Science.gov

Sample records for amber biomolecular simulation

  1. The Amber Biomolecular Simulation Programs

    PubMed Central

    CASE, DAVID A.; CHEATHAM, THOMAS E.; DARDEN, TOM; GOHLKE, HOLGER; LUO, RAY; MERZ, KENNETH M.; ONUFRIEV, ALEXEY; SIMMERLING, CARLOS; WANG, BING; WOODS, ROBERT J.

    2006-01-01

    We describe the development, current features, and some directions for future development of the Amber package of computer programs. This package evolved from a program that was constructed in the late 1970s to do Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates. PMID:16200636

  2. fireball/amber: An Efficient Local-Orbital DFT QM/MM Method for Biomolecular Systems.

    PubMed

    Mendieta-Moreno, Jesús I; Walker, Ross C; Lewis, James P; Gómez-Puertas, Paulino; Mendieta, Jesús; Ortega, José

    2014-05-13

    In recent years, quantum mechanics/molecular mechanics (QM/MM) methods have become an important computational tool for the study of chemical reactions and other processes in biomolecular systems. In the QM/MM technique, the active region is described by means of QM calculations, while the remainder of the system is described using a MM approach. Because of the complexity of biomolecules and the desire to achieve converged sampling, it is important that the QM method presents a good balance between accuracy and computational efficiency. Here, we report on the implementation of a QM/MM technique that combines a DFT approach specially designed for the study of complex systems using first-principles molecular dynamics simulations (fireball) with the amber force fields and simulation programs. We also present examples of the application of this QM/MM approach to three representative biomolecular systems: the analysis of the effect of electrostatic embedding in the behavior of a salt bridge between an aspartic acid and a lysine residue, a study of the intermediate states for the triosephosphate isomerase catalyzed conversion of dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, and the detailed description, using DFT QM/MM molecular dynamics, of the cleavage of a phosphodiester bond in RNA catalyzed by the enzyme RNase A.

  3. Grid computing and biomolecular simulation.

    PubMed

    Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W

    2005-08-15

    Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.

  4. Introduction. Biomolecular simulation

    PubMed Central

    Mulholland, Adrian J.

    2008-01-01

    ‘Everything that living things do can be understood in terms of the jigglings and wigglings of atoms’ as Richard Feynman provocatively stated nearly 50 years ago. But how can we ‘see’ this wiggling and jiggling and understand how it drives biology? Increasingly, computer simulations of biological macromolecules are helping to meet this challenge. PMID:18826912

  5. CHARMM-GUI 10 years for biomolecular modeling and simulation.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S; Beaven, Andrew H; Lee, Kyu Il; Rui, Huan; Park, Soohyung; Lee, Hui Sun; Roux, Benoît; MacKerell, Alexander D; Klauda, Jeffrey B; Qi, Yifei; Im, Wonpil

    2016-11-14

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc.

  6. Biomolecular Network Simulator: Software for Stochastic Simulations of Biomolecular Reaction Networks on Supercomputers

    NASA Astrophysics Data System (ADS)

    Chushak, Yaroslav; Foy, Brent; Frazier, John

    2008-03-01

    At the functional level, all biological processes in cells can be represented as a series of biochemical reactions that are stochastic in nature. We have developed a software package called Biomolecular Network Simulator (BNS) that uses a stochastic approach to model and simulate complex biomolecular reaction networks. Two simulation algorithms - the exact Gillespie stochastic simulation algorithm and the approximate adaptive tau-leaping algorithm - are implemented for generating Monte Carlo trajectories that describe the evolution of a system of biochemical reactions. The software uses a combination of MATLAB and C-coded functions and is parallelized with the Message Passing Interface (MPI) library to run on multiprocessor architectures. We will present a brief description of the Biomolecular Network Simulator software along with some examples.

  7. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations.

    PubMed

    Graen, Timo; Hoefling, Martin; Grubmüller, Helmut

    2014-12-09

    Recent advances in single molecule fluorescence experiments and theory allow a direct comparison and improved interpretation of experiment and simulation. To this end, force fields for a larger number of dyes are required which are compatible with and can be integrated into existing biomolecular force fields. Here, we developed, characterized, and implemented AMBER-DYES, a modular fluorescent label force field, for a set of 22 fluorescent dyes and their linkers from the Alexa, Atto, and Cy families, which are in common use for single molecule spectroscopy experiments. The force field is compatible with the AMBER protein force fields and the GROMACS molecular dynamics simulation program. The high electronic polarizability of the delocalized π-electron orbitals, as found in many fluorescent dyes, poses a particular challenge to point charge based force fields such as AMBER. To quantify the charge fluctuations due to the electronic polarizability, we simulated the 22 dyes in explicit solvent and sampled the charge fluctuations using QM/MM simulations at the B3LYP/6-31G*//TIP3P level of theory. The analysis of the simulations enabled us to derive ensemble fitted RESP charges from the solvated charge distributions of multiple trajectories. We observed broad, single peaked charge distributions for the conjugated ring atoms with well-defined mean values. The charge fitting procedure was validated against published charges of the dyelike amino acid tryptophan, which showed good agreement with existing tryptophan parameters from the AMBER, CHARMM, and OPLS force field families. A principal component analysis of the charge fluctuations revealed that a small number of collective coordinates suffices to describe most of the in-plane dye polarizability. The AMBER-DYES force field allows the rapid preparation of all atom molecular dynamics simulations of fluorescent systems for state of the art multi microsecond trajectories.

  8. Simulation of Biomolecular Nanomechanical Systems

    DTIC Science & Technology

    2006-10-01

    Funding for this effort came from the Defense Advanced Research Project Agency’s Simulation of Biological System ( SIMBIOSYS ) Program. The work can...DNA Hybridization Efficiency Based on the discussions at a SIMBIOSYS Principal Investigator’s Meeting (Sept. 2003 in Monterrey, CA), experiments

  9. CHARMM: The Biomolecular Simulation Program

    PubMed Central

    Brooks, B.R.; Brooks, C.L.; MacKerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M.

    2009-01-01

    CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. In addition, the CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This paper provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM paper in 1983. PMID:19444816

  10. Stochastic Simulation of Biomolecular Reaction Networks Using the Biomolecular Network Simulator Software

    DTIC Science & Technology

    2008-02-01

    investigate the simulation of a biomolecular reaction network with BNS, a simple model of a generic self-assembling catalytic ligation reaction in a...Amino Acid Pools Nucleotide Triphosphate Pools Nucleotide Monophosphate Pools Ligation Reaction 1551 517 7 RESULTS Simulation of exemplar...and reaction r8 is the catalytic ligation reaction . In figures 5(B) through 5(F), both the time-averaged event rate for a single simulation run

  11. Biomolecular simulation on thousands of processors

    NASA Astrophysics Data System (ADS)

    Phillips, James Christopher

    Classical molecular dynamics simulation is a generally applicable method for the study of biomolecular aggregates of proteins, lipids, and nucleic acids. As experimental techniques have revealed the structures of larger and more complex biomolecular machines, the time required to complete even a single meaningful simulation of such systems has become prohibitive. We have developed the program NAMD to simulate systems of 50,000--500,000 atoms efficiently with full electrostatics on parallel computers with 1000 and more processors. NAMD's scalability is achieved through latency tolerant adaptive message-driven execution and measurement-based load balancing. NAMD is implemented in C++ and uses object-oriented design and threads to shield the basic algorithms from the necessary complexity of high-performance parallel execution. Apolipoprotein A-I is the primary protein constituent of high density lipoprotein particles, which transport cholesterol in the bloodstream. In collaboration with A. Jonas, we have constructed and simulated models of the nascent discoidal form of these particles, providing theoretical insight to the debate regarding the lipid-bound structure of the protein. Recently, S. Sligar and coworkers have created 10 nm phospholipid bilayer nanoparticles comprising a small lipid bilayer disk solubilized by synthetic membrane scaffold proteins derived from apolipoprotein A-I. Membrane proteins may be embedded in the water-soluble disks, with various medical and technological applications. We are working to develop variant scaffold proteins that produce disks of greater size, stability, and homogeneity. Our simulations have demonstrated a significant deviation from idealized cylindrical structure, and are being used in the interpretation of small angle x-ray scattering data.

  12. Biomolecular simulations on petascale: promises and challenges

    NASA Astrophysics Data System (ADS)

    Agarwal, Pratul K.; Alam, Sadaf R.

    2006-09-01

    Proteins work as highly efficient machines at the molecular level and are responsible for a variety of processes in all living cells. There is wide interest in understanding these machines for implications in biochemical/biotechnology industries as well as in health related fields. Over the last century, investigations of proteins based on a variety of experimental techniques have provided a wealth of information. More recently, theoretical and computational modeling using large scale simulations is providing novel insights into the functioning of these machines. The next generation supercomputers with petascale computing power, hold great promises as well as challenges for the biomolecular simulation scientists. We briefly discuss the progress being made in this area.

  13. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen

    2010-01-30

    Different biomolecular force fields (OPLS-AA, AMBER03, and GROMOS96) in conjunction with SPC, SPC/E and TIP3P water models are assessed for molecular dynamics simulations in a tetragonal lysozyme crystal. The root mean square deviations for the C(a) atoms of lysozymes are about 0.1 to 0.2 nm from OPLS-AA and AMBER03, smaller than 0.4 nm from GROMOS96. All force fields exhibit similar pattern in B-factors, whereas OPLS-AA and AMBER03 accurately reproduce experimental measurements. Despite slight variations, the primary secondary structures are well conserved using different force fields. Water diffusion in the crystal is approximately ten-fold slower than in bulk phase. The directional and average water diffusivities from OPLS-AA and AMBER03 along with SPC/E model match fairly well with experimental data. Compared to GROMOS96, OPLS-AA and AMBER03 predict larger hydrophilic solvent-accessible surface area of lysozyme, more hydrogen bonds between lysozyme and water, and higher percentage of water in hydration shell. SPC, SPC/E and TIP3P water models have similar performance in most energetic and structural properties, but SPC/E outperforms in water diffusion. While all force fields overestimate the mobility and electrical conductivity of NaCl, a combination of OPLS-AA for lysozyme and the Kirkwood-Buff model for ions is superior to others. As attributed to the steric restraints and surface interactions, the mobility and conductivity in the crystal are reduced by one to two orders of magnitude from aqueous solution.

  14. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field

    PubMed Central

    2015-01-01

    Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron–sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of protein–water interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance. PMID:24955078

  15. Communication: Quantum polarized fluctuating charge model: a practical method to include ligand polarizability in biomolecular simulations.

    PubMed

    Kimura, S Roy; Rajamani, Ramkumar; Langley, David R

    2011-12-21

    We present a simple and practical method to include ligand electronic polarization in molecular dynamics (MD) simulation of biomolecular systems. The method involves periodically spawning quantum mechanical (QM) electrostatic potential (ESP) calculations on an extra set of computer processors using molecular coordinate snapshots from a running parallel MD simulation. The QM ESPs are evaluated for the small-molecule ligand in the presence of the electric field induced by the protein, solvent, and ion charges within the MD snapshot. Partial charges on ligand atom centers are fit through the multi-conformer restrained electrostatic potential (RESP) fit method on several successive ESPs. The RESP method was selected since it produces charges consistent with the AMBER/GAFF force-field used in the simulations. The updated charges are introduced back into the running simulation when the next snapshot is saved. The result is a simulation whose ligand partial charges continuously respond in real-time to the short-term mean electrostatic field of the evolving environment without incurring additional wall-clock time. We show that (1) by incorporating the cost of polarization back into the potential energy of the MD simulation, the algorithm conserves energy when run in the microcanonical ensemble and (2) the mean solvation free energies for 15 neutral amino acid side chains calculated with the quantum polarized fluctuating charge method and thermodynamic integration agree better with experiment relative to the Amber fixed charge force-field.

  16. Charge Group Partitioning in Biomolecular Simulation

    PubMed Central

    Canzar, Stefan; El-Kebir, Mohammed; Pool, René; Elbassioni, Khaled; Mark, Alan E.; Geerke, Daan P.; Stougie, Leen; Klau, Gunnar W.

    2013-01-01

    Abstract Molecular simulation techniques are increasingly being used to study biomolecular systems at an atomic level. Such simulations rely on empirical force fields to represent the intermolecular interactions. There are many different force fields available—each based on a different set of assumptions and thus requiring different parametrization procedures. Recently, efforts have been made to fully automate the assignment of force-field parameters, including atomic partial charges, for novel molecules. In this work, we focus on a problem arising in the automated parametrization of molecules for use in combination with the gromos family of force fields: namely, the assignment of atoms to charge groups such that for every charge group the sum of the partial charges is ideally equal to its formal charge. In addition, charge groups are required to have size at most k. We show \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document}$${ \\cal N P}$$\\end{document}-hardness and give an exact algorithm that solves practical problem instances to provable optimality in a fraction of a second. PMID:23461571

  17. iBIOMES Lite: summarizing biomolecular simulation data in limited settings.

    PubMed

    Thibault, Julien C; Cheatham, Thomas E; Facelli, Julio C

    2014-06-23

    As the amount of data generated by biomolecular simulations dramatically increases, new tools need to be developed to help manage this data at the individual investigator or small research group level. In this paper, we introduce iBIOMES Lite, a lightweight tool for biomolecular simulation data indexing and summarization. The main goal of iBIOMES Lite is to provide a simple interface to summarize computational experiments in a setting where the user might have limited privileges and limited access to IT resources. A command-line interface allows the user to summarize, publish, and search local simulation data sets. Published data sets are accessible via static hypertext markup language (HTML) pages that summarize the simulation protocols and also display data analysis graphically. The publication process is customized via extensible markup language (XML) descriptors while the HTML summary template is customized through extensible stylesheet language (XSL). iBIOMES Lite was tested on different platforms and at several national computing centers using various data sets generated through classical and quantum molecular dynamics, quantum chemistry, and QM/MM. The associated parsers currently support AMBER, GROMACS, Gaussian, and NWChem data set publication. The code is available at https://github.com/jcvthibault/ibiomes .

  18. Biomolecular simulation and modelling: status, progress and prospects

    PubMed Central

    van der Kamp, Marc W.; Shaw, Katherine E.; Woods, Christopher J.; Mulholland, Adrian J.

    2008-01-01

    Molecular simulation is increasingly demonstrating its practical value in the investigation of biological systems. Computational modelling of biomolecular systems is an exciting and rapidly developing area, which is expanding significantly in scope. A range of simulation methods has been developed that can be applied to study a wide variety of problems in structural biology and at the interfaces between physics, chemistry and biology. Here, we give an overview of methods and some recent developments in atomistic biomolecular simulation. Some recent applications and theoretical developments are highlighted. PMID:18611844

  19. The power of coarse graining in biomolecular simulations

    PubMed Central

    Ingólfsson, Helgi I; Lopez, Cesar A; Uusitalo, Jaakko J; de Jong, Djurre H; Gopal, Srinivasa M; Periole, Xavier; Marrink, Siewert J

    2014-01-01

    Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large-scale biomolecular processes on time scales inaccessible to all-atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state-of-the-art examples of protein folding, membrane protein gating and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling. PMID:25309628

  20. A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field.

    PubMed

    Madej, Benjamin D; Gould, Ian R; Walker, Ross C

    2015-09-24

    The Amber Lipid14 force field is expanded to include cholesterol parameters for all-atom cholesterol and lipid bilayer molecular dynamics simulations. The General Amber and Lipid14 force fields are used as a basis for assigning atom types and basic parameters. A new RESP charge derivation for cholesterol is presented, and tail parameters are adapted from Lipid14 alkane tails. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers are simulated at a range of cholesterol contents. Experimental bilayer structural properties are compared with bilayer simulations and are found to be in good agreement. With this parameterization, another component of complex membranes is available for molecular dynamics with the Amber Lipid14 force field.

  1. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    SciTech Connect

    Fluitt, Aaron M.; de Pablo, Juan J.

    2015-09-01

    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  2. Application of Hidden Markov Models in Biomolecular Simulations.

    PubMed

    Shukla, Saurabh; Shamsi, Zahra; Moffett, Alexander S; Selvam, Balaji; Shukla, Diwakar

    2017-01-01

    Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

  3. Biomolecular simulations of membranes: Physical properties from different force fields

    NASA Astrophysics Data System (ADS)

    Siu, Shirley W. I.; Vácha, Robert; Jungwirth, Pavel; Böckmann, Rainer A.

    2008-03-01

    Phospholipid force fields are of ample importance for the simulation of artificial bilayers, membranes, and also for the simulation of integral membrane proteins. Here, we compare the two most applied atomic force fields for phospholipids, the all-atom CHARMM27 and the united atom Berger force field, with a newly developed all-atom generalized AMBER force field (GAFF) for dioleoylphosphatidylcholine molecules. Only the latter displays the experimentally observed difference in the order of the C2 atom between the two acyl chains. The interfacial water dynamics is smoothly increased between the lipid carbonyl region and the bulk water phase for all force fields; however, the water order and with it the electrostatic potential across the bilayer showed distinct differences between the force fields. Both Berger and GAFF underestimate the lipid self-diffusion. GAFF offers a consistent force field for the atomic scale simulation of biomembranes.

  4. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble.

    PubMed

    Coimbra, João T S; Sousa, Sérgio F; Fernandes, Pedro A; Rangel, Maria; Ramos, Maria J

    2014-01-01

    The AMBER family of force fields is one of the most commonly used alternatives to describe proteins and drug-like molecules in molecular dynamics simulations. However, the absence of a specific set of parameters for lipids has been limiting the widespread application of this force field in biomembrane simulations, including membrane protein simulations and drug-membrane simulations. Here, we report the systematic parameterization of 12 common lipid types consistent with the General Amber Force Field (GAFF), with charge-parameters determined with RESP at the HF/6-31G(d) level of theory, to be consistent with AMBER. The accuracy of the scheme was evaluated by comparing predicted and experimental values for structural lipid properties in MD simulations in an NPT ensemble with explicit solvent in 100:100 bilayer systems. Globally, a consistent agreement with experimental reference data on membrane structures was achieved for some lipid types when using the typical MD conditions normally employed when handling membrane proteins and drug-membrane simulations (a tensionless NPT ensemble, 310 K), without the application of any of the constraints often used in other biomembrane simulations (such as the surface tension and the total simulation box area). The present set of parameters and the universal approach used in the parameterization of all the lipid types described here, as well as the consistency with the AMBER force field family, together with the tensionless NPT ensemble used, opens the door to systematic studies combining lipid components with small drug-like molecules or membrane proteins and show the potential of GAFF in dealing with biomembranes.

  5. Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurable Computing

    SciTech Connect

    Hampton, Scott S; Agarwal, Pratul K

    2010-05-01

    Reconfigurable computing (RC) is being investigated as a hardware solution for improving time-to-solution for biomolecular simulations. A number of popular molecular dynamics (MD) codes are used to study various aspects of biomolecules. These codes are now capable of simulating nanosecond time-scale trajectories per day on conventional microprocessor-based hardware, but biomolecular processes often occur at the microsecond time-scale or longer. A wide gap exists between the desired and achievable simulation capability; therefore, there is considerable interest in alternative algorithms and hardware for improving the time-to-solution of MD codes. The fine-grain parallelism provided by Field Programmable Gate Arrays (FPGA) combined with their low power consumption make them an attractive solution for improving the performance of MD simulations. In this work, we use an FPGA-based coprocessor to accelerate the compute-intensive calculations of LAMMPS, a popular MD code, achieving up to 5.5 fold speed-up on the non-bonded force computations of the particle mesh Ewald method and up to 2.2 fold speed-up in overall time-to-solution, and potentially an increase by a factor of 9 in power-performance efficiencies for the pair-wise computations. The results presented here provide an example of the multi-faceted benefits to an application in a heterogeneous computing environment.

  6. Biomolecular Simulation of Base Excision Repair and Protein Signaling

    SciTech Connect

    Straatsma, TP; McCammon, J A; Miller, John H; Smith, Paul E; Vorpagel, Erich R; Wong, Chung F; Zacharias, Martin W

    2006-03-03

    The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-β, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.

  7. Systematic evaluation of bundled SPC water for biomolecular simulations.

    PubMed

    Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V

    2015-04-07

    In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water

  8. A fast mollified impulse method for biomolecular atomistic simulations

    NASA Astrophysics Data System (ADS)

    Fath, L.; Hochbruck, M.; Singh, C. V.

    2017-03-01

    Classical integration methods for molecular dynamics are inherently limited due to resonance phenomena occurring at certain time-step sizes. The mollified impulse method can partially avoid this problem by using appropriate filters based on averaging or projection techniques. However, existing filters are computationally expensive and tedious in implementation since they require either analytical Hessians or they need to solve nonlinear systems from constraints. In this work we follow a different approach based on corotation for the construction of a new filter for (flexible) biomolecular simulations. The main advantages of the proposed filter are its excellent stability properties and ease of implementation in standard softwares without Hessians or solving constraint systems. By simulating multiple realistic examples such as peptide, protein, ice equilibrium and ice-ice friction, the new filter is shown to speed up the computations of long-range interactions by approximately 20%. The proposed filtered integrators allow step sizes as large as 10 fs while keeping the energy drift less than 1% on a 50 ps simulation.

  9. Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS.

    PubMed

    Grindon, Christina; Harris, Sarah; Evans, Tom; Novik, Keir; Coveney, Peter; Laughton, Charles

    2004-07-15

    Molecular modelling played a central role in the discovery of the structure of DNA by Watson and Crick. Today, such modelling is done on computers: the more powerful these computers are, the more detailed and extensive can be the study of the dynamics of such biological macromolecules. To fully harness the power of modern massively parallel computers, however, we need to develop and deploy algorithms which can exploit the structure of such hardware. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a scalable molecular dynamics code including long-range Coulomb interactions, which has been specifically designed to function efficiently on parallel platforms. Here we describe the implementation of the AMBER98 force field in LAMMPS and its validation for molecular dynamics investigations of DNA structure and flexibility against the benchmark of results obtained with the long-established code AMBER6 (Assisted Model Building with Energy Refinement, version 6). Extended molecular dynamics simulations on the hydrated DNA dodecamer d(CTTTTGCAAAAG)(2), which has previously been the subject of extensive dynamical analysis using AMBER6, show that it is possible to obtain excellent agreement in terms of static, dynamic and thermodynamic parameters between AMBER6 and LAMMPS. In comparison with AMBER6, LAMMPS shows greatly improved scalability in massively parallel environments, opening up the possibility of efficient simulations of order-of-magnitude larger systems and/or for order-of-magnitude greater simulation times.

  10. FF12MC: A revised AMBER forcefield and new protein simulation protocol

    PubMed Central

    2016-01-01

    ABSTRACT Specialized to simulate proteins in molecular dynamics (MD) simulations with explicit solvation, FF12MC is a combination of a new protein simulation protocol employing uniformly reduced atomic masses by tenfold and a revised AMBER forcefield FF99 with (i) shortened C—H bonds, (ii) removal of torsions involving a nonperipheral sp3 atom, and (iii) reduced 1–4 interaction scaling factors of torsions ϕ and ψ. This article reports that in multiple, distinct, independent, unrestricted, unbiased, isobaric–isothermal, and classical MD simulations FF12MC can (i) simulate the experimentally observed flipping between left‐ and right‐handed configurations for C14–C38 of BPTI in solution, (ii) autonomously fold chignolin, CLN025, and Trp‐cage with folding times that agree with the experimental values, (iii) simulate subsequent unfolding and refolding of these miniproteins, and (iv) achieve a robust Z score of 1.33 for refining protein models TMR01, TMR04, and TMR07. By comparison, the latest general‐purpose AMBER forcefield FF14SB locks the C14–C38 bond to the right‐handed configuration in solution under the same protein simulation conditions. Statistical survival analysis shows that FF12MC folds chignolin and CLN025 in isobaric–isothermal MD simulations 2–4 times faster than FF14SB under the same protein simulation conditions. These results suggest that FF12MC may be used for protein simulations to study kinetics and thermodynamics of miniprotein folding as well as protein structure and dynamics. Proteins 2016; 84:1490–1516. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27348292

  11. An extensible interface for QM/MM molecular dynamics simulations with AMBER

    PubMed Central

    Götz, Andreas W.; Clark, Matthew A.; Walker, Ross C.

    2014-01-01

    We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface. PMID:24122798

  12. An extensible interface for QM/MM molecular dynamics simulations with AMBER.

    PubMed

    Götz, Andreas W; Clark, Matthew A; Walker, Ross C

    2014-01-15

    We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface.

  13. Development of an informatics infrastructure for data exchange of biomolecular simulations: architecture, data models and ontology$

    PubMed Central

    Thibault, J. C.; Roe, D. R.; Eilbeck, K.; Cheatham, T. E.; Facelli, J. C.

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data – both within the same organization and among different ones – remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations. PMID:26387907

  14. Balancing simulation accuracy and efficiency with the Amber united atom force field.

    PubMed

    Hsieh, Meng-Juei; Luo, Ray

    2010-03-04

    We have analyzed the quality of a recently proposed Amber united-atom model and its overall efficiency in ab initio folding and thermodynamic sampling of two stable beta-hairpins. It is found that the mean backbone structures are quite consistent between the simulations in the united-atom and its corresponding all-atom models in Amber. More importantly, the simulated beta turns are also consistent between the two models. Finally, the chemical shifts on H alpha are highly consistent between simulations in the two models, although the simulated chemical shifts are lower than experiment, indicating less structured peptides, probably due to the omission of the hydrophobic term in the simulations. More interestingly, the stabilities of both beta-hairpins at room temperature are similar to those derived from the NMR measurement, whether the united-atom or the all-atom model is used. Detailed analysis shows high percentages of backbone torsion angles within the beta region and high percentages of native contacts. Given the reasonable quality of the united-atom model with respect to experimental data, we have further studied the simulation efficiency of the united-atom model over the all-atom model. Our data shows that the united-atom model is a factor of 6-8 faster than the all-atom model as measured with the ab initio first pass folding time for the two tested beta-hairpins. Detailed structural analysis shows that all ab initio folded trajectories enter the native basin, whether the united-atom model or the all-atom model is used. Finally, we have also studied the simulation efficiency of the united-atom model as measured in terms of how fast thermodynamic convergence can be achieved. It is apparent that the united-atom simulations reach convergence faster than the all-atom simulations with respect to both mean potential energies and mean native contacts. These findings show that the efficiency of the united-atom model is clearly beyond the per-step dynamics simulation

  15. iBIOMES: managing and sharing biomolecular simulation data in a distributed environment.

    PubMed

    Thibault, Julien C; Facelli, Julio C; Cheatham, Thomas E

    2013-03-25

    Biomolecular simulations, which were once batch queue or compute limited, have now become data analysis and management limited. In this paper we introduce a new management system for large biomolecular simulation and computational chemistry data sets. The system can be easily deployed on distributed servers to create a mini-grid at the researcher's site. The system not only offers a simple data deposition mechanism but also a way to register data into the system without moving the data from their original location. Any registered data set can be searched and downloaded using a set of defined metadata for molecular dynamics and quantum mechanics and visualized through a dynamic Web interface.

  16. Data model, dictionaries, and desiderata for biomolecular simulation data indexing and sharing

    PubMed Central

    2014-01-01

    Background Few environments have been developed or deployed to widely share biomolecular simulation data or to enable collaborative networks to facilitate data exploration and reuse. As the amount and complexity of data generated by these simulations is dramatically increasing and the methods are being more widely applied, the need for new tools to manage and share this data has become obvious. In this paper we present the results of a process aimed at assessing the needs of the community for data representation standards to guide the implementation of future repositories for biomolecular simulations. Results We introduce a list of common data elements, inspired by previous work, and updated according to feedback from the community collected through a survey and personal interviews. These data elements integrate the concepts for multiple types of computational methods, including quantum chemistry and molecular dynamics. The identified core data elements were organized into a logical model to guide the design of new databases and application programming interfaces. Finally a set of dictionaries was implemented to be used via SQL queries or locally via a Java API built upon the Apache Lucene text-search engine. Conclusions The model and its associated dictionaries provide a simple yet rich representation of the concepts related to biomolecular simulations, which should guide future developments of repositories and more complex terminologies and ontologies. The model still remains extensible through the decomposition of virtual experiments into tasks and parameter sets, and via the use of extended attributes. The benefits of a common logical model for biomolecular simulations was illustrated through various use cases, including data storage, indexing, and presentation. All the models and dictionaries introduced in this paper are available for download at http://ibiomes.chpc.utah.edu/mediawiki/index.php/Downloads. PMID:24484917

  17. Interfacing the GROMOS (bio)molecular simulation software to quantum-chemical program packages.

    PubMed

    Meier, Katharina; Schmid, Nathan; van Gunsteren, Wilfred F

    2012-10-05

    The newly implemented quantum-chemical/molecular-mechanical (QM/MM) functionality of the Groningen molecular simulation (GROMOS) software for (bio)molecular simulation is described. The implementation scheme is based on direct coupling of the GROMOS C++ software to executables of the quantum-chemical program packages MNDO and TURBOMOLE, allowing for an independent further development of these packages. The new functions are validated for different test systems using program and model testing techniques. The effect of truncating the QM/MM electrostatic interactions at various QM/MM cutoff radii is discussed and the application of semiempirical versus density-functional Hamiltonians for a solute molecule in aqueous solution is compared.

  18. An improved simple polarisable water model for use in biomolecular simulation

    SciTech Connect

    Bachmann, Stephan J.; Gunsteren, Wilfred F. van

    2014-12-14

    The accuracy of biomolecular simulations depends to some degree on the accuracy of the water model used to solvate the biomolecules. Because many biomolecules such as proteins are electrostatically rather inhomogeneous, containing apolar, polar, and charged moieties or side chains, a water model should be able to represent the polarisation response to a local electrostatic field, while being compatible with the force field used to model the biomolecules or protein. The two polarisable water models, COS/G2 and COS/D, that are compatible with the GROMOS biomolecular force fields leave room for improvement. The COS/G2 model has a slightly too large dielectric permittivity and the COS/D model displays a much too slow dynamics. The proposed COS/D2 model has four interaction sites: only one Lennard-Jones interaction site, the oxygen atom, and three permanent charge sites, the two hydrogens, and one massless off-atom site that also serves as charge-on-spring (COS) polarisable site with a damped or sub-linear dependence of the induced dipole on the electric field strength for large values of the latter. These properties make it a cheap and yet realistic water model for biomolecular solvation.

  19. Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.

    PubMed

    Shen, Lin; Hu, Hao

    2014-06-10

    We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.

  20. The levantine amber belt

    NASA Astrophysics Data System (ADS)

    Nissenbaum, A.; Horowitz, A.

    1992-02-01

    Amber, a fossil resin, is found in Early Cretaceous sanstones and fine clastics in Lebanon, Jordan, and Israel. The term "Levantine amber belt" is coined for this amber-containing sediment belt. The amber occurs as small nodules of various colors and frequently contains inclusions of macro- and microorganisms. The Lebanese amber contains Lepidoptera and the amber from southern Israel is rich in fungal remains. The source of the amber, based on geochemical and palynological evidence, is assumed to be from a conifer belonging to the Araucariaceae. The resins were produced by trees growing in a tropical near shore environment. The amber was transported into small swamps and was preserved there together with lignite. Later reworking of those deposits resulted in redeposition of the amber in oxidized sandstones.

  1. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments

    SciTech Connect

    Noe, F; Diadone, Isabella; Lollmann, Marc; Sauer, Marcus; Chondera, John D; Smith, Jeremy C

    2011-01-01

    There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is dynamical fingerprints which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observed relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.

  2. Bookshelf: a simple curation system for the storage of biomolecular simulation data

    PubMed Central

    Vohra, Shabana; Hall, Benjamin A.; Holdbrook, Daniel A.; Khalid, Syma; Biggin, Philip C.

    2010-01-01

    Molecular dynamics simulations can now routinely generate data sets of several hundreds of gigabytes in size. The ability to generate this data has become easier over recent years and the rate of data production is likely to increase rapidly in the near future. One major problem associated with this vast amount of data is how to store it in a way that it can be easily retrieved at a later date. The obvious answer to this problem is a database. However, a key issue in the development and maintenance of such a database is its sustainability, which in turn depends on the ease of the deposition and retrieval process. Encouraging users to care about meta-data is difficult and thus the success of any storage system will ultimately depend on how well used by end-users the system is. In this respect we suggest that even a minimal amount of metadata if stored in a sensible fashion is useful, if only at the level of individual research groups. We discuss here, a simple database system which we call ‘Bookshelf’, that uses python in conjunction with a mysql database to provide an extremely simple system for curating and keeping track of molecular simulation data. It provides a user-friendly, scriptable solution to the common problem amongst biomolecular simulation laboratories; the storage, logging and subsequent retrieval of large numbers of simulations. Download URL: http://sbcb.bioch.ox.ac.uk/bookshelf/ PMID:21169341

  3. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.

    PubMed

    Takada, Shoji; Kanada, Ryo; Tan, Cheng; Terakawa, Tsuyoshi; Li, Wenfei; Kenzaki, Hiroo

    2015-12-15

    Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to

  4. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  5. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  6. Agent-Based Spatiotemporal Simulation of Biomolecular Systems within the Open Source MASON Framework

    PubMed Central

    Pérez-Rodríguez, Gael; Pérez-Pérez, Martín; Glez-Peña, Daniel; Azevedo, Nuno F.; Lourenço, Anália

    2015-01-01

    Agent-based modelling is being used to represent biological systems with increasing frequency and success. This paper presents the implementation of a new tool for biomolecular reaction modelling in the open source Multiagent Simulator of Neighborhoods framework. The rationale behind this new tool is the necessity to describe interactions at the molecular level to be able to grasp emergent and meaningful biological behaviour. We are particularly interested in characterising and quantifying the various effects that facilitate biocatalysis. Enzymes may display high specificity for their substrates and this information is crucial to the engineering and optimisation of bioprocesses. Simulation results demonstrate that molecule distributions, reaction rate parameters, and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of realistic cell environments. While higher percentage of collisions with occurrence of reaction increases the affinity of the enzyme to the substrate, a faster reaction (i.e., turnover number) leads to a smaller number of time steps. Slower diffusion rates and molecular crowding (physical hurdles) decrease the collision rate of reactants, hence reducing the reaction rate, as expected. Also, the random distribution of molecules affects the results significantly. PMID:25874228

  7. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.

    PubMed

    Wassenaar, Tsjerk A; Ingólfsson, Helgi I; Priess, Marten; Marrink, Siewert J; Schäfer, Lars V

    2013-04-04

    biomolecular simulations.

  8. Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field.

    PubMed

    Agrawal, Paras M; Rice, Betsy M; Zheng, Lianqing; Thompson, Donald L

    2006-12-28

    We present the results of molecular dynamics simulations of crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using the SRT-AMBER force field (P. M. Agrawal et al., J. Phys. Chem. B 2006, 110, 5721), which combines the rigid-molecule force field developed by Sorescu-Rice-Thompson (D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 1997, 101, 798) with the intramolecular interactions obtained from the Generalized AMBER Force Field (Wang et al., J. Comput. Chem. 2004, 25, 1157). The calculated crystal density at room conditions is about 10% lower than the measured value, while the lattice parameters and thermodynamic melting point are within about 5% at ambient pressure. The chair and inverted chair conformation, bond lengths, and bond angles of the RDX molecule are accurately predicted; however, there are some inaccuracies in the calculated orientations of the NO2 groups. The SRT-AMBER force field predicts overall reasonable results, but modifications, probably in the torsional parameters, are needed for a more accurate force field.

  9. A coarse-grained model for the simulations of biomolecular interactions in cellular environments

    SciTech Connect

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2014-02-07

    The interactions of bio-molecules constitute the key steps of cellular functions. However, in vivo binding properties differ significantly from their in vitro measurements due to the heterogeneity of cellular environments. Here we introduce a coarse-grained model based on rigid-body representation to study how factors such as cellular crowding and membrane confinement affect molecular binding. The macroscopic parameters such as the equilibrium constant and the kinetic rate constant are calibrated by adjusting the microscopic coefficients used in the numerical simulations. By changing these model parameters that are experimentally approachable, we are able to study the kinetic and thermodynamic properties of molecular binding, as well as the effects caused by specific cellular environments. We investigate the volumetric effects of crowded intracellular space on bio-molecular diffusion and diffusion-limited reactions. Furthermore, the binding constants of membrane proteins are currently difficult to measure. We provide quantitative estimations about how the binding of membrane proteins deviates from soluble proteins under different degrees of membrane confinements. The simulation results provide biological insights to the functions of membrane receptors on cell surfaces. Overall, our studies establish a connection between the details of molecular interactions and the heterogeneity of cellular environments.

  10. Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors.

    PubMed

    Zhmurov, A; Dima, R I; Kholodov, Y; Barsegov, V

    2010-11-01

    Theoretical exploration of fundamental biological processes involving the forced unraveling of multimeric proteins, the sliding motion in protein fibers and the mechanical deformation of biomolecular assemblies under physiological force loads is challenging even for distributed computing systems. Using a C(α)-based coarse-grained self organized polymer (SOP) model, we implemented the Langevin simulations of proteins on graphics processing units (SOP-GPU program). We assessed the computational performance of an end-to-end application of the program, where all the steps of the algorithm are running on a GPU, by profiling the simulation time and memory usage for a number of test systems. The ∼90-fold computational speedup on a GPU, compared with an optimized central processing unit program, enabled us to follow the dynamics in the centisecond timescale, and to obtain the force-extension profiles using experimental pulling speeds (v(f) = 1-10 μm/s) employed in atomic force microscopy and in optical tweezers-based dynamic force spectroscopy. We found that the mechanical molecular response critically depends on the conditions of force application and that the kinetics and pathways for unfolding change drastically even upon a modest 10-fold increase in v(f). This implies that, to resolve accurately the free energy landscape and to relate the results of single-molecule experiments in vitro and in silico, molecular simulations should be carried out under the experimentally relevant force loads. This can be accomplished in reasonable wall-clock time for biomolecules of size as large as 10(5) residues using the SOP-GPU package.

  11. A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms.

    PubMed

    Sadegh Zadeh, Kouroush

    2011-01-01

    A synergic duo simulation-optimization approach was developed and implemented to study protein-substrate dynamics and binding kinetics in living organisms. The forward problem is a system of several coupled nonlinear partial differential equations which, with a given set of kinetics and diffusion parameters, can provide not only the commonly used bleached area-averaged time series in fluorescence microscopy experiments but more informative full biomolecular/drug space-time series and can be successfully used to study dynamics of both Dirac and Gaussian fluorescence-labeled biomacromolecules in vivo. The incomplete Cholesky preconditioner was coupled with the finite difference discretization scheme and an adaptive time-stepping strategy to solve the forward problem. The proposed approach was validated with analytical as well as reference solutions and used to simulate dynamics of GFP-tagged glucocorticoid receptor (GFP-GR) in mouse cancer cell during a fluorescence recovery after photobleaching experiment. Model analysis indicates that the commonly practiced bleach spot-averaged time series is not an efficient approach to extract physiological information from the fluorescence microscopy protocols. It was recommended that experimental biophysicists should use full space-time series, resulting from experimental protocols, to study dynamics of biomacromolecules and drugs in living organisms. It was also concluded that in parameterization of biological mass transfer processes, setting the norm of the gradient of the penalty function at the solution to zero is not an efficient stopping rule to end the inverse algorithm. Theoreticians should use multi-criteria stopping rules to quantify model parameters by optimization.

  12. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    SciTech Connect

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; Yeom, Min Sun; Eastman, Peter K.; Lemkul, Justin A.; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S.; Case, David A.; Brooks, Charles L.; MacKerell, Alexander D.; Klauda, Jeffery B.; Im, Wonpil

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  13. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    DOE PAGES

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; ...

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find themore » optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.« less

  14. Optimal Use of Data in Parallel Tempering Simulations for the Construction of Discrete-State Markov Models of Biomolecular Dynamics

    SciTech Connect

    Prinz, Jan-Hendrik; Chondera, John D; Pande, Vijay S; Swope, William C; Smith, Jeremy C; Noe, F

    2011-01-01

    Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.

  15. Geometry and Excitation Energy Fluctuations of NMA in Aqueous Solution with CHARMM, AMBER, OPLS, and GROMOS Force Fields: Implications for Protein Ultraviolet Spectra Simulation.

    PubMed

    Li, Zhenyu; Yu, Haibo; Zhuang, Wei; Mukamel, Shaul

    2008-02-04

    Molecular dynamics (MD) simulations are performed for N-methylamide (NMA) in water at 300 K with different force fields. Compared to the three all-atom force fields (CHARMM22, AMBER03, and OPLS-AA), the united-atom force field (GROMOS96) predicts a broader distribution of the peptide OCNH dehedral angle. A map constructed by fitting the npi* and pipi* transition energies as quadratic functions of the NMA geometric variables is used to simulate the excitation energy fluctuations. GROMOS96 predicts blue-shifted npi* and pipi* energies and stronger fluctuations compared to the other three force fields, which indicates that different force fields may predict different spectral lineshapes for proteins.

  16. Geometry and excitation energy fluctuations of NMA in aqueous solution with CHARMM, AMBER, OPLS, and GROMOS force fields: Implications for protein ultraviolet spectra simulation

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Yu, Haibo; Zhuang, Wei; Mukamel, Shaul

    2008-02-01

    Molecular dynamics (MD) simulations are performed for N-methylacetamide (NMA) in water at 300 K with different force fields. Compared to the three all-atom force fields (CHARMM22, AMBER03, and OPLS-AA), the united-atom force field (GROMOS96) predicts a broader distribution of the peptide OCNH dehedral angle. A map constructed by fitting the nπ∗ and ππ∗ transition energies as quadratic functions of the NMA geometric variables is used to simulate the excitation energy fluctuations. GROMOS96 predicts blue shifted nπ∗ and ππ∗ energies and stronger fluctuations compared to the other three force fields, which indicates that different force fields may predict different spectral lineshapes for proteins.

  17. Assessing the Current State of Amber Force Field Modifications for DNA.

    PubMed

    Galindo-Murillo, Rodrigo; Robertson, James C; Zgarbová, Marie; Šponer, Jiří; Otyepka, Michal; Jurečka, Petr; Cheatham, Thomas E

    2016-08-09

    The utility of molecular dynamics (MD) simulations to model biomolecular structure, dynamics, and interactions has witnessed enormous advances in recent years due to the availability of optimized MD software and access to significant computational power, including GPU multicore computing engines and other specialized hardware. This has led researchers to routinely extend conformational sampling times to the microsecond level and beyond. The extended sampling time has allowed the community not only to converge conformational ensembles through complete sampling but also to discover deficiencies and overcome problems with the force fields. Accuracy of the force fields is a key component, along with sampling, toward being able to generate accurate and stable structures of biopolymers. The Amber force field for nucleic acids has been used extensively since the 1990s, and multiple artifacts have been discovered, corrected, and reassessed by different research groups. We present a direct comparison of two of the most recent and state-of-the-art Amber force field modifications, bsc1 and OL15, that focus on accurate modeling of double-stranded DNA. After extensive MD simulations with five test cases and two different water models, we conclude that both modifications are a remarkable improvement over the previous bsc0 force field. Both force field modifications show better agreement when compared to experimental structures. To ensure convergence, the Drew-Dickerson dodecamer (DDD) system was simulated using 100 independent MD simulations, each extended to at least 10 μs, and the independent MD simulations were concatenated into a single 1 ms long trajectory for each combination of force field and water model. This is significantly beyond the time scale needed to converge the conformational ensemble of the internal portions of a DNA helix absent internal base pair opening. Considering all of the simulations discussed in the current work, the MD simulations performed to

  18. A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation.

    PubMed

    Saez, David Adrian; Vöhringer-Martinez, Esteban

    2015-10-01

    S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.

  19. A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation

    NASA Astrophysics Data System (ADS)

    Saez, David Adrian; Vöhringer-Martinez, Esteban

    2015-10-01

    S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.

  20. Effect of warmup protocol and sampling time on convergence of molecular dynamics simulations of a DNA dodecamer using AMBER 4.1 and particle-mesh Ewald method.

    PubMed

    Norberto de Souza, O; Ornstein, R L

    1997-04-01

    This report describes one 3000 ps and two 1500 ps molecular dynamic simulations on a TATA box containing dodecamer DNA duplex in a periodic box of TIP3P water molecules, using the AMBER 4.1 implementation of the particle-mesh Ewald method. We compare the effect of warmup protocol and simulation time length on the root-mean square deviation (RMSD) parameter. For the longer simulation, the RMSD computed for the 500-1000 ps time interval is representative of longer time intervals, including 500-3000 ps. The various warmup protocols do not appear to have a significant effect on the simulation results. Based on the present results, DNA sequence-dependent differences in RMSD, or related properties, should exceed two standard deviations before being attributed to non-simulation factors, such as warmup protocol and sampling time effects; we recommend a minimum criterion of at least a three standard deviation difference with a sampling period of at least 500-1000 ps. In addition, while end effects appear negligible there is a consistent dependence of RMSD on DNA helix length.

  1. Event detection and sub-state discovery from biomolecular simulations using higher-order statistics: application to enzyme adenylate kinase.

    PubMed

    Ramanathan, Arvind; Savol, Andrej J; Agarwal, Pratul K; Chennubhotla, Chakra S

    2012-11-01

    Biomolecular simulations at millisecond and longer time-scales can provide vital insights into functional mechanisms. Because post-simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD--a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states, and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations.

  2. Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA.

    PubMed

    Karakas, Esra; Taveneau, Cyntia; Bressanelli, Stéphane; Marchi, Massimo; Robert, Bruno; Abel, Stéphane

    2017-01-01

    In this paper, we describe the derivation and the validation of original RESP atomic partial charges for the N, N-dimethyl-dodecylamine oxide (LDAO) surfactant. These charges, designed to be fully compatible with all the AMBER force fields, are at first tested against molecular dynamics simulations of pure LDAO micelles and with a fragment of the lipid kinase PIK4A (DI) modeled with the QUARK molecular modeling server. To model the micelle, we used two distinct AMBER force fields (i.e. Amber99SB and Lipid14) and a variety of starting conditions. We find that the micelle structural properties (such as the shape, size, the LDAO headgroup hydration, and alkyl chain conformation) slightly depend on the force field but not on the starting conditions and more importantly are in good agreement with experiments and previous simulations. We also show that the Lipid14 force field should be used instead of the Amber99SB one to better reproduce the C(sp3)C(sp3)C(sp3)C(sp3) conformation in the surfactant alkyl chain. Concerning the simulations with LDAO-DI protein, we carried out different runs at two NaCl concentrations (i.e. 0 and 300 mM) to mimic, in the latter case, the experimental conditions. We notice a small dependence of the simulation results with the LDAO parameters and the salt concentration. However, we find that in the simulations, three out of four tryptophans of the DI protein are not accessible to water in agreement with our fluorescence spectroscopy experiments reported in the paper.

  3. Lipid14: The Amber Lipid Force Field

    PubMed Central

    2015-01-01

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  4. Extension of the CHARMM General Force Field to Sulfonyl-Containing Compounds and Its Utility in Biomolecular Simulations

    PubMed Central

    Yu, Wenbo; He, Xibing; Vanommeslaeghe, Kenno; MacKerell, Alexander D.

    2012-01-01

    Presented is an extension of the CHARMM General force field (CGenFF) to enable the modeling of sulfonyl-containing compounds. Model compounds containing chemical moieties such as sulfone, sulfonamide, sulfonate and sulfamate were used as the basis for the parameter optimization. Targeting high-level quantum mechanical and experimental crystal data, the new parameters were optimized in a hierarchical fashion designed to maintain compatibility with the remainder of the CHARMM additive force field. The optimized parameters satisfactorily reproduced equilibrium geometries, vibrational frequencies, interactions with water, gas phase dipole moments and dihedral potential energy scans. Validation involved both crystalline and liquid phase calculations showing the newly developed parameters to satisfactorily reproduce experimental unit cell geometries, crystal intramolecular geometries and pure solvent densities. The force field was subsequently applied to study conformational preference of a sulfonamide based peptide system. Good agreement with experimental IR/NMR data further validated the newly developed CGenFF parameters as a tool to investigate the dynamic behavior of sulfonyl groups in a biological environment. CGenFF now covers sulfonyl group containing moieties allowing for modeling and simulation of sulfonyl-containing compounds in the context of biomolecular systems including compounds of medicinal interest. PMID:22821581

  5. REACH Coarse-Grained Biomolecular Simulation: Transferability between Different Protein Structural Classes

    PubMed Central

    Moritsugu, Kei; Smith, Jeremy C.

    2008-01-01

    Coarse graining of protein interactions provides a means of simulating large biological systems. The REACH (Realistic Extension Algorithm via Covariance Hessian) coarse-graining method, in which the force constants of a residue-scale elastic network model are calculated from the variance-covariance matrix obtained from atomistic molecular dynamics (MD) simulation, involves direct mapping between scales without the need for iterative optimization. Here, the transferability of the REACH force field is examined between protein molecules of different structural classes. As test cases, myoglobin (all α), plastocyanin (all β), and dihydrofolate reductase (α/β) are taken. The force constants derived are found to be closely similar in all three proteins. An MD version of REACH is presented, and low-temperature coarse-grained (CG) REACH MD simulations of the three proteins are compared with atomistic MD results. The mean-square fluctuations of the atomistic MD are well reproduced by the CGMD. Model functions for the CG interactions, derived by averaging over the three proteins, are also shown to produce fluctuations in good agreement with the atomistic MD. The results indicate that, similarly to the use of atomistic force fields, it is now possible to use a single, generic REACH force field for all protein studies, without having first to derive parameters from atomistic MD simulation for each individual system studied. The REACH method is thus likely to be a reliable way of determining spatiotemporal motion of a variety of proteins without the need for expensive computation of long atomistic MD simulations. PMID:18469078

  6. Congruent qualitative behavior of complete and reconstructed phase space trajectories from biomolecular dynamics simulation.

    PubMed

    Caves, Leo S D; Verma, Chandra S

    2002-04-01

    Central to the study of a complex dynamical system is knowledge of its phase space behavior. Experimentally, it is rarely possible to record a system's (multidimensional) phase space variables. Rather, the system is observed via one (or few) scalar-valued signal(s) of emission or response. In dynamical systems analysis, the multidimensional phase space of a system can be reconstructed by manipulation of a one-dimensional signal. The trick is in the construction of a (higher-dimensional) space through the use of a time lag (or delay) on the signal time series. The trajectory in this embedding space can then be examined using phase portraits generated in selected subspaces. By contrast, in computer simulation, one has an embarrassment of riches: direct access to the complete multidimensional phase space variables, at arbitrary time resolution and precision. Here, the problem is one of reducing the dimensionality to make analysis tractable. This can be achieved through linear or nonlinear projection of the trajectory into subspaces containing high information content. This study considers trajectories of the small protein crambin from molecular dynamics simulations. The phase space behavior is examined using principal component analysis on the Cartesian coordinate covariance matrix of 138 dimensions. In addition, the phase space is reconstructed from a one dimensional signal, representing the radius of gyration of the structure along the trajectory. Comparison of low-dimensional phase portraits obtained from the two methods shows that the complete phase space distribution is well represented by the reconstruction. The study suggests that it may be possible to develop a deeper connection between the experimental and simulated dynamics of biomolecules via phase space reconstruction using data emerging from recent advances in single-molecule time-resolved biophysical techniques.

