. PMID:26907684

  3. The early stages of amyloid formation: biophysical and structural characterization of human calcitonin pre-fibrillar assemblies.

    PubMed

    Avidan-Shpalter, Carmit; Gazit, Ehud

    2006-12-01

    Amyloid fibril formation is a nucleation dependent process characterized by a lag-phase prior to the appearance of detectable amyloid fibrils. While the three-dimensional structure of amyloid fibrils at atomic resolution is just beginning to be elucidated, the early process of monomers assembly into oligomers is less understood. Understanding the dynamic processes that lead to the formation of these intermediates is highly important as these assemblies might be the most pathological ones. Here, we investigated the biophysical and structural features characterizing the early stage assemblies formed by the human hormone calcitonin. We calculated the initial nucleus size by experimentally determining the dependence between the lag-time length and the hCT concentrations. We used size exclusion chromatography and dynamic light scattering in order to characterize the dynamic growth process of preliminary intermediates transformed into larger structures. The early structures were visualized using high-resolution transmission electron microscopy. Annular pore-like structures were observed along with protofibrilar structures. This observed morphology is similar to structures revealed during the fibrillization processes of beta-amyloid, alpha-synuclein, and islet amyloid polypeptide, suggesting that these intermediates represent a generic early structure conformation. The results introduced here imply that a variety of intermediate assemblies are formed during the early stages of amyloid fibril formation. The characterizing of their structural features and assembly kinetics will contribute to the rational design of inhibitors directed towards early structure assemblies.

  4. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer's disease β-amyloid production

    PubMed Central

    Rezai-Zadeh, Kavon; Douglas Shytle, R; Bai, Yun; Tian, Jun; Hou, Huayan; Mori, Takashi; Zeng, Jin; Obregon, Demian; Town, Terrence; Tan, Jun

    2009-01-01

    Abstract Glycogen synthase kinase 3 (GSK-3) dysregulation is implicated in the two Alzheimer's disease (AD) pathological hallmarks: β-amyloid plaques and neurofibrillary tangles. GSK-3 inhibitors may abrogate AD pathology by inhibiting amyloidogenic γ-secretase cleavage of amyloid precursor protein (APP). Here, we report that the citrus bioflavonoid luteolin reduces amyloid-β (Aβ) peptide generation in both human ‘Swedish’ mutant APP transgene-bearing neuron-like cells and primary neurons. We also find that luteolin induces changes consistent with GSK-3 inhibition that (i) decrease amyloidogenic γ-secretase APP processing, and (ii) promote presenilin-1 (PS1) carboxyl-terminal fragment (CTF) phosphorylation. Importantly, we find GSK-3α activity is essential for both PS1 CTF phosphorylation and PS1-APP interaction. As validation of these findings in vivo, we find that luteolin, when applied to the Tg2576 mouse model of AD, decreases soluble Aβ levels, reduces GSK-3 activity, and disrupts PS1-APP association. In addition, we find that Tg2576 mice treated with diosmin, a glycoside of a flavonoid structurally similar to luteolin, display significantly reduced Aβ pathology. We suggest that GSK-3 inhibition is a viable therapeutic approach for AD by impacting PS1 phosphorylation-dependent regulation of amyloidogenesis. PMID:18410522

  5. Age and Amyloid Effects on Human CNS Amyloid-Beta Kinetics

    PubMed Central

    Patterson, Bruce W.; Elbert, Donald L.; Mawuenyega, Kwasi G.; Kasten, Tom; Ovod, Vitaliy; Ma, Shengmei; Xiong, Chengjie; Chott, Robert; Yarasheski, Kevin; Sigurdson, Wendy; Zhang, Lily; Goate, Alison; Phil, D.; Benzinger, Tammie; Morris, John C.; Holtzman, David; Bateman, Randall J.

    2015-01-01

    Objective Age is the single greatest risk factor for Alzheimer’s disease with the incidence doubling every 5 years after age 65. However, our understanding of the mechanistic relationship between increasing age and the risk for Alzheimer’s disease is currently limited. We therefore sought to determine the relationship between age, amyloidosis, and amyloid-beta kinetics in the central nervous system (CNS) of humans Methods Amyloid-beta kinetics were analyzed in 112 participants and compared to the ages of participants and the amount of amyloid deposition. Results We found a highly significant correlation between increasing age and slowed amyloid-beta turnover rates (2.5-fold longer half-life over five decades of age). In addition, we found independent effects on amyloid-beta42 kinetics specifically in participants with amyloid deposition. Amyloidosis was associated with a higher (>50%) irreversible loss of soluble amyloid-beta42 and a 10-fold higher amyloid-beta42 reversible exchange rate. Interpretation These findings reveal a mechanistic link between human aging and the risk of amyloidosis which may be due to a dramatic slowing of amyloid-beta turnover, increasing the likelihood of protein misfolding that leads to deposition. Alterations in amyloid-beta kinetics associated with aging and amyloidosis suggest opportunities for diagnostic and therapeutic strategies. More generally, this study provides an example of how changes in protein turnover kinetics can be used to detect physiologic and pathophysiologic changes and may be applicable to other proteinopathies. PMID:26040676

  6. Natural polyphenols binding to amyloid: a broad class of compounds to treat different human amyloid diseases.

    PubMed

    Ngoungoure, Viviane L Ndam; Schluesener, Jan; Moundipa, Paul F; Schluesener, Hermann

    2015-01-01

    Polyphenols are a large group of phytonutrients found in herbal beverages and foods. They have manifold biological activities, including antioxidative, antimicrobial, and anti-inflammatory properties. Interestingly, some polyphenols bind to amyloid and substantially ameliorate amyloid diseases. Misfolding, aggregation, and accumulation of amyloid fibrils in tissues or organs leads to a group of disorders, called amyloidoses. Prominent diseases are Alzheimer's, Parkinson's, and Huntington's disease, but there are other, less well-known diseases wherein accumulation of misfolded protein is a prominent feature. Amyloidoses are a major burden to public health. In particular, Alzheimer's disease shows a strong increase in patient numbers. Accelerated development of effective therapies for amyloidoses is a necessity. A viable strategy can be the prevention or reduction of protein misfolding, thus reducing amyloid build-up by restoring the cellular aggretome. Amyloid-binding polyphenols affect amyloid formation on various levels, e.g. by inhibiting fibril formation or steering oligomer formation into unstructured, nontoxic pathways. Consequently, preclinical studies demonstrate reduction of amyloid-formation by polyphenols. Amyloid-binding polyphenols might be suitable lead structures for development of imaging agents for early detection of disease and monitoring amyloid deposition. Intake of dietary polyphenols might be relevant to the prevention of amyloidoses. Nutraceutical strategies might be a way to reduce amyloid diseases.

  7. Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice.

    PubMed

    Wiley, Jesse C; Pettan-Brewer, Christina; Ladiges, Warren C

    2011-06-01

    Trafficking through the secretory pathway is known to regulate the maturation of the APP-cleaving secretases and APP proteolysis. The coupling of stress signaling and pathological deterioration of the brain in Alzheimer's disease (AD) supports a mechanistic connection between endoplasmic reticulum (ER) stress and neurodegeneration. Consequently, small molecular chaperones, which promote protein folding and minimize ER stress, might be effective in delaying or attenuating the deleterious progression of AD. We tested this hypothesis by treating APPswePS1delta9 AD transgenic mice with the molecular chaperone phenylbutyric acid (PBA) for 14 months at a dose of 1 mg PBA g(-1) of body weight in the drinking water. Phenylbutyric acid treatment increased secretase-mediated APP cleavage, but was not associated with any increase in amyloid biosynthesis. The PBA-treated AD transgenic mice had significantly decreased incidence and size of amyloid plaques throughout the cortex and hippocampus. There was no change in total amyloid levels suggesting that PBA modifies amyloid aggregation or pathogenesis independently of biogenesis. The decrease in amyloid plaques was paralleled by increased memory retention, as PBA treatment facilitated cognitive performance in a spatial memory task in both wild-type and AD transgenic mice. The molecular mechanism underlying the cognitive facilitation of PBA is not clear; however, increased levels of both metabotropic and ionotropic glutamate receptors, as well as ADAM10 and TACE, were observed in the cortex and hippocampus of PBA-treated mice. The data suggest that PBA ameliorates the cognitive and pathological features of AD and supports the investigation of PBA as a therapeutic for AD.

  8. Increased gene expression of Alzheimer disease beta-amyloid precursor protein in senescent cultured fibroblasts.

    PubMed

    Adler, M J; Coronel, C; Shelton, E; Seegmiller, J E; Dewji, N N

    1991-01-01

    The pathological hallmark of Alzheimer disease is the accumulation of neurofibrillary tangles and neuritic plaques in the brains of patients. Plaque cores contain a 4- to 5-kDa amyloid beta-protein fragment which is also found in the cerebral blood vessels of affected individuals. Since amyloid deposition in the brain increases with age even in normal people, we sought to establish whether the disease state bears a direct relationship with normal aging processes. As a model for biological aging, the process of cellular senescence in vitro was used. mRNA levels of beta-amyloid precursor protein associated with Alzheimer disease were compared in human fibroblasts in culture at early passage and when the same fibroblasts were grown to senescence after more than 52 population doublings. A dramatic increase in mRNA was observed in senescent IMR-90 fibroblasts compared with early-passage cells. Hybridization of mRNA from senescent and early proliferating fibroblasts with oligonucleotide probes specific for the three alternatively spliced transcripts of the gene gave similar results, indicating an increase during senescence of all three forms. A similar, though more modest, increase in message levels was also observed in early-passage fibroblasts made quiescent by serum deprivation; with repletion of serum, however, the expression returned to previous low levels. ELISAs were performed on cell extracts from senescent, early proliferating, and quiescent fibroblasts, and quiescent fibroblasts repleted with serum for over 48 hr, using polyclonal antibodies to a synthetic peptide of the beta-amyloid precursor. The results confirmed that the differences in mRNA expression were partially reflected at the protein level. Regulated expression of beta-amyloid precursor protein may be an important determinant of growth and metabolic responses to serum and growth factors under physiological as well as pathological conditions.

  9. Reduced oligomeric and vascular amyloid-beta following immunization of TgCRND8 mice with an Alzheimer's DNA vaccine.

    PubMed

    DaSilva, Kevin A; Brown, Mary E; McLaurin, JoAnne

    2009-02-25

    Immunization with amyloid-beta (Abeta) peptide reduces amyloid load in animal studies and in humans; however clinical trials resulted in the development of a pro-inflammatory cellular response to Abeta. Apoptosis has been employed to stimulate humoral and Th2-biased cellular immune responses. Thus, we sought to investigate whether immunization using a DNA vaccine encoding Abeta in conjunction with an attenuated caspase generates therapeutically effective antibodies. Plasmids encoding Abeta and an attenuated caspase were less effective in reducing amyloid pathology than those encoding Abeta alone. Moreover, use of Abeta with an Arctic mutation (E22G) as an immunogen was less effective than wild-type Abeta in terms of improvements in pathology. Low levels of IgG and IgM were generated in response to immunization with a plasmid encoding wild-type Abeta. These antibodies decreased plaque load by as much as 36+/-8% and insoluble Abeta42 levels by 56+/-3%. Clearance of Abeta was most effective when antibodies were directed against N-terminal epitopes of Abeta. Moreover, immunization reduced CAA by as much as 69+/-12% in TgCRND8 mice. Finally, high-molecular-weight oligomers and Abeta trimers were significantly reduced with immunization. Thus, immunization with a plasmid encoding Abeta alone drives an attenuated immune response that is sufficient to clear amyloid pathology in a mouse model of Alzheimer's disease.

  10. Tracking the earliest pathologic changes in Alzheimer disease.

    PubMed

    Landau, Susan M; Frosch, Matthew P

    2014-05-06

    A current challenge in Alzheimer disease (AD) research is to identify the sequence of pathologic changes that occurs during preclinical stages of disease in advance of cognitive decline. The timing of appearance of the 2 pathologic hallmarks of AD-amyloid deposition and tau-mediated neurodegeneration-is a particular topic of debate, with researchers drawing on a broad range of genetic, neuroimaging, fluid biomarker, animal, and autopsy studies to piece together the series of events ultimately leading to the plaques, neurofibrillary tangles, and cognitive deficits that define AD.

  11. The butter flavorant, diacetyl, exacerbates β-amyloid cytotoxicity.

    PubMed

    More, Swati S; Vartak, Ashish P; Vince, Robert

    2012-10-15

    Diacetyl (DA), an ubiquitous butter-flavoring agent, was found to influence several aspects of amyloid-β (Aβ) aggregation--one of the two primary pathologies associated with Alzheimer's disease. Thioflavin T fluorescence and circular dichroism spectroscopic measurements revealed that DA accelerates Aβ¹⁻⁴² aggregation into soluble and ultimately insoluble β-pleated sheet structures. DA was found to covalently bind to Arg⁵ of Aβ¹⁻⁴² through proteolytic digestion-mass spectrometric experiments. These biophysical and chemical effects translated into the potentiation of Aβ¹⁻⁴² cytotoxicity by DA toward SH-SY5Y cells in culture. DA easily traversed through a MDR1-MDCK cell monolayer, an in vitro model of the blood-brain barrier. Additionally, DA was found not only to be resistant to but also inhibitory toward glyoxalase I, the primary initiator of detoxification of amyloid-promoting reactive dicarbonyl species that are generated naturally in large amounts by neuronal tissue. In light of the chronic exposure of industry workers to DA, this study raises the troubling possibility of long-term neurological toxicity mediated by DA.

  12. Foldamer-mediated manipulation of a pre-amyloid toxin

    PubMed Central

    Kumar, Sunil; Birol, Melissa; Schlamadinger, Diana E.; Wojcik, Slawomir P.; Rhoades, Elizabeth; Miranker, Andrew D.

    2016-01-01

    Disordered proteins, such as those central to Alzheimer's and Parkinson's, are particularly intractable for structure-targeted therapeutic design. Here we demonstrate the capacity of a synthetic foldamer to capture structure in a disease relevant peptide. Oligoquinoline amides have a defined fold with a solvent-excluded core that is independent of its outwardly projected, derivatizable moieties. Islet amyloid polypeptide (IAPP) is a peptide central to β-cell pathology in type II diabetes. A tetraquinoline is presented that stabilizes a pre-amyloid, α-helical conformation of IAPP. This charged, dianionic compound is readily soluble in aqueous buffer, yet crosses biological membranes without cellular assistance: an unexpected capability that is a consequence of its ability to reversibly fold. The tetraquinoline docks specifically with intracellular IAPP and rescues β-cells from toxicity. Taken together, our work here supports the thesis that stabilizing non-toxic conformers of a plastic protein is a viable strategy for cytotoxic rescue addressable using oligoquinoline amides. PMID:27108700

  13. Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies

    SciTech Connect

    Gonzalez-Montalban, Nuria; Villaverde, Antonio; Aris, Anna; E-mail: Anna.Aris@irta.es

    2007-04-13

    The aggregation of proteins in the form of amyloid fibrils and plaques is the characteristic feature of some pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. The mechanisms by which the aggregation processes result in cell damage are under intense investigation but recent data indicate that prefibrillar aggregates are the most proximate mediators of toxicity rather than mature fibrils. Since it has been shown that prefibrillar forms of the nondisease-related misfolded proteins are highly toxic to cultured mammalian cells we have studied the cytoxicity associated to bacterial inclusion bodies that have been recently described as protein deposits presenting amyloid-like structures. We have proved that bacterial inclusion bodies composed by a misfolding-prone {beta}-galactosidase fusion protein are clearly toxic for mammalian cells but the {beta}-galactosidase wild type enzyme forming more structured thermal aggregates does not impair cell viability, despite it also binds and enter into the cells. These results are in the line that the most cytotoxic aggregates are early prefibrilar assemblies but discard the hypothesis that the membrane destabilization is Key event to subsequent disruption of cellular processes, such as ion balance, oxidative state and the eventually cell death.

  14. Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro

    PubMed Central

    1995-01-01

    The amyloid precursor protein (APP) is a transmembrane protein expressed in several cell types. In the nervous system, APP is expressed by glial and neuronal cells, and several lines of evidence suggest that it plays a role in normal and pathological phenomena. To address the question of the actual function of APP in normal developing neurons, we undertook a study aimed at blocking APP expression using antisense oligonucleotides. Oligonucleotide internalization was achieved by linking them to a vector peptide that translocates through biological membranes. This original technique, which is very efficient and gives direct access to the cell cytosol and nucleus, allowed us to work with extracellular oligonucleotide concentrations between 40 and 200 nM. Internalization of antisense oligonucleotides overlapping the origin of translation resulted in a marked but transient decrease in APP neosynthesis that was not observed with the vector peptide alone, or with sense oligonucleotides. Although transient, the decrease in APP neosynthesis was sufficient to provoke a distinct decrease in axon and dendrite outgrowth by embryonic cortical neurons developing in vitro. The latter decrease was not accompanied by changes in the spreading of the cell bodies. A single exposure to coupled antisense oligonucleotides at the onset of the culture was sufficient to produce significant morphological effects 6, 18, and 24 h later, but by 42 h, there were no remaining significant morphologic changes. This report thus demonstrates that amyloid precursor protein plays an important function in the morphological differentiation of cortical neurons in primary culture. PMID:7876315

  15. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695.

    PubMed

    Chishti, M A; Yang, D S; Janus, C; Phinney, A L; Horne, P; Pearson, J; Strome, R; Zuker, N; Loukides, J; French, J; Turner, S; Lozza, G; Grilli, M; Kunicki, S; Morissette, C; Paquette, J; Gervais, F; Bergeron, C; Fraser, P E; Carlson, G A; George-Hyslop, P S; Westaway, D

    2001-06-15

    We have created early-onset transgenic (Tg) models by exploiting the synergistic effects of familial Alzheimer's disease mutations on amyloid beta-peptide (Abeta) biogenesis. TgCRND8 mice encode a double mutant form of amyloid precursor protein 695 (KM670/671NL+V717F) under the control of the PrP gene promoter. Thioflavine S-positive Abeta amyloid deposits are present at 3 months, with dense-cored plaques and neuritic pathology evident from 5 months of age. TgCRND8 mice exhibit 3,200-4,600 pmol of Abeta42 per g brain at age 6 months, with an excess of Abeta42 over Abeta40. High level production of the pathogenic Abeta42 form of Abeta peptide was associated with an early impairment in TgCRND8 mice in acquisition and learning reversal in the reference memory version of the Morris water maze, present by 3 months of age. Notably, learning impairment in young mice was offset by immunization against Abeta42 (Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., Chishti, M. A., Horne, P., Heslin, D., French, J., Mount, H. T. J., Nixon, R. A., Mercken, M., Bergeron, C., Fraser, P. E., St. George-Hyslop, P., and Westaway, D. (2000) Nature 408, 979-982). Amyloid deposition in TgCRND8 mice was enhanced by the expression of presenilin 1 transgenes including familial Alzheimer's disease mutations; for mice also expressing a M146L+L286V presenilin 1 transgene, amyloid deposits were apparent by 1 month of age. The Tg mice described here suggest a potential to investigate aspects of Alzheimer's disease pathogenesis, prophylaxis, and therapy within short time frames.

  16. Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer's disease.

    PubMed

    Chételat, Gaël; Villemagne, Victor L; Pike, Kerryn E; Ellis, Kathryn A; Bourgeat, Pierrick; Jones, Gareth; O'Keefe, Graeme J; Salvado, Olivier; Szoeke, Cassandra; Martins, Ralph N; Ames, David; Masters, Colin L; Rowe, Christopher C

    2011-03-01

    The relationship between β-amyloid deposition and memory deficits in early Alzheimer's disease is unresolved, as past studies show conflicting findings. The present study aims to determine the relative contribution of regional β-amyloid deposition, hippocampal atrophy and white matter integrity to episodic memory deficits in non-demented older individuals harbouring one of the characteristic hallmarks of Alzheimer's disease, i.e. with β-amyloid pathology. Understanding these relationships is critical for effective therapeutic development. Brain magnetic resonance imaging and [(11)C]Pittsburgh Compound B-positron emission tomography scans were obtained in 136 non-demented individuals aged over 60 years, including 93 healthy elderly and 43 patients with mild cognitive impairment. Voxel-based correlations were computed between a memory composite score and grey matter volume, white matter volume and β-amyloid deposition imaging datasets. Hierarchical linear regression analyses were then performed using values extracted in regions of most significant correlations to determine the relative contribution of each modality to memory deficits. All analyses were conducted pooling all groups together as well as within separate subgroups of cognitively normal elderly, patients with mild cognitive impairment and individuals with high versus low neocortical β-amyloid. Brain areas of highest correlation with episodic memory deficits were the hippocampi for grey matter volume, the perforant path for white matter volume and the temporal neocortex for β-amyloid deposition. When considering these three variables together, only hippocampal volume and temporal β-amyloid deposition provided independent contributions to memory deficits. In contrast to global β-amyloid deposition, temporal β-amyloid deposition was still related to memory independently from hippocampal atrophy within subgroups of cognitively normal elderly, patients with mild cognitive impairment or cases with high

  17. Amyloid Precursor Protein Is Trafficked and Secreted via Synaptic Vesicles

    PubMed Central

    Riedel, Dietmar; Hua, Yunfeng; Hüve, Jana; Wilhelm, Benjamin G.; Klingauf, Jürgen

    2011-01-01

    A large body of evidence has implicated amyloid precursor protein (APP) and its proteolytic derivatives as key players in the physiological context of neuronal synaptogenesis and synapse maintenance, as well as in the pathology of Alzheimer's Disease (AD). Although APP processing and release are known to occur in response to neuronal stimulation, the exact mechanism by which APP reaches the neuronal surface is unclear. We now demonstrate that a small but relevant number of synaptic vesicles contain APP, which can be released during neuronal activity, and most likely represent the major exocytic pathway of APP. This novel finding leads us to propose a revised model of presynaptic APP trafficking that reconciles existing knowledge on APP with our present understanding of vesicular release and recycling. PMID:21556148

  18. Brain pathologies in extreme old age

    PubMed Central

    Neltner, Janna H.; Abner, Erin L.; Jicha, Gregory A.; Schmitt, Frederick A.; Patel, Ela; Poon, Leonard W.; Gearing, Marla; Green, Robert C.; Davey, Adam; Johnson, Mary Ann; Jazwinski, S. Michal; Kim, Sangkyu; Davis, Daron; Woodard, John L.; Kryscio, Richard J.; Van Eldik, Linda J.; Nelson, Peter T.

    2015-01-01

    With an emphasis on evolving concepts in the field, we evaluated neuropathologic data from very old research volunteers whose brain autopsies were performed at University of Kentucky (UK-ADC), incorporating data from the Georgia Centenarian Study (N=49 cases included), the Nun Study (N=17), and UK-ADC (N=11) cohorts. Average age of death was 102.0 years (range: 98–107) overall. Alzheimer’s disease (AD) pathology was not universal (62% with “moderate” or “frequent” neuritic amyloid plaque densities) whereas frontotemporal lobar degeneration (FTLD) was absent. By contrast, some hippocampal neurofibrillary tangles (including primary age-related tauopathy [PART]) were observed in every case. Lewy body pathology was seen in 16.9% of subjects, hippocampal sclerosis of aging (HS-Aging) in 20.8%. We describe anatomical distributions of pigment-laden macrophages, expanded Virchow-Robin spaces, and arteriolosclerosis among Georgia Centenarians. Moderate or severe arteriolosclerosis pathology, throughout the brain, was associated with both HS-Aging pathology and an ABCC9 gene variant. These results provide fresh insights into the complex cerebral multimorbidity, and a novel genetic risk factor, at the far end of the human aging spectrum. PMID:26597697

  19. Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate.

    PubMed

    Rulifson, Ingrid C; Cao, Ping; Miao, Li; Kopecky, David; Huang, Linda; White, Ryan D; Samayoa, Kim; Gardner, Jonitha; Wu, Xiaosu; Chen, Kui; Tsuruda, Trace; Homann, Oliver; Baribault, Helene; Yamane, Harvey; Carlson, Tim; Wiltzius, Jed; Li, Yang

    2016-01-01

    Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer's disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia.

  20. Age and amyloid-related alterations in default network habituation to stimulus repetition

    PubMed Central

    Vannini, Patrizia; Hedden, Trey; Becker, John A.; Sullivan, Caroline; Putcha, Deepti; Rentz, Dorene; Johnson, Keith A.; Sperling, Reisa. A.

    2011-01-01

    The neural networks supporting encoding of new information are thought to decline with age, although mnemonic techniques such as repetition may enhance performance in older individuals. Accumulation of amyloid-β, one hallmark pathology of Alzheimer’s disease (AD), may contribute to functional alterations in memory networks measured with functional magnetic resonance imaging (fMRI) prior to onset of cognitive impairment. We investigated the effects of age and amyloid burden on fMRI activity in the default network and hippocampus during repetitive encoding. Older individuals, particularly those with high amyloid burden, demonstrated decreased task-induced deactivation in the posteromedial cortices during initial stimulus presentation and failed to modulate fMRI activity in response to repeated trials, whereas young subjects demonstrated a stepwise decrease in deactivation with repetition. The hippocampus demonstrated similar patterns across the groups, showing task-induced activity that decreased in response to repetition. These findings demonstrate that age and amyloid have dissociable functional effects on specific nodes within a distributed memory network, and suggest that functional brain changes may begin far in advance of symptomatic AD. PMID:21334099

  1. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism

    PubMed Central

    Cohen, Samuel I. A.; Linse, Sara; Luheshi, Leila M.; Hellstrand, Erik; White, Duncan A.; Rajah, Luke; Otzen, Daniel E.; Vendruscolo, Michele; Dobson, Christopher M.; Knowles, Tuomas P. J.

    2013-01-01

    The generation of toxic oligomers during the aggregation of the amyloid-β (Aβ) peptide Aβ42 into amyloid fibrils and plaques has emerged as a central feature of the onset and progression of Alzheimer’s disease, but the molecular pathways that control pathological aggregation have proved challenging to identify. Here, we use a combination of kinetic studies, selective radiolabeling experiments, and cell viability assays to detect directly the rates of formation of both fibrils and oligomers and the resulting cytotoxic effects. Our results show that once a small but critical concentration of amyloid fibrils has accumulated, the toxic oligomeric species are predominantly formed from monomeric peptide molecules through a fibril-catalyzed secondary nucleation reaction, rather than through a classical mechanism of homogeneous primary nucleation. This catalytic mechanism couples together the growth of insoluble amyloid fibrils and the generation of diffusible oligomeric aggregates that are implicated as neurotoxic agents in Alzheimer’s disease. These results reveal that the aggregation of Aβ42 is promoted by a positive feedback loop that originates from the interactions between the monomeric and fibrillar forms of this peptide. Our findings bring together the main molecular species implicated in the Aβ aggregation cascade and suggest that perturbation of the secondary nucleation pathway identified in this study could be an effective strategy to control the proliferation of neurotoxic Aβ42 oligomers. PMID:23703910

  2. CSF beta-amyloid levels are altered in narcolepsy: a link with the inflammatory hypothesis?

    PubMed

    Liguori, Claudio; Placidi, Fabio; Albanese, Maria; Nuccetelli, Marzia; Izzi, Francesca; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Bernardini, Sergio; Romigi, Andrea

    2014-08-01

    Narcolepsy is characterized by hypocretin deficiency due to the loss of hypothalamic orexinergic neurons, and is associated with both the human leucocyte antigen DQB1*06:02 and the T cell receptor polymorphism. The above relationship suggests autoimmune/inflammatory processes underlying the loss of orexinergic neurons in narcolepsy. To test the autoimmune/inflammatory hypothesis by means of cerebrospinal fluid (CSF) levels of beta-amyloid1-42 and/or total tau proteins in a sample of narcoleptic patients, we analysed 16 narcoleptic patients and 16 healthy controls. Beta-amyloid1-42 CSF levels were significantly lower in narcoleptic patients compared with healthy controls. We also documented pathologically low levels of CSF beta-amyloid1-42 (<500 pg mL(-1) ) in six of 16 narcoleptic patients (37.5%). We hypothesize that the significant decrease of the CSF beta-amyloid1-42 levels in narcoleptic patients may support both the inflammatory/autoimmune hypothesis as the basis of the pathogenesis of narcolepsy and the prevalence of an 'amyloidogenic' pathway caused by the deficiency of the alpha-secretases enzymes.

  3. Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate

    PubMed Central

    Rulifson, Ingrid C.; Cao, Ping; Miao, Li; Kopecky, David; Huang, Linda; White, Ryan D.; Samayoa, Kim; Gardner, Jonitha; Wu, Xiaosu; Chen, Kui; Tsuruda, Trace; Homann, Oliver; Baribault, Helene; Yamane, Harvey; Carlson, Tim; Wiltzius, Jed; Li, Yang

    2016-01-01

    Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer’s disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia. PMID:26840340

  4. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer's disease.

    PubMed Central

    Cras, P.; Kawai, M.; Siedlak, S.; Mulvihill, P.; Gambetti, P.; Lowery, D.; Gonzalez-DeWhitt, P.; Greenberg, B.; Perry, G.

    1990-01-01

    This study was undertaken to localize amyloid precursor protein (APP) and to determine how APP might be released and proteolyzed to yield the beta-amyloid protein deposits found in senile plaques in the brains of Alzheimer's disease patients. We found that antibodies to recombinantly expressed APP labeled many normal neurons and neurites. In addition, dystrophic neurites in different types of senile plaques and degenerating neurons in the temporal cortex and hippocampus of Alzheimer's disease patients were immunostained. We also detected small clusters of dystrophic APP immunoreactive neurites that were not associated with beta-amyloid protein deposits. Microglia was involved in different types of senile plaques and often were associated closely with APP immunoreactive neurites and neurons. The greatest concurrence of APP immunoreactivity and reactive microglia was seen in the subiculum and area CA1, regions with a high density of congophilic plaques and subject to intense Alzheimer's pathology. Our findings suggest that neuronally derived APP is the source for senile plaque beta-amyloid protein, while microglia may act as processing cells. Images Figure 1 Figure 2 PMID:2117395

  5. A Cu-amyloid β complex activating Fenton chemistry in Alzheimer's disease: Learning with multiple first-principles simulations

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Hureau, Christelle; Faller, Peter

    2014-10-01

    Amyloid β peptides form complexes with copper, both in vitro and in vivo, relatively soluble in water as oligomers and active as catalysts for oxidation of organic substrates by hydrogen peroxide, a species always present in cells and in their aerobic environment. All these species are present in the synapse, thus making a connection between the amyloid cascade hypothesis and the oxidative damages by reactive oxygen species in neurons, when pathological dishomeostasis of amyloid peptides and metal ions occur. In order to understand the structural features of these toxic complexes, we built several models of Cu-Aβ peptides in monomeric and dimeric forms and we found, performing multiple first-principles molecular dynamics simulations, that Cu-induced dimers are more active than monomers in converting hydrogen peroxide into aggressive hydroxyl radicals.

  6. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations) as a model to study clearance of beta-amyloid plaques

    PubMed Central

    Humpel, Christian

    2015-01-01

    Alzheimer's disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP), insulysin and matrix metalloproteinases (MMP) are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 μm thick) were sectioned from adult (9 month old) wildtype and transgenic mice (expressing amyloid precursor protein (APP) harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI) and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1–0.1–0.01 μg/ml of NEP, insulysin, MMP-2, or MMP-9 showed that NEP, insulysin, and MMP-9 markedly degraded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro. PMID:25914642

  7. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    PubMed

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  8. Amyloid imaging in prodromal Alzheimer's disease

    PubMed Central

    2011-01-01

    Patients with mild cognitive impairment are at an increased risk of progression to Alzheimer's disease. However, not all patients with mild cognitive impairment progress, and it is difficult to accurately identify those patients who are in the prodromal stage of Alzheimer's disease. In a recent paper, Koivunen and colleagues report that Pittsburgh compound-B, an amyloid-beta positron emission tomography ligand, predicts the progression of patients with mild cognitive impairment to Alzheimer's disease. Of 29 subjects with mild cognitive impairment, 21 (72%) had a positive Pittsburgh compound-B positron emission tomography baseline scan. In their study, 15 of these 21 (71%) patients progressed to Alzheimer's disease, whilst only 1 out of 8 (12.5%) Pittsburgh compound-B-negative patients with mild cognitive impairment did so. Moreover, in these mild cognitive impairment patients, the overall amyloid burden increased approximately 2.5% during the follow-up period. This is consistent with other longitudinal amyloid imaging studies that found a similar increase in amyloid deposition over time in patients with mild cognitive impairment. These studies together challenge current theories that propose a flattening of the increase of brain amyloid deposition already in the preclinical stage of Alzheimer's disease. These findings may have important implications for the design of future clinical trials aimed at preventing progression to Alzheimer's disease by lowering the brain amyloid-beta burden in patients with mild cognitive impairment. PMID:21936965

  9. Fibril Fragmentation Enhances Amyloid Cytotoxicity*♦

    PubMed Central

    Xue, Wei-Feng; Hellewell, Andrew L.; Gosal, Walraj S.; Homans, Steve W.; Hewitt, Eric W.; Radford, Sheena E.

    2009-01-01

    Fibrils associated with amyloid disease are molecular assemblies of key biological importance, yet how cells respond to the presence of amyloid remains unclear. Cellular responses may not only depend on the chemical composition or molecular properties of the amyloid fibrils, but their physical attributes such as length, width, or surface area may also play important roles. Here, we report a systematic investigation of the effect of fragmentation on the structural and biological properties of amyloid fibrils. In addition to the expected relationship between fragmentation and the ability to seed, we show a striking finding that fibril length correlates with the ability to disrupt membranes and to reduce cell viability. Thus, despite otherwise unchanged molecular architecture, shorter fibrillar samples show enhanced cytotoxic potential than their longer counterparts. The results highlight the importance of fibril length in amyloid disease, with fragmentation not only providing a mechanism by which fibril load can be rapidly increased but also creating fibrillar species of different dimensions that can endow new or enhanced biological properties such as amyloid cytotoxicity. PMID:19808677

  10. Primary amyloid goiter mimicking rapid growing thyroid malignancy.

    PubMed

    Joung, Kyong Hye; Park, Jae-Yong; Kim, Koon Soon; Koo, Bon Seok

    2014-02-01

    Amyloid accumulation in the thyroid gland leading to a clinically detectable mass, known as amyloid goiter, is a rare condition associated with primary amyloidosis. Moreover, a localized primary amyloid goiter involving only the thyroid gland is rarer still. Here, we report a patient with a localized primary amyloid goiter that had grown rapidly, causing dysphagia and dyspnea on exercise, and confused us with malignancy such as anaplastic carcinoma. After surgery, no further symptoms occurred. A diagnosis of amyloid goiter was established on microscopic examination. In patients with a rapidly enlarging thyroid gland presenting with dysphagia, dyspnea, or hoarseness, amyloid goiter and malignancy should both be suspected, even when systemic amyloidosis is not suspected.

  11. Amyloid Plaques in PSAPP Mice Bind Less Metal than Plaques in Human Alzheimer's Disease

    SciTech Connect

    Leskovjan, A.; Lanzirotti, A; Miller, L

    2009-01-01

    Amyloid beta (A{Beta}) is the primary component of Alzheimer's disease (AD) plaques, a key pathological feature of the disease. Metal ions of zinc (Zn), copper (Cu), iron (Fe), and calcium (Ca) are elevated in human amyloid plaques and are thought to be involved in neurodegeneration. Transgenic mouse models of AD also exhibit amyloid plaques, but fail to exhibit the high degree of neurodegeneration observed in humans. In this study, we imaged the Zn, Cu, Fe, and Ca ion distribution in the PSAPP transgenic mouse model representing end-stage AD (N = 6) using synchrotron X-ray fluorescence (XRF) microprobe. In order to account for differences in density in the plaques, the relative protein content was imaged with synchrotron Fourier transform infrared microspectroscopy (FTIRM) on the same samples. FTIRM results revealed a 61% increase in protein content in the plaques compared to the surrounding tissue. After normalizing to protein density, we found that the PSAPP plaques contained only a 29% increase in Zn and there was actually less Cu, Fe, and Ca in the plaque compared to the surrounding tissue. Since metal binding to A{beta} is thought to induce redox chemistry that is toxic to neurons, the reduced metal binding in PSAPP mice is consistent with the lack of neurodegeneration in these animals. These findings were in stark contrast to the high metal ion content observed in human AD plaques, further implicating the role of metal ions in human AD pathology.

  12. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  13. MR microscopy of human amyloid-β deposits: characterization of parenchymal amyloid, diffuse plaques, and vascular amyloid.

    PubMed

    Nabuurs, Rob J A; Natté, Remco; de Ronde, Fenna M; Hegeman-Kleinn, Ingrid; Dijkstra, Jouke; van Duinen, Sjoerd G; Webb, Andrew G; Rozemuller, Annemieke J; van Buchem, Mark A; van der Weerd, Louise

    2013-01-01

    Cerebral deposits of amyloid-β peptides (Aβ) form the neuropathological hallmarks of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). In the brain, Aβ can aggregate as insoluble fibrils present in amyloid plaques and vascular amyloid, or as diffuse plaques consisting of mainly non-fibrillar Aβ. Previously, magnetic resonance imaging (MRI) has been shown to be capable of detecting individual amyloid plaques, not only via the associated iron, but also Aβ itself has been suggested to be responsible for a decrease in the image intensity. In this current study we aim to investigate the MRI properties of the different cerebral Aβ deposits including diffuse plaques and vascular amyloid. Postmortem 60-μm-thick brain sections of AD, CAA, and Down's syndrome patients, known to contain Aβ, were studied. High resolution T2*- and T2-weighted MRI scans and quantitative relaxation maps were acquired using a microcoil on a Bruker 9.4T MRI system. Specific MRI characteristics of each type of Aβ deposit were examined by co-registration of the MRI with Congo Red and Aβ-immunostainings of the same sections. Our results show that only fibrillar Aβ, present in both vascular and parenchymal amyloid, induced a significant change in T2* and T2 values. However, signal changes were not as consistent for all of the vessels affected by CAA, irrespective of possible dyshoric changes. In contrast, the non-fibrillar diffuse plaques did not create any detectable MRI signal changes. These findings are relevant for the interpretation and further development of (quantitative) MRI methods for the detection and follow-up of AD and CAA.

  14. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  15. In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings.

    PubMed

    Formaglio, Maïté; Costes, Nicolas; Seguin, Jérémie; Tholance, Yannick; Le Bars, Didier; Roullet-Solignac, Isabelle; Mercier, Bernadette; Krolak-Salmon, Pierre; Vighetto, Alain

    2011-10-01

    Our objective was to evaluate amyloid deposition in posterior cortical atrophy (PCA), using both cerebrospinal fluid (CSF) biomarker analysis and amyloid imaging. Five PCA patients, selected based on their neuropsychological profile and atrophic changes in posterior regions on MRI, underwent CSF analysis. CSF amyloid-beta 1-42, total tau, and phosphorylated tau at threonine 181 levels were determined. They also had positron emission tomography (PET) with Pittsburgh Compound B ([(11)C]PIB). [(11)C]PIB ratio images were assessed with visual, regional and voxel-based analyses and compared to eight typical Alzheimer's disease (AD) patients and eight controls. The biological profile in the five PCA patients, resulting from CSF and [(11)C]PIB images analysis, was consistent with AD. Individual comparisons of PCA patients' [(11)C]PIB images with the AD group with Statistical Parametric Mapping (SPM) revealed a distinctive posterior uptake in four out of the five patients showing increased amyloid deposition in occipital, temporal, and/or parietal regions. ROI group analysis showed a tendency for higher amyloid deposition in occipital and temporal regions. However, this pattern was not found with SPM group analysis when the global level of [(11)C]PIB uptake was used as a covariate. Our results indicate that amyloid burden can be demonstrated in vivo in PCA suggesting a diagnosis of AD. PCA patients may present a higher global amyloid load than AD that was not related to age at onset, disease severity, disease duration, or educational level in our study. Combined CSF and PET biomarkers seem helpful for in vivo diagnosis of this focal syndrome with underlying AD pathology.

  16. Traditional Chinese Nootropic Medicine Radix Polygalae and Its Active Constituent Onjisaponin B Reduce β-Amyloid Production and Improve Cognitive Impairments

    PubMed Central

    Li, Xiaohang; Cui, Jin; Yu, Yang; Li, Wei; Hou, Yujun; Wang, Xin; Qin, Dapeng; Zhao, Cun; Yao, Xinsheng; Zhao, Jian; Pei, Gang

    2016-01-01

    Decline of cognitive function is the hallmark of Alzheimer’s disease (AD), regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO) is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ) reduction activity to identify active constituent(s) of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP). Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery. PMID:26954017

  17. Traditional Chinese Nootropic Medicine Radix Polygalae and Its Active Constituent Onjisaponin B Reduce β-Amyloid Production and Improve Cognitive Impairments.

    PubMed

    Li, Xiaohang; Cui, Jin; Yu, Yang; Li, Wei; Hou, Yujun; Wang, Xin; Qin, Dapeng; Zhao, Cun; Yao, Xinsheng; Zhao, Jian; Pei, Gang

    2016-01-01

    Decline of cognitive function is the hallmark of Alzheimer's disease (AD), regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO) is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ) reduction activity to identify active constituent(s) of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP). Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery.

  18. Suspected non-AD pathology in mild cognitive impairment.

    PubMed

    Wisse, Laura E M; Butala, Nirali; Das, Sandhitsu R; Davatzikos, Christos; Dickerson, Bradford C; Vaishnavi, Sanjeev N; Yushkevich, Paul A; Wolk, David A

    2015-12-01

    We aim to better characterize mild cognitive impairment (MCI) patients with suspected non-Alzheimer's disease (AD) pathology (SNAP) based on their longitudinal outcome, cognition, biofluid, and neuroimaging profile. MCI participants (n = 361) from ADNI-GO/2 were designated "amyloid positive" with abnormal amyloid-beta 42 levels (AMY+) and "neurodegeneration positive" (NEU+) with abnormal hippocampal volume or hypometabolism using fluorodeoxyglucose-positron emission tomography. SNAP was compared with the other MCI groups and with AMY- controls. AMY-NEU+/SNAP, 16.6%, were older than the NEU- groups but not AMY- controls. They had a lower conversion rate to AD after 24 months than AMY+NEU+ MCI participants. SNAP-MCI participants had similar amyloid-beta 42 levels, florbetapir and tau levels, but larger white matter hyperintensity volumes than AMY- controls and AMY-NEU- MCI participants. SNAP participants performed worse on all memory domains and on other cognitive domains, than AMY-NEU- participants but less so than AMY+NEU+ participants. Subthreshold levels of cerebral amyloidosis are unlikely to play a role in SNAP-MCI, but pathologies involving the hippocampus and cerebrovascular disease may underlie the neurodegeneration and cognitive impairment in this group.

  19. Physicochemical characteristics of soluble oligomeric Abeta and their pathologic role in Alzheimer's disease.

    PubMed

    Watson, Desiree; Castaño, Eduardo; Kokjohn, Tyler A; Kuo, Yu-Min; Lyubchenko, Yuri; Pinsky, David; Connolly, E Sander; Esh, Chera; Luehrs, Dean C; Stine, W Blaine; Rowse, Linda M; Emmerling, Mark R; Roher, Alex E

    2005-12-01

    Extracellular fibrillar amyloid deposits are prominent and universal Alzheimer's disease (AD) features, but senile plaque abundance does not always correlate directly with the degree of dementia exhibited by AD patients. The mechanism(s) and dynamics of Abeta fibril genesis and deposition remain obscure. Enhanced Abeta synthesis rates coupled with decreased degradative enzyme production and accumulating physical modifications that dampen proteolysis may all enhance amyloid deposit formation. Amyloid accumulation may indirectly exert the greatest pathologic effect on the brain vasculature by destroying smooth muscle cells and creating a cascade of negative impacts on cerebral blood flow. The most visible manifestation of amyloid dis-equilibrium could actually be a defense mechanism employed to avoid serious vascular wall degradation while the major toxic effects to the gray and white matter neurons are mediated by soluble oligomeric Abeta peptides with high beta-sheet content. The recognition that dynamic soluble oligomeric Abeta pools exist in AD and are correlated to disease severity led to neurotoxicity and physical conformation studies. It is now recognized that the most basic soluble Abeta peptides are stable dimers with hydrophobic regions sequestered from the aqueous environment and are capable of higher order aggregations. Time course experiments employing a modified ELISA method able to detect Abeta oligomers revealed dynamic intermolecular interactions and additional experiments physically confirmed the presence of stable amyloid multimers. Amyloid peptides that are rich in beta-sheet structure are capable of creating toxic membrane ion channels and a capacity to self-assemble as annular structures was confirmed in vitro using atomic force microscopy. Biochemical studies have established that soluble Abeta peptides perturb metabolic processes, provoke release of deleterious reactive compounds, reduce blood flow, induce mitochondrial apoptotic toxicity and

  20. Oligomeric α-synuclein and β-amyloid variants as potential biomarkers for Parkinson's and Alzheimer's diseases.

    PubMed

    Williams, Stephanie M; Schulz, Philip; Sierks, Michael R

    2016-01-01

    Oligomeric forms of α-synuclein and β-amyloid are toxic protein variants that are thought to contribute to the onset and progression of Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. The detection of toxic variants in human cerebrospinal fluid (CSF) and blood has great promise for facilitating early and accurate diagnoses of these devastating diseases. Two hurdles that have impeded the use of these protein variants as biomarkers are the availability of reagents that can bind the different variants and a sensitive assay to detect their very low concentrations. We previously isolated antibody-based reagents that selectively bind two different oligomeric variants of α-synuclein and two of β-amyloid, and developed a phage-based capture enzyme-linked immunosorbent assay (ELISA) with subfemtomolar sensitivity to quantify their presence. Here, we used these reagents to show that these oligomeric α-synuclein variants are preferentially present in PD brain tissue, CSF and serum, and that the oligomeric β-amyloid variants are preferentially present in AD brain tissue, CSF, and serum. Some AD samples also had α-synuclein pathology and some PD samples also had β-amyloid pathology, and, very intriguingly, these PD cases also had a history of dementia. Detection of different oligomeric α-synuclein and β-amyloid species is an effective method for identifying tissue, CSF and sera from PD and AD samples, respectively, and samples that also contained early stages of other protein pathologies, indicating their potential value as blood-based biomarkers for neurodegenerative diseases.

  1. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.

    PubMed

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A

    2009-05-22

    Oxidative stress and amyloid-beta are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-beta is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or "redox silence" transition metals have long been considered as attractive therapies for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-beta-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-beta aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals.

  2. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    PubMed

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  3. A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide.

    PubMed

    Yuyama, Kohei; Sun, Hui; Usuki, Seigo; Sakai, Shota; Hanamatsu, Hisatoshi; Mioka, Tetsuo; Kimura, Nobuyuki; Okada, Megumi; Tahara, Hidetoshi; Furukawa, Jun-ichi; Fujitani, Naoki; Shinohara, Yasuro; Igarashi, Yasuyuki

    2015-01-02

    Elevated amyloid-β peptide (Aβ) in brain contributes to Alzheimer's disease (AD) pathogenesis. We demonstrated the presence of exosome-associated Aβ in the cerebrospinal fluid (CSF) of cynomolgus monkeys and APP transgenic mice. The levels of exosome-associated Aβ notably decreased in the CSF of aging animals. We also determined that neuronal exosomes, but not glial exosomes, had abundant glycosphingolipids and could capture Aβ. Infusion of neuronal exosomes into brains of APP transgenic mice decreased Aβ and amyloid depositions, similarly to what reported previously on neuroblastoma-derived exosomes. These findings highlight the role of neuronal exosomes in Aβ clearance, and suggest that their downregulation might relate to Aβ accumulation and, ultimately, the development of AD pathology.

  4. Separation of presenilin function in amyloid β-peptide generation and endoproteolysis of Notch

    PubMed Central

    Kulic, Luka; Walter, Jochen; Multhaup, Gerd; Teplow, David B.; Baumeister, Ralf; Romig, Helmut; Capell, Anja; Steiner, Harald; Haass, Christian

    2000-01-01

    Most of the genetically inherited Alzheimer's disease cases are caused by mutations in the presenilin genes, PS1 and PS2. PS mutations result in the enhanced production of the highly amyloidogenic 42/43 amino acid variant of amyloid β-peptide (Aβ). We have introduced arbitrary mutations at position 286 of PS1, where a naturally occurring PS1 mutation has been described (L286V). Introduction of charged amino acids (L286E or L286R) resulted in an increase of Aβ42/43 production, which reached almost twice the level of the naturally occurring PS1 mutation. Although pathological Aβ production was increased, endoproteolysis of Notch and nuclear transport of its cytoplasmic domain was significantly inhibited. These results demonstrate that the biological function of PS proteins in the endoproteolysis of β-amyloid precursor protein and Notch can be separated. PMID:10811883

  5. β-Amyloid precursor protein: function in stem cell development and Alzheimer's disease brain.

    PubMed

    Small, David H; Hu, Yanling; Bolós, Marta; Dawkins, Edgar; Foa, Lisa; Young, Kaylene M

    2014-01-01

    Stem cell therapy may be a suitable approach for the treatment of many neurodegenerative diseases. However, one major impediment to the development of successful cell-based therapies is our limited understanding of the mechanisms that instruct neural stem cell behaviour, such as proliferation and cell fate specification. The β-amyloid precursor protein (APP) of Alzheimer's disease (AD) may play an important role in neural stem cell proliferation and differentiation. Our recent work shows that in vitro, APP stimulates neural stem or progenitor cell proliferation and neuronal differentiation. The effect on proliferation is mediated by an autocrine factor that we have identified as cystatin C. As cystatin C expression is also reported to inhibit the development of amyloid pathology in APP transgenic mice, our finding has implications for the possible use of cystatin C for the therapy of AD.

  6. Alzheimer disease and cerebrovascular pathology: an update.

    PubMed

    Jellinger, K A

    2002-05-01

    Recent epidemiological and clinico-pathologic data suggest overlaps between Alzheimer disease (AD) and cerebrovascular lesions that may magnify the effect of mild AD pathology and promote progression of cognitive decline or even may precede neuronal damage and dementia. Vascular pathology in the aging brain and in AD includes: 1. cerebral amyloid angiopathy (CAA) with an incidence of 82-98% often associated with ApoE epsilon 2 and causing a) cerebral mass hemorrhages (around 70%, mainly in the frontal and parietal lobes), b) multiple or recurrent microhemorrhages (15%), and c) ischemic (micro-)infarcts or lacunes (around 20%). The frequency of these lesions increases with the severity of CAA and shows no correlation with that of senile amyloid plaques. CAA, significantly more frequent in patients with cerebral hemorrhages or infarcts than in aged controls, is an important risk factor for cerebrovascular lesions in AD. 2. Microvascular changes with decreased density and structural abnormalities causing regional metabolic and blood-brain barrier dysfunctions with ensuing neuronal damage. In large autopsy series of demented aged subjects, around 80% show Alzheimer type pathology, 20-40% with additional, often minor vascular lesions, 7-10% "pure" vascular dementia, and 3-5% "mixed" dementia (combination of AD and vascular encephalopathy). AD cases with additional minor cerebrovascular lesions have significantly more frequent histories of hypertension or infarcts than "pure" AD patients. Vascular lesions in AD include cortical microinfarcts, subcortical lacunes, white matter lesions / leukoencephalopathy, small hemorrhages and corticosubcortical infarcts, while in mixed type dementia multiple larger or hemispheral infarcts are more frequent. Small infarcts in AD patients have no essential impact on global cognitive decline which mainly depends on the severity of Alzheimer pathology, but in early stage of AD they may influence and promote the development of dementia

  7. Cholesterol modulates the interaction of the islet amyloid polypeptide with membranes.

    PubMed

    Caillon, Lucie; Duma, Luminita; Lequin, Olivier; Khemtemourian, Lucie

    2014-01-01

    The deposition of insoluble amyloid fibrils resulting from the aggregation of the human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is a pathological feature of type 2 diabetes mellitus (T2DM). Increasing evidence indicates that biological membranes play a key role in amyloid aggregation, modulating among others the kinetics of amyloid formation, and being the target of toxic species generated during amyloid formation. In T2DM patients, elevated levels of cholesterol, an important determinant of the physical state of biological membranes, are observed in β-cells and are thought to directly impair β-cell function and insulin secretion. However, it is not known whether cholesterol enhances membrane-interaction or membrane-insertion of hIAPP. In this study, we investigated the effect of cholesterol incorporated in zwitterionic and anionic membranes. Our circular dichroism and liquid state NMR data reveal that 10-30% of cholesterol slightly affects the aggregational and conformational behaviour of hIAPP. Additional fluorescence results indicate that 10 and 20% of cholesterol slightly slow down the kinetics of oligomer and fibril formation while anionic lipids accelerate this kinetics. This behavior might be caused by differences in membrane insertion and therefore in membrane binding of hIAPP. The membrane binding affinity was evaluated using (1)H NMR experiments and our results show that the affinity of hIAPP for membranes containing cholesterol is significantly smaller than that for membranes containing anionic lipids. Furthermore, we found that hIAPP-induced membrane damage is synchronized to fibril formation in the absence and in the presence of cholesterol.

  8. Functional Amyloid Signaling via the Inflammasome, Necrosome, and Signalosome: New Therapeutic Targets in Heart Failure

    PubMed Central

    Parry, Traci L.; Melehani, Jason H.; Ranek, Mark J.; Willis, Monte S.

    2015-01-01

    As the most common cause of death and disability, globally, heart disease remains an incompletely understood enigma. A growing number of cardiac diseases are being characterized by the presence of misfolded proteins underlying their pathophysiology, including cardiac amyloidosis and dilated cardiomyopathy (DCM). At least nine precursor proteins have been implicated in the development of cardiac amyloidosis, most commonly caused by multiple myeloma light chain disease and disease-causing mutant or wildtype transthyretin (TTR). Similarly, aggregates with PSEN1 and COFILIN-2 have been identified in up to one-third of idiopathic DCM cases studied, indicating the potential predominance of misfolded proteins in heart failure. In this review, we present recent evidence linking misfolded proteins mechanistically with heart failure and present multiple lines of new therapeutic approaches that target the prevention of misfolded proteins in cardiac TTR amyloid disease. These include multiple small molecule pharmacological chaperones now in clinical trials designed specifically to support TTR folding by rational design, such as tafamidis, and chaperones previously developed for other purposes, such as doxycycline and tauroursodeoxycholic acid. Last, we present newly discovered non-pathological “functional” amyloid structures, such as the inflammasome and necrosome signaling complexes, which can be activated directly by amyloid. These may represent future targets to successfully attenuate amyloid-induced proteotoxicity in heart failure, as the inflammasome, for example, is being therapeutically inhibited experimentally in autoimmune disease. Together, these studies demonstrate multiple novel points in which new therapies may be used to primarily prevent misfolded proteins or to inhibit their downstream amyloid-mediated effectors, such as the inflammasome, to prevent proteotoxicity in heart failure. PMID:26664897

  9. Exercise is more effective than diet control in preventing high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice.

    PubMed

    Maesako, Masato; Uemura, Kengo; Kubota, Masakazu; Kuzuya, Akira; Sasaki, Kazuki; Hayashida, Naoko; Asada-Utsugi, Megumi; Watanabe, Kiwamu; Uemura, Maiko; Kihara, Takeshi; Takahashi, Ryosuke; Shimohama, Shun; Kinoshita, Ayae

    2012-06-29

    Accumulating evidence suggests that some dietary patterns, specifically high fat diet (HFD), increase the risk of developing sporadic Alzheimer disease (AD). Thus, interventions targeting HFD-induced metabolic dysfunctions may be effective in preventing the development of AD. We previously demonstrated that amyloid precursor protein (APP)-overexpressing transgenic mice fed HFD showed worsening of cognitive function when compared with control APP mice on normal diet. Moreover, we reported that voluntary exercise ameliorates HFD-induced memory impairment and β-amyloid (Aβ) deposition. In the present study, we conducted diet control to ameliorate the metabolic abnormality caused by HFD on APP transgenic mice and compared the effect of diet control on cognitive function with that of voluntary exercise as well as that of combined (diet control plus exercise) treatment. Surprisingly, we found that exercise was more effective than diet control, although both exercise and diet control ameliorated HFD-induced memory deficit and Aβ deposition. The production of Aβ was not different between the exercise- and the diet control-treated mice. On the other hand, exercise specifically strengthened the activity of neprilysin, the Aβ-degrading enzyme, the level of which was significantly correlated with that of deposited Aβ in our mice. Notably, the effect of the combination treatment (exercise and diet control) on memory and amyloid pathology was not significantly different from that of exercise alone. These studies provide solid evidence that exercise is a useful intervention to rescue HFD-induced aggravation of cognitive decline in transgenic model mice of AD.

  10. Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates beta-amyloid deposition through upregulating alpha-secretase in vivo and in vitro.

    PubMed

    Mei, Zhengrong; Zhang, Fangyan; Tao, Liang; Zheng, Wenhua; Cao, Yingnan; Wang, Zhaohe; Tang, Shu; Le, Kang; Chen, Shaorui; Pi, Rongbiao; Liu, Peiqing

    2009-03-13

    The amyloid precursor protein (APP) is cleaved enzymatically by non-amyloidogenic and amyloidogenic pathways. alpha-Secretase cleaves APP within beta-amyloid protein (Abeta) sequence, resulting in the release of a secreted fragment of APP (sAPPalpha) and precluding Abeta generation. Cryptotanshinone (CTS), an active component of the medicinal herb Salvia miltiorrhiza, has been shown to improve learning and memory in several pharmacological models of Alzheimer's disease (AD). However, the effects of CTS on the Abeta plaque pathology and the APP processing in AD are unclear. Here we reported that CTS strongly attenuated amyloid plaque deposition in the brain of APP/PS1 transgenic mice. In addition, CTS significantly improved spatial learning and memory in APP/PS1 mice assessed by the Morris water maze testing. To define the exact molecular mechanisms involved in the beneficial effects of CTS, we investigated the effects of the CTS on APP processing in rat cortical neuronal cells overexpressing Swedish mutant human APP695. CTS was found to decrease Abeta generation in concentration-dependent (0-10muM) manner. Interestingly, the N-terminal APP cleavage product, sAPPalpha was markedly increased by CTS. Further study showed that alpha-secretase activity was increased by CTS. Taken together, our results suggested CTS improved the cognitive ability in AD transgenic mice and promoted APP metabolism toward the non-amyloidogenic products pathway in rat cortical neuronal cells. CTS shows a promising novel way for the therapy of AD.

  11. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif*

    PubMed Central

    Jacob, Reeba S.; George, Edna; Singh, Pradeep K.; Salot, Shimul; Anoop, Arunagiri; Jha, Narendra Nath; Sen, Shamik; Maji, Samir K.

    2016-01-01

    Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. PMID:26742841

  12. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.

    PubMed

    Hsu, Ruei-Lin; Lee, Kung-Ta; Wang, Jung-Hao; Lee, Lily Y-L; Chen, Rita P-Y

    2009-01-28

    More than 20 unrelated proteins can form amyloid fibrils in vivo which are related to various diseases, such as Alzheimer's disease, prion disease, and systematic amyloidosis. Amyloid fibrils are an ordered protein aggregate with a lamellar cross-beta structure. Enhancing amyloid clearance is one of the targets of the therapy of these amyloid-related diseases. Although there is debate on whether the toxicity is due to amyloids or their precursors, research on the degradation of amyloids may help prevent or alleviate these diseases. In this study, we explored the amyloid-degrading ability of nattokinase, a fibrinolytic subtilisin-like serine protease, and determined the optimal conditions for amyloid hydrolysis. This ability is shared by proteinase K and subtilisin Carlsberg, but not by trypsin or plasmin.

  13. Cerebrospinal fluid tau and amyloid-β1-42 in patients with dementia.

    PubMed

    Skillbäck, Tobias; Farahmand, Bahman Y; Rosén, Christoffer; Mattsson, Niklas; Nägga, Katarina; Kilander, Lena; Religa, Dorota; Wimo, Anders; Winblad, Bengt; Schott, Jonathan M; Blennow, Kaj; Eriksdotter, Maria; Zetterberg, Henrik

    2015-09-01

    Progressive cognitive decline in combination with a cerebrospinal fluid biomarker pattern of low levels of amyloid-β1-42 and high levels of total tau and phosphorylated tau is typical of Alzheimer's disease. However, several neurodegenerative disorders may overlap with Alzheimer's disease both in regards to clinical symptoms and neuropathology. In a uniquely large cohort of dementia patients, we examined the associations of cerebrospinal fluid biomarkers for Alzheimer's disease molecular pathology with clinical dementia diagnoses and disease severity. We cross-referenced the Swedish Dementia Registry with the clinical laboratory database at the Sahlgrenska University Hospital. The final data set consisted of 5676 unique subjects with a clinical dementia diagnosis and a complete set of measurements for cerebrospinal fluid amyloid-β1-42, total tau and phosphorylated tau. In cluster analysis, disregarding clinical diagnosis, the optimal natural separation of this data set was into two clusters, with the majority of patients with early onset Alzheimer's disease (75%) and late onset Alzheimer's disease (73%) assigned to one cluster and the patients with vascular dementia (91%), frontotemporal dementia (94%), Parkinson's disease dementia (94%) and dementia with Lewy bodies (87%) to the other cluster. Frontotemporal dementia had the highest cerebrospinal fluid levels of amyloid-β1-42 and the lowest levels of total tau and phosphorylated tau. The highest levels of total tau and phosphorylated tau and the lowest levels of amyloid-β1-42 and amyloid-β1-42:phosphorylated tau ratios were found in Alzheimer's disease. Low amyloid-β1-42, high total tau and high phosphorylated tau correlated with low Mini-Mental State Examination scores in Alzheimer's disease. In Parkinson's disease dementia and vascular dementia low cerebrospinal fluid amyloid-β1-42 was associated with low Mini-Mental State Examination score. In the vascular dementia, frontotemporal dementia, dementia with

  14. Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia

    PubMed Central

    Biundo, Fabrizio; Ishiwari, Keita; Del Prete, Dolores; D'Adamio, Luciano

    2016-01-01

    Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite –β-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI. We have investigated further the pathogenic function of β-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves β-CTF, results in stabilization of β-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits. PMID:26942869

  15. Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer's disease.

    PubMed

    Fan, Zhen; Okello, Aren A; Brooks, David J; Edison, Paul

    2015-12-01

    Amyloid deposition, tangle formation, neuroinflammation and neuronal dysfunction are pathological processes involved in Alzheimer's disease. However, the relative role of these processes in driving disease progression is still unclear. The aim of this positron emission tomography study was to: (i) investigate longitudinal changes of microglial activation, amyloid and glucose metabolism; and (ii) assess the temporospatial relationship between these three processes in Alzheimer's disease. A group of eight patients with a diagnosis of Alzheimer's disease (66 ± 4.8 years) and 14 healthy controls (65 ± 5.5 years) underwent T1 and T2 magnetic resonance imaging, along with (11)C-(R)-PK11195, (11)C-Pittsburgh compound B and (18)F-fluorodeoxyglucose positron emission tomography scans for microglial activation, amyloid deposition and glucose metabolism. All patients were followed-up with repeated magnetic resonance imaging and three positron emission tomography scans after 16 months. Parametric maps were interrogated using region of interest analysis, Statistical Parametric Mapping, and between-group correlation analysis at voxel-level using Biological Parametric Mapping. At baseline, patients with Alzheimer's disease showed significantly increased microglial activation compared to the control subjects. During follow-up, for the first time, we found that while there is a progressive reduction of glucose metabolism, there was a longitudinal increase of microglial activation in the majority of the patients with Alzheimer's disease. Voxel-wise correlation analysis revealed that microglial activation in patients with Alzheimer's disease was positively correlated with amyloid deposition and inversely correlated with regional cerebral metabolic rate at voxel level over time. Even though one of the limitations of this study is the lack of longitudinal follow-up of healthy control subjects, this study demonstrates that there is persistent neuroinflammation throughout the Alzheimer

  16. Surface Effects on Amyloid Fibril Formation

    NASA Astrophysics Data System (ADS)

    Moores, Brad; Simons, Janet; Leonenko, Zoya

    2009-03-01

    Amyloid fibrils are insoluble aggregates composed of proteins in beta-sheet conformation, which are implicated in at least 20 diseases for which no cure is currently available. Although fibril plaque formation is associated with biological membranes in vivo, most of earlier research on fibrillogenesis has been performed in a solution phase, in which only a protein-protein interactions are considered. On the other hand, the surface of plasma membrane could provide the environment in which amyloid forming proteins could cluster. In order to get an insight into the understanding of the effect of the surface of plasma membrane, and the surfaces in general, on amyloid fibril formation, we used Atomic force microscopy to study binding of amyloid beta 1-42 peptide and amyloid fibril formation on model surfaces, such as chemically modified positively charged, negatively charged and hydrophobic substrates. The results show that structure, size and amount of larger fibrils and smaller aggregates depend on the type of surface, and differ from aggregation observed in solution.

  17. Chirality and chiroptical properties of amyloid fibrils.

    PubMed

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties.

  18. Cerebral Amyloid Angiopathy: A Systematic Review

    PubMed Central

    Greenberg, Steven M.

    2011-01-01

    Cerebral amyloid angiopathy (CAA) is a disorder characterized by amyloid deposition in the walls of leptomeningeal and cortical arteries, arterioles, and less often capillaries and veins of the central nervous system. CAA occurs mostly as a sporadic condition in the elderly, its incidence associating with advancing age. All sporadic CAA cases are due to deposition of amyloid-β, originating from proteolytic cleavage of the Amyloid Precursor Protein. Hereditary forms of CAA are generally familial (and therefore rare in the general population), more severe and earlier in onset. CAA-related lobar intracerebral hemorrhage is the most well-studied clinical condition associated with brain amyloid deposition. Despite ever increasing understanding of CAA pathogenesis and availability of reliable clinical and diagnostic tools, preventive and therapeutic options remain very limited. Further research efforts are required in order to identify biological targets for novel CAA treatment strategies. We present a systematic review of existing evidence regarding the epidemiology, genetics, pathogenesis, diagnosis and clinical management of CAA. PMID:21519520

  19. Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology

    PubMed Central

    Schmitz, Taylor W.; Nathan Spreng, R.; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowki, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Shaw, Leslie M.; Khachaturian, Zaven; Sorensen, Greg; Kuller, Lew; Raichle, Marc; Paul, Steven; Davies, Peter; Fillit, Howard; Hefti, Franz; Holtzman, Davie; Mesulam, M Marcel; Potter, William; Snyder, Peter; Schwartz, Adam; Montine, Tom; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Jiminez, Gus; Harvey, Danielle; Bernstein, Matthew; Fox, Nick; Thompson, Paul; Schuff, Norbert; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Landau, Susan; Cairns, Nigel J.; Householder, Erin; Taylor-Reinwald, Lisa; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Crawford, Karen; Neu, Scott; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Faber, Kelley; Kim, Sungeun; Nho, Kwangsik; Thal, Leon; Buckholtz, Neil; Albert, Marylyn; Frank, Richard; Hsiao, John; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Carter, Raina; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Fleisher, Adam; Heidebrink, Judith L.; Lord, Joanne L.; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Grossman, Hillel; Mitsis, Effie; de Toledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; D'Agostino, Daniel; Kielb, Stephanie; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Wong, Terence Z.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H. S.; Lu, Po H.; Bartzokis, George; Graff-Radford, Neill R.; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Farlow, Martin R.; Hake, AnnMarie; Matthews, Brandy R.; Herring, Scott; Hunt, Cynthia; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristine; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan N.; Belden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Hudson, Leon; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Santulli, Robert B.; Kitzmiller, Tamar J.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Spicer, Kenneth; Bachman, David; Finger, Elizabether; Pasternak, Stephen; Rachinsky, Irina; Drost, Dick; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Smith, Karen Elizabeth; Relkin, Norman; Chaing, Gloria; Raudin, Lisa; Smith, Amanda; Fargher, Kristin; Raj, Balebail Ashok; Neylan, Thomas; Grafman, Jordan; Davis, Melissa; Morrison, Rosemary; Hayes, Jacqueline; Finley, Shannon; Friedl, Karl; Fleischman, Debra; Arfanakis, Konstantinos; James, Olga; Massoglia, Dino; Fruehling, J. Jay; Harding, Sandra; Peskind, Elaine R.; Petrie, Eric C.; Li, Gail; Yesavage, Jerome A.; Taylor, Joy L.; Furst, Ansgar J.

    2016-01-01

    There is considerable debate whether Alzheimer's disease (AD) originates in basal forebrain or entorhinal cortex. Here we examined whether longitudinal decreases in basal forebrain and entorhinal cortex grey matter volume were interdependent and sequential. In a large cohort of age-matched older adults ranging from cognitively normal to AD, we demonstrate that basal forebrain volume predicts longitudinal entorhinal degeneration. Models of parallel degeneration or entorhinal origin received negligible support. We then integrated volumetric measures with an amyloid biomarker sensitive to pre-symptomatic AD pathology. Comparison between cognitively matched normal adult subgroups, delineated according to the amyloid biomarker, revealed abnormal degeneration in basal forebrain, but not entorhinal cortex. Abnormal degeneration in both basal forebrain and entorhinal cortex was only observed among prodromal (mildly amnestic) individuals. We provide evidence that basal forebrain pathology precedes and predicts both entorhinal pathology and memory impairment, challenging the widely held belief that AD has a cortical origin. PMID:27811848

  20. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-10-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  1. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    PubMed

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  2. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    PubMed Central

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-01-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal–Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs. PMID:27734843

  3. Genetic Risk as a Marker of Amyloid-β and Tau Burden in Cerebrospinal Fluid

    PubMed Central

    Voyle, Nicola; Patel, Hamel; Folarin, Amos; Newhouse, Stephen; Johnston, Caroline; Visser, Pieter Jelle; Dobson, Richard J.B.; Kiddle, Steven J.

    2016-01-01

    Background: The search for a biomarker of Alzheimer’s disease (AD) pathology (amyloid-β (Aβ) and tau) is ongoing, with the best markers currently being measurements of Aβ and tau in cerebrospinal fluid (CSF) and via positron emission tomography (PET) scanning. These methods are relatively invasive, costly, and often have high screening failure rates. Consequently, research is aiming to elucidate blood biomarkers of Aβ and tau. Objective: This study aims to investigate a case/control polygenic risk score (PGRS) as a marker of tau and investigate blood markers of a combined Aβ and tau outcome for the first time. A sub-study also considers plasma tau as markers of Aβ and tau pathology in CSF. Methods: We used data from the EDAR*, DESCRIPA**, and Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohorts in a logistic regression analysis to investigate blood markers of Aβ and tau in CSF. In particular, we investigated the extent to which a case/control PGRS is predictive of CSF tau, CSF amyloid, and a combined amyloid and tau outcome. The predictive ability of models was compared to that of age, gender, and APOE genotype (‘basic model’). Results: In EDAR and DESCRIPA test data, inclusion of a case/control PGRS was no more predictive of Aβ, and a combined Aβ and tau endpoint than the basic models (accuracies of 66.0%, and 73.3% respectively). The tau model saw a small increase in accuracy compared to basic models (59.6%). ADNI 2 test data also showed a slight increase in accuracy for the Aβ model when compared to the basic models (61.4%). Conclusion: We see some evidence that a case/control PGRS is marginally more predictive of Aβ and tau pathology than the basic models. The search for predictive factors of Aβ and tau pathologies, above and beyond demographic information, is still ongoing. Better understanding of AD risk alleles, development of more sensitive assays, and studies of larger sample size are three avenues that may provide such factors

  4. [Once again: theoretical pathology].

    PubMed

    Bleyl, U

    2010-07-01

    Theoretical pathology refers to the attempt to reintroduce methodical approaches from the humanities, philosophical logic and "gestalt philosophy" into medical research and pathology. Diseases, in particular disease entities and more complex polypathogenetic mechanisms of disease, have a "gestalt quality" due to the significance of their pathophysiologic coherence: they have a "gestalt". The Research group Theoretical Pathology at the Academy of Science in Heidelberg are credited with having revitalized the philosophical notion of "gestalt" for morphological and pathological diagnostics. Gestalt means interrelated schemes of pathophysiological significance in the mind of the diagnostician. In pathology, additive and associative diagnostic are simply not possible without considering the notion of synthetic entities in Kant's logic.

  5. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity

    NASA Astrophysics Data System (ADS)

    Du, Wen-Jie; Guo, Jing-Jing; Gao, Ming-Tao; Hu, Sheng-Quan; Dong, Xiao-Yan; Han, Yi-Fan; Liu, Fu-Feng; Jiang, Shaoyi; Sun, Yan

    2015-01-01

    Soluble amyloid β-protein (Aβ) oligomers, the main neurotoxic species, are predominantly formed from monomers through a fibril-catalyzed secondary nucleation. Herein, we virtually screened an in-house library of natural compounds and discovered brazilin as a dual functional compound in both Aβ42 fibrillogenesis inhibition and mature fibril remodeling, leading to significant reduction in Aβ42 cytotoxicity. The potent inhibitory effect of brazilin was proven by an IC50 of 1.5 +/- 0.3 μM, which was smaller than that of (-)-epigallocatechin gallate in Phase III clinical trials and about one order of magnitude smaller than those of curcumin and resveratrol. Most importantly, it was found that brazilin redirected Aβ42 monomers and its mature fibrils into unstructured Aβ aggregates with some β-sheet structures, which could prevent both the primary nucleation and the fibril-catalyzed secondary nucleation. Molecular simulations demonstrated that brazilin inhibited Aβ42 fibrillogenesis by directly binding to Aβ42 species via hydrophobic interactions and hydrogen bonding and remodeled mature fibrils by disrupting the intermolecular salt bridge Asp23-Lys28 via hydrogen bonding. Both experimental and computational studies revealed a different working mechanism of brazilin from that of known inhibitors. These findings indicate that brazilin is of great potential as a neuroprotective and therapeutic agent for Alzheimer's disease.

  6. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  7. Fibrillar dimer formation of islet amyloid polypeptides

    SciTech Connect

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  8. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.

    PubMed

    Wang, Lan; Liu, Qian; Chen, Jin-Chun; Cui, Yi-Xian; Zhou, Bing; Chen, Yong-Xiang; Zhao, Yu-Fen; Li, Yan-Mei

    2012-07-01

    Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.

  9. Development of Alzheimer-disease neuroimaging-biomarkers using mouse models with amyloid-precursor protein-transgene expression.

    PubMed

    Teipel, Stefan J; Buchert, Ralph; Thome, Johannes; Hampel, Harald; Pahnke, Jens

    2011-12-01

    There are important recent developments in Alzheimer's disease (AD) translational research, especially with respect to the imaging of amyloid pathology in vivo using MRI and PET technologies. Here we exploit the most widely used transgenic mouse models of amyloid pathology in order to relate the imaging findings to our knowledge about the histopathological phenotype of these models. The development of new diagnostic criteria of AD necessitates the use of biological markers to diagnose AD even in the absence of overt dementia or early symptomatic mild cognitive impairment. The validity of the diagnosis will depend on the availability of an in vivo marker to reflect underlying neurobiological changes of AD. Transgenic models with essential features of AD pathology and mechanisms provide a test setting for the development and evaluation of new biological imaging markers. Among the best established imaging markers of amyloid pathology in transgenic animals are high-field MRI of brain atrophy, proton spectroscopy of neurochemical changes, high-field MRI of amyloid plaque load, and in vivo plaque imaging using radio-labelled ligands with PET. We discuss the implications of the findings as well as the methodological limitations and the specific requirements of these technologies. We furthermore outline future directions of transgene-imaging research. Transgene imaging is an emerging area of translational research that implies strong multi- and interdisciplinary collaborations. It will become ever more valuable with the introduction of new diagnostic standards and novel treatment approaches which will require valid and reliable biological markers to improve the diagnosis and early treatment of AD patients.

  10. In vitro and in vivo insulin amyloid degradation mediated by Serratiopeptidase.

    PubMed

    Metkar, Sanjay Kisan; Girigoswami, Agnishwar; Murugesan, Ramachandran; Girigoswami, Koyeli

    2017-01-01

    A transition of amyloidogenic protein by alternative folding pathway under certain conditions leads to the formation of protease resistant amyloid fibrils, having predominantly cross β structure. These amyloids are related to various neurodegenerative diseases and clearance of such amyloids may be a therapeutic approach for amyloid-related diseases. Insulin, that can form amyloids, is widely used as a model amyloidogenic protein for the study of various amyloid related diseases. In this study, insulin amyloids were formed in vitro and the potential of Serratiopeptidase (SP), a fibrinolytic-like serine protease, towards the dissociation of insulin amyloids was explored. The dissociation of the amyloids was demonstrated using in vitro and in vivo using zebrafish model. The amyloid dissociation property was compared with a standard amyloid dissociating enzyme nattokinase (NK). SP shows better amyloid dissociation ability than NK and therefore, SP can be considered as amyloid dissociating agent with potential as a drug candidate for different amyloid related disorders.

  11. Apolipoprotein C-II Adopts Distinct Structures in Complex with Micellar and Submicellar Forms of the Amyloid-Inhibiting Lipid-Mimetic Dodecylphosphocholine

    PubMed Central

    Ryan, Timothy M.; Griffin, Michael D.W.; McGillivray, Duncan J.; Knott, Robert B.; Wood, Kathleen; Masters, Colin L.; Kirby, Nigel; Curtain, Cyril C.

    2016-01-01

    The formation of amyloid deposits is a common feature of a broad range of diseases, including atherosclerosis, Alzheimer’s disease, and Parkinson’s disease. The basis and role of amyloid deposition in the pathogenesis of these diseases is still being defined, however an interesting feature of amyloidogenic proteins is that the majority of the pathologically associated proteins are involved in lipid homeostasis, be it in lipid transport, incorporation into membranes, or the regulation of lipid pathways. Thus, amyloid-forming proteins commonly bind lipids, and lipids are generally involved in the proper folding of these proteins. However, understanding of the basis for these lipid-related aspects of amyloidogenesis is lacking. Thus, we have used the apolipoprotein C-II amyloid model system in conjunction with x-ray and neutron scattering analyses to address this problem. Apolipoprotein C-II is a well-studied model system of systemic amyloid fibril formation, with a clear and well-defined pathway for fibril formation, where the effects of lipid interaction are characterized, particularly for the lipid mimetic dodecylphosphocholine. We show that the micellar state of an inhibitory lipid can have a very significant effect on protein conformation, with micelles stabilizing a particular α-helical structure, whereas submicellar lipids stabilize a very different dimeric, α-helical structure. These results indicate that lipids may have an important role in the development and progression of amyloid-related diseases. PMID:26745412

  12. Apolipoprotein C-II Adopts Distinct Structures in Complex with Micellar and Submicellar Forms of the Amyloid-Inhibiting Lipid-Mimetic Dodecylphosphocholine.

    PubMed

    Ryan, Timothy M; Griffin, Michael D W; McGillivray, Duncan J; Knott, Robert B; Wood, Kathleen; Masters, Colin L; Kirby, Nigel; Curtain, Cyril C

    2016-01-05

    The formation of amyloid deposits is a common feature of a broad range of diseases, including atherosclerosis, Alzheimer's disease, and Parkinson's disease. The basis and role of amyloid deposition in the pathogenesis of these diseases is still being defined, however an interesting feature of amyloidogenic proteins is that the majority of the pathologically associated proteins are involved in lipid homeostasis, be it in lipid transport, incorporation into membranes, or the regulation of lipid pathways. Thus, amyloid-forming proteins commonly bind lipids, and lipids are generally involved in the proper folding of these proteins. However, understanding of the basis for these lipid-related aspects of amyloidogenesis is lacking. Thus, we have used the apolipoprotein C-II amyloid model system in conjunction with x-ray and neutron scattering analyses to address this problem. Apolipoprotein C-II is a well-studied model system of systemic amyloid fibril formation, with a clear and well-defined pathway for fibril formation, where the effects of lipid interaction are characterized, particularly for the lipid mimetic dodecylphosphocholine. We show that the micellar state of an inhibitory lipid can have a very significant effect on protein conformation, with micelles stabilizing a particular α-helical structure, whereas submicellar lipids stabilize a very different dimeric, α-helical structure. These results indicate that lipids may have an important role in the development and progression of amyloid-related diseases.

  13. Pharmacological removal of serum amyloid P component from intracerebral plaques and cerebrovascular Aβ amyloid deposits in vivo

    PubMed Central

    Millar, David J.; Richard-Londt, Angela

    2016-01-01

    Human amyloid deposits always contain the normal plasma protein serum amyloid P component (SAP), owing to its avid but reversible binding to all amyloid fibrils, including the amyloid β (Aβ) fibrils in the cerebral parenchyma plaques and cerebrovascular amyloid deposits of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). SAP promotes amyloid fibril formation in vitro, contributes to persistence of amyloid in vivo and is also itself directly toxic to cerebral neurons. We therefore developed (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), a drug that removes SAP from the blood, and thereby also from the cerebrospinal fluid (CSF), in patients with AD. Here we report that, after introduction of transgenic human SAP expression in the TASTPM double transgenic mouse model of AD, all the amyloid deposits contained human SAP. Depletion of circulating human SAP by CPHPC administration in these mice removed all detectable human SAP from both the intracerebral and cerebrovascular amyloid. The demonstration that removal of SAP from the blood and CSF also removes it from these amyloid deposits crucially validates the strategy of the forthcoming ‘Depletion of serum amyloid P component in Alzheimer's disease (DESPIAD)’ clinical trial of CPHPC. The results also strongly support clinical testing of CPHPC in patients with CAA. PMID:26842068

  14. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology.

    PubMed

    Hamilton, Roy; Patel, Sunil; Lee, Edward B; Jackson, Eric M; Lopinto, Joanna; Arnold, Steven E; Clark, Christopher M; Basil, Anuj; Shaw, Leslie M; Xie, Sharon X; Grady, M Sean; Trojanowski, John Q

    2010-10-01

    To determine the impact of cortical Alzheimer disease pathology on shunt responsiveness in individuals treated for idiopathic normal pressure hydrocephalus (iNPH), 37 patients clinically diagnosed with iNPH participated in a prospective study in which performance on neurologic, psychometric, and gait measures before and 4 months after shunting was correlated with amyloid β plaques, neuritic plaques, and neurofibrillary tangles observed in cortical biopsies obtained during shunt insertion. No complications resulted from biopsy acquisition. Moderate to severe pathology was associated with worse baseline cognitive performance and diminished postoperative improvement on NPH symptom severity scales, gait measures, and cognitive instruments compared to patients lacking pathology.

  15. Amyloids or prions? That is the question.

    PubMed

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Batlle, Cristina; Ventura, Salvador

    2015-01-01

    Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.

  16. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  17. Amyloids or prions? That is the question

    PubMed Central

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Batlle, Cristina; Ventura, Salvador

    2015-01-01

    ABSTRACT Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation. PMID:26039159

  18. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  19. The pathological and biochemical identification of possible seed‐lesions of transmitted transthyretin amyloidosis after domino liver transplantation

    PubMed Central

    Yoshinaga, Tsuneaki; Sekijima, Yoshiki; Kametani, Fuyuki; Miyashita, Kana; Hachiya, Naomi; Tanaka, Tomohiro; Kokudo, Norihiro; Higuchi, Keiichi; Ikeda, Shu‐ichi

    2016-01-01

    Abstract The most serious issue in domino liver transplantation (DLT) using liver grafts from patients with transthyretin (TTR)‐related familial amyloid polyneuropathy (FAP) is the development of iatrogenic transmitted amyloidosis (de novo amyloidosis) in DLT‐recipients. However, little is known regarding the mechanisms of the initial stage of amyloid formation in these recipients. We detected initial lesions (possible seed‐lesions) of this iatrogenic amyloidosis in two recipients following liver grafting from FAP patients. Patient 1 underwent DLT at age 65 from an FAP patient with a Val30Met TTR variant and patient 2 received DLT from an FAP patient with a Val30Leu TTR variant at age 32. Patient 2 was started on diflunisal administration from 4 years after DLT. While neither patient had symptoms of FAP, small amyloid deposits were detected on the gastroduodenal mucosae 14 months and 12 years after DLT in patient 1 and patient 2, respectively. The amyloid was analyzed using a laser microdissection system and tandem mass spectrometry. Biochemical analysis indicated that the amyloid was composed mostly of variant TTR produced from the transplanted liver in both patients. In patient 1, wild‐type TTR amyloid was detectable in the duodenal mucosa obtained 2 years after DLT. This is the first study to successfully capture the pathological and biochemical features of initial‐stage amyloid lesions in DLT recipients. The findings clearly indicate that amyloid deposition can start by deposition of variant TTR followed by deposition of wild‐type TTR, and blocking of amyloid seed formation from variant TTR may be a key to prevent or delay the development of DLT‐associated amyloidosis. PMID:27499917

  20. Amyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities

    PubMed Central

    Kalheim, Lisa Flem; Selnes, Per; Bjørnerud, Atle; Coello, Christopher; Vegge, Kjetil; Fladby, Tormod

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and cause of dementia and is characterized by amyloid plaques and neurofibrillary tangles. AD has traditionally been considered to primarily affect gray matter, but multiple lines of evidence also indicate white matter (WM) pathology and associated small-vessel cerebrovascular disease. WM glucose delivery and metabolism may have implications for local tissue integrity, and [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) may be helpful to assess neuroglial and axonal function in WM. Hypothesizing that affection of oligodendroglia will be associated with loss of glucose uptake, we aimed to investigate glucose metabolism in magnetic resonance imaging (MRI) white matter hyperintensities (WMHs) and normal-appearing WM in patients with and without evidence of amyloid plaques. Subjects with mild cognitive impairment or subjective cognitive decline were included and dichotomized according to pathological (Aβ+) or normal (Aβ−) concentrations of cerebrospinal fluid amyloid-β 1–42. A total of 50 subjects were included, of whom 30 subjects were classified as Aβ(+) and 20 subjects as Aβ(−). All subjects were assessed with MRI and FDG-PET. FDG-PET images were corrected for effects of partial voluming and normalized to cerebellar WM, before determining WMH FDG-uptake. Although there were no significant differences between the groups in terms of age, WMH volume, number of individual WMHs, or WMH distribution, we found significantly lower (p = 0.021) FDG-uptake in WMHs in Aβ(+) subjects (mean = 0.662, SD = 0.113) compared to Aβ(−) subjects (mean = 0.596, SD = 0.073). There were no significant group differences in the FDG-uptake in normal-appearing WM. Similar results were obtained without correction for effects of partial voluming. Our findings add to the evidence for a link between Aβ dysmetabolism and WM pathology in AD. PMID:27917152

  1. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloidpathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA

  2. Monoclonal antibodies that target pathological assemblies of Abeta.

    PubMed

    Lambert, Mary P; Velasco, Pauline T; Chang, Lei; Viola, Kirsten L; Fernandez, Sara; Lacor, Pascale N; Khuon, Daliya; Gong, Yuesong; Bigio, Eileen H; Shaw, Pamela; De Felice, Fernanda G; Krafft, Grant A; Klein, William L

    2007-01-01

    Amyloid beta (Abeta) immunotherapy for Alzheimer's disease has shown initial success in mouse models of Alzheimer's disease and in human patients. However, because of meningoencephalitis in clinical trials of active vaccination, approaches using therapeutic antibodies may be preferred. As a novel antigen to generate monoclonal antibodies, the current study has used Abeta oligomers (amyloid beta-derived diffusible ligands, ADDLs), pathological assemblies known to accumulate in Alzheimer's disease brain. Clones were selected for the ability to discriminate Alzheimer's disease from control brains in extracts and tissue sections. These antibodies recognized Abeta oligomers and fibrils but not the physiologically prevalent Abeta monomer. Discrimination derived from an epitope found in assemblies of Abeta1-28 and ADDLs but not in other sequences, including Abeta1-40. Immunoneutralization experiments showed that toxicity and attachment of ADDLs to synapses in culture could be prevented. ADDL-induced reactive oxygen species (ROS) generation was also inhibited, establishing this response to be oligomer-dependent. Inhibition occurred whether ADDLs were prepared in vitro or obtained from Alzheimer's disease brain. As conformationally sensitive monoclonal antibodies that selectively immunoneutralize binding and function of pathological Abeta assemblies, these antibodies provide tools by which pathological Abeta assemblies from Alzheimer's disease brain might be isolated and evaluated, as well as offering a valuable prototype for new antibodies useful for Alzheimer's disease therapeutics.

  3. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice

    PubMed Central

    Beglopoulos, V.; Tulloch, J.; Roe, A. D.; Daumas, S.; Ferrington, L.; Watson, R.; Fan, Z.; Hyman, B. T.; Kelly, P. A. T.; Bard, F.; Morris, R. G. M.

    2016-01-01

    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. PMID:27249364

  4. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice.

    PubMed

    Beglopoulos, V; Tulloch, J; Roe, A D; Daumas, S; Ferrington, L; Watson, R; Fan, Z; Hyman, B T; Kelly, P A T; Bard, F; Morris, R G M

    2016-06-01

    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities.

  5. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Precursor Protein Transgenic Mice

    PubMed Central

    Liu, Peng; Reichl, John H.; Rao, Eshaan R.; McNellis, Brittany M.; Huang, Eric S.; Hemmy, Laura S.; Forster, Colleen L.; Kuskowski, Michael A.; Borchelt, David R.; Vassar, Robert; Ashe, Karen H.; Zahs, Kathleen R.

    2016-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β precursor protein (AβPP) with Alzheimer’s disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ~4.5 times that of 21-month Tg2576 mice and ~15 times that of 21–24-month rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort. PMID:28059792

  6. Formation of Amyloid Fibers by Monomeric Light Chain Variable Domains*

    PubMed Central

    Brumshtein, Boris; Esswein, Shannon R.; Landau, Meytal; Ryan, Christopher M.; Whitelegge, Julian P.; Phillips, Martin L.; Cascio, Duilio; Sawaya, Michael R.; Eisenberg, David S.

    2014-01-01

    Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers. PMID:25138218

  7. Structure and function of amyloid in Alzheimer's disease.

    PubMed

    Morgan, Carlos; Colombres, Marcela; Nuñez, Marco Tulio; Inestrosa, Nibaldo C

    2004-12-01

    This review is focused on the structure and function of Alzheimer's amyloid deposits. Amyloid formation is a process in which normal well-folded cellular proteins undergo a self-assembly process that leads to the formation of large and ordered protein structures. Amyloid deposition, oligomerization, and higher order polymerization, and the structure adopted by these assemblies, as well as their functional relationship with cell biology are underscored. Numerous efforts have been directed to elucidate these issues and their relation with senile dementia. Significant advances made in the last decade in amyloid structure, dynamics and cell biology are summarized and discussed. The mechanism of amyloid neurotoxicity is discussed with emphasis on the Wnt signaling pathway. This review is focused on Alzheimer's amyloid fibrils in general and has been divided into two parts dealing with the structure and function of amyloid.

  8. Amyloid fibril formation by macrophage migration inhibitory factor

    SciTech Connect

    Lashuel, Hilal A. . E-mail: hilal.lashuel@epfl.ch; Aljabari, Bayan; Sigurdsson, Einar M.; Metz, Christine N.; Leng Lin; Callaway, David J.E.; Bucala, Richard

    2005-12-16

    We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amyloidogenic proteins {beta}-amyloid and {alpha}-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical ultracentrifugation. The fibrillar structures formed by MIF bind Congo red and exhibit the characteristic green birefringence under polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and amyloid fibril formation in vivo.

  9. Mild cognitive impairment with suspected nonamyloid pathology (SNAP)

    PubMed Central

    Caroli, Anna; Prestia, Annapaola; Galluzzi, Samantha; Ferrari, Clarissa; van der Flier, Wiesje M.; Ossenkoppele, Rik; Van Berckel, Bart; Barkhof, Frederik; Teunissen, Charlotte; Wall, Anders E.; Carter, Stephen F.; Schöll, Michael; Choo, Il Han; Grimmer, Timo; Redolfi, Alberto; Nordberg, Agneta; Scheltens, Philip; Drzezga, Alexander

    2015-01-01

    Objectives: The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non–Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI). Methods: We measured markers of amyloid pathology (CSF β-amyloid 42) and neurodegeneration (hippocampal volume on MRI and cortical metabolism on [18F]-fluorodeoxyglucose–PET) in 201 patients with MCI clinically followed for up to 6 years to detect progressive cognitive deterioration. We categorized patients with MCI as A+/A− and N+/N− based on presence/absence of amyloid pathology and neurodegeneration. SNAPs were A−N+ cases. Results: The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71% (60/85) in A−N−, A+N−, SNAP, and A+N+, respectively; the proportion of APOE ε4 carriers was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly different proportion than both A+N− and A+N+ groups (p ≤ 0.005). Hypometabolism in SNAP patients was comparable to A+N+ patients (p = 0.154), while hippocampal atrophy was more severe in SNAP patients (p = 0.002). Compared with A−N−, SNAP and A+N+ patients had significant risk of progressive cognitive deterioration (hazard ratio = 2.7 and 3.8, p = 0.016 and p < 0.001), while A+N− patients did not (hazard ratio = 1.13, p = 0.771). In A+N− and A+N+ groups, none of the biomarkers predicted time to progression. In the SNAP group, lower time to progression was correlated with greater hypometabolism (r = 0.42, p = 0.073). Conclusions: Our findings support the notion that patients with SNAP MCI feature a specific risk progression profile. PMID:25568301

  10. Oxidative stress and mitochondria-mediated cell death mechanisms triggered by the familial Danish dementia ADan amyloid.

    PubMed

    Todd, Krysti; Ghiso, Jorge; Rostagno, Agueda

    2016-01-01

    Familial Danish Dementia (FDD), an early-onset non-amyloid-β (Aβ) cerebral amyloidosis, is neuropathologically characterized by widespread cerebral amyloid angiopathy, parenchymal amyloid and preamyloid deposits, as well as neurofibrillary degeneration indistinguishable to that seen in Alzheimer's disease (AD). The main amyloid subunit composing FDD lesions, a 34-amino acid de-novo generated peptide ADan, is the direct result of a genetic defect at the 3'-end of the BRI2 gene and the physiologic action of furin-like proteolytic processing at the C-terminal region of the ADan precursor protein. We aimed to study the impact of the FDD mutation, the additional formation of the pyroglutamate (pE) posttranslational modification as well as the relevance of C-terminal truncations -all major components of the heterogeneous FDD deposits- on the structural and neurotoxic properties of the molecule. Our data indicates that whereas the mutation generated a β-sheet-rich hydrophobic ADan subunit of high oligomerization/fibrillization propensity and the pE modification further enhanced these properties, C-terminal truncations had the opposite effect mostly abolishing these features. The potentiation of pro-amyloidogenic properties correlated with the initiation of neuronal cell death mechanisms involving oxidative stress, perturbation of mitochondrial membrane potential, release of mitochondrial cytochrome c, and downstream activation of caspase-mediated apoptotic pathways. The amyloid-induced toxicity was inhibited by targeting specific components of these detrimental cellular pathways, using reactive oxygen scavengers and monoclonal antibodies recognizing the pathological amyloid subunit. Taken together, the data indicate that the FDD mutation and the pE posttranslational modification are both primary elements driving intact ADan into an amyloidogenic/neurotoxic pathway while truncations at the C-terminus eliminate the pro-amyloidogenic characteristics of the molecule

  11. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease

    PubMed Central

    Nalivaeva, Natalia N.; Belyaev, Nikolai D.; Kerridge, Caroline; Turner, Anthony J.

    2014-01-01

    Abnormal elevation of amyloid β-peptide (Aβ) levels in the brain is the primary trigger for neuronal cell death specific to Alzheimer’s disease (AD). It is now evident that Aβ levels in the brain are manipulable due to a dynamic equilibrium between its production from the amyloid precursor protein (APP) and removal by amyloid clearance proteins. Clearance can be either enzymic or non-enzymic (binding/transport proteins). Intriguingly several of the main amyloid-degrading enzymes (ADEs) are members of the M13 peptidase family (neprilysin (NEP), NEP2 and the endothelin converting enzymes (ECE-1 and -2)). A distinct metallopeptidase, insulin-degrading enzyme (IDE), also contributes to Aβ degradation in the brain. The ADE family currently embraces more than 20 members, both membrane-bound and soluble, and of differing cellular locations. NEP plays an important role in brain function terminating neuropeptide signals. Its decrease in specific brain areas with age or after hypoxia, ischaemia or stroke contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP (and other genes) by the APP intracellular domain (AICD) and its dependence on the cell type and APP isoform expression suggest possibilities for selective manipulation of NEP gene expression in neuronal cells. We have also observed that another amyloid-clearing protein, namely transthyretin (TTR), is also regulated in the neuronal cell by a mechanism similar to NEP. Dependence of amyloid clearance proteins on histone deacetylases and the ability of HDAC inhibitors to up-regulate their expression in the brain opens new avenues for developing preventive strategies in AD. PMID:25278875

  12. Amyloid Arthropathy of the Hip Joint Associated with Multiple Myeloma: A Case Report

    PubMed Central

    Chun, Young Soo; Rhyu, Kee Hyung; Park, Yong Koo; Ryu, Kyung Nam; Park, Ji Seon; Liang, Huo; Jung, Gwang Young; Shin, Won Ju

    2016-01-01

    Amyloidosis is a disease characterized by the deposition of non-soluble fibrous protein in multiple tissues with a number of possible causes. This protein deposition can occur in any tissue, yet is most commonly seen in kidneys, heart, and gastrointestinal tracts. However, invasion to bone tissues is not often reported. The deposition of amyloid proteins in bone tissues may result in joint pain and pathological fractures; it is important to elucidate the causes and detect early to determine prognosis and treat optimally. In the present case report, with relevant literature review, the authors report a case of total hip arthroplasty in an amyloidosis patient. PMID:27536655

  13. Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers.

    PubMed

    Domanov, Yegor A; Kinnunen, Paavo K J

    2008-02-08

    Islet amyloid polypeptide (IAPP) forms fibrillar amyloid deposits in the pancreatic islets of Langerhans of patients with type 2 diabetes mellitus, and its misfolding and aggregation are thought to contribute to beta-cell death. Increasing evidence suggests that IAPP fibrillization is strongly influenced by lipid membranes and, vice versa, that the membrane architecture and integrity are severely affected by amyloid growth. Here, we report direct fluorescence microscopic observations of the morphological transformations accompanying IAPP fibrillization on the surface of supported lipid membranes. Within minutes of application in submicromolar concentrations, IAPP caused extensive remodeling of the membrane including formation of defects, vesiculation, and tubulation. The effects of IAPP concentration, ionic strength, and the presence of amyloid seeds on the bilayer perturbation and peptide aggregation were examined. Growth of amyloid fibrils was visualized using fluorescently labeled IAPP or thioflavin T staining. Two-color imaging of the peptide and membranes revealed that the fibrils were initially composed of the peptide only, and vesiculation occurred in the points where growing fibers touched the lipid membrane. Interestingly, after 2-5 h of incubation, IAPP fibers became "wrapped" by lipid membranes derived from the supported membrane. Progressive increase in molecular-level association between amyloid and membranes in the maturing fibers was confirmed by Förster resonance energy transfer spectroscopy.

  14. Digital imaging in pathology.

    PubMed

    Park, Seung; Pantanowitz, Liron; Parwani, Anil Vasdev

    2012-12-01

    Advances in computing speed and power have made a pure digital work flow for pathology. New technologies such as whole slide imaging (WSI), multispectral image analysis, and algorithmic image searching seem poised to fundamentally change the way in which pathology is practiced. This article provides the practicing pathologist with a primer on digital imaging. Building on this primer, the current state of the art concerning digital imaging in pathology is described. Emphasis is placed on WSI and its ramifications, showing how it is useful in both anatomic (histology, cytopathology) and clinical (hematopathology) pathology. Future trends are also extrapolated.

  15. Handheld computing in pathology

    PubMed Central

    Park, Seung; Parwani, Anil; Satyanarayanan, Mahadev; Pantanowitz, Liron

    2012-01-01

    Handheld computing has had many applications in medicine, but relatively few in pathology. Most reported uses of handhelds in pathology have been limited to experimental endeavors in telemedicine or education. With recent advances in handheld hardware and software, along with concurrent advances in whole-slide imaging (WSI), new opportunities and challenges have presented themselves. This review addresses the current state of handheld hardware and software, provides a history of handheld devices in medicine focusing on pathology, and presents future use cases for such handhelds in pathology. PMID:22616027

  16. Pathology in Greece.

    PubMed

    Sakellariou, S; Patsouris, E

    2015-11-01

    Pathology is the field of medicine that studies diseases. Ancient Greece hosted some of the earliest societies that laid the structural foundations of pathology. Initially, knowledge was based on observations but later on the key elements of pathology were established based on the dissection of animals and the autopsy of human cadavers. Christianized Greece under Ottoman rule (1453-1821) was not conducive to the development of pathology. After liberation, however, a series of events took place that paved the way for the establishment and further development of the specialty. The appointment in 1849 of two Professors of Pathology at the Medical School of Athens for didactical purposes proved to be the most important step in fostering the field of pathology in modern Greece. Presently in Greece there are seven university departments and 74 pathology laboratories in public hospitals, employing 415 specialized pathologists and 90 residents. The First Department of Pathology at the Medical School of Athens University is the oldest (1849) and largest in Greece, encompassing most pathology subspecialties.

  17. Serum amyloid P inhibits dermal wound healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  18. Nanoparticles and amyloid systems: A fatal encounter?

    SciTech Connect

    Abel, Bernd

    2014-10-06

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs have been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayers in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.

  19. Nanoparticles and amyloid systems: A fatal encounter?

    NASA Astrophysics Data System (ADS)

    Abel, Bernd

    2014-10-01

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs thave been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayers in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.

  20. Amyloid fibril networks nucleated under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Batzli, Kiersten; Love, Brian

    2013-03-01

    The process of amyloid fibril formation is of interest due to the link between these self-aggregating proteins and the progression of neurodegenerative disease. More recently, research has been directed at the exploitation of self-assembly properties of amyloid proteins for use as templates for nanowires and fibrillar networks. Insulin is an ideal protein for these purposes due to the ease of aggregation, as well as the large aspect ratio and high chemical stability of the produced fibrils. Insulin in pH 2 solution quickly forms aggregates in the presence of 65 °C heat. We have investigated the effect of oscillatory shear on the nucleation and growth of amyloid fibrillar networks using rheology and TEM to characterize the mechanical properties and structure of the network respectively. We contrast networks nucleated under oscillatory shear with networks nucleated in static and agitated conditions, and discuss network properties in the context of use in templating nanostructures. We find that the structural characteristics of the formed networks, including the density of fibrils, are affected by shear during the nucleation phase of amyloid growth.

  1. Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer’s disease (AD)

    PubMed Central

    Lukiw, Walter J.

    2012-01-01

    Introduction Alzheimer’s disease (AD) is a common, progressive neurological disorder whose incidence is reaching epidemic proportions. The prevailing ‘amyloid cascade hypothesis’, which maintains that the aberrant proteolysis of beta-amyloid precursor protein (βAPP) into neurotoxic amyloid beta (Aβ)-peptides is central to the etiopathology of AD, continues to dominate pharmacological approaches to the clinical management of this insidious disorder. This review is a compilation and update on current pharmacological strategies designed to down-regulate Aβ42-peptide generation in an effort to ameliorate the tragedy of AD. Areas Covered This review utilized on-line data searches at various open online-access websites including the Alzheimer Association, Alzheimer Research Forum; individual drug company databases; the National Institutes of Health (NIH) Medline; Pharmaprojects database; Scopus; inter-University research communications and unpublished research data. Expert Opinion Aβ immunization-, anti-acetylcholinesterase-, β-secretase-, chelation-, γ-secretase-, N-methyl D-aspartate (NMDA) receptor antagonist-, statin-based and other strategies to modulate βAPP processing have dominated pharmacological approaches directed against AD-type neurodegenerative pathology. Cumulative clinical results of these efforts remain extremely disappointing, and have had little overall impact on the clinical management of AD. While a number of novel approaches are in consideration and development, to date there is still no effective treatment or cure for this expanding healthcare concern. PMID:22439907

  2. Stable size distribution of amyloid plaques over the course of Alzheimer disease.

    PubMed

    Serrano-Pozo, Alberto; Mielke, Matthew L; Muzitansky, Alona; Gómez-Isla, Teresa; Growdon, John H; Bacskai, Brian J; Betensky, Rebecca A; Frosch, Matthew P; Hyman, Bradley T

    2012-08-01

    Amyloid β plaques are a key pathologic feature of Alzheimer disease (AD), but whether plaque sizes increase or stabilize over the course of AD is unknown. We measured the size distribution of total immunoreactive (10D5-positive) and dense-core (Thioflavin S-positive) plaques in the temporal neocortex of a large group of subjects with AD and age-matched plaque-bearing subjects without dementia to test the hypothesis that amyloid plaques continue to grow along with the progression of the disease. The size of amyloid β (10D5)-positive plaques did not differ between groups, whereas dense-core plaques from the group with AD were slightly larger than those from the group without dementia (∼25%-30%, p = 0.01). Within the group with AD, dense-core plaque size did not independently correlate with duration of clinical disease (from 4 to 21 years, p = 0.68), whereas 10D5-positive plaque size correlated negatively with disease duration (p = 0.01). By contrast, an earlier age of symptom onset strongly predicted a larger postmortem plaque size; this effect was independent of disease duration and the presence of the APOE[Latin Small Letter Open E]4 allele (p = 0.0001). We conclude that plaques vary in size among patients, with larger size distributions correlating with an earlier age of onset, but plaques do not substantially increase in size over the clinical course of the disease.

  3. Electron tomography of early melanosomes: Implications for melanogenesis and the generation of fibrillar amyloid sheets

    PubMed Central

    Hurbain, Ilse; Geerts, Willie J. C.; Boudier, Thomas; Marco, Sergio; Verkleij, Arie J.; Marks, Michael S.; Raposo, Graç

    2008-01-01

    Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models. PMID:19033461

  4. [Hippocampal and cognitive alterations precede amyloid deposition in a mouse model for Alzheimer's disease].

    PubMed

    Beauquis, Juan; Vinuesa, Angeles; Pomilio, Carlos; Pavía, Patricio; Saravia, Flavia

    2014-01-01

    Although there is strong evidence about neuronal and glial disturbances at advanced stages of Alzheimer's disease, less attention has been directed to early, preamyloid changes that could contribute to the progression of the disease. We evaluated neuronal and glial morphological changes and behavioral disturbances in PDAPP-J20 transgenic (Tg) mice, carrying mutated human APP gene (amyloid precursor protein), at 5 months of age, before brain amyloid deposition occurs. Using NeuN immunohistochemistry we found decreased numbers of pyramidal and granular neurons in the hippocampus associated with a reduction of hippocampal volume in Tg mice compared with controls. Neurogenesis was impaired, evidenced by means of DCX immunohistochemistry in the dentate gyrus. In the CA3 region we found a decreased density of synaptophysin, suggesting synaptic disturbance, but no changes were found in CA1 synaptic spine density. Using confocal microscopy we observed decreased number and cell complexity of GFAP+ astrocytes, indicating potential glial atrophy. Cognitive impairment (novel location recognition test) and increased anxiety (open field) were detected in Tg mice, associated with more c-Fos+ nuclei in the amygdala, possibly indicating a role for emotionality in early stages of the disease. The study of early alterations in the course of amyloid pathology could contribute to the development of diagnostic and preventive strategies.

  5. Mechanisms and Kinetics of Amyloid Aggregation Investigated by a Phenomenological Coarse-Grained Model

    NASA Astrophysics Data System (ADS)

    Magno, Andrea; Pellarin, Riccardo; Caflisch, Amedeo

    Amyloid fibrils are ordered polypeptide aggregates that have been implicated in several neurodegenerative pathologies, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, [1, 2] and, more recently, also in biological functionalities. [3, 4, 5] These findings have paved the way for a wide range of experimental and computational studies aimed at understanding the details of the fibril-formation mechanism. Computer simulations using low-resolution models, which employ a simplified representation of protein geometry and energetics, have provided insights into the basic physical principles underlying protein aggregation in general [6, 7, 8] and ordered amyloid aggregation. [9, 10, 11, 12, 13, 14, 15] For example, Dokholyan and coworkers have used the Discrete Molecular Dynamics method [16, 17] to shed light on the mechanisms of protein oligomerization [18] and the conformational changes that take place in proteins before the aggregation onset. [19, 20] One challenging observation, which is difficult to observe by computer simulations, is the wide range of aggregation scenarios emerging from a variety of biophysical measurements. [21, 22] Atomistic models have been employed to study the conformational space of amyloidogenic polypeptides in the monomeric state, [23, 24, 25] the very initial steps of amyloid formation, [26, 27, 28, 29, 30, 31, 32] and the structural stability of fibril models. [33, 34, 35) However, all-atom simulations of the kinetics of fibril formation are beyond what can be done with modern computers.

  6. From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein.

    PubMed

    Octave, Jean-Noël; Pierrot, Nathalie; Ferao Santos, Susana; Nalivaeva, Natalia N; Turner, Anthony J

    2013-07-01

    Despite intensive studies of the secretase-mediated processing of the amyloid precursor protein (APP) to form the amyloid β-peptide (Aβ), in relation to Alzheimer's disease (AD), no new therapeutic agents have reached the clinics based on reducing Aβ levels through the use of secretase inhibitors or immunotherapy. Furthermore, the normal neuronal functions of APP and its various metabolites still remain under-investigated and unclear. Here, we highlight emerging areas of APP function that may provide new insights into synaptic development, cognition, and gene regulation. By modulating expression levels of endogenous APP in primary cortical neurons, the frequency and amplitude of calcium oscillations is modified, implying a key role for APP in maintaining neuronal calcium homeostasis essential for synaptic transmission. Disruption of this homeostatic mechanism predisposes to aging and AD. Synaptic spine loss is a feature of neurogeneration resulting in learning and memory deficits, and emerging evidence indicates a role for APP, probably mediated via one or more of its metabolites, in spine structure and functions. The intracellular domain of APP (AICD) has also emerged as a key epigenetic regulator of gene expression controlling a diverse range of genes, including APP itself, the amyloid-degrading enzyme neprilysin, and aquaporin-1. A fuller understanding of the physiological and pathological actions of APP and its metabolic network could provide new opportunities for therapeutic intervention in AD.

  7. Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril.

    PubMed

    Wälti, Marielle Aulikki; Ravotti, Francesco; Arai, Hiromi; Glabe, Charles G; Wall, Joseph S; Böckmann, Anja; Güntert, Peter; Meier, Beat H; Riek, Roland

    2016-08-23

    Amyloid-β (Aβ) is present in humans as a 39- to 42-amino acid residue metabolic product of the amyloid precursor protein. Although the two predominant forms, Aβ(1-40) and Aβ(1-42), differ in only two residues, they display different biophysical, biological, and clinical behavior. Aβ(1-42) is the more neurotoxic species, aggregates much faster, and dominates in senile plaque of Alzheimer's disease (AD) patients. Although small Aβ oligomers are believed to be the neurotoxic species, Aβ amyloid fibrils are, because of their presence in plaques, a pathological hallmark of AD and appear to play an important role in disease progression through cell-to-cell transmissibility. Here, we solved the 3D structure of a disease-relevant Aβ(1-42) fibril polymorph, combining data from solid-state NMR spectroscopy and mass-per-length measurements from EM. The 3D structure is composed of two molecules per fibril layer, with residues 15-42 forming a double-horseshoe-like cross-β-sheet entity with maximally buried hydrophobic side chains. Residues 1-14 are partially ordered and in a β-strand conformation, but do not display unambiguous distance restraints to the remainder of the core structure.

  8. Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid.

    PubMed

    Furman, Ran; Murray, Ian V J; Schall, Hayley E; Liu, Qiwei; Ghiwot, Yonatan; Axelsen, Paul H

    2016-03-16

    Oxidative stress is a frequently observed feature of Alzheimer's disease, but its pathological significance is not understood. To explore the relationship between oxidative stress and amyloid plaques, uniformly radiolabeled arachidonate was introduced into transgenic mouse models of Alzheimer's disease via intracerebroventricular injection. Uniform labeling with carbon-14 is used here for the first time, and made possible meaningful quantification of arachidonate oxidative degradation products. The injected arachidonate entered a fatty acid pool that was subject to oxidative degradation in both transgenic and wild-type animals. However, the extent of its degradation was markedly greater in the hippocampus of transgenic animals where amyloid plaques were abundant. In human Alzheimer's brain, plaque-associated proteins were post-translationally modified by hydroxynonenal, a well-known oxidative degradation product of arachidonate. These results suggest that several recurring themes in Alzheimer's pathogenesis, amyloid β proteins, transition metal ions, oxidative stress, and apolipoprotein isoforms, may be involved in a common mechanism that has the potential to explain both neuronal loss and fibril formation in this disease.

  9. Blood metabolite markers of neocortical amyloid-β burden: discovery and enrichment using candidate proteins

    PubMed Central

    Voyle, N; Kim, M; Proitsi, P; Ashton, N J; Baird, A L; Bazenet, C; Hye, A; Westwood, S; Chung, R; Ward, M; Rabinovici, G D; Lovestone, S; Breen, G; Legido-Quigley, C; Dobson, R J B; Kiddle, S J

    2016-01-01

    We believe this is the first study to investigate associations between blood metabolites and neocortical amyloid burden (NAB) in the search for a blood-based biomarker for Alzheimer's disease (AD). Further, we present the first multi-modal analysis of blood markers in this field. We used blood plasma samples from 91 subjects enrolled in the University of California, San Francisco Alzheimer's Disease Research Centre. Non-targeted metabolomic analysis was used to look for associations with NAB using both single and multiple metabolic feature models. Five metabolic features identified subjects with high NAB, with 72% accuracy. We were able to putatively identify four metabolites from this panel and improve the model further by adding fibrinogen gamma chain protein measures (accuracy=79%). One of the five metabolic features was studied in the Alzheimer's Disease Neuroimaging Initiative cohort, but results were inconclusive. If replicated in larger, independent studies, these metabolic features and proteins could form the basis of a blood test with potential for enrichment of amyloid pathology in anti-amyloid trials. PMID:26812040

  10. Accumulation of intraneuronal amyloid-β is common in normal brain.

    PubMed

    Blair, Jeffrey A; Siedlak, Sandra L; Wolfram, Julie A; Nunomura, Akihiko; Castellani, Rudy J; Ferreira, Sergio T; Klein, William L; Wang, Yang; Casadesus, Gemma; Smith, Mark A; Perry, George; Zhu, Xiongwei; Lee, Hyoung-gon

    2014-05-01

    Intraneuronal amyloid-β (iAβ) accumulation has been demonstrated in Alzheimer disease (AD). Although extracellular amyloid plaques composed primarily of aggregated amyloid-β are one of the main pathological features of AD, functional characterization of iAβ is still lacking. In this study, we identified the normal distribution of iAβ through an analysis of hippocampal sections from a series of over 90 subjects with diverse antemortem clinical findings. In addition to AD cases, iAβ in pyramidal neurons was readily and reproducibly demonstrated in the majority of control cases. Similar findings for controls were made across all ages, spanning from infants to the elderly. There was no correlation of iAβ between gender, postmortem interval, or age. While the possible pathophysiological significance of iAβ accumulation in AD remains to be elucidated, careful examination of iAβ found in the normal brain may be informative for determining the biological role of iAβ and how this function changes during disease. Current findings support a physiological role for iAβ in neuronal function over the entire lifespan.

  11. The effect of lysozyme amyloid fibrils on cytochrome c-lipid interactions.

    PubMed

    Gorbenko, Galyna; Trusova, Valeriya; Sood, Rohit; Molotkovsky, Julian; Kinnunen, Paavo

    2012-10-01

    Protein polymerization into ordered fibrillar structures (amyloid fibrils) is currently associated with a range of pathological conditions. Recent studies clearly indicate that amyloid cytotoxicity is provoked by a continuum of cross-β-sheet aggregates including mature fibrils. In view of the possible diversity of cytotoxicity mechanisms, the present study addressed the question of whether protein conversion into amyloid fibrils can modify its competitive membrane adsorption behavior. Using a combination of resonance energy transfer, dynamic light scattering and fluorescence quenching techniques, the competitive binding of either monomeric or polymerized lysozyme, and cytochrome c to the model lipid membranes composed of phosphatidylcholine mixtures with varying proportions of phosphatidylglycerol, phosphatidylserine or cardiolipin has been studied. The ability of fibrillar lysozyme to induce dissociation of cytochrome c from the membrane binding sites proved to be markedly stronger than that of its monomeric counterpart, with desorption process displaying cooperativity features upon increasing the charge of lipid bilayer. The decreased efficiency of tryptophan fluorescence quenching by acrylamide and short-wavelength shift of emission maximum observed upon membrane binding of lysozyme fibrils were rationalized in terms of fluorophore transfer into interfacial bilayer region. It is hypothesized that electrostatic interactions play predominant role in determining the lipid-associating and competitive abilities of fibrillar lysozyme.

  12. CX3CR1 Deficiency Alters Microglial Activation and Reduces Beta-Amyloid Deposition in Two Alzheimer’s Disease Mouse Models

    PubMed Central

    Lee, Sungho; Varvel, Nicholas H.; Konerth, Megan E.; Xu, Guixiang; Cardona, Astrid E.; Ransohoff, Richard M.; Lamb, Bruce T.

    2010-01-01

    Microglia, the primary immune effector cells in the brain, continually monitor the tissue parenchyma for pathological alterations and become activated in Alzheimer’s disease. Loss of signaling between neurons and microglia via deletion of the microglial receptor, CX3CR1, worsens phenotypes in various models of neurodegenerative diseases. In contrast, CX3CR1 deficiency ameliorates pathology in murine stroke models. To examine the role of CX3CR1 in Alzheimer’s disease–related β-amyloid pathology, we generated APPPS1 and R1.40 transgenic mouse models of Alzheimer’s disease deficient for CX3CR1. Surprisingly, CX3CR1 deficiency resulted in a gene dose-dependent reduction in β-amyloid deposition in both the APPPS1 and R1.40 mouse models of AD. Immunohistochemical analysis revealed reduced staining for CD68, a marker of microglial activation. Furthermore, quantitative immunohistochemical analysis revealed reduced numbers of microglia surrounding β-amyloid deposits in the CX3CR1-deficient APPPS1 animals. The reduced β-amyloid pathology correlated with reduced levels of TNFα and CCL2 mRNAs, but elevated IL1β mRNA levels, suggesting an altered neuroinflammatory milieu. Finally, to account for these seemingly disparate results, both in vitro and in vivo studies provided evidence that CX3CL1/CX3CR1 signaling alters the phagocytic capacity of microglia, including the uptake of Aβ fibrils. Taken together, these results demonstrate that loss of neuron-microglial fractalkine signaling leads to reduced β-amyloid deposition in mouse models of AD that is potentially mediated by altered activation and phagocytic capability of CX3CR1-deficient microglia. PMID:20864679

  13. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies.

    PubMed

    Sarro, Lidia; Senjem, Matthew L; Lundt, Emily S; Przybelski, Scott A; Lesnick, Timothy G; Graff-Radford, Jonathan; Boeve, Bradley F; Lowe, Val J; Ferman, Tanis J; Knopman, David S; Comi, Giancarlo; Filippi, Massimo; Petersen, Ronald C; Jack, Clifford R; Kantarci, Kejal

    2016-10-01

    Alzheimer's disease pathology frequently coexists with Lewy body disease at autopsy in patients with probable dementia with Lewy bodies. More than half of patients with probable dementia with Lewy bodies have high amyloid-β deposition as measured with (11)C-Pittsburgh compound B binding on positron emission tomography. Biomarkers of amyloid-β deposition precede neurodegeneration on magnetic resonance imaging during the progression of Alzheimer's disease, but little is known about how amyloid-β deposition relates to longitudinal progression of atrophy in patients with probable dementia with Lewy bodies. We investigated the associations between baseline (11)C-Pittsburgh compound B binding on positron emission tomography and the longitudinal rates of grey matter atrophy in a cohort of clinically diagnosed patients with dementia with Lewy bodies (n = 20), who were consecutively recruited to the Mayo Clinic Alzheimer's Disease Research Centre. All patients underwent (11)C-Pittsburgh compound B positron emission tomography and magnetic resonance imaging examinations at baseline. Follow-up magnetic resonance imaging was performed after a mean (standard deviation) interval of 2.5 (1.1) years. Regional grey matter loss was determined on three-dimensional T1-weighted magnetic resonance imaging with the tensor-based morphometry-symmetric normalization technique. Linear regression was performed between baseline (11)C-Pittsburgh compound B standard unit value ratio and longitudinal change in regional grey matter volumes from an in-house modified atlas. We identified significant associations between greater baseline (11)C-Pittsburgh compound B standard unit value ratio and greater grey matter loss over time in the posterior cingulate gyrus, lateral and medial temporal lobe, and occipital lobe as well as caudate and putamen nuclei, after adjusting for age (P < 0.05). Greater baseline (11)C-Pittsburgh compound B standard unit value ratio was also associated with greater

  14. Genetics and underlying pathology of dementia.

    PubMed

    Ferencz, Beata; Gerritsen, Lotte

    2015-03-01

    As the population steadily ages, dementia, in all its forms, remains a great societal challenge. Yet, our knowledge of their etiology remains rather limited. To this end, genetic studies can give us insight into the underlying mechanisms that lead to the development of dementia, potentially facilitating treatments in the future. In this review we cover the most recent genetic risk factors associated with the onset of the four most common dementia types today, including Alzheimer's disease (AD), Vascular Dementia (VaD), Frontotemporal Lobar Degeneration (FTLD) and Lewy Body Dementia (LBD). Moreover, we discuss the overlap in major underlying pathologies of dementia derived from their genetic associations. While all four dementia types appear to involve genes associated with tau-pathology and neuroinflammation only LBD, AD and VaD appear to involve amyloid genes while LBD and FTLD share alpha synuclein genes. Together these findings suggest that some of the dementias may exist along a spectrum and demonstrates the necessity to conduct large-scale studies pinpointing the etiology of the dementias and potential gene and environment interactions that may influence their development.

  15. Mutations in or near the transmembrane domain alter PMEL amyloid formation from functional to pathogenic.

    PubMed

    Watt, Brenda; Tenza, Danièle; Lemmon, Mark A; Kerje, Susanne; Raposo, Graça; Andersson, Leif; Marks, Michael S

    2011-09-01

    PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)--which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core--are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW-associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi-like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid.

  16. Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic

    PubMed Central

    Watt, Brenda; Tenza, Danièle; Lemmon, Mark A.; Kerje, Susanne; Raposo, Graça; Andersson, Leif; Marks, Michael S.

    2011-01-01

    PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)—which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core—are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW–associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi–like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid. PMID:21949659

  17. Small Liposomes Accelerate the Fibrillation of Amyloid β (1–40)*

    PubMed Central

    Terakawa, Mayu S.; Yagi, Hisashi; Adachi, Masayuki; Lee, Young-Ho; Goto, Yuji

    2015-01-01

    The deposition of amyloid β (Aβ) peptides is a pathological hallmark of Alzheimer disease. Aβ peptides were previously considered to interact specifically with ganglioside-containing membranes. Several studies have suggested that Aβ peptides also bind to phosphatidylcholine membranes, which lead to deformation of membranes and fibrillation of Aβ. Moreover, the role of membrane curvature, one type of deformation produced by binding of proteins to a membrane, in the binding and fibrillation of Aβ remains unclear. To clearly understand the relationship between the binding, consequent membrane deformation, and fibrillation of Aβ, we examined the amyloid fibrillation of Aβ-(1–40) in the presence of liposomes of various sizes. Membrane curvature increased with a decrease in the size of the liposomes. We used liposomes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine to eliminate electrostatic effects. The results obtained showed that liposomes of smaller sizes (≤50 nm) significantly accelerated the nucleation step, thereby shortening the lag time of fibrillation. On the other hand, liposomes of larger sizes decreased the amount of fibrils but did not notably affect the lag time. The morphologies of fibrils, which were monitored by total internal reflection fluorescence microscopy, atomic force microscopy, and transmission electron microscopy, revealed that the length of Aβ-(1–40) fibrils became shorter and the amount of amorphous aggregates became larger as liposomes increased in size. These results suggest that the curvature of membranes coupled with an increase in water-accessible hydrophobic regions is important for binding and concentrating Aβ monomers, leading to amyloid nucleation. Furthermore, amyloid fibrillation on membranes may compete with non-productive binding to produce amorphous aggregates. PMID:25406316

  18. Amyloid-like aggregates formation by bovine apo-carbonic anhydrase in various alcohols: A comparative study.

    PubMed

    Es-Haghi, Ali; Ebrahim-Habibi, Azadeh; Sabbaghian, Marjan; Nemat-Gorgani, Mohsen

    2016-11-01

    Peptides and proteins convert from their native states to amyloid fibrillar aggregates in a number of pathological conditions. Characterizing these species could provide useful information on their pathogenicity and the key factors involved in their generation. In this study, we have observed the ability of the model protein apo-bovine carbonic anhydrase (apo-BCA) to form amyloid-like aggregates in the presence of halogenated and non-halogenated alcohols. Far-UV circular dichroism, ThT fluorescence, atomic force microscopy and dynamic light scattering were used to characterize these structures. The concentration required for effective protein aggregation varied between the solvents, with non-halogenated alcohols acting in a wider range. These aggregates show amyloid-like structures as determined by specific techniques used for characterizing amyloid structures. Oligomers were obtained with various size distributions, but fibrillar structures were not observed. Use of halogenated alcohols resulted into smaller hydrodynamic radii, and most stable oligomers were formed in hexafluoropropan-2-ol (HFIP). At optimal concentrations used to generate these structures, the non-halogenated alcohols showed higher hydrophobicity, which may be related to the lower stability of the generated oligomers. These oligomers have the potential to be used as models in the search for effective treatments in proteinopathies.

  19. Parenchymal cystatin C focal deposits and glial scar formation around brain arteries in Hereditary Cystatin C Amyloid Angiopathy.

    PubMed

    Osk Snorradottir, Asbjorg; Isaksson, Helgi J; Kaeser, Stephan A; Skodras, Angelos A; Olafsson, Elias; Palsdottir, Astridur; Thor Bragason, Birkir

    2015-10-05

    Hereditary Cystatin C Amyloid Angiopathy (HCCAA) is an amyloid disorder in Icelandic families caused by an autosomal dominant mutation in the cystatin C gene. Mutant cystatin C forms amyloid deposits in brain arteries and arterioles which are associated with changes in the arterial wall structure, notably deposition of extracellular matrix proteins. In this post-mortem study we examined the neuroinflammatory response relative to the topographical distribution of cystatin C deposition, and associated haemorrhages, in the leptomeninges, cerebrum, cerebellum, thalamus, and midbrain of HCCAA patients. Cystatin C was deposited in all brain areas, grey and white matter alike, most prominently in arteries and arterioles; capillaries and veins were not, or minimally, affected. We also observed perivascular deposits and parenchymal focal deposits proximal to affected arteries. This study shows for the first time, that cystatin C does not exclusively form CAA and perivascular amyloid but also focal deposits in the brain parenchyma. Haemorrhages were observed in all patients and occurred in all brain areas, variable between patients. Microinfarcts were observed in 34.6% of patients. The neuroinflammatory response was limited to the close vicinity of affected arteries and perivascular as well as parenchymal focal deposits. Taken together with previously reported arterial accumulation of extracellular matrix proteins in HCCAA, our results indicate that the central nervous system pathology of HCCAA is characterised by the formation of a glial scar within and around affected arteries.

  20. P3 beta-amyloid peptide has a unique and potentially pathogenic immunohistochemical profile in Alzheimer's disease brain.

    PubMed Central

    Higgins, L. S.; Murphy, G. M.; Forno, L. S.; Catalano, R.; Cordell, B.

    1996-01-01

    The presence of beta-amyloid in brain tissue is characteristic of Alzheimer's disease (AD). A naturally occurring derivative of the beta-amyloid peptide, p3, possesses all of the structural determinants required for fibril assembly and neurotoxicity. p3-specific antibodies were used to examine the distribution of this peptide in brain. p3 reactivity was absent or sparse in aged non-AD brains but was prevalent in selected areas of AD brain in diffuse deposits and in a subset of dystrophic neurites. p3-reactive dystrophic neurites were found both independent in the neuropil and associated with plaques. Little or no reactivity was observed to amyloid cores in classical plaques or to amyloid in the cerebral vasculature. The exclusive appearance of p3 reactivity in AD brain plus the selective localization of p3 reactivity to abnormal structures in the temporal lobe limbic system suggests that p3 may be a contributing factor to AD pathology. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8701997

  1. β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    PubMed Central

    Goodchild, Sophia C.; Sheynis, Tania; Thompson, Rebecca; Tipping, Kevin W.; Xue, Wei-Feng; Ranson, Neil A.; Beales, Paul A.; Hewitt, Eric W.; Radford, Sheena E.

    2014-01-01

    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA. PMID:25100247

  2. Mitochondrial dysfunction in a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation.

    PubMed

    Rönnbäck, Annica; Pavlov, Pavel F; Mansory, Mansorah; Gonze, Prisca; Marlière, Nicolas; Winblad, Bengt; Graff, Caroline; Behbahani, Homira

    2016-02-01

    Accumulation of amyloid β-peptide (Aβ) in the brain is an important event in the pathogenesis of Alzheimer disease. We have used a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation to investigate whether Aβ deposition is correlated with mitochondrial functions in these animals. We found evidence of mitochondrial dysfunction (i.e., decreased mitochondrial membrane potential, increased production of reactive oxygen species and oxidative DNA damage) at 6 months of age, when the mice showed very mild Aβ deposition. More pronounced mitochondrial abnormalities were present in 24-month-old TgAPParc mice with more extensive Aβ pathology. This study demonstrates for the first time mitochondrial dysfunction in transgenic mice with a mutation within the Aβ peptide (the Arctic APP mutation), and confirms previous studies suggesting that mitochondrial dysfunction and oxidative stress is an early event in the pathogenesis of Alzheimer disease. This study demonstrates mitochondrial dysfunction in transgenic mice with a mutation within the amyloid beta (Aβ) peptide (the Arctic amyloid precursor protein (APP) mutation). We found evidence of mitochondrial dysfunction (i.e. decreased mitochondrial membrane potential (MMP), increased production of reactive oxygen species (ROS) and oxidative DNA damage) at 6 months of age, when very mild Aβ deposition is present in the mice. Also, the cytochrome c (COX) activity was significantly decreased in mitochondria from transgenic mice at 24 months of age.

  3. Effects of cerebrovascular disease and amyloid beta burden on cognition in subjects with subcortical vascular cognitive impairment.

    PubMed

    Park, Jae-Hyun; Seo, Sang Won; Kim, Changsoo; Kim, Sook Hui; Kim, Geon Ha; Kim, Sung Tae; Jeon, Seun; Lee, Jong Min; Oh, Seung Jun; Kim, Jae Seung; Choe, Yearn Seong; Lee, Kyung-Han; Shin, Ji Soo; Kim, Chi Hun; Noh, Young; Cho, Hanna; Yoon, Cindy W; Kim, Hee Jin; Ye, Byoung Seok; Ewers, Michael; Weiner, Michael W; Lee, Jae-Hong; Werring, David J; Na, Duk L

    2014-01-01

    Cerebrovascular disease (CVD) and amyloid burden are the most frequent pathologies in subjects with cognitive impairment. However, the relationship between CVD, amyloid burden, and cognition are largely unknown. We aimed to evaluate whether CVD (lacunes, white matter hyperintensities, and microbleeds) and amyloid burden (Pittsburgh compound B [PiB] retention ratio) contribute to cognitive impairment independently or interactively. We recruited 136 patients with subcortical vascular cognitive impairment who underwent magnetic resonance imaging, PiB-positron emission tomography, and neuropsychological testing. The number of lacunes was associated with memory, frontal dysfunctions, and disease severity. The volume of white matter hyperintensities and the PiB retention ratio were associated only with memory dysfunction. There was no direct correlation between CVD markers and PiB retention ratio except that the number of lacunes was negatively correlated with the PiB retention ratio. In addition, there were no interactive effects of CVD and PiB retention ratio on cognition. Our findings suggest that CVD and amyloid burden contribute independently and not interactively to specific patterns of cognitive dysfunction in patients with subcortical vascular cognitive impairment.

  4. The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation

    PubMed Central

    Waudby, Christopher A.; Knowles, Tuomas P.J.; Devlin, Glyn L.; Skepper, Jeremy N.; Ecroyd, Heath; Carver, John A.; Welland, Mark E.; Christodoulou, John; Dobson, Christopher M.; Meehan, Sarah

    2010-01-01

    αB-Crystallin is a small heat-shock protein (sHsp) that is colocalized with α-synuclein (αSyn) in Lewy bodies—the pathological hallmarks of Parkinson's disease—and is an inhibitor of αSyn amyloid fibril formation in an ATP-independent manner in vitro. We have investigated the mechanism underlying the inhibitory action of sHsps, and here we establish, by means of a variety of biophysical techniques including immunogold labeling and nuclear magnetic resonance spectroscopy, that αB-crystallin interacts with αSyn, binding along the length of mature amyloid fibrils. By measurement of seeded fibril elongation kinetics, both in solution and on a surface using a quartz crystal microbalance, this binding is shown to strongly inhibit further growth of the fibrils. The binding is also demonstrated to shift the monomer-fibril equilibrium in favor of dissociation. We believe that this mechanism, by which a sHsp interacts with mature amyloid fibrils, could represent an additional and potentially generic means by which at least some chaperones protect against amyloid aggregation and limit the onset of misfolding diseases. PMID:20197038

  5. Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease.

    PubMed

    Zou, Chengyu; Montagna, Elena; Shi, Yuan; Peters, Finn; Blazquez-Llorca, Lidia; Shi, Song; Filser, Severin; Dorostkar, Mario M; Herms, Jochen

    2015-06-01

    Alzheimer's disease (AD) is thought to be caused by accumulation of amyloid-β protein (Aβ), which is a cleavage product of amyloid precursor protein (APP). Transgenic mice overexpressing APP have been used to recapitulate amyloidpathology. Among them, APP23 and APPswe/PS1deltaE9 (deltaE9) mice are extensively studied. APP23 mice express APP with Swedish mutation and develop amyloid plaques late in their life, while cognitive deficits are observed in young age. In contrast, deltaE9 mice with mutant APP and mutant presenilin-1 develop amyloid plaques early but show typical cognitive deficits in old age. To unveil the reasons for different progressions of cognitive decline in these commonly used mouse models, we analyzed the number and turnover of dendritic spines as important structural correlates for learning and memory. Chronic in vivo two-photon imaging in apical tufts of layer V pyramidal neurons revealed a decreased spine density in 4-5-month-old APP23 mice. In age-matched deltaE9 mice, in contrast, spine loss was only observed on cortical dendrites that were in close proximity to amyloid plaques. In both cases, the reduced spine density was caused by decreased spine formation. Interestingly, the patterns of alterations in spine morphology differed between these two transgenic mouse models. Moreover, in APP23 mice, APP was found to accumulate intracellularly and its content was inversely correlated with the absolute spine density and the relative number of mushroom spines. Collectively, our results suggest that different pathological mechanisms, namely an intracellular accumulation of APP or extracellular amyloid plaques, may lead to spine abnormalities in young adult APP23 and deltaE9 mice, respectively. These distinct features, which may represent very different mechanisms of synaptic failure in AD, have to be taken into consideration when translating results from animal studies to the human disease.

  6. Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice

    PubMed Central

    Mastrangelo, Michael A; Bowers, William J

    2008-01-01

    Background Several transgenic animal models genetically predisposed to develop Alzheimer's disease (AD)-like pathology have been engineered to facilitate the study of disease pathophysiology and the vetting of potential disease-modifying therapeutics. The triple transgenic mouse model of AD (3xTg-AD) harbors three AD-related genetic loci: human PS1M146V, human APPswe, and human tauP301L. These mice develop both amyloid plaques and neurofibrillary tangle-like pathology in a progressive and age-dependent manner, while these pathological hallmarks are predominantly restricted to the hippocampus, amygdala, and the cerebral cortex the main foci of AD neuropathology in humans. This model represents, at present, one of the most advanced preclinical tools available and is being employed ever increasingly in the study of mechanisms underlying AD, yet a detailed regional and temporal assessment of the subtleties of disease-related pathologies has not been reported. Methods and results In this study, we immunohistochemically documented the evolution of AD-related transgene expression, amyloid deposition, tau phosphorylation, astrogliosis, and microglial activation throughout the hippocampus, entorhinal cortex, primary motor cortex, and amygdala over a 26-month period in male 3xTg-AD mice. Intracellular amyloid-beta accumulation is detectable the earliest of AD-related pathologies, followed temporally by phospho-tau, extracellular amyloid-beta, and finally paired helical filament pathology. Pathology appears to be most severe in medial and caudal hippocampus. While astrocytic staining remains relatively constant at all ages and regions assessed, microglial activation appears to progressively increase temporally, especially within the hippocampal formation. Conclusion These data fulfill an unmet need in the ever-widening community of investigators studying 3xTg-AD mice and provide a foundation upon which to design future experiments that seek to examine stage-specific disease

  7. [Pathology- a new revival].

    PubMed

    Barshack, Iris

    2013-06-01

    The field of pathology has undergone considerable change in recent years. The editor and editorial board of this journal are to be commended for their decision to devote a special issue to the field of pathology. Pathology deals with the characterization, investigation, and diagnosis of disease and disease processes and as such, has Long been considered one of the foundations of medicine. It is a rich and multi-faceted field which has retained its breadth of scope in the face of ever-increasing specialization and sub-specialization in medicine. In addition to its classic roles in autopsy, case description, and the diagnosis of pathoLogic processes, new and innovative spheres of activity are becoming integral to the field, especially in the realm of molecular pathology. Pathology is a Leading player in the new age of "personalized cancer therapy", where pathologists are responsible not only for diagnosing disease in the tissue, but also for conducting additional tests which may predict its response to specific drug therapies. In this context, moLecular pathology has become essential to the field both in the provision of cLinical service and research. To fully implement this trend, we are witness to the rise of tissue collection and tissue banking initiatives for both diagnostic and research purposes. A national tissue banking project in Israel has recently received considerable attention.

  8. Regulatable transgenic mouse models of Alzheimer disease: onset, reversibility and spreading of Tau pathology.

    PubMed

    Hochgräfe, Katja; Sydow, Astrid; Mandelkow, Eva-Maria

    2013-09-01

    Accumulation of amyloidogenic proteins such as Tau is a hallmark of neurodegenerative diseases including Alzheimer disease and fronto-temporal dementias. To link Tau pathology to cognitive impairments and defects in synaptic plasticity, we created four inducible Tau transgenic mouse models with expression of pro- and anti-aggregant variants of either full-length human Tau (hTau40/ΔK280 and hTau40/ΔK280/PP) or the truncated Tau repeat domain (Tau(RD)/ΔK280 and Tau(RD)/ΔK280/PP). Here we review the histopathological features caused by pro-aggregant Tau, and correlate them with behavioral deficits and impairments in synaptic transmission. Both pro-aggregant Tau variants cause Alzheimer-like features, including synapse loss, mis-localization of Tau into the somatodendritic compartment, conformational changes and hyperphosphorylation. However, there is a clear difference in the extent of Tau aggregation and neurotoxicity. While pro-aggregant full-length hTau40/ΔK280 leads to a 'pre-tangle' pathology, the repeat domain Tau(RD)/ΔK280 causes massive formation of neurofibrillary tangles and neuronal loss in the hippocampus. However, both Tau variants cause co-aggregation of human and mouse Tau and similar functional impairments. Thus, earlier Tau pathological stages and not necessarily neurofibrillary tangles are critical for the development of cognitive malfunctions. Most importantly, memory and synapses recover after switching off expression of pro-aggregant Tau. The rescue of functional impairments correlates with the rescue of most Tau pathological changes and most strikingly the recovery of synapses. This implies that tauopathies as such are reversible, provided that amyloidogenic Tau is removed. Therefore, our Tau transgenic mice may serve as model systems for in vivo validation of therapeutic strategies and drug candidates with regard to cognition and synaptic function.

  9. The Anti-Prion Antibody 15B3 Detects Toxic Amyloid-β Oligomers

    PubMed Central

    Stravalaci, Matteo; Tapella, Laura; Beeg, Marten; Rossi, Alessandro; Joshi, Pooja; Pizzi, Erika; Mazzanti, Michele; Balducci, Claudia; Forloni, Gianluigi; Biasini, Emiliano; Salmona, Mario; Diomede, Luisa; Chiesa, Roberto; Gobbi, Marco

    2016-01-01

    15B3 is a monoclonal IgM antibody that selectively detects pathological aggregates of the prion protein (PrP). We report the unexpected finding that 15B3 also recognizes oligomeric but not monomeric forms of amyloid-β (Aβ)42, an aggregating peptide implicated in the pathogenesis of Alzheimer’s disease (AD). The 15B3 antibody: i) inhibits the binding of synthetic Aβ42 oligomers to recombinant PrP and neuronal membranes; ii) prevents oligomer-induced membrane depolarization; iii) antagonizes the inhibitory effects of oligomers on the physiological pharyngeal contractions of the nematode Caenorhabditis elegans; and iv) counteracts the memory deficits induced by intracerebroventricular injection of Aβ42 oligomers in mice. Thus this antibody binds to pathologically relevant forms of Aβ, and offers a potential research, diagnostic, and therapeutic tool for AD. PMID:27392850

  10. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography.

    PubMed

    Han, Shen; Kollmer, Marius; Markx, Daniel; Claus, Stephanie; Walther, Paul; Fändrich, Marcus

    2017-02-27

    The deposition of amyloid fibrils as plaques is a key feature of several neurodegenerative diseases including in particular Alzheimer's. This disease is characterized, if not provoked, by amyloid aggregates formed from Aβ peptide that deposit inside the brain or are toxic to neuronal cells. We here used scanning transmission electron microscopy (STEM) to determine the fibril network structure and interactions of Aβ fibrils within a cell culture model of Alzheimer's disease. STEM images taken from the formed Aβ amyloid deposits revealed three main types of fibril network structures, termed amorphous meshwork, fibril bundle and amyloid star. All three were infiltrated by different types of lipid inclusions from small-sized exosome-like structures (50-100 nm diameter) to large-sized extracellular vesicles (up to 300 nm). The fibrils also presented strong interactions with the surrounding cells such that fibril bundles extended into tubular invaginations of the plasma membrane. Amyloid formation in the cell model was previously found to have an intracellular origin and we show here that it functionally destroys the integrity of the intracellular membranes as it leads to lysosomal leakage. These data provide a mechanistic link to explain why intracellular fibril formation is toxic to the cell.

  11. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography

    PubMed Central

    Han, Shen; Kollmer, Marius; Markx, Daniel; Claus, Stephanie; Walther, Paul; Fändrich, Marcus

    2017-01-01

    The deposition of amyloid fibrils as plaques is a key feature of several neurodegenerative diseases including in particular Alzheimer’s. This disease is characterized, if not provoked, by amyloid aggregates formed from Aβ peptide that deposit inside the brain or are toxic to neuronal cells. We here used scanning transmission electron microscopy (STEM) to determine the fibril network structure and interactions of Aβ fibrils within a cell culture model of Alzheimer’s disease. STEM images taken from the formed Aβ amyloid deposits revealed three main types of fibril network structures, termed amorphous meshwork, fibril bundle and amyloid star. All three were infiltrated by different types of lipid inclusions from small-sized exosome-like structures (50–100 nm diameter) to large-sized extracellular vesicles (up to 300 nm). The fibrils also presented strong interactions with the surrounding cells such that fibril bundles extended into tubular invaginations of the plasma membrane. Amyloid formation in the cell model was previously found to have an intracellular origin and we show here that it functionally destroys the integrity of the intracellular membranes as it leads to lysosomal leakage. These data provide a mechanistic link to explain why intracellular fibril formation is toxic to the cell. PMID:28240273

  12. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology.

    PubMed

    Shaftel, Solomon S; Kyrkanides, Stephanos; Olschowka, John A; Miller, Jen-nie H; Johnson, Renee E; O'Banion, M Kerry

    2007-06-01

    Neuroinflammation is a conspicuous feature of Alzheimer disease (AD) pathology and is thought to contribute to the ultimate neurodegeneration that ensues. IL-1 beta has emerged as a prime candidate underlying this response. Here we describe a transgenic mouse model of sustained IL-1 beta overexpression that was capable of driving robust neuroinflammation lasting months after transgene activation. This response was characterized by astrocytic and microglial activation in addition to induction of proinflammatory cytokines. Surprisingly, when triggered in the hippocampus of the APPswe/PS1dE9 mouse model of AD, 4 weeks of IL-1 beta overexpression led to a reduction in amyloid pathology. Congophilic plaque area fraction and frequency as well as insoluble amyloid beta 40 (A beta 40) and A beta 42 decreased significantly. These results demonstrate a possible adaptive role for IL-1 beta-driven neuroinflammation in AD and may help explain recent failures of antiinflammatory therapeutics for this disease.

  13. Atomic View of a Toxic Amyloid Small Oligomer

    SciTech Connect

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  14. [Gunshot wounds: forensic pathology].

    PubMed

    Lorin de la Grandmaison, Geoffroy

    2012-02-01

    Gunshot wounds are among the most complex traumatic lesions encountered in forensic pathology. At the time of autopsy, careful scrutiny of the wounds is essential for correct interpretation of the lesions. Complementary pathological analysis has many interests: differentiation between entrance and exit wounds, estimation of firing distance, differentiation between vital and post mortem wounds and wounds dating. In case of multiple headshots, neuropathological examination can provide arguments for or against suicide. Sampling of gunshot wounds at autopsy must be systematic. Pathological data should be confronted respectively to autopsy and death scene investigation data and also ballistic studies. Forensic pathologist must be aware of the limits of optic microscopy.

  15. [Pathological gambling: literature revue].

    PubMed

    Filteau, M J; Baruch, P; Vincent, P

    1992-03-01

    This paper summarizes the current literature on pathological gambling. Interest in gambling has been present in every society but treated as an object of sociopolitical or literary interest. It is only from the beginning of this century that psychiatry began to look at pathological gambling, first with Freud and his writing on Dostoïevsky then with other theories like the learning theory, studies on substance dependence, the links with affective syndromes and the psychobiological studies. These studies are presented and discussed. Finally, the authors offer some guidelines for an approach to a pathological gambler.

  16. Beta-amyloid deposition in chronic traumatic encephalopathy.

    PubMed

    Stein, Thor D; Montenigro, Philip H; Alvarez, Victor E; Xia, Weiming; Crary, John F; Tripodis, Yorghos; Daneshvar, Daniel H; Mez, Jesse; Solomon, Todd; Meng, Gaoyuan; Kubilus, Caroline A; Cormier, Kerry A; Meng, Steven; Babcock, Katharine; Kiernan, Patrick; Murphy, Lauren; Nowinski, Christopher J; Martin, Brett; Dixon, Diane; Stern, Robert A; Cantu, Robert C; Kowall, Neil W; McKee, Ann C

    2015-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild traumatic brain injury. It is defined pathologically by the abnormal accumulation of tau in a unique pattern that is distinct from other tauopathies, including Alzheimer's disease (AD). Although trauma has been suggested to increase amyloid β peptide (Aβ) levels, the extent of Aβ deposition in CTE has not been thoroughly characterized. We studied a heterogeneous cohort of deceased athletes and military veterans with neuropathologically diagnosed CTE (n = 114, mean age at death = 60) to test the hypothesis that Aβ deposition is altered in CTE and associated with more severe pathology and worse clinical outcomes. We found that Aβ deposition, either as diffuse or neuritic plaques, was present in 52 % of CTE subjects. Moreover, Aβ deposition in CTE occurred at an accelerated rate and with altered dynamics in CTE compared to a normal aging population (OR = 3.8, p < 0.001). We also found a clear pathological and clinical dichotomy between those CTE cases with Aβ plaques and those without. Aβ deposition was significantly associated with the presence of the APOE ε4 allele (p = 0.035), older age at symptom onset (p < 0.001), and older age at death (p < 0.001). In addition, when controlling for age, neuritic plaques were significantly associated with increased CTE tauopathy stage (β = 2.43, p = 0.018), co-morbid Lewy body disease (OR = 5.01, p = 0.009), and dementia (OR = 4.45, p = 0.012). A subset of subjects met the diagnostic criteria for both CTE and AD, and in these subjects both Aβ plaques and total levels of Aβ1-40 were increased at the depths of the cortical sulcus compared to the gyral crests. Overall, these findings suggest that Aβ deposition is altered and accelerated in a cohort of CTE subjects compared to normal aging and that Aβ is associated with both pathological and clinical progression of CTE independent of age.

  17. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.

    PubMed

    Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin

    2016-01-01

    One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD

  18. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease.

    PubMed

    Drummond, Eleanor; Nayak, Shruti; Faustin, Arline; Pires, Geoffrey; A Hickman, Richard; Askenazi, Manor; Cohen, Mark; Haldiman, Tracy; Kim, Chae; Han, Xiaoxia; Shao, Yongzhao; Safar, Jiri G; Ueberheide, Beatrix; Wisniewski, Thomas

    2017-03-04

    Rapidly progressive Alzheimer's disease (rpAD) is a particularly aggressive form of Alzheimer's disease, with a median survival time of 7-10 months after diagnosis. Why these patients have such a rapid progression of Alzheimer's disease is currently unknown. To further understand pathological differences between rpAD and typical sporadic Alzheimer's disease (sAD) we used localized proteomics to analyze the protein differences in amyloid plaques in rpAD and sAD. Label-free quantitative LC-MS/MS was performed on amyloid plaques microdissected from rpAD and sAD patients (n = 22 for each patient group) and protein expression differences were quantified. On average, 913 ± 30 (mean ± SEM) proteins were quantified in plaques from each patient and 279 of these proteins were consistently found in plaques from every patient. We found significant differences in protein composition between rpAD and sAD plaques. We found that rpAD plaques contained significantly higher levels of neuronal proteins (p = 0.0017) and significantly lower levels of astrocytic proteins (p = 1.08 × 10(-6)). Unexpectedly, cumulative protein differences in rpAD plaques did not suggest accelerated typical sAD. Plaques from patients with rpAD were particularly abundant in synaptic proteins, especially those involved in synaptic vesicle release, highlighting the potential importance of synaptic dysfunction in the accelerated development of plaque pathology in rpAD. Combined, our data provide new direct evidence that amyloid plaques do not all have the same protein composition and that the proteomic differences in plaques could provide important insight into the factors that contribute to plaque development. The cumulative protein differences in rpAD plaques suggest rpAD may be a novel subtype of Alzheimer's disease.

  19. Tau and Amyloid-β Cerebrospinal Fluid Biomarkers have Differential Relationships with Cognition in Mild Cognitive Impairment.

    PubMed

    Malpas, Charles B; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia; O'Brien, Terence J

    2015-01-01

    Alzheimer's disease (AD) is characterized by two primary pathologies: tau-related neurofibrillary tangles and the extracellular accumulation of amyloid-β (Aβ). The development of these pathologies is topologically distinct early in the disease, with Aβ beginning to accumulate as a diffuse, neocortical pathology, while tau-related pathology begins to form in mesial temporal regions. This study investigated the hypothesis that, by virtue of this distinction, there exist preferential associations between the primary pathologies and aspects of the cognitive phenotype. We investigated the relationship between cerebrospinal fluid (CSF) biomarkers for tau and Aβ pathologies with neurocognitive measures in 191 patients with mild cognitive impairment (MCI). Participants completed cognitive tests of new learning, information processing speed, and working memory. Separate regression models were computed and then followed up with mediation analyses to examine the predictive status of CSF biomarkers. The effect of Aβ on learning was mediated by phospho-tau (p = 0.008). In contrast, Aβ had a direct effect on information processing speed that was not mediated by phospho-tau (p = 0.59). No predictors were significant for working memory. This study provided evidence for a differential relationship of Aβ and phospho-tau pathologies on the neurocognitive phenotype of MCI. This supports the proposition that these primary AD pathologies maximally affect different aspects of cognition, and has potential implications for cognitive assessments and the use of biomarkers in disease-modifyingtherapeutic trials.

  20. Amyloid-beta: a crucial factor in Alzheimer's disease.

    PubMed

    Sadigh-Eteghad, Saeed; Sabermarouf, Babak; Majdi, Alireza; Talebi, Mahnaz; Farhoudi, Mehdi; Mahmoudi, Javad

    2015-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed.

  1. Can Alzheimer disease be prevented by amyloid-β immunotherapy?

    PubMed Central

    Lemere, Cynthia A.; Masliah, Eliezer

    2010-01-01

    Alzheimer disease (AD) is the most common form of dementia. The amyloid-β (Aβ) peptide has become a major therapeutic target in AD on the basis of pathological, biochemical and genetic evidence that supports a role for this molecule in the disease process. Active and passive Aβ immunotherapies have been shown to lower cerebral Aβ levels and improve cognition in animal models of AD. In humans, dosing in the phase II clinical trial of the AN1792 Aβ vaccine was stopped when ~6% of the immunized patients developed meningoencephalitis. However, some plaque clearance and modest clinical improvements were observed in patients following immunization. As a result of this study, at least seven passive Aβ immunotherapies are now in clinical trials in patients with mild to moderate AD. Several second-generation active Aβ vaccines are also in early clinical trials. On the basis of preclinical studies and the limited data from clinical trials, Aβ immunotherapy might be most effective in preventing or slowing the progression of AD when patients are immunized before or in the very earliest stages of disease onset. Biomarkers for AD and imaging technology have improved greatly over the past 10 years and, in the future, might be used to identify presymptomatic, at-risk individuals who might benefit from Aβ immunization. PMID:20140000

  2. A review of β-amyloid neuroimaging in Alzheimer's disease

    PubMed Central

    Adlard, Paul A.; Tran, Bob A.; Finkelstein, David I.; Desmond, Patricia M.; Johnston, Leigh A.; Bush, Ashley I.; Egan, Gary F.

    2014-01-01

    Alzheimer's disease (AD) is the most common cause of dementia worldwide. As advancing age is the greatest risk factor for developing AD, the number of those afflicted is expected to increase markedly with the aging of the world's population. The inability to definitively diagnose AD until autopsy remains an impediment to establishing effective targeted treatments. Neuroimaging has enabled in vivo visualization of pathological changes in the brain associated with the disease, providing a greater understanding of its pathophysiological development and progression. However, neuroimaging biomarkers do not yet offer clear advantages over current clinical diagnostic criteria for them to be accepted into routine clinical use. Nonetheless, current insights from neuroimaging combined with the elucidation of biochemical and molecular processes in AD are informing the ongoing development of new imaging techniques and their application. Much of this research has been greatly assisted by the availability of transgenic mouse models of AD. In this review we summarize the main efforts of neuroimaging in AD in humans and in mouse models, with a specific focus on β-amyloid, and discuss the potential of new applications and novel approaches. PMID:25400539

  3. Can Alzheimer disease be prevented by amyloid-beta immunotherapy?

    PubMed

    Lemere, Cynthia A; Masliah, Eliezer

    2010-02-01

    Alzheimer disease (AD) is the most common form of dementia. The amyloid-beta (Abeta) peptide has become a major therapeutic target in AD on the basis of pathological, biochemical and genetic evidence that supports a role for this molecule in the disease process. Active and passive Abeta immunotherapies have been shown to lower cerebral Abeta levels and improve cognition in animal models of AD. In humans, dosing in the phase II clinical trial of the AN1792 Abeta vaccine was stopped when approximately 6% of the immunized patients developed meningoencephalitis. However, some plaque clearance and modest clinical improvements were observed in patients following immunization. As a result of this study, at least seven passive Abeta immunotherapies are now in clinical trials in patients with mild to moderate AD. Several second-generation active Abeta vaccines are also in early clinical trials. On the basis of preclinical studies and the limited data from clinical trials, Abeta immunotherapy might be most effective in preventing or slowing the progression of AD when patients are immunized before or in the very earliest stages of disease onset. Biomarkers for AD and imaging technology have improved greatly over the past 10 years and, in the future, might be used to identify presymptomatic, at-risk individuals who might benefit from Abeta immunization.

  4. Proliferation in the Alzheimer Hippocampus Is due to Microglia, Not Astroglia, and Occurs at Sites of Amyloid Deposition

    PubMed Central

    Marlatt, Michael W.; Bauer, Jan; Aronica, Eleonora; van Haastert, Elise S.; Hoozemans, Jeroen J. M.; Joels, Marian; Lucassen, Paul J.

    2014-01-01

    Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro- or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro- or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD. PMID:25215243

  5. Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Iuchi, Katsuya; Nishimaki, Kiyomi; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-02-05

    Oxidative stress is known to play a prominent role in the onset and early stage progression of Alzheimer's disease (AD). For example, protein oxidation and lipid peroxidation levels are increased in patients with mild cognitive impairment. Here, we created a double-transgenic mouse model of AD to explore the pathological and behavioral effects of oxidative stress. Double transgenic (APP/DAL) mice were constructed by crossing Tg2576 (APP) mice, which express a mutant form of human amyloid precursor protein (APP), with DAL mice expressing a dominant-negative mutant of mitochondrial aldehyde dehydrogenase 2 (ALDH2), in which oxidative stress is enhanced. Y-maze and object recognition tests were performed at 3 and 6 months of age to evaluate learning and memory. The accumulation of amyloid plaques, deposition of phosphorylated-tau protein, and number of astrocytes in the brain were assessed histopathologically at 3, 6, 9, and 12-15 months of age. The life span of APP/DAL mice was significantly shorter than that of APP or DAL mice. In addition, they showed accelerated amyloid deposition, tau phosphorylation, and gliosis. Furthermore, these mice showed impaired performance on Y-maze and object recognition tests at 3 months of age. These data suggest that oxidative stress accelerates cognitive dysfunction and pathological insults in the brain. APP/DAL mice could be a useful model for exploring new approaches to AD treatment.

  6. Increased Amyloid-β Peptide-Induced Memory Deficits in Phospholipid Transfer Protein (PLTP) Gene Knockout Mice

    PubMed Central

    Desrumaux, Catherine; Pisoni, Amandine; Meunier, Johann; Deckert, Valérie; Athias, Anne; Perrier, Véronique; Villard, Vanessa; Lagrost, Laurent; Verdier, Jean-Michel; Maurice, Tangui

    2013-01-01

    Oxidative stress is recognized as one of the earliest and most intense pathological processes in Alzheimer's disease (AD), and the antioxidant vitamin E has been shown to efficiently prevent amyloid plaque formation and neurodegeneration. Plasma phospholipid transfer protein (PLTP) has a major role in vitamin E transfers in vivo, and PLTP deficiency in mice is associated with reduced brain vitamin E levels. To determine the impact of PLTP on amyloid pathology in vivo, we analyzed the vulnerability of PLTP-deficient (PLTP-KO) mice to the toxic effects induced by intracerebroventricular injection of oligomeric amyloid-β25–35 (Aβ25–35) peptide, a non-transgenic model of AD. Under basal conditions, PLTP-KO mice showed increased cerebral oxidative stress, increased brain Aβ1–42 levels, and a lower expression of the synaptic function marker synaptophysin, as compared with wild-type mice. This PLTP-KO phenotype was associated with increased memory impairment 1 week after Aβ25–35 peptide injection. Restoration of brain vitamin E levels in PLTP-KO mice through a chronic dietary supplementation prevented Aβ25–35-induced memory deficits and reduced cerebral oxidative stress and toxicity. We conclude that PLTP, through its ability to deliver vitamin E to the brain, constitutes an endogenous neuroprotective agent. Increasing PLTP activity may offer a new way to develop neuroprotective therapies. PMID:23303044

  7. A Survey of FDG- and Amyloid-PET Imaging in Dementia and GRADE Analysis

    PubMed Central

    Daniela, Perani; Orazio, Schillaci; Alessandro, Padovani; Mariano, Nobili Flavio; Leonardo, Iaccarino; Pasquale Anthony, Della Rosa; Giovanni, Frisoni; Carlo, Caltagirone

    2014-01-01

    PET based tools can improve the early diagnosis of Alzheimer's disease (AD) and differential diagnosis of dementia. The importance of identifying individuals at risk of developing dementia among people with subjective cognitive complaints or mild cognitive impairment has clinical, social, and therapeutic implications. Within the two major classes of AD biomarkers currently identified, that is, markers of pathology and neurodegeneration, amyloid- and FDG-PET imaging represent decisive tools for their measurement. As a consequence, the PET tools have been recognized to be of crucial value in the recent guidelines for the early diagnosis of AD and other dementia conditions. The references based recommendations, however, include large PET imaging literature based on visual methods that greatly reduces sensitivity and specificity and lacks a clear cut-off between normal and pathological findings. PET imaging can be assessed using parametric or voxel-wise analyses by comparing the subject's scan with a normative data set, significantly increasing the diagnostic accuracy. This paper is a survey of the relevant literature on FDG and amyloid-PET imaging aimed at providing the value of quantification for the early and differential diagnosis of AD. This allowed a meta-analysis and GRADE analysis revealing high values for PET imaging that might be useful in considering recommendations. PMID:24772437

  8. A survey of FDG- and amyloid-PET imaging in dementia and GRADE analysis.

    PubMed

    Perani, Daniela; Daniela, Perani; Schillaci, Orazio; Orazio, Schillaci; Padovani, Alessandro; Alessandro, Padovani; Nobili, Flavio Mariano; Mariano, Nobili Flavio; Iaccarino, Leonardo; Leonardo, Iaccarino; Della Rosa, Pasquale Anthony; Pasquale Anthony, Della Rosa; Frisoni, Giovanni; Giovanni, Frisoni; Caltagirone, Carlo; Carlo, Caltagirone

    2014-01-01

    PET based tools can improve the early diagnosis of Alzheimer's disease (AD) and differential diagnosis of dementia. The importance of identifying individuals at risk of developing dementia among people with subjective cognitive complaints or mild cognitive impairment has clinical, social, and therapeutic implications. Within the two major classes of AD biomarkers currently identified, that is, markers of pathology and neurodegeneration, amyloid- and FDG-PET imaging represent decisive tools for their measurement. As a consequence, the PET tools have been recognized to be of crucial value in the recent guidelines for the early diagnosis of AD and other dementia conditions. The references based recommendations, however, include large PET imaging literature based on visual methods that greatly reduces sensitivity and specificity and lacks a clear cut-off between normal and pathological findings. PET imaging can be assessed using parametric or voxel-wise analyses by comparing the subject's scan with a normative data set, significantly increasing the diagnostic accuracy. This paper is a survey of the relevant literature on FDG and amyloid-PET imaging aimed at providing the value of quantification for the early and differential diagnosis of AD. This allowed a meta-analysis and GRADE analysis revealing high values for PET imaging that might be useful in considering recommendations.

  9. Quantification of amyloid precursor protein isoforms using quantification concatamer internal standard.

    PubMed

    Chen, Junjun; Wang, Meiyao; Turko, Illarion V

    2013-01-02

    It is likely that expression and/or post-translational generation of various protein isoforms can be indicative of initial pathological changes or pathology development. However, selective quantification of individual protein isoforms remains a challenge, because they simultaneously possess common and unique amino acid sequences. Quantification concatamer (QconCAT) internal standards were originally designed for a large-scale proteome quantification and are artificial proteins that are concatamers of tryptic peptides for several proteins. We developed a QconCAT for quantification of various isoforms of amyloid precursor protein (APP). APP-QconCAT includes tryptic peptides that are common for all isoforms of APP concatenated with those tryptic peptides that are unique for specific APP isoforms. Isotope-labeled APP-QconCAT was expressed, purified, characterized, and further used for quantification of total APP, APP695, and amyloid-β (Aβ) in the human frontal cortex from control and severe Alzheimer's disease donors. Potential biological implications of our quantitative measurements are discussed. It is also expected that using APP-QconCAT(s) will advance our understanding of biological mechanism by which various APP isoforms involved in the pathogenesis of Alzheimer's disease.

  10. Detection of Alzheimer's amyloid beta aggregation by capturing molecular trails of individual assemblies

    SciTech Connect

    Vestergaard, Mun'delanji Hamada, Tsutomu; Saito, Masato; Yajima, Yoshifumi; Kudou, Monotori; Tamiya, Eiichi; Takagi, Masahiro

    2008-12-12

    Assembly of Amyloid beta (A{beta}) peptides, in particular A{beta}-42 is central to the formation of the amyloid plaques associated with neuro-pathologies such as Alzheimer's disease (AD). Molecular assembly of individual A{beta}-42 species was observed using a simple fluorescence microscope. From the molecular movements (aka Brownian motion) of the individual peptide assemblies, we calculated a temporal evolution of the hydrodynamic radius (R{sub H}) of the peptide at physiological temperature and pH. The results clearly show a direct relationship between R{sub H} of A{beta}-42 and incubation period, corresponding to the previously reported peptide's aggregation kinetics. The data correlates highly with in solution-based label-free electrochemical detection of the peptide's aggregation, and A{beta}-42 deposited on a solid surface and analysed using atomic force microscopy (AFM). To the best of our knowledge, this is the first analysis and characterisation of A{beta} aggregation based on capturing molecular trails of individual assemblies. The technique enables both real-time observation and a semi-quantitative distribution profile of the various stages of A{beta} assembly, at microM peptide concentration. Our method is a promising candidate for real-time observation and analysis of the effect of other pathologically-relevant molecules such as metal ions on pathways to A{beta} oligomerisation and aggregation. The method is also a promising screening tool for AD therapeutics that target A{beta} assembly.

  11. Ovine colostrum nanopeptide affects amyloid beta aggregation.

    PubMed

    Janusz, Maria; Woszczyna, Mirosław; Lisowski, Marek; Kubis, Adriana; Macała, Józefa; Gotszalk, Teodor; Lisowski, Józef

    2009-01-05

    A colostral proline-rich polypeptide complex (PRP) consisting of over 30 peptides shows beneficial effects in Alzheimer's disease (AD) patients when administered in the form of sublinqual tablets called Colostrinin. The aim of the present studies was to investigate whether nanopeptide fragment of PRP (NP) - one of the PRP complex components can affect aggregation of amyloid beta (Abeta1-42). The effect of NP on Abeta aggregation was studied using Thioflavin T (ThT) binding, atomic force microscopy, and analyzing circular dichroism spectra. Results presented suggest that NP can directly interact with amyloid beta, inhibit its aggregation and disrupt existing aggregates acting as a beta sheet breaker and reduce toxicity induced by aggregated forms of Abeta.

  12. ACAT inhibition and amyloid beta reduction.

    PubMed

    Bhattacharyya, Raja; Kovacs, Dora M

    2010-08-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder. Accumulation and deposition of the beta-amyloid (Abeta) peptide generated from its larger amyloid precursor protein (APP) is one of the pathophysiological hallmarks of AD. Intracellular cholesterol was shown to regulate Abeta production. Recent genetic and biochemical studies indicate that not only the amount, but also the distribution of intracellular cholesterol is critical to regulate Abeta generation. Acyl-coenzyme A: cholesterol acyl-transferase (ACAT) is a family of enzymes that regulates the cellular distribution of cholesterol by converting membrane cholesterol into hydrophobic cholesteryl esters for cholesterol storage and transport. Using pharmacological inhibitors and transgenic animal models, we and others have identified ACAT1 as a potential therapeutic target to lower Abeta generation and accumulation. Here we discuss data focusing on ACAT inhibition as an effective strategy for the prevention and treatment of AD.

  13. Inhibition of Alzheimer amyloid β aggregation by polyvalent trehalose

    NASA Astrophysics Data System (ADS)

    Miura, Yoshiko; You, Chouga; Ohnishi, Reiko

    2008-04-01

    A glycopolymer carrying trehalose was found to suppress the formation of amyloid fibrils from the amyloid β peptide (1-42) (Aβ), as evaluated by thioflavin T assay and atomic force microscopy. Glycopolymers carrying sugar alcohols also changed the aggregation properties of Aβ, and the inhibitory effect depended on the type of sugar and alkyl side chain. Neutralization activity was confirmed by in vitro assay using HeLa cells. The glycopolymer carrying trehalose strongly inhibited amyloid formation and neutralized cytotoxicity.

  14. Inhibition of Alzheimer amyloid β aggregation by polyvalent trehalose.

    PubMed

    Miura, Yoshiko; You, Chouga; Ohnishi, Reiko

    2008-04-01

    A glycopolymer carrying trehalose was found to suppress the formation of amyloid fibrils from the amyloid β peptide (1-42) (Aβ), as evaluated by thioflavin T assay and atomic force microscopy. Glycopolymers carrying sugar alcohols also changed the aggregation properties of Aβ, and the inhibitory effect depended on the type of sugar and alkyl side chain. Neutralization activity was confirmed by in vitro assay using HeLa cells. The glycopolymer carrying trehalose strongly inhibited amyloid formation and neutralized cytotoxicity.

  15. Technical aspects of amyloid imaging for Alzheimer's disease.

    PubMed

    Edison, Paul; Hinz, Rainer; Brooks, David J

    2011-08-31

    [11C]Pittsburgh Compound B positron emission tomography has now been extensively used to evaluate the amyloid load in different types of dementia and has become a powerful research tool in the field of neurodegenerative diseases. In the present short review we discuss the properties of amyloid imaging agent [11C]Pittsburgh Compound B, the different modalities of molecular imaging, image processing and data analysis, and newer amyloid imaging agents.

  16. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition.

    PubMed

    Zhang, Xiaoxue; St Clair, Johnna R; London, Erwin; Raleigh, Daniel P

    2017-01-17

    Amyloid formation by islet amyloid polypeptide (IAPP) contributes to β-cell dysfunction in type 2 diabetes. Perturbation of the β-cell membrane may contribute to IAPP-induced toxicity. We examine the effects of lipid composition, salt, and buffer on IAPP amyloid formation and on the ability of IAPP to induce leakage of model membranes. Even low levels of anionic lipids promote amyloid formation and membrane permeabilization. Increasing the percentage of the anionic lipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) or 1,2-dioleoyl-sn-glycero-3-phospho(1'-rac-glycerol), enhances the rate of amyloid formation and increases the level of membrane permeabilization. The choice of zwitterionic lipid has no noticeable effect on membrane-catalyzed amyloid formation but in most cases affects leakage, which tends to decrease in the following order: 1,2-dioleoyl-sn-glycero-3-phosphocholine > 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine > sphingomyelin. Uncharged lipids that increase the level of membrane order weaken the ability of IAPP to induce leakage. Leakage is due predominately to pore formation rather than complete disruption of the vesicles under the conditions used in these studies. Cholesterol at or below physiological levels significantly reduces the rate of vesicle-catalyzed IAPP amyloid formation and decreases the susceptibility to IAPP-induced leakage. The effects of cholesterol on amyloid formation are masked by 25 mol % POPS. Overall, there is a strong inverse correlation between the time to form amyloid and the extent of vesicle leakage. NaCl reduces the rate of membrane-catalyzed amyloid formation by anionic vesicles, but accelerates amyloid formation in solution. The implications for IAPP membrane interactions are discussed, as is the possibility that the loss of phosphatidylserine asymmetry enhances IAPP amyloid formation and membrane damage in vivo via a positive feedback loop.

  17. An update on the amyloid hypothesis.

    PubMed

    Eckman, Christopher B; Eckman, Elizabeth A

    2007-08-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disease. To rationally develop novel therapeutic and/or preventative agents for AD, an understanding of the etiology and pathogenesis of this complex disease is necessary. This article examines the evidence for the amyloid hypothesis of AD pathogenesis and discusses how it relates to the neurological and neuropathological features of AD, the known genetic risk factors and causative mutations, and the heightened risk associated with advanced age.

  18. Differential recruitment efficacy of patient-derived amyloidogenic and myeloma light chain proteins by synthetic fibrils—A metric for predicting amyloid propensity

    PubMed Central

    Wooliver, Craig; Heidel, R. Eric; Adams, Sarah; Dunlap, John; Lands, Ronald H.

    2017-01-01

    Background Monoclonal free light chain (LC) proteins are present in the circulation of patients with immunoproliferative disorders such as light chain (AL) amyloidosis and multiple myeloma (MM). Light chain-associated amyloid is a complex pathology composed of proteinaceous fibrils and extracellular matrix proteins found in all patients with AL and in ~10–30% of patients who presented with MM. Amyloid deposits systemically in multiple organs and tissues leading to dysfunction and ultimately death. The overall survival of patients with amyloidosis is worse than for those with early stage MM. Methods and findings We have developed a sensitive binding assay quantifying the recruitment of full length, patient-derived LC proteins by synthetic amyloid fibrils, as a method for studying their amyloidogenic potential. In a survey of eight urinary LC, both AL and MM-associated proteins were recruited by synthetic amyloid fibrils; however, AL-associated LC bound significantly more efficiently (p < 0.05) than did MM LCs. The LC proteins used in this study were isolated from urine and presumed to represent a surrogate of serum free light chains. Conclusion The binding of LC to synthetic fibrils in this assay accurately differentiated LC with amyloidogenic propensity from MM LC that were not associated with clinical amyloid disease. Notably, the LC from a MM patient who subsequently developed amyloid behaved as an AL-associated protein in the assay, indicating the possibility for identifying MM patients at risk for developing amyloidosis based on the light chain recruitment efficacy. With this information, at risk patients can be monitored more closely for the development of amyloidosis, allowing timely administration of novel, amyloid-directed immunotherapies—this approach may improve the prognosis for these patients. PMID:28350808

  19. HIGH-RESOLUTION ELECTRON MICROSCOPIC ANALYSIS OF THE AMYLOID FIBRIL

    PubMed Central

    Shirahama, Tsuranobu; Cohen, Alan S.

    1967-01-01

    The ultrastructural organization of the fibrous component of amyloid has been analyzed by means of high resolution electron microscopy of negatively stained isolated amyloid fibrils and of positively stained amyloid fibrils in thin tissue sections. It was found that a number of subunits could be resolved according to their dimensions. The following structural organization is proposed. The amyloid fibril, the fibrous component of amyloid as seen in electron microscopy of thin tissue sections, consists of a number of filaments aggregated side-by-side. These amyloid filaments are approximately 75–80 A in diameter and consist of five (or less likely six) subunits (amyloid protofibrils) which are arranged parallel to each other, longitudinal or slightly oblique to the long axis of the filament. The filament has often seemed to disperse into several longitudinal rows. The amyloid protofibril is about 25–35 A wide and appears to consist of two or three subunit strands helically arranged with a 35–50-A repeat (or, less likely, is composed of globular subunits aggregated end-to-end). These amyloid subprotofibrillar strands measure approximately 10–15 A in diameter. PMID:6036530

  20. Benzothiazole-Based Neutral Ratiometric Fluorescence Sensor for Amyloid Fibrils.

    PubMed

    Mora, Aruna K; Murudkar, Sushant; Alamelu, A; Singh, Prabhat K; Chattopadhyay, Subrata; Nath, Sukhendu

    2016-11-07

    Early detection of amyloid fibrils is very important for the timely diagnosis of several neurological diseases. Thioflavin-T (ThT) is a gold standard fluorescent probe for amyloid fibrils and has been used for the last few decades. However, due to its positive charge, ThT is incapable of crossing the blood-brain barrier and cannot be used for in vivo imaging of fibrils. In the present work, we synthesized a neutral ThT derivative, 2-[2'-Me,4'-(dimethylamino)phenyl]benzothiazole (2Me-DABT), which showed a strong affinity towards the amyloid fibrils. On association with the amyloid fibrils, 2Me-DABT not only showed a large increase in its emission intensity, but also, unlike ThT, a large blueshift in its emission spectrum was observed. Thus, unlike ThT, 2Me-DABT is a potential candidate for the ratiometric sensor of the amyloid fibrils. Detailed photophysical properties of 2Me-DABT in amyloid fibrils and different solvent media were studied to understand its sensory activity. Fluorescence resonance energy transfer (FRET) studies suggested that the sites of localization for ThT and 2Me-DABT in amyloid fibrils are not same and their average distance of separation in amyloid fibrils was determined. The experimental data was nicely supported by molecular docking studies, which confirmed the binding of 2Me-DABT in the inner core of the amyloid fibrils.

  1. Pramipexole prevents neurotoxicity induced by oligomers of beta-amyloid.

    PubMed

    Uberti, Daniela; Bianchi, Irene; Olivari, Luca; Ferrari-Toninelli, Giulia; Canonico, PierLuigi; Memo, Maurizio

    2007-08-27

    Here we demonstrate that pramipexole, an antiparkinsonian dopamine receptor agonist drug, exerts neuroprotective effects against beta-amyloid neurotoxicity. Using a specific protocol to test individually oligomers, fibrils, or unaggregated amyloid beta-peptide, we found pramipexole able to protect cells against oligomers and fibrils. Unaggregated amyloid beta-peptide was found unable to cause cell death. Fibrils and oligomers were also found to produce elevated amount of free radicals, and this effect was prevented by pramipexole. We propose pramipexole may become in the future a coadjuvant in the treatment of neuropathologies, besides Parkinson's disease, where amyloid beta-peptide-mediated oxidative injury exerts a relevant role.

  2. Specific Chaperones and Regulatory Domains in Control of Amyloid Formation*

    PubMed Central

    Landreh, Michael; Rising, Anna; Presto, Jenny; Jörnvall, Hans; Johansson, Jan

    2015-01-01

    Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology. PMID:26354437

  3. Peptide Detection of Fungal Functional Amyloids in Infected Tissue

    PubMed Central

    Garcia-Sherman, Melissa C.; Lysak, Nataliya; Filonenko, Alexandra; Richards, Hazel; Sobonya, Richard E.; Klotz, Stephen A.; Lipke, Peter N.

    2014-01-01

    Many fungal cell adhesion proteins form functional amyloid patches on the surface of adhering cells. The Candida albicans Agglutinin-like sequence (Als) adhesins are exemplars for this phenomenon, and have amyloid forming sequences that are conserved between family members. The Als5p amyloid sequence mediates amyloid fibril formation and is critical for cell adhesion and biofilm formation, and is also present in the related adhesins Als1p and Als3p. We have developed a fluorescent peptide probe containing the conserved Als amyloid-forming sequence. This peptide bound specifically to yeast expressing Als5p, but not to cells lacking the adhesin. The probe bound to both yeast and hyphal forms of C. albicans. Δals1/Δals3 single and double deletion strains exhibited reduced fluorescence, indicating that probe binding required expression of these proteins. Additionally, the Als peptide specifically stained fungal cells in abscesses in autopsy sections. Counterstaining with calcofluor white showed colocalization with the amyloid peptide. In addition, fungi in autopsy sections derived from the gastrointestinal tract showed colocalization of the amyloid-specific dye thioflavin T and the fluorescent peptide. Collectively, our data demonstrate that we can exploit amyloid sequence specificity for detection of functional amyloids in situ. PMID:24465872

  4. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation.

    PubMed

    Radic, Slaven; Davis, Thomas P; Ke, Pu Chun; Ding, Feng

    2015-01-01

    Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid aggregation of proteins, but the molecular mechanisms for such complex behaviors remain unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of varying the strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, the amyloid-beta peptide implicated in Alzheimer's disease. Specifically, with increasing NP-peptide attraction, amyloid aggregation on the NP surface was initially promoted due to increased local protein concentration on the surface and destabilization of the folded state. However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and reduced their lateral diffusion on the NP surface necessary for peptide conformational changes and self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative concentration between protein and NPs also played an important role in amyloid aggregation. With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an inhibitive effect by depleting the proteins in solution while having a low concentration of the proteins on each NP's surface. Our coarse-grained molecular dynamics simulation study offers a molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-protein attraction on amyloid aggregation and highlights the potential of tailoring anti-aggregation nanomedicine against amyloid diseases.

  5. Partial Volume Correction in Quantitative Amyloid Imaging

    PubMed Central

    Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Marcus, Daniel S.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Aldea, Patricia; Cash, Lisa; Christensen, Jon J.; Friedrichsen, Karl; Hornbeck, Russ C.; Farrar, Angela M.; Owen, Christopher J.; Mayeux, Richard; Brickman, Adam M.; Klunk, William; Price, Julie C.; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Schofield, Peter R.; Buckles, Virginia; Morris, John C.; Benzinger, Tammie. LS.

    2014-01-01

    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition. PMID:25485714

  6. Iatrogenic amyloid polyneuropathy after domino liver transplantation

    PubMed Central

    Mnatsakanova, Diana; Živković, Saša A

    2017-01-01

    Liver transplantation has been used in treatment of transthyretin amyloidosis, and some patients undergo domino liver transplantation (DLT) with explanted liver being transplanted to another patient with liver failure as the liver is otherwise usually functionally normal. Until end of 2015, there were 1154 DLT performed worldwide. DLT for transthyretin amyloidosis is associated with the risk of developing de novo systemic amyloidosis and amyloid neuropathy, and the risk may be greater with some non-Val30Met mutations. De novo amyloid neuropathy has been described in up to 23% of transplant recipients. Neuropathy may be preceded by asymptomatic amyloid deposition in various tissues and symptoms of neuropathy started after a median of 7 years following DLT (5.7 ± 3.2 years; range 2 mo to 10 years). Typical initial symptoms include neuropathic pain and sensory loss, while dysautonomia usually starts later. Progression of neuropathy may necessitate liver re-transplantation, and subsequent improvement of neuropathy has been reported in some patients. Explant allograft recipients need close monitoring for signs of systemic amyloidosis, neuropathy and dysautonomia as progressive symptoms may require re-transplantation. PMID:28217248

  7. Cooperative Hydrogen Bonding in Amyloid Formation.

    SciTech Connect

    Tsemekhman, Kiril L.; Goldschmidt, Lukasz; Eisenberg, Dvaid; Baker, David

    2007-04-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Amyloid diseases, including Alzheimer's and prion diseases, are each associated with unbranched protein fibrils. Each fibril is made of a particular protein, yet they share common properties. One such property is nucleation-dependent fibril growth. Monomers of amyloid-forming proteins can remain in dissolved form for long periods, before rapidly assembly into fibrils. The lag before growth has been attributed to slow kinetics of formation of a nucleus, on which other molecules can deposit to form the fibril. We have explored the energetics of fibril formation, based on the known molecular structure of a fibril-forming peptide from the yeast prion, Sup35, using both classical and quantum (density functional theory) methods. We find that the energetics of fibril formation for the first three layers are cooperative using both methods. This cooperativity is consistent with the observation that formation of amyloid fibrils involves slow nucleation and faster growth.

  8. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGES

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  9. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores

    PubMed Central

    Arbor, Sage C.; LaFontaine, Mike; Cumbay, Medhane

    2016-01-01

    Amyloid beta (Aβ), the hallmark of Alzheimer’s Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review. PMID:27505013

  10. Amyloid precursor protein and amyloid precursor-like protein 2 in cancer

    PubMed Central

    Pandey, Poomy; Sliker, Bailee; Peters, Haley L.; Tuli, Amit; Herskovitz, Jonathan; Smits, Kaitlin; Purohit, Abhilasha; Singh, Rakesh K.; Dong, Jixin; Batra, Surinder K.; Coulter, Donald W.; Solheim, Joyce C.

    2016-01-01

    Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members’ roles in cancer progression and metastasis. PMID:26840089

  11. Renal pathology in reptiles.

    PubMed

    Zwart, Peernel

    2006-01-01

    The class of Reptilia varies widely. Both the gross morphology and microscopic anatomy of the kidneys are specific for each species. In each species of reptile, the physiology of the renal system has adapted to the specific conditions of life, including, among other factors, the type of food, environmental temperature, and the availability of water. The pathology of the kidneys in reptiles has been poorly studied, but in recent years a number of investigators have specifically studied reptilian renal pathology.

  12. Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy.

    PubMed

    Spires-Jones, Tara L; Friedman, Taylor; Pitstick, Rose; Polydoro, Manuela; Roe, Allyson; Carlson, George A; Hyman, Bradley T

    2014-03-06

    Alzheimer's disease is characterized pathologically by aggregation of amyloid beta into senile plaques and aggregation of pathologically modified tau into neurofibrillary tangles. While changes in amyloid processing are strongly implicated in disease initiation, the recent failure of amyloid-based therapies has highlighted the importance of tau as a therapeutic target. "Tangle busting" compounds including methylene blue and analogous molecules are currently being evaluated as therapeutics in Alzheimer's disease. Previous studies indicated that methylene blue can reverse tau aggregation in vitro after 10 min, and subsequent studies suggested that high levels of drug reduce tau protein levels (assessed biochemically) in vivo. Here, we tested whether methylene blue could remove established neurofibrillary tangles in the rTg4510 model of tauopathy, which develops robust tangle pathology. We find that 6 weeks of methylene blue dosing in the water from 16 months to 17.5 months of age decreases soluble tau but does not remove sarkosyl insoluble tau, or histologically defined PHF1 or Gallyas positive tangle pathology. These data indicate that methylene blue treatment will likely not rapidly reverse existing tangle pathology.

  13. Self-Assembly of a 9-Residue Amyloid-Forming Peptide Fragment of SARS Corona Virus E-protein: Mechanism of Self Aggregation and Amyloid-Inhibition of hIAPP

    PubMed Central

    Bhat, Jyotsna; Bera, Supriyo; Midya, Anupam; Fierke, Carol A.; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2016-01-01

    Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g. Alzheimer’s disease, Parkinson’s disease, type-II diabetes). Herein, the self-assembly of TK9, a 9 residue peptide of the extra membrane C-terminal tail of the SARS Corona virus envelope, and its variants were characterized through biophysical, spectroscopic and simulated studies, and it was confirmed that the structure of these peptides influence their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and inter peptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported. PMID:25785896

  14. Noninvasive magnetic resonance imaging detection of cerebral amyloid angiopathy-related microvascular alterations using superparamagnetic iron oxide particles in APP transgenic mouse models of Alzheimer's disease: application to passive Abeta immunotherapy.

    PubMed

    Beckmann, Nicolau; Gérard, Christelle; Abramowski, Dorothée; Cannet, Catherine; Staufenbiel, Matthias

    2011-01-19

    Cerebral amyloid angiopathy (CAA) is a common feature of Alzheimer's disease (AD). More advanced stages are accompanied by microhemorrhages and vasculitis. Peripheral blood-borne macrophages are intimately linked to cerebrovascular pathology coincident with AD. Magnetic resonance imaging (MRI) was used to noninvasively study microvascular lesions in amyloid precursor protein transgenic mouse AD models. Foci of signal attenuation were detected in cortical and thalamic brain regions of aged APP23 mice. Their strength and number was considerably enhanced by intravenous administration of iron oxide nanoparticles, which are taken up by macrophages through absorptive endocytosis, 24 h before image acquisition. The number of cortical sites displaying signal attenuation increased with age. Histology at these sites demonstrated the presence of iron-containing macrophages in the vicinity of CAA-affected blood vessels. A fraction of the sites additionally showed thickened vessel walls and vasculitis. Consistent with the visualization of CAA-associated lesions, MRI detected a much smaller number of attenuated signal sites in APP23xPS45 mice, for which a strong presenilin mutation caused a shift toward amyloid β(42), thus reducing vascular amyloid. Similar results were obtained with APP24 and APP51 mice, which develop significantly less CAA and microvascular pathology than APP23. In a longitudinal study, we noninvasively demonstrated the reinforced formation of microvascular pathology during passive amyloid β immunotherapy of APP23 mice. Histology confirmed that foci of signal attenuation reflected an increase in CAA-related lesions. Our data demonstrate that MRI has the sensitivity to noninvasively monitor the development of vascular pathology and its possible enhancement by amyloid β immunotherapy in transgenic mice modeling AD.

  15. Model Hirano bodies protect against tau-independent and tau-dependent cell death initiated by the amyloid precursor protein intracellular domain.

    PubMed

    Furgerson, Matthew; Fechheimer, Marcus; Furukawa, Ruth

    2012-01-01

    The main pathological hallmarks of Alzheimer's disease are amyloid-beta plaques and neurofibrillary tangles, which are primarily composed of amyloid precursor protein (APP) and tau, respectively. These proteins and their role in the mechanism of neurodegeneration have been extensively studied. Hirano bodies are a frequently occurring pathology in Alzheimer's disease as well as other neurodegenerative diseases. However, the physiological role of Hirano bodies in neurodegenerative diseases has yet to be determined. We have established cell culture models to study the role of Hirano bodies in amyloid precursor protein and tau-induced cell death mechanisms. Exogenous expression of APP and either of its c-terminal fragments c31 or Amyloid Precursor Protein Intracellular Domain c58 (AICDc58) enhance cell death. The presence of tau is not required for this enhanced cell death. However, the addition of a hyperphosphorylated tau mimic 352PHPtau significantly increases cell death in the presence of both APP and c31 or AICDc58 alone. The mechanism of cell death induced by APP and its c-terminal fragments and tau was investigated. Fe65, Tip60, p53, and caspases play a role in tau-independent and tau-dependent cell death. In addition, apoptosis was determined to contribute to cell death. The presence of model Hirano bodies protected against cell death, indicating Hirano bodies may play a protective role in neurodegeneration.

  16. Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance.

    PubMed

    Zhu, Zhiyuan; Yan, Jianming; Jiang, Wei; Yao, Xin-gang; Chen, Jing; Chen, Lili; Li, Chenjing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2013-08-07

    Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.

  17. Alzheimer's disease and blood-brain barrier function - Why have anti-β-amyloid therapies failed to prevent dementia progression?

    PubMed Central

    Pahnke, Jens; Walker, Lary C.; Scheffler, Katja; Krohn, Markus

    2009-01-01

    Proteopathies of the brain are defined by abnormal, disease-inducing protein deposition that leads to functional abrogation and death of neurons. Immunization trials targeting the removal of amyloid-β plaques in Alzheimer's disease have so far failed to stop the progression of dementia, despite autopsy findings of reduced plaque load. Here, we summarize current knowledge of the relationship between AD pathology and blood-brain barrier function, and propose that the activation of the excretion function of the blood-brain barrier might help to achieve better results in trials targeting the dissolution of cerebral amyloid-β aggregates. We further discuss a possible role of oligomers in limiting the efficacy of immunotherapy. PMID:19481107

  18. Yeast Two-Hybrid Screening for Proteins that Interact with the Extracellular Domain of Amyloid Precursor Protein.

    PubMed

    Yu, You; Li, Yinan; Zhang, Yan

    2016-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which amyloid β plaques are a pathological characteristic. Little is known about the physiological functions of amyloid β precursor protein (APP). Based on its structure as a type I transmembrane protein, it has been proposed that APP might be a receptor, but so far, no ligand has been reported. In the present study, 9 proteins binding to the extracellular domain of APP were identified using a yeast two-hybrid system. After confirming the interactions in the mammalian system, mutated PLP1, members of the FLRT protein family, and KCTD16 were shown to interact with APP. These proteins have been reported to be involved in Pelizaeus-Merzbacher disease (PMD) and axon guidance. Therefore, our results shed light on the mechanisms of physiological function of APP in AD, PMD, and axon guidance.

  19. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    PubMed

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  20. TDP-43 Inclusion Bodies Formed in Bacteria Are Structurally Amorphous, Non-Amyloid and Inherently Toxic to Neuroblastoma Cells

    PubMed Central

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein. PMID:24497973

  1. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.

    PubMed

    Rodriguez-Vieitez, Elena; Saint-Aubert, Laure; Carter, Stephen F; Almkvist, Ove; Farid, Karim; Schöll, Michael; Chiotis, Konstantinos; Thordardottir, Steinunn; Graff, Caroline; Wall, Anders; Långström, Bengt; Nordberg, Agneta

    2016-03-01

    mixed-effects models, fibrillar amyloid-β plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer's disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-β plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-β plaque deposition. Patients with sporadic mild cognitive impairment who were (11)C-Pittsburgh compound B-positive at baseline showed increasing amyloid-β plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer's disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer's disease carriers, contrasting with the increasing amyloid-β plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer's disease pathology.

  2. Hyperhomocysteinemia Increases β-Amyloid by Enhancing Expression of γ-Secretase and Phosphorylation of Amyloid Precursor Protein in Rat Brain

    PubMed Central

    Zhang, Chang-E; Wei, Wei; Liu, Ying-Hua; Peng, Jun-Hua; Tian, Qing; Liu, Gong-Ping; Zhang, Yao; Wang, Jian-Zhi

    2009-01-01

    Hyperhomocysteinemia and β-amyloid (Aβ) overproduction are critical etiological and pathological factors in Alzheimer disease, respectively; however, the intrinsic link between them is still missing. Here, we found that Aβ levels increased and amyloid precursor protein (APP) levels simultaneously decreased in hyperhomocysteinemic rats after a 2-week induction by vena caudalis injection of homocysteine. Concurrently, both the mRNA and protein levels of presenilin-1, a component of γ-secretase, were elevated, whereas the expression levels of β-secretase and presenilin-2 were not altered. We also observed that levels of phosphorylated APP at threonine-668, a crucial site facilitating the amyloidogenic cleavage of APP, increased in rats with hyperhomocysteinemia, although the phosphorylation per se did not increase the binding capacity of pT668-APP to the secretases. The enhanced phosphorylation of APP i