Sample records for amazonian trees consequences

  1. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Phillips, O. L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Butt, N.; Anderson, L. O.; Arroyo, L.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Silva, N.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-02-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots (e.g. RAINFOR, ATDN) has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing south to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the results of the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that, as predicted, the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the north-west of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  2. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Phillips, O. L.; Butt, N.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Arroyo, L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Anderson, L. O.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-08-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing from southwest to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the northwest of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  3. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    PubMed Central

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  4. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    PubMed

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

  5. Estimating the global conservation status of more than 15,000 Amazonian tree species.

    PubMed

    Ter Steege, Hans; Pitman, Nigel C A; Killeen, Timothy J; Laurance, William F; Peres, Carlos A; Guevara, Juan Ernesto; Salomão, Rafael P; Castilho, Carolina V; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E; Phillips, Oliver L; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R; Honorio Coronado, Euridice N; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G W; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F; Mogollón, Hugo F; Piedade, Maria Teresa Fernandez; Aymard C, Gerardo A; Comiskey, James A; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W; Jimenez, Eliana M; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R; Silva, Natalino; Vela, César I A; Vos, Vincent A; Zent, Eglée L; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H; Gamarra, Luis Valenzuela

    2015-11-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

  6. Estimating the global conservation status of more than 15,000 Amazonian tree species

    PubMed Central

    ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.; Laurance, William F.; Peres, Carlos A.; Guevara, Juan Ernesto; Salomão, Rafael P.; Castilho, Carolina V.; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E.; Phillips, Oliver L.; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R.; Honorio Coronado, Euridice N.; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L.; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G. W.; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S.; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F.; Mogollón, Hugo F.; Piedade, Maria Teresa Fernandez; Aymard C., Gerardo A.; Comiskey, James A.; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W.; Jimenez, Eliana M.; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R.; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R.; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R.; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R.; Silva, Natalino; Vela, César I. A.; Vos, Vincent A.; Zent, Eglée L.; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A.; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R.; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N.; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H.; Gamarra, Luis Valenzuela

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century. PMID:26702442

  7. Hyperdominance in Amazonian forest carbon cycling

    PubMed Central

    Fauset, Sophie; Johnson, Michelle O.; Gloor, Manuel; Baker, Timothy R.; Monteagudo M., Abel; Brienen, Roel J.W.; Feldpausch, Ted R.; Lopez-Gonzalez, Gabriela; Malhi, Yadvinder; ter Steege, Hans; Pitman, Nigel C.A.; Baraloto, Christopher; Engel, Julien; Pétronelli, Pascal; Andrade, Ana; Camargo, José Luís C.; Laurance, Susan G.W.; Laurance, William F.; Chave, Jerôme; Allie, Elodie; Vargas, Percy Núñez; Terborgh, John W.; Ruokolainen, Kalle; Silveira, Marcos; Aymard C., Gerardo A.; Arroyo, Luzmila; Bonal, Damien; Ramirez-Angulo, Hirma; Araujo-Murakami, Alejandro; Neill, David; Hérault, Bruno; Dourdain, Aurélie; Torres-Lezama, Armando; Marimon, Beatriz S.; Salomão, Rafael P.; Comiskey, James A.; Réjou-Méchain, Maxime; Toledo, Marisol; Licona, Juan Carlos; Alarcón, Alfredo; Prieto, Adriana; Rudas, Agustín; van der Meer, Peter J.; Killeen, Timothy J.; Marimon Junior, Ben-Hur; Poorter, Lourens; Boot, Rene G.A.; Stergios, Basil; Torre, Emilio Vilanova; Costa, Flávia R.C.; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Groot, Nikée; Arets, Eric; Moscoso, Victor Chama; Castro, Wendeson; Coronado, Euridice N. Honorio; Peña-Claros, Marielos; Stahl, Clement; Barroso, Jorcely; Talbot, Joey; Vieira, Ima Célia Guimarães; van der Heijden, Geertje; Thomas, Raquel; Vos, Vincent A.; Almeida, Everton C.; Davila, Esteban Álvarez; Aragão, Luiz E.O.C.; Erwin, Terry L.; Morandi, Paulo S.; de Oliveira, Edmar Almeida; Valadão, Marco B.X.; Zagt, Roderick J.; van der Hout, Peter; Loayza, Patricia Alvarez; Pipoly, John J.; Wang, Ophelia; Alexiades, Miguel; Cerón, Carlos E.; Huamantupa-Chuquimaco, Isau; Di Fiore, Anthony; Peacock, Julie; Camacho, Nadir C. Pallqui; Umetsu, Ricardo K.; de Camargo, Plínio Barbosa; Burnham, Robyn J.; Herrera, Rafael; Quesada, Carlos A.; Stropp, Juliana; Vieira, Simone A.; Steininger, Marc; Rodríguez, Carlos Reynel; Restrepo, Zorayda; Muelbert, Adriane Esquivel; Lewis, Simon L.; Pickavance, Georgia C.; Phillips, Oliver L.

    2015-01-01

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region. PMID:25919449

  8. Hyperdominance in Amazonian forest carbon cycling.

    PubMed

    Fauset, Sophie; Johnson, Michelle O; Gloor, Manuel; Baker, Timothy R; Monteagudo M, Abel; Brienen, Roel J W; Feldpausch, Ted R; Lopez-Gonzalez, Gabriela; Malhi, Yadvinder; ter Steege, Hans; Pitman, Nigel C A; Baraloto, Christopher; Engel, Julien; Pétronelli, Pascal; Andrade, Ana; Camargo, José Luís C; Laurance, Susan G W; Laurance, William F; Chave, Jerôme; Allie, Elodie; Vargas, Percy Núñez; Terborgh, John W; Ruokolainen, Kalle; Silveira, Marcos; Aymard C, Gerardo A; Arroyo, Luzmila; Bonal, Damien; Ramirez-Angulo, Hirma; Araujo-Murakami, Alejandro; Neill, David; Hérault, Bruno; Dourdain, Aurélie; Torres-Lezama, Armando; Marimon, Beatriz S; Salomão, Rafael P; Comiskey, James A; Réjou-Méchain, Maxime; Toledo, Marisol; Licona, Juan Carlos; Alarcón, Alfredo; Prieto, Adriana; Rudas, Agustín; van der Meer, Peter J; Killeen, Timothy J; Marimon Junior, Ben-Hur; Poorter, Lourens; Boot, Rene G A; Stergios, Basil; Torre, Emilio Vilanova; Costa, Flávia R C; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Groot, Nikée; Arets, Eric; Moscoso, Victor Chama; Castro, Wendeson; Coronado, Euridice N Honorio; Peña-Claros, Marielos; Stahl, Clement; Barroso, Jorcely; Talbot, Joey; Vieira, Ima Célia Guimarães; van der Heijden, Geertje; Thomas, Raquel; Vos, Vincent A; Almeida, Everton C; Davila, Esteban Álvarez; Aragão, Luiz E O C; Erwin, Terry L; Morandi, Paulo S; de Oliveira, Edmar Almeida; Valadão, Marco B X; Zagt, Roderick J; van der Hout, Peter; Loayza, Patricia Alvarez; Pipoly, John J; Wang, Ophelia; Alexiades, Miguel; Cerón, Carlos E; Huamantupa-Chuquimaco, Isau; Di Fiore, Anthony; Peacock, Julie; Camacho, Nadir C Pallqui; Umetsu, Ricardo K; de Camargo, Plínio Barbosa; Burnham, Robyn J; Herrera, Rafael; Quesada, Carlos A; Stropp, Juliana; Vieira, Simone A; Steininger, Marc; Rodríguez, Carlos Reynel; Restrepo, Zorayda; Muelbert, Adriane Esquivel; Lewis, Simon L; Pickavance, Georgia C; Phillips, Oliver L

    2015-04-28

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

  9. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa

    PubMed Central

    ter Steege, Hans; Vaessen, Rens W.; Cárdenas-López, Dairon; Sabatier, Daniel; Antonelli, Alexandre; de Oliveira, Sylvia Mota; Pitman, Nigel C. A.; Jørgensen, Peter Møller; Salomão, Rafael P.

    2016-01-01

    Amazonia is the most biodiverse rainforest on Earth, and the debate over how many tree species grow there remains contentious. Here we provide a checklist of all tree species collected to date, and describe spatial and temporal trends in data accumulation. We report 530,025 unique collections of trees in Amazonia, dating between 1707 and 2015, for a total of 11,676 species in 1225 genera and 140 families. These figures support recent estimates of 16,000 total Amazonian tree species based on ecological plot data from the Amazonian Tree Diversity Network. Botanical collection in Amazonia is characterized by three major peaks, centred around 1840, 1920, and 1980, which are associated with flora projects and the establishment of inventory plots. Most collections were made in the 20th century. The number of collections has increased exponentially, but shows a slowdown in the last two decades. We find that a species’ range size is a better predictor of the number of times it has been collected than the species’ estimated basin-wide population size. Finding, describing, and documenting the distribution of the remaining species will require coordinated efforts at under-collected sites. PMID:27406027

  10. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa.

    PubMed

    Ter Steege, Hans; Vaessen, Rens W; Cárdenas-López, Dairon; Sabatier, Daniel; Antonelli, Alexandre; de Oliveira, Sylvia Mota; Pitman, Nigel C A; Jørgensen, Peter Møller; Salomão, Rafael P

    2016-07-13

    Amazonia is the most biodiverse rainforest on Earth, and the debate over how many tree species grow there remains contentious. Here we provide a checklist of all tree species collected to date, and describe spatial and temporal trends in data accumulation. We report 530,025 unique collections of trees in Amazonia, dating between 1707 and 2015, for a total of 11,676 species in 1225 genera and 140 families. These figures support recent estimates of 16,000 total Amazonian tree species based on ecological plot data from the Amazonian Tree Diversity Network. Botanical collection in Amazonia is characterized by three major peaks, centred around 1840, 1920, and 1980, which are associated with flora projects and the establishment of inventory plots. Most collections were made in the 20th century. The number of collections has increased exponentially, but shows a slowdown in the last two decades. We find that a species' range size is a better predictor of the number of times it has been collected than the species' estimated basin-wide population size. Finding, describing, and documenting the distribution of the remaining species will require coordinated efforts at under-collected sites.

  11. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa

    NASA Astrophysics Data System (ADS)

    Ter Steege, Hans; Vaessen, Rens W.; Cárdenas-López, Dairon; Sabatier, Daniel; Antonelli, Alexandre; de Oliveira, Sylvia Mota; Pitman, Nigel C. A.; Jørgensen, Peter Møller; Salomão, Rafael P.

    2016-07-01

    Amazonia is the most biodiverse rainforest on Earth, and the debate over how many tree species grow there remains contentious. Here we provide a checklist of all tree species collected to date, and describe spatial and temporal trends in data accumulation. We report 530,025 unique collections of trees in Amazonia, dating between 1707 and 2015, for a total of 11,676 species in 1225 genera and 140 families. These figures support recent estimates of 16,000 total Amazonian tree species based on ecological plot data from the Amazonian Tree Diversity Network. Botanical collection in Amazonia is characterized by three major peaks, centred around 1840, 1920, and 1980, which are associated with flora projects and the establishment of inventory plots. Most collections were made in the 20th century. The number of collections has increased exponentially, but shows a slowdown in the last two decades. We find that a species’ range size is a better predictor of the number of times it has been collected than the species’ estimated basin-wide population size. Finding, describing, and documenting the distribution of the remaining species will require coordinated efforts at under-collected sites.

  12. Fast demographic traits promote high diversification rates of Amazonian trees

    PubMed Central

    Baker, Timothy R; Pennington, R Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J M M; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Brienen, Roel J W; Chave, Jerome; Dexter, Kyle G; Di Fiore, Anthony; Eler, Eduardo; Feldpausch, Ted R; Ferreira, Leandro; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje; Higuchi, Niro; Honorio, Eurídice; Huamantupa, Isau; Killeen, Tim J; Laurance, Susan; Leaño, Claudio; Lewis, Simon L; Malhi, Yadvinder; Marimon, Beatriz Schwantes; Marimon Junior, Ben Hur; Monteagudo Mendoza, Abel; Neill, David; Peñuela-Mora, Maria Cristina; Pitman, Nigel; Prieto, Adriana; Quesada, Carlos A; Ramírez, Fredy; Ramírez Angulo, Hirma; Rudas, Agustin; Ruschel, Ademir R; Salomão, Rafael P; de Andrade, Ana Segalin; Silva, J Natalino M; Silveira, Marcos; Simon, Marcelo F; Spironello, Wilson; ter Steege, Hans; Terborgh, John; Toledo, Marisol; Torres-Lezama, Armando; Vasquez, Rodolfo; Vieira, Ima Célia Guimarães; Vilanova, Emilio; Vos, Vincent A; Phillips, Oliver L; Wiens, John

    2014-01-01

    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests. PMID:24589190

  13. Downstream impacts of a Central Amazonian hydroelectric dam on tree growth and mortality in floodplain forests

    NASA Astrophysics Data System (ADS)

    Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.

    2017-12-01

    The flood pulse of large Amazonian Rivers is characterized by predictable high- and low-water periods during the annual cycle, and is the main driving force in the floodplains regulating decomposition, nutrient cycles, productivity, life cycles and growth rhythms of floodplains' biota. Over at least 20 millions of years, tree species in these ecosystems developed complex adaptative mechanisms to tolerate flooding, such as the tree species Macrolobium acaciifolium (Fabaceae) and Eschweilera tenuifolia (Lecythidaceae) occupying the lower topographic positions in the floodplain forests along the oligothrophic black-water rivers. Tree growth occurs mainly during terrestrial phase, while during the aquatic phase the anoxic conditions result into a cambial dormancy and formation of annual tree rings. The hydroelectric dam Balbina which was installed in the Uatumã River (central Amazonia) during the 1980s altered significantly the flood pulse regime resulting into higher minimum and lower maximum annual water levels. The suppression of the terrestrial phase caused large-scale mortality of flood-adapted trees growing on the lower topographic positions, as evidenced by radiocarbon dating and cross-dating techniques (dendrochronology). In this study we estimated the extension of dead forests using high resolution ALOS/PALSAR radar images, for their detection along a fluvial distance of more than 280 km downstream of the power plant. Further we analyzed tree growth of 60 living individuals of E. tenuifolia by tree-ring analyses comparing the post- and pre-dam periods. We evaluated the impacts of the altered hydrological regime on tree growth considering ontogenetic effects and the fluvial distance of the trees to the dam. Since the Balbina power plant started operating the associated igapó forests lost about 11% of its cover. We found a significant reduction of tree growth of E. tenuifolia during the post-dam period as a consequence of the increasing aquatic phase duration. This impact was stronger for younger trees (<200 yr) and for those growing closer to the hydroelectric dam (<100 km distance). Considering the planning of construction of several dozen dams in the Amazon there is an urgent need to consider these downstream impacts in all discussions of hydroelectric power plants implementation and operation.

  14. Dispersal assembly of rain forest tree communities across the Amazon basin

    PubMed Central

    Lavin, Mathew; Torke, Benjamin M.; Twyford, Alex D.; Kursar, Thomas A.; Coley, Phyllis D.; Drake, Camila; Hollands, Ruth; Pennington, R. Toby

    2017-01-01

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga. We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria. Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin. PMID:28213498

  15. Dispersal assembly of rain forest tree communities across the Amazon basin.

    PubMed

    Dexter, Kyle G; Lavin, Mathew; Torke, Benjamin M; Twyford, Alex D; Kursar, Thomas A; Coley, Phyllis D; Drake, Camila; Hollands, Ruth; Pennington, R Toby

    2017-03-07

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia , Protieae, and Guatteria Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.

  16. Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest.

    PubMed

    Maréchaux, Isabelle; Bartlett, Megan K; Iribar, Amaia; Sack, Lawren; Chave, Jérôme

    2017-01-01

    Pan-tropically, liana density increases with decreasing rainfall and increasing seasonality. This pattern has led to the hypothesis that lianas display a growth advantage over trees under dry conditions. However, the physiological mechanisms underpinning this hypothesis remain elusive. A key trait influencing leaf and plant drought tolerance is the leaf water potential at turgor loss point (π tlp ). π tlp adjusts under drier conditions and this contributes to improved leaf drought tolerance. For co-occurring Amazonian tree (n = 247) and liana (n = 57) individuals measured during the dry and the wet seasons, lianas showed a stronger osmotic adjustment than trees. Liana leaves were less drought-tolerant than trees in the wet season, but reached similar drought tolerances during the dry season. Stronger osmotic adjustment in lianas would contribute to turgor maintenance, a critical prerequisite for carbon uptake and growth, and to the success of lianas relative to trees in growth under drier conditions. © 2017 The Author(s).

  17. The use of smoke acid as an alternative coagulating agent for natural rubber sheets' production.

    PubMed

    Ferreira, Vanda S; Rêgo, Ione N C; Pastore, Floriano; Mandai, Mariana M; Mendes, Leonardo S; Santos, Karin A M; Rubim, Joel C; Suarez, Paulo A Z

    2005-03-01

    A comparative study of rubber sheets obtained using formic, acetic, and smoke acid as coagulants is shown for latex obtained from native Amazonian trees and also from commercial cultivated trees. The evaluation of both processes of coagulation was carried out by spectroscopic and physical-chemical analysis, showing no differences in the rubber sheets obtained. This new method of rubber sheet preparation was introduced into Amazonian rainforest rubber tapper communities, which are actually producing in large scale. The physical-mechanical properties were similar among a large sheets made by different rubber tapper communities using this new method.

  18. GuiaTreeKey, a multi-access electronic key to identify tree genera in French Guiana.

    PubMed

    Engel, Julien; Brousseau, Louise; Baraloto, Christopher

    2016-01-01

    The tropical rainforest of Amazonia is one of the most species-rich ecosystems on earth, with an estimated 16000 tree species. Due to this high diversity, botanical identification of trees in the Amazon is difficult, even to genus, often requiring the assistance of parataxonomists or taxonomic specialists. Advances in informatics tools offer a promising opportunity to develop user-friendly electronic keys to improve Amazonian tree identification. Here, we introduce an original multi-access electronic key for the identification of 389 tree genera occurring in French Guiana terra-firme forests, based on a set of 79 morphological characters related to vegetative, floral and fruit characters. Its purpose is to help Amazonian tree identification and to support the dissemination of botanical knowledge to non-specialists, including forest workers, students and researchers from other scientific disciplines. The electronic key is accessible with the free access software Xper ², and the database is publicly available on figshare: https://figshare.com/s/75d890b7d707e0ffc9bf (doi: 10.6084/m9.figshare.2682550).

  19. Ancient human disturbances may be skewing our understanding of Amazonian forests.

    PubMed

    McMichael, Crystal N H; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J

    2017-01-17

    Although the Amazon rainforest houses much of Earth's biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests.

  20. Liberation: Acceptable production of tropical forest timber.

    Treesearch

    Frank H. Wadsworth; Johan Zweede

    2006-01-01

    Reduced impact logging in an eastern Amazonian terra firme forest left more than half of the next crop trees growing at a rate corresponding to a rotation of more than a century to attain 60-cm dbh. Two years after the logging, in 20 ha of the logged forest, tree competitors around crop trees were eliminated. Competitors were defined as trees whose crowns overtopped...

  1. Rapid decay of tree-community composition in Amazonian forest fragments

    PubMed Central

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  2. Altered resource availability and the population dynamics of tree species in Amazonian secondary forests.

    PubMed

    Fortini, Lucas Berio; Bruna, Emilio M; Zarin, Daniel J; Vasconcelos, Steel S; Miranda, Izildinha S

    2010-04-01

    Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.

  3. Ancient human disturbances may be skewing our understanding of Amazonian forests

    PubMed Central

    McMichael, Crystal N. H.; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J.

    2017-01-01

    Although the Amazon rainforest houses much of Earth’s biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests. PMID:28049821

  4. Rapid tree carbon stock recovery in managed Amazonian forests.

    PubMed

    Rutishauser, Ervan; Hérault, Bruno; Baraloto, Christopher; Blanc, Lilian; Descroix, Laurent; Sotta, Eleneide Doff; Ferreira, Joice; Kanashiro, Milton; Mazzei, Lucas; d'Oliveira, Marcus V N; de Oliveira, Luis C; Peña-Claros, Marielos; Putz, Francis E; Ruschel, Ademir R; Rodney, Ken; Roopsind, Anand; Shenkin, Alexander; da Silva, Katia E; de Souza, Cintia R; Toledo, Marisol; Vidal, Edson; West, Thales A P; Wortel, Verginia; Sist, Plinio

    2015-09-21

    While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Herbivores limit the population size of big-leaf mahogany trees in an Amazonian forest

    Treesearch

    Julian M. Norghauer; Christopher M. Free; R. Matthew Landis; James Grogan; Jay R. Malcolm; Sean C. Thomas

    2015-01-01

    The Janzen -- Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-...

  6. Liana infestation impacts tree growth in a lowland tropical moist forest

    NASA Astrophysics Data System (ADS)

    van der Heijden, G. M. F.; Phillips, O. L.

    2009-03-01

    Stand-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first such estimates of the effect of lianas on above-ground productivity of trees. By constructing a multi-level linear mixed effect model to predict individual tree diameter growth model using individual tree growth conditions, we were able to estimate stand-level above-ground biomass (AGB) increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass by ~10%, equivalent to 0.51 Mg dry weight ha-1 yr-1 or 0.25 Mg C ha-1 yr-1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha-1 yr-1 or 0.07 Mg C ha-1 yr-1, thus only compensating ~29% of the liana-induced reduction in stand-level AGB increment. Increasing liana pressure on tropical forests may therefore not only reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.

  7. Liana infestation impacts tree growth in a lowland tropical moist forest

    NASA Astrophysics Data System (ADS)

    van der Heijden, G. M. F.; Phillips, O. L.

    2009-10-01

    Ecosystem-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first ecosystem-level estimates of the effect of lianas on above-ground productivity of trees. By first constructing a multi-level linear mixed effect model to predict individual-tree diameter growth model using individual-tree growth conditions, we were able to then estimate stand-level above-ground biomass (AGB) increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass increment by ~10%, equivalent to 0.51 Mg dry weight ha-1 yr-1 or 0.25 Mg C ha-1 yr-1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha-1 yr-1 or 0.07 Mg C ha-1 yr-1, thus only compensating ~29% of the liana-induced reduction in ecosystem AGB increment. Increasing liana pressure on tropical forests will therefore not only tend to reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.

  8. Changes in Amazonian forest biomass, dynamics, and composition, 1980-2002

    NASA Astrophysics Data System (ADS)

    Phillips, Oliver L.; Higuchi, Niro; Vieira, Simone; Baker, Timothy R.; Chao, Kuo-Jung; Lewis, Simon L.

    Long-term, on-the-ground monitoring of forest plots distributed across Amazonia provides a powerful means to quantify stocks and fluxes of biomass and biodiversity. Here we examine the evidence for concerted changes in the structure, dynamics, and functional composition of old-growth Amazonian forests over recent decades. Mature forests have, as a whole, gained biomass and undergone accelerated growth and dynamics, but questions remain as to the long-term persistence of these changes. Because forest growth on average exceeds mortality, intact Amazonian forests have been functioning as a carbon sink. We estimate a net biomass increase in trees ≥10 cm diameter of 0.62 ± 0.23 t C ha-1 a-1 through the late twentieth century. If representative of the wider forest landscape, this translates into a sink in South American old-growth forest of at least 0.49 ± 0.18 Pg C a-1. If other biomass and necromass components also increased proportionally, the estimated South American old-growth forest sink is 0.79 ± 0.29 Pg C a-1, before allowing for possible gains in soil carbon. If tropical forests elsewhere are behaving similarly, the old-growth biomass forest sink would be 1.60 ± 0.58 Pg C a-1. This bottom-up estimate of the carbon balance of tropical forests is preliminary, pending syntheses of detailed biometric studies across the other tropical continents. There is also some evidence for recent changes in the functional composition (biodiversity) of Amazonian forest, but the evidence is less comprehensive than that for changes in structure and dynamics. The most likely driver(s) of changes are recent increases in the supply of resources such as atmospheric carbon dioxide, which would increase net primary productivity, increasing tree growth and recruitment, and, in turn, mortality. In the future the growth response of remaining undisturbed Amazonian forests is likely to saturate, and there is a risk of these ecosystems transitioning from sink to source driven by higher respiration (temperature), higher mortality (drought), or compositional change (functional shifts toward lighterwooded plants). Even a modest switch from carbon sink to source for Amazonian forests would impact global climate, biodiversity, and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions of thousands of plant and millions of animal species.

  9. Amazon plant diversity revealed by a taxonomically verified species list.

    PubMed

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M; Bittrich, Volker; Celis, Marcela; Daly, Douglas C; Fiaschi, Pedro; Funk, Vicki A; Giacomin, Leandro L; Goldenberg, Renato; Heiden, Gustavo; Iganci, João; Kelloff, Carol L; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F P; Dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A; Nunes, Teonildes Sacramento; Pennington, Terry D; Pirani, José Rubens; Prance, Ghillean T; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Riina, Ricarda; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D; Taylor, Charlotte M; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E; Forzza, Rafaela Campostrini

    2017-10-03

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.

  10. Amazon plant diversity revealed by a taxonomically verified species list

    PubMed Central

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M.; Bittrich, Volker; Celis, Marcela; Daly, Douglas C.; Fiaschi, Pedro; Funk, Vicki A.; Giacomin, Leandro L.; Heiden, Gustavo; Iganci, João; Kelloff, Carol L.; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F. P.; dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A.; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A.; Nunes, Teonildes Sacramento; Pennington, Terry D.; Pirani, José Rubens; Prance, Ghillean T.; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D.; Taylor, Charlotte M.; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E.; Forzza, Rafaela Campostrini

    2017-01-01

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests. PMID:28923966

  11. Modeling the Complex Impacts of Timber Harvests to Find Optimal Management Regimes for Amazon Tidal Floodplain Forests

    PubMed Central

    Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation. PMID:26322896

  12. Modeling the complex impacts of timber harvests to find optimal management regimes for Amazon tidal floodplain forests

    USGS Publications Warehouse

    Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation.

  13. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest.

    PubMed

    Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric

    2003-03-01

    Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.

  14. Exploring eco-hydrological consequences of the Amazonian ecosystems under climate and land-use changes in the 21st century

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.

    2012-12-01

    Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.

  15. Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.

    2015-12-01

    Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.

  16. Colloquium paper: how many tree species are there in the Amazon and how many of them will go extinct?

    PubMed

    Hubbell, Stephen P; He, Fangliang; Condit, Richard; Borda-de-Agua, Luís; Kellner, James; Ter Steege, Hans

    2008-08-12

    New roads, agricultural projects, logging, and mining are claiming an ever greater area of once-pristine Amazonian forest. The Millennium Ecosystems Assessment (MA) forecasts the extinction of a large fraction of Amazonian tree species based on projected loss of forest cover over the next several decades. How accurate are these estimates of extinction rates? We use neutral theory to estimate the number, relative abundance, and range size of tree species in the Amazon metacommunity and estimate likely tree-species extinctions under published optimistic and nonoptimistic Amazon scenarios. We estimate that the Brazilian portion of the Amazon Basin has (or had) 11,210 tree species that reach sizes >10 cm DBH (stem diameter at breast height). Of these, 3,248 species have population sizes >1 million individuals, and, ignoring possible climate-change effects, almost all of these common species persist under both optimistic and nonoptimistic scenarios. At the rare end of the abundance spectrum, however, neutral theory predicts the existence of approximately 5,308 species with <10,000 individuals each that are expected to suffer nearly a 50% extinction rate under the nonoptimistic deforestation scenario and an approximately 37% loss rate even under the optimistic scenario. Most of these species have small range sizes and are highly vulnerable to local habitat loss. In ensembles of 100 stochastic simulations, we found mean total extinction rates of 20% and 33% of tree species in the Brazilian Amazon under the optimistic and nonoptimistic scenarios, respectively.

  17. Drought responses of flood-tolerant trees in Amazonian floodplains

    PubMed Central

    Parolin, Pia; Lucas, Christine; Piedade, Maria Teresa F.; Wittmann, Florian

    2010-01-01

    Background Flood-tolerant tree species of the Amazonian floodplain forests are subjected to an annual dry period of variable severity imposed when low river-water levels coincide with minimal precipitation. Although the responses of these species to flooding have been examined extensively, their responses to drought, in terms of phenology, growth and physiology, have been neglected hitherto, although some information is found in publications that focus on flooding. Scope The present review examines the dry phase of the annual flooding cycle. It consolidates existing knowledge regarding responses to drought among adult trees and seedlings of many Amazonian floodplain species. Main Findings Flood-tolerant species display variable physiological responses to dry periods and drought that indicate desiccation avoidance, such as reduced photosynthetic activity and reduced root respiration. However, tolerance and avoidance strategies for drought vary markedly among species. Drought can substantially decrease growth, biomass and photosynthetic activity among seedlings in field and laboratory studies. When compared with the responses to flooding, drought can impose higher seedling mortality and slower growth rates, especially among evergreen species. Results indicate that tolerance and avoidance strategies for drought vary markedly between species. Both seedling recruitment and photosynthetic activity are affected by drought, Conclusions For many species, the effects of drought can be as important as flooding for survival and growth, particularly at the seedling phase of establishment, ultimately influencing species composition. In the context of climate change and predicted decreases in precipitation in the Amazon Basin, the effects of drought on plant physiology and species distribution in tropical floodplain forest ecosystems should not be overlooked. PMID:19880423

  18. Litter mercury deposition in the Amazonian rainforest.

    PubMed

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-11-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha(-1) y(-1). Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g(-1) was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m(-2) yr(-1). This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil's gardens’ is increased herbivory on Duroia hirsuta trees

    PubMed Central

    Frederickson, Megan E; Gordon, Deborah M

    2007-01-01

    ‘Devil's gardens’ are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant–plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests. PMID:17301016

  20. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in 'devil's gardens' is increased herbivory on Duroia hirsuta trees.

    PubMed

    Frederickson, Megan E; Gordon, Deborah M

    2007-04-22

    'Devil's gardens' are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant-plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests.

  1. Impact of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl.

    PubMed

    Cloutier, D; Kanashiro, M; Ciampi, A Y; Schoen, D J

    2007-02-01

    Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.

  2. Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape.

    PubMed

    Santos, Bráulio A; Tabarelli, Marcelo; Melo, Felipe P L; Camargo, José L C; Andrade, Ana; Laurance, Susan G; Laurance, William F

    2014-01-01

    Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest. The magnitude of the phylogenetic diversity loss was low (<2% relative to before-fragmentation values) but widespread throughout the study landscape, occurring in 32 of 40 1-ha plots. Consistent with this loss in phylogenetic diversity, we observed a significant decrease of 50% in phylogenetic dispersion since forest isolation, irrespective of plot location. Analyses based on tree genera that have significantly increased (28 genera) or declined (31 genera) in abundance and basal area in the landscape revealed that increasing genera are more phylogenetically related than decreasing ones. Also, the loss of phylogenetic diversity was greater in tree communities where increasing genera proliferated and decreasing genera reduced their importance values, suggesting that this taxonomic replacement is partially underlying the phylogenetic impoverishment at the landscape scale. This finding has clear implications for the current debate about the role human-modified landscapes play in sustaining biodiversity persistence and key ecosystem services, such as carbon storage. Although the generalization of our findings to other fragmented tropical forests is uncertain, it could negatively affect ecosystem productivity and stability and have broader impacts on coevolved organisms.

  3. Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains

    PubMed Central

    Parolin, Pia

    2009-01-01

    Background In Amazonian floodplain forests, >1000 tree species grow in an environment subject to extended annual submergence which can last up to 9 months each year. Water depth can reach 10 m, fully submerging young and also adult trees, most of which reproduce during the flood season. Complete submergence occurs regularly at the seedling or sapling stage for many species that colonize low-lying positions in the flooding gradient. Here hypoxic conditions prevail close to the water surface in moving water, while anaerobic conditions are common in stagnant pools. Light intensities in the floodwater are very low. Questions and Aims Despite a lack of both oxygen and light imposed by submergence for several months, most leafed seedlings survive. Furthermore, underwater growth has also been observed in several species in the field and under experimental conditions. The present article assesses how these remarkable plants react to submergence and discusses physiological mechanisms and anatomical adaptations that may explain their success. PMID:19001429

  4. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    PubMed

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  5. Tall Amazonian forests are less sensitive to precipitation variability

    NASA Astrophysics Data System (ADS)

    Giardina, Francesco; Konings, Alexandra G.; Kennedy, Daniel; Alemohammad, Seyed Hamed; Oliveira, Rafael S.; Uriarte, Maria; Gentine, Pierre

    2018-06-01

    Climate change is altering the dynamics, structure and function of the Amazon, a biome deeply connected to the Earth's carbon cycle. Climate factors that control the spatial and temporal variations in forest photosynthesis have been well studied, but the influence of forest height and age on this controlling effect has rarely been considered. Here, we present remote sensing observations of solar-induced fluorescence (a proxy for photosynthesis), precipitation, vapour-pressure deficit and canopy height, together with estimates of forest age and aboveground biomass. We show that photosynthesis in tall Amazonian forests, that is, forests above 30 m, is three times less sensitive to precipitation variability than in shorter (less than 20 m) forests. Taller Amazonian forests are also found to be older, have more biomass and deeper rooting systems1, which enable them to access deeper soil moisture and make them more resilient to drought. We suggest that forest height and age are an important control of photosynthesis in response to interannual precipitation fluctuations. Although older and taller trees show less sensitivity to precipitation variations, they are more susceptible to fluctuations in vapour-pressure deficit. Our findings illuminate the response of Amazonian forests to water stress, droughts and climate change.

  6. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species.

    PubMed

    Santiago, Louis S; De Guzman, Mark E; Baraloto, Christopher; Vogenberg, Jacob E; Brodie, Max; Hérault, Bruno; Fortunel, Claire; Bonal, Damien

    2018-05-01

    Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure-volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P 50 ). Wood density was correlated (r = -0.57 to -0.97) with sapwood pressure-volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. Building genomic resources for Theobroma cacao

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao L (cacao: Malvaceae) is a small tree endemic to the Amazonian rain forest, where it most likely evolved. Cacao persists in populations of naturally outcrossing and inbreeding plants, as it is a species with a complex system of self-incompatibility, where only a fraction of the popul...

  8. Evidence for ecological divergence across a mosaic of soil types in an Amazonian tropical tree: Protium subserratum (Burseraceae).

    PubMed

    Misiewicz, Tracy M; Fine, Paul V A

    2014-05-01

    Soil heterogeneity is an important driver of divergent natural selection in plants. Neotropical forests have the highest tree diversity on earth, and frequently, soil specialist congeners are distributed parapatrically. While the role of edaphic heterogeneity in the origin and maintenance of tropical tree diversity is unknown, it has been posited that natural selection across the patchwork of soils in the Amazon rainforest is important in driving and maintaining tree diversity. We examined genetic and morphological differentiation among populations of the tropical tree Protium subserratum growing parapatrically on the mosaic of white-sand, brown-sand and clay soils found throughout western Amazonia. Nuclear microsatellites and leaf morphology were used to (i) quantify the extent of phenotypic and genetic divergence across habitat types, (ii) assess the importance of natural selection vs. drift in population divergence, (iii) determine the extent of hybridization and introgression across habitat types, (iv) estimate migration rates among populations. We found significant morphological variation correlated with soil type. Higher levels of genetic differentiation and lower migration rates were observed between adjacent populations found on different soil types than between geographically distant populations on the same soil type. PST -FST comparisons indicate a role for natural selection in population divergence among soil types. A small number of hybrids were detected suggesting that gene flow among soil specialist populations may occur at low frequencies. Our results suggest that edaphic specialization has occurred multiple times in P. subserratum and that divergent natural selection across edaphic boundaries may be a general mechanism promoting and maintaining Amazonian tree diversity. © 2014 John Wiley & Sons Ltd.

  9. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy Y.; Hutyra, Lucy R.; Wofsy, Steven C.; Munger, J. William; Saleska, Scott R.; de Oliveira, Raimundo C., Jr.; de Camargo, Plínio B.

    2012-12-01

    Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajós National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented.

  10. Historical Human Footprint on Modern Tree Species Composition in the Purus-Madeira Interfluve, Central Amazonia

    PubMed Central

    Levis, Carolina; de Souza, Priscila Figueira; Schietti, Juliana; Emilio, Thaise; Pinto, José Luiz Purri da Veiga; Clement, Charles R.; Costa, Flavia R. C.

    2012-01-01

    Background Native Amazonian populations managed forest resources in numerous ways, often creating oligarchic forests dominated by useful trees. The scale and spatial distribution of forest modification beyond pre-Columbian settlements is still unknown, although recent studies propose that human impact away from rivers was minimal. We tested the hypothesis that past human management of the useful tree community decreases with distance from rivers. Methodology/Principal Findings In six sites, we inventoried trees and palms with DBH≥10 cm and collected soil for charcoal analysis; we also mapped archaeological evidence around the sites. To quantify forest manipulation, we measured the relative abundance, richness and basal area of useful trees and palms. We found a strong negative exponential relationship between forest manipulation and distance to large rivers. Plots located from 10 to 20 km from a main river had 20–40% useful arboreal species, plots between 20 and 40 km had 12–23%, plots more than 40 km had less than 15%. Soil charcoal abundance was high in the two sites closest to secondary rivers, suggesting past agricultural practices. The shortest distance between archaeological evidence and plots was found in sites near rivers. Conclusions/Significance These results strongly suggest that past forest manipulation was not limited to the pre-Columbian settlements along major rivers, but extended over interfluvial areas considered to be primary forest today. The sustainable use of Amazonian forests will be most effective if it considers the degree of past landscape domestication, as human-modified landscapes concentrate useful plants for human sustainable use and management today. PMID:23185264

  11. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.

    PubMed

    Moser, Gerald; Schuldt, Bernhard; Hertel, Dietrich; Horna, Viviana; Coners, Heinz; Barus, Henry; Leuschner, Christoph

    2014-05-01

    Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity. © 2013 John Wiley & Sons Ltd.

  12. Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation.

    PubMed

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2017-08-24

    For the tipping elements in the Earth's climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents L´evy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.

  13. A crisis in the making: responses of Amazonian forests to land use and climate change.

    PubMed

    Laurance, W F

    1998-10-01

    At least three global-change phenomena are having major impacts on Amazonian forests: (1) accelerating deforestation and logging; (2) rapidly changing patterns of forest loss; and (3) interactions between human land-use and climatic variability. Additional alterations caused by climatic change, rising concentrations of atmospheric carbon dioxide, mining, overhunting and other large-scale phenomena could also have important effects on the Amazon ecosystem. Consequently, decisions regarding Amazon forest use in the next decade are crucial to its future existence.

  14. Extremely long-distance seed dispersal by an overfished Amazonian frugivore.

    PubMed

    Anderson, Jill T; Nuttle, Tim; Saldaña Rojas, Joe S; Pendergast, Thomas H; Flecker, Alexander S

    2011-11-22

    Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.

  15. Extremely long-distance seed dispersal by an overfished Amazonian frugivore

    PubMed Central

    Anderson, Jill T.; Nuttle, Tim; Saldaña Rojas, Joe S.; Pendergast, Thomas H.; Flecker, Alexander S.

    2011-01-01

    Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337–552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700–2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants. PMID:21429923

  16. The synergistic use of models and observations: understanding the mechanisms behind observed biomass dynamics at 14 Amazonian field sites and the implications for future biomass change

    NASA Astrophysics Data System (ADS)

    Levine, N. M.; Galbraith, D.; Christoffersen, B. J.; Imbuzeiro, H. A.; Restrepo-Coupe, N.; Malhi, Y.; Saleska, S. R.; Costa, M. H.; Phillips, O.; Andrade, A.; Moorcroft, P. R.

    2011-12-01

    The Amazonian rainforests play a vital role in global water, energy and carbon cycling. The sensitivity of this system to natural and anthropogenic disturbances therefore has important implications for the global climate. Some global models have predicted large-scale forest dieback and the savannization of Amazonia over the next century [Meehl et al., 2007]. While several studies have demonstrated the sensitivity of dynamic global vegetation models to changes in temperature, precipitation, and dry season length [e.g. Galbraith et al., 2010; Good et al., 2011], the ability of these models to accurately reproduce ecosystem dynamics of present-day transitional or low biomass tropical forests has not been demonstrated. A model-data intercomparison was conducted with four state-of-the-art terrestrial ecosystem models to evaluate the ability of these models to accurately represent structure, function, and long-term biomass dynamics over a range of Amazonian ecosystems. Each modeling group conducted a series of simulations for 14 sites including mature forest, transitional forest, savannah, and agricultural/pasture sites. All models were run using standard physical parameters and the same initialization procedure. Model results were compared against forest inventory and dendrometer data in addition to flux tower measurements. While the models compared well against field observations for the mature forest sites, significant differences were observed between predicted and measured ecosystem structure and dynamics for the transitional forest and savannah sites. The length of the dry season and soil sand content were good predictors of model performance. In addition, for the big leaf models, model performance was highest for sites dominated by late successional trees and lowest for sites with predominantly early and mid-successional trees. This study provides insight into tropical forest function and sensitivity to environmental conditions that will aid in predictions of the response of the Amazonian rainforest to future anthropogenically induced changes.

  17. Habitat-specific divergence of phenolic defenses in Protium subserratum (Burseraceae)

    USDA-ARS?s Scientific Manuscript database

    The procyanidin (PC) content of leaves from several populations of clay, brown-sand and white-sand ecotypes of P. subserratum at several sites across more than 100 km of Amazonian Peru was examined. Leaves from P. subserratum trees growing in brown-sand (BS), clay soil (CS) and white-sand (WS) habit...

  18. Tandem Mass Spectrometry Imaging and in Situ Characterization of Bioactive Wood Metabolites in Amazonian Tree Species Sextonia rubra.

    PubMed

    Fu, Tingting; Touboul, David; Della-Negra, Serge; Houël, Emeline; Amusant, Nadine; Duplais, Christophe; Fisher, Gregory L; Brunelle, Alain

    2018-06-19

    Driven by a necessity for confident molecular identification at high spatial resolution, a new time-of-flight secondary ion mass spectrometry (TOF-SIMS) tandem mass spectrometry (tandem MS) imaging instrument has been recently developed. In this paper, the superior MS/MS spectrometry and imaging capability of this new tool is shown for natural product study. For the first time, via in situ analysis of the bioactive metabolites rubrynolide and rubrenolide in Amazonian tree species Sextonia rubra (Lauraceae), we were able both to analyze and to image by tandem MS the molecular products of natural biosynthesis. Despite the low abundance of the metabolites in the wood sample(s), efficient MS/MS analysis of these γ-lactone compounds was achieved, providing high confidence in the identification and localization. In addition, tandem MS imaging minimized the mass interferences and revealed specific localization of these metabolites primarily in the ray parenchyma cells but also in certain oil cells and, further, revealed the presence of previously unidentified γ-lactone, paving the way for future studies in biosynthesis.

  19. Carbon Dynamics in Vegetation and Soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chambers, Jeffrey Q.; Camargo, Plinio; Martinelli, Luiz; Santos, Joaquim

    2005-01-01

    The overall goals of CD-08 team in Phase I were to quantify the contributions of different components of the carbon cycle to overall ecosystem carbon balance in Amazonian tropical forests and to undertake process studies at a number of sites along the eastern LBA transect to understand how and why these fluxes vary with site, season, and year. We divided this work into a number of specific tasks: (1) determining the average rate (and variability) of tree growth over the past 3 decades; (2) determining age demographics of tree populations, using radiocarbon to determine tree age; (3) assessing the rate of production and decomposition of dead wood debris; (4) determining turnover rates for organic matter in soils and the mean age of C respired from soil using radiocarbon measurements; and (5) comparing our results with models and constructing models to predict the potential of tropical forests to function as sources or sinks of C. This report summarizes the considerable progress made towards our original goals, which have led to increased understanding of the potential for central Amazon forests to act as sources or sinks of carbon with altered productivity. The overall picture of tropical forest C dynamics emerging from our Phase I studies suggests that the fraction of gross primary production allocated to growth in these forests is only 25-30%, as opposed to the 50% assumed by many ecosystem models. Consequent slow tree growth rates mean greater mean tree age for a given diameter, as reflected in our measurements and models of tree age. Radiocarbon measurements in leaf and root litter suggest that carbon stays in living tree biomass for several years up to a decade before being added to soils, where decomposition is rapid. The time lags predicted from 14C, when coupled with climate variation on similar time scales, can lead to significant interannual variation in net ecosystem C exchange.

  20. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.

    PubMed

    Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F

    2017-05-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2  = 0.07-0.73; %RMSE = 7-38) and multiple (R 2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  2. Impact Of Selfing On The Inference Of Demographic History From Whole Genomes In Theobroma cacao L.

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao L (cacao: Malvaceae) is a small tree found naturally in the Amazonian rain forest. An interesting feature of cacao is that it persists in populations of naturally outcrossing and inbreeding plants, as it is a species with a complex system of self-incompatibility, where a fraction of...

  3. Selection harvests in Amazonian rainforests: long-term impacts on soil properties

    Treesearch

    K.L. McNabb; M.S. Miller; B.G. Lockaby; B.J. Stokes; R.G. Clawson; John A. Stanturf; J.N.M. Silva

    1997-01-01

    Surface soil properties were compared among disturbance classes associated with a single-tree selection harvest study installed in 1979 in the Brazilian Amazon. Response variables included pH, total N, total organic C, extractable P, exchangeable K, Ca, Mg, and bulk density. In general, concentrations of all elements displayed residual effects 16 years after harvests...

  4. Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest.

    PubMed

    Ohashi, Shinta; Durgante, Flávia M; Kagawa, Akira; Kajimoto, Takuya; Trumbore, Susan E; Xu, Xiaomei; Ishizuka, Moriyoshi; Higuchi, Niro

    2016-03-01

    In Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon). E. coriacea was also sampled in two other regions to determine the synchronicity of the isotopic signals among different regions. The annual cyclicity of δ(18)Owc variation was cross-checked by (14)C dating. The δ(18)Owc showed distinct seasonal variations that matched the amplitude observed in the δ(18)O of precipitation, whereas seasonal δ(13)Cwc variations were less distinct in most cases. The δ(18)Owc variation patterns were similar within and between some individual trees in Manaus. However, the δ(18)Owc patterns of E. coriacea differed by region. The ages of some samples estimated from the δ(18)Owc cycles were offset from the ages estimated by (14)C dating. In the case of E. coriacea, this phenomenon suggested that missing or wedging rings may occur frequently even in well-grown individuals. Successful cross-dating may be facilitated by establishing δ(18)Owc master chronologies at both seasonal and inter-annual scales for tree species with distinct annual rings in each region.

  5. Impacts of selective logging on inbreeding and gene flow in two Amazonian timber species with contrasting ecological and reproductive characteristics.

    PubMed

    Vinson, C C; Kanashiro, M; Harris, S A; Boshier, D H

    2015-01-01

    Selective logging in Brazil allows for the removal of up to 90% of trees above 50 cm diameter of a given timber species, independent of a species' life history characteristics or how quickly it will recover. The genetic and demographic effects of selective logging on two Amazonian timber species (Dipteryx odorata Leguminosae, Jacaranda copaia Bignoniaceae) with contrasting ecological and reproductive characteristics were assessed in the same forest. Genetic diversity and gene flow were characterized by genotyping adults and seed sampled before and after logging, using hypervariable microsatellite markers. Overall, there were no short-term genetic impacts on the J. copaia population, with commercial application of current Brazilian forest management regulations. In contrast, for D. Odorata, selective logging showed a range of genetic impacts, with a 10% loss of alleles, and reductions in siring by pollen from trees within the 546-ha study area (23-11%) and in the number of pollen donors per progeny array (2.8-1.6), illustrating the importance of the surrounding landscape. Asynchrony in flowering between D. odorata trees led to trees with no breeding partners, which could limit the species reproduction and regeneration under current regulations. The results are summarized with other published studies from the same site and the implications for forest management discussed. The different types and levels of impacts associated with each species support the idea that ecological and genetic information by species, ecological guild or reproductive group is essential in helping to derive sustainable logging guidelines for tropical forests. © 2014 John Wiley & Sons Ltd.

  6. Falling palm fronds structure amazonian rainforest sapling communities.

    PubMed

    Peters, Halton A; Pauw, Anton; Silman, Miles R; Terborgh, John W

    2004-08-07

    The senescence and loss of photosynthetic and support structures is a nearly universal aspect of tree life history, and can be a major source of disturbance in forest understoreys, but the ability of falling canopy debris in determining the stature and composition of understorey communities seems not to have been documented. In this study, we show that senescent fronds of the palm Iriartea deltoidea cause substantial disturbance in tropical forest sapling communities. This disturbance influences the species composition of the canopy and subcanopy by acting as an ecological filter, favouring sapling species with characteristics conducive to recovery after physical damage. The scale of this dominance suggests that falling I. deltoidea debris may be influencing sapling community structure and species composition in Amazonian rainforests over very large spatial scales.

  7. Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire

    Treesearch

    J.A. Carvalho; C.A. Gurgel Veras; E.C. Alvarado; D.V. Sandberg; S.J. Leite; R. Gielow; E.R.C. Rabelo; J.C. Santos

    2010-01-01

    Fire characteristics in tropical ecosystems are poorly documented quantitatively in the literature. This paper describes an understorey fire propagating across the edges of a biomass burn of a cleared primary forest. The experiment was carried out in 2001 in the Amazon forest near Alta Floresta, state of Mato Grosso, Brazil, as part of biomass burning experiments...

  8. Demographic threats to the sustainability of Brazil nut exploitation.

    PubMed

    Peres, Carlos A; Baider, Claudia; Zuidema, Pieter A; Wadt, Lúcia H O; Kainer, Karen A; Gomes-Silva, Daisy A P; Salomão, Rafael P; Simões, Luciana L; Franciosi, Eduardo R N; Cornejo Valverde, Fernando; Gribel, Rogério; Shepard, Glenn H; Kanashiro, Milton; Coventry, Peter; Yu, Douglas W; Watkinson, Andrew R; Freckleton, Robert P

    2003-12-19

    A comparative analysis of 23 populations of the Brazil nut tree (Bertholletia excelsa) across the Brazilian, Peruvian, and Bolivian Amazon shows that the history and intensity of Brazil nut exploitation are major determinants of population size structure. Populations subjected to persistent levels of harvest lack juvenile trees less than 60 centimeters in diameter at breast height; only populations with a history of either light or recent exploitation contain large numbers of juvenile trees. A harvesting model confirms that intensive exploitation levels over the past century are such that juvenile recruitment is insufficient to maintain populations over the long term. Without management, intensively harvested populations will succumb to a process of senescence and demographic collapse, threatening this cornerstone of the Amazonian extractive economy.

  9. Satellite Images Combined with Field Data Reveal Negative Changes in the Distribution of Babassu Palms after Clearing off Amazonian Forests

    NASA Astrophysics Data System (ADS)

    Mitja, D.; Delaître, E.; Santos, A. M.; Miranda, I.; Coelho, R. F. R.; Macedo, D. J.; Demagistri, L.; Petit, M.

    2018-02-01

    When the Amazonian rain forest is cut to create pasture, some of the original vegetal species survive clearing, even expressing their ability to invade agro-systems. It is true of the babassu palm, which can be considered, paradoxically, a natural resource by the "Interstate Movement of Babassu Fruit Breaker Women" or as native weed by land owners-farmers. To manage potential conflict of land uses, we study here the current density of this palm tree in different habitats, based on a combination of field data and remote sensing data. Firstly, we checked that the field survey methodology (i.e., counting free-trunk palm trees over 20 cm in circumference) provides density values compatible with those stemming from satellite images interpretation. We can see then that, a PA-Benfica Brazilian territory revealed an average density of the babassu lower in pastures (2.86 ind/ha) than in the dense forest (4.72 ind/ha) from which they originate and than in fallow land (4.31 ind/ha). We analyze in detail density data repartition in three habitats and we discuss results from the literature on the density of this palm tree versus its resilience at different developmental stages after forest clearing, depending on anthropogenic—or not—factors, including solar radiation, fire, weeding, clear cutting, burying fruit, and competition with forage grass. All these results can be exploited for the design of future management plans for the babassu palm and we think that the linked methodology and interdisciplinary approach can be extended to others palms and trees species in similar problematic issues.

  10. Abrupt Increases in Amazonian Tree Mortality Due to Drought-Fire Interactions

    NASA Technical Reports Server (NTRS)

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silverio, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nobrega, Caroline C.; hide

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, longterm experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW x m(exp -1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with less than 1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  11. Abrupt increases in Amazonian tree mortality due to drought-fire interactions.

    PubMed

    Brando, Paulo Monteiro; Balch, Jennifer K; Nepstad, Daniel C; Morton, Douglas C; Putz, Francis E; Coe, Michael T; Silvério, Divino; Macedo, Marcia N; Davidson, Eric A; Nóbrega, Caroline C; Alencar, Ane; Soares-Filho, Britaldo S

    2014-04-29

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  12. Observations on the vegetation of northeastern Mato Grosso II. Forests and soils of the Rio Suiá--Missu area.

    PubMed

    Ratter, J A; Askew, G P; Montgomery, R F; Gifford, D R

    1978-12-04

    The vegetation of the well drained soils along the Suiá--Missu road in the Serra do Roncador region of NE Mato Grosso is Evergreen Seasonal forest of Amazonian type. The area lies close to the meeting place of the Amazonian forest (the hylaea) and the cerrado (savanna) formation of Central Brazil. The structure of the forest is simple: the canopy is at about 18--23 m, and is exceeded by a few scattered emergents; no recognizable strata can be distinguished among the understorey trees and the shrub and herb layers are sparse. Table 1 lists the most important species and gives information on stratification and general distribution. Most of the species appear to have a hylaean centre of distribution but extend into other vegetation types. The forest differs from related communities which lie closer to the cerrado/forest boundary in its greater height and luxuriance, the presence of additional tall tree species, and the great reduction in abundance of a cerrado floristic element. A survey on the Xavantina--São Felix road allowed us to extend previous observations on the distance to which the cerrado tree Pterodon pubescens extends into the forest. The results obtained indicate a considerable extension of forest into cerrado during the life of an individual tree. A characteristic low forest occurs in the flood plain of the Rio Suiá--Missu while Swampy Gallery forests occur on permanently waterlogged soils around the headwaters of streams. The well drained soils of the Suiá--Missu forest are very uniform, deep latosols (oxisols) of very dystrophic nature with pH (in water) between 4.0 and 5.0 (see table 2, p. 203).

  13. Unexpected high diversity of galling insects in the Amazonian upper canopy: the savanna out there.

    PubMed

    Julião, Genimar R; Venticinque, Eduardo M; Fernandes, G Wilson; Price, Peter W

    2014-01-01

    A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diversity in the forest canopy and its relationship with tree richness among upland terra firme, várzea, and igapó floodplains in Amazonia, Brazil. The soils of these forest types have highly different hydric and nutritional status. Overall, we examined the upper layer of 1,091 tree crowns. Galling species richness and abundance were higher in terra firme forests compared to várzea and igapó forests. GLM-ANCOVA models revealed that the number of tree species sampled in each forest type was determinant in the gall-forming insect diversity. The ratio between galling insect richness and number of tree species sampled (GIR/TSS ratio) was higher in the terra firme forest and in seasonally flooded igapó, while the várzea presented the lowest GIR/TSS ratio. In this study, we recorded unprecedented values of galling species diversity and abundance per sampling point. The GIR/TSS ratio from várzea was approximately 2.5 times higher than the highest value of this ratio ever reported in the literature. Based on this fact, we ascertained that várzea and igapó floodplain forests (with lower GIA and GIR), together with the speciose terra firme galling community emerge as the gall diversity apex landscape among all biogeographic regions already investigated. Contrary to expectation, our results also support the "harsh environment hypothesis", and unveil the Amazonian upper canopy as similar to Mediterranean vegetation habitats, hygrothermically stressed environments with leaf temperature at lethal limits and high levels of leaf sclerophylly.

  14. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    PubMed Central

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937

  15. Satellite Images Combined with Field Data Reveal Negative Changes in the Distribution of Babassu Palms after Clearing off Amazonian Forests.

    PubMed

    Mitja, D; Delaître, E; Santos, A M; Miranda, I; Coelho, R F R; Macedo, D J; Demagistri, L; Petit, M

    2018-02-01

    When the Amazonian rain forest is cut to create pasture, some of the original vegetal species survive clearing, even expressing their ability to invade agro-systems. It is true of the babassu palm, which can be considered, paradoxically, a natural resource by the "Interstate Movement of Babassu Fruit Breaker Women" or as native weed by land owners-farmers. To manage potential conflict of land uses, we study here the current density of this palm tree in different habitats, based on a combination of field data and remote sensing data. Firstly, we checked that the field survey methodology (i.e., counting free-trunk palm trees over 20 cm in circumference) provides density values compatible with those stemming from satellite images interpretation. We can see then that, a PA-Benfica Brazilian territory revealed an average density of the babassu lower in pastures (2.86 ind/ha) than in the dense forest (4.72 ind/ha) from which they originate and than in fallow land (4.31 ind/ha). We analyze in detail density data repartition in three habitats and we discuss results from the literature on the density of this palm tree versus its resilience at different developmental stages after forest clearing, depending on anthropogenic-or not-factors, including solar radiation, fire, weeding, clear cutting, burying fruit, and competition with forage grass. All these results can be exploited for the design of future management plans for the babassu palm and we think that the linked methodology and interdisciplinary approach can be extended to others palms and trees species in similar problematic issues.

  16. Amazonian forest restoration: an innovative system for native species selection based on phenological data and performance indices

    Treesearch

    Oliver H. Knowles; John A. Parrotta

    1995-01-01

    One hundred and sixty taxa of upland moist forest trees were studied with reference to their suitability for forest restoration on bauxite mined Iands in western Para State, Brazil. Over a 14-year period, field observations in native primary forests, nursery studies, and evaluations of over 600 ha of mixed-species reforestation areas were used to characterize fruiting...

  17. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge based on short-term experiments is risky being transferred to an ecotype which is governed under natural conditions by long term flooding. Furthermore, contrasting such experiments with usually young trees (saplings or a few years old) nothing is known about the emission behavior of adult trees under field conditions.

  18. An Amazonian rainforest and its fragments as a laboratory of global change.

    PubMed

    Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W

    2018-02-01

    We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km 2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales. © 2017 Cambridge Philosophical Society.

  19. Emerging Chagas disease: trophic network and cycle of transmission of Trypanosoma cruzi from palm trees in the Amazon.

    PubMed Central

    Teixeira, A. R.; Monteiro, P. S.; Rebelo, J. M.; Argañaraz, E. R.; Vieira, D.; Lauria-Pires, L.; Nascimento, R.; Vexenat, C. A.; Silva, A. R.; Ault, S. K.; Costa, J. M.

    2001-01-01

    A trophic network involving molds, invertebrates, and vertebrates, ancestrally adapted to the palm tree (Attalaea phalerata) microhabitat, maintains enzootic Trypanosoma cruzi infections in the Amazonian county Paço do Lumiar, state of Maranhão, Brazil. We assessed seropositivity for T. cruzi infections in the human population of the county, searched in palm trees for the triatomines that harbor these infections, and gathered demographic, environmental, and socioeconomic data. Rhodnius pictipes and R. neglectus in palm-tree frond clefts or in houses were infected with T. cruzi (57% and 41%, respectively). Human blood was found in 6.8% of R. pictipes in houses, and 9 of 10 wild Didelphis marsupialis had virulent T. cruzi infections. Increasing human population density, rain forest deforestation, and human predation of local fauna are risk factors for human T. cruzi infections. PMID:11266300

  20. Effect of Parathion-Methyl on Amazonian Fish and Freshwater Invertebrates: A Comparison of Sensitivity with Temperate Data

    PubMed Central

    Geber-Corrêa, Rachel; Campos, Paola S.; Garcia, Marcos V. B.; Waichman, Andrea V.; van den Brink, Paul J.

    2009-01-01

    Parathion-methyl is an organophosphorous insecticide that is widely used in agricultural production sites in the Amazon. The use of this pesticide might pose a potential risk for the biodiversity and abundance of fish and invertebrate species inhabiting aquatic ecosystems adjacent to the agricultural fields. Due to a lack of toxicity data for Amazonian species, safe environmental concentrations used to predict the ecological risks of parathion-methyl in the Amazon are based on tests performed with temperate species, although it is unknown whether the sensitivity of temperate species is representative for those of Amazonian endemic species. To address this issue, the acute toxic effect (LC50–96 h) of parathion-methyl was assessed on seven fish and five freshwater invertebrate species endemic to the Amazon. These data were used to compare their pesticide sensitivity with toxicity data for temperate species collected from the literature. The interspecies sensitivity was compared using the Species Sensitivity Distribution (SSD) concept. The results of this study suggest that Amazonian species are no more, or less, sensitive to parathion-methyl than their temperate counterparts, with LC50 values ranging from 2900 to 7270 μg/L for fish and from 0.3 to 319 μg/L for freshwater arthropods. Consequently, this evaluation supports the initial use of toxicity data of temperate fish and freshwater invertebrate species for assessing the effects of parathion-methyl on Amazonian freshwater ecosystems. PMID:19847472

  1. Rain forest fragmentation and the proliferation of successional trees.

    PubMed

    Laurance, William F; Nascimento, Henrique E M; Laurance, Susan G; Andrade, Ana C; Fearnside, Philip M; Ribeiro, José E L; Capretz, Robson L

    2006-02-01

    The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.

  2. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for the large trees accounted for 30% of total, which can lead high GPP. These results suggest that large trees play considerable role in carbon cycling and make a distinctive carbon allocation in the Bornean tropical rainforest.

  3. Multi-scale assessment of human-induced changes to Amazonian instream habitats

    EPA Science Inventory

    Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which ph...

  4. Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.

    2017-12-01

    The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.

  5. Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest.

    PubMed

    Fortunel, Claire; Valencia, Renato; Wright, S Joseph; Garwood, Nancy C; Kraft, Nathan J B

    2016-09-01

    As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25-ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests. © 2016 John Wiley & Sons Ltd/CNRS.

  6. Unexpected High Diversity of Galling Insects in the Amazonian Upper Canopy: The Savanna Out There

    PubMed Central

    Julião, Genimar R.; Venticinque, Eduardo M.; Fernandes, G. Wilson; Price, Peter W.

    2014-01-01

    A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diversity in the forest canopy and its relationship with tree richness among upland terra firme, várzea, and igapó floodplains in Amazonia, Brazil. The soils of these forest types have highly different hydric and nutritional status. Overall, we examined the upper layer of 1,091 tree crowns. Galling species richness and abundance were higher in terra firme forests compared to várzea and igapó forests. GLM-ANCOVA models revealed that the number of tree species sampled in each forest type was determinant in the gall-forming insect diversity. The ratio between galling insect richness and number of tree species sampled (GIR/TSS ratio) was higher in the terra firme forest and in seasonally flooded igapó, while the várzea presented the lowest GIR/TSS ratio. In this study, we recorded unprecedented values of galling species diversity and abundance per sampling point. The GIR/TSS ratio from várzea was approximately 2.5 times higher than the highest value of this ratio ever reported in the literature. Based on this fact, we ascertained that várzea and igapó floodplain forests (with lower GIA and GIR), together with the speciose terra firme galling community emerge as the gall diversity apex landscape among all biogeographic regions already investigated. Contrary to expectation, our results also support the “harsh environment hypothesis”, and unveil the Amazonian upper canopy as similar to Mediterranean vegetation habitats, hygrothermically stressed environments with leaf temperature at lethal limits and high levels of leaf sclerophylly. PMID:25551769

  7. Modeling Disease Vector Occurrence when Detection Is Imperfect: Infestation of Amazonian Palm Trees by Triatomine Bugs at Three Spatial Scales

    PubMed Central

    Abad-Franch, Fernando; Ferraz, Gonçalo; Campos, Ciro; Palomeque, Francisco S.; Grijalva, Mario J.; Aguilar, H. Marcelo; Miles, Michael A.

    2010-01-01

    Background Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in northern South America. Methodology/Principal Findings The probability of detecting triatomines in infested palms is estimated by repeatedly sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within Amazonia, landscape, and individual palm. Palm infestation estimates are high (40–60%) across regions, and well above the observed infestation rate (24%). Detection probability is higher (∼0.55 on average) in the richest-soil region than elsewhere (∼0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm covariates (accumulated organic matter and stem height) explain most of infestation rate variation. Conclusions/Significance Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk. Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also significantly strengthen vector surveillance-control strategies. PMID:20209149

  8. Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence.

    PubMed

    Schimann, Heidy; Bach, Cyrille; Lengelle, Juliette; Louisanna, Eliane; Barantal, Sandra; Murat, Claude; Buée, Marc

    2017-02-01

    The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems.

  9. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  10. Drivers of metacommunity structure diverge for common and rare Amazonian tree species.

    PubMed

    Bispo, Polyanna da Conceição; Balzter, Heiko; Malhi, Yadvinder; Slik, J W Ferry; Dos Santos, João Roberto; Rennó, Camilo Daleles; Espírito-Santo, Fernando D; Aragão, Luiz E O C; Ximenes, Arimatéa C; Bispo, Pitágoras da Conceição

    2017-01-01

    We analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from the Amazonian region to identify the role of environmental (topographic) and spatial variables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for common and rare species. For the analyses, we used multiple partial regression to partition the specific effects of the topographic and spatial variables on the univariate data (standardised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis) to partition these effects on composition (multivariate data) based on incidence, abundance and biomass. The different attributes (richness, abundance, biomass and composition based on incidence, abundance and biomass) used to study this metacommunity responded differently to environmental and spatial processes. Considering standardised richness, total abundance (univariate) and composition based on biomass, the results for common species differed from those obtained for all species. On the other hand, for total biomass (univariate) and for compositions based on incidence and abundance, there was a correspondence between the data obtained for the total community and for common species. Our data also show that in general, environmental and/or spatial components are important to explain the variability in tree communities for total and common species. However, with the exception of the total abundance, the environmental and spatial variables measured were insufficient to explain the attributes of the communities of rare species. These results indicate that predicting the attributes of rare tree species communities based on environmental and spatial variables is a substantial challenge. As the spatial component was relevant for several community attributes, our results demonstrate the importance of using a metacommunities approach when attempting to understand the main ecological processes underlying the diversity of tropical forest communities.

  11. Sampling procedures for inventory of commercial volume tree species in Amazon Forest.

    PubMed

    Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R

    2017-01-01

    The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with different spatial patterns in the Amazon Forest. For this, the present study aims to evaluate the conventional sampling procedures and introduce the adaptive cluster sampling for volumetric inventories of Amazonian tree species, considering the hypotheses that the density, the spatial distribution and the zero-plots affect the consistency of the estimators, and that the adaptive cluster sampling allows to obtain more accurate volumetric estimation. We use data from a census carried out in Jamari National Forest, Brazil, where trees with diameters equal to or higher than 40 cm were measured in 1,355 plots. Species with different spatial patterns were selected and sampled with simple random sampling, systematic sampling, linear cluster sampling and adaptive cluster sampling, whereby the accuracy of the volumetric estimation and presence of zero-plots were evaluated. The sampling procedures applied to species were affected by the low density of trees and the large number of zero-plots, wherein the adaptive clusters allowed concentrating the sampling effort in plots with trees and, thus, agglutinating more representative samples to estimate the commercial volume.

  12. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1)

    NASA Astrophysics Data System (ADS)

    Fyllas, N. M.; Gloor, E.; Mercado, L. M.; Sitch, S.; Quesada, C. A.; Domingues, T. F.; Galbraith, D. R.; Torre-Lezama, A.; Vilanova, E.; Ramírez-Angulo, H.; Higuchi, N.; Neill, D. A.; Silveira, M.; Ferreira, L.; Aymard C., G. A.; Malhi, Y.; Phillips, O. L.; Lloyd, J.

    2014-07-01

    Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits - leaf dry mass per area (Ma), leaf nitrogen (NL) and phosphorus (PL) content and wood density (DW) varying from tree to tree - in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (ΠG) and net (ΠN) primary production rates as well as the carbon use efficiency (CU). Simulated ΠG, ΠN and CU were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status. Sensitivity studies showed a clear importance of an accurate parameterisation of within- and between-stand trait variability on the fidelity of model predictions. For example, when functional tree diversity was not included in the model (i.e. with just a single plant functional type with mean basin-wide trait values) the predictive ability of the model was reduced. This was also the case when basin-wide (as opposed to site-specific) trait distributions were applied within each stand. We conclude that models of tropical forest carbon, energy and water cycling should strive to accurately represent observed variations in functionally important traits across the range of relevant scales.

  13. Herbivores promote habitat specialization by trees in Amazonian forests.

    PubMed

    Fine, Paul V A; Mesones, Italo; Coley, Phyllis D

    2004-07-30

    In an edaphically heterogeneous area in the Peruvian Amazon, clay soils and nutrient-poor white sands each harbor distinctive plant communities. To determine whether a trade-off between growth and antiherbivore defense enforces habitat specialization on these two soil types, we conducted a reciprocal transplant study of seedlings of 20 species from six genera of phylogenetically independent pairs of edaphic specialist trees and manipulated the presence of herbivores. Clay specialist species grew significantly faster than white-sand specialists in both soil types when protected from herbivores. However, when unprotected, white-sand specialists dominated in white-sand forests and clay specialists dominated in clay forests. Therefore, habitat specialization in this system results from an interaction of herbivore pressure with soil type.

  14. Ecology: 'Devil's gardens' bedevilled by ants.

    PubMed

    Frederickson, Megan E; Greene, Michael J; Gordon, Deborah M

    2005-09-22

    'Devil's gardens' are large stands of trees in the Amazonian rainforest that consist almost entirely of a single species, Duroia hirsuta, and, according to local legend, are cultivated by an evil forest spirit. Here we show that the ant Myrmelachista schumanni, which nests in D. hirsuta stems, creates devil's gardens by poisoning all plants except its host plants with formic acid. By killing these other plants, M. schumanni provides its colonies with abundant nest sites--a long-lasting benefit as colonies can live for 800 years.

  15. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America.

    PubMed

    Mirabello, Lisa; Vineis, Joseph H; Yanoviak, Stephen P; Scarpassa, Vera M; Póvoa, Marinete M; Padilla, Norma; Achee, Nicole L; Conn, Jan E

    2008-03-26

    Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5-8 microsatellite loci. We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742), and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457). The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 - 0.3901, P < 0.05). Both the DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1) and Central America, parts of Colombia and Venezuela (genotype 2), and are in agreement with previously published mitochondrial COI gene sequences interpreted as incipient species. Overall, it appears that two main factors have contributed to the genetic differentiation between the population clusters: physical distance between the populations and the differences in effective population sizes among the subpopulations.

  16. Phylogenetic insights into the diversity of homocytous cyanobacteria from Amazonian rivers.

    PubMed

    Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Melo, Itamar Soares de

    2017-11-01

    The Amazon Rainforest holds great tropical biodiversity, mainly because of its favourable climatic conditions. The high temperatures, luminosity and humidity coupled with the nutritional simplicity of cyanobacteria allow undiscovered diversity to flourish within this group of microorganisms. Some efforts to reveal this diversity have been attempted; however, most were focused on the microscopic observation of environmental samples without any genetic information. Very few studies focusing on morphological, ecological and molecular criteria have been conducted, and none have been devoted to homocytous cyanobacteria forms in Amazonia region. Therefore, the genetic relationships amongst strains retrieved from this ecosystem with regard to other environments from Brazil and the world have not been tested and, consequently, the Amazonian strains would naturally be assumed as novel to science. To examine these relationships, cultured homocytous cyanobacteria isolated from two Amazonian rivers (Amazonas and Solimões) were evaluated using a phylogenetic perspective, considering the 16S rRNA gene sequence. A total of eleven homocytous cyanobacterial strains were isolated. Morphologically, they were identified as Pseudanabaena, Leptolyngbya, Planktothrix and Phormidium, but genetically they were included in the typical clusters of Planktothrix, Pseudanabaena, Cephalothrix, Pantanalinema and Alkalinema. These three latter genera have been detected in other Brazilian ecosystems only (Pantanal, Atlantic Rainforest and Pampa), while those remaining have been extensively found in many parts of the world. The data provided here indicate that Amazonian rivers support a homocytous cyanobacterial diversity previously reported from other geographical and ecological environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane', Bolivian Amazon.

    PubMed

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-06-01

    Understanding how indigenous peoples' management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples' way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane', and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane' values, our proxy for cultural change. We estimated tree diversity (Fisher's Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane' communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way.

  18. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane’, Bolivian Amazon

    PubMed Central

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-01-01

    Understanding how indigenous peoples’ management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples’ way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane’, and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane’ values, our proxy for cultural change. We estimated tree diversity (Fisher’s Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane’ communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way. PMID:26097240

  19. Observations on the Exchange of Oxygenated Compounds and Isoprenoids Between Tropical Tree Species and the Atmosphere During Different Seasons and Developmental Stages

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Ciccioli, P.; Kesselmeier, J.

    2003-12-01

    The terrestrial vegetation is the dominant source (>80%) for atmospheric volatile organic compounds (VOCs) on a global scale. These trace gases (i) influence the production or atmospheric lifetimes of air pollutants and greenhouse gases such as ozone, carbon monoxide, and methane, (ii) are involved in aerosol particle growth and production and (iii) contribute to the carbon budget of plants and ecosystems. Seasonal events may have significant impact on the exchange of VOCs between vegetation and the atmosphere. We report about the contrasting behaviour of tropical floodplain species in comparison to terra firma trees and the differences of emission quality and quantity of tree species during the wet and dry season in Amazonia. VOC emission changes in terms of quality (for example isoprenoid composition) or quantity (emission factors) and should be considered for an accurate estimation of the annual VOC release from tropical vegetation. Furthermore results from measurements on a deciduous Amazonian tree species demonstrate pronounced variations in the VOC exchange pattern depending on the developmental stage of the leaves.

  20. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    PubMed

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. © 2015 John Wiley & Sons Ltd.

  1. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest.

    PubMed

    Cosme, Luiza H M; Schietti, Juliana; Costa, Flávia R C; Oliveira, Rafael S

    2017-07-01

    Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents

    PubMed Central

    2013-01-01

    Background The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt-b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. Results Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. Conclusions Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and Amazonian centers of endemism appear enriched by lineages that originated in the other region. Our survey of other South American lineages suggests a pattern of reciprocal exchange between these regions—among mammals, birds, amphibians, and insects we found no fewer than 87 transitions between the Andes and Amazon from Miocene-Pleistocene. Because no clear trend emerges between the timing and polarity of transitions, or in their relative frequency, we suggest that reciprocal exchange between tropical highland and lowland faunas in South America has been a continual process since ca. 12 Ma. PMID:24015814

  3. Drought Legacy and the Impacts on the Amazon Forest Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.

    2015-12-01

    Sassan Saatchi1,2, Yifan Yu1, Xiang Xu2, Luiz Aragao3, Liana Anderson31Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2Institute of Environment and Sustainability, University of California, Los Angeles, CA 90045. USA3 Remote Sensing Division, National Institute for Space Research, São José dos Campos, Brazil, 12227-010, BrazilRecent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Ground and satellite observations of 2005 and 2010 mega-droughts have shown an increase in fire occurrence and tree mortality during the period of drought. Here, we use a combination of satellite observations over a period of about 15 years to examine the legacy of the droughts in terms of impacts on the ecological structure and function of the forests in years following the droughts and the subsequent carbon exchange. Using data from microwave satellite sensors of rainfall, canopy backscatter (2000-2014) and GRACE and GOSAT, we show that the 2005 drought has a legacy of 2-5 years in western Amazonia, by increasing the disturbance in canopy trees and impacting the gross primary production of the forest significantly. Amazonian forests, particularly in the southern region were again impacted by the 2010 mega-drought, causing a legacy of 2-4 years with potential decrease in GPP and productivity observed by GOSAT fluorescence. The persistent of low canopy water content observed by a joint QSCAT and OceanSAT observations were linked to a delay in recharging of the hydrological system observed by GRACE over a period of 2-5 years. The results suggest that Amazonian forests with distinct dry seasons in southern and western regions of the basin are potentially more vulnerable to droughts compared to regions with less seasonality. The long recovery time from the 2005 and 2010 droughts suggests that the occurence of droughts in Amazonia at 5-10 year frequency may lead to long-term alteration of the forest structure and function. Keywords: Amazonia, drought, carbon exchange, biomass loss, GPP

  4. Persistent effects of a severe drought on Amazonian forest canopy.

    PubMed

    Saatchi, Sassan; Asefi-Najafabady, Salvi; Malhi, Yadvinder; Aragão, Luiz E O C; Anderson, Liana O; Myneni, Ranga B; Nemani, Ramakrishna

    2013-01-08

    Recent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Satellite and in situ observations have shown an increase in fire occurrence during drought years and tree mortality following severe droughts, but to date there has been no assessment of long-term impacts of these droughts across landscapes in Amazonia. Here, we use satellite microwave observations of rainfall and canopy backscatter to show that more than 70 million hectares of forest in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy structure and moisture. Remarkably, and despite the gradual recovery in total rainfall in subsequent years, the decrease in canopy backscatter persisted until the next major drought, in 2010. The decline in backscatter is attributed to changes in structure and water content associated with the forest upper canopy. The persistence of low backscatter supports the slow recovery (>4 y) of forest canopy structure after the severe drought in 2005. The result suggests that the occurrence of droughts in Amazonia at 5-10 y frequency may lead to persistent alteration of the forest canopy.

  5. Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    NASA Astrophysics Data System (ADS)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for Scientific and Technological Development (CNPq); Minas Gerais State Research Foundation (FAPEMIG).

  6. Long-term landscape change and bird abundance in Amazonian rainforest fragments.

    PubMed

    Stouffer, Philip C; Bierregaard, Richard O; Strong, Cheryl; Lovejoy, Thomas E

    2006-08-01

    The rainforests of the Amazon basin are being cut by humans at a rate >20,000 km2/year leading to smaller and more isolated patches of forest, with remaining fragments often in the range of 1-100 ha. We analyzed samples of understory birds collected over 20 years from a standardized mist-netting program in 1- to 100-ha rainforest fragments in a dynamic Amazonian landscape near Manaus, Brazil. Across bird guilds, the condition of second growth immediately surrounding fragments was often as important as fragment size or local forest cover in explaining variation in abundance. Some fragments surrounded by 100 m of open pasture showed reductions in insectivorous bird abundance of over 95%, even in landscapes dominated by continuous forest and old second growth. These extreme reductions may be typical throughout Amazonia in small (< or =10 ha), isolated fragments of rainforest. Abundance for some guilds returned to preisolation levels in 10- and 100-ha fragments connected to continuous forest by 20-year-old second growth. Our results show that the consequences of Amazonian forest loss cannot be accurately described without explicit consideration of vegetation dynamics in matrix habitat. Any dichotomous classification of the landscape into 'forest" and "nonforest" misses essential information about the matrix.

  7. Insight into the Wild Origin, Migration and Domestication History of the Fine Flavour Nacional Theobroma cacao L. Variety from Ecuador

    PubMed Central

    Loor Solorzano, Rey Gaston; Fouet, Olivier; Lemainque, Arnaud; Pavek, Sylvana; Boccara, Michel; Argout, Xavier; Amores, Freddy; Courtois, Brigitte; Risterucci, Ange Marie; Lanaud, Claire

    2012-01-01

    Ecuador’s economic history has been closely linked to Theobroma cacao L cultivation, and specifically to the native fine flavour Nacional cocoa variety. The original Nacional cocoa trees are presently in danger of extinction due to foreign germplasm introductions. In a previous work, a few non-introgressed Nacional types were identified as potential founders of the modern Ecuadorian cocoa population, but so far their origin could not be formally identified. In order to determine the putative centre of origin of Nacional and trace its domestication history, we used 80 simple sequence repeat (SSR) markers to analyse the relationships between these potential Nacional founders and 169 wild and cultivated cocoa accessions from South and Central America. The highest genetic similarity was observed between the Nacional pool and some wild genotypes from the southern Amazonian region of Ecuador, sampled along the Yacuambi, Nangaritza and Zamora rivers in Zamora Chinchipe province. This result was confirmed by a parentage analysis. Based on our results and on data about pre-Columbian civilization and Spanish colonization history of Ecuador, we determined, for the first time, the possible centre of origin and migration events of the Nacional variety from the Amazonian area until its arrival in the coastal provinces. As large unexplored forest areas still exist in the southern part of the Ecuadorian Amazonian region, our findings could provide clues as to where precious new genetic resources could be collected, and subsequently used to improve the flavour and disease resistance of modern Ecuadorian cocoa varieties. PMID:23144883

  8. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils

    NASA Astrophysics Data System (ADS)

    Gaspar, André S.; Wagner, Friedrich E.; Amaral, Vítor S.; Costa Lima, Sofia A.; Khomchenko, Vladimir A.; Santos, Judes G.; Costa, Benilde F. O.; Durães, Luísa

    2017-02-01

    Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7 nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57 emu/g at 5 K and 42 emu/g at 300 K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.

  9. Insight into the wild origin, migration and domestication history of the fine flavour Nacional Theobroma cacao L. variety from Ecuador.

    PubMed

    Loor Solorzano, Rey Gaston; Fouet, Olivier; Lemainque, Arnaud; Pavek, Sylvana; Boccara, Michel; Argout, Xavier; Amores, Freddy; Courtois, Brigitte; Risterucci, Ange Marie; Lanaud, Claire

    2012-01-01

    Ecuador's economic history has been closely linked to Theobroma cacao L cultivation, and specifically to the native fine flavour Nacional cocoa variety. The original Nacional cocoa trees are presently in danger of extinction due to foreign germplasm introductions. In a previous work, a few non-introgressed Nacional types were identified as potential founders of the modern Ecuadorian cocoa population, but so far their origin could not be formally identified. In order to determine the putative centre of origin of Nacional and trace its domestication history, we used 80 simple sequence repeat (SSR) markers to analyse the relationships between these potential Nacional founders and 169 wild and cultivated cocoa accessions from South and Central America. The highest genetic similarity was observed between the Nacional pool and some wild genotypes from the southern Amazonian region of Ecuador, sampled along the Yacuambi, Nangaritza and Zamora rivers in Zamora Chinchipe province. This result was confirmed by a parentage analysis. Based on our results and on data about pre-Columbian civilization and Spanish colonization history of Ecuador, we determined, for the first time, the possible centre of origin and migration events of the Nacional variety from the Amazonian area until its arrival in the coastal provinces. As large unexplored forest areas still exist in the southern part of the Ecuadorian Amazonian region, our findings could provide clues as to where precious new genetic resources could be collected, and subsequently used to improve the flavour and disease resistance of modern Ecuadorian cocoa varieties.

  10. Fire-free land use in pre-1492 Amazonian savannas

    PubMed Central

    Iriarte, José; Power, Mitchell J.; Rostain, Stéphen; Mayle, Francis E.; Jones, Huw; Watling, Jennifer; Whitney, Bronwen S.; McKey, Doyle B.

    2012-01-01

    The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions. PMID:22493248

  11. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon.

    PubMed

    Barros, D F; Albernaz, A L M

    2014-11-01

    Wetlands cover approximately 6% of the Earth's surface. They are frequently found at the interface between terrestrial and aquatic ecosystems and are strongly dependent on the water cycle. For this reason, wetlands are extremely vulnerable to the effects of climate change. Mangroves and floodplain ecosystems are some of the most important environments for the Amazonian population, as a source of proteins and income, and are thus the types of wetlands chosen for this review. Some of the main consequences that can be predicted from climate change for wetlands are modifications in hydrological regimes, which can cause intense droughts or inundations. A possible reduction in rainfall can cause a decrease of the areas of mangroves and floodplains, with a consequent decline in their species numbers. Conversely, an increase in rainfall would probably cause the substitution of plant species, which would not be able to survive under new conditions for a long period. An elevation in water temperature on the floodplains would cause an increase in frequency and duration of hypoxic or anoxic episodes, which might further lead to a reduction in growth rates or the reproductive success of many species. In mangroves, an increase in water temperature would influence the sea level, causing losses of these environments through coastal erosion processes. Therefore, climate change will likely cause the loss of, or reduction in, Amazonian wetlands and will challenge the adaptability of species, composition and distribution, which will probably have consequences for the human population that depend on them.

  12. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange.

    PubMed

    Miller, Scott D; Goulden, Michael L; Hutyra, Lucy R; Keller, Michael; Saleska, Scott R; Wofsy, Steven C; Figueira, Adelaine Michela Silva; da Rocha, Humberto R; de Camargo, Plinio B

    2011-11-29

    We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange.

  13. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange

    PubMed Central

    Miller, Scott D.; Goulden, Michael L.; Hutyra, Lucy R.; Keller, Michael; Saleska, Scott R.; Wofsy, Steven C.; Figueira, Adelaine Michela Silva; da Rocha, Humberto R.; de Camargo, Plinio B.

    2011-01-01

    We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange. PMID:22087005

  14. AmeriFlux BR-Sa1 Santarem-Km67-Primary Forest

    DOE Data Explorer

    Saleska, Scott [University of Arizona

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site BR-Sa1 Santarem-Km67-Primary Forest. Site Description - The LBA Tapajos KM67 Mature Forest site is located in the Tapajos National Forest, a 450,000 ha closed-canopy upland forest in Amazonian Brazil. Bounded by the Tapajos River in the west and highway BR-163 to the east, the tower is located on a flat plateau (or planalto) that extends up to 150 km to the north, south, and east. Within the confines of the National Forest, anthropogenic disturbances are limited to a few small hunting trails. The surrounding stand is classified as primary or "old-growth"" predominantly by its uneven age distribution, emergent trees, numerous epiphytes and abundant large logs. In 2007 falling trees hit the tower guy wires rendering all instrumentation in-operational. After a complete restoration tower measurements resumed in August of 2008.

  15. Multi-scale assessment of human-induced changes to ...

    EPA Pesticide Factsheets

    Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which physical and chemical characteristics of the instream habitat of low-order Amazonian streams change in response to past local- and catchment-level anthropogenic disturbances. Methods: To do so, we collected field instream habitat (i.e., physical habitat and water quality) and landscape data from 99 stream sites in two eastern Brazilian Amazon regions. We used random forest regression trees to assess the relative importance of different predictor variables in determining changes in instream habitat response variables. Adaptations the USEPA’s National Aquatic Resource Survey (NARS) designs, field methods, and approaches for assessing ecological condition have been applied in state and basin stream surveys throughout the U.S., and also in countries outside of the U.S. These applications not only provide valuable tests of the NARS approaches, but generate new understandings of natural and anthropogenic controls on biota and physical habitat in streams. Results from applications in Brazil, for example, not only aid interpretation of the condition of Brazilian streams, but also refine approaches for interpreting aquatic resource surveys in the U.S. and elsewhere. In this article, the authors des

  16. Persistent effects of a severe drought on Amazonian forest canopy

    PubMed Central

    Saatchi, Sassan; Asefi-Najafabady, Salvi; Malhi, Yadvinder; Aragão, Luiz E. O. C.; Anderson, Liana O.; Myneni, Ranga B.; Nemani, Ramakrishna

    2013-01-01

    Recent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Satellite and in situ observations have shown an increase in fire occurrence during drought years and tree mortality following severe droughts, but to date there has been no assessment of long-term impacts of these droughts across landscapes in Amazonia. Here, we use satellite microwave observations of rainfall and canopy backscatter to show that more than 70 million hectares of forest in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy structure and moisture. Remarkably, and despite the gradual recovery in total rainfall in subsequent years, the decrease in canopy backscatter persisted until the next major drought, in 2010. The decline in backscatter is attributed to changes in structure and water content associated with the forest upper canopy. The persistence of low backscatter supports the slow recovery (>4 y) of forest canopy structure after the severe drought in 2005. The result suggests that the occurrence of droughts in Amazonia at 5–10 y frequency may lead to persistent alteration of the forest canopy. PMID:23267086

  17. Frugivory in Canopy Plants in a Western Amazonian Forest: Dispersal Systems, Phylogenetic Ensembles and Keystone Plants

    PubMed Central

    Stevenson, Pablo R.; Link, Andrés; González-Caro, Sebastian; Torres-Jiménez, María Fernanda

    2015-01-01

    Frugivory is a widespread mutualistic interaction in which frugivores obtain nutritional resources while favoring plant recruitment through their seed dispersal services. Nonetheless, how these complex interactions are organized in diverse communities, such as tropical forests, is not fully understood. In this study we evaluated the existence of plant-frugivore sub-assemblages and their phylogenetic organization in an undisturbed western Amazonian forest in Colombia. We also explored for potential keystone plants, based on network analyses and an estimate of the amount of fruit going from plants to frugivores. We carried out diurnal observations on 73 canopy plant species during a period of two years. During focal tree sampling, we recorded frugivore identity, the duration of each individual visit, and feeding rates. We did not find support for the existence of sub assemblages, such as specialized vs. generalized dispersal systems. Visitation rates on the vast majority of canopy species were associated with the relative abundance of frugivores, in which ateline monkeys (i.e. Lagothrix and Ateles) played the most important roles. All fruiting plants were visited by a variety of frugivores and the phylogenetic assemblage was random in more than 67% of the cases. In cases of aggregation, the plant species were consumed by only primates or only birds, and filters were associated with fruit protection and likely chemical content. Plants suggested as keystone species based on the amount of pulp going from plants to frugivores differ from those suggested based on network approaches. Our results suggest that in tropical forests most tree-frugivore interactions are generalized, and abundance should be taken into account when assessing the most important plants for frugivores. PMID:26492037

  18. Tree growth rates in an Amazonian evergreen forest: seasonal patterns and correlations with leaf phenology

    NASA Astrophysics Data System (ADS)

    Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.

    2014-12-01

    Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.

  19. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    PubMed

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  20. Forest structure and carbon dynamics in Amazonian tropical rain forests.

    PubMed

    Vieira, Simone; de Camargo, Plinio Barbosa; Selhorst, Diogo; da Silva, Roseana; Hutyra, Lucy; Chambers, Jeffrey Q; Brown, I Foster; Higuchi, Niro; dos Santos, Joaquim; Wofsy, Steven C; Trumbore, Susan E; Martinelli, Luiz Antonio

    2004-08-01

    Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha(-1) respectively), less biodiversity (Shannon-Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha(-1)) than the Manaus site (626 trees ha(-1), 180.1 Mg C ha(-1)), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41-45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha(-1) year(-1). At all sites, trees in the 10-30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha(-1) year(-1) in Manaus (40% of annual mean) and 0.9 Mg C ha(-1) year(-1) (33% of annual mean) in Santarém, though this variability showed no significant relation with precipitation among years. Initial estimates of the C balance of live wood including recruitment and mortality as well as growth suggests that live wood biomass is at near steady-state in Manaus, but accumulating at about 1.5 Mg C ha(-1) at the other two sites. The causes of C imbalance in living wood pools in Santarém and Rio Branco sites are unknown, but may be related to previous disturbance at these sites. Based on size distribution and growth rate differences in the three sites, we predict that trees in the Manaus forest have greater mean age (approximately 240 years) than those of the other two forests (approximately 140 years).

  1. Consequences of variable reproduction for seedling recruitment in three neotropical tree species

    Treesearch

    Diane De Steven; S. Joesph Wright

    2002-01-01

    Variable seed production may have important consequences for recruitment but poorly documented for frugivore-dispersed tropical trees. Recruitment limitation may also may be a critical spatial process affectng forest dynamics, but it is rarely assessed at the scale of individual trees. Over an 11-yr period, we studied the consequences of variable seed production for...

  2. Island vs. countryside biogeography: an examination of how Amazonian birds respond to forest clearing and fragmentation

    Treesearch

    Jared D. Wolfe; Philip C. Stouffer; Karl Mokross; Luke L. Powell; Marina M. Anciães

    2015-01-01

    Avian diversity in fragmented Amazonian landscapes depends on a balance between extinction and colonization in cleared and disturbed areas. Regenerating forest facilitates bird dispersal within degraded Amazonian landscapes and may tip the balance in favor of persistence in habitat patches. Determining the response of Amazonian birds to fragmentation may be...

  3. Evolutionary heritage influences Amazon tree ecology.

    PubMed

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  4. Evolutionary heritage influences Amazon tree ecology

    PubMed Central

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  5. Recovery of Areas Degraded by Mining Within the Amazon Forest: Interaction of the Physical Condition of Soil and Biological Activity

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. I.; Mello, G. F.; Longo, R. M.; Fengler, F. H.; Peche Filho, A., Sr.

    2017-12-01

    One of the greatest natural riches of Brazil is the Amazon rainforest. The Amazon region is known for its abundance of mineral resources, and may include topaz, oil, and especially cassiterite. In this scope, the mining sector in Brazil has great strategic importance because it accounts for approximately 30% of the country's exports with a mineral production of 40 billion dollars (Brazilian Mining Institute, 2015). In this scenario, as a consequence of mining, the Amazonian ecosystem has been undergoing a constant process of degradation. An important artifice in the exploitation of mineral resources is the rehabilitation and/or recovery of degraded areas. This recovery requires the establishment of degradation indicators and also the quality of the soil associated with its biota, since the Amazonian environment is dynamic, heterogeneous and complex in its physical, chemical and biological characteristics. In this way, this work presupposes that it is possible to characterize the different stages of recovery of tillage floor areas in deactivated cassiterite mines, within the Amazonian forest, in order to evaluate the interactions between the level of biological activity (Serrapilheira Height, Coefficient Metabolic, Basal Breath) and physical soil characteristics (aggregate DMG, Porosity, Total Soil Density, Moisture Content), through canonical correlation analysis. The results present correlations between the groups of indicators. Thus, from the use of the groups defined by canonical correlations, it was possible to identify the response of the set of physical and biological variables to the areas at different stages of recovery.

  6. Reassessment of asymptomatic carriers of Plasmodium spp. in an endemic area with a very low incidence of malaria in extra-Amazonian Brazil.

    PubMed

    de Alencar, Filomena E C; Malafronte, Rosely Dos Santos; Cerutti, Crispim; Natal Fernandes, Lícia; Buery, Julyana Cerqueira; Fux, Blima; Rezende, Helder Ricas; Miranda, Angelica Espinosa

    2017-11-09

    Regions with residual transmission are potential obstacles to the elimination of malaria. It is, therefore, essential to understand the factors associated with the maintenance of endemic malaria in these areas. The objective was to investigate whether the status of asymptomatic carriers of Plasmodium spp. DNA is maintained in the long term in an extra-Amazonian region of Brazil with low incidence, residual malaria transmission. Asymptomatic carriers of Plasmodium DNA detected in a survey carried out between 2001 and 2004 were reassessed between 2010 and 2011 using questionnaires, PCR and thick and thin blood smear tests three times at 3-month intervals. Of the 48 carriers detected between 2001 and 2004, 37 were located. Of these, only two had positive PCR results and, as in the first survey, Plasmodium malariae DNA was detected. The findings suggest that untreated dwellers from this extra-Amazonian region, who initially harbour malaria parasites, may become negative without ever developing apparent symptoms of the disease. Although the possibility of re-infection cannot be ruled out, the finding of two individuals harbouring P. malariae, both in the first and in the second survey, may be compatible with a long-term carrier state for this parasite. Since most clinical cases of malaria in the region are a consequence of infection by Plasmodium vivax, the epidemiological impact of such long-term carriage would be limited.

  7. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests

    Treesearch

    Brad Oberle; Kiona Ogle; Amy E. Zanne; Christopher W. Woodall

    2018-01-01

    When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests...

  8. Water-rich Martian mantle can account for the elastic thickness in Amazonian era

    NASA Astrophysics Data System (ADS)

    Katayama, I.; Matsuoka, Y.; Azuma, S.

    2016-12-01

    Although high water content in the Martian mantle is inferred from cosmochemistry, the direct measurements of water in the SNC meteorites are controversial, because hydrogen is a highly mobile element and the later terrestrial alteration can modify the primarily concentration in the Mars. On the one hand, water has a significant effect on the rock strength in both brittle and ductile fields; consequently, the presence of water can influence the elastic thickness that is primary controlled by stress distribution in the lithosphere. The Martian elastic lithosphere estimated from gravity and topography data indicates different thickness at the time of loading (e.g. McGovern et al. 2002). The increase of elastic thickness from Noachian to Hesperian is most likely related to the secular cooling in the Mars; however, the nearly constant elastic lithosphere in Amazonian cannot be explained by the thermal evolution alone. In this study, we applied recent rheological data to the Martian lithosphere and tested whether water can account for the elastic thickness seen in the Amazonian era. We incorporated the effect of pore fluid pressure in the brittle regime and Peierls mechanism in the ductile regime in the rheological model, which are not applied in the most previous calculation (e.g. Grott and Breuer 2008) but have a significant influence on the stress distribution in the lithosphere. Since the pore pressure reduces the effective normal stress on the fault plane, the maximum stress in the brittle regime is markedly decreased by the presence of pore fluid. The estimate of elastic lithosphere is dependent on thermal structure, and we used the heat production rate obtained from the Mars Odyssey spectrometry as thermal model (Hahn et al. 2011). Our results indicate the elastic thickness in Amazonian era of 120-170 km for dry condition and 80-110 km for wet condition. The thin elastic thickness calculated under wet environments is a result of significant reduction of flexure moment in the lithosphere. Our model indicates that water-rich Martian lithosphere can be responsible for the observed elastic thickness in Amazonian. However, the model is highly sensitive to the thermal structure and curvature, and more realistic data of heat flow targeted by the Insight mission would provide the robust water concentration in the Martian mantle.

  9. Oligarchic forests of economic plants in amazonia: utilization and conservation of an important tropical resource.

    PubMed

    Peters, C M; Balick, M J; Kahn, F; Anderson, A B

    1989-12-01

    Tropical forests dominated by only one or two tree species occupy tens of millions of hectares in Ammonia In many cases, the dominant species produce fruits, seeds, or oils of economic importance. Oligarchic (Gr. oligo = few, archic = dominated or ruled by) forests of six economic species, i. e., Euterpe oleracea, Grias peruviana, Jessenia bataua, Mauritia flexuosa, Myrciaria dubia, and Orbignya phalerata, were studied in Brazil and Peru Natural populations of these species contain from 100 to 3,000 conspecific adult trees/ha and produce up to 11.1 metric tons of fruit/hd/yr. These plant populations are utilized and occasionally managed, by rural inhabitants in the region. Periodic fruit harvests, if properly controlled have only a minimal impact on forest structure and function, yet can generate substantial economic returns Market-oriented extraction of the fruits produced by oligarchic forests appears to represent a promising alternative for reconciling the development and conservation of Amazonian forests.

  10. Woody vegetation communities of tidal freshwater swamps in South Carolina, Georgia and Florida (US) with comparisons to similar systems in the US and South America

    USGS Publications Warehouse

    Duberstein, Jamie A.; Conner, William H.; Krauss, Ken W.

    2014-01-01

    Descriptions of most tidal freshwater swamps in the southeastern US fit within the communities described in this study. Because studies that make inferences between environmental drivers (e.g. salinity, hydroperiod, hurricanes) and specific community types are best applied to the same communities (but perhaps different river systems), this work provides a framework by which tidal freshwater forested wetlands can be accurately compared based on their tree communities. We suggest that, within the broad range of our inventories, the four communities described identify the primary associations that should be tracked within most tidal freshwater swamps of the US. However, we identify some river basins in the US that do not fit this construct. Diversity of major tree communities in tidal freshwater swamps outside the US is generally much lower (with the notable exception of Amazonian hardwood tidal várzea), as are basal area values.

  11. Myrciaria dubia, an Amazonian fruit: population structure and its implications for germplasm conservation and genetic improvement.

    PubMed

    Nunes, C F; Setotaw, T A; Pasqual, M; Chagas, E A; Santos, E G; Santos, D N; Lima, C G B; Cançado, G M A

    2017-03-22

    Myrciaria dubia (camu-camu) is an Amazon tree that produces a tart fruit with high vitamin C content. It is probably the fruit with the highest vitamin C content among all Brazilian fruit crops and it can be used to supplement daily vitamin C dose. This property has attracted the attention of consumers and, consequently, encouraged fruit farmers to produce it. In order to identify and select potential accessions for commercial exploitation and breeding programs, M. dubia has received considerable research attention. The identification and characterization of genetic diversity, as well as identification of the population structure of accessions preserved in germplasm banks are fundamental for the success of any breeding program. The objective of this study was to evaluate the genetic variability of 10 M. dubia populations obtained from the shores of Reis Lake, located in the municipality of Caracaraí, Roraima, Brazil. Fourteen polymorphic inter simple sequence repeat (ISSR) markers were used to study the population genetic diversity, which resulted in 108 identified alleles. Among the 14 primers, GCV, UBC810, and UBC827 produced the highest number of alleles. The study illustrated the suitability and efficiency of ISSR markers to study the genetic diversity of M. dubia accessions. We also revealed the existence of high genetic variability among both accessions and populations that can be exploited in future breeding programs and conservation activities of this species.

  12. Extractive reserves in Brazilian Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fearnside, P.M

    1989-06-01

    In 1985 an opportunity arose for maintaining tracts of Amazonian forest under sustainable use. Brazil's National Council of Rubber Tappers and the Rural Worker's Union proposed the creation of a set of reserves of a new type, called extractive reserves. The first six are being established in one of the Brazilian states most threatened by deforestatation. The creation of extractive reserves grants legal protection to forest land traditionally used by rubber tappers, Brazil-nut gatherers, and other extractivists. The term extrativismo (extractivism) in Brazil refers to removing nontimber forest products, such as latex, resins, and nuts, without felling the trees. Approximatelymore » 30 products are collected for commercial sale. Many more types of forest materials are gathered, for example as food and medicines, for the extractivists' own use. The reserve proposal is attractive for several reasons related to social problems. It allows the rubber tappers to continue their livelihood rather than be expelled by deforestation. However, it is unlikely that sufficient land will be set aside as extractive reserves to employ all the tappers. Displaced rubber tappers already swell the ranks of urban slum dwellers in Brazil's Amazonian cities, and they have become refugees to continue their profession in the forests of neighboring countries, such as Bolivia.« less

  13. Identification of Amazonian trees with DNA barcodes.

    PubMed

    Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme

    2009-10-16

    Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.

  14. Structure and tree species composition in different habitats of savanna used by indigenous people in the Northern Brazilian Amazon.

    PubMed

    de Oliveira, Rodrigo Leonardo Costa; Farias, Hugo Leonardo Sousa; Perdiz, Ricardo de Oliveira; Scudeller, Veridiana Vizoni; Imbrozio Barbosa, Reinaldo

    2017-01-01

    Woody plant diversity from the Amazonian savannas has been poorly quantified. In order to improve the knowledge on wood plants of these regional ecosystems, a tree inventory was carried out in four different habitats used by indigenous people living in the savanna areas of the Northern Brazilian Amazon. The habitats were divided into two types (or groups) of vegetation formations: forest (riparian forest, forest island, and buritizal = Mauritia palm formation) and non-forest (typical savanna). The inventory was carried out in two hectares established in the Darora Indigenous Community region, north of the state of Roraima. The typical savanna is the most densely populated area (709 stems ha -1 ); however, it has the lowest tree species richness (nine species, seven families) in relation to typical forest habitats: riparian forest (22 species, 13 families and 202 stems ha -1 ), forest islands (13 species, 10 families and 264 stems ha -1 ), and buritizal (19 species, 15 families and 600 stems ha -1 ). The tree structure (density and dominance) of the forest habitats located in the savanna areas studied in this work is smaller in relation to forest habitats derived from continuous areas of other parts of the Amazon. These environments are derived from Paleoclimatic fragmentation, and are currently affected by the impact of intensive use of natural resources as timberselective logging and some land conversion for agriculture.

  15. Climate change, deforestation, and the fate of the Amazon.

    PubMed

    Malhi, Yadvinder; Roberts, J Timmons; Betts, Richard A; Killeen, Timothy J; Li, Wenhong; Nobre, Carlos A

    2008-01-11

    The forest biome of Amazonia is one of Earth's greatest biological treasures and a major component of the Earth system. This century, it faces the dual threats of deforestation and stress from climate change. Here, we summarize some of the latest findings and thinking on these threats, explore the consequences for the forest ecosystem and its human residents, and outline options for the future of Amazonia. We also discuss the implications of new proposals to finance preservation of Amazonian forests.

  16. Brazil's Amazonian dams: Ecological and socioeconomic impacts

    NASA Astrophysics Data System (ADS)

    Fearnside, P. M.

    2016-12-01

    Brazil's 2015-2024 Energy Expansion Plan calls for 11 hydroelectric dams with installed capacity ≥ 30 MW in the country's Amazon region. Dozens of other large dams are planned beyond this time horizon, and dams with < 30 MW installed capacity number in the hundreds. Amazonian dams have substantial environmental and socioeconomic impacts. Loss of forest to flooding is one, the Balbina and Tucuruí Dams being examples (each 3000 km2). If the Babaquara/Altamira Dam is built it will flood as much forest as both of these combined. Some planned dams imply loss of forest in protected areas, for example on the Tapajós River. Aquatic and riparian ecosystems are lost, including unique biodiversity. Endemic fish species in rapids on the Xingu and Tapajós Rivers are examples. Fish migrations are blocked, such as the commercially important "giant catfish" of the Madeira River. Dams emit greenhouse gases, including CO2 from the trees killed and CH4 from decay under anoxic conditions at the bottom of reservoirs. Emissions can exceed those from fossil-fuel generation, particularly over the 20-year period during which global emissions must be greatly reduced to meet 1.5-2°C limit agreed in Paris. Carbon credit for dams under the Climate Convention causes further net emission because the dams are not truly "additional." Anoxic environments in stratified reservoirs cause methylation of mercury present in Amazonian soils, which concentrates in fish, posing a health risk to human consumers. Population displacement is a major impact; for example, the Marabá Dam would displace 40,000 people, mostly traditional riverside dwellers (ribeirinhos). Various dams impact indigenous peoples, such as the Xingu River dams (beginning with Belo Monte) and the São Luiz do Tapajós and Chacorão Dams on the Tapajós River. Brazil has many energy options other than dams. Much energy use has little benefit for the country, such as exporting aluminum. Electric showerheads use 5% of the country's power. Losses in transmission lines (20%) are far above global averages and can be expected to increase as Amazonian hydroelectric dams far from consumer centers come on line. Brazil has tremendous wind and solar potential, but these do not have the same priority as dams. At the root of many questionable policies is a decision-making process in need of reform.

  17. Tiger-Moths in Savannas in Eastern Amazon: First Assessment of Diversity and Seasonal Aspects.

    PubMed

    Valente, D M P; Zenker, M M; Teston, J A

    2018-01-06

    Biodiversity knowledge on insects is urgently needed due to the ever growing demand for food and the consequent deforestation process and loss of natural habitats in many understudied tropical regions. In this paper, we describe the outcome of a biodiversity research on tiger moths performed for the first time in a poorly studied Amazonian landscape-the savanna. We sampled tiger moths monthly with UV automatic light traps for 12 consecutive months in two sampling points in an area of savanna in eastern Amazon, and we compared our results to previously available data for eastern Amazon. We found a total of 91 species of which 80 were identified to species level. The most species-rich subtribes were Phaegopterina and Euchromiina with 32 species each. Species richness and abundance did not differ among sampling sites, but in general the species richness was higher during the dry season while abundance was higher during the wet season. This seasonal diversity pattern differs from the most common patterns recorded for savannas in other parts of the world. The species composition also changed in wet and dry seasons and correlated significantly with temperature and relative humidity. Our results suggest that the alpha diversity of the Amazonian savannas in our sampling area is lower than that in nearby rain forests and similar to that in agriculturally disturbed areas surrounded by rain forests. However, the species composition differed considerably from natural and disturbed areas. These results highlight the need of basic biodiversity surveys of insects in Amazonian savannas.

  18. A way forward for fire-caused tree mortality prediction: Modeling a physiological consequence of fire

    Treesearch

    Kathleen L. Kavanaugh; Matthew B. Dickinson; Anthony S. Bova

    2010-01-01

    Current operational methods for predicting tree mortality from fire injury are regression-based models that only indirectly consider underlying causes and, thus, have limited generality. A better understanding of the physiological consequences of tree heating and injury are needed to develop biophysical process models that can make predictions under changing or novel...

  19. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene). Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not easily detected by flux measurements, give reason to perform more screening at leaf level and, whenever possible, within the forests under ambient conditions.

  20. Leaf Aging of Amazonian Canopy Trees: Insights to Tropical Ecological Processes and Satellited Detected Canopy Dynamics

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Malhi, Y.; Gerard, F.

    2015-12-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.

  1. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    PubMed

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Monitoring stress-related mass variations in Amazon trees using accelerometers

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Hut, R.; Guerin, M. F.; Leus, G.; Oliveira, R. S.; Van De Giesen, N.

    2016-12-01

    Containing half of the world's rainforests, the Amazon plays a key role in the global water and carbon budget. However, the Amazon remains poorly understood, but appears to be vulnerable to increasing moisture stress, and future droughts have the potential to considerably change the global water and carbon budget. Field measurements will allow further investigations of the effects of moisture stress and droughts on tree dynamics, and its impact on the water and carbon budget. This study focuses on studying the diurnal mass variations of seven Amazonian tree species. The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Depending on the physiological traits of an individual tree, moisture stress and drought affect processes such as photosynthesis, assimilation, transpiration, and root water uptake. In turn, these have their influence on diurnal mass variations of a tree. Our study uses measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Nineteen accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest, covering an area of 250 x 250 m. The selected species span a wide range in wood density (0.5 - 1.1), diameter (15 - 40 cm) and height (25 - 60 m). Acceleration was measured with a frequency of 10 Hz, from August 2015 to June 2016, covering both the wet and dry season. On-site additional measurements of net radiation, wind speed at three heights, temperature, and precipitation as available every 15 minutes. Dendrometers measured variation in xylem and bark thickness every 5 minutes. The MUltiple SIgnal Classification (MUSIC) algorithm was applied to the acceleration time series to estimate the frequency spectrum of each tree. A correction was necessary to account for the dominant effect of wind. The resulting spectra reveal clear diurnal variations, as well as changes during precipitation events. Comparison with ancillary data suggests that we can extract information on diurnal mass variations from the accelerometer data. This may provide valuable insight into the effects of water stress on mass variations in different Amazon tree species.

  3. Strong coupling of plant and fungal community structure across western Amazonian rainforests

    PubMed Central

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul VA

    2013-01-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. PMID:23598789

  4. Tree Diametric Increment and Litterfall Production in an Eastern Amazonian Forest: the Role of Functional Groups

    NASA Astrophysics Data System (ADS)

    Camargo, P. B. D.; Ferreira, M. L.; Oliveira Junior, R. C.; Saleska, S. R.

    2014-12-01

    Tree growth is a biotic variable of great importance in understanding the dynamics of tree communities and may be used as a tool in studies of biological or climate modeling. Some climate models predict more recurrent climate anomalies in this century, which may alter the functioning of tropical forests with serious structural and demographic implications. The present study aimed to evaluate the profile of tree growth and litterfall production in an eastern Amazon forest, which has suffered recent climatic disturbances. We contrasted different functional groups based on wood density (stem with 0.55; 0.56-0.7; >0.7 g cm-3), light availability (crown illumination index; high illuminated crown - IIC1 until shaded crown - IIC5), and, size class (trees 10-22.5; 22.6-35; 35.1-55; 55,1-90; >90 cm dbh). Tree diameter increment was monthly measured from November 2011 to September 2013 by using dendrometer bands installed on 850 individuals from different families. Litterfall was collected in 64 circular traps, oven dried and weighed, separated into leaves, twigs, reproductive parts and miscellaneous. During the rainy season the sampled trees had the highest rates of tree diametric increment. When analyzing the data by functional groups, large trees had faster growth, but when grouped by wood density, trees with wood density up to 0.55 and between 0.56 and 0.7 g cm-3 had the fastest rates of growth. When grouped by crown illumination index, trees exposed to higher levels of light grew more in comparison to partially shaded trees. Maximum daily air temperature and precipitation were the most important environmental variables in determining the diametric increment profile of the trees. Litterfall production was estimated to be 7.1 Mg ha-1.year-1 and showed a strong seasonal pattern, with dry season production being higher than in the rainy season. Leaves formed the largest fraction of the litterfall, followed by twigs, reproductive parts, and finally miscellaneous. These results show that the profile of tree diametric growth and litterfall production are recorded at close intervals in the preterit analyzes in the same study area and highlights the efficiency of functional groups in determining the tree growth profile.

  5. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests.

    PubMed

    Peres, Carlos A; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J M; Levi, Taal

    2016-01-26

    Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼ 1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs.

  6. Calycophyllum spruceanum (Benth.), the Amazonian "Tree of Youth" Prolongs Longevity and Enhances Stress Resistance in Caenorhabditis elegans.

    PubMed

    Peixoto, Herbenya; Roxo, Mariana; Koolen, Hector; da Silva, Felipe; Silva, Emerson; Braun, Markus Santhosh; Wang, Xiaojuan; Wink, Michael

    2018-02-27

    The tree popularly known in Brazil as mulateiro or pau-mulato ( Calycophyllum spruceanum (Benth.) K. Schum.) is deeply embedded in the herbal medicine of the Amazon region. Different preparations of the bark are claimed to have anti-aging, antioxidant, antimicrobial, emollient, wound healing, hemostatic, contraceptive, stimulant, and anti-diabetic properties. The current study aims to provide the first step towards a science-based evidence of the beneficial effects of C. spruceanum in the promotion of longevity and in the modulation of age-related markers. For this investigation, we used the model system Caenorhabditis elegans to evaluate in vivo antioxidant and anti-aging activity of a water extract from C. spruceanum . To chemically characterize the extract, HPLC MS (High Performance Liquid Chromatography Mass Spectrometry)/MS analyses were performed. Five secondary metabolites were identified in the extract, namely gardenoside, 5-hydroxymorin, cyanidin, taxifolin, and 5-hydroxy-6-methoxycoumarin-7-glucoside. C. spruceanum extract was able to enhance stress resistance and to extend lifespan along with attenuation of aging-associated markers in C. elegans . The demonstrated bioactivities apparently depend on the DAF-16/FOXO pathway. The data might support the popular claims of mulateiro as the "tree of youth", however more studies are needed to clarify its putative benefits to human health.

  7. Voices of Contact: Politics of Language in Urban Amazonian Ecuador

    ERIC Educational Resources Information Center

    Wroblewski, Michael

    2010-01-01

    This dissertation is a study of diverse linguistic resources and contentious identity politics among indigenous Amazonian Kichwas in the city of Tena, Ecuador. Tena is a rapidly developing Amazonian provincial capital city with a long history of interethnic and interlinguistic contact. In recent decades, the course of indigenous Kichwa identity…

  8. The Mission of the Amazonian Universities in Economic Development and Environmental Preservation.

    ERIC Educational Resources Information Center

    Lourenco, Jose Seixas

    The Association of Amazonian Universities (UNAMAZ) was created in September 1987 and is involved in a collective effort to find ways to promote the Amazonian region's nonpredatory development, recognizing its limitations and taking into account its potential. With deforestation taking place at ever-increasing speed, it has become necessary to…

  9. A structurally based analytic model for estimation of biomass and fuel loads of woodland trees

    Treesearch

    Robin J. Tausch

    2009-01-01

    Allometric/structural relationships in tree crowns are a consequence of the physical, physiological, and fluid conduction processes of trees, which control the distribution, efficient support, and growth of foliage in the crown. The structural consequences of these processes are used to develop an analytic model based on the concept of branch orders. A set of...

  10. Three new species of woodlizards (Hoplocercinae, Enyalioides) from northwestern South America

    PubMed Central

    Torres-Carvajal, Omar; Venegas, Pablo J.; de Queiroz, Kevin

    2015-01-01

    Abstract The discovery of three new species of Enyalioides from the tropical Andes in Ecuador and northern Peru is reported. Enyalioides altotambo sp. n. occurs in northwestern Ecuador and differs from other species of Enyalioides in having dorsal scales that are both smooth and homogeneous in size, a brown iris, and in lacking enlarged, circular and keeled scales on the flanks. Enyalioides anisolepis sp. n. occurs on the Amazonian slopes of the Andes in southern Ecuador and northern Peru and can be distinguished from other species of Enyalioides by its scattered, projecting large scales on the dorsum, flanks, and hind limbs, as well as a well-developed vertebral crest, with the vertebrals on the neck at least three times higher than those between the hind limbs. Enyalioides sophiarothschildae sp. n. is from the Amazonian slopes of the Cordillera Central in northeastern Peru; it differs from other species of Enyalioides in having caudal scales that are relatively homogeneous in size on each caudal segment, a white gular region with a black medial patch and several turquoise scales in males, as well as immaculate white labials and chin. A molecular phylogenetic tree of 18 species of hoplocercines is presented, including the three species described in this paper and Enyalioides cofanorum, as well as an updated identification key for species of Hoplocercinae. PMID:25901116

  11. Identification of Amazonian Trees with DNA Barcodes

    PubMed Central

    Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A.; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme

    2009-01-01

    Background Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Methodology/Principal Findings Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. Conclusion/Significance We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs. PMID:19834612

  12. Higher Education and Urban Migration for Community Resilience: Indigenous Amazonian Youth Promoting Place-Based Livelihoods and Identities in Peru

    ERIC Educational Resources Information Center

    Steele, Diana

    2018-01-01

    This paper offers an ethnographic analysis of indigenous Peruvian Amazonian youth pursuing higher education through urban migration to contribute to the resilience of their communities, place-based livelihoods, and indigenous Amazonian identities. Youth and their communities promoted education and migration as powerful tools in the context of…

  13. Large emissions from floodplain trees close the Amazon methane budget.

    PubMed

    Pangala, Sunitha R; Enrich-Prast, Alex; Basso, Luana S; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R C; Gatti, Luciana V; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-14

    Wetlands are the largest global source of atmospheric methane (CH 4 ), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH 4 in the tropics, consistently underestimate the atmospheric burden of CH 4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH 4 emissions. Here we report CH 4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH 4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ 13 C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH 4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH 4 emissions of 42.7 ± 5.6 teragrams of CH 4 a year for the Amazon basin, based on regular vertical lower-troposphere CH 4 profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH 4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH 4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH 4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH 4 source when trees are combined with other emission sources.

  14. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape

    PubMed Central

    Peres, Carlos A.; Benchimol, Maíra; Bunnefeld, Lynsey; Dent, Daisy H.

    2017-01-01

    Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development. PMID:29040272

  15. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape.

    PubMed

    Jones, Isabel L; Peres, Carlos A; Benchimol, Maíra; Bunnefeld, Lynsey; Dent, Daisy H

    2017-01-01

    Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development.

  16. Large emissions from floodplain trees close the Amazon methane budget

    NASA Astrophysics Data System (ADS)

    Pangala, Sunitha R.; Enrich-Prast, Alex; Basso, Luana S.; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R. C.; Gatti, Luciana V.; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-01

    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010-2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.

  17. Ecosystem services from converted land: the importance of tree cover in Amazonian pastures

    USGS Publications Warehouse

    Barrett, Kirsten; Valentim, Judson; Turner, B. L.

    2013-01-01

    Deforestation is responsible for a substantial fraction of global carbon emissions and changes in surface energy budgets that affect climate. Deforestation losses include wildlife and human habitat, and myriad forest products on which rural and urban societies depend for food, fiber, fuel, fresh water, medicine, and recreation. Ecosystem services gained in the transition from forests to pasture and croplands, however, are often ignored in assessments of the impact of land cover change. The role of converted lands in tropical areas in terms of carbon uptake and storage is largely unknown. Pastures represent the fastest-growing form of converted land use in the tropics, even in some areas of rapid urban expansion. Tree biomass stored in these areas spans a broad range, depending on tree cover. Trees in pasture increase carbon storage, provide shade for cattle, and increase productivity of forage material. As a result, increasing fractional tree cover can provide benefits land managers as well as important ecosystem services such as reducing conversion pressure on forests adjacent to pastures. This study presents an estimation of fractional tree cover in pasture in a dynamic region on the verge of large-scale land use change. An appropriate sampling interval is established for similar studies, one that balances the need for independent samples of sufficient number to characterize a pasture in terms of fractional tree cover. This information represents a useful policy tool for government organizations and NGOs interested in encouraging ecosystem services on converted lands. Using high spatial resolution remotely sensed imagery, fractional tree cover in pasture is quantified for the municipality of Rio Branco, Brazil. A semivariogram and devolving spatial resolution are employed to determine the coarsest sampling interval that may be used, minimizing effects of spatial autocorrelation. The coarsest sampling interval that minimizes spatial dependence was about 22 m. The area-weighted fractional tree cover for the study area was 1.85 %, corrected for a slight bias associated with the coarser sampling resolution. The pastures sampled for fractional tree cover were divided between ‘high’ and ‘low’ tree cover, which may be the result of intentional incorporation of arboreal species in pasture. Further research involving those ranchers that have a higher fractional tree cover may indicate ways to promote the practice on a broader scale in the region.

  18. Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems

    PubMed Central

    Parolin, Pia; Wittmann, Florian

    2010-01-01

    Background and aims In the context of the 200th anniversary of Charles Darwin's birth in 1809, this study discusses the variation in structure and adaptation associated with survival and reproductive success in the face of environmental stresses in the trees of tropical floodplains. Scope We provide a comparative review on the responses to flooding stress in the trees of freshwater wetlands in tropical environments. The four large wetlands we evaluate are: (i) Central Amazonian floodplains in South America, (ii) the Okavango Delta in Africa, (iii) the Mekong floodplains of Asia and (iv) the floodplains of Northern Australia. They each have a predictable ‘flood pulse’. Although flooding height varies between the ecosystems, the annual pulse is a major driving force influencing all living organisms and a source of stress for which specialized adaptations for survival are required. Main points The need for trees to survive an annual flood pulse has given rise to a large variety of adaptations. However, phenological responses to the flood are similar in the four ecosystems. Deciduous and evergreen species respond with leaf shedding, although sap flow remains active for most of the year. Growth depends on adequate carbohydrate supply. Physiological adaptations (anaerobic metabolism, starch accumulation) are also required. Conclusions Data concerning the ecophysiology and adaptations of trees in floodplain forests worldwide are extremely scarce. For successful floodplain conservation, more information is needed, ideally through a globally co-ordinated study using reproducible comparative methods. In the light of climatic change, with increasing drought, decreased groundwater availability and flooding periodicities, this knowledge is needed ever more urgently to facilitate fast and appropriate management responses to large-scale environmental change. PMID:22476061

  19. Immune function in Amazonian horticulturalists

    PubMed Central

    Blackwell, Aaron D.; Trumble, Benjamin C.; Suarez, Ivan Maldonado; Stieglitz, Jonathan; Beheim, Bret; Snodgrass, J. Josh; Kaplan, Hillard; Gurven, Michael

    2016-01-01

    Background Amazonian populations are exposed to diverse parasites and pathogens, including protozoal, bacterial, fungal, and helminthic infections. Yet much of our understanding of the immune system is based on industrialised populations where these infections are relatively rare. Aim We examine distributions and age-related differences in 22 measures of immune function for Bolivian forager-horticulturalists and US and European populations. Subjects and Methods Subjects were 6,338 Tsimane aged 0–90 years. Blood samples collected between 2004–2014 were analysed for 5-part blood differentials, C-reactive protein, erythrocyte sedimentation rate (ESR), and total immunoglobulins E, G, A, and M. Flow cytometry was used to quantify naive and non-naïve CD4 and CD8 T cells, natural killer cells, and B cells. Results Compared to reference populations, Tsimane have elevated levels of most immunological parameters, particularly immunoglobulins, eosinophils, ESR, B cells, and natural killer cells. However, monocytes and basophils are reduced and naïve CD4 cells depleted in older age groups. Conclusion Tsimane ecology leads to lymphocyte repertoires and immunoglobulin profiles that differ from those observed in industrialised populations. These differences have consequences for disease susceptibility and co-vary with patterns of other life history traits, such as growth and reproduction. PMID:27174705

  20. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands

    PubMed Central

    Salas-Gismondi, Rodolfo; Flynn, John J.; Baby, Patrice; Tejada-Lara, Julia V.; Wesselingh, Frank P.; Antoine, Pierre-Olivier

    2015-01-01

    Amazonia contains one of the world's richest biotas, but origins of this diversity remain obscure. Onset of the Amazon River drainage at approximately 10.5 Ma represented a major shift in Neotropical ecosystems, and proto-Amazonian biotas just prior to this pivotal episode are integral to understanding origins of Amazonian biodiversity, yet vertebrate fossil evidence is extraordinarily rare. Two new species-rich bonebeds from late Middle Miocene proto-Amazonian deposits of northeastern Peru document the same hyperdiverse assemblage of seven co-occurring crocodylian species. Besides the large-bodied Purussaurus and Mourasuchus, all other crocodylians are new taxa, including a stem caiman—Gnatusuchus pebasensis—bearing a massive shovel-shaped mandible, procumbent anterior and globular posterior teeth, and a mammal-like diastema. This unusual species is an extreme exemplar of a radiation of small caimans with crushing dentitions recording peculiar feeding strategies correlated with a peak in proto-Amazonian molluscan diversity and abundance. These faunas evolved within dysoxic marshes and swamps of the long-lived Pebas Mega-Wetland System and declined with inception of the transcontinental Amazon drainage, favouring diversification of longirostrine crocodylians and more modern generalist-feeding caimans. The rise and demise of distinctive, highly productive aquatic ecosystems substantially influenced evolution of Amazonian biodiversity hotspots of crocodylians and other organisms throughout the Neogene. PMID:25716785

  1. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  2. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests

    PubMed Central

    Peres, Carlos A.; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J. M.; Levi, Taal

    2016-01-01

    Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant–animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5–5.8% on average, with some losses as high as 26.5–37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs. PMID:26811455

  3. Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Hare, T.M.; Joyal, T.; Wenker, A.

    2003-01-01

    Geologic mapping of the northern plains of Mars, based on Mars Orbiter Laser Altimeter topography and Viking and Mars Orbiter Camera images, reveals new insights into geologic processes and events in this region during the Hesperian and Amazonian Periods. We propose four successive stages of lowland resurfacing likely related to the activity of near-surface volatiles commencing at the highland-lowland boundary (HLB) and progressing to lower topographic levels as follows (highest elevations indicated): Stage 1, upper boundary plains, Early Hesperian, <-2.0 to -2.9 km; Stage 2, lower boundary plains and outflow channel dissection, Late Hesperian, <-2.7 to -4.0 km; Stage 3, Vastitas Borealis Formation (VBF) surface, Late Hesperian to Early Amazonian, <-3.1 to -4.1 km; and Stage 4, local chaos zones, Early Amazonian, <-3.8 to -5.0 km. At Acidalia Mensa, Stage 2 and 3 levels may be lower (<-4.4 and -4.8 km, respectively). Contractional ridges form the dominant structure in the plains and developed from near the end of the Early Hesperian to the Early Amazonian. Geomorphic evidence for a northern-plains-filling ocean during Stage 2 is absent because one did not form or its evidence was destroyed by Stage 3 resurfacing. Remnants of possible Amazonian dust mantles occur on top of the VBF. The north polar layered deposits appear to be made up of an up to kilometer-thick lower sequence of sandy layers Early to Middle Amazonian in age overlain by Late Amazonian ice-rich dust layers; both units appear to have outliers, suggesting that they once were more extensive.

  4. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands.

    PubMed

    Salas-Gismondi, Rodolfo; Flynn, John J; Baby, Patrice; Tejada-Lara, Julia V; Wesselingh, Frank P; Antoine, Pierre-Olivier

    2015-04-07

    Amazonia contains one of the world's richest biotas, but origins of this diversity remain obscure. Onset of the Amazon River drainage at approximately 10.5 Ma represented a major shift in Neotropical ecosystems, and proto-Amazonian biotas just prior to this pivotal episode are integral to understanding origins of Amazonian biodiversity, yet vertebrate fossil evidence is extraordinarily rare. Two new species-rich bonebeds from late Middle Miocene proto-Amazonian deposits of northeastern Peru document the same hyperdiverse assemblage of seven co-occurring crocodylian species. Besides the large-bodied Purussaurus and Mourasuchus, all other crocodylians are new taxa, including a stem caiman-Gnatusuchus pebasensis-bearing a massive shovel-shaped mandible, procumbent anterior and globular posterior teeth, and a mammal-like diastema. This unusual species is an extreme exemplar of a radiation of small caimans with crushing dentitions recording peculiar feeding strategies correlated with a peak in proto-Amazonian molluscan diversity and abundance. These faunas evolved within dysoxic marshes and swamps of the long-lived Pebas Mega-Wetland System and declined with inception of the transcontinental Amazon drainage, favouring diversification of longirostrine crocodylians and more modern generalist-feeding caimans. The rise and demise of distinctive, highly productive aquatic ecosystems substantially influenced evolution of Amazonian biodiversity hotspots of crocodylians and other organisms throughout the Neogene. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Temporal Decay in Timber Species Composition and Value in Amazonian Logging Concessions.

    PubMed

    Richardson, Vanessa A; Peres, Carlos A

    2016-01-01

    Throughout human history, slow-renewal biological resource populations have been predictably overexploited, often to the point of economic extinction. We assess whether and how this has occurred with timber resources in the Brazilian Amazon. The asynchronous advance of industrial-scale logging frontiers has left regional-scale forest landscapes with varying histories of logging. Initial harvests in unlogged forests can be highly selective, targeting slow-growing, high-grade, shade-tolerant hardwood species, while later harvests tend to focus on fast-growing, light-wooded, long-lived pioneer trees. Brazil accounts for 85% of all native neotropical forest roundlog production, and the State of Pará for almost half of all timber production in Brazilian Amazonia, the largest old-growth tropical timber reserve controlled by any country. Yet the degree to which timber harvests beyond the first-cut can be financially profitable or demographically sustainable remains poorly understood. Here, we use data on legally planned logging of ~17.3 million cubic meters of timber across 314 species extracted from 824 authorized harvest areas in private and community-owned forests, 446 of which reported volumetric composition data by timber species. We document patterns of timber extraction by volume, species composition, and monetary value along aging eastern Amazonian logging frontiers, which are then explained on the basis of historical and environmental variables. Generalized linear models indicate that relatively recent logging operations farthest from heavy-traffic roads are the most selective, concentrating gross revenues on few high-value species. We find no evidence that the post-logging timber species composition and total value of forest stands recovers beyond the first-cut, suggesting that the commercially most valuable timber species become predictably rare or economically extinct in old logging frontiers. In avoiding even more destructive land-use patterns, managing yields of selectively-logged forests is crucial for the long-term integrity of forest biodiversity and financial viability of local industries. The logging history of eastern Amazonian old-growth forests likely mirrors unsustainable patterns of timber depletion over time in Brazil and other tropical countries.

  6. Temporal Decay in Timber Species Composition and Value in Amazonian Logging Concessions

    PubMed Central

    Peres, Carlos A.

    2016-01-01

    Throughout human history, slow-renewal biological resource populations have been predictably overexploited, often to the point of economic extinction. We assess whether and how this has occurred with timber resources in the Brazilian Amazon. The asynchronous advance of industrial-scale logging frontiers has left regional-scale forest landscapes with varying histories of logging. Initial harvests in unlogged forests can be highly selective, targeting slow-growing, high-grade, shade-tolerant hardwood species, while later harvests tend to focus on fast-growing, light-wooded, long-lived pioneer trees. Brazil accounts for 85% of all native neotropical forest roundlog production, and the State of Pará for almost half of all timber production in Brazilian Amazonia, the largest old-growth tropical timber reserve controlled by any country. Yet the degree to which timber harvests beyond the first-cut can be financially profitable or demographically sustainable remains poorly understood. Here, we use data on legally planned logging of ~17.3 million cubic meters of timber across 314 species extracted from 824 authorized harvest areas in private and community-owned forests, 446 of which reported volumetric composition data by timber species. We document patterns of timber extraction by volume, species composition, and monetary value along aging eastern Amazonian logging frontiers, which are then explained on the basis of historical and environmental variables. Generalized linear models indicate that relatively recent logging operations farthest from heavy-traffic roads are the most selective, concentrating gross revenues on few high-value species. We find no evidence that the post-logging timber species composition and total value of forest stands recovers beyond the first-cut, suggesting that the commercially most valuable timber species become predictably rare or economically extinct in old logging frontiers. In avoiding even more destructive land-use patterns, managing yields of selectively-logged forests is crucial for the long-term integrity of forest biodiversity and financial viability of local industries. The logging history of eastern Amazonian old-growth forests likely mirrors unsustainable patterns of timber depletion over time in Brazil and other tropical countries. PMID:27410029

  7. The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions

    PubMed Central

    da Silva Ferreira, Cristiane; Piedade, Maria Teresa Fernandez; Tiné, Marco Aurélio Silva; Rossatto, Davi Rodrigo; Parolin, Pia; Buckeridge, Marcos Silveira

    2009-01-01

    Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the ‘várzea’ (VZ) floodplains and adjacent non-flooded ‘terra-firme’ (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main non-structural carbohydrate. Around 93 % of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2·5%. In contrast, 74 % of the endosperm in TF seeds was composed of galactomannans, while 22 % of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution. PMID:19770164

  8. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage.

    PubMed

    Salazar, Diego; Lokvam, John; Mesones, Italo; Vásquez Pilco, Magno; Ayarza Zuñiga, Jacqueline Milagros; de Valpine, Perry; Fine, Paul V A

    2018-06-01

    Plant secondary metabolites play important ecological and evolutionary roles, most notably in the deterrence of natural enemies. The classical theory explaining the evolution of plant chemical diversity is that new defences arise through a pairwise co-evolutionary arms race between plants and their specialized natural enemies. However, plant species are bombarded by dozens of different herbivore taxa from disparate phylogenetic lineages that span a wide range of feeding strategies and have distinctive physiological constraints that interact differently with particular plant metabolites. How do plant defence chemicals evolve under such multiple and potentially contrasting selective pressures imposed by diverse herbivore communities? To tackle this question, we exhaustively characterized the chemical diversity and insect herbivore fauna from 31 sympatric species of Amazonian Protieae (Burseraceae) trees. Using a combination of phylogenetic, metabolomic and statistical learning tools, we show that secondary metabolites that were associated with repelling herbivores (1) were more frequent across the Protieae phylogeny and (2) were found in average higher abundance than other compounds. Our findings suggest that generalist herbivores can play an important role in shaping plant chemical diversity and support the hypothesis that chemical diversity can also arise from the cumulative outcome of multiple diffuse interactions.

  9. Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses

    Treesearch

    Henry D. Adams; Charles H. Luce; David D. Breshears; Craig D. Allen; Markus Weiler; V. Cody Hale; Alistair M. S. Smith; Travis E. Huxman

    2012-01-01

    Widespread, rapid, drought-, and infestation-triggered tree mortality is emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. The ecohydrological consequences of forest die-off have been little studied and remain highly uncertain. To explore this knowledge gap, we apply the extensive...

  10. New Brazilian Cerambycidae from the Amazonian region (Coleoptera).

    PubMed

    Santos-Silva, Antonio; Galileo, Maria Helena M

    2016-01-01

    Three new species of Cerambycidae are described from the Brazilian Amazonian region: Psapharochrus bezarki (Lamiinae, Acanthoderini); Xenofrea ayri (Lamiinae, Xenofreini); and Mecometopus wappesi (Cerambycinae, Clytini). Mecometopus wappesi is added to a previous key.

  11. Hunting in the Rainforest and Mayaro Virus Infection: An emerging Alphavirus in Ecuador.

    PubMed

    Izurieta, Ricardo O; Macaluso, Maurizio; Watts, Douglas M; Tesh, Robert B; Guerra, Bolivar; Cruz, Ligia M; Galwankar, Sagar; Vermund, Sten H

    2011-10-01

    The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Mayaro virus infection was assessed by evaluating IgM- and IgG-specific antibodies using ELISA. Of 338 subjects studied, 174 were from the Coastal zone of Ecuador, 73 from Andean zone, and 91 were native to the Amazonian rainforest. Seroprevalence of Mayaro virus infection was more than 20 times higher among Amazonian natives (46%) than among subjects born in other areas (2%). Age and hunting in the rainforest were significant predictors of Mayaro virus infection overall and among Amazonian natives. The results provide the first demonstration of the potential presence of Mayaro virus infection in Ecuador and a systematic evaluation of risk factors for the transmission of this alphavirus. The large difference in prevalence rates between Amazonian natives and other groups and between older and younger natives suggest that Mayaro virus is endemic and enzootic in the rainforest, with sporadic outbreaks that determine differences in risk between birth cohorts of natives. Deep forest hunting may selectively expose native men, descendants of the Shuar and Huaronai ethnic groups, to the arthropod vectors of Mayaro virus in areas close to primate reservoirs.

  12. Estimating aboveground tree biomass on forest land in the Pacific Northwest: a comparison of approaches

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2009-01-01

    Live tree biomass estimates are essential for carbon accounting, bioenergy feasibility studies, and other analyses. Several models are currently used for estimating tree biomass. Each of these incorporates different calculation methods that may significantly impact the estimates of total aboveground tree biomass, merchantable biomass, and carbon pools. Consequently,...

  13. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Treesearch

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  14. Observations On Some Upper Amazonian Wetlands of Southeastern Peru

    NASA Astrophysics Data System (ADS)

    Householder, J. E.; Muttiah, R.; Khanal, S.

    2007-05-01

    Upper Amazonian wetlands represent little studied, poorly understood, and grossly under protected systems. Scientific investigation of Amazonian wetlands is in its infancy; nor is there much known about their ecological services. Regionally, wetlands form a ubiquitous and significant component of floodplain habitat fed by perennial springs as well as overland runoff. Locally, wetland vegetation forms bewilderingly complex vegetation mosaics that seem to be governed by local topography and hydrology. Drawing upon intensive field campaigns and remotely sensed imagery, we summarize the results and experiences gathered in wetlands of southeastern Peru.

  15. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations.

    PubMed

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T C R; Harris, S A; Boshier, D H

    2015-08-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.

  16. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    PubMed

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  17. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations

    PubMed Central

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T CR; Harris, S A; Boshier, D H

    2015-01-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests. PMID:24424164

  18. Branch xylem density variations across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Lloyd, J.; Paiva, R.; Baker, T. R.; Quesada, C. A.; Mercado, L. M.; Schmerler, J.; Schwarz, M.; Santos, A. J. B.; Aguilar, A.; Czimczik, C. I.; Gallo, J.; Horna, V.; Hoyos, E. J.; Jimenez, E. M.; Palomino, W.; Peacock, J.; Peña-Cruz, A.; Sarmiento, C.; Sota, A.; Turriago, J. D.; Villanueva, B.; Vitzthum, P.; Alvarez, E.; Arroyo, L.; Baraloto, C.; Bonal, D.; Chave, J.; Costa, A. C. L.; Herrera, R.; Higuchi, N.; Killeen, T.; Leal, E.; Luizão, F.; Meir, P.; Monteagudo, A.; Neil, D.; Núñez-Vargas, P.; Peñuela, M. C.; Pitman, N.; Priante Filho, N.; Prieto, A.; Panfil, S. N.; Rudas, A.; Salomão, R.; Silva, N.; Silveira, M.; Soares Dealmeida, S.; Torres-Lezama, A.; Vásquez-Martínez, R.; Vieira, I.; Malhi, Y.; Phillips, O. L.

    2009-04-01

    Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m-3 for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m-3 for an Aiouea sp. (Lauraceae) from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.

  19. South American Leaf Blight of the Rubber Tree (Hevea spp.): New Steps in Plant Domestication using Physiological Features and Molecular Markers

    PubMed Central

    Lieberei, Reinhard

    2007-01-01

    Background Rubber trees (Hevea spp.) are perennial crops of Amazonian origin that have been spread over the whole tropical belt to guarantee worldwide production of natural rubber. This crop plant has found its place in many national economies of producing countries, and although its domestication by selection of suitable genotypes was very slow, it contributes a lot to the welfare of small farmers worldwide. Its development is limited by severe diseases. In South America, the main fungal disease of rubber trees is the South American leaf blight (SALB) caused by the ascomycete Microcyclus ulei. This fungus inhibits natural rubber production on a commercial scale in South and Central America. Scope The disease is still restricted to its continent of origin, but its potential to be distributed around the world rises with every transcontinental airline connection that directly links tropical regions. The need to develop control measures against the disease is an urgent task and must be carried out on an international scale. All control efforts so far taken since 1910 have ended in a miserable failure. Even the use of modern systemic fungicides and use of greatly improved application techniques have failed to prevent large losses and dieback of trees. The results of research dealing with both the disease and the pathosystem over more than 50 years are summarized and placed into perspective. Future Prospects A detailed knowledge of this host–pathogen combination requires understanding of the dynamics of Hevea leaf development, the biochemical potential for cyanide liberation, and molecular data for several types of resistance factors. Resolution of the Hevea–SALB problem may serve as a model for future host–pathogen studies of perennial plants requiring a holistic approach. PMID:17650512

  20. Assessing the extent of "conflict of use" in multipurpose tropical forest trees: a regional view.

    PubMed

    Herrero-Jáuregui, Cristina; Guariguata, Manuel R; Cárdenas, Dairon; Vilanova, Emilio; Robles, Marco; Licona, Juan Carlos; Nalvarte, Walter

    2013-11-30

    In the context of multiple forest management, multipurpose tree species which provide both timber and non-timber forest products (NTFP), present particular challenges as the potential of conflicting use for either product may be high. One key aspect is that the magnitude of conflict of use can be location specific, thus adding complexity to policy development. This paper focuses on the extent to which the potential for conflict of use in multipurpose tree species varies across the Amazonian lowland forests shared by Peru, Bolivia, Colombia, Ecuador and Venezuela, emphasizing the economic dimension of conflict. Based on a review of the current normative and regulatory aspects of timber and NTFP extraction in the five countries, the paper also briefly discusses the opportunities and constraints for harmonization of timber and NTFP management of multipurpose species across the region. It was found that about half of the 336 timber species reviewed across the five countries also have non-timber uses. Eleven timber species are multipurpose in all five countries: Calophyllum brasiliense, Cedrela odorata, Ceiba pentandra, Clarisia racemosa, Ficus insipida, Jacaranda copaia, Schefflera morototoni, Simarouba amara and Terminalia amazonia. Seven other multipurpose species occurred only in either Venezuela (Tabebuia impetiginosa, Spondias mombin, Pentaclethra macroloba, Copaifera officinalis, Chlorophora tinctoria, Carapa guianensis) or Ecuador (Tabebuia chrysantha). Four multipurpose tree species presented the highest potential of conflict of use across the region: Dipteryx odorata, Tabebuia serratifolia, Hymenaea courbaril and Myroxylon balsamum yet these were not evenly distributed across all five countries. None of the five studied countries have specific legislation to promote sustainable use of any of the multipurpose species reported here and thus mitigate potential conflict of use; nor documented management options for integration or else segregation of both their timber and NTFP values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. New Brazilian Cerambycidae from the Amazonian region (Coleoptera)

    PubMed Central

    Santos-Silva, Antonio; Galileo, Maria Helena M.

    2016-01-01

    Abstract Three new species of Cerambycidae are described from the Brazilian Amazonian region: Psapharochrus bezarki (Lamiinae, Acanthoderini); Xenofrea ayri (Lamiinae, Xenofreini); and Mecometopus wappesi (Cerambycinae, Clytini). Mecometopus wappesi is added to a previous key. PMID:27551200

  2. Growth of Douglas-fir near equipment trails used for commercial thinning in the Oregon Coast Range.

    Treesearch

    Richard E. Miller; Jim Smith; Paul W. Adams; Harry W. Anderson

    2007-01-01

    Soil disturbance is a visually apparent result of using heavy equipment to harvest trees. Subsequent consequences for growth of remaining trees, however, are variable and seldom quantified. We measured tree growth 7 and 11 years after thinning of trees in four stands of coast Douglas-fir (Pseudotsuga menziesii var. menziesii(...

  3. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus).

    PubMed

    Wüster, Wolfgang; Ferguson, Julia E; Quijada-Mascareñas, J Adrian; Pook, Catharine E; Salomão, Maria da Graça; Thorpe, Roger S

    2005-04-01

    Abstract Pleistocene fragmentation of the Amazonian rainforest has been hypothesized to be a major cause of Neotropical speciation and diversity. However, the role and even the reality of Pleistocene forest refugia have attracted much scepticism. In Amazonia, previous phylogeographical studies have focused mostly on organisms found in the forests themselves, and generally found speciation events to have predated the Pleistocene. However, molecular studies of open-formation taxa found both north and south of the Amazonian forests, probably because of vicariance resulting from expansion of the rainforests, may provide novel insights into the age of continuous forest cover across the Amazon basin. Here, we analyse three mitochondrial genes to infer the phylogeography of one such trans-Amazonian vicariant, the Neotropical rattlesnake (Crotalus durissus), which occupies primarily seasonal formations from Mexico to Argentina, but avoids the rainforests of Central and tropical South America. The phylogeographical pattern is consistent with gradual dispersal along the Central American Isthmus, followed by more rapid dispersal into and across South America after the uplift of the Isthmus of Panama. Low sequence divergence between populations from north and south of the Amazon rainforest is consistent with mid-Pleistocene divergence, approximately 1.1 million years ago (Ma). This suggests that the Amazonian rainforests must have become fragmented or at least shrunk considerably during that period, lending support to the Pleistocene refugia theory as an important cause of distribution patterns, if not necessarily speciation, in Amazonian forest organisms. These results highlight the potential of nonforest species to contribute to an understanding of the history of the Amazonian rainforests themselves.

  4. Hunting in the Rainforest and Mayaro Virus Infection: An emerging Alphavirus in Ecuador

    PubMed Central

    Izurieta, Ricardo O; Macaluso, Maurizio; Watts, Douglas M; Tesh, Robert B; Guerra, Bolivar; Cruz, Ligia M; Galwankar, Sagar; Vermund, Sten H

    2011-01-01

    Objectives: The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. Materials and Methods: The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Mayaro virus infection was assessed by evaluating IgM- and IgG-specific antibodies using ELISA. Results: Of 338 subjects studied, 174 were from the Coastal zone of Ecuador, 73 from Andean zone, and 91 were native to the Amazonian rainforest. Seroprevalence of Mayaro virus infection was more than 20 times higher among Amazonian natives (46%) than among subjects born in other areas (2%). Conclusions: Age and hunting in the rainforest were significant predictors of Mayaro virus infection overall and among Amazonian natives. The results provide the first demonstration of the potential presence of Mayaro virus infection in Ecuador and a systematic evaluation of risk factors for the transmission of this alphavirus. The large difference in prevalence rates between Amazonian natives and other groups and between older and younger natives suggest that Mayaro virus is endemic and enzootic in the rainforest, with sporadic outbreaks that determine differences in risk between birth cohorts of natives. Deep forest hunting may selectively expose native men, descendants of the Shuar and Huaronai ethnic groups, to the arthropod vectors of Mayaro virus in areas close to primate reservoirs. PMID:22223990

  5. Epiphytic cryptogams as a source of bioaerosols and trace gases

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Hrabe de Angelis, Isabella; Zartman, Charles E.; Araùjo, Alessandro; Pöschl, Ulrich; Manzi, Antonio O.; Andreae, Meinrat O.; Pöhlker, Christopher; Weber, Bettina

    2016-04-01

    Cryptogamic covers comprise (cyano-)bacteria, algae, lichens, bryophytes, fungi, and archaea in varying proportions. These organisms do not form flowers, but reproduce by spores or cell cleavage with these reproductive units being dispersed via the atmosphere. As so-called poikilohydric organisms they are unable to regulate their water content, and their physiological activity pattern mainly follows the external water conditions. We hypothesize, that both spore dispersal and the release of trace gases are governed by the moisture patterns of these organisms and thus they could have a greater impact on the atmosphere than previously thought. In order to test this hypothesis, we initiated experiments at the study site Amazonian Tall Tower Observatory (ATTO) in September 2014. We installed microclimate sensors in epiphytic cryptogams at four different heights of a tree to monitor the activity patterns of these organisms. Self-developed moisture probes are used to analyze the water status of the organisms accompanied by light and temperature sensors. The continuously logged data are linked to ongoing measurements of trace gases and particulate bioaerosols to analyze these for the relevance of cryptogams. Here, we are particularly interested in diurnal cycles of coarse mode particles and the atmospheric abundance of fine potassium-rich particles from a currently unknown biogenic source. Based upon the results of this field study we also investigate the bioaerosol and trace gas release patterns of cryptogamic covers under controlled conditions. With this combined approach of field and laboratory experiments we aim to disclose the role of cryptogamic covers in bioaerosol and trace gas release patterns in the Amazonian rainforest.

  6. A Bilingual Experiment in the Amazonian Jungle of Peru

    ERIC Educational Resources Information Center

    Wise, Mary Ruth

    1971-01-01

    In the Amazonian jungle of Peru 240 Indian leaders representing 20 different South American Indian language groups are successfully teaching their own people to read and write, first in their mother tongue and then in Spanish. (Author/EB)

  7. High-throughput transcriptome sequencing and preliminary functional analysis in four Neotropical tree species.

    PubMed

    Brousseau, Louise; Tinaut, Alexandra; Duret, Caroline; Lang, Tiange; Garnier-Gere, Pauline; Scotti, Ivan

    2014-03-27

    The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources. In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs. The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species.

  8. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees

    PubMed Central

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-01-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. PMID:27614360

  9. Molecular phylogeny and diversification of a widespread Neotropical rainforest bird group: The Buff-throated Woodcreeper complex, Xiphorhynchus guttatus/susurrans (Aves: Dendrocolaptidae).

    PubMed

    Rocha, Tainá C; Sequeira, Fernando; Aleixo, Alexandre; Rêgo, Péricles S; Sampaio, Iracilda; Schneider, Horacio; Vallinoto, Marcelo

    2015-04-01

    The genus Xiphorhynchus is a species rich avian group widely distributed in Neotropical forests of Central and South America. Although recent molecular studies have improved our understanding of the spatial patterns of genetic diversity in some species of this genus, most are still poorly known, including their taxonomy. Here, we address the historical diversification and phylogenetic relationships of the X. guttatus/susurrans complex, using data from two mitochondrial (cyt b and ND2) and one nuclear (β-fibint7) genes. Phylogenetic relationships were inferred with both gene trees and a Bayesian-based species tree under a coalescent framework (∗BEAST). With exception of the nuclear β-fibint7 gene that produced an unresolved tree, both mtDNA and the species tree showed a similar topology and were congruent in recovering five main clades with high statistical support. These clades, however, are not fully concordant with traditional delimitation of some X. guttatus subspecies, since X. g. polystictus, X. g. guttatus, and X. g. connectens are not supported as distinct clades. Interestingly, these three taxa are more closely related to the mostly trans-Andean X. susurrans than the other southern and western Amazonian subspecies of X. guttatus, which constitutes a paraphyletic species. Timing estimates based on the species tree indicated that diversification in X. guttatus occurred between the end of the Pliocene and early Pleistocene, likely associated with the formation of the modern Amazon River and its main southern tributaries (Xingu, Tocantins, and Madeira), in addition to climate-induced changes in the distribution of rainforest biomes. Our study supports with an enlarged dataset a previous proposal for recognizing at least three species level taxa in the X. guttatus/susurrans complex: X. susurrans, X. guttatus, and X. guttatoides. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years

    PubMed Central

    Ribas, Camila C.; Aleixo, Alexandre; Nogueira, Afonso C. R.; Miyaki, Cristina Y.; Cracraft, Joel

    2012-01-01

    Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen ‘complete’ time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0–2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia. PMID:21795268

  11. Widespread loess-like deposit in the Martian northern lowlands identifies Middle Amazonian climate change

    USGS Publications Warehouse

    Skinner, James A.; Tanaka, Kenneth L.; Platz, Thomas

    2014-01-01

    Consistently mappable units critical to distinguishing the style and interplay of geologic processes through time are sparse in the Martian lowlands. This study identifies a previously unmapped Middle Amazonian (ca. 1 Ga) unit (Middle Amazonian lowland unit, mAl) that postdates the Late Hesperian and Early Amazonian lowland plains by >2 b.y. The unit is regionally defined by subtle marginal scarps and slopes, has a mean thickness of 32 m, and extends >3.1 × 106 km2 between lat 35°N and 80°N. Pedestal-type craterforms and nested, arcuate ridges (thumbprint terrain) tend to occur adjacent to unit mAl outcrops, suggesting that current outcrops are vestiges of a more extensive deposit that previously covered ∼16 × 106 km2. Exposed layers, surface pits, and the draping of subjacent landforms allude to a sedimentary origin, perhaps as a loess-like deposit emplaced rhythmically through atmospheric fallout. We propose that unit mAl accumulated coevally with, and at the expense of, the erosion of the north polar basal units, identifying a major episode of Middle Amazonian climate-driven sedimentation in the lowlands. This work links ancient sedimentary processes to climate change that occurred well before those implied by current orbital and spin axis models.

  12. Heterogeneous effects of market integration on sub-adult body size and nutritional status among the Shuar of Amazonian Ecuador.

    PubMed

    Urlacher, Samuel S; Liebert, Melissa A; Josh Snodgrass, J; Blackwell, Aaron D; Cepon-Robins, Tara J; Gildner, Theresa E; Madimenos, Felicia C; Amir, Dorsa; Bribiescas, Richard G; Sugiyama, Lawrence S

    2016-07-01

    Market integration (MI)-increasing production for and consumption from a market-based economy-is drastically altering traditional ways of life and environmental conditions among indigenous Amazonian peoples. The effects of MI on the biology and health of Amazonian children and adolescents, however, remain unclear. This study examines the impact of MI on sub-adult body size and nutritional status at the population, regional and household levels among the Shuar of Amazonian Ecuador. Anthropometric data were collected between 2005-2014 from 2164 Shuar (aged 2-19 years) living in two geographic regions differing in general degree of MI. High-resolution household economic, lifestyle and dietary data were collected from a sub-sample of 631 participants. Analyses were performed to investigate relationships between body size and year of data collection, region and specific aspects of household MI. Results from temporal and regional analyses suggest that MI has a significant and overall positive impact on Shuar body size and nutritional status. However, household-level results exhibit nuanced and heterogeneous specific effects of MI underlying these overarching relationships. This study provides novel insight into the complex socio-ecological pathways linking MI, physical growth and health among the Shuar and other indigenous Amazonian populations.

  13. Heterogeneous effects of market integration on subadult body size and nutritional status among the Shuar of Amazonian Ecuador

    PubMed Central

    Urlacher, Samuel S.; Liebert, Melissa A.; Snodgrass, J. Josh; Blackwell, Aaron D.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Madimenos, Felicia C.; Amir, Dorsa; Bribiescas, Richard G.; Sugiyama, Lawrence S.

    2016-01-01

    Background Market integration (MI) – increasing production for and consumption from a market-based economy – is drastically altering traditional ways of life and environmental conditions among indigenous Amazonian peoples. The effects of MI on the biology and health of Amazonian children and adolescents, however, remain unclear. Aim This study examines the impact of MI on subadult body size and nutritional status at the population, regional, and household levels among the Shuar of Amazonian Ecuador. Subjects and Methods Anthropometric data were collected between 2005 and 2014 from 2,164 Shuar (age 2-19 years) living in two geographic regions differing in general degree of MI. High-resolution household economic, lifestyle, and dietary data were collected from a subsample of 631 participants. Analyses were performed to investigate relationships between body size and year of data collection, region, and specific aspects of household MI. Results Results from temporal and regional analyses suggest that MI has a significant and overall positive impact on Shuar body size and nutritional status. However, household-level results exhibit nuanced and heterogeneous specific effects of MI underlying these overarching relationships. Conclusion This study provides novel insight into the complex socio-ecological pathways linking MI, physical growth, and health among the Shuar and other indigenous Amazonian populations. PMID:27230632

  14. Research frontiers for improving our understanding of drought‐induced tree and forest mortality

    USGS Publications Warehouse

    Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael

    2018-01-01

    Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.

  15. Amazonian forest-savanna bistability and human impact

    NASA Astrophysics Data System (ADS)

    Wuyts, Bert; Champneys, Alan R.; House, Joanna I.

    2017-05-01

    A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.

  16. Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America.

    PubMed

    Samuels, Gary J; Suarez, Carmen; Solis, Karina; Holmes, Keith A; Thomas, Sarah E; Ismaiel, Adnan; Evans, Harry C

    2006-04-01

    Trichoderma theobromicola and T. paucisporum spp. nov. are described. Trichoderma theobromicola was isolated as an endophyte from the trunk of a healthy cacao tree (Theobroma cacao, Malvaceae) in Amazonian Peru; it sporulates profusely on common mycological media. Trichoderma paucisporum is represented by two cultures that were obtained in Ecuador from cacao pods partially infected with frosty pod rot, Moniliophthora roreri; it sporulates sporadically and most cultures remain sterile on common media and autoclaved rice. It sporulates more reliably on synthetic low-nutrient agar (SNA) but produces few conidia. Trichoderma theobromicola was reintroduced into cacao seedlings through shoot inoculation and was recovered from stems but not from leaves, indicating that it is an endophytic species. Both produced a volatile/diffusable antibiotic that inhibited development of M. roreri in vitro and on-pod trials. Neither species demonstrated significant direct in vitro mycoparasitic activity against M. roreri.

  17. The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history

    USGS Publications Warehouse

    Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A.; Hare, T.M.

    2014-01-01

    A new global geologic map of Mars has been completed in a digital, geographic information system (GIS) format using geospatially controlled altimetry and image data sets. The map reconstructs the geologic history of Mars, which includes many new findings collated in the quarter century since the previous, Viking-based global maps were published, as well as other discoveries that were made during the course of the mapping using new data sets. The technical approach enabled consistent and regulated mapping that is appropriate not only for the map's 1:20,000,000 scale but also for its widespread use by diverse audiences. Each geologic unit outcrop includes basic attributes regarding identity, location, area, crater densities, and chronostratigraphic age. In turn, units are grouped by geographic and lithologic types, which provide synoptic global views of material ages and resurfacing character for the Noachian, Hesperian, and Amazonian periods. As a consequence of more precise and better quality topographic and morphologic data and more complete crater-density dating, our statistical comparisons identify significant refinements for how Martian geologic terrains are characterized. Unit groups show trends in mean elevation and slope that relate to geographic occurrence and geologic origin. In comparison with the previous global geologic map series based on Viking data, the new mapping consists of half the number of units due to simpler, more conservative and globally based approaches to discriminating units. In particular, Noachian highland surfaces overall have high percentages of their areas now dated as an epoch older than in the Viking mapping. Minimally eroded (i.e., pristine) impact craters ≥3 km in diameter occur in greater proportion on Hesperian surfaces. This observation contrasts with a deficit of similarly sized craters on heavily cratered and otherwise degraded Noachian terrain as well as on young Amazonian surfaces. We interpret these as reflecting the relatively stronger, lava-rich, yet less-impacted materials making up much of the younger units. Reconstructions of resurfacing of Mars by its eight geologic epochs using the Hartmann and Neukum chronology models indicate high rates of highland resurfacing during the Noachian (peaking at 0.3 km2/yr during the Middle Noachian), modest rates of volcanism and transition zone and lowland resurfacing during the Hesperian (∼0.1 km2/yr), and low rates of mainly volcanic and polar resurfacing (∼0.01 km2/yr) for most of the Amazonian. Apparent resurfacing increased in the Late Amazonian (∼0.03 km2/yr), perhaps due to better preservation of this latest record.

  18. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; van Straaten, O.; Barus, H.

    2011-08-01

    A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk, which may have reduced drought susceptibility. However, unlike a natural drought, our drought simulation experiment was carried out under conditions of high humidity, which may have dampened drought induced damages.

  19. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    PubMed Central

    2012-01-01

    Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales. PMID:22429883

  20. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests.

    PubMed

    Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato

    2012-03-19

    Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales.

  1. Mercury exposure in a high fish eating Bolivian Amazonian population with intense small-scale gold-mining activities.

    PubMed

    Barbieri, Flavia Laura; Cournil, Amandine; Gardon, Jacques

    2009-08-01

    Methylmercury exposure in Amazonian communities through fish consumption has been widely documented in Brazil. There is still a lack of data in other Amazonian countries, which is why we conducted this study in the Bolivian Amazon basin. Simple random sampling was used from a small village located in the lower Beni River, where there is intense gold mining and high fish consumption. All participants were interviewed and hair samples were taken to measure total mercury concentrations. The hair mercury geometric mean in the general population was 3.02 microg/g (CI: 2.69-3.37; range: 0.42-15.65). Age and gender were not directly associated with mercury levels. Fish consumption showed a positive relation and so did occupation, especially small-scale gold mining. Hair mercury levels were lower than those found in Brazilian studies, but still higher than in non-exposed populations. It is necessary to assess mercury exposure in the Amazonian regions where data is still lacking, using a standardized indicator.

  2. Survival of Seasonal Flooding in the Amazon by the Terrestrial Insect Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae), a Pest of the Camu-Camu Plant, Myrciaria dubia (Myrtaceae).

    PubMed

    Delgado, C; Couturier, G; Fine, P V A

    2014-08-01

    The weevil Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae) is a pest of an economically important Amazonian fruit tree Myrciaria dubia (Myrtaceae). This tree grows in seasonally flooded environments, and how weevil larvae survive flooding has not been studied. From December 2004 to May 2009, five experiments were conducted in natural conditions and in the laboratory, with the aim of understanding the mechanisms that allow the survival of C. dubiae larvae in seasonal floods in Amazonia. The larvae of C. dubiae were kept under water for over 93 days. Older instars exposed to periodic circulation of water survived better than younger instars in addition to all larvae that were kept continuously under uncirculated water. Individuals that were collected from plots of M. dubia located in flooded soils and non-flooded soils did not exhibit statistically significant differences in their levels of survival indicating that the variation in survival of flooding events is due to phenotypic plasticity of the species and not to local adaptation by the populations in different environments. We speculate that larvae can survive floods without major physiological changes as larvae appear to obtain oxygen from water by cutaneous diffusion, assisted by caudal movements.

  3. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch structural measurements (space between leaves, min. and max. season's growth and diameter) of two 1m branches harvested from each canopy level. Both leaf and canopy-level observations where collected monthly when trees where not in flush and weekly during the period of leaf flushing. Here, we present our leaf spectral and physiochemical results. Results show 1) changes in leaf spectral and physiochemical properties related to leaf age, 2) the most significant changes in the leaves' spectrum during different stages in their life cycle, and 3) how leaf spectral changes are related to changes in the chemical and physical properties of the leaves as they progress through their life cycle. Future work will involve the incorporation of leaf and canopy observations into a light canopy interaction model to investigate the possibility that seasonal variation in VIs may be driven by leaf aging as well as by the shedding or appearance of new leaves.

  4. Origin and evolution of the Amazonian craton

    NASA Technical Reports Server (NTRS)

    Gibbs, A. K.; Wirth, K. R.

    1986-01-01

    The Amazonian craton appears to be formed and modifed by processes much like those of the better-known Precambrian cratons, but the major events did not always follow conventional sequences nor did they occur synchronously with those of other cratons. Much of the craton's Archean style continental crust formation, recorded in granite-greenstone and high-grade terranes, occurred in the Early Proterozoic: a period of relative quiescence in many other Precambrian regions. The common Archean to Proterozoic transition in geological style did not occur here, but an analogous change from abundant marine volcanism to dominantly continental sedimentary and eruptive styles occurred later. Amazonian geology is summarized, explaining the evolution of the craton.

  5. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    PubMed

    Banhos, Aureo; Hrbek, Tomas; Sanaiotti, Tânia M; Farias, Izeni Pires

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest.

  6. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests

    PubMed Central

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  7. Neuroprotective Effects of Açaí (Euterpe oleracea Mart.) against Rotenone In Vitro Exposure.

    PubMed

    Machado, Alencar Kolinski; Andreazza, Ana Cristina; da Silva, Tatiane Morgana; Boligon, Aline Augusti; do Nascimento, Vanusa; Scola, Gustavo; Duong, Angela; Cadoná, Francine Carla; Ribeiro, Euler Esteves; da Cruz, Ivana Beatrice Mânica

    2016-01-01

    Neuropsychiatric diseases, such as bipolar disorder (BD) and schizophrenia (SCZ), have a very complex pathophysiology. Several current studies describe an association between psychiatric illness and mitochondrial dysfunction and consequent cellular modifications, including lipid, protein, and DNA damage, caused by cellular oxidative stress. Euterpe oleracea (açaí) is a powerful antioxidant fruit. Açaí is an Amazonian palm fruit primarily found in the lowlands of the Amazonian rainforest, particularly in the floodplains of the Amazon River. Given this proposed association, this study analyzed the potential in vitro neuropharmacological effect of Euterpe oleracea (açaí) extract in the modulation of mitochondrial function and oxidative metabolism. SH-SY5Y cells were treated with rotenone to induce mitochondrial complex I dysfunction and before and after we exposed the cells to açaí extract at 5  μ g/mL. Treated and untreated cells were then analyzed by spectrophotometric, fluorescent, immunological, and molecular assays. The results showed that açaí extract can potentially increase protein amount and enzyme activity of mitochondrial complex I, mainly through NDUFS7 and NDUFS8 overexpression. Açaí extract was also able to decrease cell reactive oxygen species levels and lipid peroxidation. We thus suggest açaí as a potential candidate for drug development and a possible alternative BD therapy.

  8. Neuroprotective Effects of Açaí (Euterpe oleracea Mart.) against Rotenone In Vitro Exposure

    PubMed Central

    Andreazza, Ana Cristina; da Silva, Tatiane Morgana; do Nascimento, Vanusa; Duong, Angela; Ribeiro, Euler Esteves

    2016-01-01

    Neuropsychiatric diseases, such as bipolar disorder (BD) and schizophrenia (SCZ), have a very complex pathophysiology. Several current studies describe an association between psychiatric illness and mitochondrial dysfunction and consequent cellular modifications, including lipid, protein, and DNA damage, caused by cellular oxidative stress. Euterpe oleracea (açaí) is a powerful antioxidant fruit. Açaí is an Amazonian palm fruit primarily found in the lowlands of the Amazonian rainforest, particularly in the floodplains of the Amazon River. Given this proposed association, this study analyzed the potential in vitro neuropharmacological effect of Euterpe oleracea (açaí) extract in the modulation of mitochondrial function and oxidative metabolism. SH-SY5Y cells were treated with rotenone to induce mitochondrial complex I dysfunction and before and after we exposed the cells to açaí extract at 5 μg/mL. Treated and untreated cells were then analyzed by spectrophotometric, fluorescent, immunological, and molecular assays. The results showed that açaí extract can potentially increase protein amount and enzyme activity of mitochondrial complex I, mainly through NDUFS7 and NDUFS8 overexpression. Açaí extract was also able to decrease cell reactive oxygen species levels and lipid peroxidation. We thus suggest açaí as a potential candidate for drug development and a possible alternative BD therapy. PMID:27781077

  9. Poor Prospects for Avian Biodiversity in Amazonian Oil Palm

    PubMed Central

    Lees, Alexander C.; Vieira, Ima C. G.

    2015-01-01

    Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome’s biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity. PMID:25955243

  10. Predicting Tree Mortality Die-off Events Associated with Hotter Drought and Assessing Their Global Consequences via Ecoclimate Teleconnections.

    NASA Astrophysics Data System (ADS)

    Breshears, D. D.; Allen, C. D.; McDowell, N. G.; Adams, H. D.; Barnes, M.; Barron-Gafford, G.; Bradford, J. B.; Cobb, N.; Field, J. P.; Froend, R.; Fontaine, J. B.; Garcia, E.; Hardy, G. E. S. J.; Huxman, T. E.; Kala, J.; Lague, M. M.; Martinez-Yrizar, A.; Matusick, G.; Minor, D. M.; Moore, D. J.; Ng, M.; Ruthrof, K. X.; Saleska, S. R.; Stark, S. C.; Swann, A. L. S.; Villegas, J. C.; Williams, A. P.; Zou, C.

    2017-12-01

    Evidence that tree mortality is increasingly likely occur in extensive die-off events across the terrestrial biosphere continues to mount. The consequences of such extensive mortality events are potentially profound, not only for the locations where die-off events occur, but also for other locations that could be impacted via ecoclimate teleconnections, whereby the land surface changes associated with die-off in one location could alter atmospheric circulation patterns and affect vegetation elsewhere. Here, we (1) recap the background of tree mortality as an emerging environmental issue, (2) highlight recent advances that could help us improve predictions of the vulnerability to tree mortality, including the underlying importance of hydraulic failure, the potential to develop climatic envelopes specific to tree mortality events, and consideration of the role of heat waves; and (3) initial bounding simulations that indicate the potential for tree die-off events in different locations to alter ecoclimate teleconnections. As we move toward globally coordinated carbon accounting and management, the high vulnerability to tree die-off events and the potential for such events to affect vegetation elsewhere will both need to be accounted for.

  11. Density-dependent vulnerability of forest ecosystems to drought

    Treesearch

    Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann

    2017-01-01

    Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...

  12. Tree physiology and bark beetles

    Treesearch

    Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood

    2015-01-01

    Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...

  13. Improved trees: economic promises and pitfalls

    Treesearch

    George F. Dutrow

    1977-01-01

    Surging demands for wood fiber that must be produced on a decreasing acreage of forest land suggest soaring prices, a shrinking market for wood products, or both. Either of these consequences can be forestalled or prevented by implementing existing technologies, one of which is cultivation of genetically improved trees. Multiple and sizable gains from improved trees...

  14. Leonardo's Rule, Self-Similarity, and Wind-Induced Stresses in Trees

    NASA Astrophysics Data System (ADS)

    Eloy, Christophe

    2011-12-01

    Examining botanical trees, Leonardo da Vinci noted that the total cross section of branches is conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads.

  15. Predicting diameter at breast height from total height and crown length

    Treesearch

    Quang V. Cao; Thomas J. Dean

    2013-01-01

    Tree diameter at breast height (d.b.h.) is often predicted from total height (model 1a) or both total height and number of trees per acre (model 1b). These approaches are useful when Light Detection and Ranging (LiDAR) data are available. LiDAR height data can be employed to predict tree d.b.h., and consequently individual tree volumes and volume/ ha can be obtained...

  16. Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds

    NASA Astrophysics Data System (ADS)

    Chikin, V. M.

    2017-07-01

    In contrast to the Euclidean case, almost no Steiner minimal trees with concrete boundaries on Riemannian manifolds are known. A result describing the types of Steiner minimal trees on a Riemannian manifold for arbitrary small boundaries is obtained. As a consequence, it is shown that for sufficiently small regular n-gons with n≥ 7 their boundaries without a longest side are Steiner minimal trees. Bibliography: 22 titles.

  17. Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation.

    PubMed

    Almeida, Mariana R; Fidelis, Carlos H V; Barata, Lauro E S; Poppi, Ronei J

    2013-12-15

    The Amazon tree Aniba rosaeodora Ducke (rosewood) provides an essential oil valuable for the perfume industry, but after decades of predatory extraction it is at risk of extinction. The extraction of the essential oil from wood implies the cutting of the tree, and then the study of oil extracted from the leaves is important as a sustainable alternative. The goal of this study was to test the applicability of Raman spectroscopy and Partial Least Square Discriminant Analysis (PLS-DA) as means to classify the essential oil extracted from different parties (wood, leaves and branches) of the Brazilian tree A. rosaeodora. For the development of classification models, the Raman spectra were split into two sets: training and test. The value of the limit that separates the classes was calculated based on the distribution of samples of training. This value was calculated in a manner that the classes are divided with a lower probability of incorrect classification for future estimates. The best model presented sensitivity and specificity of 100%, predictive accuracy and efficiency of 100%. These results give an overall vision of the behavior of the model, but do not give information about individual samples; in this case, the confidence interval for each sample of classification was also calculated using the resampling bootstrap technique. The methodology developed have the potential to be an alternative for standard procedures used for oil analysis and it can be employed as screening method, since it is fast, non-destructive and robust. © 2013 Elsevier B.V. All rights reserved.

  18. Updated Global Patterns of Drought and Heat-Induced Forest Die-off, and Ecohydrological Feedbacks

    NASA Astrophysics Data System (ADS)

    Allen, C. D.

    2011-12-01

    Ongoing climate changes - particularly increases in mean temperatures as well as frequencies, durations, and severities of extreme drought and heat - can amplify tree physiological stress and thereby drive increases in both background tree mortality rates and episodes of rapid, broad-scale forest die-off. Updates are presented to a recent global synthesis of documented tree mortality episodes attributed to drought and/or heat, further expanding the documented spatial distribution and demonstrating the vulnerability of all major forest types from tropical moist forests and savannas to temperate and boreal forests. Given that anthropogenic climate change is projected to drive substantial increases in both mean temperatures and the frequency/duration/severity of extreme drought and heat in many regions, recent episodes of broad-scale drought-induced forest mortality may reflect increasing global risks of forest die-off, even in environments not normally considered water-limited. Since vegetation cover patterns are closely and interactively linked with ecosystem water fluxes, episodes of massive forest die-off can be expected to significantly affect ecohydrological patterns and processes, ranging from runoff and erosion to evaporation and transpiration, often with nonlinear threshold responses expected. Diverse examples of such feedbacks between climate-induced forest mortality and ecohydrology are presented, ranging from detailed observations of linked changes in vegetation, runoff, and erosion in response to forest mortality in the southwestern US to Western Australia and Amazonian rainforest water cycling. Current research efforts to address the large knowledge gaps that at present hinder our ability to predict climate-induced forest mortality and associated ecohydrological responses are discussed.

  19. Where systems biology meets postharvest

    USDA-ARS?s Scientific Manuscript database

    Interpreting fruit metabolism, particularly tree fruit metabolism, presents unique challenges. Long periods from tree establishment to fruiting render techniques directed towards reducing the complexity of metabolic mechanisms, such as genomic modification, relatively difficult. Consequently, holi...

  20. Dominant tree species are at risk from exaggerated drought under climate change.

    PubMed

    Fensham, Roderick J; Fraser, Josie; MacDermott, Harry J; Firn, Jenifer

    2015-10-01

    Predicting the consequences of climate change on forest systems is difficult because trees may display species-specific responses to exaggerated droughts that may not be reflected by the climatic envelope of their geographic range. Furthermore, few studies have examined the postdrought recovery potential of drought-susceptible tree species. This study develops a robust ranking of the drought susceptibility of 21 tree species based on their mortality after two droughts (1990s and 2000s) in the savanna of north-eastern Australia. Drought-induced mortality was positively related to species dominance, negatively related to the ratio of postdrought seedlings to adults and had no relationship to the magnitude of extreme drought within the species current geographic ranges. These results suggest that predicting the consequences of exaggerated drought on species' geographic ranges is difficult, but that dominant species like Eucalyptus with relatively slow rates of population recovery and dispersal are the most susceptible. The implications for savanna ecosystems are lower tree densities and basal area. © 2015 John Wiley & Sons Ltd.

  1. Nut Production in Bertholletia excelsa across a Logged Forest Mosaic: Implications for Multiple Forest Use

    PubMed Central

    Rockwell, Cara A.; Guariguata, Manuel R.; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José

    2015-01-01

    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù. PMID:26271042

  2. Nut Production in Bertholletia excelsa across a Logged Forest Mosaic: Implications for Multiple Forest Use.

    PubMed

    Rockwell, Cara A; Guariguata, Manuel R; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Quenta Hancco, Roger; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José

    2015-01-01

    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world's most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1-2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù.

  3. Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species.

    PubMed

    Lang, Carla; Costa, Flávia Regina Capellotto; Camargo, José Luís Campana; Durgante, Flávia Machado; Vicentini, Alberto

    2015-01-01

    Precise identification of plant species requires a high level of knowledge by taxonomists and presence of reproductive material. This represents a major limitation for those working with seedlings and juveniles, which differ morphologically from adults and do not bear reproductive structures. Near-infrared spectroscopy (FT-NIR) has previously been shown to be effective in species discrimination of adult plants, so if young and adults have a similar spectral signature, discriminant functions based on FT-NIR spectra of adults can be used to identify leaves from young plants. We tested this with a sample of 419 plants in 13 Amazonian species from the genera Protium and Crepidospermum (Burseraceae). We obtained 12 spectral readings per plant, from adaxial and abaxial surfaces of dried leaves, and compared the rate of correct predictions of species with discriminant functions for different combinations of readings. We showed that the best models for predicting species in early developmental stages are those containing spectral data from both young and adult plants (98% correct predictions of external samples), but even using only adult spectra it is still possible to attain good levels of identification of young. We obtained an average of 75% correct identifications of young plants by discriminant equations based only on adults, when the most informative wavelengths were selected. Most species were accurately predicted (75-100% correct identifications), and only three had poor predictions (27-60%). These results were obtained despite the fact that spectra of young individuals were distinct from those of adults when species were analyzed individually. We concluded that FT-NIR has a high potential in the identification of species even at different ontogenetic stages, and that young plants can be identified based on spectra of adults with reasonable confidence.

  4. The Tsimane' Amazonian Panel Study (TAPS): Nine years (2002-2010) of annual data available to the public.

    PubMed

    Leonard, William R; Reyes-García, Victoria; Tanner, Susan; Rosinger, Asher; Schultz, Alan; Vadez, Vincent; Zhang, Rebecca; Godoy, Ricardo

    2015-12-01

    This brief communication contains a description of the 2002-2010 annual panel collected by the Tsimane' Amazonian Panel Study team. The study took place among the Tsimane', a native Amazonian society of forager-horticulturalists. The team tracked a wide range of socio-economic and anthropometric variables from all residents (633 adults ≥16 years; 820 children) in 13 villages along the Maniqui River, Department of Beni. The panel is ideally suited to examine how market exposure and modernization affect the well-being of a highly autarkic population and to examine human growth in a non-Western rural setting. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Volatile and within-needle terpene changes to Douglas-fir trees associated with Douglas-fir beetle (Coleoptera: Curculionidae) attack

    Treesearch

    A. D. Giunta; Justin Runyon; M. J. Jenkins; M. Teich

    2016-01-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with...

  6. Mycorrhizal Influences On Soil Biogeochemistry In Forests: Are There Biosphere Consequences Of Rhizosphere Interactions?

    NASA Astrophysics Data System (ADS)

    Phillips, R.; Rosling, A.

    2011-12-01

    Temperate forests have experienced dramatic changes in forest composition over the last several decades owing land use change, insect outbreaks, nitrogen deposition and climate change. Understanding the consequences of such changes for carbon (C) and nutrient retention is vital to accurately predict terrestrial feedbacks to global climate change. We sought to test the hypothesis that tree species that form associations with arbuscular mycorrhizal (AM) fungi influence soil biogeochemistry in ways that are fundamentally different from tree species that form associations with ectomycorrhizal (ECM) fungi. We examined tree-mycorrhizal interactions in the central hardwood forests of southern Indiana where a rich assemblage of AM (e.g. maples, ashes, tulip poplar, black cherry) and ECM (e.g. oaks, hickories, beech, pine) tree species co-occur on soils developed from similar parent materials. Across 35 plots along a "mycorrhizal gradient" (plots varying in the relative abundance of AM vs. ECM trees), we found striking differences in soil pH, carbon, (C), nitrogen (N) and phosphorus (P) cycling in upper surface soils. Soil pH varied by three pH units across the gradient, and was positively correlated with the relative abundance of tree species within each mycorrhizal type (r2 = 0.65; p < 0.0001). Similarly, indices of C, N, and P availability were strongly correlated with the abundance of trees within a mycorrhizal association (r2 = 0.73, p < 0.0001; r2 = 0.55, p < 0.0001; r2 = 0.16, p = 0.019; respectively). Collectively, our results suggest that AM- and ECM-dominated stands may differ in their effects on chemical weathering and denudation, with important consequences for C and nutrient retention, and feedbacks to global change.

  7. A new genus of predatory katydids (Orthoptera: Tettigoniidae: Listroscelidinae) from the Amazonian Rainforest.

    PubMed

    Mendes, Diego Matheus De Mello; Chamorro-Rengifo, Juliana; Rafael, José Albertino

    2016-09-12

    Most of the predatory katydids Listroscelidini species known were described from the Brazilian Atlantic Forest. Here a new genus and species from the Amazonian Rainforest is described. Based on its morphological characteristics, this new genus represents an intermediate form between two closely related genera, Listroscelis Serville and Monocerophora Walker.

  8. Individual Tree Crown Delineation Using Multi-Wavelength Titan LIDAR Data

    NASA Astrophysics Data System (ADS)

    Naveed, F.; Hu, B.

    2017-10-01

    The inability to detect the Emerald Ash Borer (EAB) at an early stage has led to the enumerable loss of different species of ash trees. Due to the increasing risk being posed by the EAB, a robust and accurate method is needed for identifying Individual Tree Crowns (ITCs) that are at a risk of being infected or are already diseased. This paper attempts to outline an ITC delineation method that employs airborne multi-spectral Light Detection and Ranging (LiDAR) to accurately delineate tree crowns. The raw LiDAR data were initially pre-processed to generate the Digital Surface Models (DSM) and Digital Elevation Models (DEM) using an iterative progressive TIN (Triangulated Irregular Network) densification method. The DSM and DEM were consequently used for Canopy Height Model (CHM) generation, from which the structural information pertaining to the size and shape of the tree crowns was obtained. The structural information along with the spectral information was used to segment ITCs using a region growing algorithm. The availability of the multi-spectral LiDAR data allows for delineation of crowns that have otherwise homogenous structural characteristics and hence cannot be isolated from the CHM alone. This study exploits the spectral data to derive initial approximations of individual tree tops and consequently grow those regions based on the spectral constraints of the individual trees.

  9. Drought induced tree mortality and ensuing bark beetle outbreaks in southwestern pinyon-juniper woodlands

    Treesearch

    Michael J. Clifford; Monique E. Rocca; Robert Delph; Paulette L. Ford; Neil S. Cobb

    2008-01-01

    The current drought and ensuing bark beetle outbreaks during 2002 to 2004 in the Southwest have greatly increased tree mortality in pinyon-juniper woodlands. We studied causes and consequences of the drought-induced mortality. First, we tested the paradigm that high stand densities in pinyon-juniper woodlands would increase tree mortality. Stand densities did not...

  10. Modeled PM2.5 removal by trees in ten US cities and associated health effects

    Treesearch

    David J. Nowak; Satoshi Hirabayashi; Allison Bodine; Robert Hoehn

    2013-01-01

    Urban particulate air pollution is a serious health issue. Trees within cities can remove fine particles from the atmosphere and consequently improve air quality and human health. Tree effects on PM2.5 concentrations and human health are modeled for 10 U.S. cities. The total amount of PM2.5 removed annually by...

  11. Integrating LIDAR and forest inventories to fill the trees outside forests data gap

    Treesearch

    Kristofer D. Johnson; Richard Birdsey; Jason Cole; Anu Swatantran; Jarlath O' Neil-Dunne; Ralph Dubayah; Andrew Lister

    2015-01-01

    Forest inventories are commonly used to estimate total tree biomass of forest land even though they are not traditionally designed to measure biomass of trees outside forests (TOF). The consequence may be an inaccurate representation of all of the aboveground biomass, which propagates error to the outputs of spatial and process models that rely on the inventory data....

  12. The Perceptions of Knowledge and Learning of Amazonian Indigenous Teacher Education Students

    ERIC Educational Resources Information Center

    Veintie, Tuija; Holm, Gunilla

    2010-01-01

    This study focuses on the perceptions of knowledge and learning by indigenous students in an intercultural bilingual teacher education programme in Amazonian Ecuador. The study framed within postcolonial and critical theory attempts to create a space for the indigenous students to speak about their own views through the use of photography and…

  13. The responses of understorey birds to forest fragmentation, logging and wildfires: An Amazonian synthesis

    Treesearch

    J. Barlow; C. A. Peres; L. M. P. Henr¡ques; P. C. Stouffer; J. M. Wunderle

    2006-01-01

    We combine mist-net data from 24 disturbance treatments taken from seven studies on the responses of understorey Amazonian birds to selective logging, single and recurrent wildfires, and habitat fragmentation. The different disturbance treatments had distinct effects on avian guild structure, and fire disturbance and the isolation of forest patches resulted in bird...

  14. Effects of reduced-impact logging and forest physiognomy on bat populations of lowland Amazonian forest.

    Treesearch

    Steven J. Presley; Michael R. Willig; Wunderle Jr. Joseph M.; Luis Nélio Saldanha

    2008-01-01

    1.As human population size increases, demand for natural resources will increase. Logging pressure related to increasing demands continues to threaten remote areas of Amazonian forest. A harvest protocol is required to provide renewable timber resources that meet consumer needs while minimizing negative effects on biodiversity and ecosystem services. Reduced-impact...

  15. Protecting biodiversity in situ in the Amazonian Region of Brazil

    Treesearch

    Claudia Sellier

    2007-01-01

    Brazil has approximately 3.6 million km2 (1.4 million mi2) of forest, with the majority concentrated in the Amazonian region. The Atlantic Forest was reduced to less than 8 percent of its original territory. Development activities are being implemented without consideration for the local environment, causing both biodiversity and habitat losses. Establishment of...

  16. Amazonian forest dieback under climate-carbon cycle projections for the 21st century

    NASA Astrophysics Data System (ADS)

    Cox, P. M.; Betts, R. A.; Collins, M.; Harris, P. P.; Huntingford, C.; Jones, C. D.

    The first GCM climate change projections to include dynamic vegetation and an interactive carbon cycle produced a very significant amplification of global warming over the 21st century. Under the IS92a ``business as usual'' emissions scenario CO2 concentrations reached about 980ppmv by 2100, which is about 280ppmv higher than when these feedbacks were ignored. The major contribution to the increased CO2 arose from reductions in soil carbon because global warming is assumed to accelerate respiration. However, there was also a lesser contribution from an alarming loss of the Amazonian rainforest. This paper describes the phenomenon of Amazonian forest dieback under elevated CO2 in the Hadley Centre climate-carbon cycle model.

  17. Occurrence of Cryptosporidium spp. in Antillean manatees (Trichechus manatus) and Amazonian manatees (Trichechus inunguis) from Brazil.

    PubMed

    Borges, Joāo Carlos Gomes; Alves, Leucio Câmara; Faustino, Maria Aparecida da Gloria; Marmontel, Miriam

    2011-12-01

    Infections by Cryptosporidium spp. in aquatic mammals is a major concern due to the possibility of the waterborne transmission of oocysts. The aim of the present study was to report the occurrence of Cryptosporidium spp. in Antillean manatees (Trichechus manatus) and Amazonian manatees (Trichechus inunguis) from Brazil. Fecal samples were collected and processed using Kinyoun's method. Positive samples were also submitted to the direct immunofluorescence test. The results revealed the presence of Cryptosporidium spp. oocysts in 12.5% (17/136) of the material obtained from the Antillean manatees and in 4.3% (05/115) of the samples from the Amazonian manatees. Cryptosporidium spp. infection was more prevalent in captive animals than in free-ranging specimens.

  18. Honors

    NASA Astrophysics Data System (ADS)

    2013-11-01

    The recently released list of 2013-2014 Fulbright Scholars includes 9 AGU members working on diverse topics. They include Michael Coe, senior scientist/coordinator of the Amazon group at the Woods Hole Research Center, whose topic is "Agricultural expansion in the Brazilian Cerrado and consequences for the water cycle"; Benjamin Crosby, associate professor, Department of Geosciences, Idaho State University, on the topic "Taking the pulse of Chilean rivers: Enhancing educational and academic opportunities in a time of rapid change"; David Fitzjarrald, senior research associate, Atmospheric Sciences Research Center, State University of New York at Albany, on the topic "Landscape heterogeneity and Amazonian mesoclimate: Fostering critical understanding of observations and model output"; and Syed Hasan, professor of geology, Department of Geosciences, University of Missouri-Kansas City, who will be teaching courses in waste management.

  19. Climate-induced tree mortality: Earth system consequences

    USGS Publications Warehouse

    Adams, Henry D.; Macalady, Alison K.; Breshears, David D.; Allen, Craig D.; Stephenson, Nathan L.; Saleska, Scott; Huxman, Travis E.; McDowell, Nathan G.

    2010-01-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and the Earth system. Terrestrial ecosystems and, in particular, forests exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets [Bonan, 2008; Chapin et al., 2008].According to new research, tree mortality associated with elevated temperatures and drought has the potential to rapidly alter forest ecosystems, potentially affecting feedbacks to the Earth system [Allen et al., 2010]. Several lines of recent research demonstrate how tree mortality rates in forests may be sensitive to climate change—particularly warming and drying. This emerging consequence of global change has important effects on Earth system processes (Figure 1).

  20. Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area

    NASA Astrophysics Data System (ADS)

    Cintra, B. B. L.; Schietti, J.; Emillio, T.; Martins, D.; Moulatlet, G.; Souza, P.; Levis, C.; Quesada, C. A.; Schöngart, J.

    2013-04-01

    The ongoing demand for information on forest productivity has increased the number of permanent monitoring plots across the Amazon. Those plots, however, do not comprise the whole diversity of forest types in the Amazon. The complex effects of soil, climate and hydrology on the productivity of seasonally waterlogged interfluvial wetland forests are still poorly understood. The presented study is the first field-based estimate for tree ages and wood biomass productivity in the vast interfluvial region between the Purus and Madeira rivers. We estimate stand age and wood biomass productivity by a combination of tree-ring data and allometric equations for biomass stocks of eight plots distributed along 600 km in the Purus-Madeira interfluvial area that is crossed by the BR-319 highway. We relate stand age and wood biomass productivity to hydrological and edaphic conditions. Mean productivity and stand age were 5.6 ± 1.1 Mg ha-1 yr-1 and 102 ± 18 yr, respectively. There is a strong relationship between tree age and diameter, as well as between mean diameter increment and mean wood density within a plot. Regarding the soil hydromorphic properties we find a positive correlation with wood biomass productivity and a negative relationship with stand age. Productivity also shows a positive correlation with the superficial phosphorus concentration. In addition, superficial phosphorus concentration increases with enhanced soil hydromorphic condition. We raise three hypotheses to explain these results: (1) the reduction of iron molecules on the saturated soils with plinthite layers close to the surface releases available phosphorous for the plants; (2) the poor structure of the saturated soils creates an environmental filter selecting tree species of faster growth rates and shorter life spans and (3) plant growth on saturated soil is favored during the dry season, since there should be low restrictions for soil water availability.

  1. Assessing evidence for a pervasive alteration in tropical tree communities.

    PubMed

    Chave, Jérôme; Condit, Richard; Muller-Landau, Helene C; Thomas, Sean C; Ashton, Peter S; Bunyavejchewin, Sarayudh; Co, Leonardo L; Dattaraja, Handanakere S; Davies, Stuart J; Esufali, Shameema; Ewango, Corneille E N; Feeley, Kenneth J; Foster, Robin B; Gunatilleke, Nimal; Gunatilleke, Savitri; Hall, Pamela; Hart, Terese B; Hernández, Consuelo; Hubbell, Stephen P; Itoh, Akira; Kiratiprayoon, Somboon; Lafrankie, James V; Loo de Lao, Suzanne; Makana, Jean-Rémy; Noor, Md Nur Supardi; Kassim, Abdul Rahman; Samper, Cristián; Sukumar, Raman; Suresh, Hebbalalu S; Tan, Sylvester; Thompson, Jill; Tongco, Ma Dolores C; Valencia, Renato; Vallejo, Martha; Villa, Gorky; Yamakura, Takuo; Zimmerman, Jess K; Losos, Elizabeth C

    2008-03-04

    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.

  2. Local versus landscape-scale effects of savanna trees on grasses

    USGS Publications Warehouse

    Riginos, C.; Grace, J.B.; Augustine, D.J.; Young, T.P.

    2009-01-01

    1. Savanna ecosystems - defined by the coexistence of trees and grasses - cover more than one-fifth the world's land surface and harbour most of the world's rangelands, livestock and large mammal diversity. Savanna trees can have a variety of effects on grasses, with consequences for the wild and domestic herbivores that depend on them. 2.Studies of these effects have focused on two different spatial scales. At the scale of individual trees, many studies have shown net positive effects of trees on sub-canopy grass nutrient concentrations and biomass. At the landscape scale, other studies have shown negative effects of high tree densities on grass productivity. These disparate results have led to different conclusions about the effects of trees on forage quality and ungulate nutrition in savannas. 3.We integrate these approaches by examining the effects of trees on grasses at both spatial scales and across a range of landscape-scale tree densities. 4.We quantified grass biomass, species composition and nutrient concentrations in these different contexts in an Acacia drepanolobium savanna in Laikipia, Kenya. Individual trees had positive effects on grass biomass, most likely because trees enrich soil nitrogen. Grass leaf phosphorus in sub-canopy areas, however, was depressed. The effects of individual trees could explain the effects of increasing landscape-scale tree cover for the biomass of only two of the four dominant grass species. 5.The negative effects of trees on grass and soil phosphorus, combined with depressed grass productivity in areas of high tree cover, suggest that ungulate nutrition may be compromised in areas with many trees. 6.Synthesis. We conclude that few, isolated trees may have positive local effects on savanna grasses and forage, but in areas of high tree density the negative landscape-scale effects of trees are likely to outweigh these positive effects. In savannas and other patchy landscapes, attempts to predict the consequences of changes in patch abundances for ecosystem services (e.g. rangeland productivity and carbon sequestration) will depend on our understanding of the extent to which local, patch-scale dynamics do or do not predict landscape-scale dynamics. ?? 2009 British Ecological Society.

  3. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.

    PubMed

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-12-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. © The Author 2016. Published by Oxford University Press.

  4. Spatio-temporal patterns of tree establishment are indicative of biotic interactions during early invasion of a montane meadow

    Treesearch

    J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones

    2012-01-01

    Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...

  5. Simulated effects of climate change, fragmentation, and inter-specific competition on tree species migration in northern Wisconsin, USA

    Treesearch

    Robert M. Scheller; David J. Mladenoff

    2008-01-01

    The reproductive success, growth, and mortality rates of tree species in the northern United States will be differentially affected by projected climate change over the next century. As a consequence, the spatial distributions of tree species will expand or contract at differential rates. In addition, human fragmentation of the landscape may limit effective seed...

  6. Climate-driven tree mortality: insights from the pinon pine die-off in the United States

    Treesearch

    Jeffrey A. Hicke; Melanie J. B. Zeppel

    2013-01-01

    The global climate is changing, and a range of negative effects on plants has already been observed and will likely continue into the future. One of the most apparent consequences of climate change is widespread tree mortality (Fig. 1). Extensive tree die-offs resulting from recent climate change have been documented across a range of forest types on all forested...

  7. Genetic relationships among freshwater mussel species from fifteen Amazonian rivers and inferences on the evolution of the Hyriidae (Mollusca: Bivalvia: Unionida).

    PubMed

    Santos-Neto, Guilherme da Cruz; Beasley, Colin Robert; Schneider, Horacio; Pimpão, Daniel Mansur; Hoeh, Walter Randolph; Simone, Luiz Ricardo Lopes de; Tagliaro, Claudia Helena

    2016-07-01

    The current phylogenetic framework for the South American Hyriidae is solely based on morphological data. However, freshwater bivalve morphology is highly variable due to both genetic and environmental factors. The present study used both mitochondrial (COI and 16S) and nuclear (18S-ITS1) sequences in molecular phylogenetic analyses of nine Neotropical species of Hyriidae, collected from 15 South American rivers, and sequences of hyriids from Australia and New Zealand obtained from GenBank. The present molecular findings support traditional taxonomic proposals, based on morphology, for the South American subfamily Hyriinae, currently divided in three tribes: Hyriini, Castaliini and Rhipidodontini. Phylogenetic trees based on COI nucleotide sequences revealed at least four geographical groups of Castalia ambigua: northeast Amazon (Piriá, Tocantins and Caeté rivers), central Amazon, including C. quadrata (Amazon and Aripuanã rivers), north (Trombetas river), and C. ambigua from Peru. Genetic distances suggest that some specimens may be cryptic species. Among the Hyriini, a total evidence data set generated phylogenetic trees indicating that Paxyodon syrmatophorus and Prisodon obliquus are more closely related, followed by Triplodon corrugatus. The molecular clock, based on COI, agreed with the fossil record of Neotropical hyriids. The ancestor of both Australasian and Neotropical Hyriidae is estimated to have lived around 225million years ago. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A new species of Acroleptus Bourgeois (Coleoptera: Lycidae) from the Brazilian Amazonian rainforest, with a note on its homonymy with Acroleptus Cabanis (Aves).

    PubMed

    Ferreira, Vinicius S

    2015-04-24

    Acroleptus costae sp. nov. is described from the Brazilian Amazonian rainforest, raising the diversity of the formerly monotypic genus to two known species. The validity of Acroleptus Bourgeois, 1886 (Insecta) is maintained while Acroleptus Cabanis, 1861 (Aves) is considered to be an incorrect subsequent spelling.

  9. Amazonian foods and implications for human biology.

    PubMed

    Dufour, Darna L; Piperata, Barbara A; Murrieta, Rui S S; Wilson, Warren M; Williams, Drake D

    2016-07-01

    Diets of subsistence-based Amazonian populations have been linked to local resources, but are changing with market penetration. To review the available data on traditional Amazonian foods and diets and evaluate their implications for human biology as a step toward understanding nutrition transitions in the region. This study used the Human Relations Area Files for information on the diets of Amerindian groups in the Amazon Basin from 1950 to the present, and used other published sources and the authors' own data. Data on food use was identified for only nine groups and dietary intake data for individuals in only three of the groups. A diet based on starchy staples (manioc and plantains) and fish, supplemented with a limited variety of other plant and animal foods, was found. Bitter manioc-based foods were associated with the consumption of cyanogens and fish with the consumption of mercury. Diets of adults appear to be adequate in energy and protein and low in fats. Children's diets were not well documented. Based on the limited available data, Amazonian diets are restricted in variety, but appear to be adequate in energy and protein for adults, but likely insufficiently nutrient-dense for children.

  10. Extinction risks of Amazonian plant species.

    PubMed

    Feeley, Kenneth J; Silman, Miles R

    2009-07-28

    Estimates of the number, and preferably the identity, of species that will be threatened by land-use change and habitat loss are an invaluable tool for setting conservation priorities. Here, we use collections data and ecoregion maps to generate spatially explicit distributions for more than 40,000 vascular plant species from the Amazon basin (representing more than 80% of the estimated Amazonian plant diversity). Using the distribution maps, we then estimate the rates of habitat loss and associated extinction probabilities due to land-use changes as modeled under 2 disturbance scenarios. We predict that by 2050, human land-use practices will have reduced the habitat available to Amazonian plant species by approximately 12-24%, resulting in 5-9% of species becoming "committed to extinction," significantly fewer than other recent estimates. Contrary to previous studies, we find that the primary determinant of habitat loss and extinction risk is not the size of a species' range, but rather its location. The resulting extinction risk estimates are a valuable conservation tool because they indicate not only the total percentage of Amazonian plant species threatened with extinction but also the degree to which individual species and habitats will be affected by current and future land-use changes.

  11. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees.

    PubMed

    Wiggins, Natasha L; Forrister, Dale L; Endara, María-José; Coley, Phyllis D; Kursar, Thomas A

    2016-01-01

    Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.

  12. Temporal and spatial diversification of Pteroglossus araçaris (AVES: Ramphastidae) in the neotropics: constant rate of diversification does not support an increase in radiation during the Pleistocene.

    PubMed

    Patel, Swati; Weckstein, Jason D; Patané, José S L; Bates, John M; Aleixo, Alexandre

    2011-01-01

    We use the small-bodied toucan genus Pteroglossus to test hypotheses about diversification in the lowland Neotropics. We sequenced three mitochondrial genes and one nuclear intron from all Pteroglossus species and used these data to reconstruct phylogenetic trees based on maximum parsimony, maximum likelihood, and Bayesian analyses. These phylogenetic trees were used to make inferences regarding both the pattern and timing of diversification for the group. We used the uplift of the Talamanca highlands of Costa Rica and western Panama as a geologic calibration for estimating divergence times on the Pteroglossus tree and compared these results with a standard molecular clock calibration. Then, we used likelihood methods to model the rate of diversification. Based on our analyses, the onset of the Pteroglossus radiation predates the Pleistocene, which has been predicted to have played a pivotal role in diversification in the Amazon rainforest biota. We found a constant rate of diversification in Pteroglossus evolutionary history, and thus no support that events during the Pleistocene caused an increase in diversification. We compare our data to other avian phylogenies to better understand major biogeographic events in the Neotropics. These comparisons support recurring forest connections between the Amazonian and Atlantic forests, and the splitting of cis/trans Andean species after the final uplift of the Andes. At the subspecies level, there is evidence for reciprocal monophyly and groups are often separated by major rivers, demonstrating the important role of rivers in causing or maintaining divergence. Because some of the results presented here conflict with current taxonomy of Pteroglossus, new taxonomic arrangements are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Missing in Amazonian jungle: a case report of skeletal evidence for dismemberment.

    PubMed

    Delabarde, Tania; Ludes, Bertrand

    2010-07-01

    This case study presents the results of the recovery and analysis of three sets of disarticulated and incomplete human remains found in Ecuador, within the Amazonian jungle. Recovered body parts sustained extensive sharp force trauma situated on different aspect of the skeleton. The anthropological examination (bone reassembly, biological profile) was followed by a detailed analysis of cut marks, including a basic experimental study on pig bones to demonstrate that dismemberment may have occurred within a certain amount of time after death. Despite the location (deep into the Amazonian jungle) and the perpetrator's actions (dismemberment and dispersion of body parts in a river), forensic work both on the field and in laboratory allowed identification of the victims and the reconstruction of the sequence of events.

  14. Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most

    NASA Astrophysics Data System (ADS)

    Swann, Abigail L. S.; Laguë, Marysa M.; Garcia, Elizabeth S.; Field, Jason P.; Breshears, David D.; Moore, David J. P.; Saleska, Scott R.; Stark, Scott C.; Villegas, Juan Camilo; Law, Darin J.; Minor, David M.

    2018-05-01

    Regional-scale tree die-off events driven by drought and warming and associated pests and pathogens have occurred recently on all forested continents and are projected to increase in frequency and extent with future warming. Within areas where tree mortality has occurred, ecological, hydrological and meteorological consequences are increasingly being documented. However, the potential for tree die-off to impact vegetation processes and related carbon dynamics in areas remote to where die-off occurs has rarely been systematically evaluated, particularly for multiple distinct regions within a given continent. Such remote impacts can occur when climate effects of local vegetation change are propagated by atmospheric circulation—the phenomena of ‘ecoclimate teleconnections’. We simulated tree die-off events in the 13 most densely forested US regions (selected from the 20 US National Ecological Observatory Network [NEON] domains) and found that tree die-off even for smaller regions has potential to affect climate and hence Gross Primary Productivity (GPP) in disparate regions (NEON domains), either positively or negatively. Some regions exhibited strong teleconnections to several others, and some regions were relatively sensitive to tree loss regardless of what other region the tree loss occurred in. For the US as a whole, loss of trees in the Pacific Southwest—an area undergoing rapid tree die-off—had the largest negative impact on remote US GPP whereas loss of trees in the Mid-Atlantic had the largest positive impact. This research lays a foundation for hypotheses that identify how the effects of tree die-off (or other types of tree loss such as deforestation) can ricochet across regions by revealing hot-spots of forcing and response. Such modes of connectivity have direct applicability for improving models of climate change impacts and for developing more informed and coordinated carbon accounting across regions.

  15. Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L)

    PubMed Central

    Motamayor, Juan C.; Lachenaud, Philippe; da Silva e Mota, Jay Wallace; Loor, Rey; Kuhn, David N.; Brown, J. Steven; Schnell, Raymond J.

    2008-01-01

    Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study. PMID:18827930

  16. Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects.

    PubMed

    Qie, Lan; Lewis, Simon L; Sullivan, Martin J P; Lopez-Gonzalez, Gabriela; Pickavance, Georgia C; Sunderland, Terry; Ashton, Peter; Hubau, Wannes; Abu Salim, Kamariah; Aiba, Shin-Ichiro; Banin, Lindsay F; Berry, Nicholas; Brearley, Francis Q; Burslem, David F R P; Dančák, Martin; Davies, Stuart J; Fredriksson, Gabriella; Hamer, Keith C; Hédl, Radim; Kho, Lip Khoon; Kitayama, Kanehiro; Krisnawati, Haruni; Lhota, Stanislav; Malhi, Yadvinder; Maycock, Colin; Metali, Faizah; Mirmanto, Edi; Nagy, Laszlo; Nilus, Reuben; Ong, Robert; Pendry, Colin A; Poulsen, Axel Dalberg; Primack, Richard B; Rutishauser, Ervan; Samsoedin, Ismayadi; Saragih, Bernaulus; Sist, Plinio; Slik, J W Ferry; Sukri, Rahayu Sukmaria; Svátek, Martin; Tan, Sylvester; Tjoa, Aiyen; van Nieuwstadt, Mark; Vernimmen, Ronald R E; Yassir, Ishak; Kidd, Petra Susan; Fitriadi, Muhammad; Ideris, Nur Khalish Hafizhah; Serudin, Rafizah Mat; Abdullah Lim, Layla Syaznie; Saparudin, Muhammad Shahruney; Phillips, Oliver L

    2017-12-19

    Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha -1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.

  17. Solution of the spatial neutral model yields new bounds on the Amazonian species richness

    NASA Astrophysics Data System (ADS)

    Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.

    2017-02-01

    Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).

  18. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L).

    PubMed

    Motamayor, Juan C; Lachenaud, Philippe; da Silva E Mota, Jay Wallace; Loor, Rey; Kuhn, David N; Brown, J Steven; Schnell, Raymond J

    2008-10-01

    Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study.

  19. Comparative assessment of methods for estimating tree canopy cover across a rural-to-urban gradient in the mid-Atlantic region of the USA

    Treesearch

    Rachel Riemann; Greg C. Liknes; Jarlath O' Neil-Dunne; Chris Toney; Tonya Lister

    2016-01-01

    Tree canopy cover significantly affects human and wildlife habitats, local hydrology, carbon cycles, fire behavior, and ecosystem services of all types. In addition, changes in tree canopy cover are both indicators and consequences of a wide variety of disturbances from urban development to climate change. There is growing demand for this information nationwide and...

  20. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire

    Treesearch

    T.G. Soares Neto; J.A. Carvalho J.A.; C.A.G. Veras; E.C. Alvarado; R. Gielow; E.N. Lincoln; T.J. Christian; R.J. Yokelson; J.C. Santos

    2009-01-01

    Biomass consumption and C02, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48 percent and the estimated average moisture content...

  1. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  2. Medicinal plants of the Achuar (Jivaro) of Amazonian Ecuador: ethnobotanical survey and comparison with other Amazonian pharmacopoeias.

    PubMed

    Giovannini, Peter

    2015-04-22

    This paper presents the first ethnobotanical survey conducted among the Achuar (Jivaro), indigenous people living in Amazonian Ecuador and Peru. The aims of this study are: (a) to present and discuss Achuar medicinal plant knowledge in the context of the epidemiology of this population (b) to compare the use of Achuar medicinal plants with the uses reported among the Shuar Jivaro and other Amazonian peoples. The author conducted field research in 9 indigenous villages in the region of Morona Santiago and Pastaza in Ecuador. Semi-structured interviews on local illnesses and herbal remedies were carried out with 82 informants and plant specimens were collected and later identified in Quito. A literature research was conducted on the medicinal species reported by Achuar people during this study. The most reported medicinal plants are species used by the Achuar to treat diarrhoea, parasites infection, fractures, wounds, and snakebites. Informants reported the use of 134 medicinal species for a total of 733 recorded use-reports. Of these 134 species, 44 are reported at least 3 times for one or more specific disease condition for a total of 56 uses. These species are considered a core kit of medicinal plants of the Achuar of Ecuador. Most of these medicinal species are widely used in the Amazon rainforest and in many other parts of Latin America. The author documented a core kit of 44 medicinal plants used among the Achuar of Ecuador and found that this core set of medicinal plants reflects local epidemiological concerns and the pharmacopoeias of the Shuar and other Amazonian groups. These findings suggest that inter-group diffusion of medicinal plant knowledge had a prominent role in the acquisition of current Achuar knowledge of medicinal plants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    NASA Technical Reports Server (NTRS)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  4. Did the martian outflow channels mostly form during the Amazonian Period?

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. Alexis P.; Platz, Thomas; Gulick, Virginia; Baker, Victor R.; Fairén, Alberto G.; Kargel, Jeffrey; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-01

    Simud, Tiu, and Ares Valles comprise some of the largest outflow channels on Mars. Their excavation has been attributed variously to (or a combination of) erosion by catastrophic floods, glaciers, and debris flows. Numerous investigations indicate that they formed largely during the Late Hesperian (3.61-3.37 Ga). However, these studies mostly equate the ages of the outflow channel floors to those of the flows that generated mesoscale (several hundred meters to a few kilometers) bedforms within them. To improve the statistical accuracy in the age determinations of these flow events, we have used recently acquired high-resolution image and topographic data to map and date portions of Simud, Tiu and Ares Valles, which are extensively marked by these bedforms. Our results, which remove the statistical effects of older and younger outflow channel floor surfaces on the generation of modeled ages, reveal evidence for major outflow channel discharges occurring during the Early (3.37-1.23 Ga) and Middle (1.23-0.328 Ga) Amazonian, with activity significantly peaking during the Middle Amazonian stages. We also find that during the documented stages of Middle Amazonian discharges, the floor of Tiu Valles underwent widespread collapse, resulting in chaotic terrain formation. In addition, we present evidence showing that following the outflow channel discharges, collapse within northern Simud Valles generated another chaotic terrain. This younger chaos region likely represents the latest stage of large-scale outflow channel resurfacing within the study area. Our findings imply that in southern circum-Chryse the martian hydrosphere experienced large-scale drainage during the Amazonian, which likely led to periodic inundation and sedimentation within the northern plains.

  5. Air pollution removal by urban trees and shrubs in the United States

    Treesearch

    David J. Nowak; Daniel E. Crane; Jack C. Stevens

    2006-01-01

    A modeling study using hourly meteorological and pollution concentration data from across the coterminous United States demonstrates that urban trees remove large amounts of air pollution that consequently improve urban air quality. Pollution removal (03, PM10, NO2, SO2, CO)...

  6. Odor Mitigation with Tree Buffers: Swine Production Case Study

    USDA-ARS?s Scientific Manuscript database

    Tree buffers are a potential low cost sustainable odor mitigation strategy, but there is little to no data on their effectiveness. Odor transport is thought to occur one of two ways either directly through vapor phase transport or indirectly through sorption onto particles. Consequently, monitoring...

  7. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  8. The risks of introduction of the Amazonian palm Euterpe oleracea in the Atlantic rainforest.

    PubMed

    Tiberio, F C S; Sampaio-E-Silva, T A; Matos, D M S; Antunes, A Z

    2016-02-01

    The introduction of a species may alter ecological processes of native populations, such as pollination and dispersal patterns, leading to changes in population structure. When the introduced and the native species are congeners, interference in pollination can also lead to hybridization. We aimed to understand the ecological aspects of Euterpe oleracea introduction in the Atlantic forest and the possible consequences for the conservation of the native congener Euterpe edulis. We analysed the population structure of palm populations, including hybrids, and observed the interaction with frugivorous birds of both palm species after E. oleracea introduction. We observed that E. edulis had significantly lower density and a smaller number of seedlings when occurring with E. oleracea. Native and introduced Euterpe species shared nine frugivorous bird species. E. oleracea and hybrids had dispersed outside the original planting area. Consequently, the risks of introduction of E. oleracea may mostly be related to the disruption of interactions between E. edulis and frugivorous birds and the spontaneous production of hybrids. Finally, the cultivation of E. oleracea and hybrids in Atlantic rainforest could affect the conservation of the already endangered E. edulis.

  9. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire

    Treesearch

    T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos

    2009-01-01

    Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...

  10. Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation.

    PubMed

    Pulido-Santacruz, Paola; Aleixo, Alexandre; Weir, Jason T

    2018-03-14

    We possess limited understanding of how speciation unfolds in the most species-rich region of the planet-the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia. © 2018 The Author(s).

  11. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    2005-01-01

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.

  12. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.

    PubMed

    Tanaka, Kenneth L

    2005-10-13

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.

  13. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change.

    PubMed

    Galbraith, David; Levy, Peter E; Sitch, Stephen; Huntingford, Chris; Cox, Peter; Williams, Mathew; Meir, Patrick

    2010-08-01

    *The large-scale loss of Amazonian rainforest under some future climate scenarios has generally been considered to be driven by increased drying over Amazonia predicted by some general circulation models (GCMs). However, the importance of rainfall relative to other drivers has never been formally examined. *Here, we conducted factorial simulations to ascertain the contributions of four environmental drivers (precipitation, temperature, humidity and CO(2)) to simulated changes in Amazonian vegetation carbon (C(veg)), in three dynamic global vegetation models (DGVMs) forced with climate data based on HadCM3 for four SRES scenarios. *Increased temperature was found to be more important than precipitation reduction in causing losses of Amazonian C(veg) in two DGVMs (Hyland and TRIFFID), and as important as precipitation reduction in a third DGVM (LPJ). Increases in plant respiration, direct declines in photosynthesis and increases in vapour pressure deficit (VPD) all contributed to reduce C(veg) under high temperature, but the contribution of each mechanism varied greatly across models. Rising CO(2) mitigated much of the climate-driven biomass losses in the models. *Additional work is required to constrain model behaviour with experimental data under conditions of high temperature and drought. Current models may be overly sensitive to long-term elevated temperatures as they do not account for physiological acclimation.

  14. Ecological impacts of energy-wood harvests: lessons from whole-tree harvesting and natural disturbance

    USGS Publications Warehouse

    Berger, Alaina L.; Palik, Brian; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.; Nislow, Keith H.; King, David; Brooks, Robert T.

    2013-01-01

    Recent interest in using forest residues and small-diameter material for biofuels is generating a renewed focus on harvesting impacts and forest sustainability. The rich legacy of research from whole-tree harvesting studies can be examined in light of this interest. Although this research largely focused on consequences for forest productivity, in particular carbon and nutrient pools, it also has relevance for examining potential consequences for biodiversity and aquatic ecosystems. This review is framed within a context of contrasting ecosystem impacts from whole-tree harvesting because it represents a high level of biomass removal. Although whole-tree harvesting does not fully use the nonmerchantable biomass available, it indicates the likely direction and magnitude of impacts that can occur through energy-wood harvesting compared with less-intensive conventional harvesting and to dynamics associated with various natural disturbances. The intent of this comparison is to gauge the degree of departure of energy-wood harvesting from less intensive conventional harvesting. The review of the literature found a gradient of increasing departure in residual structural conditions that remained in the forest when conventional and whole-tree harvesting was compared with stand-replacing natural disturbance. Important stand- and landscape-level processes were related to these structural conditions. The consequence of this departure may be especially potent because future energy-wood harvests may more completely use a greater range of forest biomass at potentially shortened rotations, creating a great need for research that explores the largely unknown scale of disturbance that may apply to our forest ecosystems.

  15. The Kenai experience: communities and forest health.

    Treesearch

    Valerie. Rapp

    2005-01-01

    Over the last 15 years, spruce bark beetles have killed huge numbers of spruce trees, the dominant conifer across south-central Alaska. From 80 to 90 percent of the trees are dead in large areas on the Kenai Peninsula. The consequences of the spruce bark beetle outbreak will continue for years.

  16. Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2013-08-01

    In present work, we applied two sets of new multi-dimensional geochemical diagrams (Verma et al., 2013) obtained from linear discriminant analysis (LDA) of natural logarithm-transformed ratios of major elements and immobile major and trace elements in acid magmas to decipher plate tectonic settings and corresponding probability estimates for Paleoproterozoic rocks from Amazonian craton, São Francisco craton, São Luís craton, and Borborema province of Brazil. The robustness of LDA minimizes the effects of petrogenetic processes and maximizes the separation among the different tectonic groups. The probability based boundaries further provide a better objective statistical method in comparison to the commonly used subjective method of determining the boundaries by eye judgment. The use of readjusted major element data to 100% on an anhydrous basis from SINCLAS computer program, also helps to minimize the effects of post-emplacement compositional changes and analytical errors on these tectonic discrimination diagrams. Fifteen case studies of acid suites highlighted the application of these diagrams and probability calculations. The first case study on Jamon and Musa granites, Carajás area (Central Amazonian Province, Amazonian craton) shows a collision setting (previously thought anorogenic). A collision setting was clearly inferred for Bom Jardim granite, Xingú area (Central Amazonian Province, Amazonian craton) The third case study on Older São Jorge, Younger São Jorge and Maloquinha granites Tapajós area (Ventuari-Tapajós Province, Amazonian craton) indicated a within-plate setting (previously transitional between volcanic arc and within-plate). We also recognized a within-plate setting for the next three case studies on Aripuanã and Teles Pires granites (SW Amazonian craton), and Pitinga area granites (Mapuera Suite, NW Amazonian craton), which were all previously suggested to have been emplaced in post-collision to within-plate settings. The seventh case studies on Cassiterita-Tabuões, Ritápolis, São Tiago-Rezende Costa (south of São Francisco craton, Minas Gerais) showed a collision setting, which agrees fairly reasonably with a syn-collision tectonic setting indicated in the literature. A within-plate setting is suggested for the Serrinha magmatic suite, Mineiro belt (south of São Francisco craton, Minas Gerais), contrasting markedly with the arc setting suggested in the literature. The ninth case study on Rio Itapicuru granites and Rio Capim dacites (north of São Francisco craton, Serrinha block, Bahia) showed a continental arc setting. The tenth case study indicated within-plate setting for Rio dos Remédios volcanic rocks (São Francisco craton, Bahia), which is compatible with these rocks being the initial, rift-related igneous activity associated with the Chapada Diamantina cratonic cover. The eleventh, twelfth and thirteenth case studies on Bom Jesus-Areal granites, Rio Diamante-Rosilha dacite-rhyolite and Timbozal-Cantão granites (São Luís craton) showed continental arc, within-plate and collision settings, respectively. Finally, the last two case studies, fourteenth and fifteenth showed a collision setting for Caicó Complex and continental arc setting for Algodões (Borborema province).

  17. Workplan for Catalyzing Collaboration with Amazonian Universities in the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)

    NASA Technical Reports Server (NTRS)

    Brown, I. Foster; Moreira, Adriana

    1997-01-01

    Success of the Large-Scale Biosphere-Atmospheric Experiment in Amazonia (LBA) program depends on several critical factors, the most important being the effective participation of Amazonian researchers and institutions. Without host-county counterparts, particularly in Amazonia, many important studies cannot he undertaken due either to lack of qualified persons or to legal constraints. No less important, the acceptance of the LBA program in Amazonia is also dependent on what LBA can do for improving the scientific expertise in Amazonia. Gaining the active investment of Amazonian scientists in a comprehensive research program is not a trivial task. Potential collaborators are few, particularly where much of the research was to be originally focused - the southern arc of Brazilian Amazonia. The mid-term goals of the LBA Committee on Training and Education are to increase the number of collaborators and to demonstrate that LBA will be of benefit to the region.

  18. Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying

    NASA Astrophysics Data System (ADS)

    Richardson, T. B.; Forster, P. M.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kirkevâg, A.; Lamarque, J.-F.; Myhre, G.; Olivié, D.; Samset, B. H.; Shawki, D.; Shindell, D.; Takemura, T.; Voulgarakis, A.

    2018-03-01

    Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.

  19. Distinct Microbial Limitations in Litter and Underlying Soil Revealed by Carbon and Nutrient Fertilization in a Tropical Rainforest

    PubMed Central

    Fanin, Nicolas; Barantal, Sandra; Fromin, Nathalie; Schimann, Heidy; Schevin, Patrick; Hättenschwiler, Stephan

    2012-01-01

    Human-caused alterations of the carbon and nutrient cycles are expected to impact tropical ecosystems in the near future. Here we evaluated how a combined change in carbon (C), nitrogen (N) and phosphorus (P) availability affects soil and litter microbial respiration and litter decomposition in an undisturbed Amazonian rainforest in French Guiana. In a fully factorial C (as cellulose), N (as urea), and P (as phosphate) fertilization experiment we analyzed a total of 540 litterbag-soil pairs after a 158-day exposure in the field. Rates of substrate-induced respiration (SIR) measured in litter and litter mass loss were similarly affected by fertilization showing the strongest stimulation when N and P were added simultaneously. The stimulating NP effect on litter SIR increased considerably with increasing initial dissolved organic carbon (DOC) concentrations in litter, suggesting that the combined availability of N, P, and a labile C source has a particularly strong effect on microbial activity. Cellulose fertilization, however, did not further stimulate the NP effect. In contrast to litter SIR and litter mass loss, soil SIR was reduced with N fertilization and showed only a positive effect in response to P fertilization that was further enhanced with additional C fertilization. Our data suggest that increased nutrient enrichment in the studied Amazonian rainforest can considerably change microbial activity and litter decomposition, and that these effects differ between the litter layer and the underlying soil. Any resulting change in relative C and nutrient fluxes between the litter layer and the soil can have important consequences for biogeochemical cycles in tropical forest ecosystems. PMID:23272052

  20. Response of the Amazon rainforest to late Pleistocene climate variability

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  1. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.

    PubMed

    Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  2. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation

    PubMed Central

    Campeão, Mariana E.; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L.; Thompson, Cristiane C.

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae), archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web. PMID:28659874

  3. Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna.

    Treesearch

    William A. Hoffmann; Edson Rangel da Silva; Gustavo C. Machado; Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer

    2005-01-01

    Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants 1-m tall), in the Brazilian...

  4. Oak decline around the world

    Treesearch

    Kurt W. Gottschalk; Philip M. Wargo

    1997-01-01

    Oak (Quercus spp.) decline is a malady related to the consequences of stress and successful attack of stressed trees by opportunistic (secondary) organisms (Wargo et al. 1983). It is a progressive process where trees decline in health for several years before they die. Houston (1981) developed a model of declines that is presented in Figure 1. So...

  5. The mountain pine beetle: causes and consequences of an unprecedented outbreak

    Treesearch

    Allan L. Carroll

    2011-01-01

    The mountain pine beetle (Dendroctonus ponderosae) is native to the pine forests of western North America where it normally exists at very low densities, infesting only weakened or damaged trees. Under conditions conducive to survival, populations may erupt and spread over extensive landscapes, killing large numbers of healthy trees.

  6. Risk Assessment for the Southern Pine Beetle

    Treesearch

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  7. Effect of the Road Environment on Road Safety in Poland

    NASA Astrophysics Data System (ADS)

    Budzynski, Marcin; Jamroz, Kazimierz; Antoniuk, Marcin

    2017-10-01

    Run-off-road accidents tend to be very severe because when a vehicle leaves the road, it will often crash into a solid obstacle (tree, pole, supports, front wall of a culvert, barrier). A statistical analysis of the data shows that Poland’s main roadside hazard is trees and the severity of vehicles striking a tree in a run-off-road crash. The risks are particularly high in north-west Poland with many of the roads lined up with trees. Because of the existing rural road cross-sections, i.e. having trees directly on road edge followed immediately by drainage ditches, vulnerable road users are prevented from using shoulders and made to use the roadway. With no legal definition of the road safety zone in Polish regulations, attempts to remove roadside trees lead to major conflicts with environmental stakeholders. This is why a compromise should be sought between the safety of road users and protection of the natural environment and the aesthetics of the road experience. Rather than just cut the trees, other road safety measures should be used where possible to treat the hazardous spots by securing trees and obstacles and through speed management. Accidents that are directly related to the road environment fall into the following categories: hitting a tree, hitting a barrier, hitting a utility pole or sign, vehicle rollover on the shoulder, vehicle rollover on slopes or in ditch. The main consequence of a roadside hazard is not the likelihood of an accident itself but of its severity. Poland’s roadside accident severity is primarily the result of poor design or operation of road infrastructure. This comes as a consequence of a lack of regulations or poorly defined regulations and failure to comply with road safety standards. The new analytical model was designed as a combination of the different factors and one that will serve as a comprehensive model. It was assumed that it will describe the effect of the roadside on the number of accidents and their consequences. The design of the model was based on recommendations from analysing other models. The assumptions were the following: the model will be used to calculate risk factors and accident severity, the indicators will depend on number of vehicle kilometres travelled or traffic volumes, analyses will be based on accident data: striking a tree, hitting a barrier, hitting a utility pole or sign. Additional data will include roadside information and casualty density measures will be used - killed and injured.

  8. Reduced Future Precipitation Makes Permanence of Amazonian Carbon Sinks Questionable

    NASA Astrophysics Data System (ADS)

    Arora, V.

    2011-12-01

    The tropical forests of the Amazon, considered as a tipping element in Earth's climate system, provide several ecosystem services including the maintenance of favourable regional climatic conditions in the region and storage of large amounts of carbon in their above- and below-ground pools. While it is nearly impossible, at present, to put a dollar value on these ecosystem services, the developed countries have started paying large sums of money to developing countries in the tropics to reduce deforestation. Norway recently committed up to $1 billion to the Amazon fund. The United Nations' Reducing Emissions from Deforestation and forest Degradation (REDD) program also financially supports national activities of 13 countries worldwide. The primary assumption inherent in paying for avoiding deforestation is that avoided land use change emissions contribute towards climate change mitigation. In addition, the standing forests that are spared deforestation contribute towards additional carbon sinks associated with the CO2 fertilization effect. Implicit in this reasoning is the understanding that the carbon sinks provided by avoided deforestation have some "permanence" associated with them, at least in the order of 50-100 years. Clearly, if "avoided deforestation" is essentially "delayed deforestation" then the benefits will not be long lasting. More importantly, changes in climate have the potential to adversely affect the permanence of carbon sinks, whether they are being paid for or not. This presentation will address the question of "permanence" by analyzing simulations of the second generation Canadian Earth system model (CanESM2) that are contributing results to the upcoming fifth Coupled Modeled Intercomparison Project (CMIP5). CanESM2 results for the future RCP 2.6, 4.5 and 8.5 scenarios show, that due to reduced future precipitation, the Amazonian region remains a net source of carbon over the 21st century in all scenarios. The carbon losses during the recent 2005 and 2010 droughts in the Amazonian region nearly wiped away the gains made during a decade indicating that the era of intact Amazonian forests acting as carbon sinks may be over. CanESM2 simulations imply that the future of the Amazonian region may look more like these drought years, suggesting that the future reduced precipitation over the region can indeed "tip over" the Amazonian forests.

  9. Widespread increase of tree mortality rates in the Western United States

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, Joseph M.; Taylor, A.H.; Veblen, T.T.

    2009-01-01

    Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.

  10. Needle and stem wood production in Scots pine (Pinus sylvestris) trees of different age, size and competitive status.

    PubMed

    Vanninen, Petteri; Mäkelä, Annikki

    2000-04-01

    We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.

  11. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which are valuable for tea breeding. PMID:24405939

  12. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.

    PubMed

    Zhao, Dong-Wei; Yang, Jun-Bo; Yang, Shi-Xiong; Kato, Kenji; Luo, Jian-Ping

    2014-01-09

    Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which are valuable for tea breeding.

  13. A NEW SPECIES OF Bolivar Zaldívar-Riverón et Rodríguez-Jiménez (BRACONIDAE, DORYCTINAE) FROM BRAZIL, WITH NEW RECORDS OF THE AMAZONIAN B. ecuadorensis Zaldívar-Riverón et López-Estrada.

    PubMed

    Nunes, Juliano Fiorelini; Penteado-Dias, Angelica Maria; Souza-Gadelha, Sian De; Zaldívar-Riverón, Alejandro

    2016-05-06

    A new species of the doryctine genus Bolivar (Braconidae), B. brasiliensis sp. nov., is described from the Atlantic coastal region in Brazil. New records and taxonomic notes of the Amazonian B. ecuadorensis Zaldívar-Riverón et López-Estrada are also provided.

  14. Flank vents and graben as indicators of Late Amazonian volcanotectonic activity on Olympus Mons

    NASA Astrophysics Data System (ADS)

    Peters, S. I.; Christensen, P. R.

    2017-03-01

    Previous studies have focused on large-scale features on Olympus Mons, such as its flank terraces, the summit caldera complex, and the basal escarpment and aureole deposits. Here we identify and characterize previously unrecognized and unmapped small scale features to help further understand the volcanotectonic evolution of this enormous volcano. Using Context Camera, High Resolution Imaging Science Experiment, Thermal Emission Imaging System, High Resolution Stereo Camera Digital Terrain Model, and Mars Orbiter Laser Altimeter data, we identified and characterized the morphology and distribution of 60 flank vents and 84 grabens on Olympus Mons. We find that effusive eruptions have dominated volcanic activity on Olympus Mons in the Late Amazonian. Explosive eruptions were rare, implying volatile-poor magmas and/or a lack of magma-water interactions during the Late Amazonian. The distribution of flank vents suggests dike propagation of hundreds of kilometers and shallow magma storage. Small grabens, not previously observed in lower-resolution data, occur primarily on the lower flanks of Olympus Mons and indicate late-stage extensional tectonism. Based on superposition relationships, we have concluded two stages of development for Olympus Mons during the Late Amazonian: (1) primarily effusive resurfacing and formation of flank vents followed by (2) waning effusive volcanism and graben formation and/or reactivation. This developmental sequence resembles that proposed for Ascraeus Mons and other large Martian shields, suggesting a similar geologic evolution for these volcanoes.

  15. Hair as a Biomarker of Long Term Mercury Exposure in Brazilian Amazon: A Systematic Review

    PubMed Central

    de Oliveira Lima, Marcelo

    2018-01-01

    Many studies have assessed mercury (Hg) exposure in the Amazonian population. This article performs a literature search of the studies that used hair as a biomarker of Hg exposure in the Brazilian Amazonian population. The search covered the period from 1996 to 2016 and included articles which matched the following criteria: (1) articles related to Hg exposure into Brazilian Amazon; (2) articles that used hair as a biomarker of Hg exposure; (3) articles that used analytical tools to measure the Hg content on hair and (4) articles that presented arithmetic mean and/or minimum and maximum values of Hg. 36 studies were selected. The findings show that most of the studies were performed along margins of important rivers, such as Negro, Tapajós and Madeira. All the population presented mean levels of Hg on hair above 6 µg g−1 and general population, adults, not determined and men presented levels of Hg on hair above 10 µg g−1. The results show that most of the studies were performed by Brazilian institutions/researchers and the majority was performed in the State of Pará. The present study identified that Amazonian population has long-term been exposed to Hg. In terms of future perspectives, this study suggests the implementation of a strategic plan for environmental health surveillance in the region in order to promote health and benefit Amazonian population. PMID:29534534

  16. Scorpion envenoming in Morona Santiago, Amazonian Ecuador: Molecular phylogenetics confirms involvement of the Tityus obscurus group.

    PubMed

    Román, Juan P; García, Fernanda; Medina, Doris; Vásquez, Manolo; García, José; Graham, Matthew R; Romero-Alvarez, Daniel; Pardal, Pedro P de Oliveira; Ishikawa, Edna A Y; Borges, Adolfo

    2018-02-01

    Scorpion envenoming by species in the genus Tityus is hereby reported from rural locations in the Amazonian province of Morona Santiago, southeastern Ecuador. Twenty envenoming cases (18 patients under 15 years of age) including one death (a 4-year-old male) were recorded at the Macas General Hospital, Morona Santiago, between January 2015 and December 2016 from the counties of Taisha (n=17), Huamboyo (n=1), Palora (n=1), and Logroño (n=1). An additional fatality from 2014 (a 3-year-old female from Nayantza, Taisha county) is also reported. Leukocytosis and low serum potassium levels were detected in most patients. We observed a significant negative correlation between leukocytosis and hypokalemia. Scorpions involved in three accidents from Macuma, Taisha County, were identified as genetically related to Tityus obscurus from the Brazilian Amazonian region based on comparison of mitochondrial DNA sequences encoding cytochrome oxidase subunit I. These cases, along with previously reported envenoming from northern Manabí, reinforce the notion that scorpionism is a health hazard for children in Ecuador and emphasizes the need to supply effective antivenoms against local species, which are not currently available. The genetic affinity of the Ecuadorian specimens with T. obscurus may underlay toxinological, clinical, and venom antigenic relationships among Amazonian scorpions that deserves further exploration for designing therapeutic strategies to treat scorpionism in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region.

    PubMed

    Cubides, Juan Ricardo; Camargo-Ayala, Paola Andrea; Niño, Carlos Hernando; Garzón-Ospina, Diego; Ortega-Ortegón, Anggie; Ospina-Cantillo, Estefany; Orduz-Durán, María Fernanda; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2018-03-27

    Malaria continues being a public health problem worldwide. Plasmodium vivax is the species causing the largest number of cases of malaria in Asia and South America. Due to the lack of a completely effective anti-malarial vaccine, controlling this disease has been based on transmission vector management, rapid diagnosis and suitable treatment. However, parasite resistance to anti-malarial drugs has become a major yet-to-be-overcome challenge. This study was thus aimed at determining pvmdr1, pvdhfr, pvdhps and pvcrt-o gene mutations and haplotypes from field samples obtained from an endemic area in the Colombian Amazonian region. Fifty samples of parasite DNA infected by a single P. vivax strain from symptomatic patients from the Amazonas department in Colombia were analysed by PCR and the pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes were sequenced. Diversity estimators were calculated from the sequences and the haplotypes circulating in the Colombian Amazonian region were obtained. pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes in the Colombian Amazonian region are characterized by low genetic diversity. Some resistance-associated mutations were found circulating in this population. New variants are also being reported. A selective sweep signal was located in pvdhfr and pvmdr1 genes, suggesting that these mutations (or some of them) could be providing an adaptive advantage.

  18. Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará State (Brazil).

    PubMed

    Coelho-Ferreira, Márlia

    2009-10-29

    It shows the local medicinal uses of biodiversity in Brazil's Amazonian littoral, promoting the value of folk knowledge, and its applicability in future studies. To demonstrate the importance of the knowledge of medicinal plants in the Amazonian coastal community of Marudá, located in Pará State, Brazil. Fieldwork was conducted between 1996 and 1998, using the methods of participant observation, semi-structured interviews and informal discussions to elicit information from community residents and plant specialists, in addition to collecting plant material. Community residents possess knowledge of 229 medicinal plants distributed in 81 botanical families and know how to manipulate them in a variety of ways, with special care taken to ensure that they are used in the safest and most efficient manner. Therapeutic indications for these plants include illness and disease recognized in the repertoire of Western medicine as well as ailments perceived from a local cultural perspective. Results from this study attest to informants' knowledge of medicinal flora and their ability and openness to integrate new species from diverse origins into their gamut of medicinal knowledge, including industrial therapeutic preparations and animal products. Local uses of biodiversity in Brazil's Amazonian littoral are also evinced, promoting the value of folk medicinal knowledge. Similarly, it mentions the potential of implementing local knowledge in Brazil's Unitary Health System.

  19. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-07-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.

  20. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-02-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. Regarding the carbonate flux, another direct consequence of wood feeding is a concomitant flux of carbonate formed in wood tissues, which is not consumed by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter. Therefore, an oxalate pool is formed on the forest ground. Then, wood rotting gents (mainly termites, fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition some of these gents are themselves producers of oxalate (fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as define by the ecological theory.

  1. Comparative water fluxes through leaf litter of tropical plantation trees and the invasive grass Saccharum spontaneum in the Republic of Panama

    NASA Astrophysics Data System (ADS)

    Park, Andrew; Friesen, Patrick; Serrud, Aneth Aracelly Sarmiento

    2010-03-01

    SummaryThe hydrological properties of leaf litter layers remain relatively unexplored, especially in tropical vegetation communities. In this paper we explore the hydrological dynamics of litter samples from reforestation plots of tropical hardwoods and the invasive sugar cane Saccharum spontaneum, which these trees were planted to replace. Water holding capacity (WHC) and drying rates were compared under controlled conditions, and throughfall interception, drainage and calculated evaporation were measured in two field experiments (A and B) conducted with different sets of samples. The WHC of samples varied from 3.4 to 6.5 mm in experiment A, and from 1.6 to 7.1 mm in experiment B. Drainage through the litter samples averaged 78.3 ± 34.4% and 61.2 ± 34.70% TF in experiments A and B, respectively. Daily water storage was 70.8 ± 14.25% of total WHC in experiment A and 78.6 ± 25.35% of total WHC in experiment B. Estimated evaporation averaged 34.8 ± 12.52% of WHC in experiment A and 34.3 ± 14.91% of WHC in experiment B. Although significant interspecific differences in WHC, interception of TF and evaporation were recorded, species rankings tended to be different in experiments A and B. The exception was litter from the leguminous tree Gliricidia sepium, which maintained the lowest WHC and water storage in the field in both experiments, but which evaporated water more rapidly than other species. The depth of throughfall draining through litter samples in the field was similar among all species in both experiments. Comparisons of regression slopes also showed that drainage depth increased with increasing throughfall at similar rates among species. On the other hand, both slopes and slope elevations differed among species when drainage was expressed in l kg -1. Patterns of water storage and drainage in our samples were in broad agreement with those of other studies, although WHC and litter necromass in our young tree plantations fell into the lower end of the range reported for mature Amazonian forest.

  2. Predicting biomass of hyperdiverse and structurally complex central Amazonian forests - a virtual approach using extensive field data

    DOE PAGES

    Magnabosco Marra, Daniel; Higuchi, Niro; Trumbore, Susan E.; ...

    2016-03-11

    Notice on corrigendum: This paper has a corresponding corrigendum published. Please read the corrigendum first. Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90 % of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture.more » We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height ≥ 5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different models and an available pantropical model, we observed systematic biases ranging from -31 % (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha -1 (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha -1) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i.e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including species-specific attributes, which are often unavailable or estimated imprecisely in most regions.« less

  3. Corrigendum to "Predicting biomass of hyperdiverse and structurally complex central Amazonian forests — a virtual approach using extensive field data" Published in Biogeosciences, 13, 1553-1570, 2016

    DOE PAGES

    Magnabosco Marra, Daniel; Higuchi, Niro; Trumbore, Susan E.; ...

    2016-04-27

    Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90% of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural andmore » compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height ≥5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. We observed systematic biases ranging from -31% (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130-Mg ha -1 (pantropical), when predicting AGB (dry mass) over scenarios using our different models and an available pantropical model. Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha -1) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. Furthermore, the model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i.e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including species-specific attributes, which are often unavailable or estimated imprecisely in most regions.« less

  4. Corrigendum to "Predicting biomass of hyperdiverse and structurally complex central Amazonian forests — a virtual approach using extensive field data" Published in Biogeosciences, 13, 1553-1570, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnabosco Marra, Daniel; Higuchi, Niro; Trumbore, Susan E.

    Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90% of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural andmore » compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height ≥5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. We observed systematic biases ranging from -31% (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130-Mg ha -1 (pantropical), when predicting AGB (dry mass) over scenarios using our different models and an available pantropical model. Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha -1) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. Furthermore, the model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i.e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including species-specific attributes, which are often unavailable or estimated imprecisely in most regions.« less

  5. Acoustic detection of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) and Oryctes elegans (Coleoptera: Scarabaeidae) in Phoenix dactylifera (Arecales: Arecacae) trees and offshoots in Saudi Arabian orchards

    USDA-ARS?s Scientific Manuscript database

    Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) larvae are cryptic, internal-tissue feeding pests of palm trees that are difficult to detect until after they have caused severe economic damage; consequently, infestations may remain undetected until they are widespread in an orchard....

  6.  A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012

    Treesearch

    Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt

    2016-01-01

    Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...

  7. Linking sudden oak death with spatial economic value transfer

    Treesearch

    Tom Holmes; Bill Smith

    2008-01-01

    Sudden oak death (caused by Phytophthora ramorum) is currently having a dramatic impact on the flow of ecosystem services provided by trees and forests in California. Timber species in California are not thought to be at risk of mortality from this pathogen and, consequently, economic impacts accrue to non-market values of trees such as aesthetics,...

  8. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    Treesearch

    J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy

    2010-01-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.

  9. Effect of overstorey trees on understorey vegetation in California (USA) ponderosa pine plantations

    Treesearch

    Jianwei Zhang; David H. Young; William W. Oliver; Gary O. Fiddler

    2016-01-01

    Understorey vegetation plays a significant role in the structure and function of forest ecosystems. Controlling understorey vegetation has proven to be an effective tool in increasing tree growth and overstorey development. However, a long-term consequence of the practice on plant diversity is not fully understood. Here, we analyzed early development of overstorey and...

  10. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems

    Treesearch

    Aaron M. Ellison; Michael S. Bank; Barton D. Clinton; Elizabeth A. Colburn; Katherine Elliott; Chelcy Rae Ford; David R. Foster; Brian D. Kloeppel; Jennifer D. Knoepp; Gary M. Lovett; Jacqueline Mohan; David A. Orwig; Nicholas L. Rodenhouse; William V. Sobczak; Kristina A. Stinson; Jeffrey K. Stone; Christopher M. Swan; Jill Thompson; Betsy Von Holle; Jackson R. Webster

    2005-01-01

    In many forested ecosystems, the architecture and functional ecology of certain tree species define forest structure and their species-specific traits control ecosystem dynamics. Such foundation tree species are declining throughout the world due to introductions and outbreaks of pests and pathogens, selective removal of individual taxa, and over-harvesting. Through a...

  11. How to recover more value from small pine trees: Essential oils and resins

    Treesearch

    Vasant M. Kelkar; Brian W. Geils; Dennis R. Becker; Steven T. Overby; Daniel G. Neary

    2006-01-01

    In recent years, the young dense forests of northern Arizona have suffered extreme droughts, wildfires, and insect outbreaks. Improving forest health requires reducing forest density by cutting many small-diameter trees with the consequent production of large volumes of residual biomass. To offset the cost of handling this low-value timber, additional marketing options...

  12. Tree-ring evidence for the historical absence of cyclic larch budmoth outbreaks in the Tatra Mountains

    Treesearch

    Oliver Konter; Jan Esper; Andrew Liebhold; Tomas Kyncl; Lea Schneider; Elisabeth Düthorn; Ulf Buntgen

    2015-01-01

    The absence of larch budmoth outbreaks and subsequent consequences on tree rings together with a distinct climate–growth relationship enhance the dendroclimatic potential of larch ring width data from the Tatra Mountains. Regular population oscillations are generally considered to arise from trophic interactions, though it is unclear how such cycles are...

  13. Diseases of Forest Trees: Consequences of Exotic Ecosystems?

    Treesearch

    William J. Otrosina

    1998-01-01

    Much attention is now given to risks and impacts of exotic pest introductions in forest ecosystems. This concern is for good reason because, once introduced, an exotic pathogen or insect encounters little resistance in the native plant population and can produce catastrophic losses in relatively short periods of time. Most native fungal pathogens of forest trees have...

  14. Roosting habitat of Merriam's turkeys in the Black Hills, South Dakota

    Treesearch

    Mark A. Rumble

    1992-01-01

    Lack of roost habitat (trees >40 cm diameter breast height [dbh] and >18 m2/ha basal area) can limit populations of Merriam’s turkeys (Meleagris gallopavo merriami). The Black Hills region has relatively large populations of Merriam’s turkeys, yet trees >40 cm dbh are uncommon. Consequently, I studied...

  15. Tectonics of some Amazonian greenstone belts

    NASA Technical Reports Server (NTRS)

    Gibbs, A. K.

    1986-01-01

    Greenstone belts exposed amid gneisses, granitoid rocks, and less abundant granulites along the northern and eastern margins of the Amazonian Craton yield Trans-Amazonican metamorphic ages of 2.0-2.1 Ga. Early proterozoic belts in the northern region probably originated as ensimatic island arc complexes. The Archean Carajas belt in the southeastern craton probably formed in an extensional basin on older continental basement. That basement contains older Archean belts with pillow basalts and komatiites. Belts of ultramafic rocks warrant investigatijon as possible ophiolites. A discussion follows.

  16. Applications of satellite image processing to the analysis of Amazonian cultural ecology

    NASA Technical Reports Server (NTRS)

    Behrens, Clifford A.

    1991-01-01

    This paper examines the application of satellite image processing towards identifying and comparing resource exploitation among indigenous Amazonian peoples. The use of statistical and heuristic procedures for developing land cover/land use classifications from Thematic Mapper satellite imagery will be discussed along with actual results from studies of relatively small (100 - 200 people) settlements. Preliminary research indicates that analysis of satellite imagery holds great potential for measuring agricultural intensification, comparing rates of tropical deforestation, and detecting changes in resource utilization patterns over time.

  17. Dwarf mistletoe affects whole-tree water relations of Douglas fir and western larch primarily through changes in leaf to sapwood ratios.

    PubMed

    Sala, Anna; Carey, Eileen V; Callaway, Ragan M

    2001-01-01

    Dwarf mistletoes induce abnormal growth patterns and extreme changes in the biomass allocation of their hosts as well as directly parasitizing them for resources. Because biomass allocation can affect the resource use and efficiency of conifers, we studied the influences of dwarf mistletoe infection on above-ground biomass allocation of Douglas fir and western larch, and the consequences of such changes on whole-tree water use and water relations. Sap flow, tree water potentials, leaf:sapwood area ratios (A L :A S ), leaf carbon isotope ratios, and nitrogen content were measured on Douglas fir and western larch trees with various degrees of mistletoe infection during the summer of 1996 in western Montana. Heavy dwarf mistletoe infection on Douglas fir and western larch was related to significant increases in A L :A S . Correspondingly, water transport dynamics were altered in infected trees, but responses were different for the two species. Higher A L :A S ratios in heavily infected Douglas firs were offset by increases in sapwood area-based sap flux densities (Q SW ) such that leaf area-based sap flux densities (Q L ) and predawn leaf water potentials at the end of the summer did not change significantly with mistletoe infection. Small (but statistically insignificant) decreases of Q L for heavily infected Douglas firs were enough to offset increases in leaf area such that whole-tree water use was similar for uninfected and heavily infected trees. Increased A L :A S ratios of heavily infected western larch were not offset by increases of Q SW . Consequently, Q L was reduced, which corresponded with significant decreases of water potential at the end of the summer. Furthermore, mistletoe-infection-related changes in A L :A S as a function of tree size resulted in greater whole-tree water use for large infected larches than for large uninfected trees. Such changes may result in further depletion of limited soil water resources in mature infected stands late in the growing season. Foliage from infected trees of both species had lower water use efficiencies than non-infected trees. Our results demonstrate substantial changes of whole-tree processes related to mistletoe infection, and stress the importance of integrating whole-tree physiological and structural processes to fully understand the mechanisms by which pathogens suppress forest productivity.

  18. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon.

    PubMed

    Rifai, Sami W; Urquiza Muñoz, José D; Negrón-Juárez, Robinson I; Ramírez Arévalo, Fredy R; Tello-Espinoza, Rodil; Vanderwel, Mark C; Lichstein, Jeremy W; Chambers, Jeffrey Q; Bohlman, Stephanie A

    2016-10-01

    Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial dependence of observations, but also the biological differences between individuals that promote differential levels of mortality. © 2016 by the Ecological Society of America.

  19. The impact of rise of the Andes and Amazon landscape evolution on diversification of lowland terra-firme forest birds

    NASA Astrophysics Data System (ADS)

    Aleixo, A.; Wilkinson, M. J.

    2011-12-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction (the easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting ~10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, which apparently extended in series progressively eastward from Andean sources. The effects on drainage patterns are apparent from the location of axial rivers such as the Negro / Orinoco and Madeira which lie at the distal ends of major megafan ramparts at cratonic margins furthest from the Andes. Megafan extension plausibly explains the progressive extinction of the original Pebas wetland of west-central Amazonia by the present fluvial landsurfaces where upland terra-firme forest develop. The youngest landsurfaces thus appear to lie furthest from the mountains. In this scenario major drainages were also reoriented in wholesale fashion from a northward (Caribbean) outlet to a generally eastward, Atlantic Ocean outlet. More importantly, other major river courses in western-central Amazonia will have been established at progressively younger dates with distance eastward. The bird DNA data appears to confirm the role of Amazonian rivers as primary diversification barriers, and thus probably as promoters of bird speciation. We show for the first time that a general spatio-temporal pattern of diversification for terra-firme lineages in the Amazon is associated with rivers of apparently different ages ("younging-eastward"), and furthermore parallels a specific scenario of regional drainage evolution.

  20. Induction of belief decision trees from data

    NASA Astrophysics Data System (ADS)

    AbuDahab, Khalil; Xu, Dong-ling; Keane, John

    2012-09-01

    In this paper, a method for acquiring belief rule-bases by inductive inference from data is described and evaluated. Existing methods extract traditional rules inductively from data, with consequents that are believed to be either 100% true or 100% false. Belief rules can capture uncertain or incomplete knowledge using uncertain belief degrees in consequents. Instead of using singled-value consequents, each belief rule deals with a set of collectively exhaustive and mutually exclusive consequents. The proposed method extracts belief rules from data which contain uncertain or incomplete knowledge.

  1. Connecting Amazonian, Cerrado, and Atlantic Forest histories: Paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae).

    PubMed

    Capurucho, João Marcos Guimarães; Ashley, Mary V; Ribas, Camila C; Bates, John M

    2018-06-11

    Several biogeographic hypotheses have been proposed to explain connections between Amazonian and Atlantic forest biotas. These hypotheses are related to the timing of the connections and their geographic patterns. We performed a phylogeographic investigation of Tyrant-manakins (Aves: Pipridae, Neopelma/Tyranneutes) which include species inhabiting the Amazon and Atlantic forests, as well as gallery forests of the Cerrado. Using DNA sequence data, we determined phylogenetic relationships, temporal and geographic patterns of diversification, and recent intraspecific population genetic patterns, relative to the history of these biomes. We found Neopelma to be a paraphyletic genus, as N. chrysolophum is sister to Neopelma + Tyranneutes, with an estimated divergence of approximately 18 Myrs BP, within the oldest estimated divergence times of other Amazonian and Atlantic forest avian taxa. Subsequent divergences in the group occurred from Mid Miocene to Early Pliocene and involved mainly the Amazonian species, with an expansion into and subsequent speciation in the Cerrado gallery forests by N. pallescens. We found additional structure within N. chrysocephalum and N. sulphureiventer. Analysis of recent population dynamics in N. chrysocephalum, N. sulphureiventer, and N. pallescens revealed recent demographic fluctuations and restrictions to gene flow related to environmental changes since the last glacial cycle. No genetic structure was detected across the Amazon River in N. pallescens. The tyrant-manakins represent an old historical connection between the Amazon and Atlantic Forest. Copyright © 2018. Published by Elsevier Inc.

  2. Causes and consequences of unequal seedling production in forest trees: a case study in red oaks

    Treesearch

    Emily V. Moran; James S. Clark

    2012-01-01

    Inequality in reproductive success has important implications for ecological and evolutionary dynamics, but lifetime reproductive success is challenging to measure in long-lived species such as forest trees. While seed production is often used as a proxy for overall reproductive success, high mortality of seeds and the potential for trade-offs between seed number and...

  3. Logging impact in uneven-aged stands of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    John P. Dwyer

    1999-01-01

    Today, there is keen interest in using alternative silvicultural systems like individual-tree selection, group openings and shelterwood because the general public feels these systems are more acceptable than clearcutting. Consequently, due to repeated entries into forest stands and the fact that residual crop trees have to be carried for a long period of time between...

  4. Ecological impacts of energy-wood harvests: lessons from whole-tree harvesting and natural disturbance

    Treesearch

    Alaina L. Berger; Brian Palik; Anthony W. D' Amato; Shawn Fraver; John B. Bradford; Keith Nislow; David King; Robert T. Brooks

    2013-01-01

    Recent interest in using forest residues and small-diameter material for biofuels is generating a renewed focus on harvesting impacts and forest sustainability. The rich legacy of research from whole-tree harvesting studies can be examined in light of this interest. Although this research largely focused on consequences for forest productivity, in particular carbon and...

  5. Some wood of Hawaii... properties and uses of 16 commercial species

    Treesearch

    Roger G. Skolmen

    1974-01-01

    Koa is Hawaii's finest native timber tree. Unfortunately, it grows best in areas that can be converted into good grazing land, and most of the best koa forests have been cleared to develop pasture. Consequently, not much koa is left. Koa seedlings are also palatable to grazing animals, so that the number of young, vigorous koa trees is small.

  6. Seed production and cone-feeding insects of Pinus pumila on the Kamtchatka Peninsula: aspects of coexistence

    Treesearch

    Petr A. Khomentovsky; L. S. Efremova

    1991-01-01

    Insects attacking seeds and cones of trees are significant for their economic consequences as well as for the ecological role in vegetation dynamics. Currently much is known about seed and cone insects feeding on upright trees (see Roques, this volume), but almost nothing is known about cone inhabitants of prostrate pines Pinus pumila (Pall.) Rgl...

  7. Woody encroachment and its consequences on hydrological processes in the savannah

    PubMed Central

    2016-01-01

    Woody encroachment due to changes in climate or in the disturbance regimes (fire and herbivory) has been observed throughout the savannah biome over the last century with ecological, hydrological and socioeconomic consequences. We assessed changes in tree density and basal area and estimated changes in rain interception by the canopies across a 5-year period over a biomass gradient in Cerrado vegetation protected from fire. We modelled throughfall, stemflow and net rainfall on the basis of tree basal area (TBA). Tree density increased by an average annual rate of 6.7%, basal area at 5.7% and rain interception by the canopies at 0.6% of the gross rainfall. Independent of the vegetation structure, we found a robust relationship of 0.9% less rainfall reaching the ground as TBA increases by 1 m2 ha−1. Increases in tree biomass with woody encroachment may potentially result in less water available for uptake by plants and to recharge rivers and groundwater reserves. Given that water is a seasonally scarce resource in all savannahs, woody encroachment may threaten the ecosystem services related to water resources. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502378

  8. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwit, Charles; Levey, Douglas, J.; Greenberg, Cathyrn, H.

    2004-05-03

    Kwit, Charles, D.J. Levey and Cathryn H. Greenberg. 2004. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences. Oikos. 107:303-308 A n hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case bymore » generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) I lex opaca trees than under non-fruiting (male) I lex trees in temperate hardwood forest settings in South Carolina, U SA . To determine if density of Cornus and/or I lex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and I lex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and I lex background seed densities. H igher densities of I lex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.« less

  9. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests.

    PubMed

    Oberle, Brad; Ogle, Kiona; Zanne, Amy E; Woodall, Christopher W

    2018-01-01

    When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests requires predicting when snags fall as wood decay erodes mechanical resistance to breaking forces. Previous studies have pointed to common predictors, such as stem size, degree of decay and species identity, but few have assessed the relative strength of underlying mechanisms driving snag fall across biomes. Here, we analyze nearly 100,000 repeated snag observations from boreal to subtropical forests across the eastern United States to show that wood decay controls snag fall in ways that could generate previously unrecognized forest-climate feedback. Warmer locations where wood decays quickly had much faster rates of snag fall. The effect of temperature on snag fall was so strong that in a simple forest C model, anticipated warming by mid-century reduced snag C by 22%. Furthermore, species-level differences in wood decay resistance (durability) accurately predicted the timing of snag fall. Differences in half-life for standing dead trees were similar to expected differences in the service lifetimes of wooden structures built from their timber. Strong effects of temperature and wood durability imply future forests where dying trees fall and decay faster than at present, reducing terrestrial C storage and snag-dependent wildlife habitat. These results can improve the representation of forest C cycling and assist forest managers by helping predict when a dead tree may fall.

  10. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests

    PubMed Central

    Ogle, Kiona; Zanne, Amy E.; Woodall, Christopher W.

    2018-01-01

    When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests requires predicting when snags fall as wood decay erodes mechanical resistance to breaking forces. Previous studies have pointed to common predictors, such as stem size, degree of decay and species identity, but few have assessed the relative strength of underlying mechanisms driving snag fall across biomes. Here, we analyze nearly 100,000 repeated snag observations from boreal to subtropical forests across the eastern United States to show that wood decay controls snag fall in ways that could generate previously unrecognized forest-climate feedback. Warmer locations where wood decays quickly had much faster rates of snag fall. The effect of temperature on snag fall was so strong that in a simple forest C model, anticipated warming by mid-century reduced snag C by 22%. Furthermore, species-level differences in wood decay resistance (durability) accurately predicted the timing of snag fall. Differences in half-life for standing dead trees were similar to expected differences in the service lifetimes of wooden structures built from their timber. Strong effects of temperature and wood durability imply future forests where dying trees fall and decay faster than at present, reducing terrestrial C storage and snag-dependent wildlife habitat. These results can improve the representation of forest C cycling and assist forest managers by helping predict when a dead tree may fall. PMID:29742158

  11. Molecular identification of wild triatomines of the genus Rhodnius in the Bolivian Amazon: Strategy and current difficulties.

    PubMed

    Brenière, Simone Frédérique; Condori, Edwin Wily; Buitrago, Rosio; Sosa, Luis Fernando; Macedo, Catarina Lopes; Barnabé, Christian

    2017-07-01

    The Amazon region has recently been considered as endemic in Latin America. In Bolivia, the vast Amazon region is undergoing considerable human migrations and substantial anthropization of the environment, potentially renewing the danger of establishing the transmission of Chagas disease. The cases of human oral contamination occurring in 2010 in the town of Guayaramerín provided reasons to intensify research. As a result, the goal of this study was to characterize the species of sylvatic triatomines circulating in the surroundings of Yucumo (Beni, Bolivia), a small Amazonian city at the foot of the Andes between the capital (La Paz) and Trinidad the largest city of Beni. The triatomine captures were performed with mice-baited adhesive traps mostly settled in palm trees in forest fragments and pastures. Species were identified by morphological observation, dissection of genitalia, and sequencing of three mitochondrial gene fragments and one nuclear fragment. Molecular analysis was based on (i) the identity score of the haplotypes with GenBank sequences through the BLAST algorithm and (ii) construction of phylogenetic trees. Thirty-four triatomines, all belonging to the Rhodnius genus, of which two were adult males, were captured in palm trees in forest fragments and pastures (overall infestation rate, 12.3%). The morphology of the phallic structures in the two males confirmed the R. stali species. For the other specimens, after molecular sequencing, only one specimen was identified with confidence as belonging to Rhodnius robustus, the others belonged to one of the species of the Rhodnius pictipes complex, probably Rhodnius stali. The two species, R. robustus and R. stali, had previously been reported in the Alto Beni region (edge of the Amazon region), but not yet in the Beni department situated in the Amazon region. Furthermore, the difficulties of molecular characterization of closely related species within the three complexes of the genus Rhodnius are highlighted and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. RCCM2-BATS model over tropical South America: Applications to tropical deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahmann, A.N.; Dickinson, R.E.

    A multiyear simulation of the global climate uses a revised version of the National Center for Atmospheric Research (NCAR) Community Climate Model Version 2 (CCM2) coupled to the Biosphere-Atmosphere Transfer Scheme (BATS). It is compared with global and rain gauge precipitation climatologies to evaluate precipitation fields and European Centre for Medium-Range Forecasts analyses to evaluate the atmospheric circulation. The near-surface climate is compared with data from Amazonian field campaigns. The model simulation of the South American climate agrees closely with the observational record and is much improved from past simulations with previous versions of the NCAR Community Climate model overmore » this portion of the Tropics. The model is then used to study the local and regional response to tropical deforestation over Amazonia. In addition to the standard deforestation forcing, consisting mainly of increased albedo and decreased roughness length, two additional sensitivity experiments were conducted to assess the individual contributions from these forcings to the deforestation changes. The standard deforestation simulation shows slight increases in annually averaged surface temperature (+1{degrees}C) and reductions in annually averaged precipitation and evaporation (-363 and -149 mm yr{sup -1}, respectively). As expected, increases in surface albedo over Amazonia produce a reduction in net downward solar radiation at the surface and consequently a reduction in net surface radiation and surface latent heat flux. The roughness decrease, on the other hand, reduces the surface latent heat fluxes through decreases in the surface drag coefficient. The regional changes in moisture convergence and precipitation during the Amazonian wet season display a shift in the area of maximum precipitation rather than an overall decrease over the deforested area. 45 refs., 16 figs., 4 tabs.« less

  13. Historical and Present Day Mercury Contamination From Gold Mining in Three Feeding Guilds of Bats From the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Divoll, T.

    2014-12-01

    Miners in many countries use mercury as an amalgam to separate gold from river sediments. In the last twenty years the price of gold has risen and the number of small-scale, artisanal gold mining operations in the Amazon basin have also increased. The influx of mercury into natural river systems has detrimental consequences for the surrounding ecosystem and for organisms, particularly those at higher trophic levels. Toxic mercury levels have been shown to impair reproductive, neurological and behavioral functioning of organisms. I used bats (Chiroptera) as a mammalian model system to study mercury contamination and accumulation due to gold mining from field caught and museum collection specimens in Amazonian Perú and showed that: (1) Total mercury concentrations in Amazonian bat species have increased over time since the 1920's; (2) Bat species from sites with current active mining have higher concentrations of mercury than non-mining sites, with some species having levels exceeding those considered toxic for mammals; (3) Higher trophic levels of bats (piscivores and insectivores) bioaccumulate more mercury than bats of lower trophic levels (frugivores); (4) Bats located in present day uncontaminated sites have the same mercury levels as bats collected in the 1920's from the Amazon basin. The variety of bat feeding guilds allowed for a comparison of how mercury accumulation is affected by diet within one taxonomic order. The novel use of museum specimens allowed for a look back into the historical timeline of mercury contamination in the Amazon basin. Bats represent a new and exciting study system since, like humans, they are mammals and should therefore show similar neurochemical and behavioral responses to this toxic element.

  14. The applicability of ordinary least squares to consistently short distances between taxa in phylogenetic tree construction and the normal distribution test consequences.

    PubMed

    Roux, C Z

    2009-05-01

    Short phylogenetic distances between taxa occur, for example, in studies on ribosomal RNA-genes with slow substitution rates. For consistently short distances, it is proved that in the completely singular limit of the covariance matrix ordinary least squares (OLS) estimates are minimum variance or best linear unbiased (BLU) estimates of phylogenetic tree branch lengths. Although OLS estimates are in this situation equal to generalized least squares (GLS) estimates, the GLS chi-square likelihood ratio test will be inapplicable as it is associated with zero degrees of freedom. Consequently, an OLS normal distribution test or an analogous bootstrap approach will provide optimal branch length tests of significance for consistently short phylogenetic distances. As the asymptotic covariances between branch lengths will be equal to zero, it follows that the product rule can be used in tree evaluation to calculate an approximate simultaneous confidence probability that all interior branches are positive.

  15. Production and analysis of recombinant tree nut allergens.

    PubMed

    Willison, Leanna N; Sathe, Shridhar K; Roux, Kenneth H

    2014-03-01

    Allergic reactions to tree nuts are a growing global concern as the number of affected individuals continues to rise. Unlike some food allergies, tree nuts can cause severe reactions that persist throughout life. The tree nuts discussed in this review include those most commonly responsible for allergic reactions: cashew, almond, hazelnut, walnut, pecan, Brazil nut, pistachio, and chestnut. The native allergenic proteins derived from tree nuts are frequently difficult to isolate and purify and may not be adequately represented in aqueous nut protein extracts. Consequently, defined recombinant allergens have become useful reagents in a variety of immunoassays aimed at the diagnosis of tree nut allergy, assessing cross-reactivity between various nuts and other seeds, mapping of IgE binding epitopes, and analyzing the effects of the food matrix, food processing, and gastric digestion on allergenicity. This review describes the approaches that can be used for the production of recombinant tree nut allergens and addresses key issues associated with their production and downstream applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. First evidences of Amazonian wildlife feeding on petroleum-contaminated soils: A new exposure route to petrogenic compounds?

    PubMed

    Orta-Martínez, Martí; Rosell-Melé, Antoni; Cartró-Sabaté, Mar; O'Callaghan-Gordo, Cristina; Moraleda-Cibrián, Núria; Mayor, Pedro

    2018-01-01

    Videos recorded with infrared camera traps placed in petroleum contaminated areas of the Peruvian Amazon have shown that four wildlife species, the most important for indigenous peoples' diet (lowland tapir, paca, red-brocket deer and collared peccary), consume oil-contaminated soils and water. Further research is needed to clarify whether Amazonian wildlife's geophagy can be a route of exposure to petrogenic contamination for populations living in the vicinity of oil extraction areas and relying on subsistence hunting. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The participation of singlet oxygen in a photocitotoxicity of extract from amazon plant to cancer cells

    NASA Astrophysics Data System (ADS)

    Tcibulnikova, Anna V.; Degterev, Igor A.; Bryukhanov, Valery V.; Roberto, Mantuanelly M.; Campos Pereira, F. D.; Marin-Morales, M. A.; Slezhkin, Vasily A.; Samusev, Ilya G.

    2018-01-01

    We have been searching for new photosensitizers (PS) for photodynamic therapy (PDT) of cancer based on extracts from Amazonian plants since 2009. In this paper, we demonstrate that, under certain conditions, the extract from fruits of the Amazonian palm Euterpe oleraceae (popular name Açaí) can serve as a PS for PDT treatment of murine breast cancer cells (4T1 cell line). We have been first to show directly that the photodynamic effect of plant PS is due to singlet oxygen.

  18. New species of Microcentrum Scudder, 1862 (Orthoptera: Tettigonioidea: Phaneropteridae) from Amazon rainforest.

    PubMed

    Da Silva Sovano, Rafael S; Cadena-Castañeda, Oscar J

    2015-03-26

    A regional study is performed for the Amazonian species of the genus Microcentrum Scudder, 1862, its proposed Microcentrum punctifrons Brunner von Wattenwyl, 1891 as nomen dubium n. stat. and two new species are described: Microcentrum amacayacu Cadena-Casteñada, Sovano n. sp. and Microcentrum xavieri Sovano, Cadena-Casteñada n. sp. the Colombian and Brazilian Amazon, respectively. A list and a key to the Amazonian species are also provided, along with a discussion on their distribution, according to endemism areas established to Amazon rainforest.

  19. Wrinkle ridges in the floor material of Kasei Valles, Mars: Nature and origin

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.; Craddock, Robert A.

    1991-01-01

    Wrinkle ridges on Mars occur almost exclusively in smooth plains material referred to as ridged plains. One of the largest contiguous units of ridged plains occurs on Lunae Planum on the eastern flank of the Tharsis rise. The eastern, western, and northern margins of the ridged plains of Lunae Planum suffered extensive erosion in early Amazonian channel-forming events. The most dramatic example of erosion in early Amazonian plains is in Kasei Valles. The nature an origin of the wrinkle ridges in the floor material of Kasei Valles are discussed.

  20. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    NASA Astrophysics Data System (ADS)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  1. On the relationship between boreal forest browning and tree mortality: insights from Alaska

    NASA Astrophysics Data System (ADS)

    Rogers, B. M.; Goetz, S. J.

    2015-12-01

    Long-term satellite measurements of vegetation productivity in high-latitude environments have revealed profound and widespread responses to climate warming. Although warmer and longer summers are causing the Arctic to "green", many regions of boreal forest are showing the opposite response, particularly since the mid 1990s. This "browning" phenomenon was generally unexpected at the time of discovery, is not captured by global models, and may have profound consequences for the boreal biome. A number of studies have linked satellite-based browning trends to tree productivity through tree rings. However, our understanding of the environmental controls and ecosystem consequences of browning remains remarkably limited. Here we examine to what extent browning patterns are related to a fundamental demographic process: tree mortality. We focus on a long-term inventory database in Alaska to characterize mortality events and trends from 1994 to 2014. These patterns were related to vegetation productivity indices from MODIS and the AVHRR-based GIMMS3g data set. We explore three central hypotheses: (1) mortality events are likely to be preceded by 5-10 year browning trends ("press stress"), (2) mortality events are likely to be preceded by distinct pulses of low productivity ("pulse stress"), and (3) long-term trends in mortality are related to long-term browning. Within our study region, which encompasses eastern Alaskan from the Pacific coastal mountains up through the interior, we find strong evidence for the first two hypotheses. The third is weakly supported, which may be a consequence of the episodic nature of mortality in the region. However, preliminary analyses in the southern Canadian boreal reveal a markedly stronger relationship between long-term mortality and browning. Taken together, our study suggests a robust correlation between satellite-based metrics of productivity and forest demography; one that has consequences for forest composition, carbon stocks, and early signs of a biome shift in boreal forests.

  2. Decay fungi associated with oaks and other hardwoods in the western United States

    Treesearch

    Jessie A. Glaeser; Kevin T. Smith

    2010-01-01

    An assessment of the presence and extent of the wood decay process should be part of any hazard tree analysis. Identification of the fungi responsible for decay improves both the prediction of the consequences of wood decay and the prescription of management options including tree pruning or removal. Until the outbreak of Sudden Oak Death (SOD), foresters in the...

  3. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon.

    PubMed

    Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M

    2005-07-01

    Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.

  4. Plant Ontogeny, Spatial Distance, and Soil Type Influence Patterns of Relatedness in a Common Amazonian Tree

    PubMed Central

    Barbosa, Carlos Eduardo A.; Misiewicz, Tracy M.; Fine, Paul V. A.; Costa, Flávia R. C.

    2013-01-01

    The formation of spatial genetic structure (SGS) may originate from different patterns of seed deposition in the landscape, and is mostly determined by seed dispersal limitation. After dispersal, mechanisms such as filtering by environmental factors or attack by herbivores/pathogens throughout plant development stages, and potentially either disrupt or intensify SGS patterns. We investigated how the genotype of Protium subserratum (Burseraceae), a common tree species in the Ducke Reserve, Brazil, is distributed across the landscape. We used seven microsatellite markers to assess the SGS among plants at different life stages and in different environments. By quantifying the patterns of relatedness among plants of different sizes, we inferred the ontogenetic stage in which SGS changes occurred, and compared these effects across soil types. Relatedness among seedlings decreased when distance between seedlings increased, especially for the youngest seedlings. However, this trend was not continued by older plants, as relatedness values were higher among neighboring individuals of the juvenile and adult size class. Contrasting relatedness patterns between seedlings and larger individuals suggests a trade-off between the negative effects of being near closely-related adults (e.g. due to herbivore and pathogen attack) and the advantage of being in a site favorable to establishment. We also found that soil texture strongly influenced density-dependence patterns, as young seedlings in clay soils were more related to each other than were seedlings in bottomland sandy soils, suggesting that the mechanisms that create and maintain patterns of SGS within a population may interact with environmental heterogeneity. PMID:23667502

  5. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru.

    PubMed

    Bahar, Nur H A; Ishida, F Yoko; Weerasinghe, Lasantha K; Guerrieri, Rossella; O'Sullivan, Odhran S; Bloomfield, Keith J; Asner, Gregory P; Martin, Roberta E; Lloyd, Jon; Malhi, Yadvinder; Phillips, Oliver L; Meir, Patrick; Salinas, Norma; Cosio, Eric G; Domingues, Tomas F; Quesada, Carlos A; Sinca, Felipe; Escudero Vega, Alberto; Zuloaga Ccorimanya, Paola P; Del Aguila-Pasquel, Jhon; Quispe Huaypar, Katherine; Cuba Torres, Israel; Butrón Loayza, Rosalbina; Pelaez Tapia, Yulina; Huaman Ovalle, Judit; Long, Benedict M; Evans, John R; Atkin, Owen K

    2017-05-01

    We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (V cmax ), and the maximum rate of electron transport (J max )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (M a , N a and P a , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO 2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf P a were key explanatory factors for models of area-based V cmax and J max but did not account for variations in photosynthetic N-use efficiency. At any given N a and P a , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Large-scale phylogeography of the disjunct Neotropical tree species Schizolobium parahyba (Fabaceae-Caesalpinioideae).

    PubMed

    Turchetto-Zolet, Andreia C; Cruz, Fernanda; Vendramin, Giovanni G; Simon, Marcelo F; Salgueiro, Fabiano; Margis-Pinheiro, Marcia; Margis, Rogerio

    2012-10-01

    Neotropical rainforests exhibit high levels of endemism and diversity. Although the evolutionary genetics of plant diversification has garnered increased interest, phylogeographic studies of widely distributed species remain scarce. Here we describe chloroplast and nuclear variation patterns in Schizolobium parahyba (Fabaceae), a widespread tree in Neotropical rainforests that harbor two varieties with a disjunct distribution. Chloroplast and nuclear sequence analyses yielded 21 and 4 haplotypes, respectively. Two genetic diversity centers that correlate with the two known varieties were identified: the Southeastern Atlantic forest and the Amazonian basin. In contrast, the populations from southern and northeastern Atlantic forests and Andean-Central American forests exhibited low levels of genetic diversity and divergent haplotypes, likely related to historical processes that impact the flora and fauna in these regions, such as a founder's effect after dispersion and demographic expansion. Phylogeographic and demographic patterns suggest that episodes of genetic isolation and dispersal events have shaped the evolutionary history for this species, and different patterns have guided the evolution of S. parahyba. Moreover, the results of this study suggest that the dry corridor formed by Cerrado and Caatinga ecoregions and the Andean uplift acted as barriers to this species' gene flow, a picture that may be generalized to most of the plant biodiversity tropical woodlands and forests. These results also reinforce the importance of evaluating multiple genetic markers for a more comprehensive understanding of population structure and history. Our results provide insight into the conservation efforts and ongoing work on the genetics of population divergence and speciation in these Neotropical rainforests. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests.

    PubMed

    Ibáñez, Beatriz; Gómez-Aparicio, Lorena; Stoll, Peter; Ávila, José M; Pérez-Ramos, Ignacio M; Marañón, Teodoro

    2015-01-01

    In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.

  8. Variation across mitochondrial gene trees provides evidence for systematic error: How much gene tree variation is biological?

    PubMed

    Richards, Emilie J; Brown, Jeremy M; Barley, Anthony J; Chong, Rebecca A; Thomson, Robert C

    2018-02-19

    The use of large genomic datasets in phylogenetics has highlighted extensive topological variation across genes. Much of this discordance is assumed to result from biological processes. However, variation among gene trees can also be a consequence of systematic error driven by poor model fit, and the relative importance of biological versus methodological factors in explaining gene tree variation is a major unresolved question. Using mitochondrial genomes to control for biological causes of gene tree variation, we estimate the extent of gene tree discordance driven by systematic error and employ posterior prediction to highlight the role of model fit in producing this discordance. We find that the amount of discordance among mitochondrial gene trees is similar to the amount of discordance found in other studies that assume only biological causes of variation. This similarity suggests that the role of systematic error in generating gene tree variation is underappreciated and critical evaluation of fit between assumed models and the data used for inference is important for the resolution of unresolved phylogenetic questions.

  9. Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference.

    PubMed

    Chernomor, Olga; Minh, Bui Quang; von Haeseler, Arndt

    2015-12-01

    In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original "full" terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference.

  10. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  11. Relation of nickel concentrations in tree rings to groundwater contamination

    USGS Publications Warehouse

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-01-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  12. Using a GCM analogue model to investigate the potential for Amazonian forest dieback

    NASA Astrophysics Data System (ADS)

    Huntingford, C.; Harris, P. P.; Gedney, N.; Cox, P. M.; Betts, R. A.; Marengo, J. A.; Gash, J. H. C.

    A combined GCM analogue model and GCM land surface representation is used to investigate the influences of climatology and land surface parameterisation on modelled Amazonian vegetation change. This modelling structure (called IMOGEN) captures the main features of the changes in surface climate as estimated by a GCM with enhanced atmospheric greenhouse gas concentrations. Advantage is taken of IMOGEN's computational speed which allows multiple simulations to be carried out to assess the robustness of the GCM results. The timing of forest dieback is found to be sensitive to the initial ``pre-industrial'' climate, as well as uncertainties in the representation of land-atmosphere CO2 exchange. Changing from a Q10 form for plant dark and maintanence respiration (as used in the coupled GCM runs) to a respiration proportional to maximum photosynthesis, reduces the biomass lost from Amazonia in the 21st century. Replacing the GCM control climate (which has about 25% too little rain in the annual mean over Amazonia) with an observed climatology increases the CO2 concentration at which rainfall drops to critical levels, and thereby further delays the dieback. On the other hand, calibration of the canopy photosynthesis model against Amazonian flux data tends to lead to earlier forest dieback. Further advances are required in both GCM rainfall simulation and land-surface process representation before a clearer picture will emerge on the timing of possible Amazonian forest dieback. However, it seems likely that these advances will overall lead to projections of later forest dieback as GCM control climates become more realistic.

  13. Physical Growth of the Shuar: Height, Weight, and BMI References for an Indigenous Amazonian Population

    PubMed Central

    URLACHER, SAMUEL S.; BLACKWELL, AARON D.; LIEBERT, MELISSA A.; MADIMENOS, FELICIA C.; CEPON-ROBINS, TARA J.; GILDNER, THERESA E.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.

    2015-01-01

    Objectives Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Methods Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S. CDC and multinational WHO growth references. Results The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Conclusions Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. PMID:26126793

  14. The Role of Competition in Structuring Primate Communities under Different Productivity Regimes in the Amazon

    PubMed Central

    Rocha, Juliana Monteiro de Almeida; Pinto, Míriam Plaza; Boubli, Jean Philippe; Grelle, Carlos Eduardo Viveiros

    2015-01-01

    The factors responsible for the formation of Amazonian primate communities are not well understood. Here we investigated the influence of interspecific competition in the assembly of these communities, specifically whether they follow an assembly rule known as "favored states". According to this rule, interspecific competition influences final species composition, resulting in functional groups that are equally represented in the community. We compiled presence-absence data for primate species at 39 Amazonian sites in Brazil, contrasting two regions with distinct productivity regimes: the eutrophic Juruá River basin and the oligotrophic Negro River basin. We tested two hypotheses: that interspecific competition is a mechanism that influences the structure of Amazonian primate communities, and that competition has had a greater influence on the structure of primate communities in regions with low productivity, where resources are more limited. We used null models to test the statistical significance of the results, and found a non-random pattern compatible with the favored states rule in the two regions. Our findings suggest that interspecific competition is an important force driving primate community assembly regardless of productivity regimes. PMID:26696089

  15. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential

    NASA Astrophysics Data System (ADS)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri

    2016-06-01

    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  16. Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B

    NASA Technical Reports Server (NTRS)

    Silva Dias, Maria A. F.; Ferreira, Rosana N.

    1992-01-01

    A linear nonhydrostatic spectral model is run with the basic state, or large scale, vertical profiles of temperature and wind observed prior to convective development along the northern coast of South America during the GTE/ABLE 2B. The model produces unstable modes with mesoscale wavelength and propagation speed comparable to observed Amazonian squall lines. Several tests with different vertical profiles of low-level winds lead to the conclusion that a shallow and/or weak low-level jet either does not produce a scale selection or, if it does, the selected mode is stationary, indicating the absence of a propagating disturbance. A 700-mbar jet of 13 m/s, with a 600-mbar wind speed greater or equal to 10 m/s, is enough to produce unstable modes with propagating features resembling those of observed Amazonian squall lines. However, a deep layer of moderate winds (about 10 m/s) may produce similar results even in the absence of a low-level wind maximum. The implications in terms of short-term weather forecasting are discussed.

  17. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    USGS Publications Warehouse

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  18. Woody encroachment and its consequences on hydrological processes in the savannah.

    PubMed

    Honda, Eliane A; Durigan, Giselda

    2016-09-19

    Woody encroachment due to changes in climate or in the disturbance regimes (fire and herbivory) has been observed throughout the savannah biome over the last century with ecological, hydrological and socioeconomic consequences. We assessed changes in tree density and basal area and estimated changes in rain interception by the canopies across a 5-year period over a biomass gradient in Cerrado vegetation protected from fire. We modelled throughfall, stemflow and net rainfall on the basis of tree basal area (TBA). Tree density increased by an average annual rate of 6.7%, basal area at 5.7% and rain interception by the canopies at 0.6% of the gross rainfall. Independent of the vegetation structure, we found a robust relationship of 0.9% less rainfall reaching the ground as TBA increases by 1 m(2) ha(-1) Increases in tree biomass with woody encroachment may potentially result in less water available for uptake by plants and to recharge rivers and groundwater reserves. Given that water is a seasonally scarce resource in all savannahs, woody encroachment may threaten the ecosystem services related to water resources.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  19. Treating leishmaniasis in Amazonia: A review of ethnomedicinal concepts and pharmaco-chemical analysis of traditional treatments to inspire modern phytotherapies.

    PubMed

    Odonne, Guillaume; Houël, Emeline; Bourdy, Geneviève; Stien, Didier

    2017-03-06

    Cutaneous and mucocutaneous leishmaniasis are neglected tropical diseases that occur in all intertropical regions of the world. Amazonian populations have developed an abundant knowledge of the disease and its remedies. Therefore, we undertook to review traditional antileishmanial plants in Amazonia and have developed new tools to analyze this somewhat dispersed information. A literature review of traditional remedies for cutaneous/mucocutaneous leishmaniasis in the Amazon was conducted and the data obtained was used to calculate distribution indexes designed to highlight the most relevant uses in Amazonia. The cultural distribution index represents the distribution rate of a given taxon among different cultural groups and was calculated as the ratio of the number of groups using the taxon to the total number of groups cited. The geographical distribution index allowed us to quantify spatial distribution of a taxon's uses in Amazonia and was calculated geometrically by measuring the average distance between the points where uses have been reported and the barycenter of those points. The general distribution index was defined as an arithmetic combination of the previous two and provides information on both cultural and spatial criteria. 475 use reports, concerning 291 botanical species belonging to 83 families have been gathered depicted from 29 sources. Uses concern 34 cultural groups. While the use of some taxa appears to be Pan-Amazonian, some others are clearly restricted to small geographical regions. Particular attention has been paid to the recipes and beliefs surrounding treatments. Topical application of the remedies dominated the other means of administration and this deserves particular attention as the main treatments against Neotropical leishmaniasis are painful systemic injections. The data set was analyzed using the previously defined distribution indexes and the most relevant taxa were further discussed from a phytochemical and pharmacological point of view. The Amazonian biodiversity and cultural heritage host a fantastic amount of data whose systematic investigation should allow a better large-scale understanding of the dynamics of traditional therapies and the consequent discovery of therapeutic solutions for neglected diseases. Distribution indices are indeed powerful tools for emphasizing the most relevant treatments against a given disease and should be very useful in the meta-analysis of other regional pharmacopeia. This focus on renowned remedies that have not yet benefitted from extended laboratory studies, could stimulate future research on new treatments of natural origin for leishmaniasis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Parasitism of the isopod Artystone trysibia in the fish Chaetostoma dermorhynchum from the Tena River (Amazonian region, Ecuador).

    PubMed

    Junoy, Juan

    2016-01-01

    The isopod Artystone trysibia Schioedte, 1866 is described by using a collection of specimens that were found parasitizing loricariid fish Chaetostoma dermorhynchum Boulenger, 1887 in the Tena River (Napo province, Ecuador, Amazonian region). Additionally to freshly collected specimens, complementary data of the parasite was obtained from preserved fishes at Ecuadorian museums. This is the first record of A. trysibia in Ecuador, and the most upstream location for the species. The new host fish, Chaetostoma dermorhynchum, is used locally as food. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cross-system comparisons of soil nitrogen transformations and nitrous oxide flux in tropical forest ecosystems

    NASA Technical Reports Server (NTRS)

    Matson, Pamela A.; Vitousek, Peter M.

    1987-01-01

    Soil nitrogen transformations and nitrous oxide flux across the soil-air interface have been measured in a variety of tropical forest sites and correlated with patterns of nitrogen circulation. Nitrogen mineralizaton and nitrification potentials were found to be high in the relatively fertile Costa Rica sites and the Amazonian oxisol/ultisols, intermediate in Amazonian white sand soils, and low in the Hawaiian montane sites. Nitrous oxide fluxes ranged from 0 to 6.2 ng/sq cm per h, and the mean flux per site was shown to be highly correlated with mean nitrogen mineralization.

  2. A new cryptic species and review of the east-Andean leaf chafer genus Mesomerodon Ohaus, 1905 (Coleoptera, Scarabaeidae, Rutelinae).

    PubMed

    Seidel, Matthias; Jameson, Mary L; Stone, Rachel L

    2017-01-01

    The Neotropical scarab beetle genus Mesomerodon Ohaus (Scarabaeidae: Rutelinae: Rutelini) is distributed in the western (lowland) Amazonian region from Colombia to Bolivia. Based on our research, the genus includes three species including a new cryptic species from Ecuador. We use niche modeling to predict potential suitable habitat and identify environmental factors associated with the distribution of Mesomerodon species. We characterize the genus, provide a key to species, diagnose each species, describe a new species, provide spatial and temporal distributions, and discuss distributions of the species in relation to Amazonian landscape biodiversity.

  3. Comments on "Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations" [J. Acoust. Soc. Am. 114, 66-69 (2003)].

    PubMed

    Sousa-Lima, Renata S

    2006-06-01

    This letter concerns the paper "Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations" [Nowacek et al., J. Acoust. Soc. Am. 114, 66-69 (2003)]. The purpose here is to correct the fundamental frequency range and information on intraindividual variation in the vocalizations of Amazonian manatees reported by Nowacek et al. (2003) in citing the paper "Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia)" [Sousa-Lima et al., Anim. Behav. 63, 301-310 (2002)].

  4. Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times

    NASA Astrophysics Data System (ADS)

    Silva-Romo, Gilberto; Mendoza-Rosales, Claudia Cristina; Campos-Madrigal, Emiliano; Morales-Yáñez, Axél; de la Torre-González, Alam Israel; Nápoles-Valenzuela, Juan Ivan

    2018-04-01

    In the northeastern Mixteco terrane of southern Mexico, in the Ixcaquixtla-Atzumba region, the recycling of Amazonian detrital zircons records the paleogeography during the Mesozoic period in the context of the breakup of Pangea, a phenomenon that disarticulated the Sanozama-La Mora paleo-river. The clastic units of southern Mexico in the Ayuquila, Otlaltepec and Zapotitlán Mesozoic basins, as well as in the Atzumba Cenozoic basin, are characterized by detrital zircon contents with ages specific to the Amazonian craton, ranging between 3040 and 1278 Ma. The presence of zircons of Amazonian affinity suggests a provenance by recycling from carrier units such as the La Mora Formation or the Ayú Complex. In the area, the Ayú and Acatlán complexes form the Cosoltepec block, a paleogeographic element that during Early Cretaceous time acted as the divide between the slopes of the paleo-Gulf of Mexico and the paleo-Pacific Ocean. The sedimentological characteristics of the Jurassic-Cenozoic clastic successions in the Ixcaquixtla-Atzumba region denote relatively short transport in braided fluvial systems and alluvial fans. In this way, several basins are recognized around the Cosoltepec block. At the southeastern edge of the Cosoltepec block, the Ayuquila and Tecomazúchil formations accumulated in the Ayuquila continental basin on the paleo-Pacific Ocean slope. On the other hand, within the paleo-Gulf of Mexico slope, in the Otlaltepec continental basin, the Piedra Hueca and the Otlaltepec formations accumulated. The upper member of the Santa Lucía Formation accumulated in a transitional environment on the southwestern shoulder of the Zapotitlán basin, as well as on the paleo-Gulf of Mexico slope. In the Ayuquila basin, a marine transgression is recognized that advanced from south to north during the Late Jurassic. At the northeastern edge of the Cosoltepec block, we propose that the Santa Lucía formation attests to a transgression from the paleo-Gulf of Mexico during the Early Cretaceous. Thus, the Cosoltepec block flood occurred during the Albian-Cenomanian, as recognized by the Cipiapa Limestone accumulation. The subsequent uplift of the region and its incorporation into the continental slope is attested by the Atzumba Formation, which offers further evidence of the content of Amazonian detrital zircons recycled from the Ayú Complex. The Atzumba Formation accumulated as alluvial fans during the Paleogene at the hanging wall of the Chazumba fault, which displaced the Cosoltepec block. That is, the detrital zircons in the clastic successions of the Ixcaquixtla-Atzumba region bear indirect testimony to the origin and Amazonian affinity of the Ayú Complex and/or other lithodemes of the Acatlán Complex.

  5. Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.

    2017-02-01

    Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.

  6. Climate threats on growth of rear-edge European beech peripheral populations in Spain.

    PubMed

    Dorado-Liñán, I; Akhmetzyanov, L; Menzel, A

    2017-12-01

    European beech (Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.

  7. Climate threats on growth of rear-edge European beech peripheral populations in Spain

    NASA Astrophysics Data System (ADS)

    Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.

    2017-12-01

    European beech ( Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.

  8. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    USGS Publications Warehouse

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  9. Climate dependency of tree growth suppressed by acid deposition effects on soils in northwest Russia.

    PubMed

    Lawrence, Gregory B; Lapenis, Andrei G; Berggren, Dan; Aparin, Boris F; Smith, Kevin T; Shortle, Walter C; Bailey, Scott W; Varlyguin, Dmitry L; Babikov, Boris

    2005-04-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition.

  10. Nitrogen nutrition of poplar trees.

    PubMed

    Rennenberg, H; Wildhagen, H; Ehlting, B

    2010-03-01

    Many forest ecosystems have evolved at sites with growth-limiting nitrogen (N) availability, low N input from external sources and high ecosystem internal cycling of N. By contrast, many poplar species are frequent constituents of floodplain forests where they are exposed to a significant ecosystem external supply of N, mainly nitrate, in the moving water table. Therefore, nitrate is much more important for N nutrition of these poplar species than for many other tree species. We summarise current knowledge of nitrate uptake and its regulation by tree internal signals, as well as acquisition of ammonium and organic N from the soil. Unlike herbaceous plants, N nutrition of trees is sustained by seasonal, tree internal cycling. Recent advances in the understanding of seasonal storage and mobilisation in poplar bark and regulation of these processes by temperature and daylength are addressed. To explore consequences of global climate change on N nutrition of poplar trees, responses of N uptake and metabolism to increased atmospheric CO(2) and O(3) concentrations, increased air and soil temperatures, drought and salt stress are highlighted.

  11. Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon

    PubMed Central

    Brando, Paulo M.; Coe, Michael T.; DeFries, Ruth; Azevedo, Andrea A.

    2013-01-01

    The papers in this special issue address a major challenge facing our society: feeding a population that is simultaneously growing and increasing its per capita food consumption, while preventing widespread ecological and social impoverishment in the tropics. By focusing mostly on the Amazon's most dynamic agricultural frontier, Mato Grosso, they collectively clarify some key elements of achieving more sustainable agriculture. First, stakeholders in commodity-driven agricultural Amazonian frontiers respond rapidly to multiple forces, including global markets, international pressures for sustainably produced commodities and national-, state- and municipality-level policies. These forces can encourage or discourage deforestation rate changes within a short time-period. Second, agricultural frontiers are linked systems, land-use change is linked with regional climate, forest fires, water quality and stream discharge, which in turn are linked with the well-being of human populations. Thus, land-use practices at the farm level have ecological and social repercussions far removed from it. Third, policies need to consider the full socio-economic system to identify the efficacy and consequences of possible land management strategies. Monitoring to devise suitable management approaches depends not only on tracking land-use change, but also on monitoring the regional ecological and social consequences. Mato Grosso's achievements in reducing deforestation are impressive, yet they are also fragile. The ecological and social consequences and the successes and failures of management in this region can serve as an example of possible trajectories for other commodity-driven tropical agricultural frontiers. PMID:23610163

  12. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    PubMed

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  13. Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference

    PubMed Central

    Minh, Bui Quang; von Haeseler, Arndt

    2015-01-01

    Abstract In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original “full” terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference. PMID:26448206

  14. Stratigraphical evidence of late Amazonian periglaciation and glaciation in the Astapus Colles region of Mars

    NASA Astrophysics Data System (ADS)

    Soare, Richard J.; Osinski, Gordon R.

    2009-07-01

    Recent modeling of the meteorological conditions during and following times of high obliquity suggests that an icy mantle could have been emplaced in western Utopia Planitia by atmospheric deposition during the late Amazonian period [Costard, F.M., Forget, F., Madeleine, J.B., Soare, R.J., Kargel, J.S., 2008. Lunar Planet. Sci. 39. Abstract 1274; Madeleine, B., Forget, F., Head, J.W., Levrard, B., Montmessin, F., 2007. Lunar Planet. Sci. 38. Abstract 1778]. Astapus Colles (ABa) is a late Amazonian geological unit - located in this hypothesized area of accumulation - that comprises an icy mantle tens of meters thick [Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888]. For the most part, this unit drapes the early Amazonian Vastitas Borealis interior unit (ABvi); to a lesser degree it overlies the early Amazonian Vastitas Borealis marginal unit (ABvm) and the early to late Hesperian UP plains unit HBu2 [Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888]. Landscapes possibly modified by late-Amazonian periglacial processes [Costard, F.M., Kargel, J.S., 1995. Icarus 114, 93-112; McBride, S.A., Allen, C.C., Bell, M.S., 2005. Lunar Planet. Sci. 36. Abstract 1090; Morgenstern, A., Hauber, E., Reiss, D., van Gasselt, S., Grosse, G., Schirrmeister, L., 2007. J. Geophys. Res. 112, doi:10.1029/2006JE002869. E06010; Seibert, N.M., Kargel, J.S., 2001. Geophys. Res. Lett. 28, 899-902; Soare, R.J., Kargel, J.S., Osinski, G.R., Costard, F., 2007. Icarus 191, 95-112; Soare, R.J., Osinski, G.R., Roehm, C.L., 2008. Earth Planet. Sci. Lett. 272, 382-393] and glacial processes [Milliken, R.E., Mustard, J.F., Goldsby, D.L., 2003. J. Geophys. Res. 108 (E6), doi:10.1029/2002JE002005. 5057; Mustard, J.F., Cooper, C.D., Rifkin, M.K., 2001. Nature 412, 411-414; Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888] have been reported within the region. Researchers have assumed that the periglacial and glacial landscapes occur within the same geological unit, the ABa [i.e., Morgenstern, A., Hauber, E., Reiss, D., van Gasselt, S., Grosse, G., Schirrmeister, L., 2007. J. Geophys. Res. 112; doi:10.1029/2006JE002869. E06010; Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888]. In this study we use HiRISE (High Resolution Image Science Experiment, Mars Reconnaissance Orbiter) imagery to identify the stratigraphical separation of the two landscapes and show that periglacial landscape modification has occurred in the geological units that underlie the ABa, not in the ABa itself. Moreover, we suggest that the periglacial landscape extends well beyond the perimeter of the ABa and could be the product of "wet" cold-climate processes. These processes involve freeze-thaw cycles and intermittently stable liquid-water at or near the surface. By contrast, we propose that the ABa is a very recent late-Amazonian geological unit formed principally by "dry" cold-climate processes. These processes comprise accumulation (by atmospheric deposition) and ablation (by sublimation).

  15. Invasive plants transform the three-dimensional structure of rain forests

    PubMed Central

    Asner, Gregory P.; Hughes, R. Flint; Vitousek, Peter M.; Knapp, David E.; Kennedy-Bowdoin, Ty; Boardman, Joseph; Martin, Roberta E.; Eastwood, Michael; Green, Robert O.

    2008-01-01

    Biological invasions contribute to global environmental change, but the dynamics and consequences of most invasions are difficult to assess at regional scales. We deployed an airborne remote sensing system that mapped the location and impacts of five highly invasive plant species across 221,875 ha of Hawaiian ecosystems, identifying four distinct ways that these species transform the three-dimensional (3D) structure of native rain forests. In lowland to montane forests, three invasive tree species replace native midcanopy and understory plants, whereas one understory invader excludes native species at the ground level. A fifth invasive nitrogen-fixing tree, in combination with a midcanopy alien tree, replaces native plants at all canopy levels in lowland forests. We conclude that this diverse array of alien plant species, each representing a different growth form or functional type, is changing the fundamental 3D structure of native Hawaiian rain forests. Our work also demonstrates how an airborne mapping strategy can identify and track the spread of certain invasive plant species, determine ecological consequences of their proliferation, and provide detailed geographic information to conservation and management efforts. PMID:18316720

  16. Detection of dead standing Eucalyptus camaldulensis without tree delineation for managing biodiversity in native Australian forest

    NASA Astrophysics Data System (ADS)

    Miltiadou, Milto; Campbell, Neil D. F.; Gonzalez Aracil, Susana; Brown, Tony; Grant, Michael G.

    2018-05-01

    In Australia, many birds and arboreal animals use hollows for shelters, but studies predict shortage of hollows in near future. Aged dead trees are more likely to contain hollows and therefore automated detection of them plays a substantial role in preserving biodiversity and consequently maintaining a resilient ecosystem. For this purpose full-waveform LiDAR data were acquired from a native Eucalypt forest in Southern Australia. The structure of the forest significantly varies in terms of tree density, age and height. Additionally, Eucalyptus camaldulensis have multiple trunk splits making tree delineation very challenging. For that reason, this paper investigates automated detection of dead standing Eucalyptus camaldulensis without tree delineation. It also presents the new feature of the open source software DASOS, which extracts features for 3D object detection in voxelised FW LiDAR. A random forest classifier, a weighted-distance KNN algorithm and a seed growth algorithm are used to create a 2D probabilistic field and to then predict potential positions of dead trees. It is shown that tree health assessment is possible without tree delineation but since it is a new research directions there are many improvements to be made.

  17. Effects of Phylogenetic Tree Style on Student Comprehension

    NASA Astrophysics Data System (ADS)

    Dees, Jonathan Andrew

    Phylogenetic trees are powerful tools of evolutionary biology that have become prominent across the life sciences. Consequently, learning to interpret and reason from phylogenetic trees is now an essential component of biology education. However, students often struggle to understand these diagrams, even after explicit instruction. One factor that has been observed to affect student understanding of phylogenetic trees is style (i.e., diagonal or bracket). The goal of this dissertation research was to systematically explore effects of style on student interpretations and construction of phylogenetic trees in the context of an introductory biology course. Before instruction, students were significantly more accurate with bracket phylogenetic trees for a variety of interpretation and construction tasks. Explicit instruction that balanced the use of diagonal and bracket phylogenetic trees mitigated some, but not all, style effects. After instruction, students were significantly more accurate for interpretation tasks involving taxa relatedness and construction exercises when using the bracket style. Based on this dissertation research and prior studies on style effects, I advocate for introductory biology instructors to use only the bracket style. Future research should examine causes of style effects and variables other than style to inform the development of research-based instruction that best supports student understanding of phylogenetic trees.

  18. Tree decline and the future of Australian farmland biodiversity

    PubMed Central

    Fischer, Joern; Zerger, Andre; Gibbons, Phil; Stott, Jenny; Law, Bradley S.

    2010-01-01

    Farmland biodiversity is greatly enhanced by the presence of trees. However, farmland trees are declining worldwide, including in North America, Central America, and parts of southern Europe. We show that tree decline and its likely consequences are particularly severe in Australia's temperate agricultural zone, which is a threatened ecoregion. Using field data on trees, remotely sensed imagery, and a demographic model for trees, we predict that by 2100, the number of trees on an average farm will contract to two-thirds of its present level. Statistical habitat models suggest that this tree decline will negatively affect many currently common animal species, with predicted declines in birds and bats of up to 50% by 2100. Declines were predicted for 24 of 32 bird species modeled and for all of six bat species modeled. Widespread declines in trees, birds, and bats may lead to a reduction in economically important ecosystem services such as shade provision for livestock and pest control. Moreover, many other species for which we have no empirical data also depend on trees, suggesting that fundamental changes in ecosystem functioning are likely. We conclude that Australia's temperate agricultural zone has crossed a threshold and no longer functions as a self-sustaining woodland ecosystem. A regime shift is occurring, with a woodland system deteriorating into a treeless pasture system. Management options exist to reverse tree decline, but new policy settings are required to encourage their widespread adoption. PMID:20974946

  19. The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use.

    PubMed

    Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R

    2015-02-20

    There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.

  20. Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations?

    PubMed

    Dorea, Jose G

    2003-07-01

    The Amazon rain forest extends over an area of 7.8x10(6)km(2) in nine countries. It harbors a diverse human population distributed in dense cities and isolated communities with extreme levels of infrastructure. Amazonian forest people, either autochthons or frontier riparians (ribeirinhos) living in isolated areas, share the same environment for survival and nutritional status. The peculiarities of the hydrological cycle determine disease patterns, agricultural conditions, and food availability. Feeding strategies depend heavily on cassava products and fish. These two foods carry toxic substances such as linamarin (naturally present in cassava) and monomethyl mercury (MMHg) (bioconcentrated in fish flesh) that cause neurotoxic diseases in other parts of the world but not in Amazonia, where neurotoxic cases of food origin are rare and not related to these staples. While cassava detoxification processes may partly explain its safe consumption, the Hg concentrations in Amazonian fish are within traditionally safe limits for this population and contribute to an important metabolic interaction with cassava. The gold rush of the 1970s and 1980s brought large-scale environmental disruption and physical destruction of ecosystems at impact points, along with a heavy discharge of metallic Hg. The discharged Hg has not yet impacted on MMHg concentrations in fish or in hair of fish consumers. Hair Hg concentration, used as a biomarker of fish consumption, indicates that the Amazonian riparians are acquiring an excellent source of protein carrying important nutrients, the lack of which could aggravate their existing health problems. Therefore, in a scenario of insufficient health services and an unhealthy environment, food habits based on fish consumption are part of a successful survival strategy and recommendations for changes are not yet justifiable.

  1. Large-scale degradation of Amazonian freshwater ecosystems

    NASA Astrophysics Data System (ADS)

    Castello, L.; Macedo, M.

    2016-12-01

    The integrity of freshwater ecosystems depends on their hydrological connectivity with land, water, and climate systems. Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. However, the hydrological connectivity of Amazonian freshwater ecosystems is increasingly disrupted by construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation; evaluates their impacts on hydrological connectivity; and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 155 large hydroelectric dams in operation, 21 dams under construction, and there will be only three free-flowing tributaries if all 277 planned dams for the Basin are built. Land-cover changes driven by mining, dam and road construction, and agriculture and cattle ranching have already affected 20% of the Basin and up to 50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g. droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and do not consider the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basin-wide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.

  2. Physical growth of the shuar: Height, Weight, and BMI references for an indigenous amazonian population.

    PubMed

    Urlacher, Samuel S; Blackwell, Aaron D; Liebert, Melissa A; Madimenos, Felicia C; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh; Sugiyama, Lawrence S

    2016-01-01

    Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Mixed-longitudinal measures of height, weight, and body mass index (BMI) were collected from Shuar participants (n = 2,463; age: 0-29 years). Centile growth curves and tables were created for each anthropometric variable of interest using Generalized Additive Models for Location, Scale, and Shape (GAMLSS). Pseudo-velocity and Lambda-Mu-Sigma curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with United States Center for Disease Control and Prevention and multinational World Health Organization growth references. The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. © 2015 Wiley Periodicals, Inc.

  3. Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction-Based Light Use Efficiency Model

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.

    2017-11-01

    Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.

  4. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since harvesting of trees is not possible within KNP, this was a unique opportunity to fell trees already scheduled to be cleared for mining operations. The area was first flown by the Carnegie Airborne Observatory in early May, prior to harvest, to enable correlation of LiDAR-measured tree height and crown diameter to harvested tree mass. Results include over 4,000 harvested stems and 13 species-specific biomass equations, including seven Kruger woody species previously without allometry. We found existing biomass stem allometry over-estimates ACD in the field, whereas airborne estimates based on harvest data avoid this bias while maintaining similar precision to field-based estimates. Lastly, a new airborne algorithm estimating biomass at the tree-level reduced error from tree canopies "leaning" into field plots but whose stems are outside plot boundaries. These advances pave the way to better understanding of savanna and forest carbon density at landscape and regional scales.

  5. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil

    PubMed Central

    2010-01-01

    Background Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold. Methods To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2). Results Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (<100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798 - 81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage. Conclusions Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara. PMID:20929572

  6. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  7. The Impact of Rise of the Andes and Amazon Landscape Evolution on Diversification of Lowland terra-firme Forest Birds

    NASA Technical Reports Server (NTRS)

    Aleixo, Alexandre; Wilkinson, M. Justin

    2011-01-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction. (The easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). For the suboscine passerines, maximum-likelihood estimates of rates of diversification point to an overall constant rate over the past 5 my (up to a significant downturn at 300,000 y ago). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting approximately 10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, that may have extended progressively and in series eastward from Andean sources. This process plausibly explains the progressive extinction of original Pebas wetland of western-central Amazonia by the present fluvial landsurfaces of a more terra-firme type. The youngest landsurfaces thus lie furthest from the mountains. In this scenario major drainages were also reoriented in wholesale fashion away from a northerly orientation generally towards the east and an Atlantic Ocean outlet. The advance of megafans is best seen by the location of axial rivers such as the Orinoco and Mamore which lie against the cratonic margins furthest from the Andes, at the distal ends of major megafan ramparts. More importantly, other major river courses in western-central Amazonia will have been established at progressively younger dates with distance eastward. If this landscape-sequence scenario is accurate, it parallels the progressive younging of the passerine lineages. The bird DNA data appears to confirm strongly the pervasive role of Amazonian rivers--as primary barriers separating sister lineages of birds, and thus probably as facilitaters of bird speciation. We show for the first time that a general spatio-temporal pattern of diversification for terra-firme lineages in the Amazon is associated with rivers ("younging-eastward"), and furthermore parallels a specific scenario of regional drainage evolution.

  8. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine ( Pinus elliottii var. densa ) Forests in the Florida Keys, USA

    DOE PAGES

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; ...

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less

  9. Indigenous Community Tree Inventory: Assessment of Data Quality

    NASA Astrophysics Data System (ADS)

    Fauzi, M. F.; Idris, N. H.; Din, A. H. M.; Osman, M. J.; Idris, N. H.; Ishak, M. H. I.

    2016-09-01

    The citizen science program to supplement authoritative data in tree inventory has been well implemented in various countries. However, there is a lack of study that assesses correctness and accuracy of tree data supplied by citizens. This paper addresses the issue of tree data quality supplied by semi-literate indigenous group. The aim of this paper is to assess the correctness of attributes (tree species name, height and diameter at breast height) and the accuracy of tree horizontal positioning data supplied by indigenous people. The accuracy of the tree horizontal position recorded by GNSS-enable smart phone was found to have a RMSE value of ± 8m which is not suitable to accurately locate individual tree position in tropical rainforest such as the Royal Belum State Park. Consequently, the tree species names contributed by indigenous people were only 20 to 30 percent correct as compared with the reference data. However, the combination of indigenous respondents comprising of different ages, experience and knowledge working in a group influence less attribute error in data entry and increase the use of free text rather than audio methods. The indigenous community has a big potential to engage with scientific study due to their local knowledge with the research area, however intensive training must be given to empower their skills and several challenges need to be addressed.

  10. Irrational exuberance for resolved species trees.

    PubMed

    Hahn, Matthew W; Nakhleh, Luay

    2016-01-01

    Phylogenomics has largely succeeded in its aim of accurately inferring species trees, even when there are high levels of discordance among individual gene trees. These resolved species trees can be used to ask many questions about trait evolution, including the direction of change and number of times traits have evolved. However, the mapping of traits onto trees generally uses only a single representation of the species tree, ignoring variation in the gene trees used to construct it. Recognizing that genes underlie traits, these results imply that many traits follow topologies that are discordant with the species topology. As a consequence, standard methods for character mapping will incorrectly infer the number of times a trait has evolved. This phenomenon, dubbed "hemiplasy," poses many problems in analyses of character evolution. Here we outline these problems, explaining where and when they are likely to occur. We offer several ways in which the possible presence of hemiplasy can be diagnosed, and discuss multiple approaches to dealing with the problems presented by underlying gene tree discordance when carrying out character mapping. Finally, we discuss the implications of hemiplasy for general phylogenetic inference, including the possible drawbacks of the widespread push for "resolved" species trees. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Understanding plant-to-plant interactions for soil resources in multilayered Iberian dehesas

    NASA Astrophysics Data System (ADS)

    Moreno, G.; Rolo, V.; Cubera, E.; López-Díaz, L.

    2009-04-01

    Iberian dehesa is usually defined as two-layered silvopastoral system, where native grasses cohabit with a scattered widely-space tree layer. In the last two decades, an intense debate has been developed on the sustainability of this simplified type of dehesa. While some authors argue that that the forest cycle has been disrupted in most dehesas, where the lack of regeneration is an inherent problem to their exploitation, other authors have showed that dehesa degradation is easily reversible if certain abandonment is periodically exerted. The coexistence of two-layered plots with multilayered plots (encroached open woodlands) and mono-layered plots (either closed forest or mono-pasture/monocrops) has been a common feature of dehesas, as result of a systematic combination of agricultural, pastoral, and forestry uses. Different structures of vegetation depend on land use, giving a mosaic at both estate and landscape scales. These mosaic-type systems allow finding several scenarios of plant-to-plant interactions, mostly at belowground level. A key issue for sustainable management of oak woodland is to understand the complexity of the plant-to-plant relationships and their consequences in the ecosystem functioning in terms of productivity and stability. The competitive abilities of component systems are modified by the environment conditions. Dehesas, as most savanna systems, exhibit a low rainfall with high variability within and between years as well as a high evaporative demand during the summer. Indeed, water availability is one of the major ecological factors influencing either natural savannas or man-made open woodlands. Although most of the available studies have focused different aspects of the mature tree-grass interactions, we also present here some recent results on tree-tree, tree-shrub, shrub-seedling and seedling-grass interactions, explained mostly in terms of competition for soil water and nutrients. Trees can modify the soil and microclimate environment much more than understorey usually can, but tree characteristics often confer them a clear competitive advantage and they can strongly out-compete understorey. The net balance of positive-negative interactions varies with the age of trees: while the balance can favor grasses face to seedlings, the contrary can be expected when tree grows. Similarly, while shrubs could favor seedling recruitment, shrubs could affect negatively tree growth and productivity. These changes should be taken into account for defining dehesa structure and determining management practices in order to optimize the use of physical and chemical resources that are spatially and temporally patchy. From our results, it is described how generally holm-oak trees favor understorey forage production through a direct positive effect of shade and improved soil fertility (facilitation). The rooting system together the slow-growing attitude of many oak species could determine a low competitive potential of oaks with herbaceous layer. Its low competitiveness together with its capacity to thrive in poor soils make oaks genre very suitable for long-term agroforestry systems in Iberian Peninsula. However, although a certain complementary uses of soil resources seems occur for trees and native grasses (very distinct root system profile), the potential benefit of trees has a small actual facilitative effect because the competitive use of soil water by trees overrides its positive effects, especially under semi-arid conditions. As consequence, the net balance of trees on pasture yield is very variably with situations where pasture yield is widely increased in the vicinity of the trees and others where the contrary is found. Tree clearance practiced in dehesas affects positively the development of the understory pasture, but also the single tree functions which take advantage of the low tree density characteristic of dehesas. Tree roots access water through a large volume of soil resources (especially water) unused by pasture layer. As a consequence, lower stand density is, better tree water status, grow and acorn production is. This dependence of tree functioning of tree density is increase with the intensity of summer drought. Although oak seedlings have physiological adaptations to overcome pasture competition during summer drought, effort made by farmers to favor pasture yield could play some negative role for oak seedling establishment. By contrast, dehesa shrub encroachment has been shown as a way to increase dramatically the rate of oak seedling recruitment. Apart of a better protection against herbivores and the preferential acorn dispersal towards shrubs, different Mediterranean shrubs seem to play multiple positive effects on microclimate and soil that favor trees seedling establishment (nurse shrubs). Nevertheless, the nurse effect of shrubs is shown to be a species-specific phenomenon. Although dehesa shrubs compete with trees for soil resources stronger than herbaceous plants do, the nutritional and hydric status of mature trees is not substantially affected. Hence, dehesa encroachment can be recommended as mechanism to favor dehesa sustainability without compromising the short term productivity of trees. Nevertheless, these findings should not be generalized and further studies focusing specific combination of tree-shrubs species will be needed. These studies should consider a better knowledge of the root system of different shrub species.

  12. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    PubMed

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  13. Applying and Individual-Based Model to Simultaneously Evaluate Net Ecosystem Production and Tree Diameter Increment

    NASA Astrophysics Data System (ADS)

    Fang, F. J.

    2017-12-01

    Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.

  14. Nectar Robbing Positively Influences the Reproductive Success of Tecomella undulata (Bignoniaceae)

    PubMed Central

    Singh, Vineet Kumar; Barman, Chandan; Tandon, Rajesh

    2014-01-01

    The net consequence of nectar robbing on reproductive success of plants is usually negative and the positive effect is rarely produced. We evaluated the influence of nectar robbing on the behaviour of pollinators and the reproductive success of Tecomella undulata (Bignoniaceae) in a natural population. Experimental pollinations showed that the trees were strictly self-incompatible. The three types of floral colour morphs of the tree viz. red, orange and yellow, lacked compatibility barriers. The pollinators (Pycnonotus cafer and Pycnonotus leucotis) and the robber (Nectarinia asiatica) showed equal preference for all the morphs, as they visited each morph with nearly equal frequency and flower-handling time. The sunbirds caused up to 60% nectar robbing, mostly (99%) by piercing through the corolla tube. Although nectar is replenished at regular intervals, insufficient amount of nectar compelled the pollinators to visit additional trees in bloom. Data of manual nectar robbing from the entire tree showed that the pollinators covered lower number of flowers per tree (5 flowers/tree) and more trees per bout (7 trees/bout) than the unrobbed ones (19 flowers/tree and 2 trees bout). The robbed trees set a significantly greater amount of fruits than the unrobbed trees. However, the number of seeds in a fruit did not differ significantly. The study shows that plant-pollinator-robber interaction may benefit the self-incompatible plant species under conditions that increases the visits of pollinators among the compatible conspecifics in a population. PMID:25036554

  15. Nectar robbing positively influences the reproductive success of Tecomella undulata (Bignoniaceae).

    PubMed

    Singh, Vineet Kumar; Barman, Chandan; Tandon, Rajesh

    2014-01-01

    The net consequence of nectar robbing on reproductive success of plants is usually negative and the positive effect is rarely produced. We evaluated the influence of nectar robbing on the behaviour of pollinators and the reproductive success of Tecomella undulata (Bignoniaceae) in a natural population. Experimental pollinations showed that the trees were strictly self-incompatible. The three types of floral colour morphs of the tree viz. red, orange and yellow, lacked compatibility barriers. The pollinators (Pycnonotus cafer and Pycnonotus leucotis) and the robber (Nectarinia asiatica) showed equal preference for all the morphs, as they visited each morph with nearly equal frequency and flower-handling time. The sunbirds caused up to 60% nectar robbing, mostly (99%) by piercing through the corolla tube. Although nectar is replenished at regular intervals, insufficient amount of nectar compelled the pollinators to visit additional trees in bloom. Data of manual nectar robbing from the entire tree showed that the pollinators covered lower number of flowers per tree (5 flowers/tree) and more trees per bout (7 trees/bout) than the unrobbed ones (19 flowers/tree and 2 trees bout). The robbed trees set a significantly greater amount of fruits than the unrobbed trees. However, the number of seeds in a fruit did not differ significantly. The study shows that plant-pollinator-robber interaction may benefit the self-incompatible plant species under conditions that increases the visits of pollinators among the compatible conspecifics in a population.

  16. Floodplains as an Achilles’ heel of Amazonian forest resilience

    PubMed Central

    Flores, Bernardo M.; Holmgren, Milena; van Nes, Egbert H.; Jakovac, Catarina C.; Mesquita, Rita C. G.; Scheffer, Marten

    2017-01-01

    The massive forests of central Amazonia are often considered relatively resilient against climatic variation, but this view is challenged by the wildfires invoked by recent droughts. The impact of such fires that spread from pervasive sources of ignition may reveal where forests are less likely to persist in a drier future. Here we combine field observations with remotely sensed information for the whole Amazon to show that the annually inundated lowland forests that run through the heart of the system may be trapped relatively easily into a fire-dominated savanna state. This lower forest resilience on floodplains is suggested by patterns of tree cover distribution across the basin, and supported by our field and remote sensing studies showing that floodplain fires have a stronger and longer-lasting impact on forest structure as well as soil fertility. Although floodplains cover only 14% of the Amazon basin, their fires can have substantial cascading effects because forests and peatlands may release large amounts of carbon, and wildfires can spread to adjacent uplands. Floodplains are thus an Achilles’ heel of the Amazon system when it comes to the risk of large-scale climate-driven transitions. PMID:28396440

  17. Ecosystem extent and fragmentation

    USGS Publications Warehouse

    Sayre, Roger; Hansen, Matt

    2017-01-01

    One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.

  18. Oenocarpus bacaba and Oenocarpus bataua Leaflets and Roots: A New Source of Antioxidant Compounds

    PubMed Central

    Leba, Louis-Jérôme; Brunschwig, Christel; Saout, Mona; Martial, Karine; Bereau, Didier; Robinson, Jean-Charles

    2016-01-01

    Native palm trees fruit from the Amazonian rainforest, Oenocarpus bacaba and Oenocarpus bataua, are very often used in the diet of local communities, but the biological activities of their roots and leaflets remain poorly known. Total phenolic content (TPC) and antioxidant activity of root and leaflet extracts from Oenocarpus bacaba and Oenocarpus bataua were assessed by using different chemical assays, the oxygèn radical absorbance capacity (ORAC), the 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical-scavenging capacity and the ferric-reducing ability of plasma (FRAP). Cellular antioxidant activity and cytotoxicity were also measured in Normal Human Dermal Fibroblasts. The polyphenolic composition of Oenocarpus extracts was investigated by LC-MSn. Oenocarpus leaflet extracts were more antioxidant than root extracts, being at least as potent as Euterpe oleracea berries known as superfruit. Oenocarpus root extracts were characterized by hydroxycinnamic acids (caffeoylquinic and caffeoylshikimic acids), while leaflet extracts contained mainly caffeoylquinic acids and C-glycosyl flavones. These results suggest that leaflets of both Oenocarpus species could be valorized as a new non-cytotoxic source of antioxidants from Amazonia, containing hydroxycinnamic acids and flavonoids, in the pharmaceutical, cosmetic or agri-food industry. PMID:27355943

  19. Antimicrobial, cytotoxic and antioxidant activities and determination of the total tannin content of bark extracts Endopleura uchi.

    PubMed

    Politi, Flávio A S; de Mello, João C P; Migliato, Ketylin F; Nepomuceno, Andréa L A; Moreira, Raquel R D; Pietro, Rosemeire C L R

    2011-01-01

    Endopleura uchi is a typical Amazonian tree and its bark is popularly employed in the preparation of teas against myomas, arthritis, influenza, diarrhea and cancer. In this study, the antioxidant activity, cytotoxicity and antimicrobial activity of five different extracts of the bark, selected by their total tannin content, were assessed. The potential antioxidant activity of the extracts was determined by 2.2-diphenyl-1-picrylhydrazyl radical scavenging assay and the values found were very similar among the extracts and to the standards antioxidants used in the tests. Cytotoxicity analysis in mammalian cells indicated that all the tested extracts exhibited IC(50) values higher than the highest concentration used, showing that they do not present a risk when consumed under these conditions. Extract tested against five bacterial strains and one yeast strain did not show satisfactory growth inhibitory activity, and even the extracts that showed some antimicrobial activity were not effective at any dilution to determine the minimum inhibitory concentration. The results may serve as a reference for subsequent works, since such reference values described in the literature for the bark of E. uchi.

  20. Antimicrobial, Cytotoxic and Antioxidant Activities and Determination of the Total Tannin Content of Bark Extracts Endopleura uchi

    PubMed Central

    Politi, Flávio A. S.; de Mello, João C. P.; Migliato, Ketylin F.; Nepomuceno, Andréa L. A.; Moreira, Raquel R. D.; Pietro, Rosemeire C. L. R.

    2011-01-01

    Endopleura uchi is a typical Amazonian tree and its bark is popularly employed in the preparation of teas against myomas, arthritis, influenza, diarrhea and cancer. In this study, the antioxidant activity, cytotoxicity and antimicrobial activity of five different extracts of the bark, selected by their total tannin content, were assessed. The potential antioxidant activity of the extracts was determined by 2.2-diphenyl-1-picrylhydrazyl radical scavenging assay and the values found were very similar among the extracts and to the standards antioxidants used in the tests. Cytotoxicity analysis in mammalian cells indicated that all the tested extracts exhibited IC50 values higher than the highest concentration used, showing that they do not present a risk when consumed under these conditions. Extract tested against five bacterial strains and one yeast strain did not show satisfactory growth inhibitory activity, and even the extracts that showed some antimicrobial activity were not effective at any dilution to determine the minimum inhibitory concentration. The results may serve as a reference for subsequent works, since such reference values described in the literature for the bark of E. uchi. PMID:21731469

  1. Species Distribution Modelling: Contrasting presence-only models with plot abundance data.

    PubMed

    Gomes, Vitor H F; IJff, Stéphanie D; Raes, Niels; Amaral, Iêda Leão; Salomão, Rafael P; de Souza Coelho, Luiz; de Almeida Matos, Francisca Dionízia; Castilho, Carolina V; de Andrade Lima Filho, Diogenes; López, Dairon Cárdenas; Guevara, Juan Ernesto; Magnusson, William E; Phillips, Oliver L; Wittmann, Florian; de Jesus Veiga Carim, Marcelo; Martins, Maria Pires; Irume, Mariana Victória; Sabatier, Daniel; Molino, Jean-François; Bánki, Olaf S; da Silva Guimarães, José Renan; Pitman, Nigel C A; Piedade, Maria Teresa Fernandez; Mendoza, Abel Monteagudo; Luize, Bruno Garcia; Venticinque, Eduardo Martins; de Leão Novo, Evlyn Márcia Moraes; Vargas, Percy Núñez; Silva, Thiago Sanna Freire; Manzatto, Angelo Gilberto; Terborgh, John; Reis, Neidiane Farias Costa; Montero, Juan Carlos; Casula, Katia Regina; Marimon, Beatriz S; Marimon, Ben-Hur; Coronado, Euridice N Honorio; Feldpausch, Ted R; Duque, Alvaro; Zartman, Charles Eugene; Arboleda, Nicolás Castaño; Killeen, Timothy J; Mostacedo, Bonifacio; Vasquez, Rodolfo; Schöngart, Jochen; Assis, Rafael L; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Laurance, William F; Camargo, José Luís; Demarchi, Layon O; Laurance, Susan G W; de Sousa Farias, Emanuelle; Nascimento, Henrique Eduardo Mendonça; Revilla, Juan David Cardenas; Quaresma, Adriano; Costa, Flavia R C; Vieira, Ima Célia Guimarães; Cintra, Bruno Barçante Ladvocat; Castellanos, Hernán; Brienen, Roel; Stevenson, Pablo R; Feitosa, Yuri; Duivenvoorden, Joost F; Aymard C, Gerardo A; Mogollón, Hugo F; Targhetta, Natalia; Comiskey, James A; Vicentini, Alberto; Lopes, Aline; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Emilio, Thaise; Alonso, Alfonso; Neill, David; Dallmeier, Francisco; Ferreira, Leandro Valle; Araujo-Murakami, Alejandro; Praia, Daniel; do Amaral, Dário Dantas; Carvalho, Fernanda Antunes; de Souza, Fernanda Coelho; Feeley, Kenneth; Arroyo, Luzmila; Pansonato, Marcelo Petratti; Gribel, Rogerio; Villa, Boris; Licona, Juan Carlos; Fine, Paul V A; Cerón, Carlos; Baraloto, Chris; Jimenez, Eliana M; Stropp, Juliana; Engel, Julien; Silveira, Marcos; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Maas, Paul; Thomas-Caesar, Raquel; Henkel, Terry W; Daly, Doug; Paredes, Marcos Ríos; Baker, Tim R; Fuentes, Alfredo; Peres, Carlos A; Chave, Jerome; Pena, Jose Luis Marcelo; Dexter, Kyle G; Silman, Miles R; Jørgensen, Peter Møller; Pennington, Toby; Di Fiore, Anthony; Valverde, Fernando Cornejo; Phillips, Juan Fernando; Rivas-Torres, Gonzalo; von Hildebrand, Patricio; van Andel, Tinde R; Ruschel, Ademir R; Prieto, Adriana; Rudas, Agustín; Hoffman, Bruce; Vela, César I A; Barbosa, Edelcilio Marques; Zent, Egleé L; Gonzales, George Pepe Gallardo; Doza, Hilda Paulette Dávila; de Andrade Miranda, Ires Paula; Guillaumet, Jean-Louis; Pinto, Linder Felipe Mozombite; de Matos Bonates, Luiz Carlos; Silva, Natalino; Gómez, Ricardo Zárate; Zent, Stanford; Gonzales, Therany; Vos, Vincent A; Malhi, Yadvinder; Oliveira, Alexandre A; Cano, Angela; Albuquerque, Bianca Weiss; Vriesendorp, Corine; Correa, Diego Felipe; Torre, Emilio Vilanova; van der Heijden, Geertje; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Young, Kenneth R; Rocha, Maira; Nascimento, Marcelo Trindade; Medina, Maria Natalia Umaña; Tirado, Milton; Wang, Ophelia; Sierra, Rodrigo; Torres-Lezama, Armando; Mendoza, Casimiro; Ferreira, Cid; Baider, Cláudia; Villarroel, Daniel; Balslev, Henrik; Mesones, Italo; Giraldo, Ligia Estela Urrego; Casas, Luisa Fernanda; Reategui, Manuel Augusto Ahuite; Linares-Palomino, Reynaldo; Zagt, Roderick; Cárdenas, Sasha; Farfan-Rios, William; Sampaio, Adeilza Felipe; Pauletto, Daniela; Sandoval, Elvis H Valderrama; Arevalo, Freddy Ramirez; Huamantupa-Chuquimaco, Isau; Garcia-Cabrera, Karina; Hernandez, Lionel; Gamarra, Luis Valenzuela; Alexiades, Miguel N; Pansini, Susamar; Cuenca, Walter Palacios; Milliken, William; Ricardo, Joana; Lopez-Gonzalez, Gabriela; Pos, Edwin; Ter Steege, Hans

    2018-01-17

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.

  2. Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt

    PubMed Central

    Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Stead, M G; Harris, J B C; Lowe, A J

    2015-01-01

    Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow. PMID:23188172

  3. Consequences of extinction in tropical peat-forming vegetation of the Middle to Late Pennsylvanian (Westphalian-Stephanian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMichele, W.A.; Phillips, T.L.

    1992-01-01

    Peat-forming environments (coals) were major landscape elements of the Pennsylvanian tropics. Mires reached a pantropical zenith during the 9 Ma of the Westphalian when long intervals of similar vegetation were separated by short intervals of rapid change. Differences between successive vegetation types primarily reflect different proportions of several major habitat-specific subfloras within which species turnover occurred. A hierarchy of organizational levels is suggested in which biotic interactions helped structure and constrain patterns of species replacement. Lycopsids were the framework trees of nearly all Westphalian mires; tree ferns and pteridosperm were important subdominants by the late Westphalian. Environmental changes, largely climatic,more » during the Westphalian-Stephanian transition resulted in extinction of most mire species, particularly trees. Tree ferns dominated Stephanian mires following a short transitional period of small-lycopsid and fern abundance. Tree ferns were cheaply constructed opportunists and their rise in abundance coincided with an increase in species numbers throughout tropical lowlands. Within mires there was an increase in physical size of plants from several major lineages. The structure and dynamics of Stephanian mires differed from the Westphalian; previously sharp distinctions between mires and other lowland floras diminished. The Westphalian to Stephanian vegetational changes suggest that ecosystems can display a brittle'' response to environmental change. Such threshold responses are a likely consequences of levels of extinction high enough to disrupt ecosystem fabric. The success of opportunistic lineages following loss of indigenous mire vegetation constitutes a secondary replacement, with establishment of a new equilibrium within hundreds of thousands of years.« less

  4. Candida amazonensis sp. nov., an ascomycetous yeast isolated from rotting wood in the Amazonian forest.

    PubMed

    Cadete, Raquel M; Melo, Monaliza A; Lopes, Mariana R; Pereira, Gilmara M D; Zilli, Jerri E; Vital, Marcos J S; Gomes, Fátima C O; Lachance, Marc-André; Rosa, Carlos A

    2012-06-01

    Five strains of a novel yeast species were isolated from rotting wood samples collected in an Amazonian forest site in the state of Roraima, northern Brazil. The sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Scheffersomyces clade and is related to Candida coipomoensis, Candida lignicola and Candida queiroziae. The novel species Candida amazonensis sp. nov. is proposed to accommodate these isolates. The type strain of C. amazonensis sp. nov. is UFMG-HMD-26.3(T) ( = CBS 12363(T) = NRRL Y-48762(T)).

  5. Natural infection of Lutzomyia tortura with Leishmania (Viannia) naiffi in an Amazonian area of Ecuador.

    PubMed

    Kato, Hirotomo; Gomez, Eduardo A; Yamamoto, Yu-ichi; Calvopiña, Manuel; Guevara, Angel G; Marco, Jorge D; Barroso, Paola A; Iwata, Hiroyuki; Hashiguchi, Yoshihisa

    2008-09-01

    Natural infection of sand flies with Leishmania parasites was surveyed in an Amazonian area in Ecuador where leishmaniasis is endemic. Seventy-one female sand flies were dissected and one was positive for Leishmania protozoa. The species of this sand fly was identified as Lutzomyia (Lu.) tortura on the basis of morphologic characteristics. Analysis of the cytochrome b gene sequence identified the parasite as L. (Viannia) naiffi. We report the distribution of L. (V.) naiffi in Ecuador and detection of a naturally infected sand fly in the Ecuadorian Amazon and natural infection of Lu. tortura with Leishmania parasites in the New World.

  6. Legacy Effect of Amazonian Drought Delays the Season Transition from Dry to Wet

    NASA Astrophysics Data System (ADS)

    Shi, M.; Liu, J.; Wong, S.; Worden, J. R.; Fisher, J.; Frankenberg, C.

    2017-12-01

    The long-term drought effect on forest coverage, so-called legacy effect, has been observed in ground and remote sensing measurements. Drought and forest loss may amplify each other through vegetation-atmosphere feedbacks. In this study, we investigate the impact of the reduced growth of southern Amazonian forest from the 2005 drought on dry-to-wet season transition and its variations in 2005 and 2006. We quantified the vegetation-atmosphere feedbacks with the Community Atmosphere Model version 5 (CAM5) with a control and a sensitivity experiments. We further investigate the mechanism of vegetation-atmosphere feedbacks with data-constrained evapotranspiration (ET) and HDO/H2O observations from the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and from the Tropospheric Emission Spectrometer (TES). Our results show that the dry season end (DSE) in southern Amazonian forest was delayed by 15 days in 2005 and by 25 days in 2006 with drought induced leaf carbon pool reduction. The postponed DSE is triggered by the reduced evapotranspiration (ET), but amplified by change of large-scale circulation. The reduction of ET and its delaying effect on dry-wet season transition is further confirmed with SCIAMACHY and TES HDO/H2O measurements.

  7. Soil transmitted helminthiasis in indigenous groups. A community cross sectional study in the Amazonian southern border region of Ecuador

    PubMed Central

    Romero-Sandoval, Natalia; Ortiz-Rico, Claudia; Sánchez-Pérez, Héctor Javier; Valdivieso, Daniel; Sandoval, Carlos; Pástor, Jacob; Martín, Miguel

    2017-01-01

    Background Rural communities in the Amazonian southern border of Ecuador have benefited from governmental social programmes over the past 9 years, which have addressed, among other things, diseases associated with poverty, such as soil transmitted helminth infections. The aim of this study was to explore the prevalence of geohelminth infection and several factors associated with it in these communities. Methods This was a cross sectional study in two indigenous communities of the Amazonian southern border of Ecuador. The data were analysed at both the household and individual levels. Results At the individual level, the prevalence of geohelminth infection reached 46.9% (95% CI 39.5% to 54.2%), with no differences in terms of gender, age, temporary migration movements or previous chemoprophylaxis. In 72.9% of households, one or more members were infected. Receiving subsidies and overcrowding were associated with the presence of helminths. Conclusions The prevalence of geohelminth infection was high. Our study suggests that it is necessary to conduct studies focusing on communities, and not simply on captive groups, such as schoolchildren, with the object of proposing more suitable and effective strategies to control this problem. PMID:28292765

  8. High levels of cryptic species diversity uncovered in Amazonian frogs

    PubMed Central

    Funk, W. Chris; Caminer, Marcel; Ron, Santiago R.

    2012-01-01

    One of the greatest challenges for biodiversity conservation is the poor understanding of species diversity. Molecular methods have dramatically improved our ability to uncover cryptic species, but the magnitude of cryptic diversity remains unknown, particularly in diverse tropical regions such as the Amazon Basin. Uncovering cryptic diversity in amphibians is particularly pressing because amphibians are going extinct globally at an alarming rate. Here, we use an integrative analysis of two independent Amazonian frog clades, Engystomops toadlets and Hypsiboas treefrogs, to test whether species richness is underestimated and, if so, by how much. We sampled intensively in six countries with a focus in Ecuador (Engystomops: 252 individuals from 36 localities; Hypsiboas: 208 individuals from 65 localities) and combined mitochondrial DNA, nuclear DNA, morphological, and bioacoustic data to detect cryptic species. We found that in both clades, species richness was severely underestimated, with more undescribed species than described species. In Engystomops, the two currently recognized species are actually five to seven species (a 150–250% increase in species richness); in Hypsiboas, two recognized species represent six to nine species (a 200–350% increase). Our results suggest that Amazonian frog biodiversity is much more severely underestimated than previously thought. PMID:22130600

  9. Palaeontological evidence for the last temporal occurrence of the ancient western Amazonian river outflow into the Caribbean.

    PubMed

    Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R

    2013-01-01

    Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers.

  10. Palaeontological Evidence for the Last Temporal Occurrence of the Ancient Western Amazonian River Outflow into the Caribbean

    PubMed Central

    Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R.

    2013-01-01

    Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers. PMID:24098778

  11. In Forests Globally, Large Trees Suffer Most during Drought

    NASA Astrophysics Data System (ADS)

    Bennett, A. C.; McDowell, N. G.; Allen, C. D.; Anderson-Teixeira, K. J.

    2014-12-01

    Globally, drought events are increasing in both frequency and intensity. Spatial and temporal variation in water availability is expected to alter the ecophysiology and structure of forests, with consequent feedbacks to climate change. Extensive tree mortality induced by heat and aridity has been documented across a range of latitudes, and several global vegetation models have simulated widespread forest die-off in the future. The impact of drought on forest structure and function will depend on the differential responses of trees of different sizes. Understanding the size-dependence of drought-induced mortality is necessary to predict local and global impacts. Here we show that in forests worldwide, drought has a greater impact on the growth and mortality of large trees compared to smaller trees. This trend holds true for forests ranging from semiarid woodlands to tropical rainforests. This finding contrasts with what would be expected if deep root access to water were the primary determinant of tree drought response. Rather, the greater drought response of larger trees could be driven by greater inherent vulnerability of large trees to hydraulic stress or by canopy position becoming more of a liability under drought, as exposed crowns face higher evaporative demand. These findings imply that future droughts will have a disproportionate effect on large trees, resulting in a larger feedback to climate change than would occur if all tree size classes were equally affected by drought.

  12. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species.

    PubMed

    Prospere, Kurt; McLaren, Kurt P; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  13. Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly over the Last Decade

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Asefi, S.

    2012-04-01

    During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits

  14. Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly of Last Decade

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Asefi Najafabady, S.

    2011-12-01

    During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits.

  15. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species

    NASA Astrophysics Data System (ADS)

    Prospere, Kurt; McLaren, Kurt P.; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  16. Oil road effects on the anuran community of a high canopy tank bromeliad (Aechmea zebrina) in the upper Amazon basin, Ecuador.

    PubMed

    McCracken, Shawn F; Forstner, Michael R J

    2014-01-01

    Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (Aechmea zebrina) at ∼20-45 m (x¯ = 33 m) above the forest floor. Bromeliads were sampled from trees located near trails in undisturbed primary rainforest and oil access roads in the Yasuní Biosphere Reserve of Amazonian Ecuador. We collected 95 anurans representing 10 species from 160 bromeliads in 32 trees. We used generalized linear mixed models to assess the effects of disturbance and habitat factors on the occupancy and abundance of anurans collected. Bromeliads in forest along oil roads had a lower occupancy and abundance of anurans than those in undisturbed forest, a somewhat unexpected result due to the intactness and quality of forest adjacent to the roads. Recorded habitat variables had no relationship with occupancy or abundance of anurans, and did not differ significantly between treatments. Our findings reveal that even the minimal footprint of natural resource extraction operations, primarily roads, in rainforest environments can have significant negative impacts on the unique upper canopy anuran community. Based on these results, we recommend that natural resource development treat rainforest habitat as an offshore system where roads are not used, employ industry best practice guidelines, and current access roads be protected from colonization and further deforestation.

  17. The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies.

    PubMed

    Argout, X; Martin, G; Droc, G; Fouet, O; Labadie, K; Rivals, E; Aury, J M; Lanaud, C

    2017-09-15

    Theobroma cacao L., native to the Amazonian basin of South America, is an economically important fruit tree crop for tropical countries as a source of chocolate. The first draft genome of the species, from a Criollo cultivar, was published in 2011. Although a useful resource, some improvements are possible, including identifying misassemblies, reducing the number of scaffolds and gaps, and anchoring un-anchored sequences to the 10 chromosomes. We used a NGS-based approach to significantly improve the assembly of the Belizian Criollo B97-61/B2 genome. We combined four Illumina large insert size mate paired libraries with 52x of Pacific Biosciences long reads to correct misassembled regions and reduced the number of scaffolds. We then used genotyping by sequencing (GBS) methods to increase the proportion of the assembly anchored to chromosomes. The scaffold number decreased from 4,792 in assembly V1 to 554 in V2 while the scaffold N50 size has increased from 0.47 Mb in V1 to 6.5 Mb in V2. A total of 96.7% of the assembly was anchored to the 10 chromosomes compared to 66.8% in the previous version. Unknown sites (Ns) were reduced from 10.8% to 5.7%. In addition, we updated the functional annotations and performed a new RefSeq structural annotation based on RNAseq evidence. Theobroma cacao Criollo genome version 2 will be a valuable resource for the investigation of complex traits at the genomic level and for future comparative genomics and genetics studies in cacao tree. New functional tools and annotations are available on the Cocoa Genome Hub ( http://cocoa-genome-hub.southgreen.fr ).

  18. Oil Road Effects on the Anuran Community of a High Canopy Tank Bromeliad (Aechmea zebrina) in the Upper Amazon Basin, Ecuador

    PubMed Central

    McCracken, Shawn F.; Forstner, Michael R. J.

    2014-01-01

    Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (Aechmea zebrina) at ∼20–45 m (x¯ = 33 m) above the forest floor. Bromeliads were sampled from trees located near trails in undisturbed primary rainforest and oil access roads in the Yasuní Biosphere Reserve of Amazonian Ecuador. We collected 95 anurans representing 10 species from 160 bromeliads in 32 trees. We used generalized linear mixed models to assess the effects of disturbance and habitat factors on the occupancy and abundance of anurans collected. Bromeliads in forest along oil roads had a lower occupancy and abundance of anurans than those in undisturbed forest, a somewhat unexpected result due to the intactness and quality of forest adjacent to the roads. Recorded habitat variables had no relationship with occupancy or abundance of anurans, and did not differ significantly between treatments. Our findings reveal that even the minimal footprint of natural resource extraction operations, primarily roads, in rainforest environments can have significant negative impacts on the unique upper canopy anuran community. Based on these results, we recommend that natural resource development treat rainforest habitat as an offshore system where roads are not used, employ industry best practice guidelines, and current access roads be protected from colonization and further deforestation. PMID:24416414

  19. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, Koen; Helle, Gerd; Beeckman, Hans; de Haulleville, Thales; Kearsley, Elizabeth; Boeckx, Pascal

    2013-04-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the seasonally varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C/12C and 18O/16O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of carbon are influenced by fractionation through carboxylation during photosynthesis and changes in leaf stomatal conductance. Similarly, fractionation of oxygen isotopes of soil water occurs at the leaf level through evapo-transipiration. As a consequence, 18O/16O (δ18O) values in wood cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, both C and O stable isotopes might not only be valuable as proxy data for past climatic conditions but they also serve as an important tool in understanding carbon and water relations within a tropical forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope composition(δ13C , δ18O) at a tropical humid forests in the DR Congo. The Yangambi Man And Biosphere (MAB) reserve is located in the north-eastern part of DR Congo, with a distinct tropical rainforest climate. In addition to the tree-core data records and extensive meteorological records collected at both sites, observations on green leaf phenology of key species will provide us with additional information on potential carbon sequestration dynamics. Because, phenology is a first order control on plant productivity. In this unique study, using detailed tree-ring analyses together with auxiliary data, we explore the temporal dynamics of carbon and water relations and the influence on carbon sequestration of key tree species in African tropical humid forests.

  20. Can't see the forest for the rice: factors influencing spatial variations in the density of trees in paddy fields in northeast Thailand.

    PubMed

    Watanabe, Moriaki; Vityakon, Patma; Rambo, A Terry

    2014-02-01

    The widespread presence of trees in paddy fields is a unique feature of Northeast Thailand's agricultural landscape. A survey of spatial variability in the density of trees in paddy fields in the Northeast Region was conducted utilizing high resolution satellite images and found that the mean density in the whole region was 12.1 trees/ha (varying from a high of 44.6 trees/ha to a low of 0.8 trees/ha). In general, tree densities are higher in the southeastern part of the region and much lower in the northern central part. Tree density was influenced by multiple factors including: (1) the history of land development, with more recently developed paddy fields having higher densities, (2) topography, with fields located at higher topographical positions having a higher mean density of trees, (3) access to natural forest resources, with fields in areas located close to natural forests having higher densities, (4) amount of annual rainfall, with fields in areas with higher average annual rainfall having higher tree densities, and (5) landholding size, with fields in areas with larger-sized landholdings having more trees. However, there is a considerable extent of co-variation among these factors. Although trees remain an important element of the paddy field landscape in the Northeast, it appears that their density has been declining in recent years. If this trend continues, then the vast "invisible forest" represented by trees in paddy fields may truly disappear, with negative consequences for the villagers' livelihoods, biodiversity conservation, and carbon sequestration in the rural ecosystem.

  1. Impacts of savanna trees on forage quality for a large African herbivore

    PubMed Central

    De Kroon, Hans; Prins, Herbert H. T.

    2008-01-01

    Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems. PMID:18309522

  2. Undergraduate Students’ Initial Ability in Understanding Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Hidayat, T.; Sudargo, Fransisca

    2017-04-01

    The Phylogenetic tree is a visual representation depicts a hypothesis about the evolutionary relationship among taxa. Evolutionary experts use this representation to evaluate the evidence for evolution. The phylogenetic tree is currently growing for many disciplines in biology. Consequently, learning about the phylogenetic tree has become an important part of biological education and an interesting area of biology education research. Skill to understanding and reasoning of the phylogenetic tree, (called tree thinking) is an important skill for biology students. However, research showed many students have difficulty in interpreting, constructing, and comparing among the phylogenetic tree, as well as experiencing a misconception in the understanding of the phylogenetic tree. Students are often not taught how to reason about evolutionary relationship depicted in the diagram. Students are also not provided with information about the underlying theory and process of phylogenetic. This study aims to investigate the initial ability of undergraduate students in understanding and reasoning of the phylogenetic tree. The research method is the descriptive method. Students are given multiple choice questions and an essay that representative by tree thinking elements. Each correct answer made percentages. Each student is also given questionnaires. The results showed that the undergraduate students’ initial ability in understanding and reasoning phylogenetic tree is low. Many students are not able to answer questions about the phylogenetic tree. Only 19 % undergraduate student who answered correctly on indicator evaluate the evolutionary relationship among taxa, 25% undergraduate student who answered correctly on indicator applying concepts of the clade, 17% undergraduate student who answered correctly on indicator determines the character evolution, and only a few undergraduate student who can construct the phylogenetic tree.

  3. The effects of urban warming on herbivore abundance and street tree condition.

    PubMed

    Dale, Adam G; Frank, Steven D

    2014-01-01

    Trees are essential to urban habitats because they provide services that benefit the environment and improve human health. Unfortunately, urban trees often have more herbivorous insect pests than rural trees but the mechanisms and consequences of these infestations are not well documented. Here, we examine how temperature affects the abundance of a scale insect, Melanaspis tenebricosa (Comstock) (Hemiptera: Diaspididae), on one of the most commonly planted street trees in the eastern U.S. Next, we examine how both pest abundance and temperature are associated with water stress, growth, and condition of 26 urban street trees. Although trees in the warmest urban sites grew the most, they were more water stressed and in worse condition than trees in cooler sites. Our analyses indicate that visible declines in tree condition were best explained by scale-insect infestation rather than temperature. To test the broader relevance of these results, we extend our analysis to a database of more than 2700 Raleigh, US street trees. Plotting these trees on a Landsat thermal image of Raleigh, we found that warmer sites had over 70% more trees in poor condition than those in cooler sites. Our results support previous studies linking warmer urban habitats to greater pest abundance and extend this association to show its effect on street tree condition. Our results suggest that street tree condition and ecosystem services may decline as urban expansion and global warming exacerbate the urban heat island effect. Although our non-probability sampling method limits our scope of inference, our results present a gloomy outlook for urban forests and emphasize the need for management tools. Existing urban tree inventories and thermal maps could be used to identify species that would be most suitable for urban conditions.

  4. Flowering phenology and its implications for management of big-leaf mahogany Swietenia macrophylla in Brazilian Amazonia.

    PubMed

    Grogan, James; Loveless, Marilyn D

    2013-11-01

    Flowering phenology is a crucial determinant of reproductive success and offspring genetic diversity in plants. We measure the flowering phenology of big-leaf mahogany (Swietenia macrophylla, Meliaceae), a widely distributed neotropical tree, and explore how disturbance from logging impacts its reproductive biology. We use a crown scoring system to estimate the timing and duration of population-level flowering at three forest sites in the Brazilian Amazon over a five-year period. We combine this information with data on population structure and spatial distribution to consider the implications of logging for population flowering patterns and reproductive success. Mahogany trees as small as 14 cm diam flowered, but only trees > 30 cm diam flowered annually or supra-annually. Mean observed flowering periods by focal trees ranged from 18-34 d, and trees flowered sequentially during 3-4 mo beginning in the dry season. Focal trees demonstrated significant interannual correlation in flowering order. Estimated population-level flowering schedules resembled that of the focal trees, with temporal isolation between early and late flowering trees. At the principal study site, conventional logging practices eliminated 87% of mahogany trees > 30 cm diam and an estimated 94% of annual pre-logging floral effort. Consistent interannual patterns of sequential flowering among trees create incompletely isolated subpopulations, constraining pollen flow. After harvests, surviving subcommercial trees will have fewer, more distant, and smaller potential partners, with probable consequences for post-logging regeneration. These results have important implications for the sustainability of harvesting systems for tropical timber species.

  5. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota

    USGS Publications Warehouse

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.

    2017-01-01

    Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.

  6. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees

    PubMed Central

    Condit, Richard; Engelbrecht, Bettina M. J.; Pino, Delicia; Pérez, Rolando; Turner, Benjamin L.

    2013-01-01

    Tropical forest vegetation is shaped by climate and by soil, but understanding how the distributions of individual tree species respond to specific resources has been hindered by high diversity and consequent rarity. To study species over an entire community, we surveyed trees and measured soil chemistry across climatic and geological gradients in central Panama and then used a unique hierarchical model of species occurrence as a function of rainfall and soil chemistry to circumvent analytical difficulties posed by rare species. The results are a quantitative assessment of the responses of 550 tree species to eight environmental factors, providing a measure of the importance of each factor across the entire tree community. Dry-season intensity and soil phosphorus were the strongest predictors, each affecting the distribution of more than half of the species. Although we anticipated clear-cut responses to dry-season intensity, the finding that many species have pronounced associations with either high or low phosphorus reveals a previously unquantified role for this nutrient in limiting tropical tree distributions. The results provide the data necessary for understanding distributional limits of tree species and predicting future changes in forest composition. PMID:23440213

  7. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees.

    PubMed

    Condit, Richard; Engelbrecht, Bettina M J; Pino, Delicia; Pérez, Rolando; Turner, Benjamin L

    2013-03-26

    Tropical forest vegetation is shaped by climate and by soil, but understanding how the distributions of individual tree species respond to specific resources has been hindered by high diversity and consequent rarity. To study species over an entire community, we surveyed trees and measured soil chemistry across climatic and geological gradients in central Panama and then used a unique hierarchical model of species occurrence as a function of rainfall and soil chemistry to circumvent analytical difficulties posed by rare species. The results are a quantitative assessment of the responses of 550 tree species to eight environmental factors, providing a measure of the importance of each factor across the entire tree community. Dry-season intensity and soil phosphorus were the strongest predictors, each affecting the distribution of more than half of the species. Although we anticipated clear-cut responses to dry-season intensity, the finding that many species have pronounced associations with either high or low phosphorus reveals a previously unquantified role for this nutrient in limiting tropical tree distributions. The results provide the data necessary for understanding distributional limits of tree species and predicting future changes in forest composition.

  8. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    PubMed Central

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P < 0.05). Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P < 0.0001) (55% of piñon pines died), and over five times as many standing dead pines were observed in 2012 than in 2009. Juniperus deppeana vonSteudal and Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02) (30.9% and 20.7%, respectively). Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences. PMID:24949231

  9. Initialization Method for Grammar-Guided Genetic Programming

    NASA Astrophysics Data System (ADS)

    García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.

    This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.

  10. How mammalian predation contributes to tropical tree community structure.

    PubMed

    Paine, C E Timothy; Beck, Harald; Terborgh, John

    2016-12-01

    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.

  11. Climatic correlates of tree mortality in water- and energy-limited forests

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  12. Climatic correlates of tree mortality in water- and energy-limited forests.

    PubMed

    Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  13. Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests

    PubMed Central

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118

  14. Density-dependent vulnerability of forest ecosystems to drought

    USGS Publications Warehouse

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.

    2017-01-01

    1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.

  15. Revisiting drought impact on tree mortality and carbon fluxes in ORCHIDEE-CAN DGVM

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Bartlett, M. K.; Sack, L.; Poulter, B.; Ciais, P.

    2016-12-01

    In the past decade, two extreme droughts in the Amazon rainforest led to a perturbation of carbon cycle dynamics and forest structure, partly through an increase in tree mortality. While there is a relatively strong consensus in CMIP5 projections for an increase in both frequency and intensity of droughts across the Amazon, the potential for forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems and carbon cycle feedbacks. Two long-term through fall exclusion experiments (TFE) provided novel observations of Amazonian ecosystem responses under drought. These experiments also provided a great opportunity to evaluate and improve models' behavior under drought. While current DGVMs use a wide array of algorithms to represent drought effect on ecosystem, most are associated with large uncertainty for representing drought-induced mortality, and require updating to include current information of physiological processes. During very strong droughts, the leaves desiccate and stems may undergo catastrophic embolism. However, even before that point, stomata close, to minimize excessive water loss and risk of hydraulic failure, which reduces carbon assimilation. Here, we describe a new parameterization of the stomatal conductance and mortality processes induced by drought using the ORCHIDEE-CAN dynamic vegetation model and test it using the two TFE results. We implemented a direct climate effect on mortality through catastrophic stem embolism using a new hydraulic architecture to represent the hydraulic potential gradient from the soil to the leaves based on vulnerability curves, and tree capacitance. In addition, growth primary productivity and transpiration are down-regulated by the hydraulic architecture in case of drought through stomatal conductance, which depends on the hydraulic potential of the leaf. We also explored the role of non structural carbohydrates (NSC) on hydraulic failure and mortality following the idea that stored NSC serves a critical osmotic function. Our results suggest that models have the capacity to represent drought induced individual mortality from a mechanistic perspective allowing a better understanding of the drought impacts on carbon cycle and forest structure in the tropics.

  16. Impact of Climate Variability on Forest Dynamics in Eastern Amazon: the Role of Large-Scale Droughts, Local Droughts, and Other Disturbances

    NASA Astrophysics Data System (ADS)

    Longo, M.; Hayek, M.; Alves, L. F.; Bonal, D.; Camargo, P. B.; Restrepo-Coupe, N.; Fitzjarrald, D. R.; Knox, R. G.; Saleska, S. R.; da Silva, R.; Stark, S.; Tapajos, R.; Wiedemann, K. T.; Moorcroft, P. R.; Wofsy, S. C.

    2012-12-01

    Droughts in the Amazon - especially in the southern and eastern regions - are likely to become more frequent and severe with climate change, potentially resulting in significant losses of biomass. Therefore, understanding the ecosystem response to past events, such as the major Amazonian drought of 2005, is fundamental to forecast the ecosystem resilience to extreme droughts in case they become more frequent. In this study we evaluate whether and how large-scale droughts affected the forest dynamics both in terms of productivity and in mortality, and what is the relative contribution of other factors, such as windthrow and smaller local droughts, to explain the observed dynamics. We focus on two sites in Eastern Amazon: Tapajos National Forest near Santarem, Brazil (S67), and Guyaflux tower at Paracou Field Station in French Guiana (GYF). We analyzed site-level observations from eddy flux towers, biometric measurements, and simulated the environment with the Ecosystem Demography Model, version 2 (ED2). This model has the advantage to represent the forest structure in size and functional type, and also biophysical processes within and above canopy, making comparisons with observations more direct. Preliminary results indicate that while the large-scale 2005 drought influenced productivity at both sites, local droughts and windthrow had also a significant contribution to the variation in productivity and mortality rates. Mortality in S67 increased significantly between 2005 and 2007, and was slightly higher in GYF between 2006 and 2008. In both cases, however, higher incidence of uprooted and broken trees suggests a significant contribution from windthrow to mortality. In S67, preliminary simulations using ED2 indicate that water stress reduced productivity during a local but severe drought at the end of 2006, followed by an increase in mortality particularly among trees with diameter at breast height less than 35 cm and early successional trees. In GYF, both ED2 and observations show decline in productivity late in the 2008 dry season, which was longer and drier than average, although the impact on mortality was negligible.

  17. Effects of tree-to-tree variations on sap flux-based transpiration estimates in a forested watershed

    NASA Astrophysics Data System (ADS)

    Kume, Tomonori; Tsuruta, Kenji; Komatsu, Hikaru; Kumagai, Tomo'omi; Higashi, Naoko; Shinohara, Yoshinori; Otsuki, Kyoichi

    2010-05-01

    To estimate forest stand-scale water use, we assessed how sample sizes affect confidence of stand-scale transpiration (E) estimates calculated from sap flux (Fd) and sapwood area (AS_tree) measurements of individual trees. In a Japanese cypress plantation, we measured Fd and AS_tree in all trees (n = 58) within a 20 × 20 m study plot, which was divided into four 10 × 10 subplots. We calculated E from stand AS_tree (AS_stand) and mean stand Fd (JS) values. Using Monte Carlo analyses, we examined potential errors associated with sample sizes in E, AS_stand, and JS by using the original AS_tree and Fd data sets. Consequently, we defined optimal sample sizes of 10 and 15 for AS_stand and JS estimates, respectively, in the 20 × 20 m plot. Sample sizes greater than the optimal sample sizes did not decrease potential errors. The optimal sample sizes for JS changed according to plot size (e.g., 10 × 10 m and 10 × 20 m), while the optimal sample sizes for AS_stand did not. As well, the optimal sample sizes for JS did not change in different vapor pressure deficit conditions. In terms of E estimates, these results suggest that the tree-to-tree variations in Fd vary among different plots, and that plot size to capture tree-to-tree variations in Fd is an important factor. This study also discusses planning balanced sampling designs to extrapolate stand-scale estimates to catchment-scale estimates.

  18. Quantitative assessment of building fire risk to life safety.

    PubMed

    Guanquan, Chu; Jinhua, Sun

    2008-06-01

    This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.

  19. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks.

    PubMed

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-13

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  20. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  1. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    PubMed Central

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation–atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10–13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest. PMID:28287104

  2. Nonverbal behavior correlated with the shaped verbal behavior of children

    PubMed Central

    Catania, A. Charles; Lowe, C. Fergus; Horne, Pauline

    1990-01-01

    Children under 6 years old pressed on response windows behind which stimuli appeared (star or tree). Presses occasionally lit lamps arranged in a column; a present was delivered when all lamps were lit. A random-ratio schedule in the presence of star alternated with a random-interval schedule in the presence of tree. These contingencies usually did not produce respective high and low response rates in the presence of star and tree, but the shaping of verbal behavior (e.g., “press a lot without stopping” or “press and wait”) was sometimes accompanied by corresponding changes in response rate. Verbal shaping was accomplished between schedule components during verbal interactions between the child and a hand-puppet, Garfield the Cat, and used social consequences such as enthusiastic reactions to what the child had said as well as concrete consequences such as delivery of extra presents. Variables that may constrain the shaping of verbal behavior in children seem to include the vocabulary available to the child and the functional properties of that vocabulary; the correlation between rates of pressing and what the child says about them may depend upon such variables. ImagesFig. 2 PMID:22477603

  3. High gene flow in epiphytic ferns despite habitat loss and fragmentation.

    PubMed

    Winkler, Manuela; Koch, Marcus; Hietz, Peter

    2011-01-01

    Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata , is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron , is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.

  4. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from leaf to canopy.

  5. Towards quantifying uncertainty in predictions of Amazon 'dieback'.

    PubMed

    Huntingford, Chris; Fisher, Rosie A; Mercado, Lina; Booth, Ben B B; Sitch, Stephen; Harris, Phil P; Cox, Peter M; Jones, Chris D; Betts, Richard A; Malhi, Yadvinder; Harris, Glen R; Collins, Mat; Moorcroft, Paul

    2008-05-27

    Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple 'big-leaf' approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth.

  6. Unravelling the limits to tree height: a major role for water and nutrient trade-offs.

    PubMed

    Cramer, Michael D

    2012-05-01

    Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.

  7. Introduction to the special issue: Tree invasions: towards a better understanding of their complex evolutionary dynamics.

    PubMed

    Hirsch, Heidi; Richardson, David M; Le Roux, Johannes J

    2017-05-01

    Many invasive plants show evidence of trait-based evolutionary change, but these remain largely unexplored for invasive trees. The increasing number of invasive trees and their tremendous impacts worldwide, however, illustrates the urgent need to bridge this knowledge gap to apply efficient management. Consequently, an interdisciplinary workshop, held in 2015 at Stellenbosch University in Stellenbosch, South Africa, brought together international researchers to discuss our understanding of evolutionary dynamics in invasive trees. The main outcome of this workshop is this Special Issue of AoB PLANTS . The collection of papers in this issue has helped to identify and assess the evolutionary mechanisms that are likely to influence tree invasions. It also facilitated expansion of the unified framework for biological invasions to incorporate key evolutionary processes. The papers cover a wide range of evolutionary mechanisms in tree genomes (adaptation), epigenomes (phenotypic plasticity) and their second genomes (mutualists), and show how such mechanisms can impact tree invasion processes and management. The special issue provides a comprehensive overview of the factors that promote and mitigate the invasive success of tree species in many parts of the world. It also shows that incorporating evolutionary concepts is crucial for understanding the complex drivers of tree invasions and has much potential to improve management. The contributions of the special issue also highlight many priorities for further work in the face of ever-increasing tree invasions; the complexity of this research needs calls for expanded interdisciplinary research collaborations.

  8. Ecological Implications of a Flower Size/Number Trade-Off in Tropical Forest Trees

    PubMed Central

    Kettle, Chris J.; Maycock, Colin R.; Ghazoul, Jaboury; Hollingsworth, Pete M.; Khoo, Eyen; Sukri, Rahayu Sukmaria Haji; Burslem, David F. R. P.

    2011-01-01

    Background In angiosperms, flower size commonly scales negatively with number. The ecological consequences of this trade-off for tropical trees remain poorly resolved, despite their potential importance for tropical forest conservation. We investigated the flower size number trade-off and its implications for fecundity in a sample of tree species from the Dipterocarpaceae on Borneo. Methodology/Principal Findings We combined experimental exclusion of pollinators in 11 species, with direct and indirect estimates of contemporary pollen dispersal in two study species and published estimates of pollen dispersal in a further three species to explore the relationship between flower size, pollinator size and mean pollen dispersal distance. Maximum flower production was two orders of magnitude greater in small-flowered than large-flowered species of Dipterocarpaceae. In contrast, fruit production was unrelated to flower size and did not differ significantly among species. Small-flowered species had both smaller-sized pollinators and lower mean pollination success than large-flowered species. Average pollen dispersal distances were lower and frequency of mating between related individuals was higher in a smaller-flowered species than a larger-flowered confamilial. Our synthesis of pollen dispersal estimates across five species of dipterocarp suggests that pollen dispersal scales positively with flower size. Conclusions and Their Significance Trade-offs embedded in the relationship between flower size and pollination success contribute to a reduction in the variance of fecundity among species. It is therefore plausible that these processes could delay competitive exclusion and contribute to maintenance of species coexistence in this ecologically and economically important family of tropical trees. These results have practical implications for tree species conservation and restoration. Seed collection from small-flowered species may be especially vulnerable to cryptic genetic erosion. Our findings also highlight the potential for differential vulnerability of tropical tree species to the deleterious consequences of forest fragmentation. PMID:21408110

  9. Urban landscapes and the western drought

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.

    2015-12-01

    Cities in the western U.S. are heavily irrigated and have increasingly been the focus of water conservation measures. Even cities that previously relied only on voluntary reductions in outdoor water use have been employing stricter mandates to limit irrigation. These cities are in a period of transition and the outcomes are far from certain. There are many tradeoffs in the environmental and social consequences of different urban water management strategies. Here we review recent work studying these tradeoffs in cities of southern California and Utah. We have measured the water use of different types of landscapes ranging from turfgrass to urban trees to xeriscapes. Unshaded turfgrass shows evapotranspiration (ET) rates close to potential ET; however, shaded turfgrass uses substantially less water. On the other hand, plants used in xeriscapes may have surprisingly high transpiration rates if they are heavily watered. In addition, unshaded xeriscapes may substantially alter surface energy balance and have unintended consequences for urban climate. Through whole tree sap flux measurements and scaling of ET estimates, we have found that urban trees generally use less water than turfgrass, and provide additional cooling benefits through interception of radiation. Current measures to reduce outdoor water use through irrigation restrictions and turfgrass removal programs do not include safeguards to ensure that urban trees receive adequate irrigation, and the future of urban tree canopies in western cities is highly uncertain. Although trees and other deep-rooted vegetation may require less irrigation than turfgrass and better withstand periods of drought, this vegetation must still be appropriate managed with water inputs informed by an understanding of plant water relations and urban subsurface hydrology. On the current trajectory, cities may see a substantial loss of vegetative cover and leaf area unless an understanding of ecohydrology is better integrated into strategies for long-term stewardship of urban landscapes in a changing climate.

  10. Positive versus negative environmental impacts of tree encroachment in South Africa

    NASA Astrophysics Data System (ADS)

    Grellier, Séraphine; Ward, David; Janeau, Jean-Louis; Podwojewski, Pascal; Lorentz, Simon; Abbadie, Luc; Valentin, Christian; Barot, Sébastien

    2013-11-01

    Woody plant encroachment in grasslands is a worldwide phenomenon. Despite many studies, the consequences of woody plant encroachment on sub-canopy vegetation and soil properties are still unclear. To better understand the impacts of trees on grassland properties we examined the following questions using a mountainous sub-tropical grassland of South Africa encroached by an indigenous tree, Acacia sieberiana as a case study: (1) Do trees increase sub-canopy herbaceous diversity, quality and biomass and soil nitrogen content? (2) Do large trees have a stronger effect than medium-sized trees on grass and soil properties? (3) Does the impact of trees change with the presence of livestock and position of trees in a catena? We studied grass and non-graminoid species diversity and biomass, grass quality and soil properties during the wet season of 2009. Nitrogen in grass leaves, soil cation exchange capacity and calcium and magnesium ion concentrations in the soil increased under tall Acacia versus open areas. Medium-sized Acacia decreased the gross energy content, digestibility and neutral detergent fibre of grasses but increased the species richness of non-graminoids. Tall and medium Acacia trees were associated with the presence of Senecio inaequidens, an indigenous species that is toxic to horses and cattle. The presence of livestock resulted in a decrease in herbaceous root biomass and an increase in soil carbon and leaf biomass of grass under Acacia. Tree position in the catena did not modify the impact of trees on the herbaceous layer and soil properties. For management of livestock we recommend retaining tall Acacia trees and partially removing medium-sized Acacia trees because the latter had negative effects on grass quality.

  11. Phenology as used for studies on sustainable management in tree-line areas

    NASA Astrophysics Data System (ADS)

    Wielgolaski, Frans Emil

    2014-05-01

    Tree-line ecosystems are heavily impacted by changes in climate and land use, resulting in land abandonment and reforestation of formerly treeless areas, often with strong consequences for the society. An ongoing EU COST Action (SENSFOR, 21 countries) aims at integrating scientific results and methods related to biodiversity conservation and sustainable management of natural resources by such changes, and plan also to develop strategies for preserving ecosystem services, in sensitive mountain areas in Europe. In this work phenology is important as a good indicator on changes in the climate by using data e.g. on timing of bud break in spring at woody plants. The Action assesses the extent of contemporary and future environmental changes in European tree-line areas, and will estimate their resilience to changes, e.g. the survival of germinating new plant species at increased tree-line elevation.

  12. Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).

    PubMed

    da Silva, M N; Patton, J L

    1993-09-01

    Patterns of evolutionary relationships among haplotype clades of sequences of the mitochondrial cytochrome b DNA gene are examined for five genera of arboreal rodents of the Caviomorph family Echimyidae from the Amazon Basin. Data are available for 798 bp of sequence from a total of 24 separate localities in Peru, Venezuela, Bolivia, and Brazil for Mesomys, Isothrix, Makalata, Dactylomys, and Echimys. Sequence divergence, corrected for multiple hits, is extensive, ranging from less than 1% for comparisons within populations of over 20% among geographic units within genera. Both the degree of differentiation and the geographic patterning of the variation suggest that more than one species composes the Amazonian distribution of the currently recognized Mesomys hispidus, Isothrix bistriata, Makalata didelphoides, and Dactylomys dactylinus. There is general concordance in the geographic range of haplotype clades for each of these taxa, and the overall level of differentiation within them is largely equivalent. These observations suggest that a common vicariant history underlies the respective diversification of each genus. However, estimated times of divergence based on the rate of third position transversion substitutions for the major clades within each genus typically range above 1 million years. Thus, allopatric isolation precipitating divergence must have been considerably earlier than the late Pleistocene forest fragmentation events commonly invoked for Amazonian biota.

  13. Disease concepts and treatment by tribal healers of an Amazonian forest culture.

    PubMed

    Herndon, Christopher N; Uiterloo, Melvin; Uremaru, Amasina; Plotkin, Mark J; Emanuels-Smith, Gwendolyn; Jitan, Jeetendra

    2009-10-12

    The extensive medicinal plant knowledge of Amazonian tribal peoples is widely recognized in the scientific literature and celebrated in popular lore. Despite this broad interest, the ethnomedical systems and knowledge of disease which guide indigenous utilization of botanical diversity for healing remain poorly characterized and understood. No study, to our knowledge, has attempted to directly examine patterns of actual disease recognition and treatment by healers of an Amazonian indigenous culture. The establishment of traditional medicine clinics, operated and directed by elder tribal shamans in two remote Trio villages of the Suriname rainforest, presented a unique investigational opportunity. Quantitative analysis of clinic records from both villages permitted examination of diseases treated over a continuous period of four years. Cross-cultural comparative translations were articulated of recorded disease conditions through ethnographic interviews of elder Trio shamans and a comprehensive atlas of indigenous anatomical nomenclature was developed. 20,337 patient visits within the period 2000 to 2004 were analyzed. 75 disease conditions and 127 anatomical terms are presented. Trio concepts of disease and medical practices are broadly examined within the present and historical state of their culture. The findings of this investigation support the presence of a comprehensive and highly formalized ethnomedical institution within Trio culture with attendant health policy and conservation implications.

  14. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C andmore » {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.« less

  15. Amazonian Amphibian Diversity Is Primarily Derived from Late Miocene Andean Lineages

    PubMed Central

    Santos, Juan C; Coloma, Luis A; Summers, Kyle; Caldwell, Janalee P; Ree, Richard; Cannatella, David C

    2009-01-01

    The Neotropics contains half of remaining rainforests and Earth's largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Chocó resulted from repeated immigrations, with radiations at <10.0 million years ago (MYA), rather than in situ diversification. In contrast, the Andes, Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved. PMID:19278298

  16. Late Quaternary landscape evolution of northeastern Amazonia from pollen and diatom records.

    PubMed

    Castro, Darciléa F; De Oliveira, Paulo E; Rossetti, Dilce F; Pessenda, Luiz C R

    2013-03-01

    The main goal of this study was to reconstruct the Late Pleistocene-Holocene floristic composition in an area of the northern Brazilian Amazonia, comparing the results with other Amazonian localities in order to discuss the factors that have influenced phytophysiognomic changes over this time period. The work in eastern Marajó Island at the mouth of the Amazonas River was approached based on analysis of 98 pollen and diatom samples from core data distributed along a proximal to distal transect of a paleoestuarine system. The results indicated high concentration of Rhizophora, associated with arboreal pollen grains typical of the modern Amazonian rainforest during the last 40,000 cal yrs BP. Pollen composition also included wetland herbs. Diatoms were dominated by marine and fresh water taxa. Wetland forest, mangrove and, subordinately herbs remained constant during most of the latest Pleistocene-early/middle Holocene. At 5,000 cal yrs BP, there was a distinguished change from forest and mangrove to wet grassland savanna due to sea level fluctuation. As marine influence decreased, the estuary gave rise to fresh water lacustrine and swamp environments, with establishment of herbaceous campos. A main conclusion from this study is that solely the occurrence of herbaceous savanna can not be used as a definitive indicator of past dry climates in Amazonian areas.

  17. Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests.

    PubMed

    Baker, Timothy R; Vela Díaz, Dilys M; Chama Moscoso, Victor; Navarro, Gilberto; Monteagudo, Abel; Pinto, Ruy; Cangani, Katia; Fyllas, Nikolaos M; Lopez Gonzalez, Gabriela; Laurance, William F; Lewis, Simon L; Lloyd, Jonathan; Ter Steege, Hans; Terborgh, John W; Phillips, Oliver L

    2016-03-01

    Understanding the resilience of moist tropical forests to treefall disturbance events is important for understanding the mechanisms that underlie species coexistence and for predicting the future composition of these ecosystems. Here, we test whether variation in the functional composition of Amazonian forests determines their resilience to disturbance.We studied the legacy of natural treefall disturbance events in four forests across Amazonia that differ substantially in functional composition. We compared the composition and diversity of all free-standing woody stems 2-10 cm diameter in previously disturbed and undisturbed 20 × 20 m subplots within 55, one-hectare, long-term forest inventory plots.Overall, stem number increased following disturbance, and species and functional composition shifted to favour light-wooded, small-seeded taxa. Alpha-diversity increased, but beta-diversity was unaffected by disturbance, in all four forests.Changes in response to disturbance in both functional composition and alpha-diversity were, however, small (2 - 4% depending on the parameter) and similar among forests. Synthesis . This study demonstrates that variation in the functional composition of Amazonian forests does not lead to large differences in the response of these forests to treefall disturbances, and overall, these events have a minor role in maintaining the diversity of these ecosystems.

  18. Disease concepts and treatment by tribal healers of an Amazonian forest culture

    PubMed Central

    Herndon, Christopher N; Uiterloo, Melvin; Uremaru, Amasina; Plotkin, Mark J; Emanuels-Smith, Gwendolyn; Jitan, Jeetendra

    2009-01-01

    Background The extensive medicinal plant knowledge of Amazonian tribal peoples is widely recognized in the scientific literature and celebrated in popular lore. Despite this broad interest, the ethnomedical systems and knowledge of disease which guide indigenous utilization of botanical diversity for healing remain poorly characterized and understood. No study, to our knowledge, has attempted to directly examine patterns of actual disease recognition and treatment by healers of an Amazonian indigenous culture. Methods The establishment of traditional medicine clinics, operated and directed by elder tribal shamans in two remote Trio villages of the Suriname rainforest, presented a unique investigational opportunity. Quantitative analysis of clinic records from both villages permitted examination of diseases treated over a continuous period of four years. Cross-cultural comparative translations were articulated of recorded disease conditions through ethnographic interviews of elder Trio shamans and a comprehensive atlas of indigenous anatomical nomenclature was developed. Results 20,337 patient visits within the period 2000 to 2004 were analyzed. 75 disease conditions and 127 anatomical terms are presented. Trio concepts of disease and medical practices are broadly examined within the present and historical state of their culture. Conclusion The findings of this investigation support the presence of a comprehensive and highly formalized ethnomedical institution within Trio culture with attendant health policy and conservation implications. PMID:19821968

  19. Ecosystem Consequences of Prolonged Ozone Pollution in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Cousins, S.; Battles, J. J.; Cisneros, R.; Esperanza, A.; Swenson, D.

    2015-12-01

    While acute O3 exposure is widely known to damage plant tissues, the chronic effects on long lived organisms such as trees remain unclear. In the southern Sierra Nevada, O3 pollution has afflicted pine-dominated forests for over 40 years. Here we report the results of a long-term study of O3 impact on tree injury, growth, and mortality. Our study employed a network of forest plots along a gradient of O3 pollution with recurring measurements from 1991-2012. Over the same period and locations, summer O3 was monitored via partnership with USNPS and USFS, making this one of the longest known ecosystem studies of O3 pollution and its effects. We found that exposure at the most polluted sites declined 33%, from a W126 index of 20.12 ppm-hrs in 1992 to 13.5 ppm-hrs in 2012. The severity of foliar pollution damage at these sites also declined, from 43.9 on the 0-100 Ozone Injury Index (OII) scale to 34.2, a drop of 22%. At locations with lower O3 exposure, damage declined from OII of 16.9 to 9.2. Mean annual tree mortality rates over the 20 year period, calculated with a profile likelihood approach, were 0.5%/yr (95% CI 0.3 to 0.8 %/yr). This rate is similar to that of healthy canopy trees in similar unpolluted stands. However, low and declining tree growth rates reveal possible ecosystem impacts of prolonged exposure to pollution. Across affected sites, mean relative growth rates were 1.1%/yr in 1991-2000, and just 0.9%/yr in 2000-2011, a decline of 15.6% in the second decade. Initial analyses suggest that tree damage is positively correlated with June-October O3, as indicated by previous studies. Further analysis will explore the drivers of ecosystem impacts and roles of other natural and anthropogenic stressors, including variation in climatic water deficit. Understanding the consequences of prolonged O3 exposure on both individual trees and complex forest ecosystems helps identify the hidden environmental costs of tropospheric O3 and potential benefits of cleaner air.

  20. Preservation of Late Amazonian Mars ice and water-related deposits in a unique crater environment in Noachis Terra: Age relationships between lobate debris tongues and gullies

    NASA Astrophysics Data System (ADS)

    Morgan, Gareth A.; Head, James W.; Marchant, David R.

    2011-01-01

    The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.

  1. APW path traced for the Guiana Shield (2070-1960 Ma) and Paleogeographic Implications: Paleomagnetic data from the 1.98-1.96 Ga Surumu Group (Northern Amazonian Craton)

    NASA Astrophysics Data System (ADS)

    Bispo-Santos, F.; Dagrella Filho, M. S.; Reis, N. J.; Trindade, R. I.

    2013-05-01

    Definition of continental paleogeography for times prior to formation of Columbia Supercontinent (1900-1850 Ma) is very complex, since amalgamation of some continental blocks of Earth was still in progress, as in the case of Laurentia, Baltica and Amazonian Craton. So, paleogeographic models proposed for this time are still very speculative and/or subjective. The use of the paleomagnetic technique tracing apparent polar wander (APW) paths for the various cratonic blocks can contribute to understand the continental amalgamation and breakup, especially for times where all created oceanic lithosphere was fully consumed. In this study, we present the paleomagnetic data obtained for samples collected from 39 sites from the well-dated 1980-1960 Ma (U-Pb) volcanic rocks belonging to the Surumu Group, cropping out in the northern Roraima State (Guiana Shield, Amazonian Craton). AF and thermal treatment revealed northwestern directions with moderate downward inclinations on samples from 20 out of the 39 analyzed sites. Site mean directions cluster around the mean, Dm = 298.6°; Im = 39.4° (N = 20; α95 = 10.1°), which yielded a key paleomagnetic pole (SG) for the Guiana Shield, located at 234.8°E, 27.4°N (A95 = 9.8°). Magnetic mineralogy experiments show that the magnetization of these rocks, probably of primary origin, is carried by magnetite and/or hematite. The SG pole contributes to a better fit of the APW path traced for Guiana Shield during the Paleoproterozoic (2070-1960 Ma). Comparison with the APW path traced for the West-Africa Craton for the same time interval suggests that these cratonic blocks were linked at 2000-1960 Ma ago, forming a paleogeography in which the Guri (Guiana Shield) and Sassandra (West-Africa Craton) shear zones were aligned as suggested in previous geologic models. KEYWORDS: Paleoproterozoic, Paleomagnetism, APWP, Amazonian Craton, Surumu Group.

  2. The Fate of Amazonian Ecosystems over the Coming Century Arising from Changes in Climate, Atmospheric CO2 and Land-use

    NASA Astrophysics Data System (ADS)

    Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.

    2014-12-01

    There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.

  3. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia

    NASA Astrophysics Data System (ADS)

    LäHteenoja, Outi; Page, Susan

    2011-06-01

    Very little information exists on Amazonian peatlands with most studies on tropical peatlands concentrating on Southeast Asia. Here we describe diversity of Amazonian peatland ecosystems and consider its implications for the global diversity of tropical peatland ecosystems. Nine study sites were selected from within the most extensive wetland area of Peruvian Amazonia: the 120,000 km2 Pastaza-Marañón basin. Peat thickness was determined every 500 m from the edge toward the center of each site, and peat samples were collected from two cores per site. Samples from the entire central core and surface samples from the other core were analyzed for nutrient content. Topography of four peat deposits was measured. In order to study differences in vegetation, pixel values were extracted from a satellite image. The surface peat nutrient content of the peatlands varied from very nutrient-rich to nutrient-poor. Two of the peatlands measured for their topography were domed (5.4 and 5.8 m above the stream), one was gently sloping (1.4 m above the stream), and one was flat and occurred behind a 7 m high levee. Five different peatland vegetation types were detected on the basis of pixel values derived from the satellite image. The peat cores had considerable variation in nutrient content and showed different developmental pathways. In summary, the Pastaza-Marañón basin harbors a considerable diversity of previously undescribed peatland ecosystems, representing a gradient from atmosphere-influenced, nutrient-poor ombrotrophic bogs through to river-influenced, nutrient-rich swamps. Their existence affects the habitat diversity, carbon dynamics, and hydrology of the Amazonian lowlands, and they also provide an undisturbed analog for the heavily disturbed peatlands of Southeast Asia. Considering the factors threatening the Amazonian lowlands, there is an urgent need to investigate and conserve these peatland ecosystems, which may in the near future be among the very few undisturbed tropical ombrotrophic bogs remaining in the world.

  4. Tropical small streams are a consistent source of methane

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Waldron, Susan

    2013-04-01

    To date only a few studies have quantified diffusive methane emissions from headwater streams therefore the magnitude and seasonal variation of these emissions remain poorly understood. Here we present results from two Western Amazonian small streams (first and second order) in Tambopata National Reserve, Peru. Towards the end of wet season, April-May 2012, the streams were sampled using a static floating chamber to accumulate methane. Samples were drawn from the headspace twice daily over period of four days on three separate occasions. The methane concentrations were analysed using a gas chromatograph and the linear part of concentration increase used to calculate the flux rates. The streams were consistently outgassing methane. The seasonally active first order stream outgassed 6 ±2.4 nmol CH4-C m-2 s-1 and the second order stream 20 ±4.0 nmol CH4-C m-2 s-1. The latter flux rate is comparable to fluxes measured from seasonally flooded Amazonian forest in previous studies. The range measured in our streams is comparable to previous results in temperate streams and the lower end of fluxes observed in some peatland streams. The only other study on Amazonian small streams detected methane fluxes that were 100 times greater than those measured here. Depending on the density of small streams in Amazonian basin and the prevalent flux rate, the fluvial methane fluxes may constitute a significant global warming potential. Upscaling to the Amazon basin, assuming small stream density of 0.2 %, as was found at our field site, and the flux rates detected, yields an annual global warming potential equal to approximately 1.5 Mt of CO2 which is of minor importance compared to aquatic CO2-C flux of 500 Mt yr-1 from the basin. However, if the higher fluxes detected in the previous study were prevalent, the basin wide methane flux could become significant. Further studies are needed to establish the stream density in the Amazon basin and typical methane flux rates.

  5. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by the American Geophysical Union.

  6. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest.

    PubMed

    Cadete, Raquel M; Melo, Monaliza A; Dussán, Kelly J; Rodrigues, Rita C L B; Silva, Silvio S; Zilli, Jerri E; Vital, Marcos J S; Gomes, Fátima C O; Lachance, Marc-André; Rosa, Carlos A

    2012-01-01

    This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L · h to 0.75 g/L · h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L · h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.

  7. Ecosystem state shifts during long-term development of an Amazonian peatland.

    PubMed

    Swindles, Graeme T; Morris, Paul J; Whitney, Bronwen; Galloway, Jennifer M; Gałka, Mariusz; Gallego-Sala, Angela; Macumber, Andrew L; Mullan, Donal; Smith, Mark W; Amesbury, Matthew J; Roland, Thomas P; Sanei, Hamed; Patterson, R Timothy; Sanderson, Nicole; Parry, Lauren; Charman, Dan J; Lopez, Omar; Valderamma, Elvis; Watson, Elizabeth J; Ivanovic, Ruza F; Valdes, Paul J; Turner, T Edward; Lähteenoja, Outi

    2018-02-01

    The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  8. Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations.

    PubMed

    Soares, José Maria; Gomes, José M; Anjos, Marcelo R; Silveira, Josianne N; Custódio, Flavia B; Gloria, M Beatriz A

    2018-07-01

    The objective of this study was to quantify total mercury in highly popular Amazonian fish pacu, curimatã, jaraqui, and sardinha from the Madeira River and to estimate the exposure to methylmercury from fish consumption. The samples were obtained from two locations - Puruzinho Igarapé and Santa Rosa - near Humaitá, Amazonia, Brazil in two seasons of 2015 (high and low waters). The fish were identified, weighed and measured, and lipids were quantified. Total mercury was determined by gold amalgamation-atomic absorption spectrometry. Mean levels were used to calculate exposure of Amazonian and riverine populations. There was significant correlation (p < 0.05) between length × weight for all fish; length × lipid and weight × lipid were significant only for pacu. Total mercury levels varied along muscle tissue for the fish, except for sardinha; therefore muscle from the dorsal area along the fish were sampled, homogenized and used for analysis. The levels of total mercury varied from 0.01 to 0.46 mg/kg, with higher median levels in sardinha (0.24 mg/kg), followed by curimatã (0.16 mg/kg), jaraqui (0.13 mg/kg) and pacu (0.04 mg/kg), corresponding with the respective feeding habits along the trophic chain. Total mercury levels were not affected by the location of fish capture and by high and low waters seasons. Total mercury correlated significantly with length and weight for jaraqui and with length for sardinha (negative correlation). Total mercury levels in fish complied with legislation; however, exposures to methylmercury from fish consumption overpassed the safe intake reference dose for sardinha for Amazonians; however, for the riverine communities, all of the fish would cause potential health risk, mainly for children and women of childbearing age. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Insects Extend the Consequences of a Warm, Dry Summer for Tree Growth in the Subsequent Summer near the Arctic Treeline in Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, P.; Sveinbjornsson, B.

    2008-12-01

    Treeline positions have important implications for surface energy budgets and carbon cycling in high latitude environments. Warming temperatures during the 20th century have been associated with both positive and negative growth trends in treeline white spruce. It has been suggested that negative growth trends may reflect the increasing importance of drought stress as a constraint on tree growth, although direct observations of water stress near the treeline are lacking. We set out to develop a more mechanistic understanding of environmental controls on gas exchange physiology and growth of white spruce near the Arctic treeline in Alaska. Our three-year study was carried out on a riverside terrace along the Agashashok River in Noatak National Preserve. The terrace is capped with a layer of sand/silt that grades from 10 cm depth at the upstream end to 45 cm depth at the downstream end. White spruce of similar size occur along the gradient at similar density, providing an opportunity to examine the role of parent material depth as a control on tree physiology and growth. Air temperatures during the 2006 growing season were near normal, there was no evidence of water stress and white spruce branch extension growth was near the long-term average. The 2007 growing season was exceptionally warm and dry. Stomatal closure was observed during mid-July throughout most of the diurnal cycle in trees growing on less than 30 cm of parent material. The warm, dry conditions and water-stress in the trees may have precipitated a major insect outbreak, which affected nearly all mature trees in the landscape. Branch extension growth in 2007 was reduced to 70 percent of that observed during the 2005 and 2006 growing seasons. Air temperatures during the 2008 growing season returned to near normal. There was no evidence of water stress, but the insect outbreak persisted and branch extension growth did not recover, remaining similar to that observed in 2007. Results of our study highlight the importance of extreme events in shaping the complexity of tree-insect-environment relations at the Arctic treeline and offer an important caution to studies that correlate tree growth with climate. Unfavorable climate conditions in one year may have consequences that persist beyond the return to favorable conditions.

  10. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal Crater deposit thicknesses (~50 m) cannot fill the craters in a time period compatible with the interpreted formation times of the Pedestal Crater mantled ice layers. We use a representative obliquity solution to drive an ice flow model and show that a cyclical pattern of multiply recurring layers can both fill the craters with a significant volume of ice, as well as transport debris from the crater walls out into the central regions of the craters. The cyclical pattern of waxing and waning mantling layers results in a rippled pattern of surface debris extending out into the crater interiors that would manifest itself as an observable concentric pattern, comparable in appearance to concentric crater fill. In this scenario, the formation of mantling sublimation till layers seals the accumulating ice and sequesters it from significant temperature variations at diurnal, annual and spin-axis/orbital cycle time scales, to produce ancient ice records preserved today below CCF crater floors. Lack of meltwater features associated with concentric crater fill provides evidence that the Late Amazonian climate did not exceed the melting temperature in the mid- to high-latitudes for any significant period of time. Continued sequestration of ice with time in CCF and related deposits (lobate debris aprons and lineated valley fill) further reduces the already supply-limited polar ice sources, suggesting that there has been a declining reservoir of available ice with each ensuing glacial period. Together, these deposits represent a candidate library of climate chemistry and global change dating from the Late Amazonian, and a non-polar water resource for future exploration.

  11. Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signalling pathways during ethephon stimulation and consequent Tapping Panel Dryness.

    PubMed

    Montoro, Pascal; Wu, Shuangyang; Favreau, Bénédicte; Herlinawati, Eva; Labrune, Cécile; Martin-Magniette, Marie-Laure; Pointet, Stéphanie; Rio, Maryannick; Leclercq, Julie; Ismawanto, Sigit; Kuswanhadi

    2018-05-31

    Tapping Panel Dryness (TPD) affects latex production in Hevea brasiliensis. This physiological syndrome involves the agglutination of rubber particles, which leads to partial or complete cessation of latex flow. Latex harvesting consists in tapping soft bark. Ethephon can be applied to stimulate latex flow and its regeneration in laticifers. Several studies have reported transcriptome changes in bark tissues. This study is the first report on deep RNA sequencing of latex to compare the effect of ethephon stimulation and TPD severity. Trees were carefully selected for paired-end sequencing using an Illumina HiSeq 2000. In all, 43 to 60 million reads were sequenced for each treatment in three biological replicates (slight TPD trees without ethephon stimulation, and slight and severe TPD trees with ethephon treatment). Differentially expressed genes were identified and annotated, giving 8,111 and 728 in response to ethephon in slight TPD trees and in ethephon-induced severe TPD trees, respectively. A biological network of responses to ethephon and TPD highlighted the major influence of metabolic processes and the response to stimulus, especially wounding and jasmonate depression in TPD-affected trees induced by ethephon stimulation.

  12. Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions.

    PubMed

    Rubert-Nason, Kennedy F; Couture, John J; Gryzmala, Elizabeth A; Townsend, Philip A; Lindroth, Richard L

    2017-11-01

    Anticipated consequences of climate change in temperate regions include early spring warmup punctuated by intermittent hard freezes. Warm weather accelerates leaf flush in perennial woody species, potentially exposing vulnerable young tissues to damaging frosts. We employed a 2 × 6 randomized factorial design to examine how the interplay of vernal (springtime) freeze damage and genetic variation in a hardwood species (Populus tremuloides) influences tree growth, phytochemistry, and interactions with an insect herbivore (Chaitophorus stevensis). Acute effects of freezing included defoliation and mortality. Surviving trees exhibited reduced growth and altered biomass distribution. Reflushed leaves on these trees had lower mass per area, lower lignin concentrations, and higher nitrogen concentrations, altered chemical defence profiles, and supported faster aphid population growth. Many effects varied among plant genotypes and were related with herbivore performance. This study suggests that a single damaging vernal freeze event can alter tree-insect interactions through effects on plant growth and chemistry. Differential responses of various genotypes to freeze damage suggest that more frequent vernal freeze events could also influence natural selection, favouring trees with greater freeze hardiness, and more resistance or tolerance to herbivores following damage. © 2017 John Wiley & Sons Ltd.

  13. Nitrogen Nutrition of Fruit Trees to Reconcile Productivity and Environmental Concerns.

    PubMed

    Carranca, Corina; Brunetto, Gustavo; Tagliavini, Massimo

    2018-01-10

    Although perennial fruit crops represent 1% of global agricultural land, they are of a great economic importance in world trade and in the economy of many regions. The perennial woody nature of fruit trees, their physiological stages of growth, the root distribution pattern, and the presence of herbaceous vegetation in alleys make orchard systems efficient in the use and recycling of nitrogen (N). The present paper intends to review the existing literature on N nutrition of young and mature deciduous and evergreen fruit trees with special emphasis to temperate and Mediterranean climates. There are two major sources of N contributing to vegetative tree growth and reproduction: root N uptake and internal N cycling. Optimisation of the use of external and internal N sources is important for a sustainable fruit production, as N use efficiency by young and mature fruit trees is generally lower than 55% and losses of fertilizer N may occur with the consequent economic and environmental concern. Organic alternatives to mineral N fertilizer like the application of manure, compost, mulching, and cover crops are scarcely used in perennial fruit trees, in spite of the fact that society's expectations call for more sustainable production techniques and the demand for organic fruits is increasing.

  14. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    PubMed

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  15. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    PubMed Central

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  16. Model gives a 3-month warning of Amazonian forest fires

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The widespread drought suffered by the Amazon rain forest in the summer of 2005 was heralded at the time as the drought of the century. Because of the dehydrated conditions, supplemented by slash and burn agricultural practices, the drought led to widespread forest fires throughout the western Amazon, a portion of the rain forest usually too lush to support spreading wildfires. Only 5 years later, the 2005 season was outdone by even more widespread drought, with fires decimating more than 3000 square kilometers of western Amazonian rain forest. Blame for the wildfires has been consistently laid on deforestation and agricultural practices, but a convincing climatological explanation exists as well. (Geophysical Research Letters, doi:10.1029/2011GL047392, 2011)

  17. Updating the Evidence for Oceans on Early Mars

    NASA Technical Reports Server (NTRS)

    Fairen, Alberto G.; Dohm, James M.; Oner, Tayfun; Ruiz, Javier; Rodriguez, Alexis P.; Schulze-Makuch, Dirk; Ormoe, Jens; McKay, Chris P.; Baker, Victor R.; Amils, Ricardo

    2004-01-01

    Different-sized bodies of water have been proposed to have occurred episodically in the lowlands of Mars throughout the planet's history, largely related to major stages of development of Tharsis and/or orbital obliquity. These water bodies range from large oceans in the Noachian-Early Hesperian, to a minor sea in the Late Hesperian, and dispersed lakes during the Amazonian. To evaluate the more recent discoveries regarding the oceanic possibility, here we perform a comprehensive analysis of the evolution of water on Mars, including: 1. Geological assessment of proposed shorelines; 2. A volumetric approximation to the plains-filing proposed oceans; 3. Geochemistry of the oceans and derived mineralogies; 4. Post-oceanic (i.e., Amazonian) evolution of the shorelines; and 5. Ultimate water evolution on Mars.

  18. A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium) from Amazonian Ecuador.

    PubMed

    Guayasamin, Juan M; Cisneros-Heredia, Diego F; Maynard, Ross J; Lynch, Ryan L; Culebras, Jaime; Hamilton, Paul S

    2017-01-01

    Hyalinobatrachium is a behaviorally and morphologically conserved genus of Neotropical anurans, with several pending taxonomic problems. Using morphology, vocalizations, and DNA, a new species from the Amazonian lowlands of Ecuador is described and illustrated. The new species, Hyalinobatrachium yaku sp. n. , is differentiated from all other congenerics by having small, middorsal, dark green spots on the head and dorsum, a transparent pericardium, and a tonal call that lasts 0.27-0.4 s, with a dominant frequency of 5219.3-5329.6 Hz. Also, a mitochondrial phylogeny for the genus is presented that contains the new species, which is inferred as sister to H. pellucidum . Conservation threats to H. yaku sp. n. include habitat destruction and/or pollution mainly because of oil and mining activities.

  19. Helminths of the teiid lizard Kentropyx calcarata (Squamata) from an Amazonian site in western Brazil.

    PubMed

    Avila, R W; da Silva, R J

    2009-09-01

    Despite being conspicuous members of neotropical lizard communities, aspects of the life history of many teiid lizard species are poorly known, especially endoparasites infecting the genus Kentropyx. We studied seven specimens of K. calcarata collected at an Amazonian site in Mato Grosso state, Central Brazil in 2007. Four species of helminth were recovered: Oswaldocruzia sp., Piratuba digiticauda, Physaloptera retusa and Physalopteroides venancioi. Piratuba digiticauda, a body-cavity, parasite had the highest prevalence (42.9%), whereas the stomach parasites P. venancioi and P. retusa presented the highest intensity of infection and abundance, respectively. Moreover, this is the first report of Oswaldocruzia sp., P. digiticauda and P. venancioi in K. calcarata and new locality records for all nematodes were assigned.

  20. Optimisation of biomass productivity of black locust (Robinia pseudoacacia L.) on marginal lands - a case study in Lower Lusatia, NE Germany

    NASA Astrophysics Data System (ADS)

    Seserman, Diana-Maria; Veste, Maik; Freese, Dirk

    2017-04-01

    The profitability of reclaiming post-mining areas depends on the tree biomass productivity and the restoration of ecosystem functions, such as improving soil and water quality. Agroforestry systems, regarded as combined land-use systems of trees and crops, have the ability to facilitate soil development while reducing wind speed, soil erosion and evaporation. Achieving the maximum biomass productivity of the tree stands depends on the corresponding soil conditions and water availability, but is also influenced by stand structure and the competition between individual trees. For this purpose, black locust (Robinia pseudoacacia L.) trees were planted in a Nelder design in 2010, on a reclaimed post-mining site of the open-cast lignite mining in Welzow Süd (Brandenburg, Germany). Black locust is regarded as a drought-adapted tree species and commonly used for the reclamation of former lignite mining sites in Lower Lusatia, Germany. The Nelder design encompasses angles of arc of equal measure and with the same origin traversed by successive circumferences set at a predefined radial distance. Accordingly, a total of 1071 trees were planted in Welzow Süd at the intersection between 63 spokes and 17 circumferences and at densities ranging from 0.4 to 8.0 m2, with the aim of examining the influence of stand density on the tree growth in a timeframe of six years. In order to evaluate the biomass production of the trees and to determine an optimal planting density on a marginal land, various scenarios were assessed with the help of the Yield-SAFE model, a parameter-sparse process-based agroforestry model. The study revealed the consequences of choosing different tree densities on the tree biomass productivity and water use of trees in relation to the competition for light and water. References Keesman KJ, van der Werf W, van Keulen H, 2007. Production ecology of agroforestry systems: A minimal mechanistic model and analytical derivation of the land equivalent ratio. Mathematical Biosciences, vol. 209, pp. 608-623. Mantovani D, Veste M, Böhm C, Vignudelli M, Freese D, 2015. Drought impact on the spatial and temporal variation of growth performance and plant water status of black locust (Robinia pseudoacacia L.) in agroforestry systems in Lower Lusatia (Germany). iForest 8, 743-757. Mantovani D, Veste M, Freese D, 2014. Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water use efficiency. New Zealand Journal of Forestry 44, 29. van der Werf W, Keesman K, Burgess PJ, Graves AR, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma JHN, Dupraz C, 2007. Yield-SAFE: a parameter-sparse process-based dynamic model for predicting resource capture, growth and production in agroforestry systems. Ecological Engineering, vol. 29, pp. 419-433.

  1. Estimating Leaf Water Potential of Giant Sequoia Trees from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2015-12-01

    Recent drought-induced forest dieback events have motivated research on the mechanisms of tree survival and mortality during drought. Leaf water potential, a measure of the force exerted by the evaporation of water from the leaf surface, is an indicator of plant water stress and can help predict tree mortality in response to drought. Scientists have traditionally measured water potentials on a tree-by-tree basis, but have not been able to produce maps of tree water potential at the scale of a whole forest, leaving forest managers unaware of forest drought stress patterns and their ecosystem-level consequences. Imaging spectroscopy, a technique for remote measurement of chemical properties, has been used to successfully estimate leaf water potentials in wheat and maize crops and pinyon-pine and juniper trees, but these estimates have never been scaled to the canopy level. We used hyperspectral reflectance data collected by the Carnegie Airborne Observatory (CAO) to map leaf water potentials of giant sequoia trees (Sequoiadendron giganteum) in an 800-hectare grove in Sequoia National Park. During the current severe drought in California, we measured predawn and midday leaf water potentials of 48 giant sequoia trees, using the pressure bomb method on treetop foliage samples collected with tree-climbing techniques. The CAO collected hyperspectral reflectance data at 1-meter resolution from the same grove within 1-2 weeks of the tree-level measurements. A partial least squares regression was used to correlate reflectance data extracted from the 48 focal trees with their water potentials, producing a model that predicts water potential of giant sequoia trees. Results show that giant sequoia trees can be mapped in the imagery with a classification accuracy of 0.94, and we predicted the water potential of the mapped trees to assess 1) similarities and differences between a leaf water potential map and a canopy water content map produced from airborne hyperspectral data, 2) spatial variability in leaf water potentials and, 3) relationships between water potential and tree leaf area, topography, and surrounding tree density. These results will help forest managers plan prescribed burns to maintain the health of giant sequoia trees during drought.

  2. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    USGS Publications Warehouse

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.

  3. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  4. Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Lluch, Yolanda; Baroja-Fernández, Edurne; Pozueta-Romero, Javier; Molina, Rosa-Victoria

    2014-07-01

    The fruit is the main sink organ in Citrus and captures almost all available photoassimilates during its development. Consequently, carbohydrate partitioning and starch content depend on the crop load of Citrus trees. Nevertheless, little is known about the mechanisms controlling the starch metabolism at the tree level in relation to presence of fruit. The aim of this study was to find the relation between the seasonal variation of expression and activity of the genes involved in carbon metabolism and the partition and allocation of carbohydrates in 'Salustiana' sweet orange trees with different crop loads. Metabolisable carbohydrates, and the expression and activity of the enzymes involved in sucrose and starch metabolism, including sucrose transport, were determined during the year in the roots and leaves of 40-year-old trees bearing heavy crop loads ('on' trees) and trees with almost no fruits ('off' trees). Fruit altered photoassimilate partitioning in trees. Sucrose content tended to be constant in roots and leaves, and surplus fixed carbon is channeled to starch production. Differences between 'on' and 'off' trees in starch content can be explained by differences in ADP-glucose pyrophosphorylase (AGPP) expression/activity and α-amylase activity which varies depending on crop load. The observed relation of AGPP and UGPP (UDP-glucose pyrophosphorylase) is noteworthy and indicates a direct link between sucrose and starch synthesis. Furthermore, different roles for sucrose transporter SUT1 and SUT2 have been proposed. Variation in soluble sugars content cannot explain the differences in gene expression between the 'on' and 'off' trees. A still unknown signal from fruit should be responsible for this control. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Monitoring the Soil Water Availability of Young Urban Trees in Hamburg, Germany

    NASA Astrophysics Data System (ADS)

    Titel, Selina; Gröngröft, Alexander; Eschenbach, Annette

    2017-04-01

    In large cities numerous trees have to be planted each year to replace died off or cut down trees or for greening of constructed roads and newly built quarters. The typical age of planted trees is between five and fifteen years. Often the planting takes place in special planting pits to stimulate the tree growth under the restricted urban conditions. Consequently, trees are surrounded by different soil substrates: the soil from the nursery in the root ball, the special planting pit substrate and the surrounding urban soil which is often anthropogenic influenced. Being relocated in the city, trees have to cope with the warmer urban climate, the soil sealing and compaction and the low water storage capacity of the substrate. All factors together increase the probability of dry phases for roadside trees. The aim of this study is to monitor the soil water availability at sites of planted roadside trees during the first years after planting. Therefore, a measuring design was developed, which works automatically and takes the complex below ground structure of the soil into account. This approach consists of 13 soil water tension sensors inside and outside of each planting pit up to one meter depth connected to a data logger. The monitoring devices will finally be installed at 20 roadside trees (amongst others Quercus cerris, Quercus robur, Acer platanoides 'Fairview') in Hamburg, Germany, to identify phases of drought stress. The young trees were mainly planted in spring 2016. Data of the first year of measurements show, that the water tension varied between the different soil substrates and the depth. In the first year of tree growth in the city, soil in the tree root ball became significantly drier than the surrounding soil material. In late summer 2016 the water tension in the topsoil had the potential to cause drought stress below some trees.

  6. Ranging pattern and use of space in a group of red howler monkeys (Alouatta seniculus) in a southeastern Colombian rainforest.

    PubMed

    Palacios, E; Rodriguez, A

    2001-12-01

    We studied a group of red howler monkeys (Alouatta seniculus) bordering a lake in an eastern Colombian Amazon rainforest for 10 months. The group used an area of 182 ha located mainly on Pleistocene terrace forest and had no overlap with other howler home ranges. Home range use varied through the year as a consequence of fruit and leaf abundance. For example, during the fruit scarcity season the group used an area of flooded forest nearly exclusively, indicating that at least for a portion of the year they are habitat specialists. Two areas intensively used by the group were identified, representing 17.6 % of the home range, and within which 56.9 % of the feeding trees were located. Overall density of feeding trees within the group's home range was very low (1.12 trees/ha). Home range size, as well as mean length of daily ranges (1,150 m), is the largest reported for this species to date, and it is likely a consequence of the diminished productivity of the plant communities on poor soil. Our results give an interesting example of the ranging behavior of this primate, which clearly differs from previous descriptions of red howlers. Copyright 2001 Wiley-Liss, Inc.

  7. Assessing the Potential of Land Use Modification to Mitigate Ambient NO₂ and Its Consequences for Respiratory Health.

    PubMed

    Rao, Meenakshi; George, Linda A; Shandas, Vivek; Rosenstiel, Todd N

    2017-07-10

    Understanding how local land use and land cover (LULC) shapes intra-urban concentrations of atmospheric pollutants-and thus human health-is a key component in designing healthier cities. Here, NO₂ is modeled based on spatially dense summer and winter NO₂ observations in Portland-Hillsboro-Vancouver (USA), and the spatial variation of NO₂ with LULC investigated using random forest, an ensemble data learning technique. The NO 2 random forest model, together with BenMAP, is further used to develop a better understanding of the relationship among LULC, ambient NO₂ and respiratory health. The impact of land use modifications on ambient NO₂, and consequently on respiratory health, is also investigated using a sensitivity analysis. We find that NO₂ associated with roadways and tree-canopied areas may be affecting annual incidence rates of asthma exacerbation in 4-12 year olds by +3000 per 100,000 and -1400 per 100,000, respectively. Our model shows that increasing local tree canopy by 5% may reduce local incidences rates of asthma exacerbation by 6%, indicating that targeted local tree-planting efforts may have a substantial impact on reducing city-wide incidence of respiratory distress. Our findings demonstrate the utility of random forest modeling in evaluating LULC modifications for enhanced respiratory health.

  8. Antitumor and Angiostatic Activities of the Antimicrobial Peptide Dermaseptin B2

    PubMed Central

    van Zoggel, Hanneke; Carpentier, Gilles; Dos Santos, Célia; Hamma-Kourbali, Yamina; Courty, José; Amiche, Mohamed; Delbé, Jean

    2012-01-01

    Recently, we have found that the skin secretions of the Amazonian tree frog Phyllomedusa bicolor contains molecules with antitumor and angiostatic activities and identified one of them as the antimicrobial peptide dermaseptin (Drs) B2. In the present study we further explored the in vitro and in vivo antitumor activity of this molecule and investigated its mechanism of action. We showed that Drs B2 inhibits the proliferation and colony formation of various human tumor cell types, and the proliferation and capillary formation of endothelial cells in vitro. Furthermore, Drs B2 inhibited tumor growth of the human prostate adenocarcinoma cell line PC3 in a xenograft model in vivo. Research on the mechanism of action of Drs B2 on tumor PC3 cells demonstrated a rapid increasing amount of cytosolic lactate dehydrogenase, no activation of caspase-3, and no changes in mitochondrial membrane potential. Confocal microscopy analysis revealed that Drs B2 can interact with the tumor cell surface, aggregate and penetrate the cells. These data together indicate that Drs B2 does not act by apoptosis but possibly by necrosis. In conclusion, Drs B2 could be considered as an interesting and promising pharmacological and therapeutic leader molecule for the treatment of cancer. PMID:23028527

  9. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2.

    PubMed

    van Zoggel, Hanneke; Carpentier, Gilles; Dos Santos, Célia; Hamma-Kourbali, Yamina; Courty, José; Amiche, Mohamed; Delbé, Jean

    2012-01-01

    Recently, we have found that the skin secretions of the Amazonian tree frog Phyllomedusa bicolor contains molecules with antitumor and angiostatic activities and identified one of them as the antimicrobial peptide dermaseptin (Drs) B2. In the present study we further explored the in vitro and in vivo antitumor activity of this molecule and investigated its mechanism of action. We showed that Drs B2 inhibits the proliferation and colony formation of various human tumor cell types, and the proliferation and capillary formation of endothelial cells in vitro. Furthermore, Drs B2 inhibited tumor growth of the human prostate adenocarcinoma cell line PC3 in a xenograft model in vivo. Research on the mechanism of action of Drs B2 on tumor PC3 cells demonstrated a rapid increasing amount of cytosolic lactate dehydrogenase, no activation of caspase-3, and no changes in mitochondrial membrane potential. Confocal microscopy analysis revealed that Drs B2 can interact with the tumor cell surface, aggregate and penetrate the cells. These data together indicate that Drs B2 does not act by apoptosis but possibly by necrosis. In conclusion, Drs B2 could be considered as an interesting and promising pharmacological and therapeutic leader molecule for the treatment of cancer.

  10. C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition

    PubMed Central

    Barantal, Sandra; Schimann, Heidy; Fromin, Nathalie; Hättenschwiler, Stephan

    2014-01-01

    Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. PMID:25320173

  11. Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem

    PubMed Central

    Fedrowitz, Katja; Kuusinen, Mikko; Snäll, Tord

    2012-01-01

    1. One approach to biodiversity conservation is to set aside small woodland key habitats (WKHs) in intensively managed landscapes. The aim is to support species, such as epiphytes, which often depend on old trees and are negatively affected by intensive forestry. However, it is not known whether the number of host trees within these areas can sustain species in the long term. 2. We studied metapopulation dynamics and assessed the future persistence of epiphytes assuming host tree numbers similar to those observed in large north European WKHs. The study species were seven cyanolichens confined to Populus tremula in the boreal study area. Colonizations and extinctions were recorded in 2008 on trees that had been surveyed 13 years earlier. We applied generalized (non)linear models to test the importance of environmental conditions, facilitation and spatial connectivity on the metapopulation dynamics. We also simulated the effects of tree numbers and tree fall rates on future species persistence. 3. Metapopulation dynamics were explained by tree quality, size or tree fall. In one species, colonizations increased with increasing connectivity, and in a second species it increased if other lichens sharing the photobiont with the focal species were present, suggesting facilitation. Both stochastic extinctions from standing trees and deterministic extinctions caused by tree fall should be accounted for in projecting epiphyte metapopulation dynamics. 4. One to three infrequent, sexually dispersed study species face a significant extinction risk within 50 years, especially in areas with low tree numbers. 5. Synthesis and applications. During the coming decades, infrequent, sexually dispersed, epiphytic lichens are likely to be lost from small woodland habitat set asides in intensively managed landscapes. Local extinction will be a consequence of low colonization rates and tree fall. Low colonization rates can be prevented by retaining large trees on which lichen species colonization rates are the highest and by assuring a high density of occupied trees. The negative effect of tree fall should be compensated for by assuring continuous availability of old trees. This can be achieved by decreasing the populations of large browsers, or by retaining trees with high conservation value during management operations. PMID:22745512

  12. Why do trees die? Characterizing the drivers of background tree mortality.

    PubMed

    Das, Adrian J; Stephenson, Nathan L; Davis, Kristin P

    2016-10-01

    The drivers of background tree mortality rates-the typical low rates of tree mortality found in forests in the absence of acute stresses like drought-are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the "ambient" or "random" background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from one another. Finally, beyond the current emphasis on folivory and leaf defenses, studies of broad-scale gradients in the nature and strength of biotic interactions should also include biotic attacks on, and defenses of, tree stems and roots. © 2016 by the Ecological Society of America.

  13. Why do trees die? Characterizing the drivers of background tree mortality

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.; Davis, Kristin P.

    2016-01-01

    The drivers of background tree mortality rates—the typical low rates of tree mortality found in forests in the absence of acute stresses like drought—are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the “ambient” or “random” background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from one another. Finally, beyond the current emphasis on folivory and leaf defenses, studies of broad-scale gradients in the nature and strength of biotic interactions should also include biotic attacks on, and defenses of, tree stems and roots.

  14. Towards a holistic understanding of the beneficial interactions across the Populus microbiome

    DOE PAGES

    Hacquard, Stéphane; Schadt, Christopher W.

    2014-11-24

    Interactions between trees and microorganisms are extremely complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. Finally, we review recent studies in Populus to emphasize the importance ofmore » such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems.« less

  15. Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species

    PubMed Central

    Caminer, Marcel A.; Milá, Borja; Jansen, Martin; Fouquet, Antoine; Venegas, Pablo J.; Chávez, Germán; Lougheed, Stephen C.

    2017-01-01

    Genetic data in studies of systematics of Amazonian amphibians frequently reveal that purportedly widespread single species in reality comprise species complexes. This means that real species richness may be significantly higher than current estimates. Here we combine genetic, morphological, and bioacoustic data to assess the phylogenetic relationships and species boundaries of two Amazonian species of the Dendropsophus leucophyllatus species group: D. leucophyllatus and D. triangulum. Our results uncovered the existence of five confirmed and four unconfirmed candidate species. Among the confirmed candidate species, three have available names: Dendropsophus leucophyllatus, Dendropsophus triangulum, and Dendropsophus reticulatus, this last being removed from the synonymy of D. triangulum. A neotype of D. leucophyllatus is designated. We describe the remaining two confirmed candidate species, one from Bolivia and another from Peru. All confirmed candidate species are morphologically distinct and have much smaller geographic ranges than those previously reported for D. leucophyllatus and D. triangulum sensu lato. Dendropsophus leucophyllatus sensu stricto occurs in the Guianan region. Dendropsophus reticulatus comb. nov. corresponds to populations in the Amazon basin of Brazil, Ecuador, and Peru previously referred to as D. triangulum. Dendropsophus triangulum sensu stricto is the most widely distributed species; it occurs in Amazonian Ecuador, Peru and Brazil, reaching the state of Pará. We provide accounts for all described species including an assessment of their conservation status. PMID:28248998

  16. A free-access online key to identify Amazonian ferns.

    PubMed

    Zuquim, Gabriela; Tuomisto, Hanna; Prado, Jefferson

    2017-01-01

    There is urgent need for more data on species distributions in order to improve conservation planning. A crucial but challenging aspect of producing high-quality data is the correct identification of organisms. Traditional printed floras and dichotomous keys are difficult to use for someone not familiar with the technical jargon. In poorly known areas, such as Amazonia, they also become quickly outdated as new species are described or ranges extended. Recently, online tools have allowed developing dynamic, interactive, and accessible keys that make species identification possible for a broader public. In order to facilitate identifying plants collected in field inventories, we developed an internet-based free-access tool to identify Amazonian fern species. We focused on ferns, because they are easy to collect and their edaphic affinities are relatively well known, so they can be used as an indicator group for habitat mapping. Our key includes 302 terrestrial and aquatic entities mainly from lowland Amazonian forests. It is a free-access key, so the user can freely choose which morphological features to use and in which order to assess them. All taxa are richly illustrated, so specimens can be identified by a combination of character choices, visual comparison, and written descriptions. The identification tool was developed in Lucid 3.5 software and it is available at http://keyserver.lucidcentral.org:8080/sandbox/keys.jsp.

  17. The Genetic History of Peruvian Quechua‐Lamistas and Chankas: Uniparental DNA Patterns among Autochthonous Amazonian and Andean Populations

    PubMed Central

    Sandoval, José R.; Lacerda, Daniela R.; Acosta, Oscar; Jota, Marilza S.; Robles‐Ruiz, Paulo; Salazar‐Granara, Alberto; Vieira, Pedro Paulo R.; Paz‐y‐Miño, César; Fujita, Ricardo

    2016-01-01

    Summary This study focuses on the genetic history of the Quechua‐Lamistas, inhabitants of the Lamas Province in the San Martin Department, Peru, who speak their own distinct variety of the Quechua family of languages. It has been suggested that different pre‐Columbian ethnic groups from the Peruvian Amazonia, like the Motilones or “shaven heads”, assimilated the Quechua language and then formed the current native population of Lamas. However, many Quechua‐Lamistas claim to be direct descendants of the Chankas, a famous pre‐Columbian indigenous group that escaped from Inca rule in the Andes. To investigate the Quechua‐Lamistas and Chankas’ ancestries, we compared uniparental genetic profiles (17 STRs of Q‐M3 Y‐chromosome and mtDNA complete control region haplotypes) among autochthonous Amazonian and Andean populations from Peru, Bolivia and Ecuador. The phylogeographic and population genetic analyses indicate a fairly heterogeneous ancestry for the Quechua‐Lamistas, while they are closely related to their neighbours who speak Amazonian languages, presenting no direct relationships with populations from the region where the ancient Chankas lived. On the other hand, the genetic profiles of self‐identified Chanka descendants living in Andahuaylas (located in the Apurimac Department, Peru, in the Central Andes) were closely related to those living in Huancavelica and the assumed Chanka Confederation area before the Inca expansion. PMID:26879156

  18. Land use intensity trajectories on Amazonian pastures derived from Landsat time series

    NASA Astrophysics Data System (ADS)

    Rufin, Philippe; Müller, Hannes; Pflugmacher, Dirk; Hostert, Patrick

    2015-09-01

    Monitoring changes in land use intensity of grazing systems in the Amazon is an important prerequisite to study the complex political and socio-economic forces driving Amazonian deforestation. Remote sensing offers the potential to map pasture vegetation over large areas, but mapping pasture conditions consistently through time is not a trivial task because of seasonal changes associated with phenology and data gaps from clouds and cloud shadows. In this study, we tested spectral-temporal metrics derived from intra-annual Landsat time series to distinguish between grass-dominated and woody pastures. The abundance of woody vegetation on pastures is an indicator for management intensity, since the duration and intensity of land use steer secondary succession rates, apart from climate and soil conditions. We used the developed Landsat-based metrics to analyze pasture intensity trajectories between 1985 and 2012 in Novo Progresso, Brazil, finding that woody vegetation cover generally decreased after four to ten years of grazing activity. Pastures established in the 80s and early 90s showed a higher fraction of woody vegetation during their initial land use history than pastures established in the early 2000s. Historic intensity trajectories suggested a trend towards more intensive land use in the last decade, which aligns well with regional environmental policies and market dynamics. This study demonstrates the potential of dense Landsat time series to monitor land-use intensification on Amazonian pastures.

  19. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.

    PubMed

    Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B

    2014-07-01

    Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Soil transmitted helminthiasis in indigenous groups. A community cross sectional study in the Amazonian southern border region of Ecuador.

    PubMed

    Romero-Sandoval, Natalia; Ortiz-Rico, Claudia; Sánchez-Pérez, Héctor Javier; Valdivieso, Daniel; Sandoval, Carlos; Pástor, Jacob; Martín, Miguel

    2017-03-14

    Rural communities in the Amazonian southern border of Ecuador have benefited from governmental social programmes over the past 9 years, which have addressed, among other things, diseases associated with poverty, such as soil transmitted helminth infections. The aim of this study was to explore the prevalence of geohelminth infection and several factors associated with it in these communities. This was a cross sectional study in two indigenous communities of the Amazonian southern border of Ecuador. The data were analysed at both the household and individual levels. At the individual level, the prevalence of geohelminth infection reached 46.9% (95% CI 39.5% to 54.2%), with no differences in terms of gender, age, temporary migration movements or previous chemoprophylaxis. In 72.9% of households, one or more members were infected. Receiving subsidies and overcrowding were associated with the presence of helminths. The prevalence of geohelminth infection was high. Our study suggests that it is necessary to conduct studies focusing on communities, and not simply on captive groups, such as schoolchildren, with the object of proposing more suitable and effective strategies to control this problem. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

Top