  7. Biomolecular simulations with the transferable potentials for phase equilibria: extension to phospholipids.

    PubMed

    Bhatnagar, Navendu; Kamath, Ganesh; Potoff, Jeffrey J

    2013-08-29

    The Transferable Potentials for Phase Equilibria (TraPPE) is extended to zwitterionic and charged lipids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylglycerol (PG). The performance of the force field is validated through isothermal-isobaric ensemble (NPT) molecular dynamics simulations of hydrated lipid bilayers performed with the aforementioned head groups combined with saturated and unsaturated alkyl tails containing 12-18 carbon atoms. The effects of water model and sodium ion parameters on the performance of the lipid force field are determined. The predictions of the TraPPE force field for the area per lipid, bilayer thickness, and volume per lipid are within 1-5% of experimental values. Key structural properties of the bilayer, such as order parameter splitting in the sn-2 chain and X-ray form factors, are found to be in close agreement with experimental data.

  8. Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation.

    PubMed

    Schlick, T; Barth, E; Mandziuk, M

    1997-01-01

    Innovative algorithms have been developed during the past decade for simulating Newtonian physics for macromolecules. A major goal is alleviation of the severe requirement that the integration timestep be small enough to resolve the fastest components of the motion and thus guarantee numerical stability. This timestep problem is challenging if strictly faster methods with the same all-atom resolution at small timesteps are sought. Mathematical techniques that have worked well in other multiple-timescale contexts--where the fast motions are rapidly decaying or largely decoupled from others--have not been as successful for biomolecules, where vibrational coupling is strong. This review examines general issues that limit the timestep and describes available methods (constrained, reduced-variable, implicit, symplectic, multiple-timestep, and normal-mode-based schemes). A section compares results of selected integrators for a model dipeptide, assessing physical and numerical performance. Included is our dual timestep method LN, which relies on an approximate linearization of the equations of motion every delta t interval (5 fs or less), the solution of which is obtained by explicit integration at the inner timestep delta tau (e.g., 0.5 fs). LN is computationally competitive, providing 4-5 speedup factors, and results are in good agreement, in comparison to 0.5 fs trajectories. These collective algorithmic efforts help fill the gap between the time range that can be simulated and the timespans of major biological interest (milliseconds and longer). Still, only a hierarchy of models and methods, along with experimentational improvements, will ultimately give theoretical modeling the status of partner with experiment.

  9. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.

    PubMed

    Kutzner, Carsten; Páll, Szilárd; Fechner, Martin; Esztermann, Ansgar; de Groot, Bert L; Grubmüller, Helmut

    2015-10-05

    The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime.

  10. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations

    PubMed Central

    Páll, Szilárd; Fechner, Martin; Esztermann, Ansgar; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26238484

  11. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin

    SciTech Connect

    Soloviov, Maksym; Meuwly, Markus

    2015-09-14

    Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, the Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe–ON and Fe–NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe–ON conformation is metastable when considering only the bound {sup 2}A state, it may disappear once the {sup 4}A state is included. This explains the absence of the Fe–ON state in previous experimental investigations of MbNO.

  12. Dynamics of biomolecular processes

    NASA Astrophysics Data System (ADS)

    Behringer, Hans; Eichhorn, Ralf; Wallin, Stefan

    2013-05-01

    The last few years have seen enormous progress in the availability of computational resources, so that the size and complexity of physical systems that can be investigated numerically has increased substantially. The physical mechanisms behind the processes creating life, such as those in a living cell, are of foremost interest in biophysical research. A main challenge here is that complexity not only emerges from interactions of many macro-molecular compounds, but is already evident at the level of a single molecule. An exciting recent development in this context is, therefore, that detailed atomistic level characterization of large-scale dynamics of individual bio-macromolecules, such as proteins and DNA, is starting to become feasible in some cases. This has contributed to a better understanding of the molecular mechanisms of, e.g. protein folding and aggregation, as well as DNA dynamics. Nevertheless, simulations of the dynamical behaviour of complex multicomponent cellular processes at an all-atom level will remain beyond reach for the foreseeable future, and may not even be desirable. Ultimate understanding of many biological processes will require the development of methods targeting different time and length scales and, importantly, ways to bridge these in multiscale approaches. At the scientific programme Dynamics of biomolecular processes: from atomistic representations to coarse-grained models held between 27 February and 23 March 2012, and hosted by the Nordic Institute for Theoretical Physics, new modelling approaches and results for particular biological systems were presented and discussed. The programme was attended by around 30 scientists from the Nordic countries and elsewhere. It also included a PhD and postdoc 'winter school', where basic theoretical concepts and techniques of biomolecular modelling and simulations were presented. One to two decades ago, the biomolecular modelling field was dominated by two widely different and largely

  13. Where Does Amber Come from?

    ERIC Educational Resources Information Center

    Booth, Bibi

    2005-01-01

    Amber is the fossilized resin of now-extinct trees, primarily ancient conifers but also some flowering tropical trees. An aromatic, soft, sticky substance, resin in extinct trees probably served the same purposes as resin in modern trees: to protect the plant by sealing cuts and by excluding bacteria, fungi, and insects.

  14. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    NASA Astrophysics Data System (ADS)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  15. The molecular composition of ambers

    USGS Publications Warehouse

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.

    1988-01-01

    Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.

  16. Comparing amber fossil assemblages across the Cenozoic

    PubMed Central

    Penney, David; Langan, A. Mark

    2006-01-01

    To justify faunistic comparisons of ambers that differ botanically, geographically and by age, we need to determine that resins sampled uniformly. Our pluralistic approach, analysing size distributions of 671 fossilized spider species from different behavioural guilds, demonstrates that ecological information about the communities of two well-studied ambers is retained. Several lines of evidence show that greater structural complexity of Baltic compared to Dominican amber trees explains the presence of larger web-spinners. No size differences occur in active hunters. Consequently, we demonstrate for the first time that resins were trapping organisms uniformly and that comparisons of amber palaeoecosystem structure across deep time are possible. PMID:17148379

  17. Comparing amber fossil assemblages across the Cenozoic.

    PubMed

    Penney, David; Langan, A Mark

    2006-06-22

    To justify faunistic comparisons of ambers that differ botanically, geographically and by age, we need to determine that resins sampled uniformly. Our pluralistic approach, analysing size distributions of 671 fossilized spider species from different behavioural guilds, demonstrates that ecological information about the communities of two well-studied ambers is retained. Several lines of evidence show that greater structural complexity of Baltic compared to Dominican amber trees explains the presence of larger web-spinners. No size differences occur in active hunters. Consequently, we demonstrate for the first time that resins were trapping organisms uniformly and that comparisons of amber palaeoecosystem structure across deep time are possible.

  18. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.

    PubMed

    Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H

    2010-05-11

    A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.

  19. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    PubMed

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments.

  20. Theory of biomolecular recognition.

    PubMed

    McCammon, J A

    1998-04-01

    Specific, noncovalent binding of biomolecules can only be understood by considering structural, thermodynamic, and kinetic issues. The theoretical foundations for such analyses have been clarified in the past year. Computational techniques for both particle-based and continuum models continue to improve and to yield useful insights into an ever wider range of biomolecular systems.

  1. The search for new amber ingredients.

    PubMed

    Narula, Anubhav P S

    2014-10-01

    There is a constant need for developing new fragrance ingredients in the flavor and fragrance industry, as it allows perfumers to create unique and differentiating perfumes for fine as well as functional products. Among all the categories of notes used in perfume creation, amber notes are indispensible and ubiquitous in their presence in all perfumes. Not only amber notes impart high performance and substantivity to fragrances, but they are paramount in the development of classic and legendary fragrances. This article is based on the plenary lecture delivered at the flavor & fragrance 2013 conference of the German Chemical Society in Leipzig, Germany. The strategy, rationale, and the various synthetic approaches that led to the discovery of two new very powerful, woody, amber materials, Amber Xtreme(®) (1) and Trisamber(®) (2), are delineated.

  2. Palaeontology: Chinese amber insects bridge the gap.

    PubMed

    Ross, Andrew

    2014-07-21

    n the study of fossil insects, Chinese amber from Fushun has been largely overlooked. A new study now reveals a highly diverse biota and provides a wealth of new information on the past Asian insect fauna.

  3. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold.

    PubMed

    Hughes, Zak E; Wright, Louise B; Walsh, Tiffany R

    2013-10-29

    The molecular simulation of biomolecules adsorbed at noble metal interfaces can assist in the development of bionanotechnology applications. In line with advances in polarizable force fields for adsorption at aqueous gold interfaces, there is scope for developing a similar force field for silver. One way to accomplish this is via the generation of in vacuo adsorption energies calculated using first-principles approaches for a wide range of different but biologically relevant small molecules, including water. Here, we present such first-principles data for a comprehensive range of bio-organic molecules obtained from plane-wave density functional theory calculations using the vdW-DF functional. As reported previously for the gold force field, GolP-CHARMM (Wright, L. B.; Rodger, P. M.; Corni, S.; Walsh, T. R. GolP-CHARMM: first-principles based force-fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theory Comput. 2013, 9, 1616-1630), we have used these data to construct a a new force field, AgP-CHARMM, suitable for the simulation of biomolecules at the aqueous Ag(111) and Ag(100) interfaces. This force field is derived to be consistent with GolP-CHARMM such that adsorption on Ag and Au can be compared on an equal footing. Our force fields are used to evaluate the water overlayer stability on both silver and gold, finding good agreement with known behaviors. We also calculate and compare the structuring (spatial and orientational) of liquid water adsorbed at both silver and gold. Finally, we report the adsorption free energy of a range of amino acids at both the Au(111) and Ag(111) aqueous interfaces, calculated using metadynamics. Stronger adsorption on gold was noted in most cases, with the exception being the carboxylate group present in aspartic acid. Our findings also indicate differences in the binding free energy profile between silver and gold for some amino acids, notably for His and Arg. Our analysis suggests that the relatively

  4. Carnivorous leaves from Baltic amber.

    PubMed

    Sadowski, Eva-Maria; Seyfullah, Leyla J; Sadowski, Friederike; Fleischmann, Andreas; Behling, Hermann; Schmidt, Alexander R

    2015-01-06

    The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants.

  5. Carnivorous leaves from Baltic amber

    PubMed Central

    Sadowski, Eva-Maria; Seyfullah, Leyla J.; Sadowski, Friederike; Fleischmann, Andreas; Behling, Hermann; Schmidt, Alexander R.

    2015-01-01

    The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants. PMID:25453067

  6. Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package

    PubMed Central

    Pierce, Levi T.; Walker, Ross C.; McCammont, J. Andrew

    2013-01-01

    Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license. PMID:24185531

  7. Biomolecular Interaction Assay

    SciTech Connect

    Bruckner-Lea, Cindy J.; Brown, L; Holman, David A.; Olson, Lydia; Grate, Jay W.

    2000-12-29

    Understanding the binding interactions of complexes of multiple proteins is an important area of medical research since many biological signaling pathways involve multiple protein complexes. A number of sensor technologies have been adapted to monitoring biomolecular interactions. Acoustic wave devices such as flexural plate wave devices, surface transverse waves, and quartz crystal microbalances detect the mass increase observed upon binding of a solution biomolecule to a surface bound biomolecule. However, these devices will also respond to changes in viscosity, temperature, liquid density, and viscoelastic effects, which may confound the interpretation of observed signals. Nonspecific binding is indistinguishable from specific binding. Several techniques for refractive index sensing, such as planar wave guides and surface plasmon resonance (SPR), can also be used to observe biomolecular interactions localized at a surface. Again, nonspecific binding is indistinguishable from specific binding. In addition, the derivatized surface must be very thin and uniform to obtain adequate sensitivity and reproducibility, and the technique is not suited for monitoring large multiple protein complexes since the measurement sensitivity decreases rapidly with distance from the sensor surface. All of these techniques use planar surfaces that are difficult to prepare and characterize, and must be prepared fresh for each assay.

  8. Arthropods in amber from the Triassic Period

    PubMed Central

    Schmidt, Alexander R.; Jancke, Saskia; Lindquist, Evert E.; Ragazzi, Eugenio; Roghi, Guido; Nascimbene, Paul C.; Schmidt, Kerstin; Wappler, Torsten; Grimaldi, David A.

    2012-01-01

    The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms. PMID:22927387

  9. Arthropods in amber from the Triassic Period.

    PubMed

    Schmidt, Alexander R; Jancke, Saskia; Lindquist, Evert E; Ragazzi, Eugenio; Roghi, Guido; Nascimbene, Paul C; Schmidt, Kerstin; Wappler, Torsten; Grimaldi, David A

    2012-09-11

    The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms.

  10. Arthropods in amber from the Triassic Period

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexander R.; Jancke, Saskia; Lindquist, Evert E.; Ragazzi, Eugenio; Roghi, Guido; Nascimbene, Paul C.; Schmidt, Kerstin; Wappler, Torsten; Grimaldi, David A.

    2012-09-01

    The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms.

  11. An opilioacarid mite in Cretaceous Burmese amber

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; de Oliveira Bernardi, Leopoldo Ferreira

    2014-09-01

    A fossil opilioacarid mite (Parasitiformes: Opilioacarida) in Burmese amber is described as ? Opilioacarus groehni sp. nov. This ca. 99 Ma record (Upper Cretaceous: Cenomanian) represents only the third fossil example of this putatively basal mite lineage, the others originating from Eocene Baltic amber (ca. 44-49 Ma). Our new record is not only the oldest record of Opilioacarida, but it is also one of the oldest examples of the entire Parasitiformes clade. The presence of Opilioacarida—potentially Opiloacarus—in the Cretaceous of SE Asia suggests that some modern genus groups were formerly more widely distributed across the northern hemisphere, raising questions about previously suggested Gondwanan origins for these mites.

  12. Biomolecular halogen bonds.

    PubMed

    Ho, P Shing

    2015-01-01

    Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.

  13. Cretaceous African life captured in amber

    PubMed Central

    Schmidt, Alexander R.; Perrichot, Vincent; Svojtka, Matthias; Anderson, Ken B.; Belete, Kebede H.; Bussert, Robert; Dörfelt, Heinrich; Jancke, Saskia; Mohr, Barbara; Mohrmann, Eva; Nascimbene, Paul C.; Nel, André; Nel, Patricia; Ragazzi, Eugenio; Roghi, Guido; Saupe, Erin E.; Schmidt, Kerstin; Schneider, Harald; Selden, Paul A.; Vávra, Norbert

    2010-01-01

    Amber is of great paleontological importance because it preserves a diverse array of organisms and associated remains from different habitats in and close to the amber-producing forests. Therefore, the discovery of amber inclusions is important not only for tracing the evolutionary history of lineages with otherwise poor fossil records, but also for elucidating the composition, diversity, and ecology of terrestrial paleoecosystems. Here, we report a unique find of African amber with inclusions, from the Cretaceous of Ethiopia. Ancient arthropods belonging to the ants, wasps, thrips, zorapterans, and spiders are the earliest African records of these ecologically important groups and constitute significant discoveries providing insight into the temporal and geographical origins of these lineages. Together with diverse microscopic inclusions, these findings reveal the interactions of plants, fungi and arthropods during an epoch of major change in terrestrial ecosystems, which was caused by the initial radiation of the angiosperms. Because of its age, paleogeographic location and the exceptional preservation of the inclusions, this fossil resin broadens our understanding of the ecology of Cretaceous woodlands. PMID:20368427

  14. Cretaceous African life captured in amber.

    PubMed

    Schmidt, Alexander R; Perrichot, Vincent; Svojtka, Matthias; Anderson, Ken B; Belete, Kebede H; Bussert, Robert; Dörfelt, Heinrich; Jancke, Saskia; Mohr, Barbara; Mohrmann, Eva; Nascimbene, Paul C; Nel, André; Nel, Patricia; Ragazzi, Eugenio; Roghi, Guido; Saupe, Erin E; Schmidt, Kerstin; Schneider, Harald; Selden, Paul A; Vávra, Norbert

    2010-04-20

    Amber is of great paleontological importance because it preserves a diverse array of organisms and associated remains from different habitats in and close to the amber-producing forests. Therefore, the discovery of amber inclusions is important not only for tracing the evolutionary history of lineages with otherwise poor fossil records, but also for elucidating the composition, diversity, and ecology of terrestrial paleoecosystems. Here, we report a unique find of African amber with inclusions, from the Cretaceous of Ethiopia. Ancient arthropods belonging to the ants, wasps, thrips, zorapterans, and spiders are the earliest African records of these ecologically important groups and constitute significant discoveries providing insight into the temporal and geographical origins of these lineages. Together with diverse microscopic inclusions, these findings reveal the interactions of plants, fungi and arthropods during an epoch of major change in terrestrial ecosystems, which was caused by the initial radiation of the angiosperms. Because of its age, paleogeographic location and the exceptional preservation of the inclusions, this fossil resin broadens our understanding of the ecology of Cretaceous woodlands.

  15. VFFDT: A New Software for Preparing AMBER Force Field Parameters for Metal-Containing Molecular Systems.

    PubMed

    Zheng, Suqing; Tang, Qing; He, Jian; Du, Shiyu; Xu, Shaofang; Wang, Chaojie; Xu, Yong; Lin, Fu

    2016-04-25

    Force fields are fundamental to molecular dynamics simulations. However, the incompleteness of force field parameters has been a long-standing problem, especially for metal-related systems. In our previous work, we adopted the Seminario method based on the Hessian matrix to systematically derive the zinc-related force field parameters for AMBER. In this work, in order to further simplify the whole protocol, we have implemented a user-friendly Visual Force Field Derivation Toolkit (VFFDT) to derive the force field parameters via simply clicking on the bond or angle in the 3D viewer, and we have further extended our previous program to support the Hessian matrix output from a variety of quantum mechanics (QM) packages, including Gaussian 03/09, ORCA 3.0, QChem, GAMESS-US, and MOPAC 2009/2012. In this toolkit, a universal VFFDT XYZ file format containing the raw Hessian matrix is available for all of the QM packages, and an instant force field parametrization protocol based on a semiempirical quantum mechanics (SQM) method is introduced. The new function that can automatically obtain the relevant parameters for zinc, copper, iron, etc., which can be exported in AMBER Frcmod format, has been added. Furthermore, our VFFDT program can read and write files in AMBER Prepc, AMBER Frcmod, and AMBER Mol2 format and can also be used to customize, view, copy, and paste the force field parameters in the context of the 3D viewer, which provides utilities complementary to ANTECHAMBER, MCPB, and MCPB.py in the AmberTools.

  16. Penis morphology in a Burmese amber harvestman.

    PubMed

    Dunlop, Jason A; Selden, Paul A; Giribet, Gonzalo

    2016-02-01

    A unique specimen of the fossil harvestman Halitherses grimaldii Giribet and Dunlop, 2005 (Arachnida: Opiliones) from the Cretaceous (ca. 99 Ma) Burmese amber of Myanmar reveals a fully extended penis. This is the first record of a male copulatory organ of this nature preserved in amber and is of special importance due to the age of the deposit. The penis has a slender, distally flattened truncus, a spatulate heart-shaped glans and a short distal stylus, twisted at the tip. In living harvestmen, the penis yields crucial characters for their systematics. Male genital morphology in H. grimaldii appears to be unique among the wider Dyspnoi clade to which this fossil belongs. The large eyes in the fossil differ markedly from other members of the subfamily Ortholasmatinae to which H. grimaldii was originally referred. Based on recent data, it has been argued that large eyes may be plesiomorphic for Palpatores (i.e. the suborders Eupnoi and Dyspnoi), potentially rendering this character plesiomorphic for the fossil too. Thus, the unique structure of the penis seen here, and the probable lack of diaphanous teeth, present in all other extant non-acropsopilionid Dyspnoi, suggest that H. grimaldii represents a new, extinct family of large-eyed dyspnoid harvestmen, Halithersidae fam. nov.; a higher taxon in amber diagnosed here on both somatic and genital characters.

  17. Penis morphology in a Burmese amber harvestman

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; Selden, Paul A.; Giribet, Gonzalo

    2016-02-01

    A unique specimen of the fossil harvestman Halitherses grimaldii Giribet and Dunlop, 2005 (Arachnida: Opiliones) from the Cretaceous (ca. 99 Ma) Burmese amber of Myanmar reveals a fully extended penis. This is the first record of a male copulatory organ of this nature preserved in amber and is of special importance due to the age of the deposit. The penis has a slender, distally flattened truncus, a spatulate heart-shaped glans and a short distal stylus, twisted at the tip. In living harvestmen, the penis yields crucial characters for their systematics. Male genital morphology in H. grimaldii appears to be unique among the wider Dyspnoi clade to which this fossil belongs. The large eyes in the fossil differ markedly from other members of the subfamily Ortholasmatinae to which H. grimaldii was originally referred. Based on recent data, it has been argued that large eyes may be plesiomorphic for Palpatores (i.e. the suborders Eupnoi and Dyspnoi), potentially rendering this character plesiomorphic for the fossil too. Thus, the unique structure of the penis seen here, and the probable lack of diaphanous teeth, present in all other extant non-acropsopilionid Dyspnoi, suggest that H. grimaldii represents a new, extinct family of large-eyed dyspnoid harvestmen, Halithersidae fam. nov.; a higher taxon in amber diagnosed here on both somatic and genital characters.

  18. Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber

    SciTech Connect

    Luchko, T.; Simmerling, C.; Gusarov, S.; Roe, D.R., Case, D.A.; Tuszynski, J.; Kovalenko, A.

    2010-02-01

    We present the three-dimensional molecular theory of solvation (also known as 3D-RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of freedom, accelerated by extrapolating solvent-induced forces and applying them in large multiple time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been implemented in the Amber molecular modeling package and is illustrated here on alanine-dipeptide and protein-G.

  19. First early Mesozoic amber in the Western Hemisphere

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1991-01-01

    Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors

  20. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  1. Markov state models of biomolecular conformational dynamics

    PubMed Central

    Chodera, John D.; Noé, Frank

    2014-01-01

    It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551

  2. OHANA, the AMBER/VLTI Snapshot Survey

    NASA Astrophysics Data System (ADS)

    Rivinius, T.; de Wit, W.; Demers, Z.; Quirrenbach, A.; VLTI Science Operations Team

    2016-11-01

    We report on the OHANA interferometric snapshot survey, carried out by the VLTI group at the Paranal observatory. It makes use of observing time not useful for any other scheduled scientific or technical tasks in the sense of a backup programme, to characterize the mass-loss for early-type stars. The survey employs the combination of AMBER's high spectral and spatial resolution. The spatially unresolved central object provides a reference frame for the fringe properties observed in the light of the continuum.

  3. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics.

  4. Lightweight object oriented structure analysis: tools for building tools to analyze molecular dynamics simulations.

    PubMed

    Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan

    2014-12-15

    LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development.

  5. Global Langevin model of multidimensional biomolecular dynamics

    NASA Astrophysics Data System (ADS)

    Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard

    2016-11-01

    Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F ( 𝒙 ) . To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F ( 𝒙 ) , which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.

  6. Stochastic computing with biomolecular automata.

    PubMed

    Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud

    2004-07-06

    Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure.

  7. Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.

    PubMed

    Rudack, Till; Xia, Fei; Schlitter, Jürgen; Kötting, Carsten; Gerwert, Klaus

    2012-09-18

    Members of the Ras superfamily regulate many cellular processes. They are down-regulated by a GTPase reaction in which GTP is cleaved into GDP and P(i) by nucleophilic attack of a water molecule. Ras proteins accelerate GTP hydrolysis by a factor of 10(5) compared to GTP in water. GTPase-activating proteins (GAPs) accelerate hydrolysis by another factor of 10(5) compared to Ras alone. Oncogenic mutations in Ras and GAPs slow GTP hydrolysis and are a factor in many cancers. Here, we elucidate in detail how this remarkable catalysis is brought about. We refined the protein-bound GTP structure and protein-induced charge shifts within GTP beyond the current resolution of X-ray structural models by combining quantum mechanics and molecular mechanics simulations with time-resolved Fourier-transform infrared spectroscopy. The simulations were validated by comparing experimental and theoretical IR difference spectra. The reactant structure of GTP is destabilized by Ras via a conformational change from a staggered to an eclipsed position of the nonbridging oxygen atoms of the γ- relative to the β-phosphates and the further rotation of the nonbridging oxygen atoms of α- relative to the β- and γ-phosphates by GAP. Further, the γ-phosphate becomes more positive although two of its oxygen atoms remain negative. This facilitates the nucleophilic attack by the water oxygen at the phosphate and proton transfer to the oxygen. Detailed changes in geometry and charge distribution in the ligand below the resolution of X-ray structure analysis are important for catalysis. Such high resolution appears crucial for the understanding of enzyme catalysis.

  8. Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15.

    PubMed

    Wang, Lee-Ping; McKiernan, Keri A; Gomes, Joseph; Beauchamp, Kyle A; Head-Gordon, Teresa; Rice, Julia E; Swope, William C; Martínez, Todd J; Pande, Vijay S

    2017-04-06

    The increasing availability of high-quality experimental data and first-principles calculations creates opportunities for developing more accurate empirical force fields for simulation of proteins. We developed the AMBER-FB15 protein force field by building a high-quality quantum chemical data set consisting of comprehensive potential energy scans and employing the ForceBalance software package for parameter optimization. The optimized potential surface allows for more significant thermodynamic fluctuations away from local minima. In validation studies where simulation results are compared to experimental measurements, AMBER-FB15 in combination with the updated TIP3P-FB water model predicts equilibrium properties with equivalent accuracy, and temperature dependent properties with significantly improved accuracy, in comparison with published models. We also discuss the effect of changing the protein force field and water model on the simulation results.

  9. Mining and state-space modeling and verification of sub-networks from large-scale biomolecular networks

    PubMed Central

    Hu, Xiaohua; Wu, Fang-Xiang

    2007-01-01

    Background Biomolecular networks dynamically respond to stimuli and implement cellular function. Understanding these dynamic changes is the key challenge for cell biologists. As biomolecular networks grow in size and complexity, the model of a biomolecular network must become more rigorous to keep track of all the components and their interactions. In general this presents the need for computer simulation to manipulate and understand the biomolecular network model. Results In this paper, we present a novel method to model the regulatory system which executes a cellular function and can be represented as a biomolecular network. Our method consists of two steps. First, a novel scale-free network clustering approach is applied to the large-scale biomolecular network to obtain various sub-networks. Second, a state-space model is generated for the sub-networks and simulated to predict their behavior in the cellular context. The modeling results represent hypotheses that are tested against high-throughput data sets (microarrays and/or genetic screens) for both the natural system and perturbations. Notably, the dynamic modeling component of this method depends on the automated network structure generation of the first component and the sub-network clustering, which are both essential to make the solution tractable. Conclusion Experimental results on time series gene expression data for the human cell cycle indicate our approach is promising for sub-network mining and simulation from large-scale biomolecular network. PMID:17764552

  10. Ultraviolet photofragmentation of biomolecular ions

    PubMed Central

    Reilly, James P.

    2009-01-01

    Mass spectrometric identification of all types of molecules relies on the observation and interpretation of ion fragmentation patterns. Peptides, proteins, carbohydrates and nucleic acids that are often found as components of complex biological samples represent particularly important challenges. The most common strategies for fragmenting biomolecular ions include low- and high-energy collisional activation, post-source decay, and electron capture or transfer dissociation. Each of these methods has its own idiosyncrasies and advantages but encounters problems with some types of samples. Novel fragmentation methods that can offer improvements are always desirable. One approach that has been under study for years but is not yet incorporated into a commercial instrument is ultraviolet photofragmentation. This review discusses experimental results on various biological molecules that have been generated by several research groups using different light wavelengths and mass analyzers. Work involving short-wavelength vacuum ultraviolet light is particularly emphasized. The characteristics of photofragmentation are examined and its advantages summarized. PMID:19241462

  11. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  12. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber

    NASA Astrophysics Data System (ADS)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  13. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber.

    PubMed

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  14. Two new fossil species of Cryptocephalus Geoffroy (Coleoptera: Chrysomelidae) from Baltic and Dominican Amber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new species of Cryptocephalus Geoffroy (Coleoptera: Chrysomelidae) are described and illustrated from fossil resin: Cryptocephalus groehni sp. nov (Baltic amber) and Cryptocephalus kheelorum sp. nov. (Dominican amber). These are the first described species of Cryptocephalinae from fossil resin. ...

  15. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  16. Mining, modeling, and evaluation of subnetworks from large biomolecular networks and its comparison study.

    PubMed

    Hu, Xiaohua; Ng, Michael; Wu, Fang-Xiang; Sokhansanj, Bahrad A

    2009-03-01

    In this paper, we present a novel method to mine, model, and evaluate a regulatory system executing cellular functions that can be represented as a biomolecular network. Our method consists of two steps. First, a novel scale-free network clustering approach is applied to such a biomolecular network to obtain various subnetworks. Second, computational models are generated for the subnetworks and simulated to predict their behavior in the cellular context. We discuss and evaluate some of the advanced computational modeling approaches, in particular, state-space modeling, probabilistic Boolean network modeling, and fuzzy logic modeling. The modeling and simulation results represent hypotheses that are tested against high-throughput biological datasets (microarrays and/or genetic screens) under normal and perturbation conditions. Experimental results on time-series gene expression data for the human cell cycle indicate that our approach is promising for subnetwork mining and simulation from large biomolecular networks.

  17. A new proposal concerning the botanical origin of Baltic amber

    PubMed Central

    Wolfe, Alexander P.; Tappert, Ralf; Muehlenbachs, Karlis; Boudreau, Marc; McKellar, Ryan C.; Basinger, James F.; Garrett, Amber

    2009-01-01

    Baltic amber constitutes the largest known deposit of fossil plant resin and the richest repository of fossil insects of any age. Despite a remarkable legacy of archaeological, geochemical and palaeobiological investigation, the botanical origin of this exceptional resource remains controversial. Here, we use taxonomically explicit applications of solid-state Fourier-transform infrared (FTIR) microspectroscopy, coupled with multivariate clustering and palaeobotanical observations, to propose that conifers of the family Sciadopityaceae, closely allied to the sole extant representative, Sciadopitys verticillata, were involved in the genesis of Baltic amber. The fidelity of FTIR-based chemotaxonomic inferences is upheld by modern–fossil comparisons of resins from additional conifer families and genera (Cupressaceae: Metasequoia; Pinaceae: Pinus and Pseudolarix). Our conclusions challenge hypotheses advocating members of either of the families Araucariaceae or Pinaceae as the primary amber-producing trees and correlate favourably with the progressive demise of subtropical forest biomes from northern Europe as palaeotemperatures cooled following the Eocene climate optimum. PMID:19570786

  18. Examination of amber and related materials by NMR spectroscopy.

    PubMed

    Lambert, Joseph B; Santiago-Blay, Jorge A; Wu, Yuyang; Levy, Allison J

    2015-01-01

    Examination of the solid-state (13)C and solution (1)H NMR spectra of fossilized resins (ambers) has generated five groupings of materials based on spectral characteristics. The worldwide Group A is associated with the botanical family of the Araucariaceae. The worldwide Group B is associated with the Dipterocarpaceae. Baltic amber or succinite (Group C) is related to Group A but with a disputed conifer source. Amber from Latin America, the Caribbean, and Africa is associated with the Fabaceae, the genus Hymenaea in particular. The minor Group E contains the rare fossil polystyrene. The spectra of jet indicate that it is a coal-like material with a rank between lignite and sub-bituminous coal.

  19. [Advances in biomolecular machine: methane monooxygenases].

    PubMed

    Lu, Jixue; Wang, Shizhen; Fang, Baishan

    2015-07-01

    Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced.

  20. Coordination and control inside simple biomolecular machines.

    PubMed

    Yu, Jin

    2014-01-01

    Biomolecular machines can achieve physiological functions precisely and efficiently, though they always operate under fluctuations and noises. We review two types of simple machinery that we have recently studied. The machinery can be regarded as molecular motors. They transform chemical free energy from NTP hydrolysis to mechanical work. One type belongs to small monomeric helicases that move directionally along single-stranded nucleic acid, and may further unwind the duplex part for gene replication or repair. The other type belongs to ring-shaped NTPase motors that also move or transport nucleic acid or protein substrate in a directional manner, such as for genome packaging or protein degradation. The central issue in this review is on how the machinery coordinates essential degrees of freedom during the mechanochemical coupling process. Further concerns include how the coordination and control are manifested in experiments, and how they can be captured well in modeling and computational research. We employed atomistic molecular dynamics simulations, coarse-grained analyses, and stochastic modeling techniques to examine the molecular machines at multiple resolutions and timescales. Detailed descriptions on how the protein interacts with its substrate at interface, as well as how multiple protein subunits are coordinated are summarized.

  1. BIND—The Biomolecular Interaction Network Database

    PubMed Central

    Bader, Gary D.; Donaldson, Ian; Wolting, Cheryl; Ouellette, B. F. Francis; Pawson, Tony; Hogue, Christopher W. V.

    2001-01-01

    The Biomolecular Interaction Network Database (BIND; http://binddb.org) is a database designed to store full descriptions of interactions, molecular complexes and pathways. Development of the BIND 2.0 data model has led to the incorporation of virtually all components of molecular mechanisms including interactions between any two molecules composed of proteins, nucleic acids and small molecules. Chemical reactions, photochemical activation and conformational changes can also be described. Everything from small molecule biochemistry to signal transduction is abstracted in such a way that graph theory methods may be applied for data mining. The database can be used to study networks of interactions, to map pathways across taxonomic branches and to generate information for kinetic simulations. BIND anticipates the coming large influx of interaction information from high-throughput proteomics efforts including detailed information about post-translational modifications from mass spectrometry. Version 2.0 of the BIND data model is discussed as well as implementation, content and the open nature of the BIND project. The BIND data specification is available as ASN.1 and XML DTD. PMID:11125103

  2. Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised α/γ Torsional Parameters for the Amber Force Field.

    PubMed

    Wales, David J; Yildirim, Ilyas

    2017-04-13

    With current advancements in RNA based therapeutics, it is becoming crucial to utilize theoretical and computational methods to describe properly the physical properties of RNA molecules. NMR and X-ray crystallography are two powerful techniques for investigating structural properties. However, if the RNA molecules are complex or dynamic, these methods might not be adequate. For computational approaches, the quality of the force field will determine accuracy of our predictions. In this contribution, we revise the α/γ torsional parameters of RNA for amber force field using a model system representing an RNA dimer backbone. Combined with revised χ torsional parameters, previously shown to improve computational predictions, we benchmarked the revised force field on five single-stranded RNA (ssRNA) tetramers, three RNA dodecamer duplexes, and an RNA hairpin. A total of 60 μs of molecular dynamics (MD) simulations were run. We also employ the discrete path sampling (DPS) approach to compare the predictions for the revised amber force field with those for amber10. Our results indicate that the unphysical states observed with amber10 in ssRNA MD simulations are suppressed for the revised amber force field. In line with NMR experimental observations, incorporation of the revised α/γ and χ torsional parameters leads to A-form-like conformational states as the most favorable ssRNA tetramer conformations. Furthermore, the revised force field maintains the A-form geometry in regular RNA duplexes. Our revised amber force field for RNA should therefore improve structural and thermodynamic predictions for challenging RNA systems.

  3. Engineered nanoparticles for biomolecular imaging

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Serpooshan, Vahid; Laurent, Sophie

    2011-08-01

    In recent years, the production of nanoparticles (NPs) and exploration of their unusual properties have attracted the attention of physicists, chemists, biologists and engineers. Interest in NPs arises from the fact that the mechanical, chemical, electrical, optical, magnetic, electro-optical and magneto-optical properties of these particles are different from their bulk properties and depend on the particle size. There are numerous areas where nanoparticulate systems are of scientific and technological interest, particularly in biomedicine where the emergence of NPs with specific properties (e.g. magnetic and fluorescence) for contrast agents can lead to advancing the understanding of biological processes at the biomolecular level. This review will cover a full description of the physics of various imaging methods, including MRI, optical techniques, X-rays and CT. In addition, the effect of NPs on the improvement of the mentioned non-invasive imaging methods will be discussed together with their advantages and disadvantages. A detailed discussion will also be provided on the recent advances in imaging agents, such as fluorescent dye-doped silica NPs, quantum dots, gold- and engineered polymeric-NPs, superparamagnetic iron oxide NPs (SPIONs), and multimodal NPs (i.e. nanomaterials that are active in both MRI and optical methods), which are employed to overcome many of the limitations of conventional contrast agents (e.g. gadolinium).

  4. Multidimensional persistence in biomolecular data

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2015-01-01

    Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudo-multidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryo-electron microscopy data, and the scale dependence of nano particles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants. PMID:26032339

  5. Structural changes in amber due to uranium mineralization.

    PubMed

    Havelcová, Martina; Machovič, Vladimír; Mizera, Jiří; Sýkorová, Ivana; René, Miloš; Borecká, Lenka; Lapčák, Ladislav; Bičáková, Olga; Janeček, Oldřich; Dvořák, Zdeněk

    2016-07-01

    The presence of uranium, with a bulk mass fraction of about 1.5 wt% and radiolytic alterations are a feature of Cenomanian amber from Křižany, at the northeastern edge of the North Bohemian Cretaceous uranium ore district. Pores and microcracks in the amber were filled with a mineral admixture, mainly in the form of Zr-Y-REE enriched uraninite. As a result of radiolytic alterations due to the presence of uranium, structural changes were observed in the Křižany amber in comparison with a reference amber from Nové Strašecí in central Bohemia; this was of similar age and botanical origin but did not contain elevated levels of uranium. Structural changes involved an increase in aromaticity due to dehydroaromatization of aliphatic cyclic hydrocarbons, loss of oxygen functional groups, an increase in the degree of polymerization, crosslinking of CC bonds, formation of a three-dimensional hydrocarbon network in the bulk organic matrix, and carbonization of the organic matrix around the uraninite infill.

  6. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  7. GPU acceleration of Dock6's Amber scoring computation.

    PubMed

    Yang, Hailong; Zhou, Qiongqiong; Li, Bo; Wang, Yongjian; Luan, Zhongzhi; Qian, Depei; Li, Hanlu

    2010-01-01

    Dressing the problem of virtual screening is a long-term goal in the drug discovery field, which if properly solved, can significantly shorten new drugs' R&D cycle. The scoring functionality that evaluates the fitness of the docking result is one of the major challenges in virtual screening. In general, scoring functionality in docking requires a large amount of floating-point calculations, which usually takes several weeks or even months to be finished. This time-consuming procedure is unacceptable, especially when highly fatal and infectious virus arises such as SARS and H1N1, which forces the scoring task to be done in a limited time. This paper presents how to leverage the computational power of GPU to accelerate Dock6's (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25: 1157-1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical Staff, Compute Unified Device Architecture - Programming Guide, NVIDIA Corporation, 2008) (Compute Unified Device Architecture) platform. We also discuss many factors that will greatly influence the performance after porting the Amber scoring to GPU, including thread management, data transfer, and divergence hidden. Our experiments show that the GPU-accelerated Amber scoring achieves a 6.5× speedup with respect to the original version running on AMD dual-core CPU for the same problem size. This acceleration makes the Amber scoring more competitive and efficient for large-scale virtual screening problems.

  8. A Validation Study of the General Amber Force Field Applied to Energetic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Bergh, Magnus; Caleman, Carl

    2016-01-01

    Molecula dynamics is a well-established tool to computationally study molecules. However, to reach predictive capability at the level required for applied research and design, extensive validation of the available force fields is pertinent. Here we present a study of density, isothermal compressibility and coefficients of thermal expansion of four energetic materials (FOX-7, RDX, CL-20 and HMX) based on molecular dynamics simulations with the General Amber Force Field (GAFF), and compare the results to experimental measurements from the literature. Furthermore, we quantify the accuracy of the calculated properties through hydrocode simulation of a typical impact scenario. We find that molecular dynamics simulations with generic and computationally efficient force fields may be used to understand and estimate important physical properties of nitramine-like energetic materials.

  9. Logistic map analysis of biomolecular network evolution

    NASA Astrophysics Data System (ADS)

    Stein, R. R.; Isambert, H.

    2011-11-01

    We study the expansion of biomolecular networks from the view point of first evolutionary principles based on the duplication and divergence of ancestral genes. The expansion of gene families and subnetworks is analyzed in terms of logistic map compositions, which capture the varying functional constraints of individual genes in the course of evolution. Using a mean-field approach, we then demonstrate the existence of spontaneous growth-rate variations between gene families and discuss the relevance of such heterogeneous expansions for the emergent properties of actual biomolecular networks.

  10. At least 10% shorter C-H bonds in cryogenic protein crystal structures than in current AMBER forcefields.

    PubMed

    Pang, Yuan-Ping

    2015-03-06

    High resolution protein crystal structures resolved with X-ray diffraction data at cryogenic temperature are commonly used as experimental data to refine forcefields and evaluate protein folding simulations. However, it has been unclear hitherto whether the C-H bond lengths in cryogenic protein structures are significantly different from those defined in forcefields to affect protein folding simulations. This article reports the finding that the C-H bonds in high resolution cryogenic protein structures are 10-14% shorter than those defined in current AMBER forcefields, according to 3709 C-H bonds in the cryogenic protein structures with resolutions of 0.62-0.79 Å. Also, 20 all-atom, isothermal-isobaric, 0.5-μs molecular dynamics simulations showed that chignolin folded from a fully-extended backbone formation to the native β-hairpin conformation in the simulations using AMBER forcefield FF12SB at 300 K with an aggregated native state population including standard error of 10 ± 4%. However, the aggregated native state population with standard error reduced to 3 ± 2% in the same simulations except that C-H bonds were shortened by 10-14%. Furthermore, the aggregated native state populations with standard errors increased to 35 ± 3% and 26 ± 3% when using FF12MC, which is based on AMBER forcefield FF99, with and without the shortened C-H bonds, respectively. These results show that the 10-14% bond length differences can significantly affect protein folding simulations and suggest that re-parameterization of C-H bonds according to the cryogenic structures could improve the ability of a forcefield to fold proteins in molecular dynamics simulations.

  11. 40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres

    USGS Publications Warehouse

    Landis, G.P.; Snee, L.W.

    1991-01-01

    Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.

  12. VIBE: A virtual biomolecular environment for interactive molecular modeling

    SciTech Connect

    Cruz-Neira, C.; Langley, R.; Bash, P.A.

    1996-12-31

    Virtual reality tightly coupled to high performance computing and communications ushers in a new era for the study of molecular recognition and the rational design of pharmaceutical compounds. We have created a Virtual Biomolecular Environment (VIBE), which consists of (1) massively parallel computing to simulate the physical and chemical properties of a molecular system, (2) the Cave Automatic Virtual Environment (CAVE) for immersive display and interaction with the molecular system, and (3) a high-speed network interface to exchange data between the simulation and the CAVE. VIBE enables molecular scientists to have a visual, auditory, and haptic experience with a chemical system, while simultaneously manipulating its physical properties by steering, in real-time, a simulation executed on a supercomputer. We demonstrate the characteristics of VIBE using an HIV protease-cyclic urea inhibitor complex. 22 refs., 4 figs.

  13. A Unified AMBER-Compatible Molecular Mechanics Force Field for Thiolate-Protected Gold Nanoclusters.

    PubMed

    Pohjolainen, Emmi; Chen, Xi; Malola, Sami; Groenhof, Gerrit; Häkkinen, Hannu

    2016-03-08

    We present transferable AMBER-compatible force field parameters for thiolate-protected gold nanoclusters. Five different sized clusters containing both organo-soluble and water-soluble thiolate ligands served as test systems in MD simulations, and parameters were validated against DFT and experimental results. The cluster geometries remain intact during the MD simulations in various solvents, and structural fluctuations and energetics showed agreement with DFT calculations. Experimental diffusion coefficients and crystal structures were also reproduced with sufficient accuracy. The presented parameter set contains the minimum number of cluster-specific parameters enabling the use of these parameters for several different gold nanoclusters. The parameterization of ligands can also be extended to different types of ligands.

  14. Mummified precocial bird wings in mid-Cretaceous Burmese amber

    PubMed Central

    Xing, Lida; McKellar, Ryan C.; Wang, Min; Bai, Ming; O'Connor, Jingmai K.; Benton, Michael J.; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G.; Li, Gang; Zhang, Weiwei; Xu, Xing

    2016-01-01

    Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans. PMID:27352215

  15. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber

    PubMed Central

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan-Carlos; Alonso, Jesús; Ascaso, Carmen

    2009-01-01

    Background Microfossils are not only useful for elucidating biological macro- and microevolution but also the biogeochemical history of our planet. Pyritization is the most important and extensive mode of preservation of animals and especially of plants. Entrapping in amber, a fossilized resin, is considered an alternative mode of biological preservation. For the first time, the internal organization of 114-million-year-old microfossils entrapped in Lower Cretaceous amber is described and analyzed, using adapted scanning electron microscopy in backscattered electron mode in association with energy dispersive X-ray spectroscopy microanalysis. Double fossilization of several protists included in diverse taxonomical groups and some vegetal debris is described and analyzed. Results In protists without an exoskeleton or shell (ciliates, naked amoebae, flagellates), determinate structures, including the nuclei, surface envelopes (cortex or cytoplasmic membrane) and hyaloplasm are the main sites of pyritization. In protists with a biomineralized skeleton (diatoms), silicon was replaced by pyrite. Permineralization was the main mode of pyritization. Framboidal, subhedral and microcrystalline are the predominant pyrite textures detected in the cells. Abundant pyritized vegetal debris have also been found inside the amber nuggets and the surrounding sediments. This vegetal debris usually contained numerous pyrite framboids and very densely packed polycrystalline pyrite formations infilled with different elements of the secondary xylem. Conclusion Embedding in amber and pyritization are not always alternative modes of biological preservation during geological times, but double fossilization is possible under certain environmental conditions. Pyritization in protists shows a quite different pattern with regard to plants, due to the different composition and cellular architecture in these microorganisms and organisms. Anaerobic sulphate-reducing bacteria could play a crucial

  16. Webspinners in Early Eocene amber from western India (Insecta, Embiodea)

    PubMed Central

    Engel, Michael S.; Grimaldi, David A.; Singh, Hukam; Nascimbene, Paul C.

    2011-01-01

    Abstract The family Scelembiidae (Neoembiodea: Embiomorpha: Archembioidea) is recorded from Asia for the first time, based on two individuals preserved in Early Eocene amber from the Cambay Basin, western India. Kumarembia hurleyi Engel & Grimaldi, gen. n. et sp. n., is described, figured, and distinguished from other archembioid genera. The genus shares male genitalic features with scelembiids, otherwise known from South America and Africa. PMID:22287898

  17. Conformational dynamics of two natively unfolded fragment peptides: Comparison of the AMBER and CHARMM force fields

    PubMed Central

    Chen, Wei; Shi, Chuanyin; MacKerell, Alexander D.; Shen, Jana

    2015-01-01

    Physics-based force fields are the backbone of molecular dynamics simulations. In recent years, significant progress has been made in the assessment and improvement of commonly-used force fields for describing conformational dynamics of folded proteins. However, the accuracy for the unfolded states remains unclear. The latter is however important for detailed studies of protein folding pathways, conformational transitions involving unfolded states and dynamics of intrinsically disordered proteins. In this work we compare the three commonly-used force fields, AMBER ff99SB-ILDN, CHARMM22/CMAP and CHARMM36, for modeling the natively unfolded fragment peptides, NTL9(1-22) and NTL9(6-17), using explicit-solvent replica-exchange molecular dynamics simulations. All three simulations show that NTL9(6-17) is completely unstructured, while NTL9(1-22) transiently samples various β-hairpin states, reminiscent of the first β-hairpin in the structure of the intact NT9 protein. The radius of gyration of the two peptides is force field independent but likely underestimated due to the current deficiency of additive force fields. Compared to the CHARMM force fields, ff99SB-ILDN gives slightly higher β-sheet propensity and more native-like residual structures for NTL9(1-22), which may be attributed to its known β preference. Surprisingly, only two sequence-local pairs of charged residues make appreciable ionic contacts in the simulations of NTL9(1-22), which are sampled slightly more by the CHARMM force fields. Taken together, these data suggest that the current CHARMM and AMBER force fields are globally in agreement in modeling the unfolded states corresponding to β-sheet in the folded structure, while differing in details such as the native-likeness of the residual structures and interactions. PMID:26020564

  18. Adaptive resolution simulation of salt solutions

    NASA Astrophysics Data System (ADS)

    Bevc, Staš; Junghans, Christoph; Kremer, Kurt; Praprotnik, Matej

    2013-10-01

    We present an adaptive resolution simulation of aqueous salt (NaCl) solutions at ambient conditions using the adaptive resolution scheme. Our multiscale approach concurrently couples the atomistic and coarse-grained models of the aqueous NaCl, where water molecules and ions change their resolution while moving from one resolution domain to the other. We employ standard extended simple point charge (SPC/E) and simple point charge (SPC) water models in combination with AMBER and GROMOS force fields for ion interactions in the atomistic domain. Electrostatics in our model are described by the generalized reaction field method. The effective interactions for water-water and water-ion interactions in the coarse-grained model are derived using structure-based coarse-graining approach while the Coulomb interactions between ions are appropriately screened. To ensure an even distribution of water molecules and ions across the simulation box we employ thermodynamic forces. We demonstrate that the equilibrium structural, e.g. radial distribution functions and density distributions of all the species, and dynamical properties are correctly reproduced by our adaptive resolution method. Our multiscale approach, which is general and can be used for any classical non-polarizable force-field and/or types of ions, will significantly speed up biomolecular simulation involving aqueous salt.

  19. Multiphoton excited fluorescence spectroscopy of biomolecular systems

    NASA Astrophysics Data System (ADS)

    Birch, David J. S.

    2001-09-01

    Recent work on the emerging application of multiphoton excitation to fluorescence studies of biomolecular dynamics and structure is reviewed. The fundamental principles and experimental techniques of multiphoton excitation are outlined, fluorescence lifetimes, anisotropy and spectra in membranes, proteins, hydrocarbons, skin, tissue and metabolites are featured, and future opportunities are highlighted.

  20. Snakefly diversity in Early Cretaceous amber from Spain (Neuropterida, Raphidioptera)

    PubMed Central

    la Fuente, Ricardo Pérez-de; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S.

