Sample records for ambient air sampling

  1. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    PubMed

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  2. A STRINGENT COMPARISON OF SAMPLING AND ANALYSIS METHODS FOR VOCS IN AMBIENT AIR

    EPA Science Inventory

    A carefully designed study was conducted during the summer of 1998 to simultaneously collect samples of ambient air by canisters and compare the analysis results to direct sorbent preconcentration results taken at the time of sample collection. A total of 32 1-h sample sets we...

  3. Laboratory Development of a Passive Sampling Device for Hydrazines in Ambient Air

    DTIC Science & Technology

    1990-05-30

    of dilution air . Conditioned house- compressed air is used as the diluent. The conditioning procedure consists of passing the house air through a...Device N4 for Hydrazines in Ambient Air P. A. TAFFE,* K. P. CROSSMAN,* S. L. ROSE-PEHRSSON, AND J. R. WYATT 0 Chemistry Dynamics and Diagnostic Branch...Ambient Air 6. AUTHOR(S) Taffe,* P. A., Crossman,* K. P., Wyatt, J. R., and Rose-Pehrsson, S. L. 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8

  4. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    USGS Publications Warehouse

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  5. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  6. Chemical reactivities of ambient air samples in three Southern California communities

    PubMed Central

    Eiguren-Fernandez, Arantza; Di Stefano, Emma; Schmitz, Debra A.; Guarieiro, Aline Lefol Nani; Salinas, Erika M.; Nasser, Elina; Froines, John R.; Cho, Arthur K.

    2015-01-01

    The potential adverse health effects of PM2.5 and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT) and dihydrobenzoic acid (DHBA) based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities with higher levels in the winter whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air. PMID:25947123

  7. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  8. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  9. Ambient Air Quality Data Inventory

    EPA Pesticide Factsheets

    The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen

  10. Analysis of EPA and DOE WIPP Air Sampling Data

    EPA Pesticide Factsheets

    During the April 2014 EPA visit to WIPP, EPA co-located four ambient air samplers with existing Department of Energy (DOE) ambient air samplers to independently corroborate DOE's reported air sampling results.

  11. Ambient air pollution and semen quality.

    PubMed

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  12. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quality Control for Ambient Sampling of PCDD/PCDF from Open Combustion Sources

    EPA Science Inventory

    Both long duration (> 6 h) and high temperature (up to 139o C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/d...

  14. Concentrations of particulates in ambient air, gaseous elementary mercury (GEM), and particulate-bound mercury (Hg(p)) at a traffic sampling site: a study of dry deposition in daytime and nighttime.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Chang, Chia-Ying; Zheng, Yu-Cheng

    2014-08-01

    In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of TSP in ambient air, GEM, and Hg(p) were 69.72 μg/m(3), 3.17, and 0.024 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rates of dry deposition of particles from ambient air and Hg(p) were 145.20 μg/m(2) min and 0.022 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of TSP in ambient air, GEM, and Hg(p) were 60.56 μg/m(3), 2.74, and 0.018 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and Hg(p) from ambient air were 132.58 μg/m(2) min and 0.016 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period.

  15. Ambient air monitoring of Beijing MSW logistics facilities in 2006.

    PubMed

    Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu

    2008-11-01

    In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.

  16. METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...

  17. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    EPA Science Inventory

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  18. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  19. Diagnosis of ambient air pollution injury to red maple leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, C.R.

    1981-01-01

    Ramets of red maple, Acer rubrum L. (cv 'Scarlet Sentinel') were grown under ambient field conditions for 5 months (May-Sept) in either clean air (i.e. minimum background of ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/)) or were grown in polluted air containing phytotoxic combinations of O/sub 3/ and SO/sub 2/. At the end of the growing season leaf samples from each site were fixed in glutaraldehyde, washed in buffer (3X) post-fixed in O/sub s/O/sub 4/, dehydrated in ethanol and critically-point-dried. Samples were fractured with a razor blade, mounted either abaxially or adaxially or in cross-section, and sputter-coated with Au.more » While plants from either site failed to exhibit macroscopic air pollutant-induced symptoms, SEM examination revealed significant microscopic differences between prepared samples from different sites. Epidermal cells of leaves grown in clean air were uniformly turgid with fluffy epicuticular wax. Leaf samples from ramets that were grown in polluted air exhibited collapsed epidermal cells and lacked fluffy epicuticular wax. Cross-sections revealed increased vesicular activity in leaf mesophyll cells of plants exposed to high ambient pollution while cells of plants grown in clean air appeared normal. 10 references, 6 figures.« less

  20. Assessment of ambient air quality in Eskişehir, Turkey.

    PubMed

    Ozden, O; Döğeroğlu, T; Kara, S

    2008-07-01

    This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO(2)), particulate matter (PM), nitrogen dioxide (NO(2)), ozone (O(3)), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region. The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO(2) and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO(2) (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union

  1. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  2. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  3. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  4. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  5. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  6. Comparison of stationary and personal air sampling with an ...

    EPA Pesticide Factsheets

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency’s Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and −0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. The purpose of the study was to investigate the use of air-dispersion modeling as an approach to exposure assessment for ambient manganese.

  7. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  8. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  9. VOCS IN AMBIENT AIR NEAR WORLD TRADE CENTER SITE

    EPA Science Inventory

    Beginning on September 22, 2001 and continuing through February 2002, ambient air samples were collected at three sites within a block of ground zero and at a fourth site on the 16th floor of a building at 290 Broadway. Grab samples were collected in evacuated, electro-polished...

  10. Exposure to ambient air pollutants and spontaneous abortion.

    PubMed

    Moridi, Maryam; Ziaei, Saeideh; Kazemnejad, Anoshirvan

    2014-03-01

    This study aimed to evaluate the correlation between ambient concentrations of air pollutants and first-trimester spontaneous abortion. This was a retrospective case–control study, which was conducted on 296 women from June 2010 to February 2011 in Tehran, Iran. Cases were 148 women who experienced a spontaneous abortion before 14 weeks of gestation while the controls were 148 pregnant women after 14 weeks of gestation and groups were matched on sociodemographics and obstetrics characteristics. The samples were recruited randomly from 10 hospitals. In total, pollutants concentrations were collected at 29 stations hourly throughout the study area. We estimated the mean exposure for each participant and investigated the association between spontaneous abortion and ambient pollutants. Findings demonstrated that the average of ambient air pollutants in the cases was significantly higher than in the controls (P < 0.05). The odd ratios of abortion in the areas with higher concentrations of CO, NO₂, O₃ and PM₁₀ were 1.98, 0.96, 0.94 and 1.01, respectively (P < 0.05). Also, the model showed that there was no significant association between prenatal exposures to SO₂ and abortion (P > 0.05). Our findings suggest that pregnant women exposed to ambient air pollutants may be at increased risk of spontaneous abortion. Confirmation by further research is needed.

  11. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.

    2001-06-01

    Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.

  12. Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS.

    PubMed

    Baimatova, Nassiba; Kenessov, Bulat; Koziel, Jacek A; Carlsen, Lars; Bektassov, Marat; Demyanenko, Olga P

    2016-07-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) comprise one of the most ubiquitous and hazardous groups of ambient air pollutants of concern. Application of standard analytical methods for quantification of BTEX is limited by the complexity of sampling and sample preparation equipment, and budget requirements. Methods based on SPME represent simpler alternative, but still require complex calibration procedures. The objective of this research was to develop a simpler, low-budget, and accurate method for quantification of BTEX in ambient air based on SPME and GC-MS. Standard 20-mL headspace vials were used for field air sampling and calibration. To avoid challenges with obtaining and working with 'zero' air, slope factors of external standard calibration were determined using standard addition and inherently polluted lab air. For polydimethylsiloxane (PDMS) fiber, differences between the slope factors of calibration plots obtained using lab and outdoor air were below 14%. PDMS fiber provided higher precision during calibration while the use of Carboxen/PDMS fiber resulted in lower detection limits for benzene and toluene. To provide sufficient accuracy, the use of 20mL vials requires triplicate sampling and analysis. The method was successfully applied for analysis of 108 ambient air samples from Almaty, Kazakhstan. Average concentrations of benzene, toluene, ethylbenzene and o-xylene were 53, 57, 11 and 14µgm(-3), respectively. The developed method can be modified for further quantification of a wider range of volatile organic compounds in air. In addition, the new method is amenable to automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 78 FR 63933 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...] Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air Quality... of Virginia adding ambient air quality standards and associated reference conditions for Fine Particulate Matter (PM 2.5 ) that are consistent with the 2013 National Ambient Air Quality Standards (NAAQS...

  14. Time to harmonize national ambient air quality standards.

    PubMed

    Kutlar Joss, Meltem; Eeftens, Marloes; Gintowt, Emily; Kappeler, Ron; Künzli, Nino

    2017-05-01

    The World Health Organization has developed ambient air quality guidelines at levels considered to be safe or of acceptable risk for human health. These guidelines are meant to support governments in defining national standards. It is unclear how they are followed. We compiled an inventory of ambient air quality standards for 194 countries worldwide for six air pollutants: PM 2.5 , PM 10 , ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. We conducted literature and internet searches and asked country representatives about national ambient air quality standards. We found information on 170 countries including 57 countries that did not set any air quality standards. Levels varied greatly by country and by pollutant. Ambient air quality standards for PM 2.5 , PM 10 and SO 2 poorly complied with WHO guideline values. The agreement was higher for CO, SO 2 (10-min averaging time) and NO 2 . Regulatory differences mirror the differences in air quality and the related burden of disease around the globe. Governments worldwide should adopt science based air quality standards and clean air management plans to continuously improve air quality locally, nationally, and globally.

  15. 78 FR 63878 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...] Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air Quality... State Implementation Plan (SIP). The revisions add ambient air quality standards and associated... Ambient Air Quality Standards (NAAQS) for PM 2.5 . EPA is approving these revisions in accordance with the...

  16. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    NASA Astrophysics Data System (ADS)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  17. Determination of beryllium concentrations in UK ambient air

    NASA Astrophysics Data System (ADS)

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.

    2016-12-01

    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  18. Assessment of SRS ambient air monitoring network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, K.; Jannik, T.

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, ifmore » any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned« less

  19. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  20. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  1. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  2. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  3. 77 FR 12482 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES: This... FR 66964) and codified at 40 CFR 50.16, ``National primary and secondary ambient air quality...

  4. LITERATURE REVIEW OF PERSONAL AIR MONITORS FOR POTENTIAL USE IN AMBIENT AIR MONITORING OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The open literature, Federal publications, industrial reports, and other sources published between 1975 and 1980 were reviewed for information relevant to personal air samplers potentially useful in sampling organic compounds at ambient levels (50-200 ppt). Seventy one references...

  5. Health Effects of Ambient Air Pollution in Developing Countries.

    PubMed

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-09-12

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.

  6. Effects of Ambient Air Pollution Exposure on Olfaction: A Review

    PubMed Central

    Ajmani, Gaurav S.; Suh, Helen H.; Pinto, Jayant M.

    2016-01-01

    Background: Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. Objectives: To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. Methods: We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. Results: We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Conclusions: Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution

  7. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    PubMed

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured

  8. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than a...

  9. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than a...

  10. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than a...

  11. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than a...

  12. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than a...

  13. Health Effects of Ambient Air Pollution in Developing Countries

    PubMed Central

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-01-01

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations. PMID:28895888

  14. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  15. Ambient Air Pollution and Morbidity in Chinese.

    PubMed

    Hu, Li-Wen; Lawrence, Wayne R; Liu, Yimin; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Dong, Guang-Hui

    2017-01-01

    The rapid economic growth in China is coupled with a severe ambient air pollution, which poses a huge threat to human health and the sustainable development of social economy. The rapid urbanization and industrialization over the last three decades have placed China as one of countries with the greatest disease burden in world. Notably, the prevalence rate of chronic noncommunicable diseases (CND), including respiratory diseases, CVD, and stroke, in 2010 reaches 16.9%. The continuous growth of the incidence of CND urgent needs for effective regulatory action for health protection. This study aims to evaluate the impact of rapid urbanization on status of ambient air pollution and associated adverse health effects on the incidence and the burden of CND and risk assessment. Our findings would be greatly significant in the prediction of the risk of ambient air pollution on CND and for evidence-based policy making and risk management in China.

  16. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  17. Redox Toxicology of Ambient Air Pollution

    EPA Science Inventory

    Ambient air pollution is a leading global cause of morbidity and mortality. Millions of Americans live in areas in which levels of tropospheric ozone exceed air quality standards, while exposure to particulate matter (PM2.5) alone results in 3.2 million excess deaths annually wor...

  18. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... the Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the Clean Air Act. On April 8, 2009, and...

  19. 77 FR 12524 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... Indiana State Implementation Plan (SIP) for lead (Pb) under the Clean Air Act (CAA). This submittal incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES...

  20. Assessment of dioxin-like activity in ambient air particulate matter using recombinant yeast assays

    NASA Astrophysics Data System (ADS)

    Olivares, Alba; van Drooge, Barend L.; Pérez Ballesta, Pascual; Grimalt, Joan O.; Piña, Benjamin

    2011-01-01

    Ectopic activation of the aryl hydrocarbon receptor (AhR), also known as dioxin-like activity, is a major component of the toxicity associated with polycyclic aromatic hydrocarbons (PAH). Filtration of ambient air particulate matter through PM 10 filters followed by chemical determination of PAH concentrations and a yeast-based bioassay (RYA) were combined to evaluate and characterize dioxin-like activity in ambient air. Samples were collected in a semirural area of Northern Italy between September 2008 and February 2009. Total PAH contents ranged between 0.3 ng m -3 and 34 ng m -3 and were in correlation with seasonal variations of meteorological conditions and combustion processes. Dioxin-like activity values in air samples showed an excellent correlation (0.71 < R2 < 0.86) with the observed PAH concentrations and the predicted toxicity equivalents for PAH. This RYA-bioassay reported in the present study provides a simple and low-cost routine control for toxic PAH emissions, even at background air concentration levels.

  1. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  2. Study of the ambient air metallic elements Cr, Cu, Zn, Cd and Pb at HAF sampling sites.

    PubMed

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Wen-Chuan

    2017-08-01

    This study characterized diurnal variations in the compositions of total suspended particulates (TSP) and dry deposits of particulates from ambient air, and the metallic elements that are contained in them at harbor, airport and farmland (HAF) sampling sites from August, 2013 to July, 2014. Two-way ANOVA of the amounts of metallic elements in the TSP and dry deposits was carried out in all four seasons at the HAF sampling sites. The metallic elements Cr and Cu originated in local emission sources at the airport. Metallic elements Zn and Pb originated in local emission sources at the harbor. Finally, metallic element Cd originated in local emissions form farmland. The following results were also obtained. (1) The metallic composition of the TSP differed significantly from that of the dry deposits in all four seasons at the harbor and farmland sampling sites, but not at the airport sampling site. (2) High correlations coefficients were found between the amounts of metallic elements Cr and Cu in the TSP and those in the dry deposits at the airport sampling site. (3) Pb was present in the TSP and the dry deposits at the harbor sampling site.

  3. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-10-02

    To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.

  4. Aqueous photooxidation of ambient Po Valley Italy air samples: Insights into secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kirkland, J. R.; Lim, Y. B.; Sullivan, A. P.; Decesari, S.; Facchini, C.; Collett, J. L.; Keutsch, F. N.; Turpin, B. J.

    2012-12-01

    In this work, we conducted aqueous photooxidation experiments with ambient samples in order to develop insights concerning the formation of secondary organic aerosol through gas followed by aqueous chemistry (SOAaq). Water-soluble organics (e.g., glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone) are formed through gas phase oxidation of alkene and aromatic emissions of anthropogenic and biogenic origin. Their further oxidation in clouds, fogs and wet aerosols can form lower volatility products (e.g., oligomers, organic acids) that remain in the particle phase after water evaporation, thus producing SOA. The aqueous OH radical oxidation of several individual potentially important precursors has been studied in the laboratory. In this work, we used a mist-chamber apparatus to collect atmospheric mixtures of water-soluble gases from the ambient air at San Pietro Capofiume, Italy during the PEGASOS field campaign. We measured the concentration dynamics after addition of OH radicals, in order to develop new insights regarding formation of SOA through aqueous chemistry. Specifically, batch aqueous reactions were conducted with 33 ml mist-chamber samples (TOC ~ 50-100μM) and OH radicals (~10-12M) in a new low-volume aqueous reaction vessel. OH radicals were formed in-situ, continuously by H2O2 photolysis. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS +/-), and ESI-MS with IC pre-separation (IC/ESI-MS-). Reproducible formation of pyruvate and oxalate were observed both by IC and ESI-MS. These compounds are known to form from aldehyde oxidation in the aqueous phase. New insights regarding the aqueous chemistry of these "more atmospherically-realistic" experiments will be discussed.

  5. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Xu, Wu; Liu, Wei

    In this work, nonaqueous electrolyte-based Li-air batteries with an O 2-selective membrane have been developed for operation in ambient air of 20-30% relative humidity (RH). The O 2 gas is continuously supplied through a membrane barrier layer at the interface of the cathode and ambient air. The membrane allows O 2 to permeate through while blocking moisture. Such membranes can be prepared by loading O 2-selective silicone oils into porous supports such as porous metal sheets and Teflon (PTFE) films. It was found that the silicone oil of high viscosity shows better performance. The immobilized silicone oil membrane in the porous PTFE film enabled the Li-air batteries with carbon black air electrodes to operate in ambient air (at 20% RH) for 16.3 days with a specific capacity of 789 mAh g -1 carbon and a specific energy of 2182 Wh kg -1 carbon. Its performance is much better than a reference battery assembled with a commercial, porous PTFE diffusion membranes as the moisture barrier layer on the cathode, which only had a discharge time of 5.5 days corresponding to a specific capacity of 267 mAh g -1 carbon and a specific energy of 704 Wh kg -1 carbon. The Li-air battery with the present selective membrane barrier layer even showed better performance in ambient air operation (20% RH) than the reference battery tested in the dry air box (<1% RH).

  6. Ambient air contamination: Characterization and detection techniques

    NASA Technical Reports Server (NTRS)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  7. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of...

  8. A COMPARATIVE ASSESSMENT OF BOISE, IDAHO, AMBIENT AIR FINE PARTICLE SAMPLES USING THE PLATE AND MICROSUSPENSION SALMONELLA MUTAGENICITY ASSAYS

    EPA Science Inventory

    The primary objective of this study is to characterize the genotoxic potential of the ambient air aerosols collected within an air shed impacted primarily by wood smoke and automotive emissions. The study also examines the relative merits of a microsuspension assay and the standa...

  9. 40 CFR 50.8 - National primary ambient air quality standards for carbon monoxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary ambient air quality standards for carbon monoxide. 50.8 Section 50.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.8 National primary ambient air quality standards for...

  10. 40 CFR 50.8 - National primary ambient air quality standards for carbon monoxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false National primary ambient air quality standards for carbon monoxide. 50.8 Section 50.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.8 National primary ambient air quality standards for...

  11. 40 CFR 50.8 - National primary ambient air quality standards for carbon monoxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false National primary ambient air quality standards for carbon monoxide. 50.8 Section 50.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.8 National primary ambient air quality standards for...

  12. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  13. Study on the impact of industrial flue gases on the PCDD/Fs congener profile in ambient air.

    PubMed

    Węgiel, Małgorzata; Chrząszcz, Ryszard; Maślanka, Anna; Grochowalski, Adam

    2014-11-01

    The aim of this study was to examine the impact of emissions from combustion processes from sinter, medical, waste and sewage waste incineration plants on the PCDD and PCDF congener profile in ambient air in Krakow (city in Poland). The subject matter of the study were air samples from the outskirts and the city center. It was found that in flue gases from industrial sources and in ambient air the share of PCDF congeners in relation to the total content of PCDD/Fs was higher than the share of PCDDs. However, in air samples collected in the city center, this relationship was reversed. The PCDD congener profiles in flue gases and in air samples are comparable. However, in the samples from the city centre, the share of OCDD is significantly higher and amounts to about 80%. The PCDF congener shares show higher spatial diversity, although in all the analyzed air samples, ODCF and 1,2,3,4,6,7,8 HpCDF dominated. Analyzing the share of congeners in regard to the sum of PCDDs/Fs a mutual resemblance of air from the suburbs, exhaust gases from the sinter ore and sewage sludge incinerator plant was observed. The study showed a similarity between the profile of congeners in air from the city centre and exhaust gases from the medical waste incinerator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Urgency to Assess the Health Impact of Ambient Air Pollution in China.

    PubMed

    Yang, Bo-Yi; Liu, Yimin; Hu, Li-Wen; Zeng, Xiao-Wen; Dong, Guang-Hui

    2017-01-01

    As the world's second-largest economy, China is going on suffering from environmental pollution, especially for ambient air pollution, which has become a major threat to public health; public awareness of the detrimental effects of air pollution on health is increasing-particularly in relation to haze days. Considering the nonlinear relationship of ambient air pollution exposure and health impacts, and the differences in specific sources of air pollution with those in North America and Europe, conducting health impact assessments of ambient air pollution in China has thus become an urgent task for public health practitioners. Systematic review of the health effects of exposure to ambient air pollution from quantitative studies conducted in Chinese could provide vital information for epidemiology-based health impact assessments and the implementation of a national environmental protection policy.

  15. WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY

    EPA Science Inventory

    AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...

  16. Ambient air quality status in Raniganj-Asansol area, India.

    PubMed

    Reddy, G S; Ruj, Biswajit

    2003-12-01

    This investigation presents the assessment of ambient air quality with respect to suspended particulate matter (SPM), sulphur dioxide (SO2) and oxides of nitrogen (NOx) at four sites (RGC, SRS, BBC and BCC) in the Raniganj-Asansol area in West Bengal, India. Ambient air was monitored with a sampling frequency of twenty four hours (3 x 8 hours) at each site on every alternate day (3 days a week) covering a period of one year. A total of 429 samples were collected from RGC, 429 from SRS and 435 each from the BBC and BCC sites. Meteorological parameters such as temperature, relative humidity, wind-speed and wind-direction were also recorded simultaneously during the sampling period. Monthly and seasonal variation of these pollutants have been observed and recorded. The annual average and range values have also been calculated. Results of the investigation indicates that the 95th percentile values of SPM levels exceed the limits (200 microg m(-3)) at RGC, SRS and BBC sites and is within the limit of 500 microg m(-3) at the BCC sites. The 95th percentile values of SO2 levels did not exceed the reference level at any of the monitoring stations. The 95th percentile values of NOx are found to be exceeding the limit (80 microg m(-3)) at RGC, SRS and BBC sites but is within the prescribed limit of 120 microg m(-3) at the BCC site. Further, it has been observed that the concentrations of the pollutants are high in winter in comparison to the summer or the monsoon seasons. Results of the investigation indicates that industrial activities, indiscriminate open air burning of coal by the local inhabitants for cooking as well as coking purposes, vehicular traffic, etc. are responsible for the high concentration of pollutants in this area.

  17. Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution.

    PubMed

    Delfino, Ralph J; Wu, Jun; Tjoa, Thomas; Gullesserian, Sevan K; Nickerson, Bruce; Gillen, Daniel L

    2014-01-01

    Ambient air pollution has been associated with asthma-related hospital admissions and emergency department visits (hospital encounters). We hypothesized that higher individual exposure to residential traffic-related air pollutants would enhance these associations. We studied 11,390 asthma-related hospital encounters among 7492 subjects 0-18 years of age living in Orange County, California. Ambient exposures were measured at regional air monitoring stations. Seasonal average traffic-related exposures (PM2.5, ultrafine particles, NOx, and CO) were estimated near subjects' geocoded residences for 6-month warm and cool seasonal periods, using dispersion models based on local traffic within 500 m radii. Associations were tested in case-crossover conditional logistic regression models adjusted for temperature and humidity. We assessed effect modification by seasonal residential traffic-related air pollution exposures above and below median dispersion-modeled exposures. Secondary analyses considered effect modification by traffic exposures within race/ethnicity and insurance group strata. Asthma morbidity was positively associated with daily ambient O3 and PM2.5 in warm seasons and with CO, NOx, and PM2.5 in cool seasons. Associations with CO, NOx, and PM2.5 were stronger among subjects living at residences with above-median traffic-related exposures, especially in cool seasons. Secondary analyses showed no consistent differences in association, and 95% confidence intervals were wide, indicating a lack of precision for estimating these highly stratified associations. Associations of asthma with ambient air pollution were enhanced among subjects living in homes with high traffic-related air pollution. This may be because of increased susceptibility (greater asthma severity) or increased vulnerability (meteorologic amplification of local vs. correlated ambient exposures).

  18. Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data

    NASA Astrophysics Data System (ADS)

    Font, Anna; de Hoogh, Kees; Leal-Sanchez, Maria; Ashworth, Danielle C.; Brown, Richard J. C.; Hansell, Anna L.; Fuller, Gary W.

    2015-07-01

    This study aimed to fingerprint emissions from six municipal waste incinerators (MWIs) and then test if these fingerprint ratios could be found in ambient air samples. Stack emissions tests from MWIs comprised As, Cd, Cr, Cu, Pb, Mn, Ni, V and Hg. Those pairs of metals showing good correlation (R > 0.75) were taken as tracers of MWI emissions and ratios calculated: Cu/Pb; Cd/Pb; Cd/Cu and Cr/Pb. Emissions ratios from MWIs differed significantly from those in ambient rural locations and those close to traffic. In order to identify MWI emissions in ambient air two analysis tests were carried out. The first, aimed to explore if MWI emissions dominate the ambient concentrations. The mean ambient ratio of each of the four metal ratios were calculated for six ambient sampling sites within 10 km from a MWI under stable meteorological conditions when the wind blew from the direction of the incinerator. Under these meteorological conditions ambient Cd/Pb was within the range of MWI emissions at one location, two monitoring sites measured mean Cr/Pb ratios representative of the MWI emissions and the four sites measured values of Cu/Pb within the range of MWI emissions. No ambient measurements had mean Cd/Cu ratios within the MWI values. Even though MWI was not the main source determining the ambient metal ratios, possible occasional plume grounding might have occurred. The second test then examined possible plume grounding by identifying the periods when all metal ratios differed from rural and traffic values at the same time and were consistent with MWI emissions. Metal ratios consistent with MWI emissions were found in ambient air within 10 km of one MWI for about 0.2% of study period. Emissions consistent with a second MWI were similarly detected at two ambient measurement sites about 0.1% and 0.02% of the time. Where plume grounding was detected, the maximum annual mean particulate matter (PM) from the MWI was estimated to be 0.03 μg m-3 to 0.12 μg m-3; 2-3 orders of

  19. A simple methodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-07-01

    The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.

  20. Ambient air quality and asthma cases in Niğde, Turkey.

    PubMed

    Kara, Ertan; Özdilek, Hasan Göksel; Kara, Emine Erman

    2013-06-01

    Urban air quality is one of the key factors affecting human health. Turkey has transformed itself into an urban society over the last 30 years. At the same time, air pollution has become a serious impairment to health in many urban areas in the country. This is due to many reasons. In this study, a nonparametric evaluation was conducted of health effects that are triggered by urban air pollution. Niğde, the city which is the administrative centre of Nigde province was chosen of the effects of air pollution since, like many central Turkish cities, it is situated on a valley where atmospheric inversion occurs. In this paper, the relationship between ambient urban air quality, namely PM10 and sulphur dioxide (SO2), and human health, specifically asthma, during the winter season is examined. Air pollution data and asthma cases from 2006 to 2010 are covered in this study. The results of our study indicate that total asthma cases reported in Nigde between 2008 and 2010 were highly dependent on ambient SO2 concentration. More asthma cases were recorded when 30 μg m(-3) or higher SO2 was present in the ambient air than those recorded under cleaner ambient air conditions. Moreover, it was determined that in Nigde in 2010, asthma cases reported in males aged between 45 and 64 were closely correlated with ambient SO2 (α=0.05).

  1. Air exposure and sample storage time influence on hydrogen release from tungsten

    NASA Astrophysics Data System (ADS)

    Moshkunov, K. A.; Schmid, K.; Mayer, M.; Kurnaev, V. A.; Gasparyan, Yu. M.

    2010-09-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ˜300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  2. Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany

    PubMed Central

    Baumbach, Günter; Kuch, Bertram; Scheffknecht, Günter

    2010-01-01

    An important source of polycyclic aromatic hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. The target of this study was to investigate the particle-phase PAH composition of ambient samples in order to assess the influence of wood combustion on air quality in residential areas. PM10 samples (particulate matter <10 μm) were collected during two winter seasons at two rural residential areas near Stuttgart in Germany. Samples were extracted using toluene in an ultrasonic bath and subsequently analysed by gas chromatography–mass spectrometry. Twenty-one PAH compounds were detected and quantified. The PAH fingerprints of different wood combustion emissions were found in significant amounts in ambient samples and high correlations between total PAHs and other wood smoke tracers were found, indicating the dominant influence of wood combustion on air quality in residential areas. Carcinogenic PAHs were detected in high concentrations and contributed 49% of the total PAHs in the ambient air. To assess the health risk, we investigated the exposure profile of individual PAHs. The findings suggest that attention should be focused on using the best combustion technology available to reduce emissions from wood-fired heating during the winter in residential areas. PMID:20495599

  3. Volatile organic compounds: sampling methods and their worldwide profile in ambient air.

    PubMed

    Kumar, Anuj; Víden, Ivan

    2007-08-01

    The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.

  4. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    PubMed

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ambient Air Pollution and Atherosclerosis in Los Angeles

    PubMed Central

    Künzli, Nino; Jerrett, Michael; Mack, Wendy J.; Beckerman, Bernardo; LaBree, Laurie; Gilliland, Frank; Thomas, Duncan; Peters, John; Hodis, Howard N.

    2005-01-01

    Associations have been found between long-term exposure to ambient air pollution and cardiovascular morbidity and mortality. The contribution of air pollution to atherosclerosis that underlies many cardiovascular diseases has not been investigated. Animal data suggest that ambient particulate matter (PM) may contribute to atherogenesis. We used data on 798 participants from two clinical trials to investigate the association between atherosclerosis and long-term exposure to ambient PM up to 2.5 μm in aerodynamic diameter (PM2.5). Baseline data included assessment of the carotid intima-media thickness (CIMT), a measure of subclinical atherosclerosis. We geocoded subjects’ residential areas to assign annual mean concentrations of ambient PM2.5. Exposure values were assigned from a PM2.5 surface derived from a geostatistical model. Individually assigned annual mean PM2.5 concentrations ranged from 5.2 to 26.9 μg/m3 (mean, 20.3). For a cross-sectional exposure contrast of 10 μg/m3 PM2.5, CIMT increased by 5.9% (95% confidence interval, 1–11%). Adjustment for age reduced the coefficients, but further adjustment for covariates indicated robust estimates in the range of 3.9–4.3% (p-values, 0.05–0.1). Among older subjects (≥60 years of age), women, never smokers, and those reporting lipid-lowering treatment at baseline, the associations of PM2.5 and CIMT were larger with the strongest associations in women ≥60 years of age (15.7%, 5.7–26.6%). These results represent the first epidemiologic evidence of an association between atherosclerosis and ambient air pollution. Given the leading role of cardiovascular disease as a cause of death and the large populations exposed to ambient PM2.5, these findings may be important and need further confirmation. PMID:15687058

  6. 40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.16 National primary and secondary ambient air quality standards for lead. (a) The national primary and...