    2012-01-01

    Abstract The Albian amber from Spain presently harbors the greatest number and diversity of amber adult fossil snakeflies (Raphidioptera). Within Baissopteridae, Baissoptera? cretaceoelectra sp. n., from the Peñacerrada I outcrop (Moraza, Burgos), is the first amber inclusion belonging to the family and described from western Eurasia, thus substantially expanding the paleogeographical range of the family formerly known from the Cretaceous of Brazil and eastern Asia. Within the family Mesoraphidiidae, Necroraphidia arcuata gen. et sp. n. and Amarantoraphidia ventolina gen. et sp. n. are described from the El Soplao outcrop (Rábago, Cantabria), whereas Styporaphidia? hispanica sp. n. and Alavaraphidia imperterrita gen. et sp. n. are describedfrom Peñacerrada I. In addition, three morphospecies are recognized from fragmentary remains. The following combinations are restored: Yanoraphidia gaoi Ren, 1995, stat. rest., Mesoraphidia durlstonensis Jepson, Coram and Jarzembowski, 2009, stat. rest., and Mesoraphidia heteroneura Ren, 1997, stat. rest. The singularity of this rich paleodiversity could be due to the paleogeographic isolation of the Iberian territory and also the prevalence of wildfires during the Cretaceous. PMID:22787417

  1. Seeking carotenoid pigments in amber-preserved fossil feathers

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  2. Problems of reproducibility--does geologically ancient DNA survive in amber-preserved insects?

    PubMed Central

    Austin, J J; Ross, A J; Smith, A B; Fortey, R A; Thomas, R H

    1997-01-01

    Apparently ancient DNA has been reported from amber-preserved insects many millions of years old. Rigorous attempts to reproduce these DNA sequences from amber- and copal-preserved bees and flies have failed to detect any authentic ancient insect DNA. Lack of reproducibility suggests that DNA does not survive over millions of years even in amber, the most promising of fossil environments. PMID:9149422

  3. Amber bearing deposit in SW Saaremaa, Estonia - sedimentary environment and palaeogeography

    NASA Astrophysics Data System (ADS)

    Post, Triine; Ots, Mirja; Rosentau, Alar

    2015-04-01

    The paper describes a deposit of natural amber found form Estonia. Finds of natural amber are important in the context of the Bronze Age archaeology, because the amount of Bronze Age archaeological amber found in Estonia is very small. Most of the amber is from the Late Bronze Age and is mainly discovered from the fortified settlements in Saaremaa, some also from burials of the same time. Now, the discovery of the deposit of natural amber in the island of Saaremaa makes us reconsider the general opinion that all archaeological amber items found in Estonia have been imported. The aim of this study is to clarify the origin and age of the natural amber using scientific methods. A layer of buried organic matter (BOM) containing pieces of natural amber was discovered in Holocene coastal plain on Sõrve peninsula, island of Saaremaa. The BOM layer is buried under ca 90 cm-thick sandy coastal deposits and consists of remains of coastal plants and pieces of driftwood. Palaeogeographic reconstructions and sediment composition indicate that the layer was deposited in the coastal zone and buried quickly by sandy marine sediments. According to radiocarbon dating of the seeds of Polygonum lapathifolium the formation of the BOM layer remained in the Late Bronze Age (2480 ± 30 14C yr BP). Amber finds have been characterized using ATR-FTIR spectroscopy and isotope analysis of light elements (H and C) - both are referring to Baltic amber. Therefore it is probable that amber was transported to Saaremaa within organic matter from the Latvian-Lithuanian coastal zone where secondary Baltic amber deposits are widely known.

  4. Energy Fluctuations Shape Free Energy of Nonspecific Biomolecular Interactions

    NASA Astrophysics Data System (ADS)

    Elkin, Michael; Andre, Ingemar; Lukatsky, David B.

    2012-01-01

    Understanding design principles of biomolecular recognition is a key question of molecular biology. Yet the enormous complexity and diversity of biological molecules hamper the efforts to gain a predictive ability for the free energy of protein-protein, protein-DNA, and protein-RNA binding. Here, using a variant of the Derrida model, we predict that for a large class of biomolecular interactions, it is possible to accurately estimate the relative free energy of binding based on the fluctuation properties of their energy spectra, even if a finite number of the energy levels is known. We show that the free energy of the system possessing a wider binding energy spectrum is almost surely lower compared with the system possessing a narrower energy spectrum. Our predictions imply that low-affinity binding scores, usually wasted in protein-protein and protein-DNA docking algorithms, can be efficiently utilized to compute the free energy. Using the results of Rosetta docking simulations of protein-protein interactions from Andre et al. (Proc. Natl. Acad. Sci. USA 105:16148, 2008), we demonstrate the power of our predictions.

  5. Computational and theoretical aspects of biomolecular structure and dynamics

    SciTech Connect

    Garcia, A.E.; Berendzen, J.; Catasti, P., Chen, X.

    1996-09-01

    This is the final report for a project that sought to evaluate and develop theoretical, and computational bases for designing, performing, and analyzing experimental studies in structural biology. Simulations of large biomolecular systems in solution, hydrophobic interactions, and quantum chemical calculations for large systems have been performed. We have developed a code that implements the Fast Multipole Algorithm (FMA) that scales linearly in the number of particles simulated in a large system. New methods have been developed for the analysis of multidimensional NMR data in order to obtain high resolution atomic structures. These methods have been applied to the study of DNA sequences in the human centromere, sequences linked to genetic diseases, and the dynamics and structure of myoglobin.

  6. Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST.

    PubMed

    Ramsey, Steven; Nguyen, Crystal; Salomon-Ferrer, Romelia; Walker, Ross C; Gilson, Michael K; Kurtzman, Tom

    2016-08-05

    The expulsion of water from surfaces upon molecular recognition and nonspecific association makes a major contribution to the free energy changes of these processes. In order to facilitate the characterization of water structure and thermodynamics on surfaces, we have incorporated Grid Inhomogeneous Solvation Theory (GIST) into the CPPTRAJ toolset of AmberTools. GIST is a grid-based implementation of Inhomogeneous Fluid Solvation Theory, which analyzes the output from molecular dynamics simulations to map out solvation thermodynamic and structural properties on a high-resolution, three-dimensional grid. The CPPTRAJ implementation, called GIST-cpptraj, has a simple, easy-to-use command line interface, and is open source and freely distributed. We have also developed a set of open-source tools, called GISTPP, which facilitate the analysis of GIST output grids. Tutorials for both GIST-cpptraj and GISTPP can be found at ambermd.org. © 2016 Wiley Periodicals, Inc.

  7. New records and species of Crepidodera Chevrolat (Coleoptera: Chrysomelidae) in Eocene European amber, with a brief review of described fossil beetles from Bitterfeld amber.

    PubMed

    Bukejs, Andris; Biondi, Maurizio; Alekseev, Vitalii I

    2016-11-15

    Based on six relatively well-preserved specimens from Eocene Baltic amber, Crepidodera tertiotertiaria sp. nov. is described. The new species is illustrated and compared with morphologically similar extant and fossil relatives. It is the third described fossil species of Crepidodera Chevrolat. In addition to the new taxon, new fossil records of C. decolorata Nadein & Perkovsky from Baltic and Bitterfeld amber are presented. A key to species of Crepidodera described from fossil resins is provided, and a checklist of Coleoptera described from Bitterfeld amber is compiled.

  8. A statistical mechanical description of biomolecular hydration

    SciTech Connect

    1996-02-01

    We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

  9. IR and py/GC/MS examination of amber relics excavated from 6th century royal tomb in Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Jongseo; Yun, Eunyoung; Kang, Hyungtae; Ahn, Jooyoung; Kim, Gyuho

    2016-08-01

    Relics of amber were excavated from King Muryeong's tomb constructed in the 6th century on the Korean peninsula. To estimate the provenance, FTIR (Fourier transform infrared spectroscopy) and py/GC/MS (pyrolysis/gas chromatography/mass spectrometry) analysis were utilized. The reference Baltic amber sample was also analyzed with the same method for comparison. The relics were confirmed to be amber from the FTIR analysis where an absorption band near 1150 cm- 1, characteristic one in Baltic amber, was also observed. In py/GC/MS analysis, pyrolyzed products like butanedioic acid and dehydroabietic acid, known constituents of amber, were observed. In addition, D-fenchyl alcohol, camphor, borneol and butanedioic acid, typical constituents of Baltic amber, were observed in some samples. From this, it appears that some of relics were made from Baltic amber and that Baltic amber was transported to the Korean peninsula in the time of tomb construction.

  10. Earliest Onychophoran in Amber Reveals Gondwanan Migration Patterns.

    PubMed

    Oliveira, Ivo de Sena; Bai, Ming; Jahn, Henry; Gross, Vladimir; Martin, Christine; Hammel, Jörg U; Zhang, Weiwei; Mayer, Georg

    2016-10-10

    The anomalous occurrence of supposedly Gondwanan taxa in Laurasian-derived regions remains an intriguing chapter of paleobiogeographical history. Representatives of Peripatidae, a major subgroup of velvet worms (Onychophora), show a disjointed distribution in the neotropics, tropical Africa, and Southeast Asia, the latter being the only landmass previously associated with Laurasia [1, 2]. The arrival of these animals in Southeast Asia is explained by two alternative, albeit not mutually exclusive, hypotheses: an early migration via Europe before continental drift (Eurogondwana hypothesis) or transportation via insular India during the Cretaceous and Paleogene ("out-of-India" hypothesis) [3-6]. The latter hypothesis is based on a single extant species of Peripatidae, Typhloperipatus williamsoni, in India. †Cretoperipatus burmiticus from Myanmar is the oldest fossil onychophoran found in amber [7], dating to sometime between the two proposed scenarios, and hence crucial for clarifying how Gondwanan lineages of these low-vagility animals reached Southeast Asia (see also Supplemental Information). Based on the anatomical reconstruction of †C. burmiticus using synchrotron radiation-based X-ray microtomography (SRμCT) and comparisons with extant taxa, we resolved this fossil species within Onychophora, particularly within Peripatidae, with T. williamsoni as its closest extant relative. This suggests that an early Eurogondwanan migration of peripatids was the most likely event, as Burmese amber is too old to be compatible with the out-of-India hypothesis. Moreover, peripatids probably colonized India only recently from Myanmar, refuting the putative Gondwanan relict status of Indian onychophorans. Finally, preservation artifacts identified in the novel amber material might have a major impact on studies of onychophoran stem and/or crown groups.

  11. Biomolecular electrostatics and solvation: a computational perspective

    PubMed Central

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G.; Schnieders, Michael J.; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A.

    2012-01-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view towards describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g., solvent structure, polarization, ion binding, and nonpolar behavior) in order to provide a background to understand the different types of solvation models. PMID:23217364

  12. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  13. Ultrafast Electrons and X-rays as Probe of Biomolecular Dynamics

    NASA Astrophysics Data System (ADS)

    Subramanian, Ganesh

    The structure-function relation in Biology suggests that every biological molecule has evolved its structure to carry out a specific function. However, for many of these processes (such as those with catalytic activity) the structure of the biomolecule changes during the course of a reaction. Understanding the structure-function relation thus becomes a question of understanding biomolecular dynamics that span a variety of timescales (from electronic rearrangements in the femtoseconds to side-chain alteration in the microseconds and more). This dissertation deals with the study of biomolecular dynamics in the ultrafast timescales (fs-ns) using electron and X-ray probes in both time and frequency domains. It starts with establishing the limitations of traditional electron diffraction coupled with molecular replacement to study biomolecular structure and proceeds to suggest a pulsed electron source Hollow-Cone Transmission Electron Microscope as an alternative scheme to pursue ultrafast biomolecular imaging. In frequency domain, the use of Electron Energy Loss Spectroscopy as a tool to access ultrafast nuclear dynamics in the steady state, is detailed with the new monochromated NiON UltraSTEM and examples demonstrating this instrument's capability are provided. Ultrafast X-ray spectroscopy as a tool to elucidate biomolecular dynamics is presented in studying X-ray as a probe, with the study of the photolysis of Methylcobalamin using time-resolved laser pump--X-ray probe absorption spectroscopy. The analysis in comparison to prior literature as well as DFT based XAS simulations offer good agreement and understanding to the steady state spectra but are so far inadequate in explaining the time-resolved data. However, the trends in the absorption simulations for the transient intermediates show a strong anisotropic dependence on the axial ligation, which would define the direction for future studies on this material to achieve a solution.

  14. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber.

    PubMed

    Giribet, Gonzalo; Dunlop, Jason A

    2005-05-22

    Two inclusions in a piece of Upper Cretaceous (Albian) Burmese amber from Myanmar are described as a harvestman (Arachnida: Opiliones), Halitherses grimaldii new genus and species. The first Mesozoic harvestman to be named can be referred to the suborder Dyspnoi for the following reasons: prosoma divided into two regions, the posterior formed by the fusion of the meso- and metapeltidium; palp lacking a terminal claw, with clavate setae, and tarsus considerably shorter than the tibia. The bilobed, anteriorly projecting ocular tubercle is reminiscent of that of ortholasmatine nemastomatids. The status of other Mesozoic fossils referred to Opiliones is briefly reviewed.

  15. An ant-associated mesostigmatid mite in Baltic amber

    PubMed Central

    Dunlop, Jason A.; Kontschán, Jenő; Walter, David E.; Perrichot, Vincent

    2014-01-01

    Fossil mesostigmatid mites (Acari: Parasitiformes: Mesostigmata) are extremely rare, and specimens from only nine families, including four named species, have been described so far. A new record of Myrmozercon sp. described here from Eocene (ca 44–49 Myr) Baltic amber represents the first—and so far only—fossil example of the derived, extant family Laelapidae. Significantly, modern species of this genus are habitually myrmecophilous and the fossil mite described here is preserved attached to the head of the dolichoderine ant Ctenobethylus goepperti (Mayr, 1868). It thus offers the oldest unequivocal evidence for an ecological association between mesostigmatid mites and social insects in the order Hymenoptera. PMID:25209198

  16. A gilled mushroom, Gerontomyces lepidotus gen. et sp. nov. (Basidiomycota: Agaricales), in Baltic amber.

    PubMed

    Poinar, George

    2016-09-01

    A densely scaled small mushroom in Baltic amber is described as Gerontomyces lepidotus gen. et sp. nov. and is characterized by a convex pileus 1.0 mm in diameter, distant to subdistant lamellae with smooth margins and a centrally inserted cylindrical, solid stipe. Its taxonomic placement is uncertain. This is the first mushroom described from Baltic amber.

  17. Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber.

    PubMed

    Lak, Malvina; Néraudeau, Didier; Nel, André; Cloetens, Peter; Perrichot, Vincent; Tafforeau, Paul

    2008-06-01

    A significant portion of Mesozoic amber is fully opaque. Biological inclusions in such amber are invisible even after polishing, leading to potential bias in paleoecological and phylogenetic studies. Until now, studies using conventional X-ray microtomography focused on translucent or semi-opaque amber. In these cases, organisms of interest were visualized prior to X-ray analyses. It was recently demonstrated that propagation phase contrast X-ray synchrotron imaging techniques are powerful tools to access invisible inclusions in fully opaque amber. Here we describe an optimized synchrotron microradiographic protocol that allowed us to investigate efficiently and rapidly large amounts of opaque amber pieces from Charentes (southwestern France). Amber pieces were imaged with microradiography after immersion in water, which optimizes the visibility of inclusions. Determination is not accurate enough to allow precise phylogenetic studies, but provides preliminary data on biodiversity and ecotypes distribution; phase contrast microtomography remains necessary for precise determination. Because the organisms are generally much smaller than the amber pieces, we optimized local microtomography by using a continuous acquisition mode (sample moving during projection integration). As tomographic investigation of all inclusions is not practical, we suggest the use of a synchrotron for a microradiographic survey of opaque amber, coupled with microtomographic investigations of the most valuable organisms.

  18. A quantum mechanical polarizable force field for biomolecular interactions

    PubMed Central

    Donchev, A. G.; Ozrin, V. D.; Subbotin, M. V.; Tarasov, O. V.; Tarasov, V. I.

    2005-01-01

    We introduce a quantum mechanical polarizable force field (QMPFF) fitted solely to QM data at the MP2/aTZ(-hp) level. Atomic charge density is modeled by point-charge nuclei and floating exponentially shaped electron clouds. The functional form of interaction energy parallels quantum mechanics by including electrostatic, exchange, induction, and dispersion terms. Separate fitting of each term to the counterpart calculated from high-quality QM data ensures high transferability of QMPFF parameters to different molecular environments, as well as accurate fit to a broad range of experimental data in both gas and liquid phases. QMPFF, which is much more efficient than ab initio QM, is optimized for the accurate simulation of biomolecular systems and the design of drugs. PMID:15911753

  19. Biomolecular decision-making process for self assembly.

    SciTech Connect

    Osbourn, Gordon Cecil

    2005-01-01

    The brain is often identified with decision-making processes in the biological world. In fact, single cells, single macromolecules (proteins) and populations of molecules also make simple decisions. These decision processes are essential to survival and to the biological self-assembly and self-repair processes that we seek to emulate. How do these tiny systems make effective decisions? How do they make decisions in concert with a cooperative network of other molecules or cells? How can we emulate the decision-making behaviors of small-scale biological systems to program and self-assemble microsystems? This LDRD supported research to answer these questions. Our work included modeling and simulation of protein populations to help us understand, mimic, and categorize molecular decision-making mechanisms that nonequilibrium systems can exhibit. This work is an early step towards mimicking such nanoscale and microscale biomolecular decision-making processes in inorganic systems.

  20. Forcefield_PTM: Ab Initio Charge and AMBER Forcefield Parameters for Frequently Occurring Post-Translational Modifications.

    PubMed

    Khoury, George A; Thompson, Jeff P; Smadbeck, James; Kieslich, Chris A; Floudas, Christodoulos A

    2013-12-10

    In this work, we introduce Forcefield_PTM, a set of AMBER forcefield parameters consistent with ff03 for 32 common post-translational modifications. Partial charges were calculated through ab initio calculations and a two-stage RESP-fitting procedure in an ether-like implicit solvent environment. The charges were found to be generally consistent with others previously reported for phosphorylated amino acids, and trimethyllysine, using different parameterization methods. Pairs of modified and their corresponding unmodified structures were curated from the PDB for both single and multiple modifications. Background structural similarity was assessed in the context of secondary and tertiary structures from the global dataset. Next, the charges derived for Forcefield_PTM were tested on a macroscopic scale using unrestrained all-atom Langevin molecular dynamics simulations in AMBER for 34 (17 pairs of modified/unmodified) systems in implicit solvent. Assessment was performed in the context of secondary structure preservation, stability in energies, and correlations between the modified and unmodified structure trajectories on the aggregate. As an illustration of their utility, the parameters were used to compare the structural stability of the phosphorylated and dephosphorylated forms of OdhI. Microscopic comparisons between quantum and AMBER single point energies along key χ torsions on several PTMs were performed and corrections to improve their agreement in terms of mean squared errors and squared correlation coefficients were parameterized. This forcefield for post-translational modifications in condensed-phase simulations can be applied to a number of biologically relevant and timely applications including protein structure prediction, protein and peptide design, docking, and to study the effect of PTMs on folding and dynamics. We make the derived parameters and an associated interactive webtool capable of performing post-translational modifications on proteins

  1. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa.

    PubMed

    Grimaldi, David A; Arillo, Antonio; Cumming, Jeffrey M; Hauser, Martin

    2011-01-01

    Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. etsp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa significantly

  2. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa

    PubMed Central

    Grimaldi, David A.; Arillo, Antonio; Cumming, Jeffrey M.; Hauser, Martin

    2011-01-01

    Abstract Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. et sp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa

  3. New and revised maimetshid wasps from Cretaceous ambers (Hymenoptera, Maimetshidae)

    PubMed Central

    Perrichot, Vincent; Ortega-Blanco, Jaime; McKellar, Ryan C.; Delclòs, Xavier; Azar, Dany; Nel, André; Tafforeau, Paul; Engel, Michael S.

    2011-01-01

    Abstract New material of the wasp family Maimetshidae (Apocrita) is presented from four Cretaceous amber deposits – the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyotemaimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot & Engel, gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot & Engel, sp. n. and Iberomaimetsha nihtmara Ortega-Blanco, Delclòs & Engel, sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel & Engel, gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar & Engel, gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family. PMID:22259291

  4. Use of enveloping distribution sampling to evaluate important characteristics of biomolecular force fields.

    PubMed

    Huang, Wei; Lin, Zhixiong; van Gunsteren, Wilfred F

    2014-06-19

    The predictive power of biomolecular simulation critically depends on the quality of the force field or molecular model used and on the extent of conformational sampling that can be achieved. Both issues are addressed. First, it is shown that widely used force fields for simulation of proteins in aqueous solution appear to have rather different propensities to stabilize or destabilize α-, π-, and 3(10)- helical structures, which is an important feature of a biomolecular force field due to the omni-presence of such secondary structure in proteins. Second, the relative stability of secondary structure elements in proteins can only be computationally determined through so-called free-energy calculations, the accuracy of which critically depends on the extent of configurational sampling. It is shown that the method of enveloping distribution sampling is a very efficient method to extensively sample different parts of configurational space.

  5. At least 10% shorter C–H bonds in cryogenic protein crystal structures than in current AMBER forcefields

    SciTech Connect

    Pang, Yuan-Ping

    2015-03-06

    High resolution protein crystal structures resolved with X-ray diffraction data at cryogenic temperature are commonly used as experimental data to refine forcefields and evaluate protein folding simulations. However, it has been unclear hitherto whether the C–H bond lengths in cryogenic protein structures are significantly different from those defined in forcefields to affect protein folding simulations. This article reports the finding that the C–H bonds in high resolution cryogenic protein structures are 10–14% shorter than those defined in current AMBER forcefields, according to 3709 C–H bonds in the cryogenic protein structures with resolutions of 0.62–0.79 Å. Also, 20 all-atom, isothermal–isobaric, 0.5-μs molecular dynamics simulations showed that chignolin folded from a fully-extended backbone formation to the native β-hairpin conformation in the simulations using AMBER forcefield FF12SB at 300 K with an aggregated native state population including standard error of 10 ± 4%. However, the aggregated native state population with standard error reduced to 3 ± 2% in the same simulations except that C–H bonds were shortened by 10–14%. Furthermore, the aggregated native state populations with standard errors increased to 35 ± 3% and 26 ± 3% when using FF12MC, which is based on AMBER forcefield FF99, with and without the shortened C–H bonds, respectively. These results show that the 10–14% bond length differences can significantly affect protein folding simulations and suggest that re-parameterization of C–H bonds according to the cryogenic structures could improve the ability of a forcefield to fold proteins in molecular dynamics simulations. - Highlights: • Cryogenic crystal structures are commonly used in computational studies of proteins. • C–H bonds in the cryogenic structures are shorter than those defined in forcefields. • A survey of 3709 C–H bonds shows that the cryogenic bonds are 10–14% shorter. • The

  6. Molecular dynamics simulations of a new branched antimicrobial peptide: A comparison of force fields

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Lakshminarayanan, Rajamani; Bai, Yang; Liu, Shouping; Zhou, Lei; Pervushin, Konstantin; Verma, Chandra; Beuerman, Roger W.

    2012-12-01

    Branched antimicrobial peptides are promising as a new class of antibiotics displaying high activity and low toxicity and appear to work through a unique mechanism of action. We explore the structural dynamics of a covalently branched 18 amino acid peptide (referred to as B2088) in aqueous and membrane mimicking environments through molecular dynamics (MD) simulations. Towards this, we carry out conventional MD simulations and supplement these with replica exchange simulations. The simulations are carried out using four different force fields that are commonly employed for simulating biomolecular systems. These force fields are GROMOS53a6, CHARMM27 with cMAP, CHARMM27 without cMAP and AMBER99sb. The force fields are benchmarked against experimental data available from circular dichroism and nuclear magnetic resonance spectroscopies, and show that CHARMM27 without cMAP correction is the most successful in reproducing the structural dynamics of B2088 both in water and in the presence of micelles. Although the four force fields predict different structures of B2088, they all show that B2088 stabilizes against the head group of the lipid through hydrogen bonding of its Lys and Arg side chains. This leads us to hypothesize that B2088 is unlikely to penetrate into the hydrophobic region of the membrane owing to the high free energy costs of transfer from water, and possibly acts by carpeting and thus disrupting the membrane.

  7. Thermodynamic Uncertainty Relation for Biomolecular Processes

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Seifert, Udo

    2015-04-01

    Biomolecular systems like molecular motors or pumps, transcription and translation machinery, and other enzymatic reactions, can be described as Markov processes on a suitable network. We show quite generally that, in a steady state, the dispersion of observables, like the number of consumed or produced molecules or the number of steps of a motor, is constrained by the thermodynamic cost of generating it. An uncertainty ɛ requires at least a cost of 2 kBT /ɛ2 independent of the time required to generate the output.

  8. Supernovae, neutron stars and biomolecular chirality.

    PubMed

    Bonner, W A; Rubenstein, E

    1987-01-01

    Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds.

  9. Azurin for Biomolecular Electronics: a Reliability Study

    NASA Astrophysics Data System (ADS)

    Bramanti, Alessandro; Pompa, Pier Paolo; Maruccio, Giuseppe; Calabi, Franco; Arima, Valentina; Cingolani, Roberto; Corni, Stefano; Di Felice, Rosa; De Rienzo, Francesca; Rinaldi, Ross

    2005-09-01

    The metalloprotein azurin, used in biomolecular electronics, is investigated with respect to its resilience to high electric fields and ambient conditions, which are crucial reliability issues. Concerning the effect of electric fields, two models of different complexity agree indicating an unexpectedly high robustness. Experiments in device-like conditions confirm that no structural modifications occur, according to fluorescence spectra, even after a 40-min exposure to tens of MV/m. Ageing is then investigated experimentally, at ambient conditions and without field, over several days. Only a small conformational rearrangement is observed in the first tens of hours, followed by an equilibrium state.

  10. Nanoarchitectonics of biomolecular assemblies for functional applications

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Govindaraju, T.

    2014-10-01

    The stringent processes of natural selection and evolution have enabled extraordinary structure-function properties of biomolecules. Specifically, the archetypal designs of biomolecules, such as amino acids, nucleobases, carbohydrates and lipids amongst others, encode unparalleled information, selectivity and specificity. The integration of biomolecules either with functional molecules or with an embodied functionality ensures an eclectic approach for novel and advanced nanotechnological applications ranging from electronics to biomedicine, besides bright prospects in systems chemistry and synthetic biology. Given this intriguing scenario, our feature article intends to shed light on the emerging field of functional biomolecular engineering.

  11. Nanoarchitectonics of biomolecular assemblies for functional applications.

    PubMed

    Avinash, M B; Govindaraju, T

    2014-11-21

    The stringent processes of natural selection and evolution have enabled extraordinary structure-function properties of biomolecules. Specifically, the archetypal designs of biomolecules, such as amino acids, nucleobases, carbohydrates and lipids amongst others, encode unparalleled information, selectivity and specificity. The integration of biomolecules either with functional molecules or with an embodied functionality ensures an eclectic approach for novel and advanced nanotechnological applications ranging from electronics to biomedicine, besides bright prospects in systems chemistry and synthetic biology. Given this intriguing scenario, our feature article intends to shed light on the emerging field of functional biomolecular engineering.

  12. The aquatic and semiaquatic biota in Miocene amber from the Campo LA Granja mine (Chiapas, Mexico): Paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Serrano-Sánchez, María de Lourdes; Hegna, Thomas A.; Schaaf, Peter; Pérez, Liseth; Centeno-García, Elena; Vega, Francisco J.

    2015-10-01

    Amber from the Campo La Granja mine in Chiapas, Mexico, is distinct from other sources of amber in Chiapas. Campo La Granja amber has distinct layers created by successive flows of resin with thin layers of sand on most surfaces. Aquatic and semi-aquatic arthropods are commonly found. Together these pieces of evidence suggest an estuarine environment similar to modern mangrove communities. The aquatic crustaceans are the most intriguing aspect of the biota. A large number of ostracods have been found in the amber-many with their carapaces open, suggesting that they were alive and submerged in water at the time of entombment. The only known examples of brachyuran crabs preserved in amber are found in the Campo La Granja amber. Amphipods, copepods, isopods, and tanaids are also members of the crustacean fauna preserved in amber.

  13. Bio-molecular sensors based on guided mode resonance filters

    NASA Astrophysics Data System (ADS)

    Saleem, M. R.; Ali, R.; Honkanen, S.; Turunen, J.

    2016-08-01

    In this work a low surface roughness and homogenous, high refractive index, and amorphous TiO2 layer on corrugated structures of diffractive optical element is coated by Atomic Layer Deposition (ALD) for biosensors. The design of Guided Mode Resonance Filters (GMRFs) is based on refractive indices and thicknesses of the waveguide biomolecular layers. The designed spectral shifts are calculated by Fourier Modal Method (FMM) and depend on the magnitude of the variations in refractive index of the biomolecular layer on waveguide structures. Furthermore, the sensitivity of the biomolecular sensors depends on the thickness of biomolecular layer and periodicity of the structures. The waveguide structures designed for larger periods show an enhancement in the sensitivity (nm/RIU) of the biomolecular sensor at longer wavelengths. The periodicities of nanophotonic structures are varied from 300 to 500 nm in design calculations with predominance of increase in effective index of the structure to support leaky waveguide modes.

  14. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico.

    PubMed

    Solórzano Kraemer, Mónica M; Kraemer, Mónica M Solórzano; Kraemer, Atahualpa S; Stebner, Frauke; Bickel, Daniel J; Rust, Jes

    2015-01-01

    All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non-extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree-inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America.

  15. Entrapment Bias of Arthropods in Miocene Amber Revealed by Trapping Experiments in a Tropical Forest in Chiapas, Mexico

    PubMed Central

    Solórzano Kraemer, Mónica M.; Kraemer, Atahualpa S.; Stebner, Frauke; Bickel, Daniel J.; Rust, Jes

    2015-01-01

    All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non–extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree–inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America. PMID:25785584

  16. Ancient hastisetae of Cretaceous carrion beetles (Coleoptera: Dermestidae) in Myanmar amber.

    PubMed

    Poinar, George; Poinar, Roberta

    2016-11-01

    Hastisetae are extremely elaborate and intricate insect setae that occur solely on dermestid larvae (Coleoptera: Dermestidae). The present work characterizes hastisetae found in mid-Cretaceous amber from Myanmar and compares them to hastisetae found on extant dermestid larvae. The presence of hastisetae in Myanmar amber shows that lineages of dermestid beetles had already developed hastisetae by the mid-Cretaceous and their presence allows us to follow the evolutionary development of this particular arthropod structure over the past 100 million years. Hastisetae attached to a parasitic wasp in the same piece of amber indicates that ancient dermestid beetles used their hastisetae for defense, similar to their function today.

  17. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera).

    PubMed

    Engel, Michael S; Grimaldi, David A; Nascimbene, Paul C; Singh, Hukam

    2011-01-01

    The fauna of termites (Isoptera) preserved in Early Eocene amber from the Cambay Basin (Gujarat, India) are described and figured. Three new genera and four new species are recognized, all of them Neoisoptera - Parastylotermes krishnai Engel & Grimaldi, sp. n. (Stylotermitidae); Prostylotermes kamboja Engel & Grimaldi, gen. et sp. n. (Stylotermitidae?); Zophotermes Engel, gen. n., with Zophotermes ashoki Engel & Singh, sp. n. (Rhinotermitidae: Prorhinotermitinae); and Nanotermes isaacae Engel & Grimaldi, gen. et sp. n. (Termitidae: Termitinae?). Together these species represent the earliest Tertiary records of the Neoisoptera and the oldest definitive record of Termitidae, a family that comprises >75% of the living species of Isoptera. Interestingly, the affinities of the Cambay amber termites are with largely Laurasian lineages, in this regard paralleling relationships seen between the fauna of bees and some flies. Diversity of Neoisoptera in Indian amber may reflect origin of the amber deposit in Dipterocarpaceae forests formed at or near the paleoequator.

  18. Natural amber, copal resin and colophony investigated by UV-VIS, infrared and Raman spectrum

    NASA Astrophysics Data System (ADS)

    Rao, ZhiFan; Dong, Kun; Yang, XiaoYun; Lin, JinChang; Cui, XiaoYing; Zhou, RongFeng; Deng, Qing

    2013-08-01

    Natural amber, copal resin and colophony are have investigated by UV-VIS, infrared and Raman spectrum. In order to distinguish the natural amber, copal resin and colophony, we have successfully used the nondestructive examination (NDE) technology. The results show that UV-VIS could not distinguish these compositions. The infrared spectra can distinguish them, but the technology may destroy the specimen. The Raman spectra show three characteristic peaks of vibration near position 932 cm-1 and position 1179 cm-1 of copal resin, which confirm the existence of terpenes compounds in it. In the Raman spectra of colophony, the vibration characteristic peak at position 1589 cm-1, caused by the conjugate double bond of internal unsaturated resin acid, is the basis of the characteristic difference between colophony and natural amber. The advantages of the distinguished technology by Raman spectroscopy are convenient and nondestructive examination for natural amber, copal resin and colophony.

  19. The range of bioinclusions and pseudoinclusions preserved in a new Turonian (~90 ma) amber occurrence from Southern Australia.

    PubMed

    Quinney, Annie; Mays, Chris; Stilwell, Jeffrey D; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    A new Turonian amber occurrence, representing the oldest in situ amber locality in Australia and the southern-most locality in Gondwana, has recently been discovered in the Otway Basin of Victoria. The amber was collected from petroleum cores and many pieces contain a range of inclusions that can provide information on the depositional history of the resin. To date, one species of fern spore (Cyathidites minor) and one species of lycophyte spore (Kraeuselisporites sp?) have been conclusively identified in the amber, along with filamentous microorganisms and degraded plant matter. Several samples are also rife with pseudoinclusions as reported recently in other ambers. The abundance of preserved particulate debris and wind dispersed spores suggest that the Otway amber formed subaerially. Furthermore, based on the range of bioinclusions and forms of pseudoinclusions preserved within a single piece of amber, the locus of hardening for individual samples is variably interpreted as occurring in the tree tops, on the tree trunk or on the ground surface. Notably, specific inclusion assemblages are associated with certain colours of amber. By extension, and in accordance with recent studies, amber colour may be indicative of depositional environment. Variation in the environment of solidification may, therefore, be sufficient to account for the broad range of morphological characteristics preserved in a single amber deposit.

  20. The Range of Bioinclusions and Pseudoinclusions Preserved in a New Turonian (~90 Ma) Amber Occurrence from Southern Australia

    PubMed Central

    Quinney, Annie; Mays, Chris; Stilwell, Jeffrey D.; Zelenitsky, Darla K.; Therrien, François

    2015-01-01

    A new Turonian amber occurrence, representing the oldest in situ amber locality in Australia and the southern-most locality in Gondwana, has recently been discovered in the Otway Basin of Victoria. The amber was collected from petroleum cores and many pieces contain a range of inclusions that can provide information on the depositional history of the resin. To date, one species of fern spore (Cyathidites minor) and one species of lycophyte spore (Kraeuselisporites sp?) have been conclusively identified in the amber, along with filamentous microorganisms and degraded plant matter. Several samples are also rife with pseudoinclusions as reported recently in other ambers. The abundance of preserved particulate debris and wind dispersed spores suggest that the Otway amber formed subaerially. Furthermore, based on the range of bioinclusions and forms of pseudoinclusions preserved within a single piece of amber, the locus of hardening for individual samples is variably interpreted as occurring in the tree tops, on the tree trunk or on the ground surface. Notably, specific inclusion assemblages are associated with certain colours of amber. By extension, and in accordance with recent studies, amber colour may be indicative of depositional environment. Variation in the environment of solidification may, therefore, be sufficient to account for the broad range of morphological characteristics preserved in a single amber deposit. PMID:25970501

  1. First Record of Anisoptera (Insecta: Odonata) from mid-Cretaceous Burmese Amber.

    PubMed

    Schädel, Mario; Bechly, Günter

    2016-04-18

    The fossil dragonfly Burmalindenia imperfecta gen. et sp. nov. is described from mid-Cretaceous Burmese amber as the first record of the odonate suborder Anisoptera for this locality and one of the few records from amber in general. The inclusion comprises two fragments of the two hind wings of a dragonfly. The fossil can be attributed to a new genus and species of the family Gomphidae, presumably in the subfamily Lindeniinae, and features a strange teratological phenomenon in its wing venation.

  2. Lilioceris groehni sp. n.: the first authentic species of Criocerinae (Coleoptera, Chrysomelidae) from Baltic amber

    PubMed Central

    Bukejs, Andris; Schmitt, Michael

    2016-01-01

    Abstract Based on a single well-preserved specimen from Eocene Baltic amber, Lilioceris groehni sp. n. is described and illustrated using phase-contrast X-ray microtomography. It is the first described species of Criocerinae (Coleoptera: Chrysomelidae) from Baltic amber. A check-list of fossil Criocerinae is provided. Placement of Crioceris pristiana (Germar, 1813) is discussed, this species is removed from Criocerinae and placed in Coleoptera incertae sedis. PMID:27853400

  3. A new genus and species of Dictyopharidae (Homoptera) from Rovno and Baltic amber based on nymphs

    PubMed Central

    Emeljanov, Alexander F.; Shcherbakov, Dmitry E.

    2011-01-01

    Abstract Alicodoxa rasnitsyni gen. et sp. n. (Dictyopharinae: Orthopagini) is described based on a nymph from Rovno amber; it also occurs in Baltic amber. A small additional wax plate dorsal to the large wax plate of abdominal tergites VI–VIII is first reported in this and other genera of Dictyopharidae. A lectotype is designated for Pseudophana reticulata Germar & Berendt, 1856 transferred to Protepiptera (Achilidae): Protepiptera reticulata (Germar & Berendt, 1856), comb. n. PMID:22259275

  4. Lilioceris groehni sp. n.: the first authentic species of Criocerinae (Coleoptera, Chrysomelidae) from Baltic amber.

    PubMed

    Bukejs, Andris; Schmitt, Michael

    2016-01-01

    Based on a single well-preserved specimen from Eocene Baltic amber, Lilioceris groehnisp. n. is described and illustrated using phase-contrast X-ray microtomography. It is the first described species of Criocerinae (Coleoptera: Chrysomelidae) from Baltic amber. A check-list of fossil Criocerinae is provided. Placement of Crioceris pristiana (Germar, 1813) is discussed, this species is removed from Criocerinae and placed in Coleoptera incertae sedis.

  5. Game theory model of traffic participants within amber time at signalized intersection.

    PubMed

    Qi, Weiwei; Wen, Huiying; Fu, Chuanyun; Song, Mo

    2014-01-01

    The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy.

  6. New Fossil Scorpion from the Chiapas Amber Lagerstätte

    PubMed Central

    Riquelme, Francisco; Villegas-Guzmán, Gabriel; González-Santillán, Edmundo; Córdova-Tabares, Víctor; Francke, Oscar F.; Piedra-Jiménez, Dulce; Estrada-Ruiz, Emilio; Luna-Castro, Bibiano

    2015-01-01

    A new species of scorpion is described based on a rare entire adult male preserved in a cloudy amber from Miocene rocks in the Chiapas Highlands, south of Mexico. The amber-bearing beds in Chiapas constitute a Conservation Lagerstätte with outstanding organic preservation inside plant resin. The new species is diagnosed as having putative characters that largely correspond with the genus Tityus Koch, 1836 (Scorpiones, Buthidae). Accordingly, it is now referred to as Tityus apozonalli sp. nov. Its previously unclear phylogenetic relationship among fossil taxa of the family Buthidae from both Dominican and Mexican amber is also examined herein. Preliminarily results indicate a basal condition of T. apozonalli regarding to Tityus geratus Santiago-Blay and Poinar, 1988, Tityus (Brazilotityus) hartkorni Lourenço, 2009, and Tityus azari Lourenço, 2013 from Dominican amber, as was Tityus (Brazilotityus) knodeli Lourenço, 2014 from Mexican amber. Its close relationships with extant Neotropic Tityus-like subclades such as ‘Tityus clathratus’ and the subgenus Tityus (Archaeotityus) are also discussed. This new taxon adds to the knowledge of New World scorpions from the Miocene that are rarely found trapped in amber. PMID:26244974

  7. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection

    PubMed Central

    Qi, Weiwei; Wen, Huiying; Fu, Chuanyun; Song, Mo

    2014-01-01

    The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy. PMID:25580108

  8. Terpenoid Compositions and Botanical Origins of Late Cretaceous and Miocene Amber from China

    PubMed Central

    Shi, Gongle; Dutta, Suryendu; Paul, Swagata; Wang, Bo; Jacques, Frédéric M. B.

    2014-01-01

    The terpenoid compositions of the Late Cretaceous Xixia amber from Central China and the middle Miocene Zhangpu amber from Southeast China were analyzed by gas chromatography-mass spectrometry (GC-MS) to elucidate their botanical origins. The Xixia amber is characterized by sesquiterpenoids, abietane and phyllocladane type diterpenoids, but lacks phenolic abietanes and labdane derivatives. The molecular compositions indicate that the Xixia amber is most likely contributed by the conifer family Araucariaceae, which is today distributed primarily in the Southern Hemisphere, but widely occurred in the Northern Hemisphere during the Mesozoic according to paleobotanical evidence. The middle Miocene Zhangpu amber is characterized by amyrin and amyrone-based triterpenoids and cadalene-based sesquiterpenoids. It is considered derived from the tropical angiosperm family Dipterocarpaceae based on these compounds and the co-occurring fossil winged fruits of the family in Zhangpu. This provides new evidence for the occurrence of a dipterocarp forest in the middle Miocene of Southeast China. It is the first detailed biomarker study for amber from East Asia. PMID:25354364

  9. New Fossil Scorpion from the Chiapas Amber Lagerstätte.

    PubMed

    Riquelme, Francisco; Villegas-Guzmán, Gabriel; González-Santillán, Edmundo; Córdova-Tabares, Víctor; Francke, Oscar F; Piedra-Jiménez, Dulce; Estrada-Ruiz, Emilio; Luna-Castro, Bibiano

    2015-01-01

    A new species of scorpion is described based on a rare entire adult male preserved in a cloudy amber from Miocene rocks in the Chiapas Highlands, south of Mexico. The amber-bearing beds in Chiapas constitute a Conservation Lagerstätte with outstanding organic preservation inside plant resin. The new species is diagnosed as having putative characters that largely correspond with the genus Tityus Koch, 1836 (Scorpiones, Buthidae). Accordingly, it is now referred to as Tityus apozonalli sp. nov. Its previously unclear phylogenetic relationship among fossil taxa of the family Buthidae from both Dominican and Mexican amber is also examined herein. Preliminarily results indicate a basal condition of T. apozonalli regarding to Tityus geratus Santiago-Blay and Poinar, 1988, Tityus (Brazilotityus) hartkorni Lourenço, 2009, and Tityus azari Lourenço, 2013 from Dominican amber, as was Tityus (Brazilotityus) knodeli Lourenço, 2014 from Mexican amber. Its close relationships with extant Neotropic Tityus-like subclades such as 'Tityus clathratus' and the subgenus Tityus (Archaeotityus) are also discussed. This new taxon adds to the knowledge of New World scorpions from the Miocene that are rarely found trapped in amber.

  10. Biomolecular rods and tubes in nanotechnology

    NASA Astrophysics Data System (ADS)

    Bittner, Alexander M.

    2005-02-01

    Biomolecules are vitally important elements in nanoscale science and also in future nanotechnology. Their shape and their chemical and physical functionality can give them a big advantage over inorganic and organic substances. While this becomes most obvious in proteins and peptides, with their complicated, but easily controlled chemistry, other biomolecular substances such as DNA, lipids and carbohydrates can also be important. In this review, the emphasis is on one-dimensional molecules and on molecules that self-assemble into linear structures, and on their potential applications. An important aspect is that biomolecules can act as templates, i.e. their shape and chemical properties can be employed to arrange inorganic substances such as metals or metal compounds on the nanometre scale. In particular, rod- and tube-like nanostructures can show physical properties that are different from those of the bulk material, and thus these structures are likely to be a basis for new technology.

  11. Biomolecular rods and tubes in nanotechnology.

    PubMed

    Bittner, Alexander M

    2005-02-01

    Biomolecules are vitally important elements in nanoscale science and also in future nanotechnology. Their shape and their chemical and physical functionality can give them a big advantage over inorganic and organic substances. While this becomes most obvious in proteins and peptides, with their complicated, but easily controlled chemistry, other biomolecular substances such as DNA, lipids and carbohydrates can also be important. In this review, the emphasis is on one-dimensional molecules and on molecules that self-assemble into linear structures, and on their potential applications. An important aspect is that biomolecules can act as templates, i.e. their shape and chemical properties can be employed to arrange inorganic substances -- such as metals or metal compounds -- on the nanometre scale. In particular, rod- and tube-like nanostructures can show physical properties that are different from those of the bulk material, and thus these structures are likely to be a basis for new technology.

  12. Biomolecular computing systems: principles, progress and potential.

    PubMed

    Benenson, Yaakov

    2012-06-12

    The task of information processing, or computation, can be performed by natural and man-made 'devices'. Man-made computers are made from silicon chips, whereas natural 'computers', such as the brain, use cells and molecules. Computation also occurs on a much smaller scale in regulatory and signalling pathways in individual cells and even within single biomolecules. Indeed, much of what we recognize as life results from the remarkable capacity of biological building blocks to compute in highly sophisticated ways. Rational design and engineering of biological computing systems can greatly enhance our ability to study and to control biological systems. Potential applications include tissue engineering and regeneration and medical treatments. This Review introduces key concepts and discusses recent progress that has been made in biomolecular computing.

  13. Micro- and nanodevices integrated with biomolecular probes.

    PubMed

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A

    2015-12-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities.

  14. Epigenetic molecular recognition: a biomolecular modeling perspective.

    PubMed

    Vellore, Nadeem A; Baron, Riccardo

    2014-03-01

    The abnormal regulation of epigenetic protein families is associated with the onset and progression of various human diseases. However, epigenetic processes remain relatively obscure at the molecular level, thus preventing the rational design of chemical therapeutics. An array of robust computational and modeling approaches can complement experiments to shed light on the complex mechanisms of epigenetic molecular recognition and can guide medicinal chemists in designing selective and potent drug molecules. Herein we present a review of studies focused on epigenetic molecular recognition from a biomolecular modeling viewpoint. Although the known epigenetic targets are numerous, this review focuses on the more limited protein families on which computational modeling has been successfully applied. Therefore, we review three main topics: 1) histone deacetylases, 2) histone demethylases, and 3) histone tail dynamics. A brief review of the biological background and biomedical relevance is presented for each topic, followed by a detailed discussion of the computational studies and their relevance.

  15. Micro- and nanodevices integrated with biomolecular probes

    PubMed Central

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A.

    2016-01-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. PMID:26363089

  16. Semisynthetic and Biomolecular Hydrogen Evolution Catalysts.

    PubMed

    Kandemir, Banu; Chakraborty, Saikat; Guo, Yixing; Bren, Kara L

    2016-01-19

    There has been great interest in the development of stable, inexpensive, efficient catalysts capable of reducing aqueous protons to hydrogen (H2), an alternative to fossil fuels. While synthetic H2 evolution catalysts have been in development for decades, recently there has been great progress in engineering biomolecular catalysts and assemblies of synthetic catalysts and biomolecules. In this Forum Article, progress in engineering proteins to catalyze H2 evolution from water is discussed. The artificial enzymes described include assemblies of synthetic catalysts and photosynthetic proteins, proteins with cofactors replaced with synthetic catalysts, and derivatives of electron-transfer proteins. In addition, a new catalyst consisting of a thermophilic cobalt-substituted cytochrome c is reported. As an electrocatalyst, the cobalt cytochrome shows nearly quantitative Faradaic efficiency and excellent longevity with a turnover number of >270000.

  17. Design of environment-responsive biomolecular systems

    NASA Astrophysics Data System (ADS)

    Aizawa, Masuo; Niimi, T.; Haruyama, T.; Kobatake, E.

    1996-02-01

    Two different types of biomolecular network systems have been designed to respond to the environmental conditions. One is the calmodulin and enzyme (phosphodiesterase, PDE) that activates phosphodiesterase through the conformational change in responding calcium ion. Calmodulin was genetically engineered to be fused with glutathione-S-transferase (GST). Calmodulin/GST fused protein was self-assembled on the gold surface through glutathione. The calmodulin/GST protein layer exhibited an ability to modulate the PDE activity in a solution phase depending on the calcium ion concentration. The other is the engineered gene structure that produces firefly luciferase in responding environmental pollutants. A TOL plasmid, encoding a binding protein xyl R for xyline and a marker enzyme firefly luciferase, has been implemented in a bacterial cell. The whole cell responded to environmentally hazardous substances such as xylene in emitting light.

  18. Quantitative biomolecular imaging by dynamic nanomechanical mapping.

    PubMed

    Zhang, Shuai; Aslan, Hüsnü; Besenbacher, Flemming; Dong, Mingdong

    2014-11-07

    The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomic force microscopy (AFM) has received considerable attention, which allows probing topography of biological species at real space under physiological environment. Importantly, force measurements in AFM enable researchers to reveal not only the topography but also the relevant physical-chemical properties. AFM-based dynamic nanomechanical mapping (DNM) provides insights into the functions of biological systems by the interpretation of 'force', which are inaccessible by most of the other analytic techniques. This review is aiming to shed light on these recently developed AFM-based DNM techniques for biomolecular imaging, and discuss the relative applications in biological research from the nanomechanical point of view.

  19. Development and initial testing of an empirical forcefield for simulation of poly(alkylthiophenes)

    PubMed Central

    Widge, Alik S.; Matsuoka, Yoky; Kurnikova, Maria

    2010-01-01

    Conductive polymers from the polythiophene (PT) family have attracted interest in numerous domains, including potential applications in biosensing. Despite this, atomistic simulations of PTs have tended to use general organic force fields without well-tuned PT parameters, and there exists no optimized and well-validated PT force field that is compatible and consistent with existing biomolecular simulation suites. We present here the development of a new PT forcefield following the AMBER approach, using the program ANTECHAMBER and ab initio calculations at the HF/6-31G* level of theory to assign partial charges and parameterize the critical backbone torsion potential. The optimized geometries and force field potentials match well with both empirical data and previous investigators' calculations. Initial testing of these parameters through a series of replica exchange simulations of two PT derivatives in aqueous and organic implicit solvents demonstrates that the parameters can match empirical expectations within the limits of an implicit solvent model. This new force field forms a framework for modeling of proposed PT-based devices and sensors, and is expected to accelerate device design and eventual deployment. PMID:18485769

  20. Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities.

    PubMed

    Quo, Chang F; Kaddi, Chanchala; Phan, John H; Zollanvari, Amin; Xu, Mingqing; Wang, May D; Alterovitz, Gil

    2012-07-01

    Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.

  1. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns.

    PubMed

    Gandhi, Neha S; Kukic, Predrag; Lippens, Guy; Mancera, Ricardo L

    2017-01-01

    The Tau protein plays an important role due to its biomolecular interactions in neurodegenerative diseases. The lack of stable structure and various posttranslational modifications such as phosphorylation at various sites in the Tau protein pose a challenge for many experimental methods that are traditionally used to study protein folding and aggregation. Atomistic molecular dynamics (MD) simulations can help around deciphering relationship between phosphorylation and various intermediate and stable conformations of the Tau protein which occur on longer timescales. This chapter outlines protocols for the preparation, execution, and analysis of all-atom MD simulations of a 21-amino acid-long phosphorylated Tau peptide with the aim of generating biologically relevant structural and dynamic information. The simulations are done in explicit solvent and starting from nearly extended configurations of the peptide. The scaled MD method implemented in AMBER14 was chosen to achieve enhanced conformational sampling in addition to a conventional MD approach, thereby allowing the characterization of folding for such an intrinsically disordered peptide at 293 K. Emphasis is placed on the analysis of the simulation trajectories to establish correlations with NMR data (i.e., chemical shifts and NOEs). Finally, in-depth discussions are provided for commonly encountered problems.

  2. Extension of the AMBER molecular dynamics software to Intel's Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Needham, Perri J.; Bhuiyan, Ashraf; Walker, Ross C.

    2016-04-01

    We present an implementation of explicit solvent particle mesh Ewald (PME) classical molecular dynamics (MD) within the PMEMD molecular dynamics engine, that forms part of the AMBER v14 MD software package, that makes use of Intel Xeon Phi coprocessors by offloading portions of the PME direct summation and neighbor list build to the coprocessor. We refer to this implementation as pmemd MIC offload and in this paper present the technical details of the algorithm, including basic models for MPI and OpenMP configuration, and analyze the resultant performance. The algorithm provides the best performance improvement for large systems (>400,000 atoms), achieving a ∼35% performance improvement for satellite tobacco mosaic virus (1,067,095 atoms) when 2 Intel E5-2697 v2 processors (2 ×12 cores, 30M cache, 2.7 GHz) are coupled to an Intel Xeon Phi coprocessor (Model 7120P-1.238/1.333 GHz, 61 cores). The implementation utilizes a two-fold decomposition strategy: spatial decomposition using an MPI library and thread-based decomposition using OpenMP. We also present compiler optimization settings that improve the performance on Intel Xeon processors, while retaining simulation accuracy.

  3. Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA

    PubMed Central

    2015-01-01

    Molecular mechanics with all-atom models was used to understand the conformational preference of tandem guanine-adenine (GA) noncanonical pairs in RNA. These tandem GA pairs play important roles in determining stability, flexibility, and structural dynamics of RNA tertiary structures. Previous solution structures showed that these tandem GA pairs adopt either imino (cis Watson–Crick/Watson–Crick A-G) or sheared (trans Hoogsteen/sugar edge A-G) conformations depending on the sequence and orientation of the adjacent closing base pairs. The solution structures (GCGGACGC)2 [Biochemistry, 1996, 35, 9677–9689] and (GCGGAUGC)2 [Biochemistry, 2007, 46, 1511–1522] demonstrate imino and sheared conformations for the two central GA pairs, respectively. These systems were studied using molecular dynamics and free energy change calculations for conformational changes, using umbrella sampling. For the structures to maintain their native conformations during molecular dynamics simulations, a modification to the standard Amber ff10 force field was required, which allowed the amino group of guanine to leave the plane of the base [J. Chem. Theory Comput., 2009, 5, 2088–2100] and form out-of-plane hydrogen bonds with a cross-strand cytosine or uracil. The requirement for this modification suggests the importance of out-of-plane hydrogen bonds in stabilizing the native structures. Free energy change calculations for each sequence demonstrated the correct conformational preference when the force field modification was used, but the extent of the preference is underestimated. PMID:24803859

  4. Microwave spectroscopy of biomolecular building blocks.

    PubMed

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment.

  5. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  6. Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; Kontschán, Jenő; Zwanzig, Michael

    2013-04-01

    Fossil mesostigmatid mites are extremely rare. Inclusions assignable to the tortoise mites (Mesostigmata, Uropodina) are described here for the first time from Eocene (ca. 44-49 Ma) Baltic amber. This is the oldest record of Uropodina and documents the first unequivocal amber examples potentially assignable to the extant genus Uroobovella Berlese, 1903 (Uropodoidea: Urodinychidae). Further mites in the same amber pieces are tentatively assigned to Microgynioidea (Microgyniina) and Ascidae (Gamasina), both potentially representing the oldest records of their respective superfamily and family groups. This new material also preserves behavioural ecology in the form of phoretic deutonymphs attached to their carriers via a characteristic anal pedicel. These deutonymphs in amber are intimately associated with longhorn beetles (Coleoptera: Cerambycidae), probably belonging to the extinct species Nothorhina granulicollis Zang, 1905. Modern uropodines have been recorded phoretic on species belonging to several beetle families, including records of living Uroobovella spp. occurring on longhorn beetles. Through these amber inclusions, a uropodine-cerambycid association can now be dated back to at least the Eocene.

  7. Unique spatiotemporal biomolecular emission profiles on single zinc oxide nanorods and applications in ultrasensitive biosensing

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet

    There has been longstanding interest in improving the optical detection capabilities of fluorescence spectroscopy to achieve ultrahigh resolution and sensitivity in chemical and biological sensing applications. To promote these efforts, I present my work characterizing and developing zinc oxide nanorods (ZnO NRs) as advanced optical detection platforms that can enable enhanced intensity and stability of adsorbed fluorophore-coupled biomolecules. First, I present my unique findings profiling the temporal and spatial characteristics of biomolecular fluorescence on individual ZnO NRs in which I've identified highly localized, non-linear optical phenomena of fluorescence intensification on nanorod ends (FINE) and enhanced photostability. Using combined experimental and computational strategies, I elucidate the fundamental physicochemical origins of these optical phenomena by systematically decoupling various biomolecular, chemical, and nanomaterial factors. On the biomolecular side, I evaluate the roles of fluorophores with varying spectroscopic properties and concentrations as well as facet-selective biomolecular adsorption on the unique spatiotemporal optical responses on single ZnO NRs. From the chemical/nanomaterial context, I profile the biomolecular emission behaviors on single ZnO NRs as a function of varying NR physical dimensions, NR orientations, and positions along the NR long axis I also present the results of employing finite-difference time domain (FDTD) simulations to corroborate my multifold experimental findings. The FDTD results further clarify the passive waveguiding capacity of the ZnO NRs to couple the radiation of surface-adsorpbed emitters and form evanescent waves that propagate to the NR ends before final emission into the far-field, confirming the experimental manifestation of FINE.. I also present an application exploiting the optical enhancement enabled by ZnO NRs in which I've engineered and validated a novel biosensing assay for the

  8. Estimation and Inference of Diffusion Coefficients in Complex Biomolecular Environments.

    PubMed

    Calderon, Christopher P

    2011-02-08

    The 1-D diffusion coefficient associated with a charged atom fluctuating in an ion-channel binding pocket is statistically analyzed. More specifically, unconstrained and constrained molecular dynamics simulations of potassium in gramicidin A are studied. Time domain transition density based inference methods are used to fit simple stochastic differential equations and also to carry out frequentist goodness of fit tests. Particular attention is paid to varying the time between adjacent time series observations due to the well-known "non-Markovian noise" that can appear in this system due to inertia and other unresolved coordinates influencing the dynamics. Different types of non-Markovian noise are shown by the goodness of fit tests to be statistically significant on vastly different time scales. On intermediate scales, a Markovian model is not rejected by the tests; models calibrated at these intermediate scales demonstrate a predictive capability for some physical quantities. However, in this intermediate regime, ergodic sampling does not occur over the length of a time series, but a local diffusion coefficient is deemed statistically acceptable for the observed raw data. It is demonstrated that a linear mixed effects model can be used to summarize the variation induced by slow unresolved degrees of freedom acting as a non-Markovian noise source. The utility of quantitative criteria for assessing low-dimensional stochastic models calibrated from time series generated by high-dimensional biomolecular systems is briefly discussed. Less coarse-grained data summaries of this type show promise for better understanding the kinetic signature of unresolved degrees of freedom in time series coming from simulations and single-molecule experiments.

  9. A fossil biting midge (Diptera: Ceratopogonidae) from early Eocene Indian amber with a complex pheromone evaporator

    PubMed Central

    Stebner, Frauke; Szadziewski, Ryszard; Rühr, Peter T.; Singh, Hukam; Hammel, Jörg U.; Kvifte, Gunnar Mikalsen; Rust, Jes

    2016-01-01

    The life-like fidelity of organisms captured in amber is unique among all kinds of fossilization and represents an invaluable source for different fields of palaeontological and biological research. One of the most challenging aspects in amber research is the study of traits related to behaviour. Here, indirect evidence for pheromone-mediated mating behaviour is recorded from a biting midge (Ceratopogonidae) in 54 million-year-old Indian amber. Camptopterohelea odora n. sp. exhibits a complex, pocket shaped structure on the wings, which resembles the wing folds of certain moth flies (Diptera: Psychodidae) and scent organs that are only known from butterflies and moths (Lepidoptera) so far. Our studies suggests that pheromone releasing structures on the wings have evolved independently in biting midges and might be much more widespread in fossil as well as modern insects than known so far. PMID:27698490

  10. A fossil biting midge (Diptera: Ceratopogonidae) from early Eocene Indian amber with a complex pheromone evaporator

    NASA Astrophysics Data System (ADS)

    Stebner, Frauke; Szadziewski, Ryszard; Rühr, Peter T.; Singh, Hukam; Hammel, Jörg U.; Kvifte, Gunnar Mikalsen; Rust, Jes

    2016-10-01

    The life-like fidelity of organisms captured in amber is unique among all kinds of fossilization and represents an invaluable source for different fields of palaeontological and biological research. One of the most challenging aspects in amber research is the study of traits related to behaviour. Here, indirect evidence for pheromone-mediated mating behaviour is recorded from a biting midge (Ceratopogonidae) in 54 million-year-old Indian amber. Camptopterohelea odora n. sp. exhibits a complex, pocket shaped structure on the wings, which resembles the wing folds of certain moth flies (Diptera: Psychodidae) and scent organs that are only known from butterflies and moths (Lepidoptera) so far. Our studies suggests that pheromone releasing structures on the wings have evolved independently in biting midges and might be much more widespread in fossil as well as modern insects than known so far.

  11. Nonorthogonal tRNAcysAmber for protein and nascent chain labeling

    PubMed Central

    Koubek, Jiří; Chen, Yet-Ran; Cheng, Richard Ping; Huang, Joseph Jen-Tse

    2015-01-01

    In vitro-transcribed suppressor tRNAs are commonly used in site-specific fluorescence labeling for protein and ribosome-bound nascent chains (RNCs) studies. Here, we describe the production of nonorthogonal Bacillus subtilis tRNAcysAmber from Escherichia coli, a process that is superior to in vitro transcription in terms of yield, ease of manipulation, and tRNA stability. As cysteinyl-tRNA synthetase was previously shown to aminoacylate tRNAcysAmber with lower efficiency, multiple tRNA synthetase mutants were designed to optimize aminoacylation. Aminoacylated tRNA was conjugated to a fluorophore to produce BODIPY FL-cysteinyl-tRNAcysAmber, which was used to generate ribosome-bound nascent chains of different lengths with the fluorophore incorporated at various predetermined sites. This tRNA tool may be beneficial in the site-specific labeling of full-length proteins as well as RNCs for biophysical and biological research. PMID:26194135

  12. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli.

    PubMed

    Herring, Christopher D; Glasner, Jeremy D; Blattner, Frederick R

    2003-06-05

    We have developed a method called "gene gorging" to make precise mutations in the Escherichia coli genome at frequencies high enough (1-15%) to allow direct identification of mutants by PCR or other screen rather than by selection. Gene gorging begins by establishing a donor plasmid carrying the desired mutation in the target cell. This plasmid is linearized by in vivo expression of the meganuclease I-SceI, providing a DNA substrate for lambda Red mediated recombination. This results in efficient replacement of the wild type allele on the chromosome with the modified sequence. We demonstrate gene gorging by introducing amber stop codons into the genes xylA, melA, galK, fucI, citA, ybdO, and lacZ. To compliment this approach we developed an arabinose inducible amber suppressor tRNA. Controlled expression mediated by the suppressor was demonstrated for the lacZ and xylA amber mutants.

  13. Biomolecular Dynamics: Order-Disorder Transitions and Energy Landscapes

    PubMed Central

    Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Onuchic, José N.

    2013-01-01

    While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively-weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss 1) the development of the energy landscape theory of biomolecular folding, 2) recent advances towards establishing a consistent understanding of folding and function, and 3) emerging themes in the functional motions of enzymes, biomolecular motors, and other biomolecular machines. Recent theoretical, computational, and experimental lines of investigation are providing a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provide significant contributions to the free-energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions. PMID:22790780

  14. Microfluidic Devices for Studying Biomolecular Interactions

    NASA Technical Reports Server (NTRS)

    Wilson, Wilbur W.; Garcia, Carlos d.; Henry, Charles S.

    2006-01-01

    Microfluidic devices for monitoring biomolecular interactions have been invented. These devices are basically highly miniaturized liquid-chromatography columns. They are intended to be prototypes of miniature analytical devices of the laboratory on a chip type that could be fabricated rapidly and inexpensively and that, because of their small sizes, would yield analytical results from very small amounts of expensive analytes (typically, proteins). Other advantages to be gained by this scaling down of liquid-chromatography columns may include increases in resolution and speed, decreases in the consumption of reagents, and the possibility of performing multiple simultaneous and highly integrated analyses by use of multiple devices of this type, each possibly containing multiple parallel analytical microchannels. The principle of operation is the same as that of a macroscopic liquid-chromatography column: The column is a channel packed with particles, upon which are immobilized molecules of the protein of interest (or one of the proteins of interest if there are more than one). Starting at a known time, a solution or suspension containing molecules of the protein or other substance of interest is pumped into the channel at its inlet. The liquid emerging from the outlet of the channel is monitored to detect the molecules of the dissolved or suspended substance(s). The time that it takes these molecules to flow from the inlet to the outlet is a measure of the degree of interaction between the immobilized and the dissolved or suspended molecules. Depending on the precise natures of the molecules, this measure can be used for diverse purposes: examples include screening for solution conditions that favor crystallization of proteins, screening for interactions between drugs and proteins, and determining the functions of biomolecules.

  15. Biomolecular Modification of Inorganic Crystal Growth

    SciTech Connect

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  16. CRISPRi-Manipulation of Genetic Code Expansion via RF1 for Reassignment of Amber Codon in Bacteria

    PubMed Central

    Zhang, Bo; Yang, Qi; Chen, Jingxian; Wu, Ling; Yao, Tianzhuo; Wu, Yiming; Xu, Huan; Zhang, Lihe; Xia, Qing; Zhou, Demin

    2016-01-01

    The precise engineering of proteins in bacteria via the amber codon has been hampered by the poor incorporation of unnatural amino acid (UAA). Here we explored the amber assignment as a sense codon for UAA by CRISPRi targeting release factor 1 (RF1). Scanning of RF1 gene with sgRNAs identified target loci that differentiate RF1 repressions. Quantitation of RF1 repressions versus UAA incorporation indicated an increasing interrelation with the amber reassignment maximized upon RF1 knockdown to ~30%, disclosing the beneficial role of RF1 in amber assignment. However, further RF1 repression reversed this trend resulting from the detrimental effects on host cell growth, disclosing the harmful aspect of RF1 in reassignment of the amber codon. Our data indicate RF1 as a switch manipulating genetic code expansion and pave a direction via CRISPRi for precise engineering and efficient production of proteins in bacteria. PMID:26818534

  17. A fungal-like organism associated with a wasp (Hymenoptera: Pteromalidae) in Dominican amber.

    PubMed

    Poinar, George; Spatafora, Joseph W

    2012-05-01

    A fungal-like organism emerging from a parasitic wasp (Hymenoptera: Pteromalidae) in Dominican amber is characterized. The fossil consists of a white sclerotium-like formation in the wasp's abdomen and a flattened clava-like structure with an ovoid terminus emerging from the sclerotium-like formation. The ovoid terminus bears a protruding elliptical appendix. The fossil, which is characterized by its small size, somatic configuration, pteromalid host and presence in Dominican amber, cannot be placed with assurance in any extant fungal group at this time.

  18. Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber

    NASA Astrophysics Data System (ADS)

    Cano, Raul J.; Borucki, Monica K.

    1995-05-01

    A bacterial spore was revived, cultured, and identified from the abdominal contents of extinct bees preserved for 25 to 40 million years in buried Dominican amber. Rigorous surface decontamination of the amber and aseptic procedures were used during the recovery of the bacterium. Several lines of evidence indicated that the isolated bacterium was of ancient origin and not an extant contaminant. The characteristic enzymatic, biochemical, and 16S ribosomal DNA profiles indicated that the ancient bacterium is most closely related to extant Bacillus sphaericus.

  19. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pKa Calculations.

    PubMed

    Dobrev, Plamen; Donnini, Serena; Groenhof, Gerrit; Grubmüller, Helmut

    2017-01-10

    Correct protonation of titratable groups in biomolecules is crucial for their accurate description by molecular dynamics simulations. In the context of constant pH simulations, an additional protonation degree of freedom is introduced for each titratable site, allowing the protonation state to change dynamically with changing structure or electrostatics. Here, we extend previous approaches for an accurate description of chemically coupled titrating sites. A second reaction coordinate is used to switch between two tautomeric states of an amino acid with chemically coupled titratable sites, such as aspartate (Asp), glutamate (Glu), and histidine (His). To this aim, we test a scheme involving three protonation states. To facilitate charge neutrality as required for periodic boundary conditions and Particle Mesh Ewald (PME) electrostatics, titration of each respective amino acid is coupled to a "water" molecule that is charged in the opposite direction. Additionally, a force field modification for Amber99sb is introduced and tested for the description of carboxyl group protonation. Our three states model is tested by titration simulations of Asp, Glu, and His, yielding a good agreement, reproducing the correct geometry of the groups in their different protonation forms. We further show that the ion concentration change due to the neutralizing "water" molecules does not significantly affect the protonation free energies of the titratable groups, suggesting that the three states model provides a good description of biomolecular dynamics at constant pH.

  20. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2016-07-27

    ATP-driven biomolecular motors utilize the chemical energy obtained from the ATP hydrolysis to perform vital tasks in living cells. Understanding the mechanism of enzyme-catalyzed ATP hydrolysis reaction has substantially progressed lately thanks to combined quantum/classical molecular mechanics (QM/MM) simulations. Here, we present a comparative summary of the most recent QM/MM results for myosin, kinesin and F1-ATPase motors. These completely different motors achieve the acceleration of ATP hydrolysis through a very similar catalytic mechanism. ATP hydrolysis has high activation energy because it involves the breaking of two strong bonds, namely the Pγ-Oβγ bond of ATP and the H-O bond of lytic water. The key to the four-fold decrease in the activation barrier by the three enzymes is that the breaking of the Pγ-Oβγ bond precedes the deprotonation of the lytic water molecule, generating a metaphosphate hydrate complex. The resulting singly charged trigonal planar PγO3(-) metaphosphate is a better electrophilic target for attack by an OaH(-) hydroxyl group. The formation of this OaH(-) is promoted by a strong polarization of the lytic water: in all three proteins, this water is forming a hydrogen-bond with a backbone carbonyl group and interacts with the carboxylate group of glutamate (either directly or via an intercalated water molecule). This favors the shedding of one proton by the attacking water. The abstracted proton is transferred to the γ-phosphate via various proton wires, resulting in a H2PγO4(-)/ADP(3-) product state. This catalytic strategy is so effective that most other nucleotide hydrolyzing enzymes adopt a similar approach, as suggested by their very similar triphosphate binding sites.

  1. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.

    PubMed

    Sage, Andrew T; Besant, Justin D; Lam, Brian; Sargent, Edward H; Kelley, Shana O

    2014-08-19

    Electrochemical sensors have the potential to achieve sensitive, specific, and low-cost detection of biomolecules--a capability that is ever more relevant to the diagnosis and monitored treatment of disease. The development of devices for clinical diagnostics based on electrochemical detection could provide a powerful solution for the routine use of biomarkers in patient treatment and monitoring and may overcome the many issues created by current methods, including the long sample-to-answer times, high cost, and limited prospects for lab-free use of traditional polymerase chain reaction, microarrays, and gene-sequencing technologies. In this Account, we summarize the advances in electrochemical biomolecular detection, focusing on a new and integrated platform that exploits the bottom-up fabrication of multiplexed electrochemical sensors composed of electrodeposited noble metals. We trace the evolution of these sensors from gold nanoelectrode ensembles to nanostructured microelectrodes (NMEs) and discuss the effects of surface morphology and size on assay performance. The development of a novel electrocatalytic assay based on Ru(3+) adsorption and Fe(3+) amplification at the electrode surface as a means to enable ultrasensitive analyte detection is discussed. Electrochemical measurements of changes in hybridization events at the electrode surface are performed using a simple potentiostat, which enables integration into a portable, cost-effective device. We summarize the strategies for proximal sample processing and detection in addition to those that enable high degrees of sensor multiplexing capable of measuring 100 different analytes on a single chip. By evaluating the cost and performance of various sensor substrates, we explore the development of practical lab-on-a-chip prototype devices. By functionalizing the NMEs with capture probes specific to nucleic acid, small molecule, and protein targets, we can successfully detect a wide variety of analytes at

  2. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy.

    PubMed

    Xu, Yao; Havenith, Martina

    2015-11-07

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  3. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Havenith, Martina

    2015-11-01

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  4. Amino acid racemization in amber-entombed insects: implications for DNA preservation

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.

    1994-01-01

    DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from <100 years to 130 million years. The amino acids present in 40 to 130 million year old amber-entombed insects resemble those in a modern fly and are probably the most ancient, unaltered amino acids found so far on Earth. In comparison to other geochemical environments on the surface of the Earth, the amino acid racemization rate in amber insect inclusions is retarded by a factor of >10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.

  5. Story as a Bridge to Transformation: The Way beyond Death in Philip Pullman's "The Amber Spyglass."

    ERIC Educational Resources Information Center

    Lenz, Millicent

    2003-01-01

    Explains that in "The Amber Spyglass," Philip Pullman extends the psychological depth of literature for young readers by presenting in palpable terms a confrontation with death met by the human capacity for dealing creatively, through story, with personal mortality. Contends that Pullman's portrayal of the power of storytelling is placed within…

  6. Amber lenses to block blue light and improve sleep: a randomized trial.

    PubMed

    Burkhart, Kimberly; Phelps, James R

    2009-12-01

    All light is not equal: blue wavelengths are the most potent portion of the visible electromagnetic spectrum for circadian regulation. Therefore, blocking blue light could create a form of physiologic darkness. Because the timing and quantity of light and darkness both affect sleep, evening use of amber lenses to block blue light might affect sleep quality. Mood is also affected by light and sleep; therefore, mood might be affected by blue light blockade. In this study, 20 adult volunteers were randomized to wear either blue-blocking (amber) or yellow-tinted (blocking ultraviolet only) safety glasses for 3 h prior to sleep. Participants completed sleep diaries during a one-week baseline assessment and two weeks' use of glasses. Outcome measures were subjective: change in overall sleep quality and positive/negative affect. Results demonstrated that sleep quality at study outset was poorer in the amber lens than the control group. Two- by three-way ANOVA revealed significant (p < .001) interaction between quality of sleep over the three weeks and experimental condition. At the end of the study, the amber lens group experienced significant (p < .001) improvement in sleep quality relative to the control group and positive affect (p = .005). Mood also improved significantly relative to controls. A replication with more detailed data on the subjects' circadian baseline and objective outcome measures is warranted.

  7. A new genus of highly specialized ants in Cretaceous Burmese amber (Hymenoptera: Formicidae).

    PubMed

    Barden, Phillip; Grimaldi, David

    2013-01-01

    A new genus of ants, Zigrasimecia Barden and Grimaldi, is described for a new and uniquely specialized species, Z. tonsora Barden and Grimaldi n.sp., preserved in Cretaceous amber from Myanmar. The amber is radiometrically dated at 99 myo. Zigrasimecia is closely related to another basal genus of ants known only in Burmese and French Cretaceous amber, Sphecomyrmodes Engel and Grimaldi, based in part on the shared possession of a comb of pegs on the clypeal margin, as well as mandible structure. Highly specialized features of Zigrasimecia include extensive development of the clypeal comb, a thick brush of setae on the oral surface of the mandibles and on the labrum, and a head that is broad, flattened, and which bears a crown of blackened, rugose cuticle. Mouthparts are hypothesized to have functioned in a unique manner, showing no clear signs of dentition representative of "chewing" or otherwise processing solid food. Although all ants in Burmese amber are basal, stem-group taxa, there is an unexpected diversity of mouthpart morphologies and probable feeding modes.

  8. A remarkable new pygmy grasshopper (Orthoptera, Tetrigidae) in Miocene amber from the Dominican Republic

    PubMed Central

    Heads, Sam W.; Thomas, M. Jared; Wang, Yinan

    2014-01-01

    Abstract A new genus and species of pygmy grasshopper (Orthoptera: Tetrigidae) is described from Early Miocene (Burdigalian) Dominican amber. Electrotettix attenboroughi Heads & Thomas, gen. et sp. n. is assigned to the subfamily Cladonotinae based on the deeply forked frontal costa, but is remarkable for the presence of tegmina and hind wings, hitherto unknown in this subfamily. PMID:25147472

  9. The oldest accurate record of Scenopinidae in the Lowermost Eocene amber of France (Diptera: Brachycera).

    PubMed

    Garrouste, Romain; Azar, Dany; Nel, Andre

    2016-03-22

    Eocenotrichia magnifica gen. et sp. nov. (Diptera: Scenopinidae: Metatrichini) is described and illustrated from the Lowermost Eocene amber of Oise (France) and represents the oldest definitive window fly fossil. The present discovery in the Earliest Eocene supports the Late Cretaceous-Paleocene age currently proposed for the emergence of Metatrichini.

  10. Amber: Using "Tree Tears Turned to Stone" to Teach Biology, Ecology, and More!

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2009-01-01

    Amber is a fossil by itself, and can also contain plants and animals that lived millions of years ago. Some of these perfectly preserved specimens give scientists a convenient window to past environments, including the biology, ecology, geology, and chemistry of Earth's past. By using an interdisciplinary approach, we can demonstrate to students a…

  11. The oldest psyllipsocid booklice, in Lower Cretaceous amber from Lebanon (Psocodea, Trogiomorpha, Psocathropetae, Psyllipsocidae)

    PubMed Central

    Azar, Dany; Nel, André

    2011-01-01

    Abstract Libanopsyllipsocus alexanderasnitsyni gen. et sp. n., of Psyllipsocidae is described and figured from the Lower Cretaceous amber of Lebanon. The position of the new taxon is discussed and the fossil is compared to other psyllipsocids. The species represents the earliest record of the family Psyllipsocidae. PMID:22259273

  12. A swarm of whiteflies—the first record of gregarious behavior from Eocene Baltic amber

    NASA Astrophysics Data System (ADS)

    Szwedo, Jacek; Drohojowska, Jowita

    2016-04-01

    A new whitefly Snotra christelae gen. et sp. n. is characterized, illustrated, and described from the Baltic amber. It represents the first record of gregarious behavior of Aleyrodinae (Aleyrodidae) whiteflies in fossil state. Implications of this finding on interpretation of whiteflies and their host-plant relationships and evolutionary traits of the group are discussed.

  13. A stink bug, Edessa protera sp. n. (Pentatomidae: Edessinae) in Mexican amber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species of stink bug, Edessa protera sp. n. (Hemiptera: Pentatomidae: Edessinae) is described from Mexican amber. Diagnostic characters include: an anterior thin but strongly carinate mesosternum, a scutellum with a long tongue and obtuse apex, alternate connexiva and the configuration of the ...

  14. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber

    NASA Astrophysics Data System (ADS)

    Vršanský, Peter; Bechly, Günter

    2015-04-01

    We describe a new extinct lineage Manipulatoridae (new family) of cockroaches from the Upper Cretaceous (Cenomanian) amber of Myanmar. Manipulator modificaputis gen. et sp. n. is a morphologically unique extinct cockroach that represents the first (of a total of 29 known worldwide) cockroach family reported exclusively from the Myanmar amber. This family represents an early side branch of the stem group of Mantodea (most probably a sister group of Eadiidae within Blattaria/Corydioidea) because it has some synapomorphies with the Mantodea (including the stem group and Eadiidae). This family also retains symplesiomorphies that exclude a position in the crown group, and furthermore has unique autapomorphies that exclude a position as a direct ancestor of Mantodea. The unique adaptations such as strongly elongated extremities and freely movable head on a long neck suggest that these animals were pursuit predators. Five additional specimens (including two immatures) reported from the Myanmar amber suggest that this group was relatively rare but belonged to the indigenous and autochthonous inhabitants of the ancient amber forest of the Myanmar region.

  15. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India

    PubMed Central

    Rust, Jes; Singh, Hukam; Rana, Rajendra S.; McCann, Tom; Singh, Lacham; Anderson, Ken; Sarkar, Nivedita; Nascimbene, Paul C.; Stebner, Frauke; Thomas, Jennifer C.; Solórzano Kraemer, Monica; Williams, Christopher J.; Engel, Michael S.; Sahni, Ashok; Grimaldi, David

    2010-01-01

    For nearly 100 million years, the India subcontinent drifted from Gondwana until its collision with Asia some 50 Ma, during which time the landmass presumably evolved a highly endemic biota. Recent excavations of rich outcrops of 50–52-million-year-old amber with diverse inclusions from the Cambay Shale of Gujarat, western India address this issue. Cambay amber occurs in lignitic and muddy sediments concentrated by near-shore chenier systems; its chemistry and the anatomy of associated fossil wood indicates a definitive source of Dipterocarpaceae. The amber is very partially polymerized and readily dissolves in organic solvents, thus allowing extraction of whole insects whose cuticle retains microscopic fidelity. Fourteen orders and more than 55 families and 100 species of arthropod inclusions have been discovered thus far, which have affinities to taxa from the Eocene of northern Europe, to the Recent of Australasia, and the Miocene to Recent of tropical America. Thus, India just prior to or immediately following contact shows little biological insularity. A significant diversity of eusocial insects are fossilized, including corbiculate bees, rhinotermitid termites, and modern subfamilies of ants (Formicidae), groups that apparently radiated during the contemporaneous Early Eocene Climatic Optimum or just prior to it during the Paleocene-Eocene Thermal Maximum. Cambay amber preserves a uniquely diverse and early biota of a modern-type of broad-leaf tropical forest, revealing 50 Ma of stasis and change in biological communities of the dipterocarp primary forests that dominate southeastern Asia today. PMID:20974929

  16. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.

    PubMed

    Zheng, Xiliang; Wang, Jin

    2015-04-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.

  17. A preliminary synopsis on amber scorpions with special reference to Burmite species: an extraordinary development of our knowledge in only 20 years.

    PubMed

    Lourenço, Wilson R

    2016-01-01

    A preliminary study on fossil scorpions found in amber, from the Lower Cretaceous through the Palaeocene and up to the Miocene is proposed. Scorpions remain rare among the arthropods found trapped in amber. Only 24 specimens are known from Cretaceous amber, representing eight families and subfamilies, ten genera and 21 species; in parallel, 10 specimens have been recorded from Baltic amber representing seven genera and ten species. A few more recent fossils from Dominican and Mexican amber have also been described. The present study of a new scorpion specimen from the Cretaceous amber of Myanmar (Burmite) resulted in the description of one new species, Betaburmesebuthus bellus sp. n. - belonging to the subfamily Palaeoburmesebuthinae Lourenço, 2015. The new description brings further elements to the clarification of the status of this subfamily, which is now raised to family level. Once again, this new Burmite element attests to the considerable degree of diversity in the Burmese amber-producing forests.

  18. Stochastic Simulation and Analysis of Biomolecular Reaction Networks

    DTIC Science & Technology

    2009-01-01

    a discrete stochastic system, a hypothetical model of a generic two gene, self- assembling catalytic ligation reaction in a cell-free tran- scription...ligation reactions and the tRNA charging reactions terminate. Third, the first metabolic ligation reaction terminated when Sub_1 was depleted at about...2900 sec and subsequently, the second metabolic ligation reaction would have terminated when all of Prod_A formed by the first ligation reaction was

  19. Modeling, Analysis, Simulation, and Synthesis of Biomolecular Networks

    DTIC Science & Technology

    2006-10-01

    stringent response in Mycobacterium tuberculosis The stringent response in a number of bacteria, including E . coli and M. tuberculosis, is mediated by...networks, we have generated in silico gene to metabolite knockout maps for a variety of nutrient media settings for E . coli using a recently...species in the network through a simple traversal of ESCR. Computing the non-water-containing ESCR for the E . coli iJR904 genome scale metabolic

  20. Transient response characteristics in a biomolecular integral controller.

    PubMed

    Sen, Shaunak

    2016-04-01

    The cellular behaviour of perfect adaptation is achieved through the use of an integral control element in the underlying biomolecular circuit. It is generally unclear how integral action affects the important aspect of transient response in these biomolecular systems, especially in light of the fact that it typically deteriorates the transient response in engineering contexts. To address this issue, the authors investigated the transient response in a computational model of a simple biomolecular integral control system involved in bacterial signalling. They find that the transient response can actually speed up as the integral gain parameter increases. On further analysis, they find that the underlying dynamics are composed of slow and fast modes and the speed-up of the transient response is because of the speed-up of the slow-mode dynamics. Finally, they note how an increase in the integral gain parameter also leads to a decrease in the amplitude of the transient response, consistent with the overall improvement in the transient response. These results should be useful in understanding the overall effect of integral action on system dynamics, particularly for biomolecular systems.

  1. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    SciTech Connect

    Mones, Letif; Jones, Andrew; Götz, Andreas W.; Laino, Teodoro; Walker, Ross C.; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2015-02-03

    We present the implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.

  2. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    PubMed Central

    Mones, Letif; Jones, Andrew; Götz, Andreas W; Laino, Teodoro; Walker, Ross C; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2015-01-01

    The implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25649827

  3. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    DOE PAGES

    Mones, Letif; Jones, Andrew; Götz, Andreas W.; ...

    2015-02-03

    We present the implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis usingmore » various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.« less

  4. Output-input ratio in thermally fluctuating biomolecular machines.

    PubMed

    Kurzynski, Michal; Torchala, Mieczyslaw; Chelminiak, Przemyslaw

    2014-01-01

    Biological molecular machines are proteins that operate under isothermal conditions and hence are referred to as free energy transducers. They can be formally considered as enzymes that simultaneously catalyze two chemical reactions: the free energy-donating (input) reaction and the free energy-accepting (output) one. Most if not all biologically active proteins display a slow stochastic dynamics of transitions between a variety of conformational substates composing their native state. This makes the description of the enzymatic reaction kinetics in terms of conventional rate constants insufficient. In the steady state, upon taking advantage of the assumption that each reaction proceeds through a single pair (the gate) of transition conformational substates of the enzyme-substrates complex, the degree of coupling between the output and the input reaction fluxes has been expressed in terms of the mean first-passage times on a conformational transition network between the distinguished substates. The theory is confronted with the results of random-walk simulations on the five-dimensional hypercube. The formal proof is given that, for single input and output gates, the output-input degree of coupling cannot exceed unity. As some experiments suggest such exceeding, looking for the conditions for increasing the degree of coupling value over unity challenges the theory. Performed simulations of random walks on several model networks involving more extended gates indicate that the case of the degree of coupling value higher than 1 is realized in a natural way on critical branching trees extended by long-range shortcuts. Such networks are scale-free and display the property of the small world. For short-range shortcuts, the networks are scale-free and fractal, representing a reasonable model for biomolecular machines displaying tight coupling, i.e., the degree of coupling equal exactly to unity. A hypothesis is stated that the protein conformational transition networks, as

  5. VLTI/AMBER spectro-interferometric imaging of VX Sagittarii's inhomogenous outer atmosphere

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Lacour, S.; Millour, F.; Driebe, T.; Wittkowski, M.; Plez, B.; Thiébaut, E.; Josselin, E.; Freytag, B.; Scholz, M.; Haubois, X.

    2010-02-01

    Aims: We aim to explore the photosphere of the very cool late-type star VX Sgr and in particular the characterization of molecular layers above the continuum forming photosphere. Methods: We obtained interferometric observations with the VLTI/AMBER interferometer using the fringe tracker FINITO in the spectral domain 1.45-2.50 μm with a spectral resolution of ≈35 and baselines ranging from 15 to 88 m. We performed independent image reconstruction for different wavelength bins and fit the interferometric data with a geometrical toy model. We also compared the data to 1D dynamical models of Miras atmosphere and to 3D hydrodynamical simulations of red supergiant (RSG) and asymptotic giant branch (AGB) stars. Results: Reconstructed images and visibilities show a strong wavelength dependence. The H-band images display two bright spots whose positions are confirmed by the geometrical toy model. The inhomogeneities are qualitatively predicted by 3D simulations. At ≈2.00 μm and in the region 2.35-2.50 μm, the photosphere appears extended and the radius is larger than in the H band. In this spectral region, the geometrical toy model locates a third bright spot outside the photosphere that can be a feature of the molecular layers. The wavelength dependence of the visibility can be qualitatively explained by 1D dynamical models of Mira atmospheres. The best-fitting photospheric models show a good match with the observed visibilities and give a photospheric diameter of Theta=8.82 ± 0.50 mas. The H2O molecule seems to be the dominant absorber in the molecular layers. Conclusions: We show that the atmosphere of VX Sgr seems to resemble Mira/AGB star model atmospheres more closely than do RSG model atmospheres. In particular, we see molecular (water) layers that are typical of Mira stars. Based on the observations made with VLTI-ESO Paranal, Chile under the programs IDs 081.D-0005(A, B, C, D, E, F, G, H).

  6. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    PubMed

    Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2013-01-01

    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  7. Towards theoretical analysis of long-range proton transfer kinetics in biomolecular pumps

    PubMed Central

    König, P. H.; Ghosh, N.; Hoffmann, M.; Elstner, M.; Tajkhorshid, E.; Frauenheim, Th.; Cui, Q.

    2008-01-01

    Motivated by the long-term goal of theoretically analyzing long-range proton transfer (PT) kinetics in biomolecular pumps, a number of technical developments were made in the framework of QM/MM simulations. A set of collective reaction co-ordinates is proposed for characterizing the progress of long-range proton transfers; unlike previous suggestions, the new coordinates can describe PT along highly non-linear three-dimensional pathways. Calculations using a realistic model of carbonic anhydrase demonstrated that adiabatic mapping using these collective coordinates gives reliable energetics and critical geometrical parameters as compared to minimum energy path calculations, which suggests that the new coordinates can be effectively used as reaction coordinate in potential of mean force calculations for long-range PT in complex systems. In addition, the generalized solvent boundary potential was implemented in the QM/MM framework for rectangular geometries, which is useful for studying reactions in membrane systems. The resulting protocol was found to produce water structure in the interior of aquaporin consistent with previous studies including much larger number of explicit solvent and lipid molecules. The effect of electrostatics for PT through membrane protein was also illustrated with a simple model channel embedded in different dielectric continuum environments. The encouraging results observed so far suggest that robust theoretical analysis of long-range PT kinetics in biomolecular pumps can soon be realized in a QM/MM framework. PMID:16405327

  8. Group transfer theory of single molecule imaging experiments in the F-ATPase biomolecular motor

    NASA Astrophysics Data System (ADS)

    Volkan-Kacso, Sandor; Marcus, Rudolph

    I describe a chemo-mechanical theory to treat single molecule imaging and ``stalling'' experiments on the F-ATPase enzyme. This enzyme is an effective stepping biomolecular rotary motor with a rotor shaft and a stator ring. Using group transfer theoretical approach the proposed structure-based theory couples the binding transition of nucleotides in the stator subunits and the physics of torsional elasticity in the rotor. The twisting of the elastic rotor domain acts as a perturbation upon the driving potential, the Gibbs free energy. In the theory, without the use of adjustastable parameters, we predict the rate and equilibrium constant dependence of steps such as ATP binding and phosphate release as a function of manipulated rotor angle. Then we compare these predictions to available data from stalling experiments. Besides treating experiments, the theory can provide guides for atomistic simulations, which could calculate the reorganization parameter and the torsional spring constant. The framework is generic and I discuss its application to other single molecule experiments, such as controlled rotation and other biomolecular motors, including motor-DNA complexes and linear motors.[PNAS, Early Edition, Oct. 19, 2015, doi: 10.1073/pnas.1518489112] The authors would like to acknowledge support from the Office of the Naval Research, the Army Research Office, and the James W. Glanville Foundation.

  9. Group transfer theory of single molecule imaging experiments in the F-ATPase biomolecular motor

    NASA Astrophysics Data System (ADS)

    Volkan-Kacso, Sandor; Marcus, Rudolph

    I describe a chemo-mechanical theory to treat single molecule imaging and ``stalling'' experiments on the F-ATPase enzyme. This enzyme is an effective stepping biomolecular rotary motor with a rotor shaft and a stator ring. Using group transfer theoretical approach the proposed structure-based theory couples the binding transition of nucleotides in the stator subunits and the physics of torsional elasticity in the rotor. The twisting of the elastic rotor domain acts as a perturbation upon the driving potential, the Gibbs free energy. In the theory, without the use of adjustastable parameters, we predict the rate and equilibrium constant dependence of steps such as ATP binding and phosphate release as a function of manipulated rotor angle. Then we compare these predictions to available data from stalling experiments. Besides treating experiments, the theory can provide guides for atomistic simulations, which could calculate the reorganization parameter and the torsional spring constant. The framework is generic and I discuss its application to other single molecule experiments, such as controlled rotation and other biomolecular motors, including motor-DNA complexes and linear motors.[PNAS, Early Edition, Oct. 19, 2015, doi: 10.1073/pnas.1518489112

  10. Toward theoretical analysis of long-range proton transfer kinetics in biomolecular pumps.

    PubMed

    König, P H; Ghosh, N; Hoffmann, M; Elstner, M; Tajkhorshid, E; Frauenheim, Th; Cui, Q

    2006-01-19

    Motivated by the long-term goal of theoretically analyzing long-range proton transfer (PT) kinetics in biomolecular pumps, researchers made a number of technical developments in the framework of quantum mechanics-molecular mechanics (QM/MM) simulations. A set of collective reaction coordinates is proposed for characterizing the progress of long-range proton transfers; unlike previous suggestions, the new coordinates can describe PT along highly nonlinear three-dimensional pathways. Calculations using a realistic model of carbonic anhydrase demonstrated that adiabatic mapping using these collective coordinates gives reliable energetics and critical geometrical parameters as compared to minimum energy path calculations, which suggests that the new coordinates can be effectively used as reaction coordinate in potential of mean force calculations for long-range PT in complex systems. In addition, the generalized solvent boundary potential was implemented in the QM/MM framework for rectangular geometries, which is useful for studying reactions in membrane systems. The resulting protocol was found to produce water structure in the interior of aquaporin consistent with previous studies including a much larger number of explicit solvent and lipid molecules. The effect of electrostatics for PT through a membrane protein was also illustrated with a simple model channel embedded in different dielectric continuum environments. The encouraging results observed so far suggest that robust theoretical analysis of long-range PT kinetics in biomolecular pumps can soon be realized in a QM/MM framework.

  11. X3DBio2: A visual analysis tool for biomolecular structure comparison

    NASA Astrophysics Data System (ADS)

    Yi, Hong; Thakur, Sidharth; Sethaphong, Latsavongsakda; Yingling, Yaroslava G.

    2013-01-01

    A major problem in structural biology is the recognition of differences and similarities between related three dimensional (3D) biomolecular structures. Investigating these structure relationships is important not only for understanding of functional properties of biologically significant molecules, but also for development of new and improved materials based on naturally-occurring molecules. We developed a new visual analysis tool, X3DBio2, for 3D biomolecular structure comparison and analysis. The tool is designed for elucidation of structural effects of mutations in proteins and nucleic acids and for assessment of time dependent trajectories from molecular dynamics simulations. X3DBio2 is a freely downloadable open source software and provides tightly integrated features to perform many standard analysis and visual exploration tasks. We expect this tool can be applied to solve a variety of biological problems and illustrate the use of the tool on the example study of the differences and similarities between two proteins of the glycosyltransferase family 2 that synthesize polysaccharides oligomers. The size and conformational distances and retained core structural similarity of proteins SpsA to K4CP represent significant epochs in the evolution of inverting glycosyltransferases.

  12. Mass spectrometry in the characterization of ambers. I. Studies of amber samples of different origin and ages by laser desorption ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization mass spectrometry.

    PubMed

    Tonidandel, Loris; Ragazzi, Eugenio; Roghi, Guido; Traldi, Pietro

    2008-01-01

    Amber is a fossil resin constituted of organic polymers derived through complex maturation processes of the original plant resin. A classification of eight samples of amber of different geological age (Miocene to Triassic) and geographical origin is here proposed using direct mass spectrometric techniques, i.e. laser desorption ionization (LDI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI), in order to obtain a fingerprint related to the amber origin. Differences and similarities were detected among the spectra with the four methods, showing quite complex spectra, full of ionic species in the mass range investigated (up to m/z 2000). The evaluation required statistical analysis involving multivariate techniques. Cluster analysis or principal component analysis (PCA) generally did not show a clear clustering with respect to the age of samples, except for the APPI method, which allowed a satisfying clustering. Using the total ion current (TIC) obtained by the different analytical approaches on equal quantities of the different amber samples and plotted against the age, the only significant correlation appeared to be that involving APPI. To validate the method, four amber samples from Cretaceous of Spain were analyzed. Also in this case a significant correlation with age was found only with APPI data. PCA obtained with TIC values from all the MS methods showed a fair grouping of samples, according to their age. Three main clusters could be detected, belonging to younger, intermediate and older fossil resins, respectively. This MS analysis on crude amber, either solid or extract, followed by appropriate multivariate statistical evaluation, can provide useful information on amber age. The best results are those obtained by APPI, indicating that the quantity of amber soluble components that can be photoionized decreases with increasing age, in agreement with the formation of highly stable, insoluble polymers.

  13. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model.

    PubMed

    Debiec, Karl T; Cerutti, David S; Baker, Lewis R; Gronenborn, Angela M; Case, David A; Chong, Lillian T

    2016-08-09

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides-all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution.

  14. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    PubMed Central

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  15. Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field.

    PubMed

    Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Havrila, Marek; Šponer, Jiří; Otyepka, Michal

    2017-03-23

    The sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar conformation also exists in DNA, where it has been extensively studied and shown to be involved in DNA-protein interactions. However, the function of the α/γ = t/t conformation in RNA is poorly understood. Here, we present molecular dynamics simulations of several prototypical RNA structures obtained from X-ray and NMR experiments, including canonical and mismatched RNA duplexes, UUCG and GAGA tetraloops, Loop E, the sarcin-ricin loop, a parallel guanine quadruplex, and a viral pseudoknot. The stability of various noncanonical α/γ backbone conformations was analyzed with two AMBER force fields, ff99bsc0χOL3 and ff99bsc0χOL3 with the recent εζOL1 and βOL1 corrections for DNA. Although some α/γ substates were stable with seemingly well-described equilibria, many were unstable in our simulations. Notably, the most frequent noncanonical conformer α/γ = t/t was unstable in both tested force fields. Possible reasons for this instability are discussed. Our work reveals a potentially important artifact in RNA force fields and highlights a need for further force field refinement.

  16. Biting Midges (Diptera: Ceratopogonidae) from Cambay Amber Indicate that the Eocene Fauna of the Indian Subcontinent Was Not Isolated

    PubMed Central

    Stebner, Frauke; Szadziewski, Ryszard; Singh, Hukam; Gunkel, Simon; Rust, Jes

    2017-01-01

    India’s unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India’s flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene. PMID:28076427

  17. Biting Midges (Diptera: Ceratopogonidae) from Cambay Amber Indicate that the Eocene Fauna of the Indian Subcontinent Was Not Isolated.

    PubMed

    Stebner, Frauke; Szadziewski, Ryszard; Singh, Hukam; Gunkel, Simon; Rust, Jes

    2017-01-01

    India's unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India's flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene.

  18. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber.

    PubMed

    Wier, Andrew; Dolan, Michael; Grimaldi, David; Guerrero, Ricardo; Wagensberg, Jorge; Margulis, Lynn

    2002-02-05

    Extraordinary preservation in amber of the Miocene termite Mastotermes electrodominicus has led to the discovery of fossil symbiotic microbes. Spirochete bacteria and wood-digesting protists were identified in the intestinal tissue of the insect. Fossil wood (xylem: developing vessel-element cells, fibers, pit connections), protists (most likely xylophagic amitochondriates), an endospore (probably of the filamentous intestinal bacterium Arthromitus = Bacillus), and large spirochetes were seen in thin section by light and transmission electron microscopy. The intestinal microbiota of the living termite Mastotermes darwiniensis, a genus now restricted to northern Australia, markedly resembles that preserved in amber. This is a direct observation of a 20-million-year-old xylophagus termite fossil microbial community.

  19. Regeneration of commercial Biacore chips to analyze biomolecular interactions

    NASA Astrophysics Data System (ADS)

    Yuan, Yong J.; Gopinath, Subash C. B.; Kumar, Penmetcha K. R.

    2011-03-01

    Surface plasmon resonance is particularly important due to the ability of biomolecules of interest to interact with a specific binding partner, and may therefore be more informative than generic measurement techniques. A growing number of robust and reproducible immobilized surfaces chips are available from Biacore, allowing us to analyze various biomolecular interactions. Here we describe a protocol by which the Biacore chips may be reused multiple times to analyze biomolecular interactions without interfering analysis from previously used surfaces or analytes. This procedure will not only help to extend the lifetime of these chips but at the same time render them to be more commercially affordable, especially in a resource-poor setting. The time range for the entire protocol is ~1 day, including stripping off previously immobilized materials and re-functionalization of gold surface.

  20. Subsystem-based theoretical spectroscopy of biomolecules and biomolecular assemblies.

    PubMed

    Neugebauer, Johannes

    2009-12-21

    The absorption properties of chromophores in biomolecular systems are subject to several fine-tuning mechanisms. Specific interactions with the surrounding protein environment often lead to significant changes in the excitation energies, but bulk dielectric effects can also play an important role. Moreover, strong excitonic interactions can occur in systems with several chromophores at close distances. For interpretation purposes, it is often desirable to distinguish different types of environmental effects, such as geometrical, electrostatic, polarization, and response (or differential polarization) effects. Methods that can be applied for theoretical analyses of such effects are reviewed herein, ranging from continuum and point-charge models to explicit quantum chemical subsystem methods for environmental effects. Connections to physical model theories are also outlined. Prototypical applications to optical spectra and excited states of fluorescent proteins, biomolecular photoreceptors, and photosynthetic protein complexes are discussed.

  1. The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae)

    NASA Astrophysics Data System (ADS)

    Cai, Chen-Yang; Huang, Di-Ying

    2014-10-01

    The staphylinid subfamily Micropeplinae includes small strongly sclerotized beetles with truncate elytra leaving the most part of abdomen exposed. Fossil micropeplines are rare and confined to Cenozoic representatives of extant genera. Here, we describe the oldest micropepline, Protopeplus cretaceus gen. and sp. n., from the Upper Cretaceous Burmese amber. Fluorescence microscope and confocal laser scanning microscopy (CLSM) were both used to reveal diagnostic features of Micropeplinae and some primitive traits that place Protopeplus very basally within Micropeplinae.

  2. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals

    USGS Publications Warehouse

    Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.-G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A.

    1986-01-01

    Cyclic terpenoids present in the solvent extractable material of fossil woods, ambers and brown coals have been analyzed. The sample series chosen consisted of wood remains preserved in Holocene to Jurassic sediments and a set of of ambers from the Philippines (copalite), Israel, Canada and Dominican Republic. The brown coals selected were from the Fortuna Garsdorf Mine and Miocene formations on Fiji. The fossil wood extracts contained dominant diterpenoid or sesquiterpenoid skeletons, and aromatized species were present at high concentrations, with a major amount of two-ring aromatic compounds. Tricyclic diterpenoids were the predominant compounds in the ambers. Aromatized derivatives were the major components, consisting of one or two aromatic ring species with the abietane and occasionally pimarane skeletons. The saturated structures were comprised primarily of the abietane and pimarane skeletons having from three to five carbon (C1, C2, etc.) substituents. Kaurane and phyllocladane isomers were present in only minor amounts. Bicyclic sesquiterpenoids as saturated and partial or fully aromatized forms were also common in these samples, but only traces of sesterterpenoids and triterpenoid derivatives were found. The brown coal extracts were composed of major amounts of one- and two-ring aromatized terpenoids, with a greater proportion of triterpenoid derivatives than in the case of the woods and ambers. This was especially noticeable for the German coal, where the triterpenoids were predominant. Open C-ring aromatized structures were also present in this coal. Steroid compounds were not detectable, but some hopanes were found as minor components in the German brown coal. An overview of the skeletal structure classes identified in each sample, as well as the general mass spectrometric characteristics of the unknown compounds are included in the present paper. It can be concluded from these structural distributions that aromatization is the main process for the

  3. A new genus of fossil Mymaridae (Hymenoptera) from Cretaceous amber and key to Cretaceous mymarid genera.

    PubMed

    Poinar, George; Huber, John T

    2011-01-01

    Myanmymar aresconoidesgen n., sp. n. is described from one female in Burmese amber, dated as about 100 my. It is similar to Arescon on wing features but is unique among Mymaridae in having distinctly segmented palpi. It is the fifth mymarid genus definitely referable to the Cretaceous period. A key to Cretaceous mymarid genera is presented and the features of Myanmymar are compared with the other Cretaceous and extant mymarid genera.

  4. Terrestrial soft-bodied protists and other microorganisms in triassic amber.

    PubMed

    Poinar, G O; Waggoner, B M; Bauer, U C

    1993-01-08

    Protozoa, cyanobacteria, sheathed algae, sheathed fungi, germinating pollen or spores, and fungal spores have been found in amber 220 to 230 million years old. Many of these microorganisms can be assigned to present-day groups. This discovery of terrestrial, soft-bodied protists that can be referred to modern groups indicates that morphological evolution is very gradual in many protists and that both structural and probably functional stasis extend back at least to the Upper Triassic period.

  5. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  6. Geometric and potential driving formation and evolution of biomolecular surfaces.

    PubMed

    Bates, P W; Chen, Zhan; Sun, Yuhui; Wei, Guo-Wei; Zhao, Shan

    2009-08-01

    This paper presents new geometrical flow equations for the theoretical modeling of biomolecular surfaces in the context of multiscale implicit solvent models. To account for the local variations near the biomolecular surfaces due to interactions between solvent molecules, and between solvent and solute molecules, we propose potential driven geometric flows, which balance the intrinsic geometric forces that would occur for a surface separating two homogeneous materials with the potential forces induced by the atomic interactions. Stochastic geometric flows are introduced to account for the random fluctuation and dissipation in density and pressure near the solvent-solute interface. Physical properties, such as free energy minimization (area decreasing) and incompressibility (volume preserving), are realized by some of our geometric flow equations. The proposed approach for geometric and potential forces driving the formation and evolution of biological surfaces is illustrated by extensive numerical experiments and compared with established minimal molecular surfaces and molecular surfaces. Local modification of biomolecular surfaces is demonstrated with potential driven geometric flows. High order geometric flows are also considered and tested in the present work for surface generation. Biomolecular surfaces generated by these approaches are typically free of geometric singularities. As the speed of surface generation is crucial to implicit solvent model based molecular dynamics, four numerical algorithms, a semi-implicit scheme, a Crank-Nicolson scheme, and two alternating direction implicit (ADI) schemes, are constructed and tested. Being either stable or conditionally stable but admitting a large critical time step size, these schemes overcome the stability constraint of the earlier forward Euler scheme. Aided with the Thomas algorithm, one of the ADI schemes is found to be very efficient as it balances the speed and accuracy.

  7. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics.

    PubMed

    Jin, Yongdong; Honig, Tal; Ron, Izhar; Friedman, Noga; Sheves, Mordechai; Cahen, David

    2008-11-01

    Interfacing functional proteins with solid supports for device applications is a promising route to possible applications in bio-electronics, -sensors, and -optics. Various possible applications of bacteriorhodopsin (bR) have been explored and reviewed since the discovery of bR. This tutorial review discusses bR as a medium for biomolecular optoelectronics, emphasizing ways in which it can be interfaced, especially as a thin film, solid-state current-carrying electronic element.

  8. Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods

    PubMed Central

    Huys, Rony; Suárez-Morales, Eduardo; Serrano-Sánchez, María de Lourdes; Centeno-García, Elena; Vega, Francisco J.

    2016-01-01

    Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide. PMID:27731321

  9. Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods.

    PubMed

    Huys, Rony; Suárez-Morales, Eduardo; Serrano-Sánchez, María de Lourdes; Centeno-García, Elena; Vega, Francisco J

    2016-10-12

    Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide.

  10. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air

    USGS Publications Warehouse

    Berner, R.A.; Landis, G.P.

    1988-01-01

    Gases trapped in Miocene to Upper Cretaceous amber were released by gently crushing the amber under vacuum and were analyzed by quadrupole mass spectrometry. After discounting the possibility that the major gases N2, O2, and CO2 underwent appreciable diffusion and diagenetic exchange with their surroundings or reaction with the amber, it has been concluded that in primary bubbles (gas released during initial breakage) these gases represent mainly original ancient air modified by the aerobic respiration of microorganisms. Values of N2/(CO2+O2) for each time period give consistent results despite varying O2/CO2 ratios that presumably were due to varying degrees of respiration. This allows calculation of original oxygen concentrations, which, on the basis of these preliminary results, appear to have changed from greater than 30 percent O2 during one part ofthe Late Cretaceous (between 75 and 95 million years ago) to 21 percent during the Eocene-Oligocene and for present-day samples, with possibly lower values during the Oligocene-Early Miocene. Variable O2 levels over time in general confirm theoretical isotope-mass balance calculations and suggest that the atmosphere has evolved over Phanerozoic time.

  11. DNA Changes in Tissues Entrapped in Plant Resins (the Precursors of Amber)

    NASA Astrophysics Data System (ADS)

    Rogers, S. O.; Langenegger, K.; Holdenrieder, O.

    There have been many reports characterizing DNA from amber, which is a fossil version of plant resin. Here we report an investigation of the effects of plant resin (from Pseudotsuga menziesii) and drying conditions on the preservation of DNA in biological tissues. We examined the degree of degradation of the DNA by agarose gel electrophoresis of extracted DNA, by polymerase chain reaction, and by DNA sequencing. The plant resin alone appeared to cause little or no damage to DNA. Tissue immersed in plant resin that dried rapidly (exposed to sunlight) contained DNA with little apparent damage. Tissue immersed in the resin that was dried slowly (in shade without sunlight) contained DNA with some degradation (3.5% nucleotide changes). The tissue that was immersed in the resin that was constantly hydrated (by immersion in water) yielded DNA that was severely damaged (50-62% nucleotide changes). Transversions outnumbered transitions in these samples by a ratio of 1.4 : 1. A piece of Baltic amber immersed in water for 5days appeared to be impervious to the water. Thus amber inclusions that initially dried rapidly have the potential to yield undamaged DNA. Those that dried slowly may contain damaged DNA and may be unsuitable for phylogenetic and other studies.

  12. Computed tomography recovers data from historical amber: an example from huntsman spiders

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; Penney, David; Dalüge, Natalie; Jäger, Peter; McNeil, Andrew; Bradley, Robert S.; Withers, Philip J.; Preziosi, Richard F.

    2011-06-01

    Computed tomography (CT) methods were applied to a problematic fossil spider (Arachnida: Araneae) from the historical Berendt collection of Eocene (ca. 44-49 Ma) Baltic amber. The original specimens of Ocypete crassipes Koch and Berendt 1854 are in dark, oxidised amber and the published descriptions lack detail. Despite this, they were subsequently assigned to the living Pantropical genus Heteropoda Latreille, 1804 and are ostensibly the oldest records of huntsman spiders (Sparassidae) in general. Given their normally large size, and presumptive ability to free themselves more easily from resin, it would be surprising to find a sparassid in amber and traditional (optical) methods of study would likely have left O. crassipes as an equivocal record—probably a nomen dubium. However, phase contrast enhanced X-ray CT revealed exquisite morphological detail and thus `saved' this historical name by revealing characters which confirm that it's a bona fide member both of Sparassidae and the subfamily Eusparassinae. We demonstrate here that CT studies facilitate taxonomic equivalence even between recent spiders and unpromising fossils described in older monographs. In our case, fine structural details such as eye arrangement, cheliceral dentition, and leg characters like a trilobate membrane, spination and claws, allow a precise referral of this fossil to an extant genus as Eusparassus crassipes (Koch and Berendt 1854) comb. nov.

  13. Microplastics in sea coastal zone: Lessons learned from the Baltic amber.

    PubMed

    Chubarenko, Irina; Stepanova, Natalia

    2017-05-01

    Baltic amber, adored for its beauty already in Homer's Odyssey (ca. 800 B.C.E), has its material density close to that of wide-spread plastics like polyamide, polystyrene, or acrylic. Migrations of amber stones in the sea and their massive washing ashore have been monitored by Baltic citizens for ages. Based on the collected information, we present the hypothesis on the behaviour of microplastic particles in sea coastal zone. Fresh-to-strong winds generate surface waves, currents and roll-structures, whose joint effect washes ashore from the underwater slope both amber stones and plastics - and carries them back to the sea in a few days. Analysis of underlying hydrophysical processes suggests that sea coastal zone under stormy winds plays a role of a mill for plastics, and negatively buoyant pieces seem to repeatedly migrate between beaches and underwater slopes until they are broken into small enough fragments that can be transported by currents to deeper areas and deposited out of reach of stormy waves. Direct observations on microplastics migrations are urged to prove the hypothesis.

  14. Biomolecular recognition and detection using gold-based nanoprobes

    NASA Astrophysics Data System (ADS)

    Crew, Elizabeth

    The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.

  15. Retroactivity in the Context of Modularly Structured Biomolecular Systems.

    PubMed

    Pantoja-Hernández, Libertad; Martínez-García, Juan Carlos

    2015-01-01

    Synthetic biology has intensively promoted the technical implementation of modular strategies in the fabrication of biological devices. Modules are considered as networks of reactions. The behavior displayed by biomolecular systems results from the information processes carried out by the interconnection of the involved modules. However, in natural systems, module wiring is not a free-of-charge process; as a consequence of interconnection, a reactive phenomenon called retroactivity emerges. This phenomenon is characterized by signals that propagate from downstream modules (the modules that receive the incoming signals upon interconnection) to upstream ones (the modules that send the signals upon interconnection). Such retroactivity signals, depending of their strength, may change and sometimes even disrupt the behavior of modular biomolecular systems. Thus, analysis of retroactivity effects in natural biological and biosynthetic systems is crucial to achieve a deeper understanding of how this interconnection between functionally characterized modules takes place and how it impacts the overall behavior of the involved cell. By discussing the modules interconnection in natural and synthetic biomolecular systems, we propose that such systems should be considered as quasi-modular.

  16. Retroactivity in the Context of Modularly Structured Biomolecular Systems

    PubMed Central

    Pantoja-Hernández, Libertad; Martínez-García, Juan Carlos

    2015-01-01

    Synthetic biology has intensively promoted the technical implementation of modular strategies in the fabrication of biological devices. Modules are considered as networks of reactions. The behavior displayed by biomolecular systems results from the information processes carried out by the interconnection of the involved modules. However, in natural systems, module wiring is not a free-of-charge process; as a consequence of interconnection, a reactive phenomenon called retroactivity emerges. This phenomenon is characterized by signals that propagate from downstream modules (the modules that receive the incoming signals upon interconnection) to upstream ones (the modules that send the signals upon interconnection). Such retroactivity signals, depending of their strength, may change and sometimes even disrupt the behavior of modular biomolecular systems. Thus, analysis of retroactivity effects in natural biological and biosynthetic systems is crucial to achieve a deeper understanding of how this interconnection between functionally characterized modules takes place and how it impacts the overall behavior of the involved cell. By discussing the modules interconnection in natural and synthetic biomolecular systems, we propose that such systems should be considered as quasi-modular. PMID:26137457

  17. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins.

    PubMed

    Cerutti, David S; Swope, William C; Rice, Julia E; Case, David A

    2014-10-14

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard-Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields.

  18. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins

    PubMed Central

    2015-01-01

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard–Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495

  19. Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors

    NASA Astrophysics Data System (ADS)

    Tao, Yifei; Guo, Zhongyi; Zhang, Anjun; Zhang, Jingran; Wang, Benyang; Qu, Shiliang

    2015-08-01

    A novel bio-molecular nanostructured sensor composed of Au spherical nanoshell and gain-assisted silica-core has been proposed and investigated theoretically, which shows a superior performance compared to the existing structured sensor. Using quasi-static approximation calculation, it is found that the scattering efficiency and the quality factor of SPR can be enhanced greatly by introducing proper amount of gain. The simulated results demonstrate that our designed Au spherical nanoshell and gain-assisted silica-core can obtain as high as 166.7 nm/RIU for the sensitivity of refractive index, and the sensors' figure of merit is enhanced 2000 times nearly compared to that of g=0, which indicates that the designed spherical core-shell sensors have the powerful ability to detect a subtle change in the concentration of its background medium.

  20. Enhanced semiempirical QM methods for biomolecular interactions

    PubMed Central

    Yilmazer, Nusret Duygu; Korth, Martin

    2015-01-01

    Recent successes and failures of the application of ‘enhanced’ semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy. PMID:25848495

  1. Mapping mechanical force propagation through biomolecular complexes

    SciTech Connect

    Schoeler, Constantin; Bernardi, Rafael C.; Malinowska, Klara H.; Durner, Ellis; Ott, Wolfgang; Bayer, Edward A.; Schulten, Klaus; Nash, Michael A.; Gaub, Hermann E.

    2015-08-11

    In this paper, we employ single-molecule force spectroscopy with an atomic force microscope (AFM) and steered molecular dynamics (SMD) simulations to reveal force propagation pathways through a mechanically ultrastable multidomain cellulosome protein complex. We demonstrate a new combination of network-based correlation analysis supported by AFM directional pulling experiments, which allowed us to visualize stiff paths through the protein complex along which force is transmitted. Finally, the results implicate specific force-propagation routes nonparallel to the pulling axis that are advantageous for achieving high dissociation forces.

  2. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells.

    PubMed

    Caracciolo, Giulio; Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2015-10-06

    When injected in a biological milieu, a nanomaterial rapidly adsorbs biomolecules forming a biomolecular corona. The biomolecular corona changes the interfacial composition of a nanomaterial giving it a biological identity that determines the physiological response. Characterization of the biomolecular structure and composition has received increasing attention mostly due to its detrimental impact on the nanomaterial's metabolism in vivo. It is generally accepted that an opsonin-enriched biomolecular corona promotes immune system recognition and rapid clearance from circulation. Here we applied dynamic light scattering and nanoliquid chromatography tandem mass spectrometry to thoroughly characterize the biomolecular corona formed around lipid and silica nanoparticles (NPs). Incubation with human plasma resulted in the formation of NP-biomolecular coronas enriched with immunoglobulins, complement factors, and coagulation proteins that bind to surface receptors on immune cells and elicit phagocytosis. Conversely, we found that protein-coated NPs were protected from uptake by macrophage RAW 264.7 cells. This implies that the biomolecular corona formation provides a stealth effect on macrophage recognition. Our results suggest that correct prediction of the NP's fate in vivo will require more than just the knowledge of the biomolecular corona composition. Validation of efficient methods for mapping protein binding sites on the biomolecular corona of NPs is an urgent task for future research.

  3. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  4. How Actuated Particles Effectively Capture Biomolecular Targets

    PubMed Central

    2017-01-01

    Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952

  5. Extension of the AMBER force field for nitroxide radicals and combined QM/MM/PCM approach to the accurate determination of EPR parameters of DMPOH in solution

    PubMed Central

    Hermosilla, Laura; Prampolini, Giacomo; Calle, Paloma; García de la Vega, José Manuel; Brancato, Giuseppe; Barone, Vincenzo

    2015-01-01

    A computational strategy that combines both time-dependent and time-independent approaches is exploited to accurately model molecular dynamics and solvent effects on the isotropic hyperfine coupling constants of the DMPO-H nitroxide. Our recent general force field for nitroxides derived from AMBER ff99SB is further extended to systems involving hydrogen atoms in β-positions with respect to NO. The resulting force-field has been employed in a series of classical molecular dynamics simulations, comparing the computed EPR parameters from selected molecular configurations to the corresponding experimental data in different solvents. The effect of vibrational averaging on the spectroscopic parameters is also taken into account, by second order vibrational perturbation theory involving semi-diagonal third energy derivatives together first and second property derivatives. PMID:26584116

  6. Evaluating Thermodynamic Integration Performance of the New Amber Molecular Dynamics Package and Assess Potential Halogen Bonds of Enoyl-ACP Reductase (FabI) Benzimidazole Inhibitors

    PubMed Central

    Su, Pin-Chih; Johnson, Michael E.

    2015-01-01

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the para-halogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme. PMID:26666582

  7. Evaluating thermodynamic integration performance of the new amber molecular dynamics package and assess potential halogen bonds of enoyl-ACP reductase (FabI) benzimidazole inhibitors.

    PubMed

    Su, Pin-Chih; Johnson, Michael E

    2016-04-05

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the parahalogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme.

  8. Quantitative analysis of numerical solvers for oscillatory biomolecular system models

    PubMed Central

    Quo, Chang F; Wang, May D

    2008-01-01

    Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible

  9. Fossilised microcenoses and microdebris in Cretaceous amber Alava (Spain) explored using several microscopy techniques

    NASA Astrophysics Data System (ADS)

    Ascaso, C.; Wierzchos, J.; Corral, J. C.; López, R.; Alonso, J.

    2003-04-01

    It is obvious that Mars return missions are not likely to provide us with fossil-bearing amber resins. Nonetheless, there is much to learn from the study of the biodiversity of fossilised microorganisms, their fossilization processes and detection strategies. In particular, if we are able to determine the endurance of biomolecules in this ancient material, this might contribute to existing knowledge on the persistence of dormant forms over millennia. Amber is a superb medium for the fossilization of organisms. Besides light microscopy techniques, this report describes the use of scanning electron microscopy both in backscattered electron (SEM-BSE) and low temperature (LTSEM) modes, and confocal laser scanning microscopy to examine microorganisms and microdebris (remains of pluricellular organisms). These novel techniques were applied to inclusions in amber (dated as Allaian: Early Cretaceous) from Álava (N Spain). Confocal microscopy provides a 3D image of microcenoses showing very well preserved biomolecules; fungal hyphae and protozoan cells emitting a strong autofluorescence signal. The huge potential of SEM-BSE was demonstrated by high resolution images, in which the relationship between fossilized (mineralized) protozoa and fungal hyphae could be observed. Moreover, this technique enabled the observation and description of further ultrastructural details of the cytoplasm of protozoa and fungal hyphae. Energy dispersive X-ray spectroscopy revealed that protozoan and fungal cells were transformed by mineralisation process into fossils composed of iron sulphide with highly preserved ultrastructural details. LTSEM performed on protozoan inclusions generated images showing many vacuoles. Finally, SEM in secondary electron detection mode was found to provide micromorphological information on mummified (not mineralized) bacteria-like microbiota trapped in gas bubbles

  10. Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling

    PubMed Central

    Caragea, Cornelia; Sinapov, Jivko; Dobbs, Drena; Honavar, Vasant

    2009-01-01

    Background Identification of functionally important sites in biomolecular sequences has broad applications ranging from rational drug design to the analysis of metabolic and signal transduction networks. Experimental determination of such sites lags far behind the number of known biomolecular sequences. Hence, there is a need to develop reliable computational methods for identifying functionally important sites from biomolecular sequences. Results We present a mixture of experts approach to biomolecular sequence labeling that takes into account the global similarity between biomolecular sequences. Our approach combines unsupervised and supervised learning techniques. Given a set of sequences and a similarity measure defined on pairs of sequences, we learn a mixture of experts model by using spectral clustering to learn the hierarchical structure of the model and by using bayesian techniques to combine the predictions of the experts. We evaluate our approach on two biomolecular sequence labeling problems: RNA-protein and DNA-protein interface prediction problems. The results of our experiments show that global sequence similarity can be exploited to improve the performance of classifiers trained to label biomolecular sequence data. Conclusion The mixture of experts model helps improve the performance of machine learning methods for identifying functionally important sites in biomolecular sequences. PMID:19426452

  11. Spatial dynamics of the invasive defoliator amber-marked birch leafminer across the Anchorage landscape.

    PubMed

    Lundquist, J E; Reich, R M; Tuffly, M

    2012-10-01

    The amber-marked birch leafminer (Profenusa thomsoni [Konow]) (Hymenoptera: Tenthredinidae) has caused severe infestations of birch species in Anchorage, AK, since 2002. Its spatial distribution has been monitored since 2006 and summarized using interpolated surfaces based on simple kriging. Results indicate that this insect pest is unevenly distributed, occurring in multineighborhood sized patches that migrate from year to year. Patches showing heavy infestation one year are followed by light infestations the following year. In this study, we developed methods of assessing and describing spatial distributions of P. thomsoni as they vary from year to year, and speculate on potential causes of these trends in landscape patterns.

  12. Multiple infection of amber Succinea putris snails with sporocysts of Leucochloridium spp. (Trematoda).

    PubMed

    Ataev, G L; Zhukova, A A; Tokmakova, А S; Prokhorova, Е E

    2016-08-01

    Amber Succinea putris snails were collected in the Leningrad Region (Russia). Some of them were infected with trematodes Leucochloridium paradoxum, Leucochloridium perturbatum and Leucochloridium vogtianum. One snail had triple infection with all these species. Genotyping of sporocysts by ITS1-5.8S-ITS2 nucleotide sequences of ribosomal DNA (rDNA) and phylogenetic analysis were performed. The results confirmed the species identification of sporocysts of Leucochloridium based on the shape and colour of mature broodsacs. Sporocyst broodsacs could leave the host snail on their own, remaining viable in the environment for up to an hour. This ability of sporocysts may prevent the excessive infection of the molluscan host.

  13. First record of Microscapha LeConte from Baltic amber with description of a new species and list of fossil Melandryidae (Coleoptera: Tenebrionoidea).

    PubMed

    Bukejs, Andris; Alekseev, Vitalii I

    2015-09-03

    Microscapha andrzeji sp. nov., the first fossil representative of the genus is described from Eocene Baltic amber. An updated list of fossil Melandryidae (Coleoptera: Tenebrionoidea) is provided. The presence of Microscapha within Baltic amber suggests some potential for palaeoenvironmental inferences based on the melandryid assemblage within the deposit.

  14. Creating biomolecular motors based on dynein and actin-binding proteins

    NASA Astrophysics Data System (ADS)

    Furuta, Akane; Amino, Misako; Yoshio, Maki; Oiwa, Kazuhiro; Kojima, Hiroaki; Furuta, Ken'ya

    2016-11-01

    Biomolecular motors such as myosin, kinesin and dynein are protein machines that can drive directional movement along cytoskeletal tracks and have the potential to be used as molecule-sized actuators. Although control of the velocity and directionality of biomolecular motors has been achieved, the design and construction of novel biomolecular motors remains a challenge. Here we show that naturally occurring protein building blocks from different cytoskeletal systems can be combined to create a new series of biomolecular motors. We show that the hybrid motors—combinations of a motor core derived from the microtubule-based dynein motor and non-motor actin-binding proteins—robustly drive the sliding movement of an actin filament. Furthermore, the direction of actin movement can be reversed by simply changing the geometric arrangement of these building blocks. Our synthetic strategy provides an approach to fabricating biomolecular machines that work along artificial tracks at nanoscale dimensions.

  15. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and method of use

    DOEpatents

    Nie, Shuming; Chan, Warren C. W.; Emory, Steven R.

    2002-01-01

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  16. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and methods of use

    DOEpatents

    Nie, Shuming; Chan, Warren C. W.; Emory, Stephen

    2007-03-20

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  17. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.

    PubMed

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules.

  18. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

    PubMed Central

    Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.

    2016-01-01

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128

  19. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Vander Zanden, Crystal M; Billman, M Marie; Ho, P Shing; Rappé, Anthony K

    2015-07-23

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry--its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as an accurate computational tool that can be applied, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular-based materials.

  20. Perspective: Coarse-grained models for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Noid, W. G.

    2013-09-01

    By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.

  1. The Biomolecular Interaction Network Database and related tools 2005 update

    PubMed Central

    Alfarano, C.; Andrade, C. E.; Anthony, K.; Bahroos, N.; Bajec, M.; Bantoft, K.; Betel, D.; Bobechko, B.; Boutilier, K.; Burgess, E.; Buzadzija, K.; Cavero, R.; D'Abreo, C.; Donaldson, I.; Dorairajoo, D.; Dumontier, M. J.; Dumontier, M. R.; Earles, V.; Farrall, R.; Feldman, H.; Garderman, E.; Gong, Y.; Gonzaga, R.; Grytsan, V.; Gryz, E.; Gu, V.; Haldorsen, E.; Halupa, A.; Haw, R.; Hrvojic, A.; Hurrell, L.; Isserlin, R.; Jack, F.; Juma, F.; Khan, A.; Kon, T.; Konopinsky, S.; Le, V.; Lee, E.; Ling, S.; Magidin, M.; Moniakis, J.; Montojo, J.; Moore, S.; Muskat, B.; Ng, I.; Paraiso, J. P.; Parker, B.; Pintilie, G.; Pirone, R.; Salama, J. J.; Sgro, S.; Shan, T.; Shu, Y.; Siew, J.; Skinner, D.; Snyder, K.; Stasiuk, R.; Strumpf, D.; Tuekam, B.; Tao, S.; Wang, Z.; White, M.; Willis, R.; Wolting, C.; Wong, S.; Wrong, A.; Xin, C.; Yao, R.; Yates, B.; Zhang, S.; Zheng, K.; Pawson, T.; Ouellette, B. F. F.; Hogue, C. W. V.

    2005-01-01

    The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. PMID:15608229

  2. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    NASA Astrophysics Data System (ADS)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.

  3. An Overview of Biomolecular Event Extraction from Scientific Documents

    PubMed Central

    Vanegas, Jorge A.; Matos, Sérgio; González, Fabio; Oliveira, José L.

    2015-01-01

    This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed. PMID:26587051

  4. Analysis of biomolecular interactions using affinity microcolumns: A review

    PubMed Central

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L.; White, Christopher J.; Carter, NaTasha; Hage, David S.

    2014-01-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  5. Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps

    PubMed Central

    Habeck, Michael

    2017-01-01

    A growing array of experimental techniques allows us to characterize the three-dimensional structure of large biological assemblies at increasingly higher resolution. In addition to X-ray crystallography and nuclear magnetic resonance in solution, new structure determination methods such cryo-electron microscopy (cryo-EM), crosslinking/mass spectrometry and solid-state NMR have emerged. Often it is not sufficient to use a single experimental method, but complementary data need to be collected by using multiple techniques. The integration of all datasets can only be achieved by computational means. This article describes Inferential structure determination, a Bayesian approach to integrative modeling of biomolecular complexes with hybrid structural data. I will introduce probabilistic models for cryo-EM maps and outline Markov chain Monte Carlo algorithms for sampling model structures from the posterior distribution. I will focus on rigid and flexible modeling with cryo-EM data and discuss some of the computational challenges of Bayesian inference in the context of biomolecular modeling. PMID:28382301

  6. The first Mesozoic microwhip scorpion (Palpigradi): a new genus and species in mid-Cretaceous amber from Myanmar.

    PubMed

    Engel, Michael S; Breitkreuz, Laura C V; Cai, Chenyang; Alvarado, Mabel; Azar, Dany; Huang, Diying

    2016-04-01

    A fossil palpigrade is described and figured from mid-Cretaceous (Cenomanian) amber from northern Myanmar. Electrokoenenia yaksha Engel and Huang, gen. n. et sp. n., is the first Mesozoic fossil of its order and the only one known as an inclusion in amber, the only other fossil being a series of individuals encased in Pliocene onyx marble and 94-97 million years younger than E. yaksha. The genus is distinguished from other members of the order but is remarkably consistent in observable morphological details when compared to extant relatives, likely reflecting a consistent microhabitat and biological preferences over the last 100 million years.

  7. The first Mesozoic microwhip scorpion (Palpigradi): a new genus and species in mid-Cretaceous amber from Myanmar

    NASA Astrophysics Data System (ADS)

    Engel, Michael S.; Breitkreuz, Laura C. V.; Cai, Chenyang; Alvarado, Mabel; Azar, Dany; Huang, Diying

    2016-04-01

    A fossil palpigrade is described and figured from mid-Cretaceous (Cenomanian) amber from northern Myanmar. Electrokoenenia yaksha Engel and Huang, gen. n. et sp. n., is the first Mesozoic fossil of its order and the only one known as an inclusion in amber, the only other fossil being a series of individuals encased in Pliocene onyx marble and 94-97 million years younger than E. yaksha. The genus is distinguished from other members of the order but is remarkably consistent in observable morphological details when compared to extant relatives, likely reflecting a consistent microhabitat and biological preferences over the last 100 million years.

  8. Compression fossil Mymaridae (Hymenoptera) from Kishenehn oil shales, with description of two new genera and review of Tertiary amber genera.

    PubMed

    Huber, John T; Greenwalt, Dale

    2011-01-01

    Compression fossils of three genera and six species of Mymaridae (Hymenoptera: Chalcidoidea) are described from 46 million year old Kishenehn oil shales in Montana, USA. Two new genera are described: Eoeustochus Huber, gen. n., with two included species, Eoeustochus kishenehn Huber (type species) and Eoeustochus borchersi Huber, sp. n., and Eoanaphes, gen. n., with Eoanaphes stethynioides Huber, sp. n. Three new species of Gonatocerus are also described, Gonatocerus greenwalti Huber, sp. n. , Gonatocerus kootenai Huber, sp. n., and Gonatocerus rasnitsyni Huber, sp. n. Previously described amber fossil genera are discussed and five genera in Baltic amber are tentatively recorded as fossils: Anagroidea, Camptoptera, Dorya, Eustochus, and Mimalaptus.

  9. PREFACE: Radiation Damage in Biomolecular Systems (RADAM07)

    NASA Astrophysics Data System (ADS)

    McGuigan, Kevin G.

    2008-03-01

    The annual meeting of the COST P9 Action `Radiation damage in biomolecular systems' took place from 19-22 June 2007 in the Royal College of Surgeons in Ireland, in Dublin. The conference was structured into 5 Working Group sessions: Electrons and biomolecular interactions Ions and biomolecular interactions Radiation in physiological environments Theoretical developments for radiation damage Track structure in cells Each of the five working groups presented two sessions of invited talks. Professor Ron Chesser of Texas Tech University, USA gave a riveting plenary talk on `Mechanisms of Adaptive Radiation Responses in Mammals at Chernobyl' and the implications his work has on the Linear-No Threshold model of radiation damage. In addition, this was the first RADAM meeting to take place after the Alexander Litvenenko affair and we were fortunate to have one of the leading scientists involved in the European response Professor Herwig Paretzke of GSF-Institut für Strahlenschutz, Neuherberg, Germany, available to speak. The remaining contributions were presented in the poster session. A total of 72 scientific contributions (32 oral, 40 poster), presented by 97 participants from 22 different countries, gave an overview on the current progress in the 5 different subfields. A 1-day pre-conference `Early Researcher Tutorial Workshop' on the same topic kicked off on 19 June attended by more than 40 postgrads, postdocs and senior researchers. Twenty papers, based on these reports, are included in this volume of Journal of Physics: Conference Series. All the contributions in this volume were fully refereed, and they represent a sample of the courses, invited talks and contributed talks presented during RADAM07. The interdisciplinary RADAM07 conference brought together researchers from a variety of different fields with a common interest in biomolecular radiation damage. This is reflected by the disparate backgrounds of the authors of the papers presented in these proceedings

  10. The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy

    PubMed Central

    Coty, David; Aria, Cédric; Garrouste, Romain; Wils, Patricia; Legendre, Frédéric; Nel, André

    2014-01-01

    We describe here a co-occurrence (i.e. a syninclusion) of ants and termites in a piece of Mexican amber (Totolapa deposit, Chiapas), whose importance is two-fold. First, this finding suggests at least a middle Miocene antiquity for the modern, though poorly documented, relationship between Azteca ants and Nasutitermes termites. Second, the presence of a Neivamyrmex army ant documents an in situ raiding behaviour of the same age and within the same community, confirmed by the fact that the army ant is holding one of the termite worker between its mandibles and by the presence of a termite with bitten abdomen. In addition, we present how CT-scan imaging can be an efficient tool to describe the topology of resin flows within amber pieces, and to point out the different states of preservation of the embedded insects. This can help achieving a better understanding of taphonomical processes, and tests ethological and ecological hypotheses in such complex syninclusions. PMID:25140873

  11. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber

    PubMed Central

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C.; Peralta, Denilson F.; Renner, Matt; Schmidt, Alexander R.

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae. PMID:27244582

  12. Recognition of the amber UAG stop codon by release factor RF1

    SciTech Connect

    Korostelev, Andrei; Zhu, Jianyu; Asahara, Haruichi; Noller, Harry F.

    2010-08-23

    We report the crystal structure of a termination complex containing release factor RF1 bound to the 70S ribosome in response to an amber (UAG) codon at 3.6-{angstrom} resolution. The amber codon is recognized in the 30S subunit-decoding centre directly by conserved elements of domain 2 of RF1, including T186 of the PVT motif. Together with earlier structures, the mechanisms of recognition of all three stop codons by release factors RF1 and RF2 can now be described. Our structure confirms that the backbone amide of Q230 of the universally conserved GGQ motif is positioned to contribute directly to the catalysis of the peptidyl-tRNA hydrolysis reaction through stabilization of the leaving group and/or transition state. We also observe synthetic-negative interactions between mutations in the switch loop of RF1 and in helix 69 of 23S rRNA, revealing that these structural features interact functionally in the termination process. These findings are consistent with our proposal that structural rearrangements of RF1 and RF2 are critical to accurate translation termination.

  13. The use of a GIS Red-Amber-Green (RAG) system to define search priorities for burials

    NASA Astrophysics Data System (ADS)

    Somma, Roberta; Silvestro, Massimiliano; Cascio, Maria; Dawson, Lorna; Donnelly, Laurance; Harrison, Mark; McKinley, Jennifer; Ruffell, Alastair

    2016-04-01

    The aim of this research is to promote among the Italian police, magistrates, and geologists, the applications of a Geographical Information System (GIS)-based RAG system for use in ground searches for burials. To date the RAG system has not been used and documented in Italy and would potentially be useful for searches related to clandestine burial sites. This technique, was originally documented by the British Army in the 1st World War. The RAG method is based on the construction of theme maps. RAG maps can facilitate the deployment of appropriate search assets (such as geophysics, probe or search dogs) and therefore applied to ground searches for the potential location of homicide graves or other buried objects (including weapons, explosives, etc.). RAG maps also may assist in the management of resources such as the deployment of search personnel, search teams and dogs. A GIS RAG (Red-Amber-Green) system related to a search for a homicide grave was applied to a test site in Italy, simulating the concealment of a victim in the area of Alì. This is an area of hill in Sicily, characterized by Palaeozoic phyllites. It was assumed during this test that information was provided by an observer who saw a suspect carrying tools on his land during daylight hours. A desktop study of the rural area was first implemented. Data was collated from previous geological, geomorphological, hydrogeological, geophysical and land use surveys. All these data were stored and independently analysed in a GIS using ArcGIS software. For the development of the GIS-based RAG map a digital elevation model (DEM) including a digital surface model (DTS) and digital terrain model (DTM) types were used. These were integrated with data from soil surveys to provide a preliminary assessment of "diggability" - including the possible thickness of loose superficial deposits and soils. Data were stored in different layers within the GIS. These included the delineation of the search area with consideration

  14. Middle and upper cretaceous amber from the Taimyr Peninsula, Siberia: Evidence for a new structural sub-class of resinite

    SciTech Connect

    Anderson, K.B.

    1994-08-01

    Analysis of three amber (resinite) samples collected from Middle and Upper Cretaceous sediments in the Taimyr Peninsula, Siberia, indicates that these materials are based on copolymers of biformene (I) and communol (II). No resinites of similar structural character have previously been described and hence, these samples represent a previously unknown structural sub-class of resinite.

  15. First fossil Lamprosomatinae leaf beetles (Coleoptera: Chrysomelidae) with descriptions of new genera and species from Baltic amber.

    PubMed

    Bukejs, Andris; Nadein, Konstantin

    2015-03-11

    In the current paper the first fossil representatives of leaf-beetles from the subfamily Lamprosomatinae (Coleoptera: Chrysomelidae) are described and illustrated from Upper Eocene Baltic amber: Succinoomorphus warchalowskii gen. et sp. nov., Archelamprosomius balticus gen. et sp. nov., and Archelamprosomius kirejtshuki sp. nov. A key to fossil Lamprosomatinae is provided.

  16. Hybrid organic semiconductor lasers for bio-molecular sensing.

    PubMed

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  17. Biomolecular recognition in DNA tagged CdSe nanowires.

    PubMed

    Sarangi, S N; Goswami, K; Sahu, S N

    2007-06-15

    DNA template driven CdSe nanobeads (NBs) and nanowires (NWs) have been synthesized by an electrodeposition technique. The synthesis protocol has yielded randomly oriented cubic CdSe NBs with mean size approximately 3.0 nm in presence of single stranded DNA, poly G(30). Monocrystalline cubic CdSe NWs of width approximately 4.0 nm with string-like morphology have been achieved when synthesized in presence of both poly G(30) and its conjugate, poly C(30). Optical absorption of CdSe NBs show a blue shift of 0.8 eV and long wavelength tailing where as NWs show steep increase of absorption in shorter wavelength regime accompanied by a further blue shift. DNA tags to the NBs or NWs have been confirmed from Fourier transform infrared spectroscopy measurements. Biomolecular recognition with CdSe NWs have been established by photoluminescence measurements.

  18. The biomolecular corona of nanoparticles in circulating biological media

    NASA Astrophysics Data System (ADS)

    Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Zenezini Chiozzi, R.; Puglisi, A.; Laganà, A.

    2015-08-01

    When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media.When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let

  19. Design and Implementation of a Biomolecular Concentration Tracker

    PubMed Central

    2015-01-01

    As a field, synthetic biology strives to engineer increasingly complex artificial systems in living cells. Active feedback in closed loop systems offers a dynamic and adaptive way to ensure constant relative activity independent of intrinsic and extrinsic noise. In this work, we use synthetic protein scaffolds as a modular and tunable mechanism for concentration tracking through negative feedback. Input to the circuit initiates scaffold production, leading to colocalization of a two-component system and resulting in the production of an inhibitory antiscaffold protein. Using a combination of modeling and experimental work, we show that the biomolecular concentration tracker circuit achieves dynamic protein concentration tracking in Escherichia coli and that steady state outputs can be tuned. PMID:24847683

  20. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures.

    PubMed

    Vélez, Marisela

    In Nature, proteins perform functions that go well beyond controlled self-assembly at the nano scale. They are the principal components of diverse "biological machines" that can self-assemble into dynamic aggregates that achieve the cold conversion of chemical energy into motion to realize complex functions involved in cell division, cellular transport and cell motility. Nowadays, we have identified many of the proteins involved in these "molecular machines" and know much about their biochemistry, structure and biophysical behavior. Additionally, we have a rich toolbox of resources to engineer the basic dynamic working units into nanostructures to provide them with motion and the capacity to manipulate, transport, separate or sense single molecules to develop in vitro sensors and bioassays. This chapter summarizes some of the progress made in incorporating bio-molecular motors and dynamic self-organizing proteins into protein based functional nanostructures.

  1. Biomolecular Network-Based Synergistic Drug Combination Discovery

    PubMed Central

    Li, Xiangyi; Qin, Guangrong; Yang, Qingmin

    2016-01-01

    Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing. PMID:27891522

  2. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals.

    PubMed

    Brake, Jeffrey M; Daschner, Maren K; Luk, Yan-Yeung; Abbott, Nicholas L

    2003-12-19

    The spontaneous assembly of phospholipids at planar interfaces between thermotropic liquid crystals and aqueous phases gives rise to patterned orientations of the liquid crystals that reflect the spatial and temporal organization of the phospholipids. Strong and weak specific-binding events involving proteins at these interfaces drive the reorganization of the phospholipids and trigger orientational transitions in the liquid crystals. Because these interfaces are fluid, processes involving the lateral organization of proteins (such as the formation of protein- and phospholipid-rich domains) are also readily imaged by the orientational response of the liquid crystal, as are stereospecific enzymatic events. These results provide principles for label-free monitoring of aqueous streams for molecular and biomolecular species without the need for complex instrumentation.

  3. The role of dynamic conformational ensembles in biomolecular recognition.

    PubMed

    Boehr, David D; Nussinov, Ruth; Wright, Peter E

    2009-11-01

    Molecular recognition is central to all biological processes. For the past 50 years, Koshland's 'induced fit' hypothesis has been the textbook explanation for molecular recognition events. However, recent experimental evidence supports an alternative mechanism. 'Conformational selection' postulates that all protein conformations pre-exist, and the ligand selects the most favored conformation. Following binding the ensemble undergoes a population shift, redistributing the conformational states. Both conformational selection and induced fit appear to play roles. Following binding by a primary conformational selection event, optimization of side chain and backbone interactions is likely to proceed by an induced fit mechanism. Conformational selection has been observed for protein-ligand, protein-protein, protein-DNA, protein-RNA and RNA-ligand interactions. These data support a new molecular recognition paradigm for processes as diverse as signaling, catalysis, gene regulation and protein aggregation in disease, which has the potential to significantly impact our views and strategies in drug design, biomolecular engineering and molecular evolution.

  4. Design and implementation of a biomolecular concentration tracker.

    PubMed

    Hsiao, Victoria; de los Santos, Emmanuel L C; Whitaker, Weston R; Dueber, John E; Murray, Richard M

    2015-02-20

    As a field, synthetic biology strives to engineer increasingly complex artificial systems in living cells. Active feedback in closed loop systems offers a dynamic and adaptive way to ensure constant relative activity independent of intrinsic and extrinsic noise. In this work, we use synthetic protein scaffolds as a modular and tunable mechanism for concentration tracking through negative feedback. Input to the circuit initiates scaffold production, leading to colocalization of a two-component system and resulting in the production of an inhibitory antiscaffold protein. Using a combination of modeling and experimental work, we show that the biomolecular concentration tracker circuit achieves dynamic protein concentration tracking in Escherichia coli and that steady state outputs can be tuned.

  5. Association of biomolecular resource facilities survey: service laboratory funding.

    PubMed

    Ogorzalek Loo, Rachel; Nicolet, Charles M; Niece, Ronald L; Young, Mary; Simpson, John T

    2009-07-01

    In 2007, The Association of Biomolecular Resource Facilities (ABRF) Survey Committee surveyed the ABRF membership and scientists at-large concerning the current state of funding in service-oriented laboratories. Questions pertained to services offered, cost recovery, capital equipment funding, and future outlook. The web-based survey, available for 3 weeks, achieved participation from 209 respondents in 13 countries, 77% of which represented academic laboratories. Most respondents (75%) directed their laboratories. Laboratories depend largely on institutional support and customer recharges to fund operations, but National Institutes of Health and National Science Foundation Shared Instrumentation Grant programs are considered critical to meeting future needs. Source allocations supporting capital equipment acquisitions, operations, and laboratory director salary are presented.

  6. Self-Assembled Biomolecular Materials Confined on Lithographic Surfaces

    NASA Astrophysics Data System (ADS)

    Pfohl, Thomas; Kim, Joon Heon; Case, Ryan; Li, Youli; Safinya, Cyrus R.

    2000-03-01

    Lithographically patterned Si-surfaces with different geometries (linear and circular channels) are used for confining and orienting assemblies of biomacromolecules. In order to direct the self assembly, the surfaces are coated with thin organic layers to change the hydrophobicity and surface charge. Droplet casting, spin coating and microinjection are used to fill the channels with biomaterials. In particular, the use of the microinjection technique allows us to control the formation of biomolecular assemblies for highly oriented x-ray samples as well as to fill single channels (width < 5μm) with dilute solutions for single molecule investigations. Biomaterials based on tubulin are our primary interest. We use fluorescence, confocal, and polarization microscopy to observe the polymerization of microtubules from tubulin and the formation of tubulin-cationic lipid complexes. Supported by NSF DMR-9972246, University of California Biotech Research, and Education Program Training Grant 99-14, DFG Pf 375/1-1.

  7. Evolution of biomolecular networks: lessons from metabolic and protein interactions.

    PubMed

    Yamada, Takuji; Bork, Peer

    2009-11-01

    Despite only becoming popular at the beginning of this decade, biomolecular networks are now frameworks that facilitate many discoveries in molecular biology. The nodes of these networks are usually proteins (specifically enzymes in metabolic networks), whereas the links (or edges) are their interactions with other molecules. These networks are made up of protein-protein interactions or enzyme-enzyme interactions through shared metabolites in the case of metabolic networks. Evolutionary analysis has revealed that changes in the nodes and links in protein-protein interaction and metabolic networks are subject to different selection pressures owing to distinct topological features. However, many evolutionary constraints can be uncovered only if temporal and spatial aspects are included in the network analysis.

  8. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins

    NASA Astrophysics Data System (ADS)

    Dal Corso, Jacopo; Schmidt, Alexander R.; Seyfullah, Leyla J.; Preto, Nereo; Ragazzi, Eugenio; Jenkyns, Hugh C.; Delclòs, Xavier; Néraudeau, Didier; Roghi, Guido

    2017-02-01

    Stable carbon-isotope geochemistry of fossilized tree resin (amber) potentially could be a very useful tool to infer the composition of past atmospheres. To test the reliability of amber as a proxy for the atmosphere, we studied the variability of modern resin δ13C at both local and global scales. An amber δ13C curve was then built for the Cretaceous, a period of abundant resin production, and interpreted in light of data from modern resins. Our data show that hardening changes the pristine δ13C value by causing a 13C-depletion in solid resin when compared to fresh liquid-viscous resin, probably due to the loss of 13C-enriched volatiles. Modern resin δ13C values vary as a function of physiological and environmental parameters in ways that are similar to those described for leaves and wood. Resin δ13C varies between plant species and localities, within the same tree and between different plant tissues by up to 6‰, and in general increases with increasing altitudes of the plant-growing site. We show that, as is the case with modern resin, Cretaceous amber δ13C has a high variability, generally higher than that of other fossil material. Despite the high natural variability, amber shows a negative 2.5-3‰ δ13C trend from the middle Early Cretaceous to the Maastrichtian that parallels published terrestrial δ13C records. This trend mirrors changes in the atmospheric δ13C calculated from the δ13C and δ18O of benthic foraminiferal tests, although the magnitude of the shift is larger in plant material than in the atmosphere. Increasing mean annual precipitation and pO2 could have enhanced plant carbon-isotope fractionation during the Late Cretaceous, whereas changing pCO2 levels seem to have had no effect on plant carbon-isotope fractionation. The results of this study suggest that amber is a powerful fossil plant material for palaeoenvironmental and palaeoclimatic reconstructions. Improvement of the resolution of the existing data coupled with more detailed

  9. A preliminary synopsis on amber scorpions with special reference to Burmite species: an extraordinary development of our knowledge in only 20 years

    PubMed Central

    Lourenço, Wilson R.

    2016-01-01

    Abstract A preliminary study on fossil scorpions found in amber, from the Lower Cretaceous through the Palaeocene and up to the Miocene is proposed. Scorpions remain rare among the arthropods found trapped in amber. Only 24 specimens are known from Cretaceous amber, representing eight families and subfamilies, ten genera and 21 species; in parallel, 10 specimens have been recorded from Baltic amber representing seven genera and ten species. A few more recent fossils from Dominican and Mexican amber have also been described. The present study of a new scorpion specimen from the Cretaceous amber of Myanmar (Burmite) resulted in the description of one new species, Betaburmesebuthus bellus sp. n. – belonging to the subfamily Palaeoburmesebuthinae Lourenço, 2015. The new description brings further elements to the clarification of the status of this subfamily, which is now raised to family level. Once again, this new Burmite element attests to the considerable degree of diversity in the Burmese amber-producing forests. PMID:27408601

  10. Calculating free-energy profiles in biomolecular systems from fast nonequilibrium processes

    NASA Astrophysics Data System (ADS)

    Forney, Michael W.; Janosi, Lorant; Kosztin, Ioan

    2008-11-01

    Often gaining insight into the functioning of biomolecular systems requires to follow their dynamics along a microscopic reaction coordinate (RC) on a macroscopic time scale, which is beyond the reach of current all atom molecular dynamics (MD) simulations. A practical approach to this inherently multiscale problem is to model the system as a fictitious overdamped Brownian particle that diffuses along the RC in the presence of an effective potential of mean force (PMF) due to the rest of the system. By employing the recently proposed FR method [I. Kosztin , J. Chem. Phys. 124, 064106 (2006)], which requires only a small number of fast nonequilibrium MD simulations of the system in both forward and time reversed directions along the RC, we reconstruct the PMF: (1) of deca-alanine as a function of its end-to-end distance, and (2) that guides the motion of potassium ions through the gramicidin A channel. In both cases the computed PMFs are found to be in good agreement with previous results obtained by different methods. Our approach appears to be about one order of magnitude faster than the other PMF calculation methods and, in addition, it also provides the position-dependent diffusion coefficient along the RC. Thus, the obtained PMF and diffusion coefficient can be used in an overdamped Brownian model to estimate important characteristics of the studied systems, e.g., the mean folding time of the stretched deca-alanine and the mean diffusion time of the potassium ion through gramicidin A.

  11. Characterization of am404, an amber mutation in the simian virus 40 T antigen gene.

    PubMed Central

    Rawlins, D R; Collis, P; Muzyczka, N

    1983-01-01

    We analyzed the biological activity of an amber mutation, am404, at map position 0.27 in the T antigen gene of simian virus 40. Immunoprecipitation of extracts from am404-infected cells demonstrated the presence of an amber protein fragment (am T antigen) of the expected molecular weight (67,000). Differential immunoprecipitation with monoclonal antibody demonstrated that am T antigen was missing the carboxy-terminal antigenic determinants. The amber mutant was shown to be defective for most of the functions associated with wild-type T antigen. The mutant did not replicate autonomously, but this defect could be complemented by a helper virus (D. R. Rawlins and N. Muzyczka, J. Virol. 36:611-616, 1980). The mutant failed to transform nonpermissive rodent cells and did not relieve the host range restriction of adenovirus 2 in monkey cells. However, stimulation of host cell DNA, whose functional region domain has been mapped within that portion of the protein synthesized by the mutant, could be demonstrated in am404-infected cells. A number of unexpected observations were made. First, the am T antigen was produced in unusually large amounts in a simian virus 40-transformed monkey cell line (COS-1), but overproduction was not seen in nontransformed monkey cells regardless of whether or not a helper virus was present. This feature of the mutant was presumably the result of the inability of am T antigen to autoregulate, the level of wild-type T antigen in COS-1 cells, and the unusually short half-life of am T antigen in vivo. Pulse-chase experiments indicated that am T antigen had an intracellular half-life of approximately 10 min. In addition, although the am T antigen retained the major phosphorylation site found in simian virus 40 T antigen, it was not phosphorylated. Thus, phosphorylation of simian virus 40 T antigen is not required for the stimulation of host cell DNA synthesis. Finally, fusion of am404-infected monkey cells with Escherichia coli protoplasts

  12. Evaluating time-reminder strategies before amber: common signal, green flashing and green countdown.

    PubMed

    Huang, Helai; Wang, Duo; Zheng, Liang; Li, Xiaoqing

    2014-10-01

    The safety level of signalized intersection depends greatly on drivers' decision-making behaviors, which are significantly influenced by the time-reminder strategy before amber of the signal device. However, previous related studies are mainly based on the statistical results from the field data rather than explore the influence mechanism of the signal device on the signalized intersection's safety level. Therefore, this study aims to find out how these three typical signal devices with various time-reminder strategies, i.e., common signal device (CSD), green signal flashing device (GSFD), and green signal countdown device (GSCD), affect drivers' decision-making processes during the period from the end of the green phase to the onset of the red phase (i.e., G2R) and then evaluate their safety performance from the aspect of RLR violations. Firstly, an overall decision-making framework during G2R is presented to describe the driver-signal interaction and encloses four decision-making processes, which can be analyzed and modeled based on the field data collected from six signalized intersections in Changsha, China. Empirical analyses show that the time point of decision-making before amber under GSCD is the earliest and that under CSD is the latest, which can also be modeled and reproduced by back propagation neural network (BPNN). After that, five binary logistic regression models are developed to determine the safety effect during other various processes and results show that red-light-running (RLR) violations are not only dependent on the range of dilemma zones (DZ) but also substantially on stop and go decisions of those vehicles in DZ, both of which are the potential cause and direct factors to RLR violations and found to be significantly affected by the time-reminder strategy of the green signal device. Finally, although GSCD stimulates the drivers in DZ to choose to cross the intersection during amber, which produces a higher RLR risk compared with CSD and GSFD

  13. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards

    PubMed Central

    Daza, Juan D.; Stanley, Edward L.; Wagner, Philipp; Bauer, Aaron M.; Grimaldi, David A.

    2016-01-01

    Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships. PMID:26973870

  14. Moth flies and sand flies (Diptera: Psychodidae) in Cretaceous Burmese amber.

    PubMed

    Stebner, Frauke; Solórzano Kraemer, Mónica M; Ibáñez-Bernal, Sergio; Wagner, Rüdiger

    2015-01-01

    One new subfamily, four new genera and 10 new species of Psychodidae are described from Burmese amber which significantly increases our knowledge about this group in the Cretaceous. Protopsychodinae n. subfam. probably represents the oldest known ancestor of modern Psychodinae and includes three species within two genera: Datzia setosa gen. et sp. n., Datzia bispina gen. et sp. n., and Mandalayia beumersorum gen. et sp. n. Sycoracinae and Phlebotominae are represented by two genera each in the studied material, Palaeoparasycorax globosus gen. et sp. n., Palaeoparasycorax suppus gen. et sp. n., Parasycorax simplex sp. n., and Phlebotomites aphoe sp. n. and Phlebotomus vetus sp. n., respectively. Bruchomyiinae is represented by Nemopalpus quadrispiculatus sp. n. Furthermore, one genus of an incertae sedis subfamily, Bamara groehni gen. et sp. n., is described. The systematic positions of the new taxa are discussed.

  15. New earwigs in mid-Cretaceous amber from Myanmar (Dermaptera, Neodermaptera)

    PubMed Central

    Engel, Michael S.

    2011-01-01

    Abstract Two new earwigs (Dermaptera) recently discovered in mid-Cretaceous (latest Albian) amber from Myanmar are described and figured. Astreptolabis ethirosomatia gen. et sp. n. is represented by a peculiar pygidicranoid female, assigned to a new subfamily, Astreptolabidinae subfam. n., and differs from other protodermapterans in the structure of the head, pronotum, tegmina, and cercal forceps. Tytthodiplatys mecynocercus gen. et sp. n. is a distinctive form of first-instar nymph of the Diplatyidae, the earliest record for this basal earwig family. The taxon can be distinguished from other Early Cretaceous nymphs by the structure of the head, antennae, legs, and most notably its filamentous and annulate cerci. The character affinities of these taxa among Neodermaptera are generally discussed as is the identity of an enigmatic ‘earwig-like’ species from the Jurassic of China. PMID:22259272

  16. Aboard a spider—a complex developmental strategy fossilized in amber

    NASA Astrophysics Data System (ADS)

    Ohl, Michael

    2011-05-01

    Mantid flies (Mantispidae) are an unusual group of lacewings (Neuroptera). Adults markedly resemble mantids in their general appearance and predatory behavior. The larvae of most mantispids exclusively prey on spider eggs, whereby the first instar larva is highly mobile and active and the other two larval stages immobile and maggot like. One of the larval strategies to pursue spider eggs is spider-boarding. Here, I report on the first record of a fossil mantispid larva. It was found in Middle Eocene Baltic amber, and it is the first record of Mantispidae from this deposit. The larva is attached to a clubionoid spider in a position typical for most mantispid larvae, and, thus, it is also the first fossil record of this complex larval behavior and development.

  17. Amber suppression in Escherichia coli by unusual mitochondria-like transfer RNAs.

    PubMed

    Bourdeau, V; Steinberg, S V; Ferbeyre, G; Emond, R; Cermakian, N; Cedergren, R

    1998-02-17

    The "cloverleaf" base-pairing pattern was established as the structural paradigm of active tRNA species some 30 years ago. Nevertheless, this pattern does not accommodate the folding of certain mitochondrial tRNAs. For these recalcitrant tRNAs, we have proposed structures having from 5 to 10 base pairs in the anticodon stem rather than the canonical 6. The absence of these types of tRNAs in cytoplasmic translation systems, however, raises the possibility that they may not be bona fide alternate folding patterns for active tRNA molecules. For this reason, we have designed new tRNA genes based on our model of unusual mitochondrial tRNAs, having 7, 8, 9, and 10 base pairs in the anticodon stem with other modifications to the D-stem and connector regions. We show here that these synthetic genes produce tRNAs that actively suppress amber codons in vivo.

  18. The genus Macroteleia Westwood in Middle Miocene amber from Peru (Hymenoptera, Platygastridae s.l., Scelioninae)

    PubMed Central

    Perrichot, Vincent; Antoine, Pierre-Olivier; Salas-Gismondi, Rodolfo; Flynn, John J.; Engel, Michael S.

    2014-01-01

    Abstract A new species of the scelionine genus Macroteleia Westwood (Platygastridae s.l., Scelioninae) is described and figured from a female beautifully preserved in Middle Miocene amber from Peru. Macroteleia yaguarum Perrichot & Engel, sp. n., shows a unique combination of characters otherwise seen independently within its congeners. It is most similar to the modern M. surfacei Brues, but differs from it by the non-foveolate notauli, the contiguous punctures of the vertex, and the continuous propodeum. The new species is the first New World fossil of the genus, suggesting a Cretaceous origin for the group and a relatively old age of the South American, tropical African, and Australian faunas, and a younger age of the modern Holarctic faunas. PMID:25147461

  19. Moth flies and sand flies (Diptera: Psychodidae) in Cretaceous Burmese amber

    PubMed Central

    Solórzano Kraemer, Mónica M.; Ibáñez-Bernal, Sergio; Wagner, Rüdiger

    2015-01-01

    One new subfamily, four new genera and 10 new species of Psychodidae are described from Burmese amber which significantly increases our knowledge about this group in the Cretaceous. Protopsychodinae n. subfam. probably represents the oldest known ancestor of modern Psychodinae and includes three species within two genera: Datzia setosa gen. et sp. n., Datzia bispina gen. et sp. n., and Mandalayia beumersorum gen. et sp. n. Sycoracinae and Phlebotominae are represented by two genera each in the studied material, Palaeoparasycorax globosus gen. et sp. n., Palaeoparasycorax suppus gen. et sp. n., Parasycorax simplex sp. n., and Phlebotomites aphoe sp. n. and Phlebotomus vetus sp. n., respectively. Bruchomyiinae is represented by Nemopalpus quadrispiculatus sp. n. Furthermore, one genus of an incertae sedis subfamily, Bamara groehni gen. et sp. n., is described. The systematic positions of the new taxa are discussed. PMID:26401462

  20. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards.

    PubMed

    Daza, Juan D; Stanley, Edward L; Wagner, Philipp; Bauer, Aaron M; Grimaldi, David A

    2016-03-01

    Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships.

  1. DockScreen: A database of in silico biomolecular interactions to support computational toxicology

    EPA Science Inventory

    We have developed DockScreen, a database of in silico biomolecular interactions designed to enable rational molecular toxicological insight within a computational toxicology framework. This database is composed of chemical/target (receptor and enzyme) binding scores calculated by...

  2. Three new species of entimine weevils in Early Miocene amber from the Dominican Republic (Coleoptera: Curculionidae)

    PubMed Central

    Zhang, Guanyang

    2017-01-01

    Abstract Background Using syntactic and semantic conventions of the taxonomic concept approach (Franz et al. 2015), we describe three newly recognized fossil broad-nosed weevils (Coleoptera: Curculionidae: Entiminae) preserved in Early Miocene amber (ca. 20.4-16.0 mya) from the Dominican Republic: Scelianoma compacta sp. n. sec. Franz & Zhang (2017) (henceforth abbreviated as [FZ2017]), Tropirhinus palpebratus sp. n. [FZ2017], and Diaprepes anticus sp. n. [FZ2017]. The taxonomic assignment of the amber inclusions is grounded in a preceding phylogenetic analysis by Franz (2012). As many as 88 of the 143 therein identified characters were coded for the fossils, whose traits are largely congruent with those present in extant congeners while also differing in ways that justify their new nomenclatural and taxonomic status. New information We present detailed images, descriptions, and phylogenetically informed diagnoses for the three new species-level entities, along with logically consistent Region Connection Calculus (RCC-5) alignments of the amended genus-level classifications for Scelianoma Franz and Girón 2009 [FZ2017], Tropirhinus Schoenherr 1823 [FZ2017], and Diaprepes Schoenherr 1823 [FZ2017] - in relation to 2-4 preceding classifications published in 1982-2012. The description of Scelianoma compacta [FZ2017] from Hispaniola is indicative of a more widespread historical range of Scelianoma [FZ2017] than reflected in the extant, southwestern Puerto Rican Scelianoma elydimorpha Franz and Girón 2009 sec. Franz and Girón (2009). The presence of Diaprepes anticus [FZ2017] in Hispaniola during the Early Miocene suggests an eastward directed process of island colonization and likely speciation of members of Diaprepes [FZ2017], given that most extant relatives occur throughout the Lesser Antilles. The herein presented data will facilitate more reliable reconstructions of historical biographic processes thought to have played a prominent role in the diversification of

  3. Combinatorial Biomolecular Nanopatterning for High-Throughput Screening of Stem-Cell Behavior.

    PubMed

    Amin, Yacoub Y I; Runager, Kasper; Simoes, Fabio; Celiz, Adam; Taresco, Vincenzo; Rossi, Roberto; Enghild, Jan J; Abildtrup, Lisbeth A; Kraft, David C E; Sutherland, Duncan S; Alexander, Morgan R; Foss, Morten; Ogaki, Ryosuke

    2016-02-17

    A novel combinatorial biomolecular nanopatterning method is reported, in which multiple biomolecular ligands can be patterned in multiple nanoscale dimensions on a single surface. The applicability of the combinatorial platform toward cell-biology applications is demonstrated by screening the adhesion behavior of a population of human dental pulp stem cell (hDPSC) on 64 combinations of nanopatterned extracellular matrix (ECM) proteins in parallel.

  4. Biomolecular Stress-Sensitive Gauges: Surface-Mediated Immobilization of Mechanosensitive Membrane Protein

    DTIC Science & Technology

    2003-01-01

    Immobilization of Mechanosensitive Membrane Protein 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...8-98) Prescribed by ANSI Std Z39-18 Biomolecular Stress-Sensitive Gauges: Surface-Mediated Immobilization of Mechanosensitive Membrane Protein...biomolecular gauges.1 Studies of a mechanosensitive protein of large conductance (MscL) had shown that a dramatic change in the protein conformation

  5. Electrochemical Behavior of Disposable Electrodes Prepared by Ion Beam Based Surface Modification for Biomolecular Recognition

    SciTech Connect

    Erdem, A.; Karadeniz, H.; Caliskan, A.; Urkac, E. Sokullu; Oztarhan, A.; Oks, E.; Nikolayev, A.

    2009-03-10

    Many important technological advances have been made in the development of technologies to monitor interactions and recognition events of biomolecules in solution and on solid substrates. The development of advanced biosensors could impact significantly the areas of genomics, proteomics, biomedical diagnostics and drug discovery. In the literature, there have recently appeared an impressive number of intensive designs for electrochemical monitoring of biomolecular recognition. Herein, the influence of ion implanted disposable graphite electrodes on biomolecular recognition and their electrochemical behaviour was investigated.

  6. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    PubMed Central

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-01-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex. PMID:27273214

  7. Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition

    PubMed Central

    Wereszczynski, Jeff; McCammon, J. Andrew

    2012-01-01

    Molecular recognition plays a central role in biochemical processes. Although well studied, understanding the mechanisms of recognition is inherently difficult due to the range of potential interactions, the molecular rearrangement associated with binding, and the time and length scales involved. Computational methods have the potential for not only complementing experiments that have been performed, but also in guiding future ones through their predictive abilities. In this review, we discuss how molecular dynamics (MD) simulations may be used in advancing our understanding of the thermodynamics that drive biomolecular recognition. We begin with a brief review of the statistical mechanics that form a basis for these methods. This is followed by a description of some of the most commonly used methods: thermodynamic pathways employing alchemical transformations and potential of mean force calculations, along with end-point calculations for free energy differences, and harmonic and quasi-harmonic analysis for entropic calculations. Finally, a few of the fundamental findings that have resulted from these methods are discussed, such as the role of configurational entropy and solvent in intermolecular interactions, along with selected results of the model system T4 lysozyme to illustrate potential and current limitations of these methods. PMID:22082669

  8. PARENT: A Parallel Software Suite for the Calculation of Configurational Entropy in Biomolecular Systems.

    PubMed

    Fleck, Markus; Polyansky, Anton A; Zagrovic, Bojan

    2016-04-12

    Accurate estimation of configurational entropy from the in silico-generated biomolecular ensembles, e.g., from molecular dynamics (MD) trajectories, is dependent strongly on exhaustive sampling for physical reasons. This, however, creates a major computational problem for the subsequent estimation of configurational entropy using the Maximum Information Spanning Tree (MIST) or Mutual Information Expansion (MIE) approaches for internal molecular coordinates. In particular, the available software for such estimation exhibits serious limitations when it comes to molecules with hundreds or thousands of atoms, because of its reliance on a serial program architecture. To overcome this problem, we have developed a parallel, hybrid MPI/openMP C++ implementation of MIST and MIE, called PARENT, which is particularly optimized for high-performance computing and provides efficient estimation of configurational entropy in different biological processes (e.g., protein-protein interactions). In addition, PARENT also allows for a detailed mapping of intramolecular allosteric networks. Here, we benchmark the program on a set of 1-μs-long MD trajectories of 10 different protein complexes and their components, demonstrating robustness and good scalability. A direct comparison between MIST and MIE on the same dataset demonstrates a superior convergence behavior for the former approach, when it comes to total simulation length and configurational-space binning.

  9. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    NASA Astrophysics Data System (ADS)

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-06-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.

  10. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments.

    PubMed

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J; Torun, Hamdi

    2016-06-07

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.

  11. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.

    PubMed

    Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao

    2012-08-21

    Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D, and 3D) nanostructures that utilize spontaneous and sequence-specific DNA hybridization. Compared with other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions and surface features to which other nanoparticles and biomolecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraint of target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially interactive biomolecular networks. For example, researchers have constructed synthetic multienzyme cascades by

  12. The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Sherborne, Brad; Lee, Tai-Sung; Case, David A.; York, Darrin M.; Guo, Zhuyan

    2016-07-01

    In drug discovery, protonation states and tautomerization are easily overlooked. Through a Merck-Rutgers collaboration, this paper re-examined the initial settings and preparations for the Thermodynamic Integration (TI) calculation in AMBER Free-Energy Workflows, demonstrating the value of careful consideration of ligand protonation and tautomer state. Finally, promising results comparing AMBER TI and Schrödinger FEP+ are shown that should encourage others to explore the value of TI in routine Structure-based Drug Design.

  13. The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP.

    PubMed

    Hu, Yuan; Sherborne, Brad; Lee, Tai-Sung; Case, David A; York, Darrin M; Guo, Zhuyan

    2016-07-01

    In drug discovery, protonation states and tautomerization are easily overlooked. Through a Merck-Rutgers collaboration, this paper re-examined the initial settings and preparations for the Thermodynamic Integration (TI) calculation in AMBER Free-Energy Workflows, demonstrating the value of careful consideration of ligand protonation and tautomer state. Finally, promising results comparing AMBER TI and Schrödinger FEP+ are shown that should encourage others to explore the value of TI in routine Structure-based Drug Design.

  14. Biomolecular Evidence of Silk from 8,500 Years Ago

    PubMed Central

    Gong, Yuxuan; Li, Li; Gong, Decai; Yin, Hao; Zhang, Juzhong

    2016-01-01

    Pottery, bone implements, and stone tools are routinely found at Neolithic sites. However, the integrity of textiles or silk is susceptible to degradation, and it is therefore very difficult for such materials to be preserved for 8,000 years. Although previous studies have provided important evidence of the emergence of weaving skills and tools, such as figuline spinning wheels and osseous lamellas with traces of filament winding, there is a lack of direct evidence proving the existence of silk. In this paper, we explored evidence of prehistoric silk fibroin through the analysis of soil samples collected from three tombs at the Neolithic site of Jiahu. Mass spectrometry was employed and integrated with proteomics to characterize the key peptides of silk fibroin. The direct biomolecular evidence reported here showed the existence of prehistoric silk fibroin, which was found in 8,500-year-old tombs. Rough weaving tools and bone needles were also excavated, indicating the possibility that the Jiahu residents may possess the basic weaving and sewing skills in making textile. This finding may advance the study of the history of silk, and the civilization of the Neolithic Age. PMID:27941996

  15. Self-assembling biomolecular catalysts for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  16. Biomolecular Surface Engineering of Pancreatic Islets with Thrombomodulin

    PubMed Central

    Wilson, John T.; Haller, Carolyn A.; Qu, Zheng; Cui, Wanxing; Urlam, Murali K.; Chaikof, Elliot L.

    2010-01-01

    Islet transplantation has emerged as a promising treatment for Type 1 diabetes, but its clinical impact remains limited by early islet destruction mediated by prothrombotic and innate inflammatory responses elicited upon transplantation. Thrombomodulin (TM) acts as an important regulator of thrombosis and inflammation through its capacity to channel the catalytic activity of thrombin towards generation of activated protein C (APC), a potent anti-coagulant and anti-inflammatory agent. We describe herein a novel biomolecular strategy for re-engineering the surface of pancreatic islets with TM. A biosynthetic approach was employed to generate recombinant human TM (rTM) bearing a C-terminal azide group, which facilitated site-specific biotinylation of rTM through Staudinger ligation. Murine pancreatic islets were covalently biotinylated through targeting of cell surface amines and aldehydes, and both islet viability and the surface density of streptavidin were maximized through optimization of biotinylation conditions. rTM was immobilized on islet surfaces through streptavidin-biotin interactions, resulting in a nearly three-fold increase in the catalytic capacity of islets to generate APC. PMID:20102751

  17. Methods for SAXS-Based Structure Determination of Biomolecular Complexes

    DOE PAGES

    Yang, Sichun

    2014-05-30

    Measurements from small-angle X-ray scattering (SAXS) are highly informative to determine the structures of bimolecular complexes in solution. Here, we describe current and recent SAXS-driven developments, with an emphasis on computational modeling. In particular, accurate methods to computing one theoretical scattering profile from a given structure model are discussed, with a key focus on structure factor coarse-graining and hydration contribution. Methods for reconstructing topological structures from an experimental SAXS profile are currently under active development. We report on several modeling tools designed for conformation generation that make use of either atomic-level or coarse-grained representations. Furthermore, since large, flexible biomolecules canmore » adopt multiple well-defined conformations, a traditional single-conformation SAXS analysis is inappropriate, so we also discuss recent methods that utilize the concept of ensemble optimization, weighing in on the SAXS contributions of a heterogeneous mixture of conformations. These tools will ultimately posit the usefulness of SAXS data beyond a simple space-filling approach by providing a reliable structure characterization of biomolecular complexes under physiological conditions.« less

  18. Biomolecular Evidence of Silk from 8,500 Years Ago.

    PubMed

    Gong, Yuxuan; Li, Li; Gong, Decai; Yin, Hao; Zhang, Juzhong

    2016-01-01

    Pottery, bone implements, and stone tools are routinely found at Neolithic sites. However, the integrity of textiles or silk is susceptible to degradation, and it is therefore very difficult for such materials to be preserved for 8,000 years. Although previous studies have provided important evidence of the emergence of weaving skills and tools, such as figuline spinning wheels and osseous lamellas with traces of filament winding, there is a lack of direct evidence proving the existence of silk. In this paper, we explored evidence of prehistoric silk fibroin through the analysis of soil samples collected from three tombs at the Neolithic site of Jiahu. Mass spectrometry was employed and integrated with proteomics to characterize the key peptides of silk fibroin. The direct biomolecular evidence reported here showed the existence of prehistoric silk fibroin, which was found in 8,500-year-old tombs. Rough weaving tools and bone needles were also excavated, indicating the possibility that the Jiahu residents may possess the basic weaving and sewing skills in making textile. This finding may advance the study of the history of silk, and the civilization of the Neolithic Age.

  19. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions.

    PubMed

    Seidel, Susanne A I; Dijkman, Patricia M; Lea, Wendy A; van den Bogaart, Geert; Jerabek-Willemsen, Moran; Lazic, Ana; Joseph, Jeremiah S; Srinivasan, Prakash; Baaske, Philipp; Simeonov, Anton; Katritch, Ilia; Melo, Fernando A; Ladbury, John E; Schreiber, Gideon; Watts, Anthony; Braun, Dieter; Duhr, Stefan

    2013-03-01

    Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.

  20. Electron interactions with positively and negatively multiply charged biomolecular clusters

    NASA Astrophysics Data System (ADS)

    Feketeová, Linda

    2012-07-01

    Interactions of positively and negatively multiply charged biomolecular clusters with low-energy electrons, from ~ 0 up to 50 eV of electron energy, were investigated in a high resolution Fourier-Transform Ion Cyclotron Resonance mass spectrometer equipped with an electrospray ionisation source. Electron-induced dissociation reactions of these clusters depend on the energy of the electrons, the size and the charge state of the cluster. The positively charged clusters [Mn+2H]2+ of zwitterionic betaines, M = (CH3)2XCH2CO2 (X = NCH3 and S), do capture an electron in the low electron energy region (< 10 eV). At higher electron energies neutral evaporation from the cluster becomes competitive with Coulomb explosion. In addition, a series of singly charged fragments arise from bond cleavage reactions, including decarboxylation and CH3 group transfer, due to the access of electronic excited states of the precursor ions. These fragmentation reactions depend on the type of betaine (X = NCH3 or S). For the negative dianionic clusters of tryptophan [Trp9-2H]2-, the important channel at low electron energies is loss of a neutral. Coulomb explosion competes from 19.8 eV and dominates at high electron energies. A small amount of [Trp2-H-NH3]- is observed at 21.8 eV.

  1. Self-folding polyhedra and analogies to biomolecular assembly

    NASA Astrophysics Data System (ADS)

    Pandey, Shivendra; Menon, Govind; Gracias, David

    2013-03-01

    We detail model studies aimed at uncovering design principles that govern the self-assembly of polyhedral structures from two-dimensional precursors using surface tension forces. For a given polyhedron, there are a very large number of two-dimensional precursor nets that can be utilized, and remarkably many of these will self-assemble but with varying yields. We uncovered design rules that suggest striking analogies to biomolecular assembly such as observed in proteins and viruses. For example our studies revealed that the compactness of two-dimensional nets determines the yield of self-folding polyhedra and that certain intermediates and pathways were preferred. Consequently, a search algorithm was implemented to screen the large numbers of nets (e.g. 2.3 million for the truncated octahedron) and find high-yielding precursors. This assembly process represents a model system that can be utilized to design and then visualize self-assembly processes. The model system, design rules and findings will be discussed.

  2. A new genus and species of micro bee fly from the Earliest Eocene French amber (Diptera: Mythicomyiidae: Psiloderoidinae).

    PubMed

    Myskowiak, Justine; Garrouste, Romain; Nel, Andre

    2016-05-26

    Mythicomyiidae, or micro bee flies, are tiny flies (0.5-5.0 mm) that are found throughout most parts of the world except the highest altitudes and latitudes (Greathead & Evenhuis 2001). Including all extinct and extant taxa, the Mythicomyiidae currently comprise more than 380 valid taxonomic species distributed among 30 genera. The subfamily Psiloderoidinae is especially well represented among the fossil Mythicomyiidae by seven Cretaceous or Cenozoic genera. We here describe a new genus and a new species of this subfamily based on fossils from the Earliest Eocene of Oise (France). A Psiloderoidinae, Proplatypygus matilei Nel & DePloëg, 2004, is already described in this amber. Another mythicomyiid, Eurodoliopteryx inexpectatus Nel, 2006, is the most frequent bombylioid in this amber (Nel & DePloëg, 2004; Nel, 2006).

  3. Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber

    PubMed Central

    Koller, Barbara; Schmitt, Jürgen M.; Tischendorf, Gilbert

    2005-01-01

    A twig of a cypress plant preserved for ca. 45Myr in Baltic amber was analysed by light and electron microscopy. Cross-sections of the whole plant showed an almost intact tissue of the entire stem and leaves, revealing, to our knowledge, the oldest and most highly preserved tissue from an amber inclusion reported so far. The preparations are based on a new technique of internal imbedding, whereby the hollow spaces within the inclusion are filled with synthetic resin which stabilizes the cellular structures during the sectioning procedure. Cytological stains applied to the sections reacted with cell walls and nuclei. A strong green auto-fluorescence of the cuticle and the resin canals in the leaves was observed. Transmission electron micrographs revealed highly preserved fine structures of cell walls, membranes and organelles. The results were compared with taxonomically related recent Glyptostrobus and Juniperus plants. PMID:15695201

  4. Third contribution on Rovno amber silken fungus beetles: a new Eocene species of Cryptophagus (Coleoptera, Clavicornia, Cryptophagidae)

    PubMed Central

    Lyubarsky, G.Yu.; Perkovsky, E.E.

    2011-01-01

    Abstract Cryptophagus alexagrestis Lyubarsky & Perkovsky, sp. n. is described based on a fossil inclusion in Late Eocene Rovno amber (Ukraine). The new species is similar to the extant Cryptophagus skalitzkyi Reitter and Cryptophagus dilutus Reitter, differing from the latter by having a very transverse, short and dilated 10th antennal segment, and from the former by the very elongate segments of the flagellum. PMID:22259281

  5. Ab initio calculations on peptide-derived oxazoles and thiazoles: Improved molecular mechanics parameters for the AMBER* force field

    NASA Astrophysics Data System (ADS)

    Boden, Christopher D. J.; Pattenden, Gerald

    1999-03-01

    Ab initio calculations at the RHF/6-31G* and MP2/6- 31G*//RHF/6-31G* levels of theory are performed for 2-methyl-4-carboxamido-oxazoles and -thiazoles, including rotational profiles for the ring-carboxamide bond, which showed the expected conjugation and hydrogen bonding effects. On the basis of these data, newly optimised stretch, bend and torsional parameters for the AMBER* force field are derived, along with CHELPG-fitted partial atomic charges.

  6. The first fossil record of the Emesinae genus Emesopsis Uhler (Hemiptera: Heteroptera, Reduviidae) from Eocene Baltic amber.

    PubMed

    Popov, Yuri A; Chłond, Dominik

    2015-11-06

    Two new fossil representatives of the assassin bug family Reduviidae are described as new from Baltic amber (Upper Eocene), belonging to the genus Emesopsis of the tribe Ploiariolini (Emesinae): Emesopsis putshkovi sp. nov. and E. similis sp. nov. These representatives of the Emesinae are the oldest fossil bugs of the genus Emesopsis known so far, and reported for the first time. This genus is also briefly diagnosed.

  7. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.

    PubMed

    Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David

    2015-07-14

    In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http

  8. Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Lee, Gaik Ee; Váňa, Jiří; Schäfer-Verwimp, Alfons; Krings, Michael; Schmidt, Alexander R

    2015-01-01

    Preservation of liverworts in amber, a fossilized tree resin, is often exquisite. Twenty-three fossil species of liverworts have been described to date from Eocene (35-50 Ma) Baltic amber. In addition, two inclusions have been assigned to the extant species Ptilidium pulcherrimum (Ptilidiales or Porellales). However, the presence of the boreal P. pulcherrimum in the subtropical or warm-temperate Baltic amber forest challenges the phytogeographical interpretation of the Eocene flora. A re-investigation of one of the fossils believed to be P. pulcherrimum reveals that this specimen in fact represents the first fossil evidence of the genus Tetralophozia, and thus is re-described here as Tetralophozia groehnii sp. nov. A second fossil initially assigned to P. pulcherrimum is apparently lost, and can be reassessed only based on the original description and illustrations. This fossil is morphologically similar to the extant North Pacific endemic Ptilidium californicum, rather than P. pulcherrimum. Divergence time estimates based on chloroplast DNA sequences provide evidence of a Miocene origin of P. pulcherrimum, and thus also argue against the presence of this taxon in the Eocene. Ptilidium californicum originated 25-43 Ma ago. As a result, we cannot rule out that the Eocene fossil belongs to P. californicum. Alternatively, the fossil might represent a stem lineage element of Ptilidium or an early crown group species with morphological similarities to P. californicum.

  9. Soft Supercharging of Biomolecular Ions in Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chingin, Konstantin; Xu, Ning; Chen, Huanwen

    2014-06-01

    The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI-) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.

  10. Functional and Regulatory Biomolecular Networks Organized by DNA Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Minghui

    DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate intermolecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of other biomolecular networks to translate biochemical pathways to non-cellular environments. Presented here are a series of studies toward this application. First, a novel strategy utilized DNA origami as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multi-component systems from biological scaffolds using the power of rationally engineered DNA nanostructures. Next, discrete glucose oxidase (GOx)/ horseradish peroxidase (HRP) enzyme pairs were organized on DNA origami tiles with controlled interenzyme spacing and position. This study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Finally, a tweezer-like DNA nanodevice was designed and constructed to actuate the activity of an enzyme/cofactor pair. Using this approach, several cycles of externally controlled enzyme inhibition and activation were successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.

  11. Exploiting the diagnostic potential of biomolecular fingerprinting with vibrational spectroscopy.

    PubMed

    Kendall, Catherine; Hutchings, Joanne; Barr, Hugh; Shepherd, Neil; Stone, Nicholas

    2011-01-01

    There is immense clinical need for techniques that can detect the biochemical changes associated with pre-malignancy. The ideal diagnostic test would provide rapid, non-invasive diagnosis at the point of care with high throughput and without prior tissue processing. Over the past decade vibrational spectroscopy techniques have demonstrated their ability to provide non-destructive, rapid, clinically relevant diagnostic information. Biochemical fingerprints of tissues measured using Raman and infrared spectroscopy analysed in conjunction with advanced chemometrics have shown great potential in the diagnostic assessment of biological material. Development of Raman probes is enabling the potential of in vivo clinical measurements to be realised. A novel probe design has been evaluated in clinical studies to identify and classify the subtle pre-malignant biochemical changes related to the carcinogenesis process. Exciting recent developments have enabled the probing of tissue samples at depth with huge potential for breast and prostate cancer diagnostics. Furthermore, the potential of vibrational spectroscopy to provide prognostic information is tantalising. Raman spectral data acquired on oesophageal biopsy samples analysed in conjunction with patient outcome data has shown the power of spectral biomolecular fingerprinting in predicting the outcome of patients with high-grade dysplasia in Barrett's oesophagus. Raman mapping can also be used to analyse thin tissue sections on calcium fluoride slides enabling the distribution of tissue constituents to be realised. The spectral data acquired effectively enables multiplexing of digital tissue stains since a whole array of information is gathered simultaneously. Technological developments are bringing the technologies closer to the clinical reality of spectral pathology and high-throughput non-destructive measurement with high resolution.

  12. Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers

    NASA Astrophysics Data System (ADS)

    Tomala, Agnieszka; Göçerler, Hakan; Gebeshuber, Ille C.

    The physical and chemical composition of surfaces determine various important properties of solids such as corrosion rates, adhesive properties, frictional properties, catalytic activity, wettability, contact potential and - finally and most importantly - failure mechanisms. Very thin, weak layers (of man-made and biological origin) on much harder substrates that reduce friction are the focus of the micro- and nanotribological investigations presented in this chapter.Biomolecular layers fulfil various functions in organs of the human body. Examples comprise the skin that provides a protective physical barrier between the body and the environment, preventing unwanted inward and outward passage of water and electrolytes, reducing penetration by destructive chemicals, arresting the penetration of microorganisms and external antigens and absorbing radiation from the sun, or the epithelium of the cornea that blocks the passage of foreign material, such as dust, water and bacteria, into the eye and that contributes to the lubrication layer that ensures smooth movement of the eyelids over the eyeballs.Monomolecular thin films, additive-derived reaction layers and hard coatings are widely used to tailor tribological properties of surfaces. Nanotribological investigations on these substrates can reveal novel properties regarding the orientation of chemisorbed additive layers, development of rubbing films with time and the relation of frictional properties to surface characteristics in diamond coatings.Depending on the questions to be answered with the tribological research, various micro- and nanotribological measurement methods are applied, including scanning probe microscopy (AFM, FFM), scanning electron microscopy, microtribometer investigations, angle-resolved photoelectron spectroscopy and optical microscopy. Thoughts on the feasibility of a unified approach to energy-dissipating systems and how it might be reached (touching upon new ways of scientific publishing

  13. Amber fossils demonstrate deep-time stability of Caribbean lizard communities.

    PubMed

    Sherratt, Emma; del Rosario Castañeda, María; Garwood, Russell J; Mahler, D Luke; Sanger, Thomas J; Herrel, Anthony; de Queiroz, Kevin; Losos, Jonathan B

    2015-08-11

    Whether the structure of ecological communities can exhibit stability over macroevolutionary timescales has long been debated. The similarity of independently evolved Anolis lizard communities on environmentally similar Greater Antillean islands supports the notion that community evolution is deterministic. However, a dearth of Caribbean Anolis fossils--only three have been described to date--has precluded direct investigation of the stability of anole communities through time. Here we report on an additional 17 fossil anoles in Dominican amber dating to 15-20 My before the present. Using data collected primarily by X-ray microcomputed tomography (X-ray micro-CT), we demonstrate that the main elements of Hispaniolan anole ecomorphological diversity were in place in the Miocene. Phylogenetic analysis yields results consistent with the hypothesis that the ecomorphs that evolved in the Miocene are members of the same ecomorph clades extant today. The primary axes of ecomorphological diversity in the Hispaniolan anole fauna appear to have changed little between the Miocene and the present, providing evidence for the stability of ecological communities over macroevolutionary timescales.

  14. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    PubMed Central

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  15. Amber fossils demonstrate deep-time stability of Caribbean lizard communities

    PubMed Central

    Sherratt, Emma; del Rosario Castañeda, María; Garwood, Russell J.; Mahler, D. Luke; Sanger, Thomas J.; Herrel, Anthony; de Queiroz, Kevin; Losos, Jonathan B.

    2015-01-01

    Whether the structure of ecological communities can exhibit stability over macroevolutionary timescales has long been debated. The similarity of independently evolved Anolis lizard communities on environmentally similar Greater Antillean islands supports the notion that community evolution is deterministic. However, a dearth of Caribbean Anolis fossils—only three have been described to date—has precluded direct investigation of the stability of anole communities through time. Here we report on an additional 17 fossil anoles in Dominican amber dating to 15–20 My before the present. Using data collected primarily by X-ray microcomputed tomography (X-ray micro-CT), we demonstrate that the main elements of Hispaniolan anole ecomorphological diversity were in place in the Miocene. Phylogenetic analysis yields results consistent with the hypothesis that the ecomorphs that evolved in the Miocene are members of the same ecomorph clades extant today. The primary axes of ecomorphological diversity in the Hispaniolan anole fauna appear to have changed little between the Miocene and the present, providing evidence for the stability of ecological communities over macroevolutionary timescales. PMID:26216976

  16. Swietenia (Meliaceae) flower in Late Oligocene Early Miocene amber from Simojovel de Allende, Chiapas, Mexico.

    PubMed

    Castañeda-Posadas, Carlos; Cevallos-Ferriz, Sergio R S

    2007-11-01

    The amber of Simojovel de Allende, Chiapas, Mexico, of Late Oligocene-Early Miocene age, has yielded a new flower representing the Meliaceae. The flower of Swietenia miocenica Castañeda-Posadas & Cevallos-Ferriz sp. nov. is characterized by small size; free calyx composed of five glabrous lobes, ciliolated along the margin lobes; corolla composed of five free, contortedly inserted petals with ciliolated margins; cylindrical staminal tube ending in 10 acuminate or toothed accessories and 10 sessile anthers; and a discoid stigma divided in five lobular stigmatic glands. The morphology of S. miocenica is well represented among Meliaceae. Although the new species shares many characters with Swietenia microphylla, small differences in the length and width of petals and the length of staminal tube support its recognition as a new species. The presence of this genus demonstrates the establishment of tropical communities in southern Mexico by the early Miocene and highlights the influence of the northern hemisphere flora on the extant neotropical flora of the area.

  17. An asymmetry detected in the disk of κ Canis Majoris with AMBER/VLTI

    NASA Astrophysics Data System (ADS)

    Meilland, A.; Millour, F.; Stee, P.; Domiciano de Souza, A.; Petrov, R. G.; Mourard, D.; Jankov, S.; Robbe-Dubois, S.; Spang, A.; Aristidi, E.; Antonelli, P.; Beckmann, U.; Bresson, Y.; Chelli, A.; Dugué, M.; Duvert, G.; Gennari, S.; Glück, L.; Kern, P.; Lagarde, S.; Le Coarer, E.; Lisi, F.; Malbet, F.; Perraut, K.; Puget, P.; Rantakyrö, F.; Roussel, A.; Tatulli, E.; Weigelt, G.; Zins, G.; Accardo, M.; Acke, B.; Agabi, K.; Altariba, E.; Arezki, B.; Baffa, C.; Behrend, J.; Blöcker, T.; Bonhomme, S.; Busoni, S.; Cassaing, F.; Clausse, J.-M.; Colin, J.; Connot, C.; Delboulbé, A.; Driebe, T.; Feautrier, P.; Ferruzzi, D.; Forveille, T.; Fossat, E.; Foy, R.; Fraix-Burnet, D.; Gallardo, A.; Giani, E.; Gil, C.; Glentzlin, A.; Heiden, M.; Heininger, M.; Hernandez Utrera, O.; Hofmann, K.-H.; Kamm, D.; Kiekebusch, M.; Kraus, S.; Le Contel, D.; Le Contel, J.-M.; Lesourd, T.; Lopez, B.; Lopez, M.; Magnard, Y.; Marconi, A.; Mars, G.; Martinot-Lagarde, G.; Mathias, P.; Mège, P.; Monin, J.-L.; Mouillet, D.; Nussbaum, E.; Ohnaka, K.; Pacheco, J.; Perrier, C.; Rabbia, Y.; Rebattu, S.; Reynaud, F.; Richichi, A.; Robini, A.; Sacchettini, M.; Schertl, D.; Schöller, M.; Solscheid, W.; Stefanini, P.; Tallon, M.; Tallon-Bosc, I.; Tasso, D.; Testi, L.; Vakili, F.; von der Lühe, O.; Valtier, J.-C.; Vannier, M.; Ventura, N.

    2007-03-01

    Aims:We study the geometry and kinematics of the circumstellar environment of the Be star κ CMa in the Brγ emission line and its nearby continuum. Methods: We use the AMBER/VLTI instrument operating in the K band, which provides a spatial resolution of about 6 mas with a spectral resolution of 1500, to study the kinematics within the disk and to infer its rotation law. To obtain more kinematical constraints we also use a high spectral resolution Paβ line profile obtain in December 2005 at the Observatorio do Pico do Dios, Brazil and we compile V/R line profile variations and spectral energy distribution data points from the literature. Results: Using differential visibilities and differential phases across the Brγ line we detect an asymmetry in the disk. Moreover, we found that κ CMa seems difficult to fit within the classical scenario for Be stars, illustrated recently by α Arae observations, i.e. a fast rotating B star close to its breakup velocity surrounded by a Keplerian circumstellar disk with an enhanced polar wind. We discuss the possibility that κ CMa is a critical rotator with a Keplerian rotating disk and examine whether if the detected asymmetry can be interpreted within the “one-armed” viscous disk framework. Based on observations collected at the European Southern Observatory, Paranal, Chile, within the guaranteed time programme 074.A-9025(A).

  18. InGaN-based UV/blue/green/amber LEDs

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Yamada, Motokazu; Nakamura, Shuji

    1999-04-01

    High-efficient light emitting diodes (LEDs) emitting red, amber, green, blue, and ultraviolet light have been obtained through the use of an InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 680 nm which emission energy was smaller than the band-gap energy of InN were fabricated mainly resulting from the piezoelectric field due to the strain. The localized energy states caused by In composition fluctuation in the InGaN active layer seem to be related to the high efficiency of the InGaN-based emitting devices in spite of having a large number of threading dislocations. InGaN single-quantum-well- structure blue LEDs were grown on epitaxially laterally overgrown GaN and sapphire substrates. The emission spectra showed the similar blue shift with increasing forward currents between both LEDs. The output power of both LEDs was almost the same, as high as 6 mW at a current of 20 mA. These results indicate that the In composition fluctuation is not caused by dislocations, the dislocations are not effective to reduce the efficiency of the emission, and that the dislocations from the leakage current pathway in InGaN.

  19. Species-level determination of closely related araucarian resins using FTIR spectroscopy and its implications for the provenance of New Zealand amber

    PubMed Central

    Sadowski, Eva-Maria; Schmidt, Alexander R.

    2015-01-01

    Some higher plants, both angiosperms and gymnosperms, can produce resins and some of these resins can polymerize and fossilize to form ambers. Various physical and chemical techniques have been used to identify and profile different plant resins and have then been applied to fossilized resins (ambers), to try to detect their parent plant affinities and understand the process of polymerization, with varying levels of success. Here we focus on resins produced from today’s most resinous conifer family, the Araucariaceae, which are thought to be the parent plants of some of the Southern Hemisphere’s fossil resin deposits. Fourier transform infrared (FTIR) spectra of the resins of closely related Araucariaceae species were examined to test whether they could be distinguished at genus and species level and whether the results could then be used to infer the parent plant of a New Zealand amber. The resin FTIR spectra are distinguishable from each other, and the three Araucaria species sampled produced similar FTIR spectra, to which Wollemia resin is most similar. Interspecific variability of the FTIR spectra is greatest in the three Agathis species tested. The New Zealand amber sample is similar in key shared features with the resin samples, but it does differ from the extant resin samples in key distinguishing features, nonetheless it is most similar to the resin of Agathis australis in this dataset. However on comparison with previously published FTIR spectra of similar aged amber and older (Eocene) resinites both found in coals from New Zealand and fresh Agathis australis resin, our amber has some features that imply a relatively immature resin, which was not expected from an amber of the Miocene age. PMID:26157631

  20. Patient and carer experiences of clinical uncertainty and deterioration, in the face of limited reversibility: A comparative observational study of the AMBER care bundle

    PubMed Central

    Bristowe, Katherine; Carey, Irene; Hopper, Adrian; Shouls, Susanna; Prentice, Wendy; Caulkin, Ruth; Higginson, Irene J; Koffman, Jonathan

    2015-01-01

    Background: Clinical uncertainty is emotionally challenging for patients and carers and creates additional pressures for those clinicians in acute hospitals. The AMBER care bundle was designed to improve care for patients identified as clinically unstable, deteriorating, with limited reversibility and at risk of dying in the next 1–2 months. Aim: To examine the experience of care supported by the AMBER care bundle compared to standard care in the context of clinical uncertainty, deterioration and limited reversibility. Design: A comparative observational mixed-methods study using semi-structured qualitative interviews and a followback survey. Setting/participants: Three large London acute tertiary National Health Service hospitals. Nineteen interviews with 23 patients and carers (10 supported by AMBER care bundle and 9 standard care). Surveys completed by next of kin of 95 deceased patients (59 AMBER care bundle and 36 standard care). Results: The AMBER care bundle was associated with increased frequency of discussions about prognosis between clinicians and patients (χ2 = 4.09, p = 0.04), higher awareness of their prognosis by patients (χ2 = 4.29, p = 0.04) and lower clarity in the information received about their condition (χ2 = 6.26, p = 0.04). Although the consistency and quality of communication were not different between the two groups, those supported by the AMBER care bundle described more unresolved concerns about caring for someone at home. Conclusion: Awareness of prognosis appears to be higher among patients supported by the AMBER care bundle, but in this small study this was not translated into higher quality communication, and information was judged less easy to understand. Adequately powered comparative evaluation is urgently needed. PMID:25829443

  1. Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy

    PubMed Central

    Duan, Li L.; Feng, Guo Q.; Zhang, Qing G.

    2016-01-01

    Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding. PMID:27507430

  2. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization.

    PubMed

    Concepcion, Joy; Witte, Krista; Wartchow, Charles; Choo, Sae; Yao, Danfeng; Persson, Henrik; Wei, Jing; Li, Pu; Heidecker, Bettina; Ma, Weilei; Varma, Ram; Zhao, Lian-She; Perillat, Donald; Carricato, Greg; Recknor, Michael; Du, Kevin; Ho, Huddee; Ellis, Tim; Gamez, Juan; Howes, Michael; Phi-Wilson, Janette; Lockard, Scott; Zuk, Robert; Tan, Hong

    2009-09-01

    The analysis of biomolecular interactions is key in the drug development process. Label-free biosensor methods provide information on binding, kinetics, concentration, and the affinity of an interaction. These techniques provide real-time monitoring of interactions between an immobilized ligand (such as a receptor) to an analyte in solution without the use of labels. Advances in biosensor design and detection using BioLayer Interferometry (BLI) provide a simple platform that enables label-free monitoring of biomolecular interactions without the use of flow cells. We review the applications of BLI in a wide variety of research and development environments for quantifying antibodies and proteins and measuring kinetics parameters.

  3. Dynamical Response of Nanomechanical Oscillators in Immiscible Viscous Fluid for InVitro Biomolecular Recognition

    NASA Astrophysics Data System (ADS)

    Dorignac, Jerome; Kalinowski, Agnieszka; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2006-05-01

    Dynamical response of nanomechanical cantilever structures immersed in a viscous fluid is important to in vitro single-molecule force spectroscopy, biomolecular recognition of disease-specific proteins, and the study of microscopic protein dynamics. Here we study the stochastic response of biofunctionalized nanomechanical cantilever beams in a viscous fluid. Using the fluctuation-dissipation theorem we derive an exact expression for the spectral density of displacement and a linear approximation for resonance frequency shift. We find that in a viscous solution the frequency shift of the nanoscale cantilever is determined by surface stress generated by biomolecular interaction with negligible contributions from mass loading due to the biomolecules.

  4. X3DBio1: a visual analysis tool for biomolecular structure exploration

    NASA Astrophysics Data System (ADS)

    Yi, Hong; Singh, Abhishek; Yingling, Yaroslava G.

    2012-01-01

    Protein tertiary structure analysis provides valuable information on their biochemical functions. The structure-to-function relationship can be directly addressed through three dimensional (3D) biomolecular structure exploration and comparison. We present X3DBio1, a visual analysis tool for 3D biomolecular structure exploration, which allows for easy visual analysis of 2D intra-molecular contact map and 3D density exploration for protein, DNA, and RNA structures. A case study is also presented in this paper to illustrate the utility of the tool. X3DBio1 is open source and freely downloadable. We expect this tool can be applied to solve a variety of biological problems.

  5. g_contacts: Fast contact search in bio-molecular ensemble data

    NASA Astrophysics Data System (ADS)

    Blau, Christian; Grubmuller, Helmut

    2013-12-01

    Short-range interatomic interactions govern many bio-molecular processes. Therefore, identifying close interaction partners in ensemble data is an essential task in structural biology and computational biophysics. A contact search can be cast as a typical range search problem for which efficient algorithms have been developed. However, none of those has yet been adapted to the context of macromolecular ensembles, particularly in a molecular dynamics (MD) framework. Here a set-decomposition algorithm is implemented which detects all contacting atoms or residues in maximum O(Nlog(N)) run-time, in contrast to the O(N2) complexity of a brute-force approach. Catalogue identifier: AEQA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 8945 No. of bytes in distributed program, including test data, etc.: 981604 Distribution format: tar.gz Programming language: C99. Computer: PC. Operating system: Linux. RAM: ≈Size of input frame Classification: 3, 4.14. External routines: Gromacs 4.6[1] Nature of problem: Finding atoms or residues that are closer to one another than a given cut-off. Solution method: Excluding distant atoms from distance calculations by decomposing the given set of atoms into disjoint subsets. Running time:≤O(Nlog(N)) References: [1] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J.C. Smith, P. M. Kasson, D. van der Spoel, B. Hess and Erik Lindahl, Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 29 (7) (2013).

  6. Engineering intracellular active transport systems as in vivo biomolecular tools.

    SciTech Connect

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further

  7. Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields.

    PubMed

    Smith, Micholas Dean; Rao, J Srinivasa; Segelken, Elizabeth; Cruz, Luis

    2015-12-28

    In this work we examine the dynamics of an intrinsically disordered protein fragment of the amyloid β, the Aβ21-30, under seven commonly used molecular dynamics force fields (OPLS-AA, CHARMM27-CMAP, AMBER99, AMBER99SB, AMBER99SB-ILDN, AMBER03, and GROMOS53A6), and three water models (TIP3P, TIP4P, and SPC/E). We find that the tested force fields and water models have little effect on the measures of radii of gyration and solvent accessible surface area (SASA); however, secondary structure measures and intrapeptide hydrogen-bonding are significantly modified, with AMBER (99, 99SB, 99SB-ILDN, and 03) and CHARMM22/27 force-fields readily increasing helical content and the variety of intrapeptide hydrogen bonds. On the basis of a comparison between the population of helical and β structures found in experiments, our data suggest that force fields that suppress the formation of helical structure might be a better choice to model the Aβ21-30 peptide.

  8. Composition and origin of amber ice and its influence on the behaviour of cold glaciers in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Mager, Sarah; Fitzsimons, Sean; Frew, Russell; Samyn, Denis; Lorrain, Reginald

    This paper examines the basal ice sequence of Rhone Glacier, a cold-based glacier in the McMurdo Dry Valleys, Antarctica, using isotopic and solute chemistry data. Three different ice facies are identified: englacial, amber and stratified. The englacial facies is clean, bubbly ice of meteoric origin and is underlain by an amber facies. Amber ice is a characteristic of cold alpine glaciers in the McMurdo Dry Valleys and is distinctive for its high solute concentrations and much higher strain rates compared with the overlying englacial ice and the underlying stratified ice. Analysis of the stratified facies reveals an isotopic signature indicative of melt then refreeze processes and it is most likely associated with apron entrainment at the margin. By contrast, the amber facies has a co-isotopic slope of 8 and plots on a meteoric waterline. The inclusion of impurities in the amber ice reveals prolonged contact with the bed, and its depleted isotopic signature is consistent with ice formed during a cooler period. Comparison of the basal sequence of Rhone Glacier with other cold-based glaciers in the McMurdo Dry Valleys reveals strong similarities between valley-side glaciers (e.g. Meserve and Rhone Glaciers), whereas valley-floor glacier basal sequences (e.g. Suess Glacier) are characterized by structurally complex amalgamations of ice and debris.

  9. Statistical characterisation of polychromatic absolute and differential squared visibilities obtained from AMBER/VLTI instrument

    NASA Astrophysics Data System (ADS)

    Schutz, A.; Vannier, M.; Mary, D.; Ferrari, A.; Millour, F.; Petrov, R.

    2014-05-01

    Context. In optical interferometry, the visibility squared moduli are generally assumed to follow a Gaussian distribution and to be independent of each other. A quantitative analysis of the relevance of such assumptions is important to help improving the exploitation of existing and upcoming multi-wavelength interferometric instruments. Aims: The aims of this study are to analyse the statistical behaviour of both the absolute and the colour-differential squared visibilities: distribution laws, correlations and cross-correlations between different baselines. Methods: We use observations of stellar calibrators obtained with the AMBER instrument on the Very Large Telescope Interferometer (VLTI) in different instrumental and observing configurations, from which we extract the frame-by-frame transfer function. Statistical hypotheses tests and diagnostics are then systematically applied. We also compute the same analysis after correcting the instantaneous squared visibilities from the piston and jitter chromatic effects, using a low-order fit subtraction. Results: For both absolute and differential squared visibilities and under all instrumental and observing conditions, we find a better fit for the Student distribution than for the Gaussian, log-normal, and Cauchy distributions. We find and analyse clear correlation effects caused by atmospheric perturbations. The differential squared visibilities allow us to keep a larger fraction of data with respect to selected absolute squared visibilities and thus benefit from reduced temporal dispersion, while their distribution is more clearly characterised. Conclusions: The frame selection based on the criterion of a fixed signal-to-noise value might result in either a biased sample of frames or one with severe selection. Instead, we suggest an adaptive frame selection procedure based on the stability of the modes of the observed squared visibility distributions. In addition, taking into account the correlations effects between

  10. Resolving the stellar components of the massive multiple system Herschel 36 with AMBER/VLTI

    NASA Astrophysics Data System (ADS)

    Sanchez-Bermudez, J.; Alberdi, A.; Schödel, R.; Hummel, C. A.; Arias, J. I.; Barbá, R. H.; Maíz Apellániz, J.; Pott, J.-U.

    2014-12-01

    Context. Massive stars are extremely important for the evolution of the galaxies; there are large gaps in our understanding of their properties and formation, however, mainly because they evolve rapidly, are rare, and distant. Recent findings suggest that most O-stars belong to multiple systems. It may well be that almost all massive stars are born as triples or higher multiples, but their large distances require very high angular resolution to directly detect the companions at milliarcsecond scales. Aims: Herschel 36 is a young massive system located at 1.3 kpc. It has a combined smallest predicted mass of 45 M⊙. Multi-epoch spectroscopic data suggest the existence of at least three gravitationally bound components. Two of them, system Ab, are tightly bound in a spectroscopic binary, and the third one, component Aa, orbits in a wider orbit. Our aim was to image and obtain astrometric and photometric measurements of components Aa and Ab using, for the first time, long-baseline optical interferometry to further constrain its nature. Methods: We observed Herschel 36 with the near-infrared instrument AMBER attached to the ESO VLT Interferometer, which provides an angular resolution of ~2 mas. We used the code BSMEM to perform the interferometric image reconstruction. We fitted the interferometric observables using proprietary IDL routines and the code LitPro. Results: We imaged the Aa + Ab components of Herschel 36 in H and K filters. Component Ab is located at a projected distance of 1.81 mas, at a position angle of ~222° east of north, the flux ratio between components Aa and Ab is close to one. These findings agree with previous predictions about the properties of Herschel 36. The small measured angular separation indicates that system Ab and Ab may be approaching the periastron of their orbits. These results, only achievable with long-baseline near-infrared interferometry, constitute the first step toward a thorough understanding of this massive triple system.

  11. Immersion mode ice nucleation measurements with the new Portable Immersion Mode Cooling chAmber (PIMCA)

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Lohmann, Ulrike; Welti, André; Kanji, Zamin A.

    2016-05-01

    The new Portable Immersion Mode Cooling chAmber (PIMCA) has been developed for online immersion freezing of single-immersed aerosol particles. PIMCA is a vertical extension of the established Portable Ice Nucleation Chamber (PINC). PIMCA immerses aerosol particles into cloud droplets before they enter PINC. Immersion freezing experiments on cloud droplets with a radius of 5-7 μm at a prescribed supercooled temperature (T) and water saturation can be conducted, while other ice nucleation mechanisms (deposition, condensation, and contact mode) are excluded. Validation experiments on reference aerosol (kaolinite, ammonium sulfate, and ammonium nitrate) showed good agreement with theory and literature. The PIMCA-PINC setup was tested in the field during the Zurich AMBient Immersion freezing Study (ZAMBIS) in spring 2014 in Zurich, Switzerland. Significant concentrations of submicron ambient aerosol triggering immersion freezing at T > 236 K were rare. The mean frozen cloud droplet number concentration was estimated to be 7.22·105 L-1 for T < 238 K and determined from the measured frozen fraction and cloud condensation nuclei (CCN) concentrations predicted for the site at a typical supersaturation of SS = 0.3%. This value should be considered as an upper limit of cloud droplet freezing via immersion and homogeneous freezing processes. The predicted ice nucleating particle (INP) concentration based on measured total aerosol larger than 0.5 μm and the parameterization by DeMott et al. (2010) at T = 238 K is INPD10=54 ± 39 L-1. This is a lower limit as supermicron particles were not sampled with PIMCA-PINC during ZAMBIS.

  12. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna

    NASA Astrophysics Data System (ADS)

    Vršanský, Peter; Cifuentes-Ruiz, Paulina; Vidlička, Ľubomír; Čiampor, Fedor; Vega, Francisco J.

    2011-10-01

    Cockroach genera with synanthropic species (Blattella, Ectobius, Supella, Periplaneta, Diploptera and ?Blatta), as well as other insects such as honeybees, although natively limited to certain continents nowadays, had circumtropic distribution in the past. The ease of their reintroduction into their former range suggests a post-Early Miocene environmental stress which led to the extinction of cosmopolitan Tertiary entomofauna in the Americas, whilst in Eurasia, Africa and Australia this fauna survived. This phenomenon is demonstrated here on a low diversity (10 spp.) living cockroach genus Supella, which is peculiar for the circumtropical synanthropic brownbanded cockroach S. longipalpa and also for its exclusively free-living cavicolous species restricted to Africa. S. (Nemosupella) miocenica sp. nov. from the Miocene amber of Chiapas in Mexico is a sister species to the living S. mirabilis from the Lower Guinea forests and adjacent savannas. The difference is restricted to the shape of the central macula on the pronotum, and size, which may indicate the around-Miocene origin of the living, extremely polymorphic Supella species and possibly also the isochronic invasion into the Americas. The species also has a number of characteristics of the Asian (and possibly also Australian) uniform genus Allacta (falling within the generic variability of Supella) suggesting Supella is a direct ancestor of the former. The present species is the first significant evidence for incomplete hiati between well defined cockroach genera — a result of the extensive fossil record of the group. The reported specimen is covered by a mycelium of a parasitic fungus Cordyceps or Entomophthora.

  13. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2010-06-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Program summaryProgram title: AFMPB: Adaptive fast multipole Poisson-Boltzmann solver Catalogue identifier: AEGB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 453 649 No. of bytes in distributed program, including test data, etc.: 8 764 754 Distribution format: tar.gz Programming language: Fortran Computer: Any Operating system: Any RAM: Depends on the size of the discretized biomolecular system Classification: 3 External routines: Pre- and post-processing tools are required for generating the boundary elements and for visualization. Users can use MSMS ( http://www.scripps.edu/~sanner/html/msms_home.html) for pre-processing, and VMD ( http://www.ks.uiuc.edu/Research/vmd/) for visualization. Sub-programs included: An iterative Krylov subspace solvers package from SPARSKIT by Yousef Saad ( http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html), and the fast multipole methods subroutines from FMMSuite ( http

  14. Parisognoriste, a new genus of Lygistorrhinidae (Diptera: Sciaroidea) from the Oise amber with redescription of Palaeognoriste Meunier

    PubMed Central

    Blagoderov, Vladimir; Hippa, Heikki; Nel, André

    2010-01-01

    Abstract A new genus and a new species of Lygistorrhinidae, Parisognoriste eocenica is described from the Eocene Oise amber of the Paris Basin. Parisognoriste sciariforme Meunier, 1904 and Parisognoriste affine Meunier, 1912 are re-described. Lectotypes are designated for both species of Palaeognoriste. The phylogenetic positions of the new genus and Palaeognoriste Meunier are discussed. The paper is an example demonstrating a new approach in cybertaxonomy including automatic generation of manuscript within Virtual Research Environment (Scratchpads), semantic enhancements, and parallel release of the publication on paper and on-line accompanied with registration of new taxa with ZooBank. PMID:21594116

  15. A new fossil cricket of the genus Proanaxipha in Miocene amber from the Dominican Republic (Orthoptera, Gryllidae, Pentacentrinae).

    PubMed

    Heads, Sam W; Penney, David; Green, David I

    2012-01-01

    A new species of the cricket genus Proanaxipha Vickery & Poinar (Orthoptera: Gryllidae: Pentacentrinae) from Early Miocene Dominican amber is described and illustrated. Proanaxipha madgesuttonaesp. n. is distinguished from congeners by: (1) head capsule bearing a distinctive posteriorly bilobed colour spot on the vertex; (2) presence of crossveins in the proximal part of the mediocubital area; (3) apical field of tegmen entirely dark; and (4) median process of epiphallus short. The poorly known Proanaxipha bicolorata Vickery & Poinar, of questionable affinity and status, is herein regarded as a nomen inquirendum.

  16. Two flat-backed polydesmidan millipedes from the Miocene Chiapas-amber Lagerstätte, Mexico.

    PubMed

    Riquelme, Francisco; Hernández-Patricio, Miguel; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes; Montejo-Cruz, Maira; Alvarado-Ortega, Jesús; Ruvalcaba-Sil, José L; Zúñiga-Mijangos, Luis

    2014-01-01

    Two species of fossil polydesmidan millipedes (Diplopoda: Polydesmida) embedded in amber are described from Miocene strata near Simojovel, in the Chiapas Highlands, Mexico. Maatidesmus paachtun gen. et sp. nov., placed into Chelodesmidae Cook, 1895, and Anbarrhacus adamantis gen. et sp. nov., assigned in the family Platyrhacidae Pocock, 1895. Morphological data from fossil specimens have been recovered using 3D X-ray micro-computed tomography and regular to infrared-reflected microscopy. Both fossil species are recognizable as new primarily but not exclusively, by collum margin modification and remarkable paranotal and metatergite dorsal sculpture.

  17. Two Flat-Backed Polydesmidan Millipedes from the Miocene Chiapas-Amber Lagerstätte, Mexico

    PubMed Central

    Riquelme, Francisco; Hernández-Patricio, Miguel; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes; Montejo-Cruz, Maira; Alvarado-Ortega, Jesús; Ruvalcaba-Sil, José L.; Zúñiga-Mijangos, Luis

    2014-01-01

    Two species of fossil polydesmidan millipedes (Diplopoda: Polydesmida) embedded in amber are described from Miocene strata near Simojovel, in the Chiapas Highlands, Mexico. Maatidesmus paachtun gen. et sp. nov., placed into Chelodesmidae Cook, 1895, and Anbarrhacus adamantis gen. et sp. nov., assigned in the family Platyrhacidae Pocock, 1895. Morphological data from fossil specimens have been recovered using 3D X-ray micro-computed tomography and regular to infrared-reflected microscopy. Both fossil species are recognizable as new primarily but not exclusively, by collum margin modification and remarkable paranotal and metatergite dorsal sculpture. PMID:25162220

  18. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Lu, Shen; Hirahara, Sota; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro

    2016-08-01

    We investigated the effect of a combined AlN/Al0.03Ga0.97N barrier on InGaN-based amber light-emitting diodes (LEDs) grown by metalorganic vapor-phase epitaxy. InGaN-based multiple quantum wells with a combined AlN/Al0.03Ga0.97N barrier showed intense photoluminescence with a narrow full-width at half-maximum. The amber LEDs with a combined AlN/Al0.03Ga0.97N barrier achieved a light output power enhanced approximately 2.5-fold at 20 mA compared to that of the LED with a combined AlN/GaN barrier, owing to the reduction of defects in InGaN active layers. Thus, the efficiency of high-In-content InGaN-based LEDs can be improved in the spectrum range of amber.

  19. Blind life in the Baltic amber forests: description of an eyeless species of the ground beetle genus Trechus Clairville, 1806 (Coleoptera: Carabidae: Trechini).

    PubMed

    Schmidt, Joachim; Hoffmann, Hannes; Michalik, Peter

    2016-02-22

    The first eyeless beetle known from Baltic amber, Trechus eoanophthalmus sp. n., is described and imaged using light microscopy and X-ray micro-computed tomography. Based on external characters, the new species is most similar to species of the Palaearctic Trechus sensu stricto clade and seems to be closely related to the Baltic amber fossil T. balticus Schmidt & Faille, 2015. Due to the poor conservation of the internal parts of the body, no information on the genital characters can be provided. Therefore, the systematic position of this fossil within the megadiverse genus Trechus remains dubious. The occurrence of the blind and flightless T. eoanophthalmus sp. n. in the Baltic amber forests supports a previous hypothesis that these forests were located in an area partly characterised by mountainous habitats with temperate climatic conditions.

  20. Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light-emitting diodes

    SciTech Connect

    Li, Panpan; Li, Hongjian; Li, Zhi; Kang, Junjie; Yi, Xiaoyan; Li, Jinmin; Wang, Guohong

    2015-02-21

    Temperature dependence and time-resolved photoluminescence (TRPL) have been carried out to study carrier dynamics for 585 nm InGaN amber light-emitting diodes (LEDs). It is found that in InGaN amber LEDs, peak emission energy only shows a slight blueshift from 588 to 575 nm, as temperature increased from 10 K to 300 K. Moreover, radiative recombination lifetime has demonstrated independent of temperature based TRPL results. These two features indicate that a strong carrier localization effect plays a dominant role in carrier dynamics for InGaN amber LEDs. Also, activation energy of 40.3 meV is obtained through Arrhenius plot of PL intensity versus temperature.

  1. Computer Programming and Biomolecular Structure Studies: A Step beyond Internet Bioinformatics

    ERIC Educational Resources Information Center

    Likic, Vladimir A.

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled "Biomolecular Structure and Bioinformatics." Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics…

  2. A COMPUTATIONAL LIBRARY OF THE BIOMOLECULAR TARGETS FOR TOXICITY: RECEPTORS IN THE ENDOCRINE SYSTEM

    EPA Science Inventory

    A Computational Library of the Biomolecular Targets for Toxicity: Receptors in the Endocrine System

    Authors: James R. Rabinowitz and Stephen B. Little, MTB/ECD/NHEERL/ORD, and Huajun Fan, Curriculum in Toxicology, University of North Carolina
    Structure activity models ...

  3. Label-free methods of reporting biomolecular interactions by optical biosensors.

    PubMed

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Tang, Thean-Hock

    2013-07-07

    Reporting biomolecular interactions has become part and parcel of many applications of science towards an in-depth understanding of disease and gene regulation. Apart from that, in diagnostic applications where biomolecules (antibodies and aptamers) are vastly applied, meticulous monitoring of biomolecular interaction is vital for clear-cut diagnosis. Several currently available methods of analyzing the interaction of the ligands with the appropriate analytes are aided by labeling using fluorescence or luminescence techniques. However, labeling is cumbersome and can occupy important binding sites of interactive molecules to be labeled, which may interfere with the conformational changes of the molecules and increase non-specificity. Optical-based sensing can provide an alternative way as a label-free procedure for monitoring biomolecular interactions. Optical sensors affiliated with different operating principles, including surface plasmon changes, scattering and interferometry, can impart a huge impact for in-house and point-of-care applications. This optical-based biosensing permits real-time monitoring, obviating the use of hazardous labeling molecules such as radioactive tags. Herein, label-free ways of reporting biomolecular interactions by various optical biosensors were gleaned.

  4. Student Learning about Biomolecular Self-Assembly Using Two Different External Representations

    ERIC Educational Resources Information Center

    Host, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.

    2013-01-01

    Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning…

  5. Supporting Representational Competence in High School Biology with Computer-Based Biomolecular Visualizations

    ERIC Educational Resources Information Center

    Wilder, Anna; Brinkerhoff, Jonathan

    2007-01-01

    This study assessed the effectiveness of computer-based biomolecular visualization activities on the development of high school biology students' representational competence as a means of understanding and visualizing protein structure/function relationships. Also assessed were students' attitudes toward these activities. Sixty-nine students…

  6. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition.

    PubMed

    Chu, Xiakun; Gan, Linfeng; Wang, Erkang; Wang, Jin

    2013-06-25

    Biomolecular functions are determined by their interactions with other molecules. Biomolecular recognition is often flexible and associated with large conformational changes involving both binding and folding. However, the global and physical understanding for the process is still challenging. Here, we quantified the intrinsic energy landscapes of flexible biomolecular recognition in terms of binding-folding dynamics for 15 homodimers by exploring the underlying density of states, using a structure-based model both with and without considering energetic roughness. By quantifying three individual effective intrinsic energy landscapes (one for interfacial binding, two for monomeric folding), the association mechanisms for flexible recognition of 15 homodimers can be classified into two-state cooperative "coupled binding-folding" and three-state noncooperative "folding prior to binding" scenarios. We found that the association mechanism of flexible biomolecular recognition relies on the interplay between the underlying effective intrinsic binding and folding energy landscapes. By quantifying the whole global intrinsic binding-folding energy landscapes, we found strong correlations between the landscape topography measure Λ (dimensionless ratio of energy gap versus roughness modulated by the configurational entropy) and the ratio of the thermodynamic stable temperature versus trapping temperature, as well as between Λ and binding kinetics. Therefore, the global energy landscape topography determines the binding-folding thermodynamics and kinetics, crucial for the feasibility and efficiency of realizing biomolecular function. We also found "U-shape" temperature-dependent kinetic behavior and a dynamical cross-over temperature for dividing exponential and nonexponential kinetics for two-state homodimers. Our study provides a unique way to bridge the gap between theory and experiments.

  7. Lutzomyia adiketis sp. n. (Diptera: Phlebotomidae), a vector of Paleoleishmania neotropicum sp. n. (Kinetoplastida: Trypanosomatidae) in Dominican amber

    PubMed Central

    Poinar, George

    2008-01-01

    Background Amber fossils can be used to trace the history of disease-vector associations because microorganisms are preserved "in situ" inside the alimentary tract and body cavity of blood-sucking insects. Results Lutzomyia adiketis sp. n. (Phlebotomidae: Diptera) is described from Dominican amber as a vector of Paleoleishmania neotropicum sp. n. (Kinetoplastida: Trypanosomatidae). The fossil sand fly differs from all previously described extinct and extant members of the genus by the following combination of characters: Sc forked with the branches meeting the costa and radius veins; wing L/W value of 4.1; a δ value of 18; a ratio β/α value of 0.86, and the shape and size of the spatulate rods on the ninth sternite. The trypanosomatid is characterized by the structure of its promastigotes, amastigotes and paramastigotes and its transmission by an extinct species of sand fly. Conclusion Morphological characters show that the fossil sand fly is a new extinct species and that it is host to a digenetic species of trypanosomatid. This study provides the first fossil evidence that Neotropical sand flies were vectors of trypanosomatids in the mid-Tertiary (20–30 mya). PMID:18627624

  8. Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Yamada, Motokazu; ShujiNakamura, ShujiNakamura

    1999-07-01

    Highly efficient light-emitting diodes (LEDs) emitting ultraviolet (UV), blue, green, amber and red light have been obtained through the use of InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 675 nm, whose emission energy was almost equal to the band-gap energy of InN, were fabricated. The dependence of the emission wavelength of the red LED on the current (blue shift) is dominated by both the band-filling effect of the localized energy states and the screening effect of the piezoelectric field. In the red LEDs, a phase separation of the InGaN layer was clearly observed in the emission spectra, in which blue and red emission peaks appeared. In terms of the temperature dependence of the LEDs, InGaN LEDs are superior to the conventional red and amber LEDs due to a large band offset between the active and cladding layers. The localized energy states caused by In composition fluctuation in the InGaN active layer contribute to the high efficiency of the InGaN-based emitting devices, in spite of the large number of threading dislocations and a large effect of the piezoelectric field. The blue and green InGaN-based LEDs had the highest external quantum efficiencies of 18% and 20% at low currents of 0.6 mA and 0.1 mA, respectively.

  9. Accumulation of trehalose by Escherichia coli K-12 at high osmotic pressure depends on the presence of amber suppressors

    SciTech Connect

    Rod, M.L. Alam, K.Y.; Cunningham, P.R.; Clark, D.P. )

    1988-08-01

    When grown at high osmotic pressure, some strains of Escherichia coli K-12 synthesized substantial levels of free sugar and accumulated proline if it was present in the growth medium. The sugar was identified as trehalose. Strains of E. coli K-12 could be divided into two major classes with respect of osmoregulation. Those of class A showed a large increase in trehalose levels with increasing medium osmolarity and also accumulated proline from the medium, whereas those in class B showed no accumulation of trehalose or proline. Most class A strains carried suppressor mutations which arose during their derivation from the wild type, whereas the osmodefective strains of class B were suppressor free. When amber suppressor mutations at the supD, supE, or supF loci were introduced into such sup{sup o} osmodefective strains, they became osmotolerant and gained the ability to accumulate trehalose in response to elevated medium osmolarity. It appears that the original K-12 strain of E. coli carries an amber mutation in a gene affecting osmoregulation. Mutants lacking ADP-glucose synthetase (glgC) accumulated trehalose normally, whereas mutants lacking UDP-glucose synthetase (galU) did not make trehalose and grew poorly in medium of high osmolarity. Trehalose synthesis was repressed by exogenous glycine betaine but not by proline.

  10. First fossil larvae of Berothidae (Neuroptera) from Baltic amber, with notes on the biology and termitophily of the family.

    PubMed

    Wedmann, Sonja; Makarkin, Vladimir N; Weiterscham, Thomas; Hörnschemeyer, Thomas

    2013-01-01

    Four fossil larvae of Berothidae (Neuroptera) from Baltic amber are described in detail, and the main characters of a fifth larva are discussed briefly. Two first instars very probably belong to the Berothinae; the subfamilial affinities of three othe (probably full-grown) larvae are unclear. The latter are characterized by features not found so far in extant taxa of Berothi dae: antennae and labial palps with six to seven segments; ecdysial cleavage lines consist of only frontal and coronal sutures (the lateral suture is absent); pronotal sclerites large and very close to each other along midline. However, these larvae belong with certainty to Berothidae as indicated by the structure of their mouthparts, and their general appearance. Morphological and biological data on the larvae of Berothidae are summarized and analyzed. It is presumed that termitophily might have evolved during the Cretaceous (or in the early Cenozoic), and only in Berothinae (or in subfamilies closely related to this group). The Baltic amber berothid assemblage apparently included both termitophilous and noni termitophilous larvae.

  11. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes.

    PubMed

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G

    2017-04-06

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

  12. Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis.

    PubMed

    Halámek, Jan; Zhou, Jian; Halámková, Lenka; Bocharova, Vera; Privman, Vladimir; Wang, Joseph; Katz, Evgeny

    2011-11-15

    Biomolecular logic systems processing biochemical input signals and producing "digital" outputs in the form of YES/NO were developed for analysis of physiological conditions characteristic of liver injury, soft tissue injury, and abdominal trauma. Injury biomarkers were used as input signals for activating the logic systems. Their normal physiological concentrations were defined as logic-0 level, while their pathologically elevated concentrations were defined as logic-1 values. Since the input concentrations applied as logic 0 and 1 values were not sufficiently different, the output signals being at low and high values (0, 1 outputs) were separated with a short gap making their discrimination difficult. Coupled enzymatic reactions functioning as a biomolecular signal processing system with a built-in filter property were developed. The filter process involves a partial back-conversion of the optical-output-signal-yielding product, but only at its low concentrations, thus allowing the proper discrimination between 0 and 1 output values.

  13. Specificity quantification of biomolecular recognition and its implication for drug discovery

    NASA Astrophysics Data System (ADS)

    Yan, Zhiqiang; Wang, Jin

    2012-03-01

    Highly efficient and specific biomolecular recognition requires both affinity and specificity. Previous quantitative descriptions of biomolecular recognition were mostly driven by improving the affinity prediction, but lack of quantification of specificity. We developed a novel method SPA (SPecificity and Affinity) based on our funneled energy landscape theory. The strategy is to simultaneously optimize the quantified specificity of the ``native'' protein-ligand complex discriminating against ``non-native'' binding modes and the affinity prediction. The benchmark testing of SPA shows the best performance against 16 other popular scoring functions in industry and academia on both prediction of binding affinity and ``native'' binding pose. For the target COX-2 of nonsteroidal anti-inflammatory drugs, SPA successfully discriminates the drugs from the diversity set, and the selective drugs from non-selective drugs. The remarkable performance demonstrates that SPA has significant potential applications in identifying lead compounds for drug discovery.

  14. PREFACE: India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation

    NASA Astrophysics Data System (ADS)

    Onoda, Mitsuyoshi; Malhotra, Bansi D.

    2012-04-01

    The 'India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation' (IJWBME 2011) will be held on 7-10 December 2011 at EGRET Himeji, Himeji, Hyogo, Japan. This workshop was held for the first time on 17-19 December 2009 at NPL, New Delhi. Keeping in mind the importance of organic nanotechnology and biomolecular electronics for environmental preservation and their anticipated impact on the economics of both the developing and the developed world, IJWBME 2009 was jointly organized by the Department of Biological Functions, Graduate School of Life Sciences and Systems Engineering, the Kyushu Institute of Technology (KIT), Kitakyushu, Japan, and the Department of Science & Technology Centre on Biomolecular Electronics (DSTCBE), National Physical Laboratory (NPL). Much progress in the field of biomolecular electronics and organic nanotechnology for environmental preservation is expected for the 21st Century. Organic optoelectronic devices, such as organic electroluminescent devices, organic thin-film transistors, organic sensors, biological systems and so on have especially attracted much attention. The main purpose of this workshop is to provide an opportunity for researchers interested in biomolecular electronics and organic nanotechnology for environmental preservation, to come together in an informal and friendly atmosphere and exchange technical knowledge and experience. We are sure that this workshop will be very useful and fruitful for all participants in summarizing the recent progress in biomolecular electronics and organic nanotechnology for environmental preservation and preparing new ground for the next generation. Many papers have been submitted from India and Japan and more than 30 papers have been accepted for presentation. The main topics of interest are as follows: Bioelectronics Biomolecular Electronics Fabrication Techniques Self-assembled Monolayers Nano-sensors Environmental Monitoring Organic Devices

  15. Biochemical filter with sigmoidal response: increasing the complexity of biomolecular logic.

    PubMed

    Privman, Vladimir; Halámek, Jan; Arugula, Mary A; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    2010-11-11

    The first realization of a designed, rather than natural, biochemical filter process is reported and analyzed as a promising network component for increasing the complexity of biomolecular logic systems. Key challenge in biochemical logic research has been achieving scalability for complex network designs. Various logic gates have been realized, but a "toolbox" of analog elements for interconnectivity and signal processing has remained elusive. Filters are important as network elements that allow control of noise in signal transmission and conversion. We report a versatile biochemical filtering mechanism designed to have sigmoidal response in combination with signal-conversion process. Horseradish peroxidase-catalyzed oxidation of chromogenic electron donor by H(2)O(2) was altered by adding ascorbate, allowing to selectively suppress the output signal, modifying the response from convex to sigmoidal. A kinetic model was developed for evaluation of the quality of filtering. The results offer improved capabilities for design of scalable biomolecular information processing systems.

  16. Biomolecular implementation of a quasi sliding mode feedback controller based on DNA strand displacement reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh; Bates, Declan G

    2015-08-01

    A fundamental aim of synthetic biology is to achieve the capability to design and implement robust embedded biomolecular feedback control circuits. An approach to realize this objective is to use abstract chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks. Here, we employ this approach to facilitate the implementation of a class of nonlinear feedback controllers based on sliding mode control theory. We show how a set of two-step irreversible reactions with ultrasensitive response dynamics can provide a biomolecular implementation of a nonlinear quasi sliding mode (QSM) controller. We implement our controller in closed-loop with a prototype of a biological pathway and demonstrate that the nonlinear QSM controller outperforms a traditional linear controller by facilitating faster tracking response dynamics without introducing overshoots in the transient response.

  17. Next-generation heteronuclear decoupling for high-field biomolecular NMR spectroscopy.

    PubMed

    Schilling, Franz; Warner, Lisa R; Gershenzon, Naum I; Skinner, Thomas E; Sattler, Michael; Glaser, Steffen J

    2014-04-22

    Ultra-high-field NMR spectroscopy requires an increased bandwidth for heteronuclear decoupling, especially in biomolecular NMR applications. Composite pulse decoupling cannot provide sufficient bandwidth at practical power levels, and adiabatic pulse decoupling with sufficient bandwidth is compromised by sideband artifacts. A novel low-power, broadband heteronuclear decoupling pulse is presented that generates minimal, ultra-low sidebands. The pulse was derived using optimal control theory and represents a new generation of decoupling pulses free from the constraints of periodic and cyclic sequences. In comparison to currently available state-of-the-art methods this novel pulse provides greatly improved decoupling performance that satisfies the demands of high-field biomolecular NMR spectroscopy.

  18. Out-of-equilibrium biomolecular interactions monitored by picosecond fluorescence in microfluidic droplets.

    PubMed

    Maillot, Sacha; Carvalho, Alain; Vola, Jean-Pierre; Boudier, Christian; Mély, Yves; Haacke, Stefan; Léonard, Jérémie

    2014-05-21

    We developed a new experimental approach combining Time-Resolved Fluorescence (TRF) spectroscopy and Droplet Microfluidics (DμF) to investigate the relaxation dynamics of structurally heterogeneous biomolecular systems. Here DμF was used to produce with minimal material consumption an out-of-equilibrium, fluorescently labeled biomolecular complex by rapid mixing within the droplets. TRF detection was implemented with a streak camera to monitor the time evolution of the structural heterogeneity of the complex along its relaxation towards equilibrium while it propagates inside the microfluidic channel. The approach was validated by investigating the fluorescence decay kinetics of a model interacting system of bovine serum albumin and Patent Blue V. Fluorescence decay kinetics are acquired with very good signal-to-noise ratio and allow for global, multicomponent fluorescence decay analysis, evidencing heterogeneous structural relaxation over several 100 ms.

  19. Biomolecular recognition ability of RecA proteins for DNA on single-walled carbon nanotubes.

    PubMed

    Oura, Shusuke; Ito, Masahiro; Nii, Daisuke; Homma, Yoshikazu; Umemura, Kazuo

    2015-02-01

    We examined the biomolecular recognition ability of RecA proteins using single-walled carbon nanotubes (SWNTs) wrapped with a single-stranded DNA (ssDNA) molecule as a mimic for the usual ssDNA molecules. The ssDNA-SWNT hybrids showed larger diameters compared to those of the usual ssDNA molecules. As a result, RecA molecules bound to the ssDNA-SWNTs, as observed using atomic force microscopy and agarose gel electrophoresis. On the other hand, when carboxymethylcellulose (CMC) was used rather than ssDNA, the RecA molecules did not bind to the CMC-SWNT hybrids. Our results indicate that RecA molecules recognize ssDNA on SWNT surfaces as DNA molecules through their biomolecular recognition ability.

  20. VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters

    NASA Astrophysics Data System (ADS)

    Arroyo-Torres, B.; Martí-Vidal, I.; Marcaide, J. M.; Wittkowski, M.; Guirado, J. C.; Hauschildt, P. H.; Quirrenbach, A.; Fabregat, J.

    2014-06-01

    Aims: The main goal of this research is to determine the angular size and the atmospheric structures of cool giant stars (ɛ Oct, β Peg, NU Pav, ψ Peg, and γ Hya) and to compare them with hydrostatic stellar model atmospheres, to estimate the fundamental parameters, and to obtain a better understanding of the circumstellar environment. Methods: We conducted spectro-interferometric observations of ɛ Oct, β Peg, NU Pav, and ψ Peg in the near-infrared K band (2.13-2.47 μm), and γ Hya (1.9-2.47 μm) with the VLTI/AMBER instrument at medium spectral resolution (~1500). To obtain the fundamental parameters, we compared our data with hydrostatic atmosphere models (PHOENIX). Results: We estimated the Rosseland angular diameters of ɛ Oct, β Peg, NU Pav, ψ Peg, and γ Hya to be 11.66±1.50 mas, 16.87±1.00 mas, 13.03±1.75 mas, 6.31±0.35 mas, and 3.78±0.65 mas, respectively. Together with distances and bolometric fluxes (obtained from the literature), we estimated radii, effective temperatures, and luminosities of our targets. In the β Peg visibility, we observed a molecular layer of CO with a size similar to that modeled with PHOENIX. However, there is an additional slope in absorption starting around 2.3 μm. This slope is possibly due to a shell of H2O that is not modeled with PHOENIX (the size of the layer increases to about 5% with respect to the near-continuum level). The visibility of ψ Peg shows a low increase in the CO bands, compatible with the modeling of the PHOENIX model. The visibility data of ɛ Oct, NU Pav, and γ Hya show no increase in molecular bands. Conclusions: The spectra and visibilities predicted by the PHOENIX atmospheres agree with the spectra and the visibilities observed in our stars (except for β Peg). This indicates that the opacity of the molecular bands is adequately included in the model, and the atmospheres of our targets have an extension similar to the modeled atmospheres. The atmosphere of β Peg is more extended than

  1. Import of amber and ochre suppressor tRNAs into mammalian cells: A general approach to site-specific insertion of amino acid analogues into proteins

    PubMed Central

    Köhrer, Caroline; Xie, Liang; Kellerer, Susanne; Varshney, Umesh; RajBhandary, Uttam L.

    2001-01-01

    A general approach to site-specific insertion of amino acid analogues into proteins in vivo would be the import into cells of a suppressor tRNA aminoacylated with the analogue of choice. The analogue would be inserted at any site in the protein specified by a stop codon in the mRNA. The only requirement is that the suppressor tRNA must not be a substrate for any of the cellular aminoacyl–tRNA synthetases. Here, we describe conditions for the import of amber and ochre suppressor tRNAs derived from Escherichia coli initiator tRNA into mammalian COS1 cells, and we present evidence for their activity in the specific suppression of amber (UAG) and ochre (UAA) codons, respectively. We show that an aminoacylated amber suppressor tRNA (supF) derived from the E. coli tyrosine tRNA can be imported into COS1 cells and acts as a suppressor of amber codons, whereas the same suppressor tRNA imported without prior aminoacylation does not, suggesting that the supF tRNA is not a substrate for any mammalian aminoacyl–tRNA synthetase. These results open the possibility of using the supF tRNA aminoacylated with an amino acid analogue as a general approach for the site-specific insertion of amino acid analogues into proteins in mammalian cells. We discuss the possibility further of importing a mixture of amber and ochre suppressor tRNAs for the insertion of two different amino acid analogues into a protein and the potential use of suppressor tRNA import for treatment of some of the human genetic diseases caused by nonsense mutations. PMID:11717406

  2. Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes.

    PubMed

    Horch, M; Hildebrandt, P; Zebger, I

    2015-07-28

    Spectroscopic techniques play a major role in the elucidation of structure-function relationships of biological macromolecules. Here we describe an integrated approach for bio-molecular spectroscopy that takes into account the special characteristics of such compounds. The underlying fundamental concepts will be exemplarily illustrated by means of selected case studies on biocatalysts, namely hydrogenase and superoxide reductase. The treatise will be concluded with an overview of challenges and future prospects, laying emphasis on functional dynamics, in vivo studies, and computational spectroscopy.

  3. Computational Sensing and in vitro Classification of GMOs and Biomolecular Events

    DTIC Science & Technology

    2008-12-01

    COMPUTATIONAL SENSING AND IN VITRO CLASSIFICATION OF GMOs AND BIOMOLECULAR EVENTS Elebeoba May1∗, Miler T. Lee2†, Patricia Dolan1, Paul Crozier1...modified organisms ( GMOs ) in the pres- ence of non-lethal agents. Using an information and coding- theoretic framework we develop a de novo method for...high through- put screening, distinguishing genetically modified organisms ( GMOs ), molecular computing, differentiating biological mark- ers

  4. Exploiting the features of the finite state automata for biomolecular computing.

    PubMed

    Martínez-Pérez, Israel Marck; Ignatova, Zoya; Zimmermann, Karl-Heinz

    2009-01-01

    Here, we review patents that have emerged in the field of DNA-based computing focusing thereby on the discoveries using the concept of molecular finite state automata. A finite state automaton, operating on a finite sequence of symbols and converting information from one to another, provides a basis for developing molecular-scale autonomous programmable models of biomolecular computation at cellular level. We also provide a brief overview on inventions which methodologically support the DNA-based computational approach.

  5. Terahertz Science & Technology: Sensing Bio-Molecular Nanostructures & Photoinduces Transitions Between Metastable States

    DTIC Science & Technology

    2012-07-31

    suggested range of molecular dynamics relaxation times for processes without bio-molecular conformational change varies from approximately 1.5 ps...for single bio-molecule characterization. To demonstrate the capabilities of the spectrometer, transmission spectra from bacterial cells and some of...shipped in a special buffer solution, containing salts ( MgCl2 and NaCl), some organic species, and some excess DNA strands . In order to keep the

  6. Accelerated search for biomolecular network models to interpret high-throughput experimental data

    PubMed Central

    Datta, Suman; Sokhansanj, Bahrad A

    2007-01-01

    Background The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables. Results Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics. Conclusion Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular data sets. This approach

  7. Densely Packed Microgoblet Laser Pairs for Cross-Referenced Biomolecular Detection.

    PubMed

    Bog, Uwe; Brinkmann, Falko; Wondimu, Sentayehu Fetene; Wienhold, Tobias; Kraemmer, Sarah; Koos, Christian; Kalt, Heinz; Hirtz, Michael; Fuchs, Harald; Koeber, Sebastian; Mappes, Timo

    2015-10-01

    Microgoblet laser pairs are presented for cross-referenced on-chip biomolecular sensing. Parallel readout of the micro-lasers facilitates effective mutual filtering of highly localized refractive index and temperature fluctuations in the analyte. Cross-referenced detection of two different types of proteins and complete chemical transducer reconfiguration is demonstrated. Selective surface functionalization of the individual lasers with high spatial accuracy is achieved by aligned microcontact stamping.

  8. Testing Landscape Theory for Biomolecular Processes with Single Molecule Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Chung, Hoi Sung; Louis, John M.; Eaton, William A.

    2015-07-01

    Although Kramers' theory for diffusive barrier crossing on a 1D free energy profile plays a central role in landscape theory for complex biomolecular processes, it has not yet been rigorously tested by experiment. Here we test this 1D diffusion scenario with single molecule fluorescence measurements of DNA hairpin folding. We find an upper bound of 2.5 μ s for the average transition path time, consistent with the predictions by theory with parameters determined from optical tweezer measurements.

  9. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning

    PubMed Central

    2016-01-01

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme. PMID:27057643

  10. Application of isothermal titration calorimetry and column chromatography for identification of biomolecular targets.

    PubMed

    Zhou, Xingding; Kini, R Manjunatha; Sivaraman, J

    2011-02-01

    This protocol describes a method for identifying unknown target proteins from a mixture of biomolecules for a given drug or a lead compound. This method is based on a combination of chromatography and isothermal titration calorimetry (ITC) where ITC is used as a tracking tool. The first step involves the use of ITC to confirm the binding of ligand to a component in the biomolecular mixture. Subsequently, the biomolecular mixture is fractionated by chromatography, and the binding of the ligand with individual fractions (or subfractions) is verified by ITC. The iteration of chromatographic purification on the fractions combined with ITC results in identifying the target protein. This method is useful when the target protein or ligand is unknown and/or not amenable to labeling, chemical modification or immobilization. This protocol has been successfully used by our team and by others to identify both low-abundance and highly abundant target proteins present in biomolecular mixtures. With this protocol, it takes approximately 3-5 d to identify the target protein from a mixture.

  11. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines.

    PubMed

    Kahlscheuer, Matthew L; Widom, Julia; Walter, Nils G

    2015-01-01

    Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition, and versatile structural dynamics. Single-molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues toward studying the mechanisms of biomolecular machines isolated directly from complex biological specimens, such as cell extracts. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy in exemplary single-molecule pull-down FRET studies of the yeast spliceosome and discuss the broad application potential of this technique.

  12. Proton Solvation and Transport in Aqueous and Biomolecular Systems

    PubMed Central

    Swanson, Jessica M. J.; Maupin, C. Mark; Chen, Hanning; Petersen, Matt K.; Xu, Jiancong; Wu, Yujie; Voth, Gregory A.

    2008-01-01

    The excess proton in aqueous media plays a pivotal role in many fundamental chemical (e.g., acid-base chemistry) and biological (e.g., bioenergetics and enzyme catalysis) processes. Understanding the hydrated proton is, therefore, crucial for chemistry, biology, and materials sciences. Although well studied for over 200 years, excess proton solvation and transport remains to this day mysterious, surprising, and perhaps even misunderstood. In this feature article various efforts to address this problem through computer modeling and simulation will be described. Applications of computer simulations to a number of important and interesting systems will be presented, highlighting the roles of charge delocalization and Grotthuss shuttling, a phenomenon unique in many ways to the excess proton in water. PMID:17429993

  13. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    SciTech Connect

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre; Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  14. Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract.

    PubMed

    Ogawa, Atsushi; Doi, Yasunori; Matsushita, Nobuto

    2011-12-21

    In vitro-transcribed, unmodified, and non-aminoacylated amber suppressor tRNAs that are recognized by natural aminoacyl-tRNA synthetase were improved toward higher suppression efficiency in batch-mode cell-free translation in wheat germ extract. The suppression efficiency of the suppressor obtained through four sequence optimization steps (anticodon alteration of natural tRNAs (the first generation); chimerization of the efficient suppressors in the first generation; investigation and optimization of the effective parts in the second generation; combination of the optimized parts in the third generation) and by the terminal tuning was approximately 60%, which was 2.4-fold higher than that of the best suppressor in the first generation. In addition, an eRF1 aptamer further increased the efficiency up to 85%. This highly efficient suppression system also functioned well in a dialysis-based large-scale protein synthesis.

  15. On the systematic position of Baltimartyria Skalski, 1995 and description of a new species from Baltic amber (Lepidoptera, Micropterigidae)

    PubMed Central

    Mey, Wolfram

    2011-01-01

    Abstract This paper describes a rare case of a male moth in Baltic amber in an excellent position for establishing a species. The moth represents the second species of the genus Baltimartyria Skalski, 1995, described herein as Baltimartyria rasnitsyni sp. n. The detection of this new species prompts research on the systematic position of the genus within the family Micropterigidae. The genus was found to provide none of the apomorphic characters that would allow placement in one of the monophyletic lineages within the family. The genus is provisionally assigned to the “southern sabatincoid group”, a weakly supported assemblage of Southern Hemisphere genera. The sister genus has still to be determined. Baltimartyria is the first North Hemisphere representative in this group. Some general aspects of historical biogeography relevant for the group are briefly discussed. PMID:22259287

  16. On the systematic position of Electrocrania Kusnezov, 1941 with the description of a new species from Baltic amber (Lepidoptera: Micropterigidae).

    PubMed

    Kurz, Michael

    2015-11-19

    A new fossil species of Electrocrania Kusnezov is described, i.e. Electrocrania michalskii sp. nov. The male moth in Baltic amber is in a sufficiently good condition to allow its assignment to the family Micropterigidae on the basis of four re-cognized autapomorphies of this family (Kristensen 1998). The unique venation of the specimen places it in the genus Electrocrania stat. rev. and allows a redescription of that genus that has recently been treated as synonym of Micropterix Hübner. It is argued that Electrocrania is a distinct genus within Micropterigidae that is not associated with Micropterix, but probably can be assigned to the "Northern Hemisphere genera"-lineage of Micropterigidae.

  17. Physical scoring function based on AMBER force field and Poisson-Boltzmann implicit solvent for protein structure prediction.

    PubMed

    Hsieh, Meng-Juei; Luo, Ray

    2004-08-15

    A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.

  18. Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.

    PubMed

    Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le

    2013-01-01

    Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real

  19. Visualising and controlling the flow in biomolecular systems at and between multiple scales: from atoms to hydrodynamics at different locations in time and space.

    PubMed

    Pavlov, Evgen; Taiji, Makoto; Scukins, Arturs; Markesteijn, Anton; Karabasov, Sergey; Nerukh, Dmitry

    2014-01-01

    A novel framework for modelling biomolecular systems at multiple scales in space and time simultaneously is described. The atomistic molecular dynamics representation is smoothly connected with a statistical continuum hydrodynamics description. The system behaves correctly at the limits of pure molecular dynamics (hydrodynamics) and at the intermediate regimes when the atoms move partly as atomistic particles, and at the same time follow the hydrodynamic flows. The corresponding contributions are controlled by a parameter, which is defined as an arbitrary function of space and time, thus, allowing an effective separation of the atomistic 'core' and continuum 'environment'. To fill the scale gap between the atomistic and the continuum representations our special purpose computer for molecular dynamics, MDGRAPE-4, as well as GPU-based computing were used for developing the framework. These hardware developments also include interactive molecular dynamics simulations that allow intervention of the modelling through force-feedback devices.

  20. Conformational thermodynamics guided structural reconstruction of biomolecular fragments.

    PubMed

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2016-02-01

    Computational prediction of structure for macromolecular fragments is a formidable challenge. Here we show that the differences in conformational thermodynamics, computed using the equilibrium distribution of dihedral angles from molecular dynamics simulation, can identify the better model for the missing residues in the metal ion free (apo) skeletal muscle Troponin C (TnC). We use the model to understand Troponin I interaction with calcium (Ca(2+)) ion bound TnC. Our method to compare conformational thermodynamics between different models can be easily generalized to any macromolecule to understand the structure and function even if experimental structures are not resolved.

  1. Optimizing Fine-grained Communication in a Biomolecular Simulation Application on Cray XK6

    SciTech Connect

    Sun, Yanhua; Zheng, Gengbin; Mei, Chao; Phillips, James C.; Kale, Laxmikant V; Jones, Terry R

    2012-01-01

    Achieving good scaling for fine-grained communication intensive applications on modern supercomputers remains challenging. In our previous work, we have shown that such an application NAMD scales well on the full Jaguar XT5 without long-range interactions; Yet, with them, the speedup falters beyond 64K cores. Although the new Gemini interconnect on Cray XK6 has improved network performance, the challenges remain, and are likely to remain for other such networks as well. We analyze communication bottlenecks in NAMD and its CHARM++ runtime, using the Projections performance analysis tool. Based on the analysis, we optimize the runtime, built on the uGNI library for Gemini. We present several techniques to improve the fine-grained communication. Consequently, the performance of running 92224-atom Apoa1 with GPUs on TitanDev is improved by 36%. For 100-million-atom STMV, we improve upon the prior Jaguar XT5 result of 26 ms/step to 13 ms/step using 298,992 cores on Jaguar XK6.

  2. Theoretical description of biomolecular hydration - Application to A-DNA

    SciTech Connect

    Garcia, A.E.; Hummer, G.; Soumpasis, D.M.

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  3. Secondary-structure preferences of force fields for proteins evaluated by generalized-ensemble simulations

    NASA Astrophysics Data System (ADS)

    Yoda, Takao; Sugita, Yuji; Okamoto, Yuko

    2004-12-01

    Secondary-structure forming tendencies are examined for six well-known protein force fields: AMBER94, AMBER96, AMBER99, CHARMM22, OPLS-AA/L, and GROMOS96. We performed generalized-ensemble molecular dynamics simulations of two peptides. One of these peptides is C-peptide of ribonuclease A, and the other is the C-terminal fragment from the B1 domain of streptococcal protein G. The former is known to form α-helix structure and the latter β-hairpin structure by experiments. The simulation results revealed significant differences of the secondary-structure forming tendencies among the force fields. Of the six force fields, the results of AMBER99 and CHARMM22 were in accord with experiments for C-peptide. For G-peptide, on the other hand, the results of OPLS-AA/L and GROMOS96 were most consistent with experiments. Therefore, further improvements on the force fields are necessary for studying the protein folding problem from the first principles, in which a single force field can be used for all cases.