  7. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.12 National primary and secondary ambient air quality standards for lead. (a) National primary and secondary...

  8. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  9. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  10. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  11. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  12. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  13. A lightweight ambient air-cooling unit for use in hazardous environments.

    PubMed

    Chen, Y T; Constable, S H; Bomalaski, S H

    1997-01-01

    Recent research demonstrated (a) the effectiveness of intermittent conditioned air cooling during rest breaks to significantly reduce cumulative heat storage and (b) that longer work sessions were possible for individuals wearing chemical defense ensembles. To further advance this concept, a strategy for implementing continuous air cooling was conceived; ambient air cooling was added during work cycles and conditioned air cooling was delivered during rest periods. A compact battery-powered beltpack cooling unit (3.9 kg) designed and made at the U.S. Air Force Armstrong Laboratory was used to deliver 5.7 L/sec filtered ambient air during work cycles: 4.7 L/sec to the body and 1 L/sec to the face. Five experimental cycles were conducted in a thermally controlled chamber under warm conditions (32 degrees C, 40% relative humidity) with (1) no cooling-intermittent work, (2) intermittent cooling, (3) continuous cooling during intermittent exercise, and (4) no cooling-continuous work and (5) ambient air cooling during continuous exercise. Intermittent, conditioned, and continuous air cooling resulted in significant reductions in rectal temperature, mean skin temperature, and heart rate as compared with the no-cooling trials. The continuous air-cooling trial significantly improved thermal comfort and sweat evaporation. Results suggest that ambient air delivered during work cycles by a lightweight portable unit (in conjunction with conditioned air delivered during rest periods), can definitely improve personal comfort, reduce skin temperature, and decrease the cumulative fatigue common to repeated work/rest cycles in selected military and industrial applications in which individuals work in chemical defense ensembles.

  14. 75 FR 81477 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Amendments to Ambient...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Promulgation of Air Quality Implementation Plans; Virginia; Amendments to Ambient Air Quality Standards for... revision consists of amendments to the Commonwealth of Virginia's ambient air quality standards for... Chapter 30) that contains the ambient air quality standards set out in 40 CFR 50. The SIP revision made...

  15. Ambient air pollution and low birth weight - are some women more vulnerable than others?

    PubMed

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy; Pedersen, Marie

    2017-07-01

    Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term (TLBW, <2500g among infants born ≥37 completed weeks of gestation), a maker of intrauterine growth restriction (IUGR), and suggest that some subgroups of pregnant women who are smoking, of low or high body-mass index (BMI), low socioeconomic status (SES) or asthma are more vulnerable towards the effect of ambient air pollution. The aim of this commentary is to review the published literature on the association between ambient air pollution and TLBW regarding increased vulnerability for the above-mentioned subgroups. Although more than fifty epidemiological studies have examined the associations between ambient air pollution and TLBW to date, we only identified six studies that examined the potential effect modification of the association between ambient air pollution and TLBW by the above listed maternal risk factors. Two studies assessed effect modification caused by smoking on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women and no statistically significant effect modification was evident for the risk of TLBW associated with ambient air pollution. The current epidemiologic evidence is scarce, but suggests that pregnant women who are

  16. Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels.

    PubMed

    Yu, Hwa-Lung; Wang, Chih-Hsin

    2013-02-05

    Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.

  17. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    NASA Astrophysics Data System (ADS)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  18. Cooling system with compressor bleed and ambient air for gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Marra, John J.

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less

  19. EVALUATION OF THE FILTER PACK FOR LONG-DURATION SAMPLING OF AMBIENT AIR

    EPA Science Inventory

    A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks...

  20. Ambient air particulates and particulate-bound mercury Hg(p) concentrations: dry deposition study over a Traffic, Airport, Park (T.A.P.) areas during years of 2011-2012.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng

    2016-02-01

    The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.

  1. Impact of ambient environment on the electronic structure of CuPc/Au sample

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Mukherjee, M.

    2018-02-01

    The performances of organic devices are crucially connected with their stability in the ambient environment. The impact of 24 h. Ambient environment exposure to the electronic structures of about 12 nm thick CuPc thin film on clean Au substrate have been studied employing UV photoemission spectroscopy technique. X-ray photoemission spectroscopy (XPS) was used to find out the origin of the change of the electronic structures in the sample with the exposure. The XPS study suggests that the oxidation occurs at the CuPc thin film. Due to the adsorption of oxygen in the CuPc film from the ambient air, charge carriers are formed within the CuPc film. Moreover, the XPS results imply that the CuPc film is sufficiently thinner for diffusing oxygen molecules through it and gets physically absorbed on Au substrate during the ambient exposure. Consequently, the hole injection barrier height of pristine CuPc film, grown on Au substrate, is reduced by about 0.50 eV and work-function of the pristine CuPc sample is enhanced by around 0.25 eV in the exposure. The findings will help to understand the mechanism that governs the degradation of performance of CuPc based devices in ambient environment.

  2. Organochlorine pesticides in the ambient air of Chiapas, Mexico.

    PubMed

    Alegria, Henry; Bidleman, Terry F; Figueroa, Miguel Salvador

    2006-04-01

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use.

  3. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  4. Evaluation of air quality zone classification methods based on ambient air concentration exposure.

    PubMed

    Freeman, Brian; McBean, Ed; Gharabaghi, Bahram; Thé, Jesse

    2017-05-01

    Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO 2 and 8-hr O 3 within a zone that meets the compliance requirements of each method. The first method, the "3 Strike" method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity

  5. COMPENDIUM OF METHODS FOR THE DETERMINATION OF TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR--SECOND EDITION

    EPA Science Inventory

    This Second Edition of the Compendium has been prepared to provide regional, state and local environmental regulatory agencies with step-by-step sampling and analysis procedures for the determination of selected toxic organic pollutants in ambient air. It is designed to assist t...

  6. [The health status of children from industrial towns due ambient air pollution].

    PubMed

    Meĭbaliev, M T

    2008-01-01

    The author's observations suggest that hygienic monitoring in an industrial city should be made in two areas: 1) ambient air quality and 2) human health. Ambient air quality should be monitored in each town in accordance with an individual program, by taking into account the volume and nature of hazardous substances from the stationary stations, as well as weather conditions, the planning system of residential areas, and the layout of an industrial zone. Monitoring of the population's health in the industrial town should be adapted to the forms and conditions of ambient air quality monitoring in order to reveal environmental pollution-induced changes.

  7. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    PubMed

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  8. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    PubMed

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong; Bundhamcharoen, Kanitta

    2017-01-01

    Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to

  9. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach

    PubMed Central

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong

    2017-01-01

    Background Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. Methods We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. Results We estimated 650–38,410 ambient air pollution-related fatalities and 160–5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF

  10. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.6 National primary and secondary ambient air quality standards for PM10. (a) The level of the national...

  11. PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: passive and active sampling measurements near industrial and vehicular pollution sources.

    PubMed

    Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H

    2014-09-01

    Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [Motor transport emission, ambient air quality, and the Moscow population's health].

    PubMed

    Ivanenko, A V; Volkova, I F; Kornienko, A P

    2007-01-01

    As of 2006, the city's motor transport fleet amounted to as many as 3 million units that annually consume about 5 million tons of petrol. The use rate of all kinds of vehicles has increased, resulting in the growth of the proportion of ambient air pollutants discharged by motor transport, which surpasses the increase of the absolute size of the fleet. The contribution of traveling sources to ambient air pollution is growing steadily and it has been recently about 90% (1 million tons). Implementation of measures and developed managerial decisions, and ecological programs, improvement of Moscow town-planning measures, and environment-improving measures against motor vehicles have contributed to a reduction in chemical and physical burdens on the population. The characteristics of the capital's ambient air pollution have been recently observed to become stable and improve. There is stabilization in morbidity due to respiratory diseases in all population groups. The prevalence of chronic respiratory diseases in children is on the decrease, the increase rate was 1.4% versus 33.5% in the preceding period. Assessment of carcinogenic risk showed that ambient air pollution and drinking water contamination had a negative impact on the Moscow population.

  13. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    PubMed

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. Ambient air metallic pollutant study at HAF areas during 2013-2014

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie

    2015-05-01

    This study characterized diurnal variations of the total suspended particulate (TSP) concentrations, dry deposition flux and dry deposition velocity of metallic elements at Taichung Harbor (Harbor), Gong Ming Junior High School (Airport) and Sha lu Farmland (Farmland) sampling sites in central Taiwan between August, 2013 and July, 2014 in this study. The result indicated that: 1) the ambient air particulate concentrations, dry depositions were displayed as Harbor > Farmland > Airport during the day time sampling period. However, dry deposition velocities were shown as Airport > Harbor > Farmland for this study. 2) The ambient air particulate concentrations, dry depositions were displayed as Airport > Harbor > Farmland during the night time sampling period. However, dry deposition velocities were shown as Farmland > Harbor > Airport for this study. 3) The metallic element Zn has the average highest concentrations at Airport, Harbor and Farmland among all the metallic elements during the day time sampling period in this study. 4) There were significant differences for the metallic elements (Cr, Cu, Zn and Pb) in dry depositions at these three characteristic sampling sites (HAF) for the night time sampling period. The only exception is metallic element Cd. It displayed that there were no significant differences for the metallic element Cd at the Airport and Farmland sampling sites during the night time sampling period. 5) The average highest values for the metallic element Cu in TSP among the three characteristic sampling sites occurred during the fall and winter seasons for this study. As for the dry depositions, the average highest values in dry deposition among the three characteristic sampling sites occurred during the spring and summer seasons for this study. 6) The average highest values for the metallic element Cd in TSP among the three characteristic sampling sites occurred during the spring and summer seasons for this study. As for the dry depositions, the

  15. 78 FR 34964 - Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ...] Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan... Ambient Air Quality Standards for Ozone: State Implementation Plan Requirements'' which published in the... the 2008 ozone national ambient air quality standards (NAAQS) (the ``2008 ozone NAAQS'') that were...

  16. BIOLOGICAL EFFECTS OF OIL FLY ASH AND RELEVANCE TO AMBIENT AIR PARTICULATE MATTER

    EPA Science Inventory

    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle bur...

  17. Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems

    EPA Science Inventory

    The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...

  18. Development and Application of an Oxidation Flow Reactor to Study Secondary Organic Aerosol Formation from Ambient Air

    NASA Astrophysics Data System (ADS)

    Palm, Brett Brian

    compounds; S/IVOCs) were present in ambient air and were the likely source of SOA formation that could not be explained by VOCs. These measurements show that S/IVOCs likely play an important intermediary role in ambient SOA formation in all of the sampled locations, from rural forests to urban air.

  19. 75 FR 2935 - Extension of Deadline for Promulgating Designations for the 2008 Ozone National Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Part II Environmental Protection Agency 40 CFR Parts 50, 58 and 81 Ozone National Ambient Air... 2008 Ozone National Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION... designations for the ozone national ambient air quality standards (NAAQS) that were promulgated in March 2008...

  20. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...

  1. Effects of respirator ambient air cooling on thermophysiological responses and comfort sensations.

    PubMed

    Caretti, David M; Barker, Daniel J

    2014-01-01

    This investigation assessed the thermophysiological and subjective impacts of different respirator ambient air cooling options while wearing chemical and biological personal protective equipment in a warm environment (32.7 ± 0.4°C, 49.6 ± 6.5% RH). Ten volunteers participated in 90-min heat exposure trials with and without respirator (Control) wear and performed computer-generated tasks while seated. Ambient air cooling was provided to respirators modified to blow air to the forehead (FHC) or to the forehead and the breathing zone (BZC) of a full-facepiece air-purifying respirator using a low-flow (45 L·min(-1)) mini-blower. An unmodified respirator (APR) trial was also completed. The highest body temperatures (TTY) and least favorable comfort ratings were observed for the APR condition. With ambient cooling over the last 60 min of heat exposure, TTY averaged 37.4 ± 0.6°C for Control, 38.0 ± 0.4°C for APR, 37.8 ± 0.5°C for FHC, and 37.6 ± 0.7°C for BZC conditions independent of time. Both the FHC and BZC ambient air cooling conditions reduced facial skin temperatures, reduced the rise in body temperatures, and led to more favorable subjective comfort and thermal sensation ratings over time compared to the APR condition; however statistical differences among conditions were inconsistent. Independent of exposure time, average breathing apparatus comfort scores with BZC (7.2 ± 2.5) were significantly different from both Control (8.9 ± 1.4) and APR (6.5 ± 2.2) conditions when ambient cooling was activated. These findings suggest that low-flow ambient air cooling of the face under low work rate conditions and mild hyperthermia may be a practical method to minimize the thermophysiological strain and reduce perceived respirator discomfort.

  2. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference method...

  3. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference method...

  4. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference method...

  5. Ambient air sulphur dioxide and sulphate accumulation in deciduous and evergreen plants.

    PubMed

    Dwivedi, Anil K; Shashi

    2012-01-01

    Present study is an attempt to evaluate the difference in rate of sulphur dioxide (SO2) absorption by deciduous (Ficus religiosa) and evergreen (Carica papaya) plants, under elevated concentration of the gas in ambient air. Two-way ANOVA for SO2 in air and sulphate (SO4) accumulation in both the selected plants showed significant difference (p<0.01) at different study sites; different months as well as interaction effect of both site and months. The linear correlation coefficient among ambient air SO2 and SO4 in leaves was always significant (p<0.001) in case of deciduous plant; however, the same in evergreen plants showed heterogeneous result. Air pollution tolerance index (APTI) of F. religiosa (deciduous) and C. papaya (evergreen) was found to be 19.73 and 81.10 respectively, proving that the former has low tolerance capacity and is sensitive, while the latter is resistant to the elevated ambient air SO2.

  6. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  7. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  8. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  9. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  10. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  11. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  12. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  13. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  14. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  15. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  16. 40 CFR 50.7 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.7 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary and...

  17. 40 CFR 50.13 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.13 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary...

  18. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  19. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  20. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  1. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  2. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  3. 40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for lead. 50.16 Section 50.16 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) The national primary and secondary ambient air quality standards for lead (Pb) and its compounds are 0.15 micrograms per cubic meter...

  4. Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis.

    PubMed

    Dixon, R Brent; Sampson, Jason S; Hawkridge, Adam M; Muddiman, David C

    2008-07-01

    The use of aerodynamic devices in ambient ionization source development has become increasingly prevalent in the field of mass spectrometry. In this study, an air ejector has been constructed from inexpensive, commercially available components to incorporate an electrospray ionization emitter within the exhaust jet of the device. This novel aerodynamic device, herein termed remote analyte sampling, transport, and ionization relay (RASTIR) was used to remotely sample neutral species in the ambient and entrain them into an electrospray plume where they were subsequently ionized and detected using a linear ion trap Fourier transform mass spectrometer. Two sets of experiments were performed in the ambient environment to demonstrate the device's utility. The first involved the remote (approximately 1 ft) vacuum collection of pure sample particulates (i.e., dry powder) from a glass slide, entrainment and ionization at the ESI emitter, and mass spectrometric detection. The second experiment involved the capture (vacuum collection) of matrix-assisted laser desorbed proteins followed by entrainment in the ESI emitter plume, multiple charging, and mass spectrometric detection. This approach is in principle a RASTIR-assisted matrix-assisted laser desorption electrospray ionization source (Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712-1716; Rapid Commun. Mass Spectrom. 2007, 21, 1150-1154.). A detailed description of the device construction, operational parameters, and preliminary small molecule and protein data are presented.

  5. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    EPA Science Inventory

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity

    Abstract
    Mutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  6. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    PubMed

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  7. 77 FR 32632 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Hydrogen Peroxide Filter Extraction'' In this method, total suspended particulate matter (TSP) is collected on glass fiber filters according to 40 CFR Appendix G to part 50, EPA Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air. The filter samples are...

  8. 75 FR 16459 - Draft Document Related to the Review of the National Ambient Air Quality Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Review of the National Ambient Air Quality Standards for Particulate Matter AGENCY: Environmental... Review of the Particulate Matter National Ambient Air Quality Standards--First External Review Draft (75... Particulate Matter National Ambient Air Quality Standards--First External Review Draft (March 2010), please...

  9. Ambient Air Pollution and Biomarkers of Health Effect.

    PubMed

    Yang, Di; Yang, Xuan; Deng, Furong; Guo, Xinbiao

    2017-01-01

    Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.

  10. Ambient air pollution and risk of tuberculosis: a cohort study.

    PubMed

    Lai, Ting-Chun; Chiang, Chen-Yuan; Wu, Chang-Fu; Yang, Shiang-Lin; Liu, Ding-Ping; Chan, Chang-Chuan; Lin, Hsien-Ho

    2016-01-01

    Several respirable hazards, including smoking and indoor air pollution from biomass, were suggested to increase the risk of tuberculosis. Few studies have been conducted on ambient air pollution and tuberculosis. We investigated the association between exposure to ambient air pollution and incidence of active tuberculosis. We conducted a cohort study using 106,678 participants of a community-based screening service in Taiwan, 2005-2012. We estimated individual exposure to air pollution using data from the nearest air quality monitoring station and the road intensity within a 500 m buffer zone. The incidence of tuberculosis was ascertained from the national tuberculosis registry. After a median follow-up of 6.7 years, 418 cases of tuberculosis occurred. Exposure to fine particulate matter (PM2.5) was associated with increased risk of active tuberculosis (adjusted HR: 1.39/10 μg/m3 (95% CI 0.95 to 2.03)). In addition, traffic-related air pollution including nitrogen dioxide (adjusted HR: 1.33/10 ppb; 95% CI 1.04 to 1.70), nitrogen oxides (adjusted HR: 1.21/10 ppb; 95% CI 1.04 to 1.41) and carbon monoxide (adjusted HR: 1.89/ppm; 95% CI 0.78 to 4.58) was associated with tuberculosis risk. There was a non-significant trend between the length of major roads in the neighbourhood and culture-confirmed tuberculosis (adjusted HR: 1.04/km; 95% CI 0.995 to 1.09). Our study revealed a possible link between ambient air pollution and risk of active tuberculosis. Since people from developing countries continue to be exposed to high levels of ambient air pollution and to experience high rates of tuberculosis, the impact of worsening air pollution on global tuberculosis control warrants further investigation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Propane and butane emission sources to ambient air of Mexico City metropolitan area.

    PubMed

    Jaimes, L; Sandoval, J

    2002-04-22

    Samples of volatile organic compounds (VOCs) were collected in a smog chamber in order to determine whether automotive exhausts or LP Gas emissions play a greater role in the source of propane and butane, which affect ozone formation and other pollutants in the ambient air of the Mexico City metropolitan area (MCMA). These samples were collected in April 1995 during mornings and evenings. The testing methodology used for measuring exhaust emission were FTP or EPA-74 tests, and SHED type tests were also conducted in order to evaluate evaporative emissions. The finding from analysis of the VOCs collected in the morning demonstrate that in the atmosphere, propane concentrations are higher than that of butane but the reverse in evaporative and exhaust emissions, with the concentration of propane lower than that of butane. Our conclusion is that most of C3 and C4 in the ambient air comes from LP gas and not vehicle exhaust or evaporative emission, due to the higher levels of propane than butane in its formulation. The analysis of VOCs also indicates that although the conversion (in the smog chamber) of alkanes is low during the day, due to the high initial concentration, their contribution in the reaction mechanism to produce ozone can be appreciable.

  12. Increased ambient air temperature alters the severity of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard

    2017-04-01

    Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with

  13. ORGANOCHLORINE PESTICIDES IN THE AMBIENT AIR OF MEXICO

    EPA Science Inventory

    Recent and past use of organochlorine pesticides (OCPs) in Mexico has resulted in concentrations in ambient air that are 1-2 orders of magnitude above levels in the Great Lakes region. Atmospheric transport from Mexico and Central America may be contributing significant amounts ...

  14. Performances and application of a passive sampling method for the simultaneous determination of nitrogen dioxide and sulfur dioxide in ambient air.

    PubMed

    Plaisance, H; Sagnier, I; Saison, J Y; Galloo, J C; Guillermo, R

    2002-11-01

    The performances and applicability of a diffusion tube sampler for the simultaneous measurements of NO2 and SO2 in ambient air were evaluated. SO2 and NO2 are collected by the passive sampler using triethanolamine as trapping agent and are determined as sulphate and nitrite with ion chromatography. The detection limit (2.3 microg m(-3) of NO2 and 4.2 microg m(-3) of SO2 for two weeks sampling) is adequate for the determination of concentrations in urban and industrial areas. Precision of the method as RSD is in mean 5% for NO2 and 12% for SO2 at the concentration levels in urban areas. Calibration of the method was performed in the field conditions by comparison between the responses of sampler and the concentrations measured by the continuous monitors. High degree of linearity (correlation coefficients > 0.8) is found between the passive sampler tube and the continuous monitor data for both NO2 and SO2. To reduce the wind velocity influence on passive sampling of diffusion tubes, a protective shelter was tested in this study. The overall uncertainty of one measure for the optimised method is estimated at 5 microg m(-3) for NO2 and 6 microg m(-3) for SO2. Suitability of this passive sampling method for air pollution monitoring in urban areas was demonstrated by the results shown in this paper on a campaign carried out in the French agglomeration.

  15. Table of Historical Nitrogen Dioxide National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    See the history of limits to the level of nitrogen dioxide (NO2) in ambient air, set through the NAAQS review and rulemaking process under the Clean Air Act. This includes both primary and secondary standards.

  16. Table of Historical Sulfur Dioxide National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    See the history of limits to the level of sulfur dioxide (SO2) in ambient air, set through the NAAQS review and rulemaking process under the Clean Air Act. This includes both primary and secondary standards.

  17. 75 FR 71033 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    .... These include damage to the central nervous system, cardiovascular function, kidneys, immune system, and... growth); (5) Meteorology (weather/transport patterns); (6) Geography/topography (mountain ranges or other... Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards AGENCY...

  18. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    PubMed

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  19. Presence of organophosphorus pesticide oxygen analogs in air samples

    NASA Astrophysics Data System (ADS)

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2013-02-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  20. Environmentally Persistent Free Radical (EPFRs) - Ambient Air Particulates, Soils and Fate of Some Pollutants

    NASA Astrophysics Data System (ADS)

    Lomnicki, S. M.

    2017-12-01

    Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.

  1. Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air

    DOE PAGES

    Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...

    2015-09-10

    CONSPECTUS: Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique,more » low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine−oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas−solid contacting strategy. In this regard, the utility of

  2. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    PubMed

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  3. Seasonality of PCDD/Fs in the ambient air of Malopolska region, southern Poland.

    PubMed

    Umlauf, Gunther; Christoph, Eugen H; Eisenreich, Steven J; Mariani, Giulio; Paradiz, Bostjan; Vives, Ingrid

    2010-02-01

    The aim of the study was to identify the impact of polychlorinated dibenzo-p-dioxin and furan (PCDD/F) emission sources on ambient air concentrations in the Malopolska Region, southern Poland. Three sites were selected: the city center of Krakow (Aleje), an industrial area (Nova Huta), and a rural site (Zakopane). In order to investigate the annual variations of PCDD/F sources, summer and winter time samples were taken. Ambient air particulate matter (PM10) was collected using an Anderson High-Volume sampler during June and December 2002 in the three mentioned sites. Analysis of PCDD/Fs was based on isotope dilution using high-resolution gas chromatography-high-resolution mass spectrometry for quantification. Total concentrations of 2,3,7,8-PCDD/Fs in air particulate phase from Malopolska region ranged from 0.6 to 37 pg m(-3) (0.04-3.2 pg WHO(98)-TEQ per cubic meter, 0.037-2.9 pg I-TEQ per cubic meter). Higher PCDD/F concentrations were measured at all three sites during winter. A linear correlation among PCDD/F concentrations, benzo(a)pyrene (B(a)P) and PM10 concentrations, was found in Aleje and Zakopane, which suggested that all compounds were originating from the same source, solid fuel domestic heating. Instead, PCDD/F levels in Nova Huta did not correlate with the seasonality of B(a)P or PM10 levels and 2,3,7,8-PCDD/F congener patterns for this site were significantly different from the other sites. Domestic solid fuel combustion is likely the main PCDD/F source in winter in this part of Poland for urban and rural sites. PCDD/F fingerprints in the industrial site remained almost identical during summer and winter, confirming the yearly prevalence of the emissions from the nearby metal industry. PCDD/F concentrations found in Malopolska Region are in the upper range of ambient air concentrations of PCDD/Fs reported worldwide. However, further research is needed in order to study the impact of the deposition of these PCDD/F emissions on the region. A more

  4. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution.

    PubMed

    Zhu, Xianlei; Fan, Zhihua Tina; Wu, Xiangmei; Jung, Kyung Hwa; Ohman-Strickland, Pamela; Bonanno, Linda J; Lioy, Paul J

    2011-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ∼1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44-96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution.

  5. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    PubMed Central

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  6. New screening approach for risk assessment of pesticides in ambient air

    NASA Astrophysics Data System (ADS)

    Yusà, Vicent; Coscollà, Clara; Millet, Maurice

    2014-10-01

    We present a novel screening approach for inhalation risk assessment of currently used pesticides (CUPs) in ambient air, based on the measurements of pesticide levels in the inhalable fraction of the particulate matter (PM10). Total concentrations in ambient air (gas + particle phases) were estimated using a theoretical model of distribution of semi-volatile organic compounds between the gas and the particulate phase based on the octanol-air partition (Koa) of each pesticide. The proposed approach was used in a pilot study conducted in a rural station in Valencia (Spain) from April through to October 2010. Twenty out of 82 analysed pesticides were detected in average concentrations ranging from 1.63 to 117.01 pg m-3. For adults, children and infants the estimated chronic inhalation risk, expressed as Hazard Quotient (HQ) was <1 for all pesticides. Likewise, the cumulative exposure for detected organophosphorus, pyrethroids and carbamates pesticides, was estimated using as metrics the Hazard Index (HI), which was less than 1 for the three families of pesticides assessed. The cancer risk estimated for the detected pesticides classified as Likely or Possible carcinogens was less than 1.15E-7 for infants. In our opinion, the screening approach proposed could be used in the monitoring and risk assessment of pesticides in ambient air.

  7. BOREAS TGB-7 Ambient Air Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the ambient air concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  8. Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling

    NASA Astrophysics Data System (ADS)

    Arp, Hans Peter H.; Goss, Kai-Uwe

    Due to the apparent environmental omnipresence of perfluorocarboxylic acids (PFAs), an increasing number of researchers are investigating their ambient particle- and gas-phase concentrations. Typically this is done using a high-volume air sampler equipped with Quartz Fiber Filters (QFFs) or Glass Fiber Filters (GFFs) to sample the particle-bound PFAs and downstream sorbents to sample the gas-phase PFAs. This study reports that at trace, ambient concentrations gas-phase PFAs sorb to QFFs and GFFs irreversibly and hardly pass through these filters to the downstream sorbents. As a consequence, it is not possible to distinguish between particle- and gas-phase concentrations, or to distinguish concentrations on different particle size fractions, unless precautions are taken. Failure to take such precautions could have already caused reported data to be misinterpreted. Here it is also reported that deactivating QFFs and GFFs with a silylating agent renders them suitable for sampling PFAs. Based on the presented study, a series of recommendations for air-sampling PFAs are provided.

  9. Cardiovascular Effects of Nickel in Ambient Air

    PubMed Central

    Lippmann, Morton; Ito, Kazuhiko; Hwang, Jing-Shiang; Maciejczyk, Polina; Chen, Lung-Chi

    2006-01-01

    Background Fine particulate matter (FPM) in ambient air causes premature mortality due to cardiac disease in susceptible populations. Objective Our objective in this study was to determine the most influential FPM components. Methods A mouse model of atherosclerosis (ApoE−/−) was exposed to either filtered air or concentrated FPM (CAPs) in Tuxedo, New York (85 μg/m3 average, 6 hr/day, 5 days/week, for 6 months), and the FPM elemental composition was determined for each day. We also examined associations between PM components and mortality for two population studies: National Mortality and Morbidity Air Pollution Study (NMMAPS) and Hong Kong. Results For the CAPs-exposed mice, the average of nickel was 43 ng/m3, but on 14 days, there were Ni peaks at ~ 175 ng/m3 and unusually low FPM and vanadium. For those days, back-trajectory analyses identified a remote Ni point source. Electrocardiographic measurements on CAPs-exposed and sham-exposed mice showed Ni to be significantly associated with acute changes in heart rate and its variability. In NMMAPS, daily mortality rates in the 60 cities with recent speciation data were significantly associated with average Ni and V, but not with other measured species. Also, the Hong Kong sulfur intervention produced sharp drops in sulfur dioxide, Ni, and V, but not other components, corresponding to the intervention-related reduction in cardiovascular and pulmonary mortality. Conclusions Known biological mechanisms cannot account for the significant associations between Ni with the acute cardiac function changes in the mice or with cardiovascular mortality in people at low ambient air concentrations; therefore, further research is needed. PMID:17107850

  10. 76 FR 6056 - Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ...-9261-3] RIN 2060-AQ30 Additional Air Quality Designations for the 2006 24-Hour Fine Particle National..., and Decisions Related to the 1997 Air Quality Designations and Classifications for the Annual Fine... nationwide for all but three areas for the 2006 24-hour fine particle (PM 2.5 ) National Ambient Air Quality...

  11. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis.

    PubMed

    An, Ruopeng; Zhang, Sheng; Ji, Mengmeng; Guan, Chenghua

    2018-03-01

    This study systematically reviewed literature regarding the impact of ambient air pollution on physical activity among children and adults. Keyword and reference search was conducted in PubMed and Web of Science to systematically identify articles meeting all of the following criteria - study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies, and case-control studies; subjects: adults; exposures: specific air pollutants and overall air quality; outcomes: physical activity and sedentary behaviour; article types: peer-reviewed publications; and language: articles written in English. Meta-analysis was performed to estimate the pooled effect size of ambient PM 2.5 air pollution on physical inactivity. Seven studies met the inclusion criteria. Among them, six were conducted in the United States, and one was conducted in the United Kingdom. Six adopted a cross-sectional study design, and one used a prospective cohort design. Six had a sample size larger than 10,000. Specific air pollutants assessed included PM 2.5 , PM 10 , O 3 , and NO x , whereas two studies focused on overall air quality. All studies found air pollution level to be negatively associated with physical activity and positively associated with leisure-time physical inactivity. Study participants, and particularly those with respiratory disease, self-reported a reduction in outdoor activities to mitigate the detrimental impact of air pollution. Meta-analysis revealed a one unit (μg/m 3 ) increase in ambient PM 2.5 concentration to be associated with an increase in the odds of physical inactivity by 1.1% (odds ratio = 1.011; 95% confidence interval = 1.001, 1.021; p-value < .001) among US adults. Existing literature in general suggested that air pollution discouraged physical activity. Current literature predominantly adopted a cross-sectional design and focused on the United States. Future studies are warranted to implement a longitudinal

  12. The state of ambient air quality in Pakistan--a review.

    PubMed

    Colbeck, Ian; Nasir, Zaheer Ahmad; Ali, Zulfiqar

    2010-01-01

    Pakistan, during the last decade, has seen an extensive escalation in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, a substantial rise has taken place in the types and number of emission sources of various air pollutants. However, due to the lack of air quality management capabilities, the country is suffering from deterioration of air quality. Evidence from various governmental organizations and international bodies has indicated that air pollution is a significant risk to the environment, quality of life, and health of the population. The Government has taken positive steps toward air quality management in the form of the Pakistan Clean Air Program and has recently established a small number of continuous monitoring stations. However, ambient air quality standards have not yet been established. This paper reviews the data being available on the criteria air pollutants: particulate matter (PM), sulfur dioxide, ozone, carbon monoxide, nitrogen dioxide, and lead. Air pollution studies in Pakistan published in both scientific journals and by the Government have been reviewed and the reported concentrations of PM, SO(2), O(3), CO, NO(2), and Pb collated. A comparison of the levels of these air pollutants with the World Health Organization air quality guidelines was carried out. Particulate matter was the most serious air pollutant in the country. NO(2) has emerged as the second high-risk pollutant. The reported levels of PM, SO(2), CO, NO(2), and Pb were many times higher than the World Health Organization air quality guidelines. Only O(3) concentrations were below the guidelines. The current state of air quality calls for immediate action to tackle the poor air quality. The establishment of ambient air quality standards, an extension of the continuous monitoring sites, and the development of emission control strategies are essential.

  13. The Association of Ambient Air Pollution and Physical Inactivity in the United States

    PubMed Central

    Roberts, Jennifer D.; Voss, Jameson D.; Knight, Brandon

    2014-01-01

    Background Physical inactivity, ambient air pollution and obesity are modifiable risk factors for non-communicable diseases, with the first accounting for 10% of premature deaths worldwide. Although community level interventions may target each simultaneously, research on the relationship between these risk factors is lacking. Objectives After comparing spatial interpolation methods to determine the best predictor for particulate matter (PM2.5; PM10) and ozone (O3) exposures throughout the U.S., we evaluated the cross-sectional association of ambient air pollution with leisure-time physical inactivity among adults. Methods In this cross-sectional study, we assessed leisure-time physical inactivity using individual self-reported survey data from the Centers for Disease Control and Prevention's 2011 Behavioral Risk Factor Surveillance System. These data were combined with county-level U.S. Environmental Protection Agency air pollution exposure estimates using two interpolation methods (Inverse Distance Weighting and Empirical Bayesian Kriging). Finally, we evaluated whether those exposed to higher levels of air pollution were less active by performing logistic regression, adjusting for demographic and behavioral risk factors, and after stratifying by body weight category. Results With Empirical Bayesian Kriging air pollution values, we estimated a statistically significant 16–35% relative increase in the odds of leisure-time physical inactivity per exposure class increase of PM2.5 in the fully adjusted model across the normal weight respondents (p-value<0.0001). Evidence suggested a relationship between the increasing dose of PM2.5 exposure and the increasing odds of physical inactivity. Conclusions In a nationally representative, cross-sectional sample, increased community level air pollution is associated with reduced leisure-time physical activity particularly among the normal weight. Although our design precludes a causal inference, these results provide

  14. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed:more » benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.« less

  15. Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004

    EPA Science Inventory

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  16. 78 FR 12052 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... pollution control agencies, and tribal entities which collect and report ambient air quality data for the..., documenting episodes and initiating episode controls, air quality trends assessment, and air pollution.... Although the state and local air pollution control agencies and tribal entities are responsible for the...

  17. Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain.

    PubMed

    Cirera, Lluís; Rodríguez, Miguel; Giménez, Joaquín; Jiménez, Enrique; Saez, Marc; Guillén, José-Jesús; Medrano, José; Martínez-Victoria, María-Aurelia; Ballester, Ferran; Moreno-Grau, Stella; Navarro, Carmen

    2009-03-01

    Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city's air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 microg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution. The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized

  18. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  19. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  20. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  1. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  2. Investigation of levels in ambient air near sources of Polychlorinated Biphenyls (PCBs) in Kanpur, India, and risk assessment due to inhalation.

    PubMed

    Goel, Anubha; Upadhyay, Kritika; Chakraborty, Mrinmoy

    2016-05-01

    Polychlorinated biphenyls (PCBs) are a class of organic compounds listed as persistent organic pollutant and have been banned for use under Stockholm Convention (1972). They were used primarily in transformers and capacitors, paint, flame retardants, plasticizers, and lubricants. PCBs can be emitted through the primary and secondary sources into the atmosphere, undergo long-range atmospheric transport, and hence have been detected worldwide. Reported levels in ambient air are generally higher in urban areas. Active sampling of ambient air was conducted in Kanpur, a densely populated and industrialized city in the Indo-Gangetic Plain, for detection of 32 priority PCBs, with the aim to determine the concentration in gas/particle phase and assess exposure risk. More than 50 % of PCBs were detected in air. Occurrence in particles was dominated by heavier congeners, and levels in gas phase were below detection. Levels determined in this study are lower than the levels in Coastal areas of India but are at par with other Asian countries where majority of sites chosen for sampling were urban industrial areas. Human health risk estimates through air inhalation pathway were made in terms of lifetime average daily dose (LADD) and incremental lifetime cancer risks (ILCR). The study found lower concentrations of PCBs than guideline values and low health risk estimates through inhalation within acceptable levels, indicating a minimum risk to the adults due to exposure to PCBs present in ambient air in Kanpur.

  3. Association between exposure to ambient air pollution and renal function in Korean adults.

    PubMed

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  < 0.05). In the full covariate model, interquartile range increases in the annual mean concentrations of PM 10 and NO 2 were associated with decreases in eGFR levels of 0.46 (95% CI = - 0.87, - 0.04) and 0.85 (95% CI = - 1.40, - 0.30), respectively. Three of the ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p  < 0.0001), but all significant associations disappeared after adjusting for covariates (all p  > 0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  4. Table of Historical Carbon Monoxide (CO) National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    See the history of limits to the level of carbon monoxide (CO) in ambient air, set through the NAAQS review and rulemaking process under the Clean Air Act. This includes both primary and secondary standards.

  5. Waste combustion as a source of ambient air polybrominated diphenylesters (PBDEs)

    EPA Science Inventory

    The first comprehensive set of U.S. data on PBDE concentrations from waste combustion, with more than 40 BDE congeners reported, was compared to ambient air levels of bromodiphenylethers in the U.S. Concentrations of PBDEs were determined in the raw, pre-air pollution control sys...

  6. Measurements of formaldehyde and acetaldehyde in the urban ambient air

    NASA Astrophysics Data System (ADS)

    Salas, Louis J.; Singh, Hanwant B.

    Acetaldehyde and formaldehyde were measured in urban ambient air by analyzing their 2,4-dinitrophenylhydrazine derivatives with reverse-phase, high-performance liquid chromatography (HPLC). A series of nine short term field experiments were performed in eight cities. Concurrent formaldehyde measurements using the chromotropic-acid procedure show reasonable agreement (±30 %) between the two methods. Average summertime ambient urban formaldehyde (HCHO) concentrations of 10-20 ppb (10 -9v/v) are significantly higher than the average acetaldehyde (CH 3CHO) concentrations of 1-2 ppb. There is evidence of much reduced formaldehyde levels in winter months. Exceptionally high, absolute (8.5 ppb av.) and relative ( HCHO/CH 3CHO ~ 2 ) acetaldehyde concentrations are measured in the South Coast Air Basin of California.

  7. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2009-0443; FRL-9492-3] RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues of Tuesday, November 22, 2011...

  8. A simple novel device for air sampling by electrokinetic capture.

    PubMed

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is

  9. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  10. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  11. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  12. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  13. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  14. Ambient air quality programmes for health impact assessment in the WHO European region.

    PubMed

    Mücke, H G

    2000-06-01

    An important aim of air quality assessment is to provide information about population exposure and health impact assessment. Numerous epidemiological studies have already shown that exposure to excessive levels of ambient air pollutants are associated with either acute or chronic health effects. Until recently, the adequacy of monitoring population exposure in relation to quantitative assessment of health effects of air pollution was rarely considered in ambient air monitoring strategies. This made the formulation of health-related recommendations to risk management difficult and weakens preventive and other measures to reduce adverse health effects of air pollution. To improve local and national capacities for health impact assessment, the European Centre for Environment and Health of the World Health Organization has prepared methodology guidelines concerning selected aspects of air monitoring. The WHO Collaborating Centre for Air Quality Management and Air Pollution Control support efforts in line with international programmes on quality assurance and control for Europe.

  15. Early life exposure to ambient air pollution and childhood asthma in China.

    PubMed

    Deng, Qihong; Lu, Chan; Norbäck, Dan; Bornehag, Carl-Gustaf; Zhang, Yinping; Liu, Weiwei; Yuan, Hong; Sundell, Jan

    2015-11-01

    Early life is suggested to be a critical time in determining subsequent asthma development, but the extent to which the effect of early-life exposure to ambient air pollution on childhood asthma is unclear. We investigated doctor-diagnosed asthma in preschool children due to exposure to ambient air pollution in utero and during the first year of life. In total 2490 children aged 3-6 years participated in a questionnaire study regarding doctor-diagnosed asthma between September 2011 and January 2012 in China. Children's exposure to critical air pollutants, sulfur dioxide (SO2) as proxy of industrial air pollution, nitrogen dioxide (NO2) as proxy of traffic pollution, and particulate matter≤10µm in diameter (PM10) as a mixture, was estimated from the concentrations measured at the ambient air quality monitoring stations by using an inverse distance weighted (IDW) method. Logistic regression analysis was employed to determine the relationship between early-life exposure and childhood asthma in terms of odds ratio (OR) and 95% confidence interval (CI). Association between early-life exposure to air pollutants and childhood asthma was observed. SO2 and NO2 had significant associations with adjusted OR (95% CI) of 1.45 (1.02-2.07) and 1.74 (1.15-2.62) in utero and 1.62 (1.01-2.60) and 1.90 (1.20-3.00) during the first year for per 50 µg/m(3) and 15 µg/m(3) increase respectively. Exposure to the combined high level of SO2 and NO2 in China significantly elevated the asthmatic risk with adjusted OR (95% CI) of 1.76 (1.18-2.64) in utero and 1.85 (1.22-2.79) during the first year compared to the low level exposure. The associations were higher for males and the younger children aged 3-4 than females and the older children aged 5-6. Early-life exposure to ambient air pollution is associated with childhood asthma during which the level and source of air pollution play important roles. The high level and nature of combined industrial and traffic air pollution in China may

  16. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...

  17. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...

  18. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...

  19. GIS-based assessment of cancer risk due to benzene in Tehran ambient air.

    PubMed

    Atabi, Farideh; Mirzahosseini, Seyed Alireza Hajiseyed

    2013-10-01

    The present study aimed to assess the risk of cancer due to benzene in the ambient air of gas stations and traffic zones in the north of Tehran. The cancer risk was estimated using the population distribution data for benzene levels and the unit risk for benzene proposed by the United States Environmental Protection Agency (US EPA). Sixteen sampling locations were monitored, once every week, during 5 April 2010 to 25 March 2011. The results showed that the mean annual benzene concentration was 14.51±3.17 parts per billion (ppb) for traffic zones and 29.01±1.32 ppb for outside gas stations. The risk calculated was 1026×10(-6) for gas station 27 and 955×10(-6) for gas station 139. According to our results, the annual benzene level in Tehran ambient air is 2 to 20 times higher than the respective value specified in International Standard (1.56 ppb). Moreover, the results showed a notable increase of cancer risks, ranging from 10% to 56%, for the vicinity population close to the gas stations in comparison to the vicinity population in the traffic zones.

  20. Impact of National Ambient Air Quality Standards Nonattainment Designations on Particulate Pollution and Health.

    PubMed

    Zigler, Corwin M; Choirat, Christine; Dominici, Francesca

    2018-03-01

    Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.

  1. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    PubMed

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P < 0.001), for patients who received passive insulation, but not for those warmed with forced-air (-0.01 [98.3% CI, -0.03 to 0.01] °Ccore/[h°Cambient]; P = 0.40). Final core temperature at the end of surgery increased 0.13°C (98.3% CI, 0.07 to 0.20; P < 0.01) per degree increase in ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  2. Ambient air pollution and thrombosis.

    PubMed

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  3. AMBIENT CARBON MONOXIDE MONITOR

    EPA Science Inventory

    A portable instrument has been designed and two units have been built to monitor the concentration of CO in ambient air. The air flows through a sampling section that is approximately 43 cm long with a 28-pass optical system that produces a total path of 12 meters. Gas-filter cor...

  4. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Air Quality Designations for the 2010 Sulfur Dioxide (SO[bdi2]) Primary National Ambient Air Quality... air quality designations for certain areas in the United States for the 2010 primary Sulfur Dioxide... of this document? III. What is sulfur dioxide? IV. What is the 2010 SO 2 NAAQS and what are the...

  5. 77 FR 8197 - Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ...-AR32 Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications Approach, Attainment Deadlines and Revocation of the 1997 Ozone Standards for Transportation... proposing thresholds for classifying nonattainment areas for the 2008 ozone National Ambient Air Quality...

  6. 77 FR 30160 - Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...-AR32 Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications Approach, Attainment Deadlines and Revocation of the 1997 Ozone Standards for Transportation... all nonattainment areas for the 2008 ozone national ambient air quality standards (NAAQS) (the ``2008...

  7. 76 FR 76972 - Release of Final Integrated Review Plan for the National Ambient Air Quality Standards for Lead

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... health and the environment from Pb emitted to ambient air. FOR FURTHER INFORMATION CONTACT: Dr. Deirdre... air pollutants that in her ``judgment, cause or contribute to air pollution which may reasonably be anticipated to endanger public health or welfare;'' ``the presence of which in the ambient air results from...

  8. 76 FR 54293 - Review of National Ambient Air Quality Standards for Carbon Monoxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ...This rule is being issued at this time as required by a court order governing the schedule for completion of this review of the air quality criteria and the national ambient air quality standards (NAAQS) for carbon monoxide (CO). Based on its review, the EPA concludes the current primary standards are requisite to protect public health with an adequate margin of safety, and is retaining those standards. After review of the air quality criteria, EPA further concludes that no secondary standard should be set for CO at this time. EPA is also making changes to the ambient air monitoring requirements for CO, including those related to network design, and is updating, without substantive change, aspects of the Federal reference method.

  9. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone air...

  10. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone air...

  11. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone air...

  12. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone air...

  13. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone air...

  14. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea.

    PubMed

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-08-05

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  15. EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY

    EPA Science Inventory

    EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY. Yuh-Chin Huang, Jackie Stonehuerner, Jackie Carter, Andrew J. Ghio, Robert B. Devlin. NHEERL, US EPA, RTP, NC.
    The mechanisms for cardiopulmonary morbidity associated with exposure to air po...

  16. Association of trends in US ambient air quality and cardiovascular mortality for 2000-2010

    EPA Science Inventory

    With the implementation of the Clean Air Act’s National Ambient Air Quality Standards, air quality in the United States has notably improved. Here we investigate whether declining levels of air pollutants are associated with improvements in human health. We examine the re...

  17. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  18. Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor.

    PubMed

    Seo, Dong Han; Pineda, Shafique; Fang, Jinghua; Gozukara, Yesim; Yick, Samuel; Bendavid, Avi; Lam, Simon Kwai Hung; Murdock, Adrian T; Murphy, Anthony B; Han, Zhao Jun; Ostrikov, Kostya Ken

    2017-01-30

    Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.

  19. Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor

    NASA Astrophysics Data System (ADS)

    Seo, Dong Han; Pineda, Shafique; Fang, Jinghua; Gozukara, Yesim; Yick, Samuel; Bendavid, Avi; Lam, Simon Kwai Hung; Murdock, Adrian T.; Murphy, Anthony B.; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2017-01-01

    Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.

  20. Characterization of the ambient air content of parent polycyclic aromatic hydrocarbons in the Fort McKay region (Canada).

    PubMed

    Wnorowski, Andrzej

    2017-05-01

    This study presents the characterization of the gas-particle partition and size distribution of seven parent polycyclic aromatic hydrocarbons (PAHs) in ambient air samples collected in the proximity of oil sands exploration and compares their time-integrated concentration levels with nineteen analogous oxidation products - quinones. Gas-phase (GP) and particle-phase (PM) ambient air aerosol samples that were collected separately in summer for either 24 h or 12 h (day and night) revealed a higher PAH partition in the GP than in the PM, with the distribution over tenfold higher for light over heavy PAHs. Diurnal/nocturnal samples demonstrated that night conditions lead to lower concentrations, linking some of the sources of these compounds with daytime activity emissions. PAHs were observed to transform more efficiently in the GP, and quinone levels increased in the PM with time. Correlation data indicated that parent PAHs originated from primary emission sources associated with oil sand activities and that quinone formation paralleled a reduction in PAH levels. The findings of this study shed new light on characterization of PAHs in the Athabasca oil sands region. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. 78 FR 44485 - Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ...] Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan... Rule Regarding ``Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State... ground-level ozone formation. B. What should I consider as I prepare my comments for the EPA? 1...

  2. SAMPLE DESIGN CONSIDERATIONS FOR INDOOR AIR EXPOSURE SURVEYS

    EPA Science Inventory

    Recent studies have shown that the traditional practice of monitoring outdoor (ambient) air quality leads to little information regarding the exposures of people in indoor surroundings. Consequently, EPA has begun a series of studies to determine the air pollution exposures peopl...

  3. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    PubMed

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  4. 76 FR 14812 - Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2007-0562; EPA-HQ-OAR-2010-0163; FRL-9261-3] RIN-2060-AQ30 Additional Air Quality Designations for the 2006 24-Hour Fine Particle National... Particles National Ambient Air Quality Standards Correction In rule document 2011-2269 appearing on pages...

  5. Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia

    PubMed Central

    2014-01-01

    Background Air pollution is a major health challenge worldwide and has previously been strongly associated with adverse reproductive health. This study aimed to examine the association between spontaneous abortion and seasonal variation of air pollutants in Ulaanbaatar, Mongolia. Methods Monthly average O3, SO2, NO2, CO, PM10 and PM2.5 levels were measured at Mongolian Government Air Quality Monitoring stations. The medical records of 1219 women admitted to the hospital due to spontaneous abortion between 2009–2011 were examined retrospectively. Fetal deaths per calendar month from January-December, 2011 were counted and correlated with mean monthly levels of various air pollutants by means of regression analysis. Results Regression of ambient pollutants against fetal death as a dose–response toxicity curve revealed very strong dose–response correlations for SO2 r > 0.9 (p < 0.001) while similarly strongly significant correlation coefficients were found for NO2 (r > 0.8), CO (r > 0.9), PM10 (r > 0.9) and PM2.5 (r > 0.8), (p < 0.001), indicating a strong correlation between air pollution and decreased fetal wellbeing. Conclusion The present study identified alarmingly strong statistical correlations between ambient air pollutants and spontaneous abortion. Further studies need to be done to examine possible correlations between personal exposure to air pollutants and pregnancy loss. PMID:24758249

  6. Polyfluorinated compounds in ambient air from ship- and land-based measurements in northern Germany

    NASA Astrophysics Data System (ADS)

    Dreyer, Annekatrin; Ebinghaus, Ralf

    Neutral volatile and semi-volatile polyfluorinated organic compounds (PFC) and ionic perfluorinated compounds were determined in air samples collected at two sites in the vicinity of Hamburg, Germany, and onboard the German research vessel Atair during a cruise in the German Bight, North Sea, in early November 2007. PUF/XAD-2/PUF cartridges and glass fiber filters as sampling media were applied to collect several fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl sulfonamido ethanols (FASE) in the gas- and particle-phase as well as a set of perfluorinated carboxylates (PFCA) and sulfonates (PFSA) in the particle-phase. This study presents the distribution of PFC in ambient air of the German North Sea and in the vicinity of Hamburg for the first time. Average total PFC concentrations in and around Hamburg (180 pg m -3) were higher than those observed in the German Bight (80 pg m -3). In the German Bight, minimum-maximum gas-phase concentrations of 17-82 pg m -3 for ΣFTOH, 2.6-10 pg m -3 for ΣFTA, 10-15 pg m -3 for ΣFASA, and 2-4.4 pg m -3 for ΣFASE were determined. In the vicinity of Hamburg, minimum-maximum gas-phase concentrations of 32-204 pg m -3 for ΣFTOH, 3-26 pg m -3 for ΣFTA, 3-18 pg m -3 for ΣFASA, and 2-15 pg m -3 for ΣFASE were detected. Concentrations of perfluorinated acids were in the range of 1-11 pg m -3. FTOH clearly dominated the substance spectrum; 8:2 FTOH occurred in maximum proportions. Air mass back trajectories, cluster, and correlation analyses revealed that the air mass origin and thus medium to long range atmospheric transport was the governing parameter for the amount of PFC in ambient air. Southwesterly located source regions seemed to be responsible for elevated PFC concentrations, local sources appeared to be of minor importance.

  7. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Methods: Designation of a New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of a new equivalent method for monitoring ambient air quality. SUMMARY: Notice is... part 53, a new equivalent method for measuring concentrations of PM 2.5 in the ambient air. FOR FURTHER...

  8. Ambient air pollution and cancer in California Seventh-day Adventists.

    PubMed

    Mills, P K; Abbey, D; Beeson, W L; Petersen, F

    1991-01-01

    Cancer incidence and mortality in a cohort of 6,000 Seventh-day Adventist nonsmokers who were residents of California were monitored for a 6-y period, and relationships with long-term ambient concentrations of total suspended particulates (TSPs) and ozone (O3) were studied. Ambient concentrations were expressed as mean concentrations and exceedance frequencies, which are the number of hours during which concentrations exceeded specified cutoffs (e.g., federal and California air quality standards). Risk of malignant neoplasms in females increased concurrently with exceedance frequencies for all TSP cutoffs, except the lowest, and these increased risks were highly statistically significant. An increased risk of respiratory cancers was associated with only one cutoff of O3, and this result was of borderline significance. These results are presented in the context of setting standards for these two air pollutants.

  9. The impact of ambient air pollution on the human blood metabolome.

    PubMed

    Vlaanderen, J J; Janssen, N A; Hoek, G; Keski-Rahkonen, P; Barupal, D K; Cassee, F R; Gosens, I; Strak, M; Steenhof, M; Lan, Q; Brunekreef, B; Scalbert, A; Vermeulen, R C H

    2017-07-01

    Biological perturbations caused by air pollution might be reflected in the compounds present in blood originating from air pollutants and endogenous metabolites influenced by air pollution (defined here as part of the blood metabolome). We aimed to assess the perturbation of the blood metabolome in response to short term exposure to air pollution. We exposed 31 healthy volunteers to ambient air pollution for 5h. We measured exposure to particulate matter, particle number concentrations, absorbance, elemental/organic carbon, trace metals, secondary inorganic components, endotoxin content, gaseous pollutants, and particulate matter oxidative potential. We collected blood from the participants 2h before and 2 and 18h after exposure. We employed untargeted metabolite profiling to monitor 3873 metabolic features in 493 blood samples from these volunteers. We assessed lung function using spirometry and six acute phase proteins in peripheral blood. We assessed the association of the metabolic features with the measured air pollutants and with health markers that we previously observed to be associated with air pollution in this study. We observed 89 robust associations between air pollutants and metabolic features two hours after exposure and 118 robust associations 18h after exposure. Some of the metabolic features that were associated with air pollutants were also associated with acute health effects, especially changes in forced expiratory volume in 1s. We successfully identified tyrosine, guanosine, and hypoxanthine among the associated features. Bioinformatics approach Mummichog predicted enriched pathway activity in eight pathways, among which tyrosine metabolism. This study demonstrates for the first time the application of untargeted metabolite profiling to assess the impact of air pollution on the blood metabolome. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts.

    PubMed

    Buters, J T M; Weichenmeier, I; Ochs, S; Pusch, G; Kreyling, W; Boere, A J F; Schober, W; Behrendt, H

    2010-07-01

    Proof is lacking that pollen count is representative for allergen exposure, also because allergens were found in nonpollen-bearing fractions of ambient air. We monitored simultaneously birch pollen and the major birch pollen allergen Bet v 1 in different size fractions of ambient air from 2004 till 2007 in Munich, Germany. Air was sampled with a ChemVol high-volume cascade impactor equipped with stages for particulate matter (PM)>10 microm, 10 microm>PM>2.5 microm, and 2.5 microm>PM>0.12 microm. Allergen was determined with a Bet v 1-specific ELISA. Pollen count was assessed with a Burkard pollen trap. We also measured the development of allergen in pollen during ripening. About 93 +/- 3% of Bet v 1 was found in the PM > 10 microm fraction, the fraction containing birch pollen. We did not measure any Bet v 1 in 2.5 microm > PM > 0.12 microm. Either in Munich no allergen was in this fraction or the allergen was absorbed to diesel soot particles that also deposit in this fraction. Pollen released 115% more Bet v 1 in 2007 than in 2004. Also within 1 year, the release of allergen from the same amount of pollen varied more than 10-fold between different days. This difference was explained by a rapidly increasing expression of Bet v 1 in pollen in the week just before pollination. Depending on the day the pollen is released during ripening, its potency varies. In general, pollen count and allergen in ambient air follow the same temporal trends. However, because a 10-fold difference can exist in allergen potency of birch pollen, symptoms might be difficult to correlate with pollen counts, but perhaps better with allergen exposure.

  11. Permeability of gypsum samples dehydrated in air

    NASA Astrophysics Data System (ADS)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  12. Joint Effects of Ambient Air Pollutants on Pediatric Asthma ...

    EPA Pesticide Factsheets

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant combinations (groups of oxidant, secondary, traffic, power plant, and criteria pollutants constructed using combinations of criteria gases, fine particulate matter (PM2.5) and PM2.5 components) on warm season pediatric asthma emergency department (ED) visits in Atlanta during 1998-2004. Joint effects were assessed using multi-pollutant Poisson generalized linear models controlling for time trends, meteorology and daily non-asthma respiratory ED visit counts. Rate ratios (RR) were calculated for the combined effect of an interquartile-range increment in the concentration of each pollutant. Results: Increases in all of the selected pollutant combinations were associated with increases in pediatric asthma ED visits [e.g., joint effect rate ratio=1.13 (95% confidence interval 1.06-1.21) for criteria pollutants (including ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and PM2.5)]. Joint effect estimates were smaller than estimates calculated based on summing results from single-pollutant models, due to control for confounding. Compared with models without interactions, joint effect estimates from models including first-order pollutant interactions were similar for oxidant a

  13. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  14. A simple novel device for air sampling by electrokinetic capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  15. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh

    PubMed Central

    Canning, David

    2017-01-01

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children’s exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014–1.138), 1.150 (95% confidence interval: 1.069–1.237, and 1.132 (95% confidence interval: 1.031–1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m3; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting. PMID:29295507

  16. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    PubMed

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  17. Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air

    DOE PAGES

    Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...

    2015-09-10

    Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO 2 on global climate change, the study of the use of amine-oxide hybrid materials as CO 2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO 2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO 2 from ultradilute gas mixtures, such as ambientmore » air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO 2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO 2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO 2 extraction from simulated ambient air (400 ppm of CO 2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO 2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In conclusion, the utility of low

  18. Contamination of Ambient Air with Acinetobacter baumannii on Consecutive Inpatient Days.

    PubMed

    Shimose, Luis A; Doi, Yohei; Bonomo, Robert A; De Pascale, Dennise; Viau, Roberto A; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Munoz-Price, L Silvia

    2015-07-01

    Acinetobacter-positive patients had their ambient air tested for up to 10 consecutive days. The air was Acinetobacter positive for an average of 21% of the days; the rate of contamination was higher among patients colonized in the rectum than in the airways (relative risk [RR], 2.35; P = 0.006). Of the 6 air/clinical isolate pairs available, 4 pairs were closely related according to rep-PCR results. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Health effects associated with exposure to ambient air pollution.

    PubMed

    Samet, Jonathan; Krewski, Daniel

    2007-02-01

    The World Health Organization has identified ambient air pollution as a high public health priority, based on estimates of air pollution related death and disability-adjusted life years derived in its Global Burden of Disease initiative. The NERAM Colloquium Series on Health and Air Quality was initiated to strengthen the linkage between scientists, policymakers, and other stakeholders by reviewing the current state of science, identifying policy-relevant gaps and uncertainties in the scientific evidence, and proposing a path forward for research and policy to improve air quality and public health. The objective of this paper is to review the current state of science addressing the impacts of air pollution on human health. The paper is one of four background papers prepared for the 2003 NERAM/AirNet Conference on Strategies for Clean Air and Health, the third meeting in the international Colloquium Series. The review is based on the framework and findings of the U.S. National Research Committee (NRC) on Research Priorities for Airborne Particulate Matter and addresses key questions underlying air quality risk management policy decisions.

  20. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    PubMed

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  1. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease

    EPA Science Inventory

    Investigation has repeatedly demonstrated an association between exposure to ambient air pollution particles and numerous indices of human morbidity and mortality. Individuals with chronic obstructive pulmonary disease (COPD) are among those with an increased sensitivity to air p...

  2. National review of ambient air toxics observations.

    PubMed

    Strum, Madeleine; Scheffe, Richard

    2016-02-01

    Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple

  3. 76 FR 60020 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2002-0091, FRL-9472-8] Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air Quality Surveillance AGENCY: Environmental... . Fax: (202) 566-1741. Mail: Environmental Protection Agency, EPA Docket Center (EPA/DC), Air and...

  4. Polyurethane foam (PUF) disk passive samplers derived polychlorinated biphenyls (PCBs) concentrations in the ambient air of Bursa-Turkey: Spatial and temporal variations and health risk assessment.

    PubMed

    Birgül, Aşkın; Kurt-Karakus, Perihan Binnur; Alegria, Henry; Gungormus, Elif; Celik, Halil; Cicek, Tugba; Güven, Emine Can

    2017-02-01

    Polyurethane foam (PUF) passive samplers were employed to assess air concentrations of polychlorinated biphenyls (PCBs) in background, agricultural, semi-urban, urban and industrial sites in Bursa, Turkey. Samplers were deployed for approximately 2-month periods from February to December 2014 in five sampling campaign. Results showed a clear rural-agricultural-semi-urban-urban-industrial PCBs concentration gradient. Considering all sampling periods, ambient air concentrations of Σ 43 PCBs ranged from 9.6 to 1240 pg/m 3 at all sites with an average of 24.1 ± 8.2, 43.8 ± 24.4, 140 ± 190, 42.8 ± 24.6, 160 ± 280, 84.1 ± 105, 170 ± 150 and 280 ± 540 pg/m 3 for Mount Uludag, Uludag University Campus, Camlica, Bursa Technical University Osmangazi Campus, Hamitler, Agakoy, Kestel Organised Industrial District and Demirtas Organised Industrial District sampling sites, respectively. The ambient air PCB concentrations increased along a gradient from background to industrial areas by a factor of 1.7-11.4. 4-Cl PCBs (31.50-81.60%) was the most dominant homologue group at all sampling sites followed by 3-Cl, 7-Cl, 6-Cl and 5-Cl homologue groups. Sampling locations and potential sources grouped in principal component analysis. Results of PCA plots highlighted a large variability of the PCB mixture in air, hence possible related sources, in Bursa area. Calculated inhalation risk levels in this study indicated no serious adverse health effects. This study is one of few efforts to characterize PCB composition in ambient air seasonally and spatially for urban and industrial areas of Turkey by using passive samplers as an alternative sampling method for concurrent monitoring at multiple sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ambient Air Pollution Exposures and Risk of Parkinson Disease.