  4. Biomolecular conjugation inside synthetic polymer nanopores viaglycoprotein-lectin interactions

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Ramirez, Patricio; Tahir, Muhammad Nawaz; Mafe, Salvador; Siwy, Zuzanna; Neumann, Reinhard; Tremel, Wolfgang; Ensinger, Wolfgang

    2011-04-01

    We demonstrate the supramolecular bioconjugation of concanavalin A (Con A) protein with glycoenzymehorseradish peroxidase (HRP) inside single nanopores, fabricated in heavy ion tracked polymermembranes. Firstly, the HRP-enzyme was covalently immobilized on the inner wall of the pores using carbodiimide coupling chemistry. The immobilized HRP-enzyme molecules bear sugar (mannose) groups available for the binding of Con A protein. Secondly, the bioconjugation of Con A on the pore wall was achieved through its biospecific interactions with the mannose residues of the HRP enzyme. The immobilization of biomolecules inside the nanopore leads to the reduction of the available area for ionic transport, and this blocking effect can be exploited to tune the conductance and selectivity of the nanopore in aqueous solution. Both cylindrical and conical nanopores were used in the experiments. The possibility of obtaining two or more conductance states (output), dictated by the degree of nanopore blocking resulted from the different biomolecules in solution (input), as well as the current rectification properties obtained with the conical nanopore, could also allow implementing information processing at the nanometre scale. Model simulations based on the transport equations further verify the feasibility of the sensing procedure that involves concepts from supramolecular chemistry, molecular imprinting, recognition, and nanotechnology.

  5. A genomewide survey of bHLH transcription factors in the coral Acropora digitifera identifies three novel orthologous families, pearl, amber, and peridot.

    PubMed

    Gyoja, Fuki; Kawashima, Takeshi; Satoh, Nori

    2012-04-01

    Decoding the genome of the coral, Acropora digitifera, enabled us to characterize a nearly full set of 70 basic helix-loop-helix (bHLH) transcription factors in this organism. This number is comparable to 68 bHLH genes in the sea anemone, Nematostella vectensis, and larger than those in most other invertebrate metazoans. The 70 bHLH genes were assigned to 29 orthologous families previously reported. In addition, we identified three novel HLH orthologous families, which we designated pearl, amber, and peridot, increasing the number of orthologous families to 32. Pearl and amber orthologues were found in genomes and expressed sequenced tags (ESTs) of Mollusca and Annelida in addition to Cnidaria. Peridot orthologues were found in genomes and ESTs of Cephalochordata and Hemichordata in addition to Cnidaria. These three genes were likely lost in the clades of Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens during animal evolution.

  6. Highly improved reliability of amber light emitting diode with Ca -α-SiAlON phosphor in glass formed by gas pressure sintering for automotive applications.

    PubMed

    Yoon, Chang-Bun; Kim, Sanghyun; Choi, Sung-Woo; Yoon, Chulsoo; Ahn, Sang Hyeon; Chung, Woon Jin

    2016-04-01

    Phosphor in glass (PiG) with 40 wt% of Ca-α-SiAlON phosphor and 60 wt% of Pb-free silicate glass was synthesized and mounted on a high-power blue LED to make an amber LED for automotive applications. Gas pressure sintering was applied after the conventional sintering process was used to achieve fully dense PiG plates. Changes in photoluminescence spectra and color coordination were inspected by varying the thickness of the plates that were mounted after optical polishing and machining. A trade-off between luminous flux and color purity was observed. The commercial feasibility of amber PiG packaged LED, which can satisfy international regulations for automotive components, was successfully demonstrated by examining the practical reliability under 85% humidity at an 85°C condition.

  7. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    NASA Astrophysics Data System (ADS)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  8. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract.

    PubMed

    Ogawa, Atsushi; Namba, Yuki; Gakumasawa, Mai

    2016-03-07

    Amber suppression is a useful method of genetically incorporating a non-natural amino acid (NAA) into a protein during translation by utilizing an NAA-charged amber suppressor tRNA (sup-tRNA). A wheat germ extract (WGE) is suitable for this method by virtue of its high productivity and versatility in addition to its advantages as a cell-free translation system. However, in spite of this high potential, a genetic NAA incorporation system in WGE has not been sufficiently optimized in terms of sup-tRNAs, in contrast to that in E. coli and its cell extracts. We herein rationally optimized amber sup-tRNAs to efficiently incorporate a model NAA, p-acetyl-phenylalanine (AcPhe), into a protein in WGE, via flexizyme-based aminoacylation. The optimized sup-tRNA (named tLys-opt) that was pre-charged with AcPhe exclusively yielded up to 220 μg mL(-1) of AcPhe-incorporated protein (yellow fluorescent protein, YPet) under the optimal conditions. This high productivity is comparable to the best reported yield of a similar NAA-incorporated protein synthesized with an engineered aminoacyl-tRNA synthetase/sup-tRNA pair in WGE, despite the fact that tLys-opt that has released AcPhe was not reused at all in this study. The results clearly show both the necessity of optimizing sup-tRNAs for efficient NAA incorporation and the validity of our strategy for their optimization. Because the optimization strategy described here is expected to be applicable not only to amber sup-tRNAs for other NAAs but also to ones used in other acylation methods, it would facilitate the synthesis of large amounts of various types of NAA-incorporated proteins in WGE.

  9. Ab initio computational applications to complex biomolecular systems

    NASA Astrophysics Data System (ADS)

    Liang, Lei

    A series of biomaterial related systems---including water and DNA molecules---have been studied using ab initio (first-principles) methods. By investigating the properties of water as the preliminary step, the hydrogen bond (HB) interactions, which play important roles in biomolecules, were better understood from the quantum mechanical viewpoint. The calculated K-edge x-ray absorption near edge structure (XANES) spectra of all 340 oxygen atoms in the model have been accumulated to reproduce the experimental one. The spectra were shown to be very sensitive to the HB configurations of O atoms, which could be used to elucidate the subtle structural variations in complex biomolecules. The simulation of single-molecule DNA overstretching experiments under torsionally constrained condition has been carried out afterwards. The initial DNA models were stretched stepwisely and eventually gained an extension of 1.5-fold (150% x the original length). The variation of total energy, atomic configuration, and the electronic structure during this process were analyzed in details. At the extension of ˜1.3-fold, the ring opening reactions occurred in the backbones. The backbone nicks appeared at elongations of ˜1.40-fold. The whole process was accompanied by HB breaking and charge transfers. We have proposed an overstretched structure named O-DNA (Opened-DNA) to clarify the confusion in understanding the behavior of DNA under high force load. With more experiences gained, a comprehensive methodology revealing the underlying principles of bioprocesses from the quantum mechanical viewpoint eventually come up. For the purpose of better computational accuracy, the scheme of implementing the generalized gradient approximation (GGA) exchange-correlation functionals into the Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) program suite has been discussed, and the computational efficiency has been analyzed correspondingly. Moreover, the parallel strategy for performing

  10. Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry

    PubMed Central

    Hilton, Gillian R.; Benesch, Justin L. P.

    2012-01-01

    Mass spectrometry (MS) is a recognized approach for characterizing proteins and the complexes they assemble into. This application of a long-established physico-chemical tool to the frontiers of structural biology has stemmed from experiments performed in the early 1990s. While initial studies focused on the elucidation of stoichiometry by means of simple mass determination, developments in MS technology and methodology now allow researchers to address questions of shape, inter-subunit connectivity and protein dynamics. Here, we chart the remarkable rise of MS and its application to biomolecular complexes over the last two decades. PMID:22319100

  11. Biomolecular interactions in HCV nucleocapsid-like particles as revealed by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Casado, Arantxa; Molina, Marina; Carmona, Pedro

    2007-05-01

    Hepatitis C virus (HCV) occurs in the form of 55-65 nm spherical particles, but the structure of the virion remains to be clarified. Structural studies of HCV have been hampered by the lack of an appropriate cell culture system. However, structural analyses of HCV components can provide an essential framework for understanding of the molecular mechanism of virion assembly. This article reviews the potential of vibrational spectroscopy aimed at the knowledge of HCV structural biology, particularly regarding biomolecular interactions in nucleocapsid-like particles obtained in vitro.

  12. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    SciTech Connect

    Fei, Yiyan; Landry, James P.; Zhu, X. D.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  13. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    NASA Astrophysics Data System (ADS)

    Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.

    2013-11-01

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  14. Biomolecular solid state NMR with magic-angle spinning at 25 K

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 liters/hour of liquid helium, while the 4 mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed. PMID:18922715

  15. Biomolecular Systems of Disease Buried Across Multiple GWAS Unveiled by Information Theory and Ontology

    PubMed Central

    Lee, Younghee; Li, Jianrong; Gamazon, Eric; Chen, James L.; Tikhomirov, Anna; Cox, Nancy J.; Lussier, Yves A.

    2010-01-01

    A key challenge for genome-wide association studies (GWAS) is to understand how single nucleotide polymorphisms (SNPs) mechanistically underpin complex diseases. While this challenge has been addressed partially by Gene Ontology (GO) enrichment of large list of host genes of SNPs prioritized in GWAS, these enrichment have not been formally evaluated. Here, we develop a novel computational approach anchored in information theoretic similarity, by systematically mining lists of host genes of SNPs prioritized in three adult-onset diabetes mellitus GWAS. The “gold-standard” is based on GO associated with 20 published diabetes SNPs’ host genes and on our own evaluation. We computationally identify 69 similarity-predicted GO independently validated in all three GWAS (FDR<5%), enriched with those of the gold-standard (odds ratio=5.89, P=4.81e-05), and these terms can be organized by similarity criteria into 11 groupings termed “biomolecular systems”. Six biomolecular systems were corroborated by the gold-standard and the remaining five were previously uncharacterized. http://lussierlab.org/publications/ITS-GWAS PMID:21347143

  16. Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions.

    PubMed

    Krishnamoorthy, Ganeshram; Carlen, Edwin T; Kohlheyer, Dietrich; Schasfoort, Richard B M; van den Berg, Albert

    2009-03-01

    Label-free biomolecular binding measurement methods, such as surface plasmon resonance (SPR), are becoming increasingly more important for the estimation of real-time binding kinetics. Recent advances in surface plasmon resonance imaging (iSPR) are emerging for label-free microarray-based assay applications, where multiple biomolecular interactions can be measured simultaneously. However, conventional iSPR microarray systems rely on protein printing techniques for ligand immobilization to the gold imaging surface and external pumps for analyte transport. In this article, we present an integrated microfluidics and iSPR platform that uses only electrokinetic transport and guiding of ligands and analytes and, therefore, requires only electrical inputs for sample transport. An important advantage of this new approach, compared to conventional systems, is the ability to direct a single analyte to a specific ligand location in the microarray, which can facilitate analysis parallelization. Additionally, this simple approach does not require complicated microfluidic channel arrangements, external pumps, or valves. As a demonstration, kinetics and affinity have been extracted from measured binding responses of human IgG and goat antihuman IgG using a simple 1:1 model and compared to responses measured with conventional pressure driven analyte transport. The measured results indicate similar binding kinetics and affinity between the electrokinetic and pressure-driven sample manipulation methods and no cross contamination to adjacent measurement locations has been observed.

  17. Application of Frontal Affinity Chromatography to Study the Biomolecular Interactions with Trypsin.

    PubMed

    Hu, YuanYuan; Qian, Junqing; Guo, Hui; Jiang, ShengLan; Zhang, Zheng

    2015-07-01

    Trypsin is a serine protease that has been proposed as a potential therapeutic target for metabolic disorders and malignancy diseases, thus the identification of biomolecular interactions of compounds to trypsin could be of great therapeutic importance. In this study, trypsin was immobilized on a monolithic silica capillary column via sol-gel. The binding properties of four small molecules (daidzin, genistin, matrine and oxymatrine) to trypsin were examined using the trypsin affinity columns by frontal analysis. The results indicate that the matrine (dissociation constant, Kd = 7.904 μM) has stronger interaction with trypsin than the oxymatrine (Kd = 8.204 μM), whereas daidzin and genistin were nearly have no affinity with trypsin. The results demonstrated that the frontal affinity chromatography can be used for the direct determination of protein-protease inhibitor binding interactions and have several significant advantages, including easy fabricating, reproducible, minimal technological requirements and potential to become a reliable alternative for quantitative studies of biomolecular interactions.

  18. Investigating biomolecular recognition at the cell surface using atomic force microscopy.

    PubMed

    Wang, Congzhou; Yadavalli, Vamsi K

    2014-05-01

    Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique.

  19. A Microchip for Quantitative Analysis of CNS Axon Growth under Localized Biomolecular Treatments

    PubMed Central

    Park, Jaewon; Kim, Sunja; Park, Su Inn; Choe, Yoonsuck; Li, Jianrong; Han, Arum

    2013-01-01

    Growth capability of neurons is an essential factor in axon regeneration. To better understand how microenvironments influence axon growth, methods that allow spatial control of cellular microenvironments and easy quantification of axon growth are critically needed. Here, we present a microchip capable of physically guiding the growth directions of axons while providing physical and fluidic isolation from neuronal somata/dendrites that enables localized biomolecular treatments and linear axon growth. The microchip allows axons to grow in straight lines inside the axon compartments even after the isolation; therefore, significantly facilitating the axon length quantification process. We further developed an image processing algorithm that automatically quantifies axon growth. The effect of localized extracellular matrix components and brain-derived neurotropic factor treatments on axon growth was investigated. Results show that biomolecules may have substantially different effects on axon growth depending on where they act. For example, while chondroitin sulfate proteoglycan causes axon retraction when added to the axons, it promotes axon growth when applied to the somata. The newly developed microchip overcomes limitations of conventional axon growth research methods that lack localized control of biomolecular environments and are often performed at a significantly lower cell density for only a short period of time due to difficulty in monitoring of axonal growth. This microchip may serve as a powerful tool for investigating factors that promote axon growth and regeneration. PMID:24161788

  20. The detection of specific biomolecular interactions with micro-Hall magnetic sensors.

    PubMed

    Manandhar, Pradeep; Chen, Kan-Sheng; Aledealat, Khaled; Mihajlović, Goran; Yun, C Steven; Field, Mark; Sullivan, Gerard J; Strouse, Geoffrey F; Chase, P Bryant; von Molnár, Stephan; Xiong, Peng

    2009-09-02

    The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.

  1. Technology Development of Miniaturized Far-Infrared Sources for Biomolecular Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kono, Junichiro

    2003-01-01

    The objective of this project was to develop a purely solid-state based, thus miniaturized, far-infrared (FIR) (also known as terahertz (THz)) wave source using III-V semiconductor nanostructures for biomolecular detection and sensing. Many biomolecules, such as DNA and proteins, have distinct spectroscopic features in the FIR wavelength range as a result of vibration-rotation-tunneling motions and various inter- and intra-molecule collective motions. Spectroscopic characterization of such molecules requires narrow linewidth, sufficiently high power, tunable (in wavelength), and coherent FIR sources. Unfortunately, the FIR frequency is one of the least technologically developed ranges in the electromagnetic spectrum. Currently available FIR sources based on non-solid state technology are bulky, inefficient, and very often incoherent. In this project we investigated antimonide based compound semiconductor (ABCS) nanostructures as the active medium to generate FIR radiation. The final goal of this project was to demonstrate a semiconductor THz source integrated with a pumping diode laser module to achieve a compact system for biomolecular applications.

  2. Photochemical grafting and patterning of biomolecular layers onto TiO2 thin films.

    PubMed

    Li, Bo; Franking, Ryan; Landis, Elizabeth C; Kim, Heesuk; Hamers, Robert J

    2009-05-01

    TiO2 thin films are highly stable and can be deposited onto a wide variety of substrate materials under moderate conditions. We demonstrate that organic alkenes will graft to the surface of TiO2 when illuminated with UV light at 254 nm and that the resulting layers provide a starting point for the preparation of DNA-modified TiO2 thin films exhibiting excellent stability and biomolecular selectivity. By using alkenes with a protected amino group at the distal end, the grafted layers can be deprotected to yield molecular layers with exposed primary amino groups that can then be used to covalently link DNA oligonucleotides to the TiO2 surface. We demonstrate that the resulting DNA-modified surfaces exhibit excellent selectivity toward complementary versus noncomplementary target sequences in solution and that the surfaces can withstand 25 cycles of hybridization and denaturation in 8.3 M urea with little or no degradation. Furthermore, the use of simple masking methods provides a way to directly control the spatial location of the grafted layers, thereby providing a way to photopattern the spatial distribution of biologically active molecules to the TiO2 surfaces. Using Ti films ranging from 10 to 100 nm in thickness allows the preparation of TiO2 films that range from highly reflective to almost completely transparent; in both cases, the photochemical grafting of alkenes can be used as a starting point for stable surfaces with good biomolecular recognition properties.

  3. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    PubMed

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  4. Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR

    NASA Astrophysics Data System (ADS)

    Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio

    2016-03-01

    A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ⩾3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.

  5. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches.

    PubMed

    Cao, Bin; Nagarajan, Karthiga; Loh, Kai-Chee

    2009-11-01

    Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and "omics" technologies in aromatics biodegradation.

  6. Biomolecular detection at ssDNA-conjugated nanoparticles by nano-impact electrochemistry.

    PubMed

    Karimi, Anahita; Hayat, Akhtar; Andreescu, Silvana

    2017-01-15

    We describe the use of ssDNA functionalized silver nanoparticle (AgNP) probes for quantitative investigation of biorecognition and real time detection of biomolecular targets using nano-impact electrochemistry. The method is based on measurements of the individual collision events between ssDNA aptamer-functionalized AgNPs and a carbon fiber miroelectrode (CFME). Specific binding events of target analyte induced collision frequency changes enabling ultrasensitive detection of the aptamer target in a single step. These changes are assigned to the surface coverage of the NP by the ssDNA aptamers and subsequent conformational changes of the aptamer probe which affect the electron transfer between the NP and the electrode surface. The method enables sensitive and selective detection of ochratoxin A (OTA), chosen here as a model target, with a limit of detection of 0.05nM and a relative standard deviation of 4.9%. The study provides a means of characterizing bioconjugation of AgNPs with aptamers and assessing biomolecular recognition events with high sensitivity and without the use of exogenous reagents or enzyme amplification steps. This methodology can be broadly applicable to other bioconjugated systems, biosensing and related bioanalytical applications.

  7. Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers.

    PubMed

    Kim, Heesuk; Colavita, Paula E; Metz, Kevin M; Nichols, Beth M; Sun, Bin; Uhlrich, John; Wang, Xiaoyu; Kuech, Thomas F; Hamers, Robert J

    2006-09-12

    We demonstrate that photochemical functionalization can be used to functionalize and photopattern the surface of gallium nitride crystalline thin films with well-defined molecular and biomolecular layers. GaN(0001) surfaces exposed to a hydrogen plasma will react with organic molecules bearing an alkene (C=C) group when illuminated with 254 nm light. Using a bifunctional molecule with an alkene group at one end and a protected amine group at the other, this process can be used to link the alkene group to the surface, leaving the protected amine exposed. Using a simple contact mask, we demonstrate the ability to directly pattern the spatial distribution of these protected amine groups on the surface with a lateral resolution of <12 mum. After deprotection of the amines, single-stranded DNA oligonucleotides were linked to the surface using a bifunctional cross-linker. Measurements using fluorescently labeled complementary and noncomplementary sequences show that the DNA-modified GaN surfaces exhibit excellent selectivity, while repeated cycles of hybridization and denaturation in urea show good stability. These results demonstrate that photochemical functionalization can be used as an attractive starting point for interfacing molecular and biomolecular systems with GaN and other compound semiconductors.

  8. Protective capacities of certain spices against peroxynitrite-mediated biomolecular damage.

    PubMed

    Ho, Su-Chen; Tsai, Tzung-Hsun; Tsai, Po-Jung; Lin, Chih-Cheng

    2008-03-01

    Peroxynitrite, a potent cytotoxic agent, can damage a variety of biomolecules such as proteins, lipids, and DNA, and is considered as one of the major pathological causes of several diseases. Therefore, it would appear likely that interception of peroxynitrite by certain dietary compounds may represent one mechanism by which such foods may exert their beneficial action in vivo. A number of researchers have speculated that certain spices, rich in phenolics, may, conceivably, act as potential protectors against the actions of peroxynitrite. Eight culinary spices including cardamom, cinnamon, cloves, cumin, nutmeg, paprika, rosemary and turmeric were selected for study purposes. Further, the protective effects of methanol extracts of such spices against peroxynitrite-mediated damage to proteins, lipids and DNA were evaluated as determined by these extracts' ability to attenuate the formation of, respectively, nitrotyrosine in albumin, thiobarbiturate acid-reactive substances (TBARS) in liposome and strand breakages for plasmid DNA. All of the tested spices exerted some level of protective ability against peroxynitrite-mediated biomolecular damage. Amongst them, cloves deserve special attention due to their outstanding protective abilities against two of three forms of peroxynitrite-mediated biomolecular damage. Additionally, the phenolic content of certain spices appears to correlate well with such spices' protective effect against peroxynitrite-mediated tyrosine nitration and lipid peroxidation. Such an observation indicates that phenolics present in the spices contributed to such spice-elicited protection against peroxynitrite toxicity.

  9. Bridging the gap between chewing and sucking in the hemipteroid insects:
    new insights from Cretaceous amber.

    PubMed

    Yoshizawa, Kazunori; Lienhard, Charles

    2016-02-11

    The diversity of feeding apparatuses in insects far exceeds that observed in any other animal group. Consequently, tracking mouthpart innovation in insects is one of the keys toward understanding their diversification. In hemipteroid insects (clade Paraneoptera or Acercaria: lice, thrips, aphids, cicadas, bugs, etc.), the transition from chewing to piercing-and-sucking mouthparts is widely regarded as the turning point that enabled hyperdiversification of the Hemiptera, the fifth largest insect order. However, the transitional process from chewing to piercing-and-sucking in the Paraneoptera was hitherto completely unknown. In this paper, we report a well preserved mid Cretaceous amber fossil of the paraneopteran insect family Archipsyllidae and describe it as Mydiognathus eviohlhoffae gen. et sp. n. This species has elongate mandibles and styliform laciniae similar to Hemiptera but retains functional chewing mouthparts. A number of morphological characters place the Archipsyllidae as the sister group of the thrips plus hemipterans, which strongly suggests that the mouthparts of M. eviohlhoffae represent a transitional condition from primitive chewing to derived piercing-and-sucking mouthparts. The clade composed of Archipsyllidae, thrips, and hemipterans is here named Pancondylognatha, a new supra-ordinal taxon. Based on newly obtained information, we also assess the monophyly of the Paraneoptera, which was called into question by recent phylogenomic analyses. A phylogenetic analysis that includes Mydiognathus strongly supports the monophyly of the Paraneoptera.

  10. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB.

    PubMed

    Zhou, Chen-Yang; Jiang, Fan; Wu, Yun-Dong

    2015-01-22

    Recently, we developed a residue-specific force field (RSFF1) based on conformational free-energy distributions of the 20 amino acid residues from a protein coil library. Most parameters in RSFF1 were adopted from the OPLS-AA/L force field, but some van der Waals and torsional parameters that effectively affect local conformational preferences were introduced specifically for individual residues to fit the coil library distributions. Here a similar strategy has been applied to modify the Amber ff99SB force field, and a new force field named RSFF2 is developed. It can successfully fold α-helical structures such as polyalanine peptides, Trp-cage miniprotein, and villin headpiece subdomain and β-sheet structures such as Trpzip-2, GB1 β-hairpins, and the WW domain, simultaneously. The properties of various popular force fields in balancing between α-helix and β-sheet are analyzed based on their descriptions of local conformational features of various residues, and the analysis reveals the importance of accurate local free-energy distributions. Unlike the RSFF1, which overestimates the stability of both α-helix and β-sheet, RSFF2 gives melting curves of α-helical peptides and Trp-cage in good agreement with experimental data. Fitting to the two-state model, RSFF2 gives folding enthalpies and entropies in reasonably good agreement with available experimental results.

  11. Maternally inherited architecture in tertiary leaf beetles: paleoichnology of cryptocephaline fecal cases in Dominican and Baltic amber

    NASA Astrophysics Data System (ADS)

    Chaboo, Caroline S.; Engel, Michael S.; Chamorro-Lacayo, Maria Lourdes

    2009-09-01

    Complex ethological adaptations and intraspecific interactions leave few fossil traces. We document three Dominican (20 million years old [myo]) and Baltic (45 myo) amber fossils that exhibit firm evidence of highly integrated interactions between mothers and offspring in the diverse camptosomate lineage of beetles (Chrysomelidae, leaf beetles). As in contemporary species, these hard cases were initially constructed by mothers, then inherited and retained by offspring, which then elaborate this protective domicile with an unusual but economical building material, their feces. The three fossils are classified in the Subfamily Cryptocephalinae; two are classified in the tribe Chlamisini based on morphological evidence—the flattened head lacking a sharp keel and long legs with simple recurved untoothed claws. These diagnostic features are not clearly visible in the third specimen to permit more refined identification. These fossils provide more precise paleontological dating of tribal nodes within the cryptocephaline radiation of leaf beetles. These fossils are the first and earliest evidence of mother-offspring interaction, building behavior, and fecal recycling in Camptosomata beetles and of inheritance of architectural structures in beetles.

  12. Vetufebrus ovatus n. gen., n. sp. (Haemospororida: Plasmodiidae) vectored by a streblid bat fly (Diptera: Streblidae) in Dominican amber

    PubMed Central

    2011-01-01

    Background Both sexes of bat flies in the families Nycteribiidae and Streblidae (Diptera: Hippoboscoidea) reside in the hair or on the wing membranes of bats and feed on blood. Members of the Nycteribiidae transmit bat malaria globally however extant streblids have never been implemented as vectors of bat malaria. The present study shows that during the Tertiary, streblids also were vectors of bat malaria. Results A new haemospororidan, Vetufebrus ovatus, n. gen., n. sp., (Haemospororida: Plasmodiidae) is described from two oocysts attached to the midgut wall and sporozoites in salivary glands and ducts of a fossil bat fly (Diptera: Streblidae) in Dominican amber. The new genus is characterized by ovoid oocysts, short, stubby sporozoites with rounded ends and its occurrence in a fossil streblid. This is the first haemosporidian reported from a streblid bat fly and shows that representatives of the Hippoboscoidea were vectoring bat malaria in the New World by the mid-Tertiary. Conclusions This report is the first evidence of an extant or extinct streblid bat fly transmitting malaria. Discovering a mid-tertiary malarial parasite in a fossil streblid that closely resembles members of a malarial genus found in nycteribiid bat flies today shows how little we know about the vector associations of streblids. While no malaria parasites have been found in extant streblids, they probably occur and it is possible that streblids were the earliest lineage of flies that transmitted bat malaria to Chiroptera. PMID:22152687

  13. Phylogenetic placement, developmental trajectories and evolutionary implications of a feathered dinosaur tail in Mid-Cretaceous amber.

    PubMed

    Lambertz, Markus

    2017-03-20

    In a recent report in Current Biology, Xing and colleagues [1] present a small fragment of a vertebrate tail preserved in amber that bears integumentary appendages (DIP-V-15103, Dexu Institute of Paleontology, Chaozhou, China; Figure 1). Following several analyses using cutting-edge technology the authors conclude that: the tail belongs to a non-avian theropod dinosaur (non-avialan according to the authors, but non-avian used synonymously here); the dinosaur most likely was a member of the Coelurosauria, possibly even Maniraptora; and, the integumentary appendages are feathers that support a barbule-first evolutionary pattern for feathers. DIP-V-15103 is indeed an intriguing specimen with potential implications for contributing to understanding the evolution of feathers among dinosaurs, which remains a current and undoubtedly controversial topic [2,3]. However, I would like to raise several concerns about the available evidence for the phylogenetic hypothesis concerning the placement of DIP-V-15103 as concluded by Xing and colleagues [1], and furthermore discuss the developmental trajectories predicted by them in light of their far-reaching evolutionary implications.

  14. Current and emerging opportunities for molecular simulations in structure-based drug design

    PubMed Central

    Michel, Julien

    2014-01-01

    An overview of the current capabilities and limitations of molecular simulation of biomolecular complexes in the context of computer-aided drug design is provided. Steady improvements in computer hardware coupled with more refined representations of energetics are leading to a new appreciation of the driving forces of molecular recognition. Molecular simulations are poised to more frequently guide the interpretation of biophysical measurements of biomolecular complexes. Ligand design strategies emerge from detailed analyses of computed structural ensembles. The feasibility of routine applications to ligand optimization problems hinges upon successful extensive large scale validation studies and the development of protocols to intelligently automate computations. PMID:24469595

  15. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    PubMed

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO.

  16. Investigation of the Human Disease Osteogenesis Imperfecta: A Research-Based Introduction to Concepts and Skills in Biomolecular Analysis

    ERIC Educational Resources Information Center

    Mate, Karen; Sim, Alistair; Weidenhofer, Judith; Milward, Liz; Scott, Judith

    2013-01-01

    A blended approach encompassing problem-based learning (PBL) and structured inquiry was used in this laboratory exercise based on the congenital disease Osteogenesis imperfecta (OI), to introduce commonly used techniques in biomolecular analysis within a clinical context. During a series of PBL sessions students were presented with several…

  17. Biochemical and biomolecular aspects of oxidative stress due to acute and severe hypoxia in human muscle tissue.

    PubMed

    Corbucci, G G; Sessego, R; Velluti, C; Salvi, M

    1995-01-01

    Mitochondrial oxidative stress was investigated in severe and acute hypoxia and in reperfusion applied to human muscle tissues. The biochemical and biomolecular relationship between the response of the respiratory-chain enzymic complexes and the metabolism of specific hypoxia stress proteins (HSP) suggest an adaptive mechanism which antagonizes the oxidative damage due to acute and severe tissue hypoxia.

  18. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.

    PubMed

    Tong, Yan; Ji, Chang G; Mei, Ye; Zhang, John Z H

    2009-06-24

    Molecular dynamics simulations of NMR backbone relaxation order parameters have been carried out to investigate the polarization effect on the protein's local structure and dynamics for five benchmark proteins (bovine pancreatic trypsin inhibitor, immunoglobulin-binding domain (B1) of streptococcal protein G, bovine apo-calbindin D9K, human interleukin-4 R88Q mutant, and hen egg white lysozyme). In order to isolate the polarization effect from other interaction effects, our study employed both the standard AMBER force field (AMBER03) and polarized protein-specific charges (PPCs) in the MD simulations. The simulated order parameters, employing both the standard nonpolarizable and polarized force fields, are directly compared with experimental data. Our results show that residue-specific order parameters at some specific loop and turn regions are significantly underestimated by the MD simulations using the standard AMBER force field, indicating hyperflexibility of these local structures. Detailed analysis of the structures and dynamic motions of individual residues reveals that the hyperflexibility of these local structures is largely related to the breaking or weakening of relevant hydrogen bonds. In contrast, the agreement with the experimental results is significantly improved and more stable local structures are observed in the MD simulations using the polarized force field. The comparison between theory and experiment provides convincing evidence that intraprotein hydrogen bonds in these regions are stabilized by electronic polarization, which is critical to the dynamical stability of these local structures in proteins.

  19. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (<15%). With this degree of control, existing protein crystal applications such as drug delivery and analytical sensors can reach their full potential. Applications for larger crystals with inherently ubiquitous pore structures could extend to materials used for membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron

  20. OBESITY, BODY FAT DISTRIBUTION, AND RISK OF BREAST CANCER SUBTYPES IN AFRICAN AMERICAN WOMEN PARTICIPATING IN THE AMBER CONSORTIUM

    PubMed Central

    Bandera, Elisa V.; Chandran, Urmila; Hong, Chi-Chen; Troester, Melissa A.; Bethea, Traci N.; Adams-Campbell, Lucile L.; Haiman, Christopher A.; Park, Song-Yi; Olshan, Andrew F.; Ambrosone, Christine B.; Palmer, Julie R.; Rosenberg, Lynn

    2015-01-01

    Purpose African American (AA) women are more likely than white women to be obese and to be diagnosed with ER- and triple negative (TN) breast cancer, but few studies have evaluated the impact of obesity and body fat distribution on breast cancer subtypes in AA women. We evaluated these associations in the AMBER Consortium by pooling data from four large studies. Methods Cases were categorized according to hormone receptor status as ER+, ER-, and TN (ER-, PR-, and HER2-) based on pathology data. A total of 2,104 ER+ cases, 1,070 ER- cases (including 491 TN cases), and 12,060 controls were included. Odds ratios (OR) and 95% confidence intervals (CI) were computed using logistic regression, taking into account breast cancer risk factors. Results In postmenopausal women, higher recent (most proximal value to diagnosis/index date) BMI was associated with increased risk of ER+ cancer (OR: 1.31; 95% CI: 1.02–1.67 for BMI≥35 vs <25 kg/m2) and with decreased risk of TN tumors (OR: 0.60; 95% CI: 0.39–0.93 for BMI≥35 vs. <25). High young adult BMI was associated with decreased premenopausal ER+ cancer and all subtypes of postmenopausal cancer, and high recent waist-to-hip ratio (WHR) with increased risk of pre-menopausal ER+ tumors (OR: 1.35; 95% CI: 1.01–1.80) and all tumor subtypes combined in postmenopausal women (OR: 1.26; 95% CI: 1.02–1.56). Conclusions The impact of general and central obesity varies by menopausal status and hormone receptor subtype in AA women. Our findings imply different mechanisms for associations of adiposity with TN and ER+ breast cancers. PMID:25809092

  1. A Collaborative Study of the Etiology of Breast Cancer Subtypes in African American Women: the AMBER Consortium

    PubMed Central

    Palmer, Julie R.; Ambrosone, Christine B.; Olshan, Andrew F.

    2014-01-01

    Purpose Breast cancer is a heterogeneous disease, with at least five intrinsic subtypes defined by molecular characteristics. Tumors that express the estrogen receptor (ER+) have better outcomes than ER− tumors, due in part to the success of hormonal therapies that target ER+ tumors. The incidence of ER− breast cancer, and the subset of ER− cancers that are basal-like, is about twice as high among African American (AA) women as among U.S. women of European descent (EA). This disparity appears to explain, in part, the disproportionately high mortality from breast cancer that occurs in AA women. Epidemiologic research on breast cancer in AA women lags behind research in EA women. Here, we review differences in the etiology of breast cancer subtypes among AA women and describe a new consortium of ongoing studies of breast cancer in AA women. Methods We combined samples and data from four large epidemiologic studies of breast cancer in AA women, two cohort and two case-control, creating the AMBER consortium. Tumor tissue is obtained and stored in tissue microarrays, with assays of molecular markers carried out at a pathology core. Genotyping, carried out centrally, includes a whole exome SNP array and over 180,000 custom SNPs for fine-mapping of GWAS loci and candidate pathways. Results To date, questionnaire data from 5,739 breast cancer cases and 14,273 controls have been harmonized. Genotyping of the first 3,200 cases and 3,700 controls is underway, with a total of 6,000 each expected by the end of the study period. Conclusions The new consortium will likely have sufficient statistical power to assess potential risk factors, both genetic and non-genetic in relation to specific subtypes of breast cancer in AA women. PMID:24343304

  2. Genetic variations in vitamin D-related pathways and breast cancer risk in African American women in the AMBER consortium.

    PubMed

    Yao, Song; Haddad, Stephen A; Hu, Qiang; Liu, Song; Lunetta, Kathryn L; Ruiz-Narvaez, Edward A; Hong, Chi-Chen; Zhu, Qianqian; Sucheston-Campbell, Lara; Cheng, Ting-Yuan David; Bensen, Jeannette T; Johnson, Candace S; Trump, Donald L; Haiman, Christopher A; Olshan, Andrew F; Palmer, Julie R; Ambrosone, Christine B

    2016-05-01

    Studies of genetic variations in vitamin D-related pathways and breast cancer risk have been conducted mostly in populations of European ancestry, and only sparsely in African Americans (AA), who are known for a high prevalence of vitamin D deficiency. We analyzed 24,445 germline variants in 63 genes from vitamin D-related pathways in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium, including 3,663 breast cancer cases and 4,687 controls. Odds ratios (OR) were derived from logistic regression models for overall breast cancer, by estrogen receptor (ER) status (1,983 ER positive and 1,098 ER negative), and for case-only analyses of ER status. None of the three vitamin D-related pathways were associated with breast cancer risk overall or by ER status. Gene-level analyses identified associations with risk for several genes at a nominal p ≤ 0.05, particularly for ER- breast cancer, including rs4647707 in DDB2. In case-only analyses, vitamin D metabolism and signaling pathways were associated with ER- cancer (pathway-level p = 0.02), driven by a single gene CASR (gene-level p = 0.001). The top SNP in CASR was rs112594756 (p = 7 × 10(-5), gene-wide corrected p = 0.01), followed by a second signal from a nearby SNP rs6799828 (p = 1 × 10(-4), corrected p = 0.03). In summary, several variants in vitamin D pathways were associated with breast cancer risk in AA women. In addition, CASR may be related to tumor ER status, supporting a role of vitamin D or calcium in modifying breast cancer phenotypes.

  3. Platform for combined analysis of functional and biomolecular phenotypes of the same cell

    PubMed Central

    Kelbauskas, L.; Ashili, S.; Zeng, J.; Rezaie, A.; Lee, K.; Derkach, D.; Ueberroth, B.; Gao, W.; Paulson, T.; Wang, H.; Tian, Y.; Smith, D.; Reid, B.; Meldrum, Deirdre R.

    2017-01-01

    Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression. PMID:28300162

  4. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry

    PubMed Central

    Lo Giudice, Maria Cristina; Herda, Luciana M.; Polo, Ester; Dawson, Kenneth A.

    2016-01-01

    Nanoparticles interacting with, or derived from, living organisms are almost invariably coated in a variety of biomolecules presented in complex biological milieu, which produce a bio-interface or ‘biomolecular corona' conferring a biological identity to the particle. Biomolecules at the surface of the nanoparticle–biomolecule complex present molecular fragments that may be recognized by receptors of cells or biological barriers, potentially engaging with different biological pathways. Here we demonstrate that using intense fluorescent reporter binders, in this case antibodies bound to quantum dots, we can map out the availability of such recognition fragments, allowing for a rapid and meaningful biological characterization. The application in microfluidic flow, in small detection volumes, with appropriate thresholding of the detection allows the study of even complex nanoparticles in realistic biological milieu, with the emerging prospect of making direct connection to conditions of cell level and in vivo experiments. PMID:27845346

  5. Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces

    SciTech Connect

    Johs, Alexander; Liang, Liyuan; Gu, Baohua; Ankner, John Francis; Wang, Wei

    2009-01-01

    Structures and functions of cell membranes are of central importance in understanding processes such as cell signaling, chemotaxis, redox transformation, biofilm formation, and mineralization occurring at interfaces. This chapter provides an overview of the application of neutron reflectivity (NR) as a unique tool for probing biomolecular structures and mechanisms as a first step toward understanding protein protein, protein lipid, and protein mineral interactions at the membrane substrate interfaces. Emphasis is given to the review of existing literature on the assembly of biomimetic membrane systems, such as supported membranes for NR studies, and demonstration of model calculations showing the potential of NR to elucidate molecular fundamentals of microbial cell mineral interactions and structure functional relationships of electron transport pathways. The increased neutron flux afforded by current and upcoming neutron sources holds promise for elucidating detailed processes such as phase separation, formation of microdomains, and membrane interactions with proteins and peptides in biological systems.

  6. Water in Biomolecular Fluorescence Spectroscopy and Imaging: Side Effects and Remedies.

    PubMed

    Fürstenberg, Alexandre

    2017-02-22

    Historically, many of the classical organic fluorescent dyes were developed as laser dyes and characterized and optimized in organic solvents. Since then, fluorescence has, however, found a vast range of applications in the life sciences in which the fluorophores are usually surrounded by water and not by organic solvents. The omnipresence of water in biomolecular fluorescence spectroscopy and imaging leads to some unwanted but nonetheless unavoidable consequences on the photophysical properties of the dyes, which may impact the quality and complicate quantitative interpretation of the experiments. This paper discusses and illustrates with examples two such water-induced phenomena, namely chromophore aggregation in water and fluorescence quenching by water, as well as some ways to overcome them.

  7. AFMPB: An Adaptive Fast Multipole Poisson-Boltzmann Solver for Calculating Electrostatics in Biomolecular Systems

    PubMed Central

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2010-01-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole to local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. PMID:20532187

  8. Computer programming and biomolecular structure studies: A step beyond internet bioinformatics.

    PubMed

    Likić, Vladimir A

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled Biomolecular Structure and Bioinformatics. Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics approach that relies on access to the Internet and biological databases. This was an ambitious approach considering that the students mostly had a biological background. There were also time constraints of eight lectures in total and two accompanying practical sessions. The main challenge was that students had to be introduced to computer programming from a beginner level and in a short time provided with enough knowledge to independently solve a simple bioinformatics problem. This was accomplished with a problem directly relevant to the rest of the subject, concerned with the structure-function relationships and experimental techniques for the determination of macromolecular structure.

  9. Quantitative assessment of electrostatic embedding in Density Functional Theory calculations of biomolecular systems

    SciTech Connect

    Fattebert, J; Law, R J; Bennion, B; Lau, E Y; Schwegler, E; Lightstone, F C

    2009-04-24

    We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.

  10. XML-based approaches for the integration of heterogeneous bio-molecular data

    PubMed Central

    Mesiti, Marco; Jiménez-Ruiz, Ernesto; Sanz, Ismael; Berlanga-Llavori, Rafael; Perlasca, Paolo; Valentini, Giorgio; Manset, David

    2009-01-01

    Background The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. Results In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. Conclusion XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources. PMID:19828083

  11. Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment.

    PubMed

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Seal, Katyayani; Proksch, Roger; Hohlbauch, Sophia; Revenko, Irene; Thompson, Gary Lee; Vertegel, Alexey A

    2007-10-24

    Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical phenomena in ferroelectric materials, and in recent years has been employed to study a broad range of non-ferroelectric polar materials, including piezoelectric biomaterials. At the same time, the technique has been extended from ambient to liquid imaging on model ferroelectric systems. Here, we present results on local electromechanical probing of several model cellular and biomolecular systems, including insulin and lysozyme amyloid fibrils, breast adenocarcinoma cells, and bacteriorhodopsin in a liquid environment. The specific features of PFM operation in liquid are delineated and bottlenecks on the route towards nanometre-resolution electromechanical imaging of biological systems are identified.

  12. Platform for combined analysis of functional and biomolecular phenotypes of the same cell.

    PubMed

    Kelbauskas, L; Ashili, S; Zeng, J; Rezaie, A; Lee, K; Derkach, D; Ueberroth, B; Gao, W; Paulson, T; Wang, H; Tian, Y; Smith, D; Reid, B; Meldrum, Deirdre R

    2017-03-16

    Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression.

  13. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry

    NASA Astrophysics Data System (ADS)

    Lo Giudice, Maria Cristina; Herda, Luciana M.; Polo, Ester; Dawson, Kenneth A.

    2016-11-01

    Nanoparticles interacting with, or derived from, living organisms are almost invariably coated in a variety of biomolecules presented in complex biological milieu, which produce a bio-interface or `biomolecular corona' conferring a biological identity to the particle. Biomolecules at the surface of the nanoparticle-biomolecule complex present molecular fragments that may be recognized by receptors of cells or biological barriers, potentially engaging with different biological pathways. Here we demonstrate that using intense fluorescent reporter binders, in this case antibodies bound to quantum dots, we can map out the availability of such recognition fragments, allowing for a rapid and meaningful biological characterization. The application in microfluidic flow, in small detection volumes, with appropriate thresholding of the detection allows the study of even complex nanoparticles in realistic biological milieu, with the emerging prospect of making direct connection to conditions of cell level and in vivo experiments.

  14. Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez, Laura; Rodrigues, Mafalda; Benito, Angel Maria; Pérez-García, Lluïsa; Puig-Vidal, Manel; Otero, Jorge

    2015-12-01

    The quantitative measurement of biomolecular interactions is of great interest in molecular biology. Atomic force microscopy (AFM) has proved its capacity to act as a biosensor and determine the affinity between biomolecules of interest. Nevertheless, the detection scheme presents certain limitations when it comes to developing a compact biosensor. Recently, piezoelectric quartz tuning forks (QTFs) have been used as laser-free detection sensors for AFM. However, only a few studies along these lines have considered soft biological samples, and even fewer constitute quantified molecular recognition experiments. Here, we demonstrate the capacity of QTF probes to perform specific interaction measurements between biotin-streptavidin complexes in buffer solution. We propose in this paper a variant of dynamic force spectroscopy based on representing adhesion energies E (aJ) against pulling rates v (nm s-1). Our results are compared with conventional AFM measurements and show the great potential of these sensors in molecular interaction studies.

  15. Biomolecular analysis and cancer diagnostics by negative mode probe electrospray ionization.

    PubMed

    Mandal, Mridul Kanti; Saha, Subhrakanti; Yoshimura, Kentaro; Shida, Yasuo; Takeda, Sen; Nonami, Hiroshi; Hiraoka, Kenzo

    2013-03-21

    We have examined several combinations of solvents and probes with the aim of optimizing the ionization conditions for biomolecules e.g., proteins, peptides and lipids by negative mode probe electrospray ionization mass spectrometry (PESI-MS). With the data presented in this study, negative-mode PESI-MS can be considered as a potential tool for biomolecular analysis and cancer diagnostics because of its simplicity in instrumental configuration. A sharper sampling probe was found to be better for obtaining high quality mass spectra because it can generate stable electrospray without the occurrence of gas breakdown. Although the best conditions may depend on each sample, aqueous organic solvent solutions, especially isopropanol-H(2)O (1/1) with a pH of ≥7, are shown to be preferable for negative-mode PESI-MS, which was successfully applied to colon cancer diagnosis.

  16. Biomolecular Self-Defense and Futility of High-Specificity Therapeutic Targeting

    PubMed Central

    Rosenfeld, Simon

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance. PMID:22272063

  17. The movement of actin-myosin biomolecular linear motor under AC electric fields: an experimental study.

    PubMed

    Lee, Yongkuk; Famouri, Parviz

    2013-03-15

    The role of actin-myosin as a biomolecular linear motor is considered a transport system at nanoscale because of their size, efficiency and functionality. To utilize the ability to transport, it is essential to control the random movement of actin filaments (F-actin) on myosin coated substrate. In the presence of an alternating current (AC) electric field, the direction of F-actin movement is regulated by electro-orientation torque and, as a result, its movement is perpendicularly toward the electrode edges. Our data confirm such aligned movement is proportional to the strength of applied electric field. Interestingly, the aligned movement is found frequency-dependent and the electrothermal effect is observed by means of the velocity measurement of aligned F-actin movement. The findings in this study may provide constructive information for manipulating actin-myosin nanotransport system to build functional nanodevices in future work.

  18. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    SciTech Connect

    Wei, Guowei; Baker, Nathan A.

    2016-11-11

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In these approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.

  19. The Trimethylamine Methyltransferase Gene and Multiple Dimethylamine Methyltransferase Genes of Methanosarcina barkeri Contain In-Frame and Read-Through Amber Codons†

    PubMed Central

    Paul, Ligi; Ferguson, Donald J.; Krzycki, Joseph A.

    2000-01-01

    Three different methyltransferases initiate methanogenesis from trimethylamine (TMA), dimethylamine (DMA) or monomethylamine (MMA) by methylating different cognate corrinoid proteins that are subsequently used to methylate coenzyme M (CoM). Here, genes encoding the DMA and TMA methyltransferases are characterized for the first time. A single copy of mttB, the TMA methyltransferase gene, was cotranscribed with a copy of the DMA methyltransferase gene, mtbB1. However, two other nearly identical copies of mtbB1, designated mtbB2 and mtbB3, were also found in the genome. A 6.8-kb transcript was detected with probes to mttB and mtbB1, as well as to mtbC and mttC, encoding the cognate corrinoid proteins for DMA:CoM and TMA:CoM methyl transfer, respectively, and with probes to mttP, encoding a putative membrane protein which might function as a methylamine permease. These results indicate that these genes, found on the chromosome in the order mtbC, mttB, mttC, mttP, and mtbB1, form a single transcriptional unit. A transcriptional start site was detected 303 or 304 bp upstream of the translational start of mtbC. The MMA, DMA, and TMA methyltransferases are not homologs; however, like the MMA methyltransferase gene, the genes encoding the DMA and TMA methyltransferases each contain a single in-frame amber codon. Each of the three DMA methyltransferase gene copies from Methanosarcina barkeri contained an amber codon at the same position, followed by a downstream UAA or UGA codon. The C-terminal residues of DMA methyltransferase purified from TMA-grown cells matched the residues predicted for the gene products of mtbB1, mtbB2, or mtbB3 if termination occurred at the UAA or UGA codon rather than the in-frame amber codon. The mttB gene from Methanosarcina thermophila contained a UAG codon at the same position as the M. barkeri mttB gene. The UAG codon is also present in mttB transcripts. Thus, the genes encoding the three types of methyltransferases that initiate methanogenesis

  20. Spatially resolving the outer atmosphere of the M giant BK Virginis in the CO first overtone lines with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Malbet, F.; Massi, F.; Meilland, A.; Stee, Ph.

    2012-01-01

    Context. The mass-loss mechanism in normal K-M giant stars with small variability amplitudes is not yet understood, although the majority among red giant stars are precisely of this type. Aims: We present high-spatial and high-spectral resolution observations of the M7 giant BK Vir with AMBER at the Very Large Telescope Interferometer (VLTI). Our aim is to probe the physical properties of the outer atmosphere by spatially resolving the star in the individual CO first overtone lines. Methods: BK Vir was observed between 2.26 and 2.31 μm using the 16-32-48 m telescope configuration with an angular resolution of 9.8 mas and a spectral resolution of 12 000. Results: The uniform-disk diameters observed in the CO first overtone lines are 12 - 31% larger than those measured in the continuum. We also detected asymmetry in the CO line-forming region, which manifests itself as non-zero/non-π differential and closure phases. The data taken 1.5 months apart show possible time variation on a spatial scale of 30 mas (corresponding to 3 × stellar diameter) at the CO band head. Comparison of the observed data with the MARCS photospheric model shows that whereas the observed CO line spectrum can be satisfactorily reproduced by the model, the angular sizes observed in the CO lines are much larger than predicted by the model. Our model with two additional CO layers above the MARCS photosphere reproduces the observed spectrum and interferometric data in the CO lines simultaneously. This model suggests that the inner CO layer at ~1.2 R⋆ is very dense and warm with a CO column density of ~1022 cm-2 and temperatures of 1900 - 2100 K, while the outer CO layer at 2.5-3.0 R⋆ is characterized by column densities of 1019-1020 cm-2 and temperatures of 1500 - 2100 K. Conclusions: Our AMBER observations of BK Vir have spatially resolved the extended molecular outer atmosphere of a normal M giant in the individual CO lines for the first time. The temperatures derived for the CO layers are