    PubMed

    Liu, Rui; Young, Michael T; Chen, Jiu-Chiuan; Kaufman, Joel D; Chen, Honglei

    2016-11-01

    Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. Our nested case-control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995-1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient air pollution exposures and risk of Parkinson disease

  6. METHODOLOGY FOR SITING AMBIENT AIR MONITORS AT THE NEIGHBORHOOD SCALE

    EPA Science Inventory

    In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region in order to achieve monitor siting objectives.

    We p...

  7. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performancemore » of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  8. FINE AMBIENT AIR PARTICULAR MATTER EXPOSURE INDUCES MOLECULAR ALTERATIONS INDICATIVE OF CARDIOVASCULAR DISEASE PROGRESSION IN ATHEROSCLEROTIC SUSCEPTIBLE MICE

    EPA Science Inventory

    Epidemiological, clinical, and toxicological studies have demonstrated that exposure to ambient air particulate matter (PM) can alter cardiovascular function and may influence cardiovascular disease (CVD). It has been shown that exposure to concentrated ambient air particles (CA...

  9. Environmental Technology Verification Report for Applikon MARGA Semi-Continuous Ambient Air Monitoring System

    EPA Science Inventory

    The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...

  10. The relationships between ambient air pollutants and childhood asthma and eczema are modified by emotion and conduct problems.

    PubMed

    Zhou, Cailiang; Baïz, Nour; Banerjee, Soutrik; Charpin, Denis André; Caillaud, Denis; de Blay, Fréderic; Raherison, Chantal; Lavaud, François; Annesi-Maesano, Isabella

    2013-12-01

    This study examined the hypothesis that emotion and conduct problems (ECPs) may modify the relationships between ambient air pollutants and childhood asthma and eczema. In the cross-sectional study, 4209 French schoolchildren (aged 10e12 years) were investigated between March 1999 and October 2000. Ambient air pollutants exposures were estimated with dispersion modeling. Health outcomes and ECPs were evaluated by validated questionnaires, completed by the parents. Marginal models were used to analyze the relationships of exposures to ambient air pollutants and/or ECPs to asthma phenotypes and current eczema, adjusting for potential confounders. In our population, interactions were found between ECPs and exposures to ambient air pollutants (benzene, carbon monoxide, nitrogen dioxide, nitrogen oxides, particulate matter with an aerodynamic diameter below 10 mm, volatile organic compounds) (P < .20). In addition, ECPs were related to current wheezing (adjusted prevalence odds ratio [aOR], 2.35; 95% confidence interval [CI], 1.59e3.47), current doctor-diagnosed asthma (aOR, 1.82; 95% CI, 1.25e2.66), and current eczema (aOR, 2.21; 95% CI, 1.61e3.02). Children with ECPs had 1.17e1.51 times higher aORs for the associations between ambient air pollutants and asthma phenotypes and current eczema than those without ECPs. ECPs may modify the relationships between ambient air pollutants and childhood asthma and eczema. 2013 Elsevier Inc. All rights reserved.

  11. Assessment of ambient air quality in the port of Naples.

    PubMed

    Prati, Maria Vittoria; Costagliola, Maria Antonietta; Quaranta, Franco; Murena, Fabio

    2015-08-01

    Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.

  12. Ambient particulate matter air pollution and cardiopulmonary diseases.

    PubMed

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Study on an Air Quality Evaluation Model for Beijing City Under Haze-Fog Pollution Based on New Ambient Air Quality Standards

    PubMed Central

    Li, Li; Liu, Dong-Jun

    2014-01-01

    Since 2012, China has been facing haze-fog weather conditions, and haze-fog pollution and PM2.5 have become hot topics. It is very necessary to evaluate and analyze the ecological status of the air environment of China, which is of great significance for environmental protection measures. In this study the current situation of haze-fog pollution in China was analyzed first, and the new Ambient Air Quality Standards were introduced. For the issue of air quality evaluation, a comprehensive evaluation model based on an entropy weighting method and nearest neighbor method was developed. The entropy weighting method was used to determine the weights of indicators, and the nearest neighbor method was utilized to evaluate the air quality levels. Then the comprehensive evaluation model was applied into the practical evaluation problems of air quality in Beijing to analyze the haze-fog pollution. Two simulation experiments were implemented in this study. One experiment included the indicator of PM2.5 and was carried out based on the new Ambient Air Quality Standards (GB 3095-2012); the other experiment excluded PM2.5 and was carried out based on the old Ambient Air Quality Standards (GB 3095-1996). Their results were compared, and the simulation results showed that PM2.5 was an important indicator for air quality and the evaluation results of the new Air Quality Standards were more scientific than the old ones. The haze-fog pollution situation in Beijing City was also analyzed based on these results, and the corresponding management measures were suggested. PMID:25170682

  14. 75 FR 32178 - Release of Final Document Related to the Review of the National Ambient Air Quality Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... ``cause or contribute to air pollution which may reasonably be anticipated to endanger public health or... National Ambient Air Quality Standards: Scope and Methods Plan for Health Risk and Exposure Assessment... Related to the Review of the National Ambient Air Quality Standards for Carbon Monoxide AGENCY...

  15. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  16. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    PubMed Central

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-01-01

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  17. Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, A.J.; Elias, T.; Navarrete, R.

    1994-12-31

    Gas emissions from Kilauea occur from the summit caldera, along the middle East Rift Zone (ERZ), and where lava enters the ocean. We estimate that the current ERZ eruption of Kilauea releases between 400 metric tonnes of SO{sub 2} per day, during eruptive pauses, to as much as 1850 metric tonnes per day during actively erupting periods, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl and HF. In order to characterize gas emissions from Kilauea in a meaningful way for assessing environmental impact, we made a series of replicate grab-sample measurements of ambientmore » air and precipitation at the summit of Kilauea, along its ERZ, and at coastal sites where lava enters the ocean. The grab-sampling data combined with SO{sub 2} emission rates, and continuous air quality and meteorological monitoring at the summit of Kilauea show that the effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Prevailing tradewinds typically carry the gases and aerosols released to the southwest, where they are further distributed by the regional wind regime. Episodes of kona, or low speed variable winds sometimes disrupt this pattern, however, and allow the gases and their oxidation products to collect at the summit and eastern side of the island. Summit solfatara areas of Kilauea are distinguished by moderate to high ambient SO{sub 2}, high H{sub 2}S at one location, and low H{sub 2}S at all others, and negligible HCl concentrations, as measured 1 m from degassing point-sources. Summit solfatara rain water has high sulfate and low chloride ion concentrations, and low pH.« less

  18. 75 FR 1566 - Public Hearings for Reconsideration of the 2008 National Ambient Air Quality Standards for Ozone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ...-AP98 Public Hearings for Reconsideration of the 2008 National Ambient Air Quality Standards for Ozone... National Ambient Air Quality Standards for Ozone,'' which was signed on January 6, 2010, and will be.../ttn/naaqs/standards/ozone/s_o3_cr_fr.html for the addresses and detailed instructions for submitting...

  19. Effects of metals within ambient air particulate matter (PM) on human health.

    PubMed

    Chen, Lung Chi; Lippmann, Morton

    2009-01-01

    We review literature providing insights on health-related effects caused by inhalation of ambient air particulate matter (PM) containing metals, emphasizing effects associated with in vivo exposures at or near contemporary atmospheric concentrations. Inhalation of much higher concentrations, and high-level exposures via intratracheal (IT) instillation that inform mechanistic processes, are also reviewed. The most informative studies of effects at realistic exposure levels, in terms of identifying influential individual PM components or source-related mixtures, have been based on (1) human and laboratory animal exposures to concentrated ambient particles (CAPs), and (2) human population studies for which both health-related effects were observed and PM composition data were available for multipollutant regression analyses or source apportionment. Such studies have implicated residual oil fly ash (ROFA) as the most toxic source-related mixture, and Ni and V, which are characteristic tracers of ROFA, as particularly influential components in terms of acute cardiac function changes and excess short-term mortality. There is evidence that other metals within ambient air PM, such as Pb and Zn, also affect human health. Most evidence now available is based on the use of ambient air PM components concentration data, rather than actual exposures, to determine significant associations and/or effects coefficients. Therefore, considerable uncertainties about causality are associated with exposure misclassification and measurement errors. As more PM speciation data and more refined modeling techniques become available, and as more CAPs studies involving PM component analyses are performed, the roles of specific metals and other components within PM will become clearer.

  20. Perspective: ambient air pollution: inflammatory response and effects on the lung’s vasculature

    PubMed Central

    Esmaeil, Nafiseh; Reibman, Joan

    2014-01-01

    Abstract Particulates from air pollution are implicated in causing or exacerbating respiratory and systemic cardiovascular diseases and are thought to be among the leading causes of morbidity and mortality. However, the contribution of ambient particulate matter to diseases affecting the pulmonary circulation, the right heart, and especially pulmonary hypertension is much less documented. Our own work and that of other groups has demonstrated that prolonged exposure to antigens via the airways can cause severe pulmonary arterial remodeling. In addition, vascular changes have been well documented in a typical disease of the airways, asthma. These experimental and clinical findings link responses in the airways with responses in the lung’s vasculature. It follows that particulate air pollution could cause, or exacerbate, diseases in the pulmonary circulation and associated pulmonary hypertension. This perspective details the literature for support of this concept. Data regarding the health effects of particulate matter from air pollution on the lung’s vasculature, with emphasis on the lung’s inflammatory responses to particulate matter deposition and pulmonary hypertension, are discussed. A deeper understanding of the health implications of exposure to ambient particulate matter will improve our knowledge of how to improve the management of lung diseases, including diseases of the pulmonary circulation. As man-made ambient particulate air pollution is typically linked to economic growth, a better understanding of the health effects of exposure to particulate air pollution is expected to integrate the global goal of achieving healthy living for all. PMID:25006418

  1. [Impact of short weather changes on the population's health risk from ambient air pollution].

    PubMed

    Novikov, S M; Skvortsova, N S; Kislitsin, V A; Shashina, T A

    2007-01-01

    The paper considers the negative impact of weather changes in combination with the altered quality of ambient air on the economic and social spheres of society and on the population's health. It describes experience in assessing a possible damage to the health of the Moscow population from exposure to elevated concentrations of ambient air pollutants (suspended matter, nitrogen and sulfur dioxides, carbon oxide). The results of assessment simulation of dissemination of chemicals contained in the emission from the Moscow heat-and-power objects under poor weather conditions are presented.

  2. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  3. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  4. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  5. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  6. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  7. A Direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard

    EPA Science Inventory

    In setting primary ambient air quality standards, the EPA’s responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and ...

  8. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  9. CONCENTRATED AMBIENT AIR PARTICLES INDUCE PULMONARY INFLAMMATION IN HEALTHY HUMAN VOLUNTEERS

    EPA Science Inventory


    We tested the hypothesis that exposure of healthy volunteers to concentrated ambient particles (CAPS) is associated with an influx of inflammatory cells into the lower respiratory tract. Thirty-eight volunteers were exposed to either filtered air or particles concentrated fro...

  10. Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winberry, J.; Henning, L.; Crume, R.

    1998-01-01

    The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipmentmore » and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.« less

  11. Ambient Air Pollution Exposures and Risk of Parkinson Disease

    PubMed Central

    Liu, Rui; Young, Michael T.; Chen, Jiu-Chiuan; Kaufman, Joel D.; Chen, Honglei

    2016-01-01

    Background: Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). Objective: We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. Methods: Our nested case–control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995–1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. Results: We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. Conclusions: Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient

  12. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  13. Occurrence and particle-size distributions of polycyclic aromatic hydrocarbons in the ambient air of coking plant.

    PubMed

    Liu, Xiaofeng; Peng, Lin; Bai, Huiling; Mu, Ling; Song, Chongfang

    2014-06-01

    The purpose of this study was to characterize the occurrence and size distributions of ten species of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of coking plants. Particulate-matter samples of four size fractions, including ≤2.1, 2.1-4.2, 4.2-10.2, and ≥10.2 μm, were collected using a Staplex234 cascade impactor during August 2009 at two coking plants in Shanxi, China. The PAHs were analyzed by a gas chromatograph equipped with a mass-selective detector. The concentrations of total particulate-matter PAHs were 1,412.7 and 2,241.1 ng/m(3) for plants I and II, and the distributions showed a peak within the 0.1-2.1 μm size range for plant I and the 0.1-4.2 μm for plant II. The size distributions of individual PAHs (except fluoranthene) exhibited a considerable peak within the 0.1-2.1 μm size range in coking plant I, which can be explained by the gas-particle partition mechanism. The ambient air of the coking plant was heavily polluted by PAHs associated with fine particles (≤2.1 μm), and benzo[b]fluoranthene made the largest contribution to total PAHs. The exposure levels of coking-plant workers to PAHs associated with fine particles were higher than to PAHs associated with coarse particles. Benzo[b]fluoranthene, benzo[a]pyrene, and dibenzo[a,h]anthracene should be the primary pollutants monitored in the coking plant. This research constitutes a significant contribution to assessing the exposure risk of coking-plant workers and providing basic data for PAH standards for ambient air in coking plants.

  14. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution.

    PubMed

    Ouyang, Yuhui; Xu, Zhaojun; Fan, Erzhong; Li, Ying; Miyake, Kunio; Xu, Xianyan; Zhang, Luo

    2018-04-20

    Particulate matter (PM) air pollution has been associated with an increase in the incidence of chronic allergic diseases; however, the mechanisms underlying the effect of exposure to natural ambient air pollution in chronic allergic diseases have not been fully elucidated. In the present study, we aimed to investigate the cellular responses induced by exposure to natural ambient air pollution, employing a mouse model of chronic allergy. The results indicated that exposure to ambient air pollution significantly increased the number of eosinophils in the nasal mucosa. The modulation of gene expression profile identified a set of regulated genes, and the Triggering Receptor Expressed on Myeloid cells1(TREM1) signaling canonical pathway was increased after exposure to ambient air pollution. In vitro, PM2.5 increased Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) and nuclear factor (NF)-κB signaling pathway activation in A549 and HEK293 cell cultures. These results suggest a novel mechanism by which, PM2.5 in ambient air pollution may stimulate the innate immune system through the PM2.5-Nod1-NF-κB axis in chronic allergic disease.

  15. A comparative analysis of modeled and monitored ambient hazardous air pollutants in Texas: a novel approach using concordance correlation.

    PubMed

    Lupo, Philip J; Symanski, Elaine

    2009-11-01

    Often, in studies evaluating the health effects of hazardous air pollutants (HAPs), researchers rely on ambient air levels to estimate exposure. Two potential data sources are modeled estimates from the U.S. Environmental Protection Agency (EPA) Assessment System for Population Exposure Nationwide (ASPEN) and ambient air pollutant measurements from monitoring networks. The goal was to conduct comparisons of modeled and monitored estimates of HAP levels in the state of Texas using traditional approaches and a previously unexploited method, concordance correlation analysis, to better inform decisions regarding agreement. Census tract-level ASPEN estimates and monitoring data for all HAPs throughout Texas, available from the EPA Air Quality System, were obtained for 1990, 1996, and 1999. Monitoring sites were mapped to census tracts using U.S. Census data. Exclusions were applied to restrict the monitored data to measurements collected using a common sampling strategy with minimal missing values over time. Comparisons were made for 28 HAPs in 38 census tracts located primarily in urban areas throughout Texas. For each pollutant and by year of assessment, modeled and monitored air pollutant annual levels were compared using standard methods (i.e., ratios of model-to-monitor annual levels). Concordance correlation analysis was also used, which assesses linearity and agreement while providing a formal method of statistical inference. Forty-eight percent of the median model-to-monitor values fell between 0.5 and 2, whereas only 17% of concordance correlation coefficients were significant and greater than 0.5. On the basis of concordance correlation analysis, the findings indicate there is poorer agreement when compared with the previously applied ad hoc methods to assess comparability between modeled and monitored levels of ambient HAPs.

  16. Review of the Primary National Ambient Air Quality Standard for Sulfur Oxides: Risk and Exposure Assessment

    EPA Science Inventory

    Sulfur oxides are one of the six major air pollutants for which EPA has issued air quality criteria and established national ambient air quality standards (NAAQS) based on those criteria. The Clear Air Act (CAA) requires EPA to periodically review and revise, as appropriate, exis...

  17. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Hernandez, A; Cabacungan, C

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred ormore » not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.« less

  18. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  19. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...

  20. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...

  1. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...

  2. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...

  3. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies

    PubMed Central

    Coker, Eric; Kizito, Samuel

    2018-01-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region. PMID:29494501

  4. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies.

    PubMed

    Coker, Eric; Kizito, Samuel

    2018-03-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region.

  5. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  6. Ambient air quality at the wider area of an industrial mining facility at Stratoni, Chalkidiki, Greece.

    PubMed

    Gaidajis, Georgios; Angelakoglou, Komninos; Gazea, Emmy

    2012-01-01

    To assess ambient air quality at the wider area of a mining-industrial facility in Chalkidiki, Greece, the particulate matter with an aerodynamic diameter of 10 μm (PM(10)) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn were monitored for a period of three years (2008-2010). Gravimetric air samplers were employed for the particulate matter sampling at three sampling stations located in the immediate vicinity of the industrial facility and at a neighbouring residential site. Monitoring data indicated that the 3-year median PM(10) concentrations were 23.3 μg/m(3) at the residential site close to the facility and 28.7 μg/m(3) at the site within the facility indicating a minimal influence from the industrial activities to the air quality of the neighbouring residential area. Both annual average and median PM(10) concentration levels were below the indicative European standards, whereas similar spatial and temporal variation was observed for the PM(10) constituents. The average Pb concentrations measured for the three sampling sites were 0.2, 0.146 and 0.174 μg/m(3) respectively, well below the indicative limit of 0.5 μg/m(3). The quantitative and qualitative comparison of PM(10) concentrations and its elemental constituent for the three sampling stations did not indicate any direct influence of the mining-industrial activities to the air quality of the Stratoni residential area.

  7. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    EPA Science Inventory

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  8. Time-varying cycle average and daily variation in ambient air pollution and fecundability.

    PubMed

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Buck Louis, Germaine M; Sherman, Seth; Mendola, Pauline

    2018-01-01

    Does ambient air pollution affect fecundability? While cycle-average air pollution exposure was not associated with fecundability, we observed some associations for acute exposure around ovulation and implantation with fecundability. Ambient air pollution exposure has been associated with adverse pregnancy outcomes and decrements in semen quality. The LIFE study (2005-2009), a prospective time-to-pregnancy study, enrolled 501 couples who were followed for up to one year of attempting pregnancy. Average air pollutant exposure was assessed for the menstrual cycle before and during the proliferative phase of each observed cycle (n = 500 couples; n = 2360 cycles) and daily acute exposure was assessed for sensitive windows of each observed cycle (n = 440 couples; n = 1897 cycles). Discrete-time survival analysis modeled the association between fecundability and an interquartile range increase in each pollutant, adjusting for co-pollutants, site, age, race/ethnicity, parity, body mass index, smoking, income and education. Cycle-average air pollutant exposure was not associated with fecundability. In acute models, fecundability was diminished with exposure to ozone the day before ovulation and nitrogen oxides 8 days post ovulation (fecundability odds ratio [FOR] 0.83, 95% confidence interval [CI]: 0.72, 0.96 and FOR 0.84, 95% CI: 0.71, 0.99, respectively). However, particulate matter ≤10 microns 6 days post ovulation was associated with greater fecundability (FOR 1.25, 95% CI: 1.01, 1.54). Although our study was unlikely to be biased due to confounding, misclassification of air pollution exposure and the moderate study size may have limited our ability to detect an association between ambient air pollution and fecundability. While no associations were observed for cycle-average ambient air pollution exposure, consistent with past research in the United States, exposure during critical windows of hormonal variability was associated with prospectively measured couple

  9. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans

    PubMed Central

    Chen, Zhanghua; Salam, Muhammad T.; Toledo-Corral, Claudia; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Wilson, John P.; Trigo, Enrique

    2016-01-01

    OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae. PMID:26868440

  10. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  11. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China.

    PubMed

    Yang, Shaoping; Tan, Yafei; Mei, Hui; Wang, Fang; Li, Na; Zhao, Jinzhu; Zhang, Yiming; Qian, Zhengmin; Chang, Jen Jen; Syberg, Kevin M; Peng, Anna; Mei, Hong; Zhang, Dan; Zhang, Yan; Xu, Shunqing; Li, Yuanyuan; Zheng, Tongzhang; Zhang, Bin

    2018-04-01

    Recent studies suggest that ambient air pollution exposure during pregnancy is associated with stillbirth occurrence. However, the results on the associations between ambient air pollutants and stillbirths are inconsistent and little is known about the gestational timing of sensitive periods for the effects of ambient air pollutants exposure on stillbirth. This study aimed to examine whether exposure to high levels of ambient air pollutants in a Chinese population is associated with an increased risk of stillbirth, and determine the gestational period when the fetus is most susceptible. We conducted a population-based cohort study in Wuhan, China, involving 95,354 births between June 10, 2011 and June 9, 2013. The exposure assessments were based on the daily mean concentrations of air pollutants obtained from the exposure monitor nearest to the pregnant women's residence. Logistic regression analyses were performed to determine the associations between stillbirths and exposure to each of the air pollutants at different pregnancy periods with adjustment for confounding factors. Stillbirth increased with a 10 μg/m 3 increase in particulate matter 2.5 (PM 2.5 ) in each stage of pregnancy, and a significant association between carbon monoxide (CO) exposure and stillbirth was found during the third trimester (adjusted odds ratio (aOR): 1.01, 95% confidence interval (CI): 1.00-1.01) and in the entire pregnancy (aOR: 1.18, 95% CI: 1.04-1.34). Furthermore, an increased risk of stillbirth in the third trimester was associated with a 10 μg/m 3 increase in PM 10 (aOR: 1.08, 95% CI: 1.04-1.11), nitrogen dioxide (NO 2 ) (aOR: 1.13, 95% CI: 1.07-1.21) and sulfur dioxide (SO 2 ) (aOR: 1.26, 95% CI: 1.16-1.35). However, no positive association was observed between ozone exposure and stillbirth. In the two-pollutant models, PM 2.5 and CO exposures were found to be consistently associated with stillbirth. Our study revealed that exposure to high levels of PM 2.5 , PM 10 , SO 2

  12. PREDICTING THE IMPACT OF TROPOSPHERIC OZONE ON ECOLOGICAL RESOURCES FOR SETTING NATIONAL AMBIENT AIR QUALITY STANDARDS

    EPA Science Inventory

    The Clean Air Act provides for establishing National Ambient Air Quality Standards (NAAQS) to protect public welfare (including crops, forests, ecosystems, and soils) from adverrse effects of air pollutants, including tropospheric ozone. The formulation of policies is science-bas...

  13. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    PubMed

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  14. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks.

    PubMed

    Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter

    2008-04-25

    An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements.

  15. The role of micronutrients in the response to ambient air pollutants: Potential mechanisms and suggestions for research design.

    PubMed

    Miller, Colette N; Rayalam, Srujana

    2017-01-01

    People living in regions of low socioeconomic status are thought to be prone to higher exposures to environmental pollutants, poor nutrition, and numerous preventable diseases and infections. Poverty correlates with pollution and malnutrition; however, limited studies examined their interrelationship. The well-studied, deleterious health effects attributed to environmental pollutants and poor nutrition may act in combination with produce more severe adverse health outcomes than any one factor alone. Deficiencies in specific nutrients render the body more susceptible to injury which may influence the pathways that serve as the mechanistic responses to ambient air pollutants. This review (1) explores specific micronutrients that are of global concern, (2) explains how these nutrients may impact the body's response to ambient air pollution, and (3) provides guidance on designing animal models of nutritional deficiency. It is likely that those individuals who reside in regions of high ambient air pollution are similarly malnourished. Therefore, it is important that research identifies specific nutrients of concern and their impact in identified regions of high ambient air pollution.

  16. Panel discussion review: Session two - Interpretation of Observed Associations between Multiple Ambient Air Pollutants and Health Effects in Epidemiologic Analysis

    EPA Science Inventory

    Air pollution epidemiologic research has often utilized ambient air concentrations measured from centrally located monitors as a surrogate measure of exposure to these pollutants. Associations between these ambient concentrations and health outcomes such as lung function, hospita...

  17. Ambient Particulate Matter Air Pollution in Mpererwe District, Kampala, Uganda: A Pilot Study

    PubMed Central

    Schwander, Stephan; Okello, Clement D.; Freers, Juergen; Chow, Judith C.; Watson, John G.; Corry, Melody; Meng, Qingyu

    2014-01-01

    Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5 (fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m3 in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5 fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5 mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%–55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health. PMID:24693293

  18. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis.

    PubMed

    Jayaraj, Richard L; Rodriguez, Eric A; Wang, Yi; Block, Michelle L

    2017-06-01

    Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.

  19. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup; Sharma, Anoop Kumar; Wallin, Håkan; Bossi, Rossana; Autrup, Herman; Mølhave, Lars; Ravanat, Jean-Luc; Briedé, Jacob Jan; de Kok, Theo Martinus; Loft, Steffen

    2011-02-18

    Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.

  20. 75 FR 57220 - Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard: New Source Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard: New Source Review Anti-Backsliding Provisions for Former 1-Hour Ozone Standard--Public Hearing Notice AGENCY: Environmental... be held for the proposed ``Rule to Implement the 1997 8-Hour Ozone National Ambient Air Quality...

  1. Ambient air pollution and birth weight in full-term infants in Atlanta, 1994-2004.

    PubMed

    Darrow, Lyndsey A; Klein, Mitchel; Strickland, Matthew J; Mulholland, James A; Tolbert, Paige E

    2011-05-01

    An emerging body of evidence suggests that ambient levels of air pollution during pregnancy are associated with fetal growth. We examined relationships between birth weight and temporal variation in ambient levels of carbon monoxide, nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone, particulate matter ≤ 10 μm in diameter (PM₁₀), ≤ 2.5 μm (PM(2.5)), 2.5 to 10 µm (PM(2.5-10)), and PM(2.5) chemical component measurements for 406,627 full-term births occurring between 1994 and 2004 in five central counties of metropolitan Atlanta. We assessed relationships between birth weight and pollutant concentrations during each infant's first month of gestation and third trimester, as well as in each month of pregnancy using distributed lag models. We also conducted capture-area analyses limited to mothers residing within 4 miles (6.4 km) of each air quality monitoring station. In the five-county analysis, ambient levels of NO₂, SO₂, PM(2.5) elemental carbon, and PM(2.5) water-soluble metals during the third trimester were significantly associated with small reductions in birth weight (-4 to -16 g per interquartile range increase in pollutant concentrations). Third-trimester estimates were generally higher in Hispanic and non-Hispanic black infants relative to non-Hispanic white infants. Distributed lag models were also suggestive of associations between air pollutant concentrations in late pregnancy and reduced birth weight. The capture-area analyses provided little support for the associations observed in the five-county analysis. Results provide some support for an effect of ambient air pollution in late pregnancy on birth weight in full-term infants.

  2. An analysis of using semi-permeable membrane devices to assess persistent organic pollutants in ambient air of Alaska

    NASA Astrophysics Data System (ADS)

    Wu, Ted Hsin-Yeh

    A region of concern for persistent organic pollutants (POPS) contamination is the Arctic, because of POPs' ability to migrate long distances through the atmosphere toward cold regions, condense out of the atmosphere in those region, deposit in sensitive arctic ecosystems and bioaccumulate in Arctic species. Thus, monitoring of POP concentrations in the Arctic is necessary. However, traditional active air monitoring techniques for POPs may not be feasible in the Arctic, because of logistics and cost. While these issues may be overcome using passive air sampling devices, questions arise about the interpretation of the contaminant concentrations detected using the passive air samplers. In this dissertation semi-permeable membrane devices (SPMDs) containing triolein were characterized and evaluated for use in sampling the ambient air of Alaska for three classes of POPS (organochlorines [OCs], polychlorinated biphenyls [PCBs] and polyaromatic hydrocarbons [PAHs]). In addition, a SPMD-based sampling campaign for POPS was conducted simultaneously at five sites in Alaska during a one-year period. The POP concentrations obtained from the SPMDs were examined to determine the spatial and seasonal variability at the locations. POP concentrations detected in SPMDs were influenced by exposure to sunlight, concentrations of particulate-bound contaminants and changes in temperature. PAH concentrations in a SPMD mounted in a sunlight-blocking deployment unit were higher than in a SPMD exposed to sunlight (P = 0.007). PCB concentrations in SPMD exposed to filtered and non-filtered air were significantly different (P < 0.0001). Derived PAH air concentrations measured using SPMD were within a factor of approximately 7 of those obtained from an air sampler in Barrow, Alaska. The field study showed three distinct groups of samples. Barrow was separated from the sub-Arctic samples and a Homer sample (September-December) was distinct from the sub-Arctic samples. The separations suggest

  3. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the ambient...

  4. Using in situ GC-MS for analysis of C2-C7 volatile organic acids in ambient air of a boreal forest site

    NASA Astrophysics Data System (ADS)

    Hellén, Heidi; Schallhart, Simon; Praplan, Arnaud P.; Petäjä, Tuukka; Hakola, Hannele

    2017-01-01

    An in situ method for studying gas-phase C2-C7 monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-of-flight mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.

  5. Laser-induced fluorescence from N2(+) ions generated by a corona discharge in ambient air.

    PubMed

    Konthasinghe, Kumarasiri; Fitzmorris, Kristin; Peiris, Manoj; Hopkins, Adam J; Petrak, Benjamin; Killinger, Dennis K; Muller, Andreas

    2015-09-01

    In this work, we present the measurement of laser-induced fluorescence from N2(+) ions via the B(2)Σu(+)-X(2)Σg(+) band system in the near-ultraviolet. The ions were generated continuously by a plasma glow discharge in low pressure N2 and by a corona discharge in ambient air. The fluorescence decay time was found to rapidly decrease with increasing pressure leading to an extrapolated decay rate of ≍10(10) s(-1) at atmospheric pressure. In spite of this quenching, we were able to observe laser induced fluorescence in ambient air by means of a time-gated spectral measurement. In the process of comparing the emission signal with that of N2 spontaneous Raman scattering, ion concentrations in ambient air of order 10(8-)10(10) cm(-3) were determined. With moderate increases in laser power and collection efficiency, ion concentrations of less than 10(6) cm(-3) may be measurable, potentially enabling applications in atmospheric standoff detection of ionizing radiation from hazardous radioactive sources.

  6. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...This rule establishes initial air quality designations for most areas in the United States, including areas of Indian country, for the 2008 primary and secondary national ambient air quality standards (NAAQS) for ozone. The designations for several counties in Illinois, Indiana, and Wisconsin that the EPA is considering for inclusion in the Chicago nonattainment area will be designated in a subsequent action, no later than May 31, 2012. Areas designated as nonattainment are also being classified by operation of law according to the severity of their air quality problems. The classification categories are Marginal, Moderate, Serious, Severe, and Extreme. The EPA is establishing the air quality thresholds that define the classifications in a separate rule that the EPA is signing and publishing in the Federal Register on the same schedule as these designations. In accordance with that separate rule, six nonattainment areas in California are being reclassified to a higher classification.

  7. Declining ambient air pollution and lung function improvement in Austrian children

    NASA Astrophysics Data System (ADS)

    Neuberger, Manfred; Moshammer, Hanns; Kundi, Michael

    Three thousand four hundred fifty-one Austrian elementary school children were examined (between 2 and 8 times) by spirometry by standardized methods, over a 5 yr period. The districts where they lived were grouped into those where NO 2 declined during this period (by at least 30 μg/m 3 measured as half year means) and those with less or no decline in ambient NO 2. In both groups of districts, SO 2 and TSP fell by similar amounts over this period. A continuous improvement of MEF25 (maximum exspiratory flow rate at 25% vital capacity) was found in districts with declining ambient NO 2. Populations did not differ in respect of anthropometric factors, passive smoking or socioeconomic status. A birth cohort from this study population which was followed up to age 18 confirmed the improved growth of MEF25 with decline in NO 2, while the improved growth of forced vital capacity was more related to decline in SO 2. This study provides the first evidence that improvements in the outdoor air quality during the 1980s are correlated with health benefits, and suggest that adverse effects on lung function related to ambient air pollution are reversible before adulthood. Improvement of small airway functions appeared to be more dependent on reductions of NO 2 than reduction in SO 2 and TSP.

  8. Ambient air pollution exposure and full-term birth weight in California.

    PubMed

    Morello-Frosch, Rachel; Jesdale, Bill M; Sadd, James L; Pastor, Manuel

    2010-07-28

    Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births. We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth. 3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g) per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g) per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g) per pphm ozone, -7.7 g (-7.9 g, -6.6 g) per 10 microg/m3 particulate matter under 10 microm, -12.8 g (-14.3 g, -11.3 g) per 10 microg/m3 particulate matter under 2.5 microm, and -9.3 g (-10.7 g, -7.9 g) per 10 microg/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters. This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether a small shift in the population distribution of

  9. Improved Atmospheric Sampling of Hexavalent Chromium

    PubMed Central

    Torkmahalleh, Mehdi Amouei; Yu, Chang-Ho; Lin, Lin; Fan, Zhihua (Tina); Swift, Julie L.; Bonanno, Linda; Rasmussen, Don H.; Holsen, Thomas M.; Hopke, Philip K.

    2015-01-01

    Hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) are the primary chromium oxidation states found in ambient atmospheric particulate matter. While Cr(III) is relatively nontoxic, Cr(VI) is toxic and exposure to Cr(VI) may lead to cancer, nasal damage, asthma, bronchitis, and pneumonitis. Accurate measurement of the ambient Cr(VI) concentrations is an environmental challenge since Cr(VI) can be reduced to Cr(III) and vice versa during sampling. In the present study, a new Cr(VI) sampler (Clarkson sampler) was designed, constructed, and field tested to improve the sampling of Cr(VI) in ambient air. The new Clarkson Cr(VI) sampler was based on the concept that deliquescence during sampling leads to aqueous phase reactions. Thus, the relative humidity of the sampled air was reduced below the deliquescence relative humidity (DRH) of the ambient particles. The new sampler was operated to collect Total Suspended Particles (TSP), and compared side-by-side with the current National Air Toxics Trends Stations (NATTS) Cr(VI) sampler that is utilized in the United States Environmental Protection Agency (USEPA) air toxics monitoring program. Side-by-side field testing of the samplers occurred in Elizabeth, NJ during the winter and summer of 2012. The average recovery values of Cr(VI) spikes after 24 hour sampling intervals during summer and winter sampling were 57 and 72%, respectively, for the Clarkson sampler, while the corresponding average values for NATTS samplers were 46% for both summer and winter sampling, respectively. Preventing the ambient aerosol collected on the filters from deliquescing is a key to improving the sampling of Cr(VI). PMID:24344574

  10. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  11. Study of temporal variation in ambient air quality during Diwali festival in India.

    PubMed

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter < or =10 microm (PM(10)), SO(2), and NO(2)] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  12. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE PAGES

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; ...

    2018-01-17

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases

  13. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases

  14. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 µg m −3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  15. Characteristics of PM2.5 from ship emissions and their impacts on the ambient air: A case study in Yangshan Harbor, Shanghai.

    PubMed

    Mamoudou, Issoufou; Zhang, Fan; Chen, Qi; Wang, Panpan; Chen, Yingjun

    2018-05-30

    The rapid development of ports in China over the last two decades has had inevitable consequences on the ambient air quality in coastal areas and harbors. For mitigation strategies and monitoring aims, the contributions of ship emissions should be identified, especially in these specific areas. Therefore, in this study, fine particulate matters (PM 2.5 ) samples were collected at Yangshan Harbor in 2016 to characterize ship emissions and estimate their impacts on the ambient air. The results showed that the average annual PM 2.5 concentration was 44.02 μg/m 3 at Yangshan Harbor. The mean seasonal PM 2.5 concentrations reached a maximum in the spring (60.28 μg/m 3 ) and a minimum in the summer (28.04 μg/m 3 ). Two methods were used in this study to estimate the contributions of ship emissions to the ambient air. When a V-based method was used, the primary estimated daily contributions of ship emissions to the ambient air at Yangshan Harbor ranged from 0.02 to 0.73 μg/m 3 with an annual average of 0.10 μg/m 3 . When a PMF-based method was used, the contributions ranged from 0.02 to 9.15 μg/m 3 with an annual average of 1.02 μg/m 3 . In fact, there was a significant underestimation of the true influences of ship emissions when only the primary contribution was considered. In accordance with this evidence, there was a main average underestimation of 1.84 μg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Long-Term Exposure to Ambient Air Pollution and Subclinical Cerebrovascular Disease in NOMAS (the Northern Manhattan Study).

    PubMed

    Kulick, Erin R; Wellenius, Gregory A; Kaufman, Joel D; DeRosa, Janet T; Kinney, Patrick L; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S

    2017-07-01

    Long-term exposure to ambient air pollution is associated with higher risk of cardiovascular disease and stroke. We hypothesized that long-term exposure to air pollution would be associated with magnetic resonance imaging markers of subclinical cerebrovascular disease. Participants were 1075 stroke-free individuals aged ≥50 years drawn from the magnetic resonance imaging subcohort of the Northern Manhattan Study who had lived at the same residence for at least 2 years before magnetic resonance imaging. Cross-sectional associations between ambient air pollution and subclinical cerebrovascular disease were analyzed. We found an association between distance to roadway, a proxy for residential exposure to traffic pollution, and white matter hyperintensity volume; however, after adjusting for risk factors, this relationship was no longer present. All other associations between pollutant measures and white matter hyperintensity volume were null. There was no clear association between exposure to air pollutants and subclinical brain infarcts or total cerebral brain volume. We found no evidence that long-term exposure to ambient air pollution is independently associated with subclinical cerebrovascular disease in an urban population-based cohort. © 2017 American Heart Association, Inc.

  17. Association between ambient air pollution and pregnancy rate in women who underwent IVF.

    PubMed

    Choe, S A; Jun, Y B; Lee, W S; Yoon, T K; Kim, S Y

    2018-06-01

    Are the concentrations of five criteria air pollutants associated with probabilities of biochemical pregnancy loss and intrauterine pregnancy in women? Increased concentrations of ambient particulate matter (PM10), nitrogen dioxide (NO2), carbon monoxide (CO) during controlled ovarian stimulation (COS) and after embryo transfer were associated with a decreased probability of intrauterine pregnancy. Exposure to high ambient air pollution was suggested to be associated with low fertility and high early pregnancy loss in women. Using a retrospective cohort study design, we analysed 6621 cycles of 4581 patients who underwent one or more fresh IVF cycles at a fertility centre from January 2006 to December 2014, and lived in Seoul at the time of IVF treatment. To estimate patients' individual exposure to air pollution, we computed averages of hourly concentrations of five air pollutants including PM10, NO2, CO, sulphur dioxide (SO2) and ozone (O3) measured at 40 regulatory monitoring sites in Seoul for each of the four exposure periods: period 1 (start of COS to oocyte retrieval), period 2 (oocyte retrieval to embryo transfer), period 3 (embryo transfer to hCG test), and period 4 (start of COS to hCG test). Hazard ratios (HRs) from the time-varying Cox-proportional hazards model were used to estimate probabilities of biochemical pregnancy loss and intrauterine pregnancy for an interquartile range (IQR) increase in each air pollutant concentration during each period, after adjusting for individual characteristics. We tested the robustness of the result using generalised linear mixed model, accounting for within-woman correlation. Mean age of the women was 35 years. Average BMI was 20.9 kg/m2 and the study population underwent 1.4 IVF cycles on average. Cumulative pregnancy rate in multiple IVF cycles was 51.3% per person. Survival analysis showed that air pollution during periods 1 and 3 was generally associated with IVF outcomes. Increased NO2 (adjusted HR = 0.93, 95% CI

  18. Ambient air concentrations of PCDDs, PCDFs, coplanar PCBs, and PAHs at the Mississippi Sandhill Crane National Wildlife Refuge, Jackson County, Mississippi

    USGS Publications Warehouse

    White, D.H.; Hardy, J.W.

    1994-01-01

    Our objective was to determine the levels of selected airborne contaminants in ambient air at the Mississippi Sandhill Crane National Wildlife Refuge, Mississippi, that might be affecting the health of endangered cranes living there. Two high-volume air samplers were operated at separate locations on the Refuge during May?September 1991. The sampling media were micro-quartz filters in combination with polyurethane foam plugs. Composite bimonthly samples from each station were analyzed for polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), coplanar polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Overall, residue concentrations were low. The toxic PCDD isomer 2,3,7,8-tetra-CDD was not detected, nor was penta-CDD. There was no difference (P>0.05) in residue concentrations between stations or over time and meteorological parameters were not correlated with residue concentrations. Because contaminant levels and patterns may differ seasonally, we recommend that air samples collected during winter months also be analyzed for these same chemical groups.

  19. Field measurements of the ambient ozone formation potential in Beijing during winter

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh; Kramer, Louisa; Thomson, Steven; Lee, James; Squires, Freya; Bloss, William

    2017-04-01

    The air quality issues in Beijing have been well-documented, and the severe air pollution levels result in a unique chemical mix in the urban boundary layer, both in terms of concentration and composition. As many of the atmospheric chemical process are non-linear and interlinked, this makes predictions difficult for species formed in atmosphere, such as ozone, requiring field measurements to understand these processes in order to guide mitigation efforts. To investigate the ozone formation potential of ambient air, we employed a custom built instrument to measure in near real time the potential for in situ ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for the sampled ambient air mixture. Measurements were performed as part of the Air Pollution and Human Health (APHH) field campaign in November / December 2016 at a suburban site in central Beijing. We also conducted experiments to examine the ozone production sensitivity to NOx. We will present preliminarily results from ambient sampling and NOx experiments demonstrating changes in the ozone production potential during clean and haze periods in Beijing.

  20. Will the circle be unbroken: a history of the U.S. National Ambient Air Quality Standards.

    PubMed

    Bachmann, John

    2007-06-01

    In celebration of the 100th anniversary of the Air & Waste Management Association, this review examines the history of air quality management (AQM) in the United States over the last century, with an emphasis on the ambient standards programs established by the landmark 1970 Clean Air Act (CAA) Amendments. The current CAA system is a hybrid of several distinct air pollution control philosophies, including the recursive or circular system driven by ambient standards. Although this evolving system has resulted in tremendous improvements in air quality, it has been far from perfect in terms of timeliness and effectiveness. The paper looks at several periods in the history of the U.S. program, including: (1) 1900-1970, spanning the early smoke abatement and smog control programs, the first federal involvement, and the development of a hybrid AQM approach in the 1970 CAA; (2) 1971-1976, when the first National Ambient Air Quality Standards (NAAQS) were set and implemented; (3) 1977-1993, a period of the first revisions to the standards, new CAA Amendments, delays in implementation and decision-making, and key science/policy/legislative developments that would alter both the focus and scale of air pollution programs and how they are implemented; and (4) 1993-2006, the second and third wave of NAAQS revisions and their implementation in the context of the 1990 CAA. This discussion examines where NAAQS have helped drive implementation programs and how improvements in both effects and air quality/control sciences influenced policy and legislation to enhance the effectiveness of the system over time. The review concludes with a look toward the future of AQM, emphasizing challenges and ways to meet them. The most significant of these is the need to make more efficient progress toward air quality goals, while adjusting the system to address the growing intersections between air quality management and climate change.

  1. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General This appendix explains how to... associated examples are contained in the “Guideline for Interpretation of Ozone Air Quality Standards.” For...

  2. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General This appendix explains how to... associated examples are contained in the “Guideline for Interpretation of Ozone Air Quality Standards.” For...

  3. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General This appendix explains how to... associated examples are contained in the “Guideline for Interpretation of Ozone Air Quality Standards.” For...

  4. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General This appendix explains how to... associated examples are contained in the “Guideline for Interpretation of Ozone Air Quality Standards.” For...

  5. Air quality, primary air pollutants and ambient concentrations inventory for Romania

    NASA Astrophysics Data System (ADS)

    Năstase, Gabriel; Șerban, Alexandru; Năstase, Alina Florentina; Dragomir, George; Brezeanu, Alin Ionuț

    2018-07-01

    Air pollution is among the greatest risk factors for human health, but it also poses risks to the food security, the economy and the environment. The majority of the pollutants emitted by human activities derive from the production and use of fossil-fuel-based energy. Most energy-related emissions contain sulfur dioxide and nitrogen oxides. The principal source of sulfur dioxide originates from coal, and the main sources of nitrogen oxide emissions are power generation and use of vehicles. Other important pollutants are the inhalable coarse particles (PM10) and the fine particulate matter (PM2.5), which arises from the building sector. Over the last decade, since Romania joined the European Union on the 1st of January 2007, the use of fossil fuels has decreased dramatically, as consumers switched to either natural gas or biomass. This was as a result of the European Commission encouraging the member countries to make use of renewable sources (including biomass). To reduce the PM emissions, in April 2015 EC has extended the EcoDesign Directive to solid-fuel boilers and solid-fuel space heaters. The boilers need to generally meet certain requirements that will be introduced by 1 January 2020. In this article, we are highlighting the fluctuations in air pollution in Romania from the European WebDAB - EMAP database and trends in ambient concentrations of air pollutants using Romania's national air pollution monitoring network. Romania's Air Pollutants/Air Quality Monitoring Network consists of 142 automatic air quality monitoring stations. The results indicate that Romania's annual average mass emissions of CO decreased from 3186 Gg in 1990 to 774 in 2014 (decrease by <76%), SOx decreased from 1311 Gg-176 Gg (decrease by ∼60%), NOx decreased from 546 Gg to 218 (decrease by ∼87%), CO2 decreased from 66.226 Gg/year in 2007 to 38.916 Gg/year in 2014 (decrease by <41%).

  6. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China.

    PubMed

    Qiu, Hang; Tan, Kun; Long, Feiyu; Wang, Liya; Yu, Haiyan; Deng, Ren; Long, Hu; Zhang, Yanlong; Pan, Jingping

    2018-03-11

    Evidence on the burden of chronic obstructive pulmonary disease (COPD) morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM) with aerodynamic diameter <10 μm (PM 10 ) and <2.5 μm (PM 2.5 ), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO) and ozone (O₃)) with risk of hospital admissions (HAs) for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM) with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM 2.5 , PM 10 and SO₂) and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years) and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19%) and 14.72% (95% CI: 10.38%, 19.06%) of COPD HAs were attributable to PM 2.5 and PM 10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO₂ on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  7. Development and Evaluation of Alternative Metrics of Ambient Air Pollution Exposure for Use in Epidemiologic Studies

    EPA Science Inventory

    Population-based epidemiologic studies of air pollution have traditionally relied upon imperfect surrogates of personal exposures, such as area-wide ambient air pollution levels based on readily available outdoor concentrations from central monitoring sites. This practice may in...

  8. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).

    PubMed

    Pongpiachan, Siwatt; Iijima, Akihiro

    2016-02-01

    Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively.

  9. Field testing of a new flow-through directional passive air sampler applied to monitoring ambient nitrogen dioxide.

    PubMed

    Lin, Chun; McKenna, Paul; Timmis, Roger; Jones, Kevin C

    2010-07-08

    This paper reports the first field deployment and testing of a directional passive air sampler (DPAS) which can be used to cost-effectively identify and quantify air pollutants and their sources. The sampler was used for ambient nitrogen dioxide (NO(2)) over ten weeks from twelve directional sectors in an urban setting, and tested alongside an automatic chemiluminescent monitor. The time-integrated passive directional results were compared with the directional analysis of the active monitoring results using wind data recorded at a weather station. The DPAS discriminated air pollutant signals directionally. The attempts to derive quantitative data yielded reasonable results--usually within a factor of two of those obtained by the chemiluminescent analyser. Ultimately, whether DPAS approaches are adopted will depend on their reliability, added value and cost. It is argued that added value was obtained here from the DPAS approach applied in a routine monitoring situation, by identifying source sectors. Both the capital and running costs of DPAS were <5% of those for the automatic monitor. It is envisaged that different sorbents or sampling media will enable this rotatable DPAS design to be used for other airborne pollutants. In summary, there are reasons to be optimistic that directional passive air sampling, together with careful interpretation of results, will be of added value to air quality practitioners in future.

  10. Ambient air pollution and annoyance responses from pregnant women

    NASA Astrophysics Data System (ADS)

    Llop, Sabrina; Ballester, Ferran; Estarlich, Marisa; Esplugues, Ana; Fernández-Patier, Rosalia; Ramón, Rosa; Marco, Alfredo; Aguirre, Amelia; Sunyer, Jordi; Iñiguez, Carmen; INMA-Valencia cohort

    ObjectivesTo describe the degree of annoyance caused by air pollution and noise in pregnant women in a birth cohort; to determine the modifying factors and their relation with exposure to ambient nitrogen dioxide (NO 2). MethodsThe study population was 855 pregnant women in Valencia, Spain. Annoyance caused by air pollution and noise, and explanatory factors were obtained from 786 pregnant women through a questionnaire. NO 2 levels were determined combining measurements at 93 points within the area of study and using geostatistical techniques (kriging). ResultsIn all 7.9% of the women reported high annoyance caused by air pollution and 13.1% high annoyance caused by noise. There was a significant difference in the degree of annoyance due to both air pollution and noise depending on the area where the women lived and their working status. The degree of annoyance correlated better with measured NO 2 at the municipality level (air pollution: r=0.53; noise: r=0.44) than at the individual level (air pollution and noise: r=0.21). On multivariate analysis, being a housewife, higher NO 2 levels and high traffic density were associated with higher degrees of annoyance. ConclusionsThere was a high percentage of women who perceived medium-high annoyance due to noise and air pollution. Annoyance caused by environmental pollutants could lead to some psychological effects, which impair the quality of life, or even physiological ones, which affect prenatal development.

  11. Increased Risk of Paroxysmal Atrial Fibrillation Episodes Associated with Acute Increases in Ambient Air Pollution

    PubMed Central

    Rich, David Q.; Mittleman, Murray A.; Link, Mark S.; Schwartz, Joel; Luttmann-Gibson, Heike; Catalano, Paul J.; Speizer, Frank E.; Gold, Diane R.; Dockery, Douglas W.

    2006-01-01

    Objectives: We reported previously that 24-hr moving average ambient air pollution concentrations were positively associated with ventricular arrhythmias detected by implantable cardioverter defibrillators (ICDs). ICDs also detect paroxysmal atrial fibrillation episodes (PAF) that result in rapid ventricular rates. In this same cohort of ICD patients, we assessed the association between ambient air pollution and episodes of PAF. Design: We performed a case–crossover study. Participants: Patients who lived in the Boston, Massachusetts, metropolitan area and who had ICDs implanted between June 1995 and December 1999 (n = 203) were followed until July 2002. Evaluations/Measurements: We used conditional logistic regression to explore the association between community air pollution and 91 electrophysiologist-confirmed episodes of PAF among 29 subjects. Results: We found a statistically significant positive association between episodes of PAF and increased ozone concentration (22 ppb) in the hour before the arrhythmia (odds ratio = 2.08; 95% confidence interval = 1.22, 3.54; p = 0.001). The risk estimate for a longer (24-hr) moving average was smaller, thus suggesting an immediate effect. Positive but not statistically significant risks were associated with fine particles, nitrogen dioxide, and black carbon. Conclusions: Increased ambient O3 pollution was associated with increased risk of episodes of rapid ventricular response due to PAF, thereby suggesting that community air pollution may be a precipitant of these events. PMID:16393668

  12. Framework for assessing causality of air pollution-related health effects for reviews of the National Ambient Air Quality Standards.

    PubMed

    Owens, Elizabeth Oesterling; Patel, Molini M; Kirrane, Ellen; Long, Thomas C; Brown, James; Cote, Ila; Ross, Mary A; Dutton, Steven J

    2017-08-01

    To inform regulatory decisions on the risk due to exposure to ambient air pollution, consistent and transparent communication of the scientific evidence is essential. The United States Environmental Protection Agency (U.S. EPA) develops the Integrated Science Assessment (ISA), which contains evaluations of the policy-relevant science on the effects of criteria air pollutants and conveys critical science judgments to inform decisions on the National Ambient Air Quality Standards. This article discusses the approach and causal framework used in the ISAs to evaluate and integrate various lines of scientific evidence and draw conclusions about the causal nature of air pollution-induced health effects. The framework has been applied to diverse pollutants and cancer and noncancer effects. To demonstrate its flexibility, we provide examples of causality judgments on relationships between health effects and pollutant exposures, drawing from recent ISAs for ozone, lead, carbon monoxide, and oxides of nitrogen. U.S. EPA's causal framework has increased transparency by establishing a structured process for evaluating and integrating various lines of evidence and uniform approach for determining causality. The framework brings consistency and specificity to the conclusions in the ISA, and the flexibility of the framework makes it relevant for evaluations of evidence across media and health effects. Published by Elsevier Inc.

  13. Development of Quality Control Parameters and Electronic Data Recording for an Ambient Air Particle Inhalation Exposure System

    EPA Science Inventory

    Ambient air particle concentrating systems were installed by the US EPA in RTP, NC. These systems, designed by Harvard School of Public Health’s Department of Environmental Sciences and Engineering (Boston, MA), concentrated ambient fine and ultra-fine mode particulate matter (P...

  14. Laser-Induced Plasmas in Ambient Air for Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Dixneuf, Sophie; Orphal, Johannes

    2015-06-01

    The emission from a laser-induced plasma in ambient air, generated by a high power femtosecond laser, was utilized as pulsed incoherent broadband light source in the center of a quasi-confocal high finesse cavity. The time dependent spectra of the light leaking from the cavity was compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses of the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S_1←S_0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air as well as the strongly forbidden γ--band in molecular oxygen: b^1σ^+_g (ν'=2)← X^3σ^-_g (ν''=0)

  15. Temporal-Spatial Ambient Concentrator Estimator (T-SpACE): Hierarchical Bayesian Model Software Used to Estimate Ambient Concentrations of NAAQS Air Pollutants in Support of Health Studies

    EPA Science Inventory

    To fulfill its mission to protect human health and the environment, EPA has established National Ambient Air Quality Standards (NAAQS) on six selected air pollutants known as criteria pollutants: ozone (O3); carbon monoxide (CO); lead (Pb); nitrogen dioxide (NO2); sulfur dioxide ...

  16. Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of Northern China.

    PubMed

    Zhang, YunHui; Hou, DeYi; Xiong, GuanNan; Duan, YongHong; Cai, ChuanYang; Wang, Xin; Li, JingYa; Tao, Shu; Liu, WenXin

    2018-08-01

    A series of field samples including ambient air (gaseous and particulate phases), dust fall, surface soil, rhizosphere soil and cabbage tissues (leaf, root and core), were collected in vegetable bases near a large coking manufacturer in Shanxi Province, Northern China, during a harvest season. A factor analysis was employed to apportion the emission sources of polycyclic aromatic hydrocarbons (PAHs), and the statistical results indicated coal combustion was the dominant emission source that accounted for different environmental media and cabbage tissues, while road traffic, biomass burning and the coking industry contributed to a lesser extent. A structural equation model was first developed to quantitatively explore the transport pathways of PAHs from surrounding media to cabbage tissues. The modeling results showed that PAHs in ambient air were positively associated with those in dust fall, and a close relationship was also true for PAHs in dust fall and in surface soil due to air-soil exchange process. Furthermore, PAHs in surface soil were correlated with those in rhizosphere soil and in the cabbage leaf with the path coefficients of 0.83 and 0.39, respectively. PAHs in the cabbage leaf may dominantly contribute to the accumulation of PAHs in the edible part of cabbages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Sampling of trace volatile metal(loid) compounds in ambient air using polymer bags: a convenient method.

    PubMed

    Haas, K; Feldmann, J

    2000-09-01

    The sampling of volatile metal(loid) compounds (VOMs) such as hydrides, methylated, and permethylated species of arsenic, antimony, and tin is described using Tedlar bags. Advantages as well as limitations and constraints are discussed and compared to other widely used sampling techniques within this area, namely, stainless steel canisters, cryotrapping, and solid adsorbent cartridges. To prove the suitability of Tedlar bags for the sampling of volatile metal(loid) compounds, series of stability tests have been run using both laboratory synthetic and real samples analyzed periodically after increasing periods of storage. The samples have been stored in the dark at 20 degrees C and at 50 degrees C. Various volatile arsenic species (AsH3, MeAsH2, Me2AsH, Me3As), tin species (SnH4, MeSnH3, Me2SnH2, Me3SnH, Me4Sn, BuSnH3), and antimony species (SbH3, MeSbH2, Me2SbH, Me3Sb) have been generated using hydride generation methodology and mixed with moisturized air. Three static gaseous atmospheres with concentrations of 0.3-18 ng/L for the various compounds have been generated in Tedlar bags, and the stability of the VOMs has been monitored over a period of 5 weeks. Sewage sludge digester gas samples have been stored only at 20 degrees C for a period of 48 h. Cryotrapping GC/ICPMS has been used for the determination of the VOMs with a relative standard deviation of 5% for 100 pg. After 8 h, the recovery rate of all the compounds in the air atmospheres was better than 95% at 20 and 50 degrees C, whereas the recovery after 24 h was found to be between 81 and 99% for all VOMs at 20 and 50 degrees C except for Me3Sb and Me3As. These species show a loss between 48 and 73% at both temperatures. After 5 weeks at 20 degrees C, a loss of only 25-50% for arsine and stibine and the above-mentioned tin compounds was determined. Only Me3Sb, Me3Bi, and Me2Te were present in the digester gas sample. After 24 h, losses of 44, 10, and 12%, respectively, could be determined. Given these

  18. Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure

    PubMed Central

    2016-01-01

    The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of ∼85 and ∼61° were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid–base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear-logarithmic relationship with exposure time, until saturating at a maximum value of 92–98°. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10–16% to about 37–41 mJ/m2. Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene. PMID:26900413

  19. Quantification of Alkyl Nitrates in Ambient Air by Thermal Dissociation Cavity Ring-Down Spectroscopy with Preconcentration

    NASA Astrophysics Data System (ADS)

    Ye, C. Z.; Osthoff, H. D.; Taha, Y. M.; Pak, J. K.; Saowapon, M. T.

    2015-12-01

    Alkyl nitrates (AN, molecular formula RONO2) play a crucial role in the troposphere as temporary reservoirs of nitrogen oxides (NOx =NO +NO2) and by acting as chain terminators in the photochemical production of ozone. Mixing ratios of AN in ambient air are commonly quantified by gas chromatography with electron capture or mass spectrometric detection (GC-ECD or GC-MS) coupled to purge-and-trap preconcentration, usually on Tenax sorbent, to improve the detection limits. The analysis, however, is quite laborious as there are many alkyl nitrates that are low in individual abundance (often less than 1 parts-per-trillion by volume, pptv) and that exhibit different instrumental response factors. An alternative method is to determine alkyl nitrates as a sum (ΣAN) by thermal dissociation (TD) to a common fragment (NO2), which can then be quantified with a uniform response factor by optical absorption, for example by cavity ring-down spectroscopy (CRDS). However, the determination of ΣAN by TD-CRDS is hampered by its relatively high detection limits (several 100 pptv) and secondary chemistry following TD that results in both negative and positive interferences and depends on the composition of the ambient air sampled. In this work, a TD-CRDS equipped with a Tenax preconcentration unit is described. Matrix effects are minimized by desorbing the samples from the Tenax in a background of nitrogen. The performance of the instrument, in particular the recovery from the Tenax sorbent, was evaluated by sampling laboratory-generated mixtures of alkyl and peroxyacyl nitrates. Field data from a coastal site collected during the Ozone-depleting reactions in a coastal atmosphere (ORCA) campaign, which took place at the Amphitrite Point Observatory in Ucluelet, BC, from July 6 - 31, 2015, are presented. Advantages and disadvantages of the new method are discussed.

  20. Health effects of acute exposure to air polllution. Part II: Healthy subjects exposed to cencentrated ambient particles

    EPA Science Inventory

    The purpose of this study was to assess the impact of short-term exposure to concentrated ambient particles (CAPs*) on lung function and on inflammatory parameters in blood and airways of healthy human subjects. Particles were concentrated from the ambient air in Chapel Hill, Nor...

  1. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Hernandez, A; Cabacungen, C

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred ormore » not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.« less

  2. AMBIENT AIR QUALITY AND SELECTED BIRTH DEFECTS, SEVEN COUNTY STUDY, TEXAS, 1997-2000

    EPA Science Inventory

    Background: A number of epidemiologic investigations have shown adverse effects of ambient air pollution on reproductive outcomes. A recent case-control study found associations between

    second gestational month carbon monoxide and ozone exposure and elevated risks of selec...

  3. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution.

    PubMed

    Hazlehurst, Marnie F; Spalt, Elizabeth W; Nicholas, Tyler P; Curl, Cynthia L; Davey, Mark E; Burke, Gregory L; Watson, Karol E; Vedal, Sverre; Kaufman, Joel D

    2018-06-01

    Exposure estimates that do not account for time in-transit may underestimate exposure to traffic-related air pollution, but exact contributions have not been studied directly. We conducted a 2-week monitoring, including novel in-vehicle sampling, in a subset of the Multi-Ethnic Study of Atherosclerosis and Air Pollution cohort in two cities. Participants spent the majority of their time indoors and only 4.4% of their time (63 min/day) in-vehicle, on average. The mean ambient-source NO 2 concentration was 5.1 ppb indoors and 32.3 ppb in-vehicle during drives. On average, indoor exposure contributed 69% and in-vehicle exposure contributed 24% of participants' ambient-source NO 2 exposure. For participants in the highest quartile of time in-vehicle (≥1.3 h/day), indoor and in-vehicle contributions were 60 and 31%, respectively. Incorporating infiltrated indoor and measured in-vehicle NO 2 produced exposure estimates 5.6 ppb lower, on average, than using only outdoor concentrations. The indoor microenvironment accounted for the largest proportion of ambient-source exposure in this older population, despite higher concentrations of NO 2 outdoors and in vehicles than indoors. In-vehicle exposure was more influential among participants who drove the most and for participants residing in areas with lower outdoor air pollution. Failure to characterize exposures in these microenvironments may contribute to exposure misclassification in epidemiologic studies.

  5. Association between ambient air pollution and proliferation of umbilical cord blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, L., E-mail: novack@bgu.ac.il

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012–March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM{sub 2.5} (particles<2.5 µm in diameter) andmore » PM{sub 10} (particles<10 µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O{sub 3}) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM{sub 2.5} one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM{sub 2.5} levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM{sub 10} levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1 day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. - Highlights: • Ambient air pollutants were suggested to have an impact on cell proliferation (CP) of umbilical

  6. Using self-organizing maps to develop ambient air quality classifications: a time series example

    PubMed Central

    2014-01-01

    Background Development of exposure metrics that capture features of the multipollutant environment are needed to investigate health effects of pollutant mixtures. This is a complex problem that requires development of new methodologies. Objective Present a self-organizing map (SOM) framework for creating ambient air quality classifications that group days with similar multipollutant profiles. Methods Eight years of day-level data from Atlanta, GA, for ten ambient air pollutants collected at a central monitor location were classified using SOM into a set of day types based on their day-level multipollutant profiles. We present strategies for using SOM to develop a multipollutant metric of air quality and compare results with more traditional techniques. Results Our analysis found that 16 types of days reasonably describe the day-level multipollutant combinations that appear most frequently in our data. Multipollutant day types ranged from conditions when all pollutants measured low to days exhibiting relatively high concentrations for either primary or secondary pollutants or both. The temporal nature of class assignments indicated substantial heterogeneity in day type frequency distributions (~1%-14%), relatively short-term durations (<2 day persistence), and long-term and seasonal trends. Meteorological summaries revealed strong day type weather dependencies and pollutant concentration summaries provided interesting scenarios for further investigation. Comparison with traditional methods found SOM produced similar classifications with added insight regarding between-class relationships. Conclusion We find SOM to be an attractive framework for developing ambient air quality classification because the approach eases interpretation of results by allowing users to visualize classifications on an organized map. The presented approach provides an appealing tool for developing multipollutant metrics of air quality that can be used to support multipollutant health studies

  7. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility

    PubMed Central

    Zhao, Jie; Lee, Hyun-Wook; Sun, Jie; Yan, Kai; Liu, Yayuan; Liu, Wei; Lu, Zhenda; Lin, Dingchang; Zhou, Guangmin; Cui, Yi

    2016-01-01

    A common issue plaguing battery anodes is the large consumption of lithium in the initial cycle as a result of the formation of a solid electrolyte interphase followed by gradual loss in subsequent cycles. It presents a need for prelithiation to compensate for the loss. However, anode prelithiation faces the challenge of high chemical reactivity because of the low anode potential. Previous efforts have produced prelithiated Si nanoparticles with dry air stability, which cannot be stabilized under ambient air. Here, we developed a one-pot metallurgical process to synthesize LixSi/Li2O composites by using low-cost SiO or SiO2 as the starting material. The resulting composites consist of homogeneously dispersed LixSi nanodomains embedded in a highly crystalline Li2O matrix, providing the composite excellent stability even in ambient air with 40% relative humidity. The composites are readily mixed with various anode materials to achieve high first cycle Coulombic efficiency (CE) of >100% or serve as an excellent anode material by itself with stable cyclability and consistently high CEs (99.81% at the seventh cycle and ∼99.87% for subsequent cycles). Therefore, LixSi/Li2O composites achieved balanced reactivity and stability, promising a significant boost to lithium ion batteries. PMID:27313206

  8. Field Evaluation of a Passive Sampling Device for Hydrazines in Ambient Air

    DTIC Science & Technology

    1990-04-06

    MANIDIFUIOFOBELFO Figure 2. Test gas generator schematic. Conditioned house- compressed air is used as the diluent. The conditioning procedure consists...of passing the house air through a series of demisters, a hot Hopcalite catalyst bed, a reciprocating dual-tower molecular sieve scrubber, and finally... Air P. A. TAFFE,* S. W. BROWN,** A. R. THUROW,*** J. C. TRAvIs**** *GEO-Centers Inc., **EG&G, BOC-022, KSC, FL . . F. ***Wiltech Corp., KSC, FL MAY 0

  9. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II

    PubMed Central

    Krewski, Daniel; Diver, W. Ryan; Pope, C. Arden; Burnett, Richard T.; Jerrett, Michael; Marshall, Julian D.; Gapstur, Susan M.

    2017-01-01

    Background: The International Agency for Research on Cancer classified both outdoor air pollution and airborne particulate matter as carcinogenic to humans (Group 1) for lung cancer. There may be associations with cancer at other sites; however, the epidemiological evidence is limited. Objective: The aim of this study was to clarify whether ambient air pollution is associated with specific types of cancer other than lung cancer by examining associations of ambient air pollution with nonlung cancer death in the Cancer Prevention Study II (CPS-II). Methods: Analysis included 623,048 CPS-II participants who were followed for 22 y (1982–2004). Modeled estimates of particulate matter with aerodynamic diameter <2.5µm (PM2.5) (1999–2004), nitrogen dioxide (NO2) (2006), and ozone (O3) (2002–2004) concentrations were linked to the participant residence at enrollment. Cox proportional hazards models were used to estimate associations per each fifth percentile–mean increment with cancer mortality at 29 anatomic sites, adjusted for individual and ecological covariates. Results: We observed 43,320 nonlung cancer deaths. PM2.5 was significantly positively associated with death from cancers of the kidney {adjusted hazard ratio (HR) per 4.4 μg/m3=1.14 [95% confidence interval (CI): 1.03, 1.27]} and bladder [HR=1.13 (95% CI: 1.03, 1.23)]. NO2 was positively associated with colorectal cancer mortality [HR per 6.5 ppb=1.06 (95% CI: 1.02, 1.10). The results were similar in two-pollutant models including PM2.5 and NO2 and in three-pollutant models with O3. We observed no statistically significant positive associations with death from other types of cancer based on results from adjusted models. Conclusions: The results from this large prospective study suggest that ambient air pollution was not associated with death from most nonlung cancers, but associations with kidney, bladder, and colorectal cancer death warrant further investigation. https://doi.org/10.1289/EHP1249

  10. Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries.

    PubMed

    You, Ya; Celio, Hugo; Li, Jianyu; Dolocan, Andrei; Manthiram, Arumugam

    2018-03-30

    High-Ni layered oxides are promising next-generation cathodes for lithium-ion batteries owing to their high capacity and lower cost. However, as the Ni content increases over 70 %, they have a high dynamic affinity towards moisture and CO 2 in ambient air, primarily reacting to form LiOH, Li 2 CO 3 , and LiHCO 3 on the surface, which is commonly termed "residual lithium". Air exposure occurs after synthesis as it is common practice to handle and store them under ambient conditions. The air exposure leads to significant performance losses, and hampers the electrode fabrication, impeding their practical viability. Herein, we show that substituting a small amount of Al for Ni in the crystal lattice notably improves the chemical stability against air by limiting the formation of LiOH, Li 2 CO 3 , LiHCO 3 , and NiO in the near-surface region. The Al-doped high-Ni oxides display a high capacity retention with excellent rate capability and cycling stability after being exposed to air for 30 days. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of ambient air pollution on daily mortality rates in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Yu, Ignatius Tak Sun; Zhang, Yong hui; San Tam, Wilson Wai; Yan, Qing Hua; Xu, Yan jun; Xun, Xiao jun; Wu, Wei; Ma, Wen Jun; Tian, Lin Wei; Tse, Lap Ah; Lao, Xiang Qian

    2012-01-01

    We aimed to investigate the effects of ambient air pollutants on daily mortality in a relatively stable and homogeneous population in Guangzhou, China. Daily mortality, air pollution, and weather data between 2006 and 2009 were collected. The generalized additive model with poison regression was used to estimate the excessive risks (ERs) of air pollutants (PM 10, SO 2, and NO 2) on total, cardiovascular and respiratory mortality. The effects of lag0-1 were the greatest for total non-accidental and cardiovascular deaths. The increments of 10 μg m -3 in SO 2, NO 2, and PM 10 were associated with ERs of 1.54% (95%CI: 1.03-2.06%), 1.42% (95%CI: 1.06-1.78%), and 1.26% (95%CI: 0.86-1.66%) respectively for total non-accidental deaths, and 2.28% (95%CI: 1.40-3.16%), 1.81% (95%CI: 1.20-2.41%), and 1.79% (95%CI: 1.11-2.47%) respectively for cardiovascular deaths. For persons who died from respiratory disease, however, the maximum effects occurred at lag0. The ERs for SO 2, NO 2, and PM 10 were 1.36% (95%CI: 0.23-2.50%), 1.47% (95%CI: 0.66-2.29%) and 0.93% (95%CI: 0.03-1.83%), respectively. The effects of the three air pollutants on mortality were stronger in elderly and in women. The ERs in the present study were higher than those reported in Europe, the U.S., and most other Asian cities. Our findings show relatively higher ERs of daily mortality by ambient air pollutants in the center of Guangzhou, China, compared with estimates in other cities. Further studies with accurate exposure measurement among homogeneous population are needed to evaluate the precise magnitudes of the effects of the air pollutants.

  12. Ambient Air Pollution and Daily Outpatient Visits for Cardiac Arrhythmia in Shanghai, China

    PubMed Central

    Zhao, Ang; Chen, Renjie; Kuang, Xingya; Kan, Haidong

    2014-01-01

    Background Cardiac arrhythmias are cardiac rhythm disorders that comprise an important public health problem. Few prior studies have examined the association between ambient air pollution and arrhythmias in general populations in mainland China. Methods We performed a time-series analysis to investigate the short-term association between air pollution (particulate matter with an aerodynamic diameter less than 10 µm [PM10], sulfur dioxide [SO2], and nitrogen dioxide [NO2]) and outpatient visits for arrhythmia in Shanghai, China. We applied the over-dispersed Poisson generalized additive model to analyze the associations after control for seasonality, day of the week, and weather conditions. We then stratified the analyses by age, gender, and season. Results We identified a total of 56 940 outpatient visits for cardiac arrhythmia. A 10-µg/m3 increase in the present-day concentrations of PM10, SO2, and NO2 corresponded to increases of 0.56% (95% CI 0.42%, 0.70%), 2.07% (95% CI 1.49%, 2.64%), and 2.90% (95% CI 2.53%, 3.27%), respectively, in outpatient arrhythmia visits. The associations were stronger in older people (aged ≥65 years) and in females. This study provides the first evidence that ambient air pollution is significantly associated with increased risk of cardiac arrhythmia in mainland China. Conclusions Our analyses provide evidence that the current air pollution levels have an adverse effect on cardiovascular health and strengthened the rationale for further limiting air pollution levels in the city. PMID:24835409

  13. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  14. OZONE AMBIENT AIR QUALITY STANDARD HAS BENEFICIAL EFFECT ON PONDEROSA PINE IN CALIFORNIA

    EPA Science Inventory

    Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. However, to date there has not been a simple and objective method to determine if the standards and resultant control strategies have reduced O3 impacts on ...

  15. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...

  16. 40 CFR 1033.505 - Ambient conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1033.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... presumed that combustion air will be drawn from the ambient air. Thus, the ambient temperature limits of this paragraph (a) apply for intake air upstream of the engine. If you do not draw combustion air from...

  17. 40 CFR 1033.505 - Ambient conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1033.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... presumed that combustion air will be drawn from the ambient air. Thus, the ambient temperature limits of this paragraph (a) apply for intake air upstream of the engine. If you do not draw combustion air from...

  18. 40 CFR 1033.505 - Ambient conditions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1033.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... presumed that combustion air will be drawn from the ambient air. Thus, the ambient temperature limits of this paragraph (a) apply for intake air upstream of the engine. If you do not draw combustion air from...

  19. 40 CFR 1033.505 - Ambient conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1033.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... presumed that combustion air will be drawn from the ambient air. Thus, the ambient temperature limits of this paragraph (a) apply for intake air upstream of the engine. If you do not draw combustion air from...

  20. 40 CFR 1033.505 - Ambient conditions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1033.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... presumed that combustion air will be drawn from the ambient air. Thus, the ambient temperature limits of this paragraph (a) apply for intake air upstream of the engine. If you do not draw combustion air from...

  1. Policy Assessment for the Review of the Primary National Ambient Air Quality Standard for Sulfur Oxides, External Review Draft

    EPA Science Inventory

    Sulfur oxides are one of the six major air pollutants for which EPA has issued air quality criteria and established national ambient air quality standards (NAAQS) based on those criteria. The Clear Air Act (CAA) requires EPA to periodically review and revise, as appropriate, exis...

  2. Ambient Air Mitigation Strategies for Reducing Exposures to Mobile Source PM2.5 Emissions

    EPA Science Inventory

    Presentation discussing ambient air mitigation strategies for near-road exposures. The presentation provides an overview of multiple methods, but focuses on the role roadside features (sound walls, vegetation) may play. This presentation summarizes preoviously published work by...

  3. AMBIENT AIR MONITORING AT GROUND ZERO AND LOWER MANHATTAN FOLLOWING THE COLLAPSE OF THE WORLD TRADE CENTER

    EPA Science Inventory

    The U.S. EPA National Exposure Research Laboratory (NERL) collaborated with EPA's Regional offices to establish a monitoring network to characterize ambient air concentrations of particulate matter (PM) and air toxics in lower Manhattan following the collapse of the World Trade...

  4. 76 FR 4694 - Release of Final Document Related to the Review of the Secondary National Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... ``cause or contribute to air pollution which may reasonably be anticipated to endanger public health or... Related to the Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and...

  5. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    NASA Astrophysics Data System (ADS)

    Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-11-01

    The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.

  6. 76 FR 8735 - Release of Final Document Related to the Review of the Secondary National Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... ``criteria pollutants.'' The air quality criteria are to ``accurately reflect the latest scientific knowledge... criteria. The revised air quality criteria reflect advances in scientific knowledge on the effects of the... Related to the Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and...

  7. Ambient Air Pollution and Preeclampsia: A Spatiotemporal Analysis

    PubMed Central

    Figueras, Francesc; Basagaña, Xavier; Beelen, Rob; Martinez, David; Cirach, Marta; Schembari, Anna; Hoek, Gerard; Brunekreef, Bert; Nieuwenhuijsen, Mark J

    2013-01-01

    Background: Available evidence concerning the association between air pollution and preeclampsia is limited, and specific associations with early- and late-onset preeclampsia have not been assessed. Objectives: We investigated the association, if any, between preeclampsia (all, early-, and late-onset) and exposure to nitrogen dioxide, nitrogen oxides, particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5; fine particles), ≤ 10 μm, and 2.5–10 μm, and PM2.5 light absorption (a proxy for elemental carbon) during the entire pregnancy and during the first, second, and third trimesters. Methods: This study was based on 8,398 pregnancies (including 103 cases of preeclampsia) among women residing in Barcelona, Spain (2000–2005). We applied a spatiotemporal exposure assessment framework using land use regression models to predict ambient pollutant levels during each week of pregnancy at the geocoded residence address of each woman at the time of birth. Logistic and conditional logistic regression models were used to estimate unadjusted and adjusted associations. Results: We found positive associations for most of our evaluated outcome–exposure pairs, with the strongest associations observed for preeclampsia and late-onset preeclampsia in relation to the third-trimester exposure to fine particulate pollutants, and for early-onset preeclampsia in relation to the first-trimester exposure to fine particulate pollutants. Among our investigated associations, those of first- and third-trimester exposures to PM2.5 and third-trimester exposure to PM2.5 absorbance and all preeclampsia, and third-trimester PM2.5 exposure and late-onset preeclampsia attained statistical significance. Conclusion: We observed increased risk of preeclampsia associated with exposure to fine particulate air pollution. Our findings, in combination with previous evidence suggesting distinct pathogenic mechanisms for early- and late-onset preeclampsia, support additional research on this

  8. RELATIVE CONGENER SCALING OF POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS TO ESTIMATE BUILDING FIRE CONTRIBUTIONS IN AIR, SURFACE WIPES, AND DUST SAMPLES

    EPA Science Inventory

    EPA collected ambient air samples in lower Manhattan for about nine months following the September 11, 2001 (9/11) World Trade Center (WTC) attacks. Measurements were made of a host of airborne contaminants including volatile organic compounds (VOCs), polycyclic aromatic hydroca...

  9. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    PubMed

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  10. Did municipal solid waste landfill have obvious influence on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air: A case study in East China.

    PubMed

    Li, Jiafu; Wang, Chong; Du, Lei; Lv, Zhiwei; Li, Xiaonan; Hu, Xuepeng; Niu, Zhiguang; Zhang, Ying

    2017-04-01

    Municipal solid waste (MSW) landfill was a main way to disposal of MSW and almost 95% of MSW was disposed by landfills in the world. In order to understand the influence of MSW landfill on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in surrounding atmosphere, 42 ambient air samples were collected and analyzed from surrounding sites, background site, upwind site and downwind site of a MSW landfill in East China. The results of present study were summarized as follows. (1) The total concentrations of PCDD/Fs (∑PCDD/Fs) in ambient air from surrounding sites, background site, upwind site and downwind site were 2.215±1.004, 2.058±0.458, 2.617±1.092 and 1.822±0.566pgNm -3 , respectively. (2) The toxic equivalent concentrations (TEQ) of PCDD/Fs in ambient air from surrounding sites, background site, upwind site and downwind site were 0.103±0.017, 0.096±0.015, 0.120±0.024 and 0.108±0.014pg I-TEQNm -3 , respectively. (3) The congener profiles, ∑PCDD/Fs and TEQ between background atmosphere and surrounding atmosphere of landfill did not show statistically significant difference. (4) The ∑PCDD/Fs and TEQ in ambient air of downwind site were not higher than that of upwind site, suggesting that studied landfill did not have obvious influence on PCDD/Fs in ambient air from downwind site. (5) The 95th percentile carcinogenic risk (CR) of PCDD/Fs in ambient air from surrounding sites, background site, upwind site and downwind site were 8.03×10 -9 , 7.57×10 -9 , 9.69×10 -9 and 8.15×10 -9 , respectively, which were much lower than the threshold value of CR (10 -6 ), suggesting that studied landfill did not influence the CR of PCDD/Fs in surrounding atmosphere and negligible cancer risk occurred. (6) The non-carcinogenic risk (non-CR) analysis indicated that landfill did not have influence on the non-CR of PCDD/Fs in surrounding atmosphere and no obvious non-carcinogenic effects developed. Copyright © 2017 Elsevier Ltd. All rights

  11. CO 2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent

    DOE PAGES

    Seipp, Charles A.; Univ. of Texas, Austin, TX; Williams, Neil J.; ...

    2016-12-21

    Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO 2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO 2 concentration is to remove the CO 2 directly from air (direct air capture). In this paper, we report a simple aqueous guanidine sorbent that captures CO 2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (K sp=1.0(4)×10 -8), which facilitates its separation from solution by filtration. The bound CO 2 canmore » be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Finally and thus, this crystallization-based approach to CO 2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies.« less

  12. Design and implementation of an air monitoring program in support of a brownfields redevelopment program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maisel, B.E.; Hunt, G.T.; Devaney, R.J. Jr.

    EPA`s Brownfields Economic Redevelopment Initiative has sparked renewal of industrial and commercial parcels otherwise idled or under-utilized because of real or perceived environmental contamination. In certain cases, restoring such parcels to productive economic use requires a redevelopment effort protective of human health and welfare through minimizing offsite migration of environmental contaminants during cleanup, demolition and remediation activities. To support these objectives, an air monitoring program is often required as an integral element of a comprehensive brownfields redevelopment effort. This paper presents a strategic framework for design and execution of an ambient air monitoring program in support of a brownfields remediationmore » effort ongoing in Lawrence, MA. Based on site characterization, the program included sample collection and laboratory analysis of ambient air samples for polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), total suspended particulate (TSP), inhalable particulate (PM10), and lead. The program included four monitoring phases, identified as background, wintertime, demolition/remediation and post-demolition. Air sampling occurred over a 16 month period during 1996--97, during which time nine sampling locations were utilized to produce approximately 1,500 ambient air samples. Following strict data review and validation procedures, ambient air data interpretation focused on the following: evaluation of upwind/downwind sample pairs, comparison of ambient levels to existing regulatory standards, relation of ambient levels to data reported in the open literature, and, determination of normal seasonal variations in existing background burden, comparison of ambient levels measured during site activity to background levels.« less

  13. Polycyclic aromatic hydrocarbons in ambient air, surface soil and wheat grain near a large steel-smelting manufacturer in northern China.

    PubMed

    Liu, Weijian; Wang, Yilong; Chen, Yuanchen; Tao, Shu; Liu, Wenxin

    2017-07-01

    The total concentrations and component profiles of polycyclic aromatic hydrocarbons (PAHs) in ambient air, surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern China were determined. Based on the specific isomeric ratios of paired species in ambient air, principle component analysis and multivariate linear regression, the main emission source of local PAHs was identified as a mixture of industrial and domestic coal combustion, biomass burning and traffic exhaust. The total organic carbon (TOC) fraction was considerably correlated with the total and individual PAH concentrations in surface soil. The total concentrations of PAHs in wheat grain were relatively low, with dominant low molecular weight constituents, and the compositional profile was more similar to that in ambient air than in topsoil. Combined with more significant results from partial correlation and linear regression models, the contribution from air PAHs to grain PAHs may be greater than that from soil PAHs. Copyright © 2016. Published by Elsevier B.V.

  14. Assessing uncertain human exposure to ambient air pollution using environmental models in the Web

    NASA Astrophysics Data System (ADS)

    Gerharz, L. E.; Pebesma, E.; Denby, B.

    2012-04-01

    Ambient air quality can have significant impact on human health by causing respiratory and cardio-vascular diseases. Thereby, the pollutant concentration a person is exposed to can differ considerably between individuals depending on their daily routine and movement patterns. Using a straight forward approach this exposure can be estimated by integration of individual space-time paths and spatio-temporally resolved ambient air quality data. To allow a realistic exposure assessment, it is furthermore important to consider uncertainties due to input and model errors. In this work, we present a generic, web-based approach for estimating individual exposure by integration of uncertain position and air quality information implemented as a web service. Following the Model Web initiative envisioning an infrastructure for deploying, executing and chaining environmental models as services, existing models and data sources for e.g. air quality, can be used to assess exposure. Therefore, the service needs to deal with different formats, resolutions and uncertainty representations provided by model or data services. Potential mismatch can be accounted for by transformation of uncertainties and (dis-)aggregation of data under consideration of changes in the uncertainties using components developed in the UncertWeb project. In UncertWeb, the Model Web vision is extended to an Uncertainty-enabled Model Web, where services can process and communicate uncertainties in the data and models. The propagation of uncertainty to the exposure results is quantified using Monte Carlo simulation by combining different realisations of positions and ambient concentrations. Two case studies were used to evaluate the developed exposure assessment service. In a first study, GPS tracks with a positional uncertainty of a few meters, collected in the urban area of Münster, Germany were used to assess exposure to PM10 (particulate matter smaller 10 µm). Air quality data was provided by an

  15. Human exposure to carcinogens in ambient air in Denmark, Finland and Sweden

    NASA Astrophysics Data System (ADS)

    Fauser, P.; Ketzel, M.; Becker, T.; Plejdrup, M. S.; Brandt, J.; Gidhagen, L.; Omstedt, G.; Skårman, T.; Bartonova, A.; Schwarze, P.; Karvosenoja, N.; Paunu, V.-V.; Kukkonen, J.; Karppinen, A.

    2017-10-01

    The concentrations of seventeen pollutants (particulate mass fractions PM2.5 and PM10, a range of metals, inorganic gases and organic compounds) are for the first time analyzed in a screening of the carcinogenic risk at a resolution of 1 × 1 km2 in ambient air in three Nordic countries. Modelled annual mean air concentrations in 2010 show no exceedances of the EU air quality limit, guideline or target values. The only modelled exceedance of US-EPA 1:100,000 cancer risk concentrations (0.12 ng/m3, US-EPA IRIS, 2015) occurs for B(a)P in Denmark, for approximately 80% of the Danish population. However, the EU target value threshold of 1 ng/m3 for B(a)P is not exceeded in the modelled values in any parts of Denmark. No emission data for B(a)P were available for the whole domain of the other two considered Nordic countries and important uncertainties are still related to the emissions. Long-range transport is significant for the concentrations of all of the considered pollutants, except for B(a)P that commonly originates mostly from local residential wood combustion. The ambient air concentrations of NOx, SO2, Cd, Cr and Pb also have significant contributions from national sources; 45-65% for NOx and SO2, and for the metals from 15 to 60% in urban areas and from 1 to 20% in rural areas, within the considered Nordic area. High national contributions occur especially in urban air, due to primarily road traffic, residential wood combustion, energy production and industrial point sources. It is recommended to monitor the influence from residential wood combustion more extensively, and to analyze longer time trends for long-term human exposure.

  16. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Air sampling. 61.34 Section 61.34... sampling. (a) Stationary sources subject to § 61.32(b) shall locate air sampling sites in accordance with a... concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...

  17. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  18. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOEpatents

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  19. Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round

    EPA Science Inventory

    Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round. Changes reflect performance of second round of testing at new location and with various changes to personnel. Additional changes reflect general improvements to the Version 1 test/QA...

  20. Ambient Monitoring Technology Information Center (AMTIC)

    EPA Pesticide Factsheets

    This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.

  1. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of

  2. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the

  3. 75 FR 67361 - Release of Final Document Related to the Review of the National Ambient Air Quality Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... Administrator identifies and lists certain pollutants which ``cause or contribute to air pollution which may reasonably be anticipated to endanger public health or welfare.'' The EPA then issues air quality criteria... establishes primary (health-based) and secondary (welfare-based) national ambient air quality standards (NAAQS...

  4. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  5. Ambient air emissions of polycyclic aromatic hydrocarbons and female breast cancer incidence in US.

    PubMed

    Stults, William Parker; Wei, Yudan

    2018-05-05

    To examine ambient air pollutants, specifically polycyclic aromatic hydrocarbons (PAHs), as a factor in the geographic variation of breast cancer incidence seen in the US, we conducted an ecological study involving counties throughout the US to examine breast cancer incidence in relation to PAH emissions in ambient air. Age-adjusted incidence rates of female breast cancer from the surveillance, epidemiology, and end results (SEER) program of the US National Cancer Institute were collected and analyzed using SEER*Stat 8.3.2. PAH emissions data were obtained from the Environmental Protection Agency. Linear regression analysis was performed using SPSS 23 software for Windows to analyze the association between PAH emissions and breast cancer incidence, adjusting for potential confounders. Age-adjusted incidence rates of female breast cancer were found being significantly higher in more industrialized metropolitan SEER regions over the years of 1973-2013 as compared to less industrialized regions. After adjusting for sex, race, education, socioeconomic status, obesity, and smoking prevalence, PAH emission density was found to be significantly associated with female breast cancer incidence, with the adjusted β of 0.424 (95% CI 0.278, 0.570; p < 0.0001) for emissions from all sources and of 0.552 (95% CI 0.278, 0.826; p < 0.0001) for emissions from traffic source. This study suggests that PAH exposure from ambient air could play a role in the increased breast cancer risk among women living in urban areas of the US. Further research could provide insight into breast cancer etiology and prevention.

  6. RELATIONSHIP BETWEEN AMBIENT AIR QUALITY AND SELECTED BIRTH DEFECTS, SEVEN COUNTY STUDY, TEXAS, 1997-2000

    EPA Science Inventory

    Background and Objectives: A number of epidemiologic investigations have shown adverse effects of ambient air pollution on reproductive outcomes including spontaneous abortion, fetal growth, preterm delivery, and infant mortality. A southern California, population-based, case-c...

  7. Gas/particle partitioning and particle size distribution of PCDD/Fs and PCBs in urban ambient air.

    PubMed

    Barbas, B; de la Torre, A; Sanz, P; Navarro, I; Artíñano, B; Martínez, M A

    2018-05-15

    Urban ambient air samples, including gas-phase (PUF), total suspended particulates (TSP), PM 10 , PM 2.5 and PM 1 airborne particle fractions were collected to evaluate gas-particle partitioning and size particle distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Clausius-Clapeyron equation, regressions of logKp vs logP L and logK OA, and human respiratory risk assessment were used to evaluate local or long-distance transport sources, gas-particle partitioning sorption mechanisms, and implications for health. Total ambient air levels (gas phase+particulate phase) of TPCBs and TPCDD/Fs, were 437 and 0.07pgm -3 (median), respectively. Levels of PCDD/F in the gas phase (0.004-0.14pgm -3 , range) were significantly (p<0.05) lower than those found in the particulate phase (0.02-0.34pgm -3 ). The concentrations of PCDD/Fs were higher in winter. In contrast, PCBs were mainly associated to the gas phase, and displayed maximum levels in warm seasons, probably due to an increase in evaporation rates, supported by significant and strong positive dependence on temperature observed for several congeners. No significant differences in PCDD/Fs and PCBs concentrations were detected between the different particle size fractions considered (TSP, PM 10 , PM 2.5 and PM 1 ), reflecting that these chemicals are mainly bounded to PM 1 . The toxic content of samples was also evaluated. Total toxicity (PUF+TSP) attributable to dl-PCBs (13.4fg-TEQ 05 m -3 , median) was higher than those reported for PCDD/Fs (6.26fg-TEQ 05 m -3 ). The inhalation risk assessment concluded that the inhalation of PCDD/Fs and dl-PCBs pose a low cancer risk in the studied area. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  9. 76 FR 59599 - Extension of Comment Period for Secondary National Ambient Air Quality Standards for Oxides of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of extension of public comment... National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur to October 10, 2011. DATES: The... Nitrogen and Sulfur'' proposed rule should be addressed to Rich Scheffe, U.S. EPA, Office of Air Quality...

  10. 76 FR 22665 - Release of Final Document Related to the Review of the National Ambient Air Quality Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... ``cause or contribute to air pollution which may reasonably be anticipated to endanger public health or... Document Related to the Review of the National Ambient Air Quality Standards for Particulate Matter AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: The Office of Air Quality...

  11. EMRP JRP MetNH3: Towards a Consistent Metrological Infrastructure for Ammonia Measurements in Ambient Air

    NASA Astrophysics Data System (ADS)

    Leuenberger, Daiana; Balslev-Harder, David; Braban, Christine F.; Ebert, Volker; Ferracci, Valerio; Gieseking, Bjoern; Hieta, Tuomas; Martin, Nicholas A.; Pascale, Céline; Pogány, Andrea; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. In addition to its acidifying effect on natural waters and soils and to the additional nitrogen input to ecosystems, ammonia is an important precursor for secondary aerosol formation in the atmosphere. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation regarding certified reference material (CRM), applicable analytical methods, measurement uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. As shown in a key comparison in 2007, there are even discrepancies between reference materials provided by European National Metrology Institutes (NMIs) at amount fraction levels up to three orders of magnitude higher than ambient air levels. MetNH3 (Metrology for ammonia in ambient air), a three-year project that started in June 2014 in the framework of the European Metrology Research Programme (EMRP), aims to reduce the gap between requirements set by the European emission regulations and state-of-the-art of analytical methods and reference materials. The overarching objective of the JRP is to achieve metrological traceability for ammonia measurements in ambient air from primary certified reference material CRM and instrumental standards to the field level. This requires the successful completion of the three main goals, which have been assigned to three technical work packages: To develop improved reference gas mixtures by static and dynamic gravimetric generation methods Realisation and characterisation of traceable preparative calibration standards (in pressurised cylinders as well as mobile generators) of ammonia amount fractions similar to those in ambient air based on existing methods for other reactive analytes. The

  12. Survey of Ambient Air Pollution Health Risk Assessment Tools.

    PubMed

    Anenberg, Susan C; Belova, Anna; Brandt, Jørgen; Fann, Neal; Greco, Sue; Guttikunda, Sarath; Heroux, Marie-Eve; Hurley, Fintan; Krzyzanowski, Michal; Medina, Sylvia; Miller, Brian; Pandey, Kiran; Roos, Joachim; Van Dingenen, Rita

    2016-09-01

    Designing air quality policies that improve public health can benefit from information about air pollution health risks and impacts, which include respiratory and cardiovascular diseases and premature death. Several computer-based tools help automate air pollution health impact assessments and are being used for a variety of contexts. Expanding information gathered for a May 2014 World Health Organization expert meeting, we survey 12 multinational air pollution health impact assessment tools, categorize them according to key technical and operational characteristics, and identify limitations and challenges. Key characteristics include spatial resolution, pollutants and health effect outcomes evaluated, and method for characterizing population exposure, as well as tool format, accessibility, complexity, and degree of peer review and application in policy contexts. While many of the tools use common data sources for concentration-response associations, population, and baseline mortality rates, they vary in the exposure information source, format, and degree of technical complexity. We find that there is an important tradeoff between technical refinement and accessibility for a broad range of applications. Analysts should apply tools that provide the appropriate geographic scope, resolution, and maximum degree of technical rigor for the intended assessment, within resources constraints. A systematic intercomparison of the tools' inputs, assumptions, calculations, and results would be helpful to determine the appropriateness of each for different types of assessment. Future work would benefit from accounting for multiple uncertainty sources and integrating ambient air pollution health impact assessment tools with those addressing other related health risks (e.g., smoking, indoor pollution, climate change, vehicle accidents, physical activity). © 2016 Society for Risk Analysis.

  13. Humidity-swing mechanism for CO2 capture from ambient air.

    PubMed

    Yang, Hao; Singh, Manmilan; Schaefer, Jacob

    2018-05-10

    A humidity-swing polymeric sorbent captures CO2 from ambient air at room temperature simply by changing the humidity level. To date there has been no direct experimental evidence to characterize the chemical mechanism for this process. In this report we describe the use of solid-state NMR to study the humidity-swing CO2 absorption/desorption cycle directly. We find that at low humidity levels CO2 is absorbed as HCO3-. At high humidity levels, HCO3- is replaced by hydrated OH- and the absorbed CO2 is released.

  14. Air Sampling Filter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.

  15. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002-2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements.

    PubMed

    Hao, Hua; Chang, Howard H; Holmes, Heather A; Mulholland, James A; Klein, Mitch; Darrow, Lyndsey A; Strickland, Matthew J

    2016-06-01

    Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. Birth records for singleton births ≥ 27 weeks of gestation with complete covariate information and estimated dates of conception between 1 January 2002 and 28 February 2006 were obtained from the Office of Health Indicators for Planning, Georgia Department of Public Health (n = 511,658 births). Daily pollutant concentrations at 12-km resolution were estimated for 11 ambient air pollutants. We used logistic regression with county-level fixed effects to estimate associations between preterm birth and average pollutant concentrations during the first and second trimester. Discrete-time survival models were used to estimate third-trimester and total pregnancy associations. Effect modification was investigated by maternal education, race, census tract poverty level, and county-level urbanicity. Trimester-specific and total pregnancy associations (p < 0.05) were observed for several pollutants. All the traffic-related pollutants (carbon monoxide, nitrogen dioxide, PM2.5 elemental carbon) were associated with preterm birth [e.g., odds ratios for interquartile range increases in carbon monoxide during the first, second, and third trimesters and total pregnancy were 1.005 (95% CI: 1.001, 1.009), 1.007 (95% CI: 1.002, 1.011), 1.010 (95% CI: 1.006, 1.014), and 1.011 (95% CI: 1.006, 1.017)]. Associations tended to be higher for mothers with low educational attainment and African American mothers. Several ambient air pollutants were associated with preterm birth; associations were observed in all exposure windows. Hao H, Chang HH, Holmes HA, Mulholland JA, Klein M, Darrow LA, Strickland MJ. 2016. Air pollution

  16. Third harmonic generation in air ambient and laser ablated carbon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ravi Pratap, E-mail: ravips@iitk.ac.in; Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablatedmore » plume play a vital role in the observed third harmonic signals.« less

  17. Ambient air pollution, climate change, and population health in China.

    PubMed

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Association between ambient air pollution and proliferation of umbilical cord blood cells.

    PubMed

    Novack, L; Yitshak-Sade, M; Landau, D; Kloog, I; Sarov, B; Karakis, I

    2016-11-01

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012-March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM 2.5 (particles<2.5µm in diameter) and PM 10 (particles<10µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O 3 ) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM 2.5 one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM 2.5 levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM 10 levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. Copyright © 2016. Published by Elsevier Inc.

  19. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    PubMed

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  20. Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bian, Qijing; Alharbi, Badr; Collett, Jeffrey; Kreidenweis, Sonia; Pasha, Mohammad J.

    2016-07-01

    Ambient air samples were obtained in Riyadh, the capital and largest city of Saudi Arabia, during two measurement campaigns spanning September 2011 to September 2012. Sixteen particle-phase polycyclic aromatic hydrocarbons (PAH) were quantified in 167 samples. Pyrene and fluoranthene were the most abundant PAH, with average of 3.37 ± 14.01 ng m-3 and 8.00 ± 44.09 ng m-3, respectively. A dominant contribution from low molecular weight (LMW) PAH (MW < 228) suggested a large influence of industrial emissions on PAH concentrations. Monte Carlo source apportionment using diagnostic ratios showed that 80 ± 10% of the average LMW PAH concentrations were contributed by petroleum vapor emissions, while 53 ± 19% of high molecular weight (HMW) PAH were from solid fuel combustion emissions. The positive matrix factorization model estimated that oil combustion emissions dominated total PAH concentrations, accounting for on average 96%, likely due to widespread use of oil fuels in energy production (power plants and industries). Our results demonstrate the significant influence of petroleum product production and consumption on particulate-phase PAH concentrations in Riyadh, but also point to the importance of traffic and solid fuel burning, including coke burning and seasonal biomass burning, especially as they contribute to the ambient levels of HMW PAH.

  1. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...

  2. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...

  3. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...

  4. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds

    PubMed Central

    Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-01-01

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions. PMID:28657595

  5. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.

    PubMed

    Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-06-28

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

  6. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  7. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    NASA Astrophysics Data System (ADS)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on

  8. Landfills as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air

    NASA Astrophysics Data System (ADS)

    Weinberg, Ingo; Dreyer, Annekatrin; Ebinghaus, Ralf

    2011-02-01

    In order to investigate landfills as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two landfills (one active and one closed) and two reference sites using high volume air samplers. Contaminants were accumulated on glass fiber filters (particle phase) and PUF/XAD-2/PUF cartridges (gas phase), extracted by methyl-tert butyl ether/acetone (neutral PFCs), methanol (ionic PFCs) or hexane/acetone (PBDEs, musk fragrances), and detected by GC-MS (neutral PFCs, PBDEs, musk fragrances) or HPLC-MS/MS (ionic PFCs). Total concentrations ranged from 84 to 706 pg m -3 (volatile PFCs, gas phase), from ambient air.

  9. Biofilm Formation Derived from Ambient Air and the Characteristics of Apparatus

    NASA Astrophysics Data System (ADS)

    Kanematsu, H.; Kougo, H.; Kuroda, D.; Itho, H.; Ogino, Y.; Yamamoto, Y.

    2013-04-01

    Biofilm is a kind of thin film on solidified matters, being derived from bacteria. Generally, planktonic bacteria float in aqueous environments, soil or air, most of which can be regarded as oligotrophic environments. Since they have to survive by instinct, they seek for nutrients that would exist on materials surfaces as organic matters. Therefore, bacteria attach materials surfaces reversibly. The attachment and detachment repeat for a while and finally, they attach on them irreversibly and the number of bacteria on them increases. At a threshold number, bacteria produce polymeric matters at the same time by quorum sensing mechanism and the biofilm produces on material surfaces. The biofilm produced in that way generally contains water (more than 80%), EPS (Exopolymeric Substance) and bacteria themselves. And they might bring about many industrial problems, fouling, corrosion etc. Therefore, it is very important for us to control and prevent the biofilm formation properly. However, it is generally very hard to produce biofilm experimentally and constantly in ambient atmosphere on labo scale. The authors invented an apparatus where biofilm could form on specimen's surfaces from house germs in the ambient air. In this experiment, we investigated the basic characteristics of the apparatus, reproducibility, the change of biofilm with experimental time, the quality change of water for biofilm formation and their significance for biofilm research.

  10. Review of the Primary National Ambient Air Quality Standards for Nitrogen Dioxide: Risk and Exposure Assessment Planning Document

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the primary (health-based) national ambient air quality standards (NAAQS) for nitrogen dioxide (NO2). The major phases of the process for reviewing NAAQS include the following: (...

  11. Review of the Primary National Ambient Air Quality Standard for Sulfur Oxides: Risk and Exposure Assessment Planning Document

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the primary (health-based) national ambient air quality standards (NAAQS) for sulfur oxides (SOx). The major phases of the process for reviewing NAAQS include the following: (1) ...

  12. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults.

    PubMed

    Chen, Jiu-Chiuan; Schwartz, Joel

    2009-03-01

    In vivo animal experiments demonstrate neurotoxicity of exposures to particulate matter (PM) and ozone, but only one small epidemiological study had linked ambient air pollution with central nervous system (CNS) functions in children. To examine the neurobehavioral effects associated with long-term exposure to ambient PM and ozone in adults. We conducted a secondary analysis of the Neurobehavioral Evaluation System-2 (NES2) data (including a simple reaction time test [SRTT] measuring motor response speed to a visual stimulus; a symbol-digit substitution test [SDST] for coding ability; and a serial-digit learning test [SDLT] for attention and short-term memory) from 1764 adult participants (aged 37.5+/-10.9 years) of the Third National Health and Nutrition Examination Survey in 1988-1991. Based on ambient PM(10) (PM with aerodynamic diameter <10microm) and ozone data from the EPA Aerometric Information Retrieval System database, estimated annual exposure prior to the examination were aggregated at the centroid of each census-block group of geocoded residences, using distance-weighted averages from all monitors in the residing and adjoining counties. Generalized linear models were constructed to examine the associations, adjusting for potential confounders. In age- and sex-adjusted models, PM(10) predicted reduced CNS functions, but the association disappeared after adjustment for sociodemographic factors. There were consistent associations between ozone and reduced performance in NES2. In models adjusting for demographics, socioeconomic status, lifestyle, household and neighborhood characteristics, and cardiovascular risk factors, ozone predicted high scores in SDST and SDLT, but not in SRTT. Each 10-ppb increase in annual ozone was associated with increased SDST and SDLT scores by 0.16 (95%CI: 0.01, 0.23) and 0.56 (95%CI: 0.07, 1.05), equivalent to 3.5 and 5.3 years of aging-related decline in cognitive performance. Our study provides the first epidemiological data

  13. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  14. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    PubMed

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air

  15. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by

  16. Air sampling workshop: October 24-25, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    A two-day workshop was held in October 1978 on air sampling strategies for the occupational environment. Strategies comprise the elements of implementing an air sampling program including deciding on the extent of sampling, selecting appropriate types of measurement, placing sampling instruments properly, and interpreting sample results correctly. All of these elements are vital in the reliable assessment of occupational exposures yet their coverage in the industrial hygiene literature is meager. Although keyed to a few introductory topics, the agenda was sufficiently informal to accommodate extemporaneous discussion on any subject related to sampling strategies. Questions raised during the workshop mirror themore » status of air sampling strategy as much as the factual information that was presented. It may be concluded from the discussion and questions that air sampling strategy is an elementary state and urgently needs concerted attention from the industrial hygiene profession.« less

  17. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements

    PubMed Central

    Hao, Hua; Chang, Howard H.; Holmes, Heather A.; Mulholland, James A.; Klein, Mitch; Darrow, Lyndsey A.; Strickland, Matthew J.

    2015-01-01

    Background: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. Objective: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. Methods: Birth records for singleton births ≥ 27 weeks of gestation with complete covariate information and estimated dates of conception between 1 January 2002 and 28 February 2006 were obtained from the Office of Health Indicators for Planning, Georgia Department of Public Health (n = 511,658 births). Daily pollutant concentrations at 12-km resolution were estimated for 11 ambient air pollutants. We used logistic regression with county-level fixed effects to estimate associations between preterm birth and average pollutant concentrations during the first and second trimester. Discrete-time survival models were used to estimate third-trimester and total pregnancy associations. Effect modification was investigated by maternal education, race, census tract poverty level, and county-level urbanicity. Results: Trimester-specific and total pregnancy associations (p < 0.05) were observed for several pollutants. All the traffic-related pollutants (carbon monoxide, nitrogen dioxide, PM2.5 elemental carbon) were associated with preterm birth [e.g., odds ratios for interquartile range increases in carbon monoxide during the first, second, and third trimesters and total pregnancy were 1.005 (95% CI: 1.001, 1.009), 1.007 (95% CI: 1.002, 1.011), 1.010 (95% CI: 1.006, 1.014), and 1.011 (95% CI: 1.006, 1.017)]. Associations tended to be higher for mothers with low educational attainment and African American mothers. Conclusion: Several ambient air pollutants were associated with preterm birth; associations were observed in all exposure windows. Citation: Hao H, Chang HH, Holmes HA

  18. Perspective for Future Research Direction About Health Impact of Ambient Air Pollution in China.

    PubMed

    Dong, Guang-Hui

    2017-01-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. Although lots of works on the health impact of ambient air pollution have been done in China, the following recommendations for future research were identified in this chapter: (1) the synergistic effect of indoor air pollution with climate change; (2) develop new technologies to improve accurate assessment of air pollution exposure; (3) well-designed cohort study of sensitive populations including children, older people, and people with chronic health problems; (4) multi-omics technologies in the underlying mechanisms study; and (5) benefits evaluation of improvement of air quality. In conclusion, China is becoming a suitable study site, providing an ideal opportunity to evaluate the effects of environmental pollution, including air pollution, on human health, which might serve as an example for developing countries where health impacts of air pollution are as serious as in China.

  19. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  20. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  1. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    NASA Astrophysics Data System (ADS)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  2. Energy and material balance of CO2 capture from ambient air.

    PubMed

    Zeman, Frank

    2007-11-01

    Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.

  3. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    PubMed

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The State of Ambient Air Quality of Jeddah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Aburizaiza, O. S.; Khwaja, H. A.; Siddique, A.; Nayebare, S. R.; Zeb, J.; Blake, D. R.

    2014-12-01

    Ambient air pollution in major cities of Saudi Arabia is a substantial environmental and health concern. A study was undertaken to assess the air quality of Jeddah, Saudi Arabia by the analysis of respirable particulate matter (PM2.5), black carbon (BC), trace metals (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Cd, Sb, and Pb), and water-soluble ions (F-, Cl-, NO3-, SO42-, C2O42-, and NH42+). Sulfur and BC mass concentration ranged 0.99 - 7.39 μg/m3 and 0.70 - 3.09 μg/m3, respectively, while the PM2.5 mass concentration ranged 23 - 186 μg/m3. Maximum BC contribution to PM2.5 was 5.6%. Atmospheric PM2.5 concentrations were well above the 24 h WHO guideline of 20 μg/m3. Air Quality Index (AQI) indicates that there were 8% days of moderate air quality, 28% days of unhealthy air quality for sensitive groups, 55% days of unhealthy air quality, and 9% days of very unhealthy air quality during the study period. Sulfate SO42- dominated the identifiable components. The major contributors to PM2.5 were soil and crustal material; vehicle emissions (black carbon factor); and fuel oil combustion in industries (sulfur factor), according to the Positive Matrix Factorization (PMF). This study highlights the importance of focusing control strategies not only on reducing PM concentration, but also on the reduction of toxic components of the PM, to most effectively protect human health and the environment.

  5. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans.

    PubMed

    Clemens, Tom; Turner, Steve; Dibben, Chris

    2017-10-01

    Maternal ambient air pollution exposure is associated with reduced birthweight. Few studies have examined the effect on growth in utero and none have examined the effect of exposure to particulates less than 2.5µm (PM 2.5 ) and possible effect modification by smoking status. Examine the effect of maternal exposure to ambient concentrations of PM 10 , PM 2.5 and nitrogen dioxide (NO 2 ) for in utero fetal growth, size at birth and effect modification by smoking status. Administratively acquired second and third trimester fetal measurements (bi-parietal diameter, femur length and abdominal circumference), birth outcomes (weight, crown heel length and occipito-frontal circumference) and maternal details were obtained from routine fetal ultrasound scans and maternity records (period 1994-2009). These were modelled against residential annual pollution concentrations (calendar year mean) adjusting for covariates and stratifying by smoking status. In the whole sample (n=13,775 pregnancies), exposure to PM 10 , PM 2.5 and NO 2 was associated with reductions in measurements at birth and biparietal diameter from late second trimester onwards. Among mothers who did not smoke at all during pregnancy (n=11,075), associations between biparietal diameter and pollution exposure remained significant but were insignificant among those who did smoke (n=2700). Femur length and abdominal circumference were not significantly associated with pollution exposure. Fetal growth is strongly associated with particulates exposure from later in second trimester onwards but the effect appears to be subsumed by smoking. Typical ambient exposures in this study were relatively low compared to other studies and given these results, it may be necessary to consider reducing recommended "safe" ambient air exposures. Copyright © 2017. Published by Elsevier Ltd.

  6. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James; Klett, Lynn

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambientmore » air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.« less

  7. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Almond, P. M.

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function ofmore » depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this

  8. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry

    PubMed Central

    2017-01-01

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples. PMID:28632988

  9. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  10. Applying policy and health effects of air pollution in South Korea: focus on ambient air quality standards

    PubMed Central

    Ha, Jongsik

    2014-01-01

    Objectives South Korea’s air quality standards are insufficient in terms of establishing a procedure for their management. The current system lacks a proper decision-making process and prior evidence is not considered. The purpose of this study is to propose a measure for establishing atmospheric environmental standards in South Korea that will take into consideration the health of its residents. Methods In this paper, the National Ambient Air Quality Standards (NAAQS) of the US was examined in order to suggest ways, which consider health effects, to establish air quality standards in South Korea. Up-to-date research on the health effects of air pollution was then reviewed, and tools were proposed to utilize the key results. This was done in an effort to ensure the reliability of the standards with regard to public health. Results This study showed that scientific research on the health effects of air pollution and the methodology used in the research have contributed significantly to establishing air quality standards. However, as the standards are legally binding, the procedure should take into account the effects on other sectors. Realistically speaking, it is impossible to establish standards that protect an entire population from air pollution. Instead, it is necessary to find a balance between what should be done and what can be done. Conclusions Therefore, establishing air quality standards should be done as part of an evidence-based policy that identifies the health effects of air pollution and takes into consideration political, economic, and social contexts. PMID:25300297

  11. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Melnikov, Alexander

    2016-10-01

    A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) using a commercial FTIR spectrometer was developed theoretically and experimentally for air contaminant monitoring. The configuration comprises two identical, small-size and low-resonance-frequency T cells satisfying the conflicting requirements of low chopping frequency and limited space in the sample compartment. Carbon dioxide (CO2) IR absorption spectra were used to demonstrate the capability of the DFTIR-PAS method to detect ambient pollutants. A linear amplitude response to CO2 concentrations from 100 to 10,000 ppmv was observed, leading to a theoretical detection limit of 2 ppmv. The differential mode was able to suppress the coherent noise, thereby imparting the DFTIR-PAS method with a better signal-to-noise ratio and lower theoretical detection limit than the single mode. The results indicate that it is possible to use step-scan DFTIR-PAS with T cells as a quantitative method for high sensitivity analysis of ambient contaminants.

  12. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated.more » The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.« less

  13. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.

    PubMed

    Didas, Stephanie A; Kulkarni, Ambarish R; Sholl, David S; Jones, Christopher W

    2012-10-01

    A fundamental study on the adsorption properties of primary, secondary, and tertiary amine materials is used to evaluate what amine type(s) are best suited for ultradilute CO(2) capture applications. A series of comparable materials comprised of primary, secondary, or tertiary amines ligated to a mesoporous silica support via a propyl linker are used to systematically assess the role of amine type. Both CO(2) and water adsorption isotherms are presented for these materials in the range relevant to CO(2) capture from ambient air and it is demonstrated that primary amines are the best candidates for CO(2) capture from air. Primary amines possess both the highest amine efficiency for CO(2) adsorption as well as enhanced water affinity compared to other amine types or the bare silica support. The results suggest that the rational design of amine adsorbents for the extraction of CO(2) from ambient air should focus on adsorbents rich in primary amines. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential explored mechanisms for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES results yield congested spectra from which the U I 356.18 nm transition is prominent andmore » serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less

  15. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.

    2016-10-02

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential mechanisms explored for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plas-ma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES yields congested spectra from which the U I 356.18 nm transition is prominent and servesmore » as the basis for signal tracking. LA-OES signal and per-sistence vary negligibly between the test gases (air and N 2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. In conclusion, investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less

  16. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns.

    PubMed Central

    Whyatt, R M; Santella, R M; Jedrychowski, W; Garte, S J; Bell, D A; Ottman, R; Gladek-Yarborough, A; Cosma, G; Young, T L; Cooper, T B; Randall, M C; Manchester, D K; Perera, F P

    1998-01-01

    Industrialized regions in Poland are characterized by high ambient pollution, including polycyclic aromatic hydrocarbons (PAHs) from coal burning for industry and home heating. In experimental bioassays, certain PAHs are transplacental carcinogens and developmental toxicants. Biologic markers can facilitate evaluation of effects of environmental PAHs on the developing infant. We measured the amount of PAHs bound to DNA (PAH-DNA adducts) in maternal and umbilical white blood cells. The cohort consisted of 70 mothers and newborns from Krakow, Poland, an industrialized city with elevated air pollution. Modulation of adduct levels by genotypes previously linked to risk of lung cancer, specifically glutathione S-transferase MI (GSTM1) and cytochrome P4501A1 (CYP1A1) Msp restriction fragment length polymorphism (RFLP), was also investigated. There was a dose-related increase in maternal and newborn adduct levels with ambient pollution at the women's place of residence among subjects who were not employed away from home (p < or = 0.05). Maternal smoking (active and passive) significantly increased maternal (p < or = 0.01) but not newborn adduct levels. Neither CYP1A1 Msp nor GSTM1 polymorphisms was associated with maternal adducts. However, adducts were significantly higher in newborns heterozygous or homozygous for the CYP1A1 Msp RFLP compared to newborns without the RFLP (p = 0.04). Results indicate that PAH-induced DNA damage in mothers and newborns is increased by ambient air pollution. In the fetus, this damage appears to be enhanced by the CYP1A1 Mspl polymorphism. Images Figure 1 PMID:9646044

  17. Ambient Air Pollution and Apnea and Bradycardia in High-Risk Infants on Home Monitors

    PubMed Central

    Klein, Mitchel; Flanders, W. Dana; Mulholland, James A.; Freed, Gary; Tolbert, Paige E.

    2011-01-01

    Background: Evidence suggests that increased ambient air pollution concentrations are associated with health effects, although relatively few studies have specifically examined infants. Objective: We examined associations of daily ambient air pollution concentrations with central apnea (prolonged pauses in breathing) and bradycardia (low heart rate) events among infants prescribed home cardiorespiratory monitors. Methods: The home monitors record the electrocardiogram, heart rate, and respiratory effort for detected apnea and bradycardia events in high-risk infants [primarily premature and low birth weight (LBW) infants]. From August 1998 through December 2002, 4,277 infants had 8,960 apnea event-days and 29,450 bradycardia event-days in > 179,000 days of follow-up. We assessed the occurrence of apnea and bradycardia events in relation to speciated particulate matter and gaseous air pollution levels using a 2-day average of air pollution (same day and previous day), adjusting for temporal trends, temperature, and infant age. Results: We observed associations between bradycardia and 8-hr maximum ozone [odds ratio (OR) = 1.049 per 25-ppb increase; 95% confidence interval (CI), 1.021–1.078] and 1-hr maximum nitrogen dioxide (OR =1.025 per 20-ppb increase; 95% CI, 1.000–1.050). The association with ozone was robust to different methods of control for time trend and specified correlation structure. In secondary analyses, associations of apnea and bradycardia with pollution were generally stronger in infants who were full term and of normal birth weight than in infants who were both premature and LBW. Conclusions: These results suggest that higher air pollution concentrations may increase the occurrence of apnea and bradycardia in high-risk infants. PMID:21447453

  18. Ambient air pollution exposure and blood pressure changes during pregnancy

    PubMed Central

    Lee, Pei-Chen; Talbott, Evelyn O.; Roberts, James M.; Catov, Janet M.; Bilonick, Richard A.; Stone, Roslyn A.; Sharma, Ravi K.; Ritz, Beate

    2013-01-01

    Background Maternal exposure to ambient air pollution has been associated with adverse birth outcomes such as preterm delivery. However, only one study to date has linked air pollution to blood pressure changes during pregnancy, a period of dramatic cardiovascular function changes. Objectives We examined whether maternal exposures to criteria air pollutants, including particles of less than 10 µm (PM10) or 2.5 µm diameter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), in each trimester of pregnancy are associated with magnitude of rise of blood pressure between the first 20 weeks of gestation and late pregnancy in a prospectively followed cohort of 1684 pregnant women in Allegheny County, PA. Methods Air pollution measures for maternal ZIP code areas were derived using Kriging interpolation. Using logistic regression analysis, we evaluated the associations between air pollution exposures and blood pressure changes between the first 20 weeks of gestation and late pregnancy. Results First trimester PM10 and ozone exposures were associated with blood pressure changes between the first 20 weeks of gestation and late pregnancy, most strongly in non-smokers. Per interquartile increases in first trimester PM10 and O3 concentrations were associated with mean increases in systolic blood pressure of 1.88 mmHg (95% CI = 0.84 to 2.93) and 1.84 (95% CI = 1.05 to 4.63), respectively, and in diastolic blood pressure of 0.63 mmHg (95% CI= −0.50 to 1.76) and 1.13 (95% CI= −0.46 to 2.71) in non-smokers. Conclusions Our novel finding suggests that first trimester PM10 and O3 air pollution exposures increase blood pressure in the later stages of pregnancy. These changes may play a role in mediating the relationships between air pollution and adverse birth outcomes. PMID:22835955

  19. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Treesearch

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  20. A Causal Inference Analysis of the Effect of Wildland Fire Smoke on Ambient Air Pollution Levels and Health Burden

    EPA Science Inventory

    Wildfire smoke is a major contributor to ambient air pollution levels. In this talk, we develop a spatio-temporal model to estimate the contribution of fire smoke to overall air pollution in different regions of the country. We combine numerical model output with observational da...

  1. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...

  2. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Monitoring Reference and Equivalent Methods: Designation of Two New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of two new equivalent methods for monitoring ambient air... accordance with 40 CFR Part 53, two new equivalent methods for measuring concentrations of PM 10 and sulfur...

  3. 75 FR 30022 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...

  4. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...

  5. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    DOE PAGES

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; ...

    2016-06-15

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and O x, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive ( τ OH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OS C ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and

  6. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and O x, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive ( τ OH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OS C ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and

  7. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  8. Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China.

    PubMed

    An, R; Yu, H

    2018-03-19

    Poor air quality has become a national public health concern in China. This study examines the impact of ambient fine particulate matter (PM 2.5 ) air pollution on health behaviors among college students in Beijing, China. Prospective cohort study. Health surveys were repeatedly administered among 12,000 newly admitted students at Tsinghua University during 2012-2015 over their freshman year. Linear individual fixed-effect regressions were performed to estimate the impacts of ambient PM 2.5 concentration on health behaviors among survey participants, adjusting for various time-variant individual characteristics and environmental measures. Ambient PM 2.5 concentration was found to be negatively associated with time spent on walking, vigorous physical activity and sedentary behavior in the last week, but positively associated with time spent on nighttime/daytime sleep among survey participants. An increase in the ambient PM 2.5 concentration by one standard deviation (36.5 μg/m³) was associated with a reduction in weekly total minutes of walking by 7.3 (95% confidence interval [CI] = 5.3-9.4), a reduction in weekly total minutes of vigorous physical activity by 10.1 (95% CI = 8.5-11.7), a reduction in daily average hours of sedentary behavior by 0.06 (95% CI = 0.02-0.10) but an increase in daily average hours of nighttime/daytime sleep by 1.07 (95% CI = 1.04-1.11). Ambient PM 2.5 air pollution was inversely associated with physical activity level but positively associated with sleep duration among college students. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently called to reduce air pollution level in China's urban areas. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...

  10. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...

  11. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  12. Ambient air pollution exposure and respiratory, cardiovascular and cerebrovascular mortality in Cape Town, South Africa: 2001–2006.

    PubMed

    Wichmann, Janine; Voyi, Kuku

    2012-11-05

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM(10), SO(2) and NO(2) levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001-2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM(10) (12 mg/m3) and NO(2) (12 mg/m3) significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO(2) and SO(2) (8 mg/m3). In the warm period, PM(10) was significantly associated with RD and CVD mortality. NO(2) had significant associations with CBD, RD and CVD mortality, whilst SO(2) was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  13. Ambient air pollution, traffic noise and adult asthma prevalence: a BioSHaRE approach.

    PubMed

    Cai, Yutong; Zijlema, Wilma L; Doiron, Dany; Blangiardo, Marta; Burton, Paul R; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Elliott, Paul; Hansell, Anna L; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank).Residential exposures to ambient air pollution (particulate matter with aerodynamic diameter ≤10 µm (PM 10 ) and nitrogen dioxide (NO 2 )) were estimated by a pan-European Land Use Regression model for 2007. Traffic noise for 2009 was modelled at home addresses by adapting a standardised noise assessment framework (CNOSSOS-EU). A cross-sectional analysis of 646 731 participants aged ≥20 years was undertaken using DataSHIELD to pool data for individual-level analysis via a "compute to the data" approach. Multivariate logistic regression models were fitted to assess the effects of each exposure on lifetime and current asthma prevalence.PM 10 or NO 2 higher by 10 µg·m -3 was associated with 12.8% (95% CI 9.5-16.3%) and 1.9% (95% CI 1.1-2.8%) higher lifetime asthma prevalence, respectively, independent of confounders. Effects were larger in those aged ≥50 years, ever-smokers and less educated. Noise exposure was not significantly associated with asthma prevalence.This study suggests that long-term ambient PM 10 exposure is associated with asthma prevalence in western European adults. Traffic noise is not associated with asthma prevalence, but its potential to impact on asthma exacerbations needs further investigation. Copyright ©ERS 2017.

  14. Ambient air quality trends and driving factor analysis in Beijing, 1983-2007.

    PubMed

    Zhang, Ju; Ouyang, Zhiyun; Miao, Hong; Wang, Xiaoke

    2011-01-01

    The rapid development in Beijing, the capital of China, has resulted in serious air pollution problems. Meanwhile great efforts have been made to improve the air quality, especially since 1998. The variation in air quality under the interaction of pollution and control in this mega city has attracted much attention. We analyzed the changes in ambient air quality in Beijing since the 1980's using the Daniel trend test based on data from long-term monitoring stations. The results showed that different pollutants displayed three trends: a decreasing trend, an increasing trend and a flat trend. SO2, dustfall, B[a]P, NO2 and PM10 fit decreasing trend pattern, while NOx showed an increasing trend, and CO, ozone pollution, total suspended particulate (TSP), as well as Pb fit the flat trend. The cause of the general air pollution in Beijing has changed from being predominantly related to coal burning to mixed traffic exhaust and coal burning related pollution. Seasonally, the pollution level is typically higher during the heating season from November to the following March. The interaction between pollution sources change and implementation of air pollution control measures was the main driving factor that caused the variation in air quality. Changes of industrial structure and improved energy efficiency, the use of clean energy and preferred use of clean coal, reduction in pollution sources, and implementation of advanced environmental standards have all contributed to the reduction in air pollution, particularly since 1998.

  15. Lacrimal Cytokines Assessment in Subjects Exposed to Different Levels of Ambient Air Pollution in a Large Metropolitan Area

    PubMed Central

    Matsuda, Monique; Bonatti, Rodolfo; Marquezini, Mônica V.; Garcia, Maria L. B.; Santos, Ubiratan P.; Braga, Alfésio L. F.; Alves, Milton R.

    2015-01-01

    Background Air pollution is one of the most environmental health concerns in the world and has serious impact on human health, particularly in the mucous membranes of the respiratory tract and eyes. However, ocular hazardous effects to air pollutants are scarcely found in the literature. Design Panel study to evaluate the effect of different levels of ambient air pollution on lacrimal film cytokine levels of outdoor workers from a large metropolitan area. Methods Thirty healthy male workers, among them nineteen professionals who work on streets (taxi drivers and traffic controllers, high pollutants exposure, Group 1) and eleven workers of a Forest Institute (Group 2, lower pollutants exposure compared to group 1) were evaluated twice, 15 days apart. Exposure to ambient PM2.5 (particulate matter equal or smaller than 2.5 μm) was 24 hour individually collected and the collection of tears was performed to measure interleukins (IL) 2, 4, 5 and 10 and interferon gamma (IFN-γ) levels. Data from both groups were compared using Student’s t test or Mann- Whitney test for cytokines. Individual PM2.5 levels were categorized in tertiles (lower, middle and upper) and compared using one-way ANOVA. Relationship between PM2.5 and cytokine levels was evaluated using generalized estimating equations (GEE). Results PM2.5 levels in the three categories differed significantly (lower: ≤22 μg/m3; middle: 23–37.5 μg/m3; upper: >37.5 μg/m3; p<0.001). The subjects from the two groups were distributed unevenly in the lower category (Group 1 = 8%; Group 2 = 92%), the middle category (Group 1 = 89%; Group 2 = 11%) and the upper category (Group 1 = 100%). A significant relationship was found between IL-5 and IL-10 and PM2.5 levels of the group 1, with an average decrease of 1.65 pg/mL of IL-5 level and of 0.78 pg/mL of IL-10 level in tear samples for each increment of 50 μg/m3 of PM2.5 (p = 0.01 and p = 0.003, respectively). Conclusion High levels of PM2.5 exposure is associated

  16. The effect of ambient air pollution during early pregnancy on fetal ultrasonic measurements during mid-pregnancy.

    PubMed

    Hansen, Craig A; Barnett, Adrian G; Pritchard, Gary

    2008-03-01

    Over the past decade there has been mounting evidence that ambient air pollution during pregnancy influences fetal growth. This study was designed to examine possible associations between fetal ultrasonic measurements collected from 15,623 scans (13-26 weeks gestation) and ambient air pollution during early pregnancy. We calculated mothers' average monthly exposures over the first 4 months of pregnancy for the following pollutants: particulate matter < 10 microm aerodynamic diameter (PM10), ozone, nitrogen dioxide, and sulfur dioxide. We examined associations with fetal femur length (FL), biparietal diameter (BPD), head circumference (HC), and abdominal circumference (AC). Final analyses included scans from only those women within 2 km of an air pollution monitoring site. We controlled for long-term trend, season, temperature, gestation, mother's age, socioeconomic status, and fetal sex. A reduction in fetal AC was associated with O3 during days 31-60 [-1.42 mm; 95% confidence interval (CI), -2.74 to -0.09], SO2 during days 61-90 (-1.67 mm; 95% CI, -2.94 to -0.40), and PM10 during days 91-120 (-0.78 mm; 95% CI, -1.49 to -0.08). Other results showed a reduction in BPD (-0.68 mm; 95% CI, -1.09 to -0.27) associated with SO2 during days 0-30, a reduction in HC (-1.02 mm; 95% CI, -1.78 to -0.26) associated with PM10 during days 91-120, and a reduction in FL associated with PM10 during days 0-30 (-0.28 mm; 95% CI, -0.48 to -0.08) and 91-120 (-0.23; 95% CI, -0.42 to -0.04). We found strong effects of ambient air pollution on ultrasound measures. Future research, including more individually detailed data, is needed to confirm our results.

  17. Review of the Primary National Ambient Air Quality Standards ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the primary (health-based) national ambient air quality standards (NAAQS) for nitrogen dioxide (NO2). The major phases of the process for reviewing NAAQS include the following: (1) planning, (2) science assessment, (3) risk and exposure assessment, and (4) policy assessment. As an initial step in the risk and exposure assessment phase, EPA staff has considered the extent to which updated quantitative analyses of NO2 exposures and/or NO2-attributable health risks are warranted in the current review, based on the available scientific evidence and technical information. These considerations focus on the degree to which important uncertainties identified in quantitative analyses from the last review have been addressed by newly available evidence, tools, or information. The purpose of the REA planning document is to present staff's considerations and preliminary conclusions regarding potential updated quantitative analyses in the current review of the primary NO2 NAAQS. Provide opportunity for CASAC feedback on EPA's plans for the risk and exposure assessment for the Nitrogen Oxides NAAQS review

  18. Acute effects of ambient air pollution on lower respiratory infections in Hanoi children: An eight-year time series study.

    PubMed

    Nhung, Nguyen Thi Trang; Schindler, Christian; Dien, Tran Minh; Probst-Hensch, Nicole; Perez, Laura; Künzli, Nino

    2018-01-01

    Lower respiratory diseases are the most frequent causes of hospital admission in children worldwide, particularly in developing countries. Daily levels of air pollution are associated with lower respiratory diseases, as documented in many time-series studies. However, investigations in low-and-middle-income countries, such as Vietnam, remain sparse. This study investigated the short-term association of ambient air pollution with daily counts of hospital admissions due to pneumonia, bronchitis and asthma among children aged 0-17 in Hanoi, Vietnam. We explored the impact of age, gender and season on these associations. Daily ambient air pollution concentrations and hospital admission counts were extracted from electronic databases received from authorities in Hanoi for the years 2007-2014. The associations between outdoor air pollution levels and hospital admissions were estimated for time lags of zero up to seven days using Quasi-Poisson regression models, adjusted for seasonal variations, meteorological variables, holidays, influenza epidemics and day of week. All ambient air pollutants were positively associated with pneumonia hospitalizations. Significant associations were found for most pollutants except for ozone and sulfur dioxide in children aged 0-17. Increments of an interquartile range (21.9μg/m 3 ) in the 7-day-average level of NO 2 were associated with a 6.1% (95%CI 2.5% to 9.8%) increase in pneumonia hospitalizations. These associations remained stable in two-pollutant models. All pollutants other than CO were positively associated with hospitalizations for bronchitis and asthma. Associations were stronger in infants than in children aged 1-5. Strong associations between hospital admissions for lower respiratory infections and daily levels of air pollution confirm the need to adopt sustainable clean air policies in Vietnam to protect children's health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    PubMed

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  20. Chapter 7: Impact of Nitrogen and Climate Change Interactions on Ambient Air Pollution and Human Health

    EPA Science Inventory

    Nitrogen oxides (NOX) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOX is also forme...

  1. Ambient air pollution, weather changes, and outpatient visits for allergic conjunctivitis: A retrospective registry study

    NASA Astrophysics Data System (ADS)

    Hong, Jiaxu; Zhong, Taoling; Li, Huili; Xu, Jianming; Ye, Xiaofang; Mu, Zhe; Lu, Yi; Mashaghi, Alireza; Zhou, Ying; Tan, Mengxi; Li, Qiyuan; Sun, Xinghuai; Liu, Zuguo; Xu, Jianjiang

    2016-04-01

    Allergic conjunctivitis is a common problem that significantly impairs patients’ quality of life. Whether air pollution serves as a risk factor for the development of allergic conjunctivitis remains elusive. In this paper, we assess the relationship between air pollutants and weather conditions with outpatient visits for allergic conjunctivitis. By using a time-series analysis based on the largest dataset ever assembled to date, we found that the number of outpatient visits for allergic conjunctivitis was significantly correlated with the levels of NO2, O3, and temperature, while its association with humidity was statistically marginal. No associations between PM10, PM2.5, SO2, or wind velocity and outpatient visits were seen. Subgroup analyses showed that sex seemed to modify the effects of humidity on outpatient visits for allergic conjunctivitis, but not for NO2, O3, or temperature. People younger than 40 were found to be susceptible to changes of all four parameters, while those older than 40 were only consistently affected by NO2 levels. Our findings revealed that higher levels of ambient NO2, O3, and temperature increase the chances of outpatient visits for allergic conjunctivitis. Ambient air pollution and weather changes may contribute to the worsening of allergic conjunctivitis.

  2. Ambient air pollution, weather changes, and outpatient visits for allergic conjunctivitis: A retrospective registry study.

    PubMed

    Hong, Jiaxu; Zhong, Taoling; Li, Huili; Xu, Jianming; Ye, Xiaofang; Mu, Zhe; Lu, Yi; Mashaghi, Alireza; Zhou, Ying; Tan, Mengxi; Li, Qiyuan; Sun, Xinghuai; Liu, Zuguo; Xu, Jianjiang

    2016-04-01

    Allergic conjunctivitis is a common problem that significantly impairs patients' quality of life. Whether air pollution serves as a risk factor for the development of allergic conjunctivitis remains elusive. In this paper, we assess the relationship between air pollutants and weather conditions with outpatient visits for allergic conjunctivitis. By using a time-series analysis based on the largest dataset ever assembled to date, we found that the number of outpatient visits for allergic conjunctivitis was significantly correlated with the levels of NO2, O3, and temperature, while its association with humidity was statistically marginal. No associations between PM10, PM2.5, SO2, or wind velocity and outpatient visits were seen. Subgroup analyses showed that sex seemed to modify the effects of humidity on outpatient visits for allergic conjunctivitis, but not for NO2, O3, or temperature. People younger than 40 were found to be susceptible to changes of all four parameters, while those older than 40 were only consistently affected by NO2 levels. Our findings revealed that higher levels of ambient NO2, O3, and temperature increase the chances of outpatient visits for allergic conjunctivitis. Ambient air pollution and weather changes may contribute to the worsening of allergic conjunctivitis.

  3. Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; Ortega, Amber M.; Fry, Juliane L.; Brown, Steven S.; Zarzana, Kyle J.; Dube, William; Wagner, Nicholas L.; Draper, Danielle C.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2017-04-01

    Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20-30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O3 and NO3 oxidation produced SOA with elemental O : C and H : C

  4. Secondary organic aerosol formation from in situ OH, O 3, and NO 3 oxidation of ambient forest air in an oxidation flow reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.

    Ambient pine forest air was oxidized by OH, O 3, or NO 3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics and Nitrogen – Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O 3 and NO 3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20–30 min, in order to determine how the availability of SOAmore » precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O 3 or NO 3 oxidation. This is likely because O 3 and NO 3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O 3 and NO 3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O 3 and NO 3 oxidation produced SOA with

  5. Secondary organic aerosol formation from in situ OH, O 3, and NO 3 oxidation of ambient forest air in an oxidation flow reactor

    DOE PAGES

    Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; ...

    2017-04-25

    Ambient pine forest air was oxidized by OH, O 3, or NO 3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics and Nitrogen – Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O 3 and NO 3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20–30 min, in order to determine how the availability of SOAmore » precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O 3 or NO 3 oxidation. This is likely because O 3 and NO 3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O 3 and NO 3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O 3 and NO 3 oxidation produced SOA with

  6. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data.

    PubMed

    Meng, Qing Yu; Turpin, Barbara J; Korn, Leo; Weisel, Clifford P; Morandi, Maria; Colome, Steven; Zhang, Junfeng Jim; Stock, Thomas; Spektor, Dalia; Winer, Arthur; Zhang, Lin; Lee, Jong Hoon; Giovanetti, Robert; Cui, William; Kwon, Jaymin; Alimokhtari, Shahnaz; Shendell, Derek; Jones, Jennifer; Farrar, Corice; Maberti, Silvia

    2005-01-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to investigate residential indoor, outdoor and personal exposures to several classes of air pollutants, including volatile organic compounds, carbonyls and fine particles (PM2.5). Samples were collected from summer, 1999 to spring, 2001 in Houston (TX), Los Angeles (CA) and Elizabeth (NJ). Indoor, outdoor and personal PM2.5 samples were collected at 212 nonsmoking residences, 162 of which were sampled twice. Some homes were chosen due to close proximity to ambient sources of one or more target analytes, while others were farther from sources. Median indoor, outdoor and personal PM2.5 mass concentrations for these three sites were 14.4, 15.5 and 31.4 microg/m3, respectively. The contributions of ambient (outdoor) and nonambient sources to indoor and personal concentrations were quantified using a single compartment box model with measured air exchange rate and a random component superposition (RCS) statistical model. The median contribution of ambient sources to indoor PM2.5 concentrations using the mass balance approach was estimated to be 56% for all study homes (63%, 52% and 33% for California, New Jersey and Texas study homes, respectively). Reasonable variations in model assumptions alter median ambient contributions by less than 20%. The mean of the distribution of ambient contributions across study homes agreed well for the mass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.

  7. The impact of ambient air pollution on suicide mortality: a case-crossover study in Guangzhou, China.

    PubMed

    Lin, Guo-Zhen; Li, Li; Song, Yun-Feng; Zhou, Ying-Xue; Shen, Shuang-Quan; Ou, Chun-Quan

    2016-08-30

    Preventing suicide is a global imperative. Although the effects of social and individual risk factors of suicide have been widely investigated, evidence of environmental effects of exposure to air pollution is scarce. We investigated the effects of ambient air pollution on suicide mortality in Guangzhou, China during 2003-2012. A conditional logistic regression analysis with a time-stratified case-crossover design was performed to assess the effects of daily exposure to three standard air pollutants, including particulate matter less than 10 μm in aerodynamic diameter (PM10), sulphur dioxide (SO2) and nitrogen dioxide (NO2), on suicide mortality, after adjusting for the confounding effects of daily mean temperature, relative humidity, atmospheric pressure and sunshine duration. Further analyses were stratified by season, gender, age group, educational attainment and suicide type. Between 2003 and 2012, there were a total of 1 550 registered suicide deaths in Guangzhou. A significant increase in suicide risk were associated with interquartile-range increases in the concentration of air pollutant, with an odds ratio of 1.13 (95 % confidence interval (CI): 1.01, 1.27) and 1.15 (95 % CI: 1.03, 1.28) for PM10 and NO2 at lag 02, and 1.12 (95 % CI: 1.02, 1.23) for SO2 at lag 01, respectively. The suicide risks related to air pollution for males and people with high education level were higher than for females and those with low education level, respectively. Significant air pollution effects were found on violent suicide mortality and in cool season but not on non-violent suicide mortality or in warm season. Suicide risk was positively associated with ambient air pollution levels. This finding would provide important information for the health impact assessment of air pollution and for the development of effective strategies and interventions for the prevention of suicide.

  8. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment.

    PubMed

    Chen, Changhong; Chen, Bingheng; Wang, Bingyan; Huang, Cheng; Zhao, Jing; Dai, Yi; Kan, Haidong

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  9. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-11-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  10. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-05-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  11. Adaptive Sampling for Urban Air Quality through Participatory Sensing

    PubMed Central

    Zeng, Yuanyuan; Xiang, Kai

    2017-01-01

    Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766

  12. Association between ambient air pollution and hospitalization for ischemic and hemorrhagic stroke in China: A multicity case-crossover study.

    PubMed

    Liu, Hui; Tian, Yaohua; Xu, Yan; Huang, Zhe; Huang, Chao; Hu, Yonghua; Zhang, Jun

    2017-11-01

    There is growing interest in the association between ambient air pollution and stroke, but few studies have investigated the association in developing countries. The primary objective of this study was to examine the association between levels of ambient air pollutants and hospital admission for stroke in China. A time-stratified case-crossover analysis was conducted between 2014 and 2015 in 14 large Chinese cities among 200,958 ischemic stroke and 41,746 hemorrhagic stroke hospitalizations. We used conditional logistic regression to estimate the percentage changes in stroke admissions in relation to interquartile range increases in air pollutants. Air pollution was positively associated with ischemic stroke. A difference of an interquartile range of the 6-day average for particulate matter less than 10 μm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone corresponded to 0.7% (95% CI: 0%, 1.4%), 1.6% (95% CI: 1.0%, 2.3%), 2.6% (95% CI: 1.8%, 3.5%), 0.5% (95% CI: -0.2%, 1.1%), and 1.3% (95% CI: 0.3%, 2.3%) increases in ischemic stroke admissions, respectively. For hemorrhagic stroke, we observed the only significant association in relation to nitrogen dioxide on the current day (percentage change: 1.6%; 95% CI: 0.3%, 2.9%). Our findings contribute to the limited scientific literature concerning the effect of ambient air pollution on stroke in developing countries. Our findings may have significant public health implications for primary prevention of stroke in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. PM2.5 Monitors in New England | Air Quality Planning Unit ...

    EPA Pesticide Factsheets

    2017-04-10

    The New England states are currently operating a network of 58 ambient PM2.5 air quality monitors that meet EPA's Federal Reference Method (FRM) for PM2.5, which is necessary in order for the resultant data to be used for attainment/non-attainment purposes. These monitors collect particles in the ambient air smaller than 2.5 microns in size on a filter, which is weighed prior and post sampling to produce a 24-hour sample concentration.

  14. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...

  15. Air Pollution Exposure Model for Individuals (EMI) in Health Studies: Evaluation for Ambient PM2.5

    EPA Science Inventory

    Health studies of fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates, which fail to account for indoor attenuation of ambient PM2.5 and time indoors. To address these limitations, we developed an air pollution exposure model for individuals (E...

  16. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  17. Proposed pathophysiologic framework to explain some excess cardiovascular death associated with ambient air particle pollution: Insights for public health translation.

    PubMed

    Cascio, Wayne E

    2016-12-01

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regulatory environmental protections to actions that can be taken by individuals, public health officials, healthcare professionals, city and regional planners, local and state governmental officials and all those who possess the capacity to improve cardiovascular health within the population. The foundation of the framework rests on the contribution of traditional cardiovascular risk factors acting alone and in concert with long-term exposures to air pollutants to create a conditional susceptibility for clinical vascular events, such as myocardial ischemia and infarction; stroke and lethal ventricular arrhythmias. The conceptual framework focuses on the fact that short-term exposures to ambient air particulate matter (PM) are associated with vascular thrombosis (acute coronary syndrome, stroke, deep venous thrombosis, and pulmonary embolism) and electrical dysfunction (ventricular arrhythmia); and that individuals having prevalent heart disease are at greatest risk. Moreover, exposure is concomitant with changes in autonomic nervous system balance, systemic inflammation, and prothrombotic/anti-thrombotic and profibrinolytic-antifibrinolytic balance. Thus, a comprehensive solution to the problem of premature mortality triggered by air pollutant exposure will require compliance with regulations to control ambient air particle pollution levels, minimize exposures to air pollutants, as well as a concerted effort to decrease the number of people at-risk for serious clinical cardiovascular events triggered by air pollutant exposure by improving the overall state of cardiovascular health in the population. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio

  18. Emissions of Volatile Organic Compounds from Oil and Gas Operations in Northeastern Oklahoma - Wintertime Ambient Air Studies from Three Consecutive Years

    NASA Astrophysics Data System (ADS)

    Ghosh, B.

    2017-12-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a variety of sources including oil and gas (O&G) operations, vehicle exhausts, industrial processes, and biogenic sources. Understanding of emission sources and their air quality impact is crucial for effective environmental policymaking and its implementation. Three consecutive wintertime campaigns to study ambient air were conducted in Northeastern Oklahoma during February-March of 2015, 2016, and 2017. The goals of these campaigns were to study ambient VOCs in the region, estimate their air quality impact, and understand how the impact changes over a span of three years. This presentation highlights results from the 2017 campaign. In-situ measurements of methane, ethane, and CO were conducted by an Aerodyne Dual QCL Analyzer while ozone and NOx were measured using Teledyne monitors. In addition, 392 whole air samples were collected and non-methane hydrocarbons (NMHCs) in the samples were analyzed using GC-MS (Agilent). High levels of methane (> 8 ppm) were observed during the study. Correlation with ethane indicated that methane primarily originated from O&G operations with little biogenic contributions. Among NMHCs, C2-C5 alkanes were the most dominant with mean mixing ratios ranging from 0.9 to 6.8 ppb. Chemical tracers (propane, ethyne, CO) and isomeric ratios (iC5/nC5, Figure 1) identified oil and gas activity as the primary source of NMHCs. Photochemical age was calculated to estimate emission source composition. Ozone showed strong diurnal variation characteristic of photochemical production with a maximum mixing ratio of 58 ppb. The results from the 2017 study will be compared with results from studies in 20151 and 20162 and their significance on local air quality will be discussed. References Ghosh, B.; Volatile Organic Compound Emissions from Oil and Gas Production Sources: A Pilot Study in Northeastern Oklahoma; Poster presentation at AGU Fall Meeting; 2015; A11M-0249; (Link) Ghosh

  19. Tabulations of ambient ozone data obtained by GASP (Global Air Sampling Program) airliners, March 1975 to July 1979

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Holdeman, J. D.

    1984-01-01

    Tabulations are given of GASP ambient ozone mean, standard deviation, median, 84th percentile, and 98th percentile values, by month, flight level, and geographical region. These data are tabulated to conform to the temporal and spatial resolution required by FAA Advisory Circular 120-38 (monthly by 2000 ft in altitude by 5 deg in latitude) for climatological data used to show compliance with cabin ozone regulations. In addition seasonal x 10 deg latitude tabulations are included which are directly comparable to and supersede the interim GASP ambient ozone tabulations given in appendix B of FAA-EE-80-43 (NASA TM-81528). Selected probability variations are highlighted to illustrate the spatial and temporal variability of ambient ozone and to compare results from the coarse and fine grid analyses.

  20. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    PubMed

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS). Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009. 414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model. At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at

  1. Energy requirements for CO2 capture from ambient air (DAC) competitive with capture from flue-gas (PCC)

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph

    2015-03-01

    Capture of CO2, whether from a flue gas source (PCC) or from distributed sources via ambient air (DAC), is a key enabling technology to provide carbon for sustainable synthetic energy carriers such as solar fuels. Based on thermodynamic minimum considerations, DAC is often expected to require about 3 times more energy (per ton CO2 captured) than PCC because CO2 in ambient air is more dilute. Here, we calculate the energy required for a humidity swing-based DAC installation that uses an anionic exchange resin as sorbent. The calculation uses recently measured equilibrium CO2 loadings of the sorbent as function of partial CO2 pressure, temperature, and humidity. We calculate the installation's electricity consumption to be about 45 kJ per mole of pure CO2 at 1 bar (scenario-dependent). Furthermore, we estimate the amount of heat provided by ambient air and thus provide context of the overall energy and entropy balance and thermodynamic minimum views. The electricity consumption is competitive with typical parasitic loads of PCC-equipped coal-fired power plants (40-50 kJ per mole at same pressure) and significantly lower than predicted for other DAC installations such as Na(OH) sorbent-based systems. Our analyses elucidate why DAC is not always more energy-intensive that PCC, thus alleviating often cited concerns of significant cost impediments. Financial support by ABB for research presented herein is gratefully acknowledged.

  2. Ambient VOC-Measurements by GC-PTR-TOF

    NASA Astrophysics Data System (ADS)

    Langebner, S.; Schnitzhofer, R.; Hasler, C.; Jocher, M.; Hansel, A.; Brilli, F.

    2011-12-01

    Authors: Stephan LANGEBNER, Federico BRILLI, Ralf SCHNITZHOFER, Christoph HASLER, Markus JOCHER, Armin HANSEL; During the past 16 years PTR MS (Proton Transfer Reaction Mass Spectrometry) became a well established technique for real time measurements of environmentally important volatile organic compounds (VOCs) [HANSEL 1995]. The recent development of PTR ToF [GRAUS 2010] increased the VOC separation capability by strongly improving the mass separation capability and the duty cycle. Now isobaric compounds can be separated and whole mass spectra are recorded within a fraction of a second. Isomeric VOCs, however, remain undistinguishable with this technique. Therefore a Thermo-Desorption-System-Gas-Chromatograph (TDS GC) with isomeric separation capabilities was coupled with a PTR ToF. The performance of this new GC PTR TOF instrument was evaluated analysing ambient air for several days. The measurement cycle started with simultaneous GC-sampling and direct PTR ToF measurements of ambient air. After the fifteen minute TDS cycle, the output of the GC column was directed to the PTR ToF and the timely separated VOC peaks were recorded for 40 minutes. We will present first results which look very promising e.g. different monoterpene isomers can be clearly distinguished at ambient levels.

  3. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.

    PubMed

    Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather

    2014-01-01

    In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.

  4. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis.

    PubMed

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy; Sørensen, Mette; Figueras, Francesc; Nieuwenhuijsen, Mark J; Raaschou-Nielsen, Ole; Dadvand, Payam

    2014-09-01

    Pregnancy-induced hypertensive disorders can lead to maternal and perinatal morbidity and mortality, but the cause of these conditions is not well understood. We have systematically reviewed and performed a meta-analysis of epidemiological studies investigating the association between exposure to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December 2009 and December 2013. Combined risk estimates were calculated using random-effect models for each exposure that had been examined in ≥4 studies. Heterogeneity and publication bias were evaluated. A total of 17 articles evaluating the impact of nitrogen oxides (NO2, NOX), particulate matter (PM10, PM2.5), carbon monoxide (CO), ozone (O3), proximity to major roads, and traffic density met our inclusion criteria. Most studies reported that air pollution increased risk for pregnancy-induced hypertensive disorders. There was significant heterogeneity in meta-analysis, which included 16 studies reporting on gestational hypertension and preeclampsia as separate or combined outcomes; there was less heterogeneity in findings of the 10 studies reporting solely on preeclampsia. Meta-analyses showed increased risks of hypertensive disorders in pregnancy for all pollutants except CO. Random-effect meta-analysis combined odds ratio associated with a 5-μg/m3 increase in PM2.5 was 1.57 (95% confidence interval, 1.26-1.96) for combined pregnancy-induced hypertensive disorders and 1.31 (95%confidence interval, 1.14-1.50) for preeclampsia [corrected]. Our results suggest that exposure to air pollution increases the risk of pregnancy-induced hypertensive disorders. © 2014 American Heart Association, Inc.

  5. Determination of carbonyl pollutants adsorbed on ambient particulate matter of type PM2.5 by using magnetic molecularly imprinted microspheres for sample pretreatment and capillary electrophoresis for separation and quantitation.

    PubMed

    Li, Yunling; Sun, Hui; Lai, Jiaping; Chang, Xiangyang; Zhang, Ping; Chen, Shili

    2018-01-19

    The authors describe a method for the determination of carbonyl pollutants adsorbed on ambient particulate matter (diameter < 2.5 μm; PM2.5). 2,4-Dinitrophenylhydrazine (DNPH) was used to derivatize carbonyl compounds. Magnetic molecularly imprinted polymers (MMIPs) selective for 2,4-DNPH were synthesized to remove excess of the derivatization reagent 2,4-DNPH. Micellar electrokinetic chromatography (MEKC) was then applied to the separation of DNPH-derivatized carbonyl compounds. The increased sensitivity of MEKC with UV detection and the sample cleanup resulted in drastically reduced sampling times (15 min) with detection limits ranging from 0.005-0.068 μg·m -3 for different carbonyls. The method was applied to continuous monitoring of carbonyl compounds on ambient PM 2.5 for two consecutive months. The concentrations and gas-to-particle ratios of carbonyls were determined, and a statistical method was used to evaluate the correlation among different carbonyls. It was observed that the total concentration of carbonyls, especially of multi-carbon carbonyls, increases with the level of air pollution. The level of isovaleraldehyde rises sharply and accounts for 37% of total carbonyls on days with extremely humid haze. The ratio of acetaldehyde to propionaldehyde (C2/C3) decreases with the duration and heaviness of haze conditions. Results indicate that anthropogenic emissions and the characteristics of the atmosphere (e.g. temperature, sunlight, and relative humidity) are the main factors that lead to abnormally high levels of isovaleraldehyde and other carbonyls in ambient PM 2.5. Graphical abstract Schematic of a method for the determination of carbonyl pollutants adsorbed on ambient fine particle of type PM2.5. Magnetic molecularly imprinted polymers (MMIPs) were synthesized to remove the excess derivatization reagent (2,4-DNPH) in air sample prior to CE separation.

  6. Quantifying regional consumption-based health impacts attributable to ambient air pollution in China.

    PubMed

    Zhang, Yanxia; Qu, Shen; Zhao, Jing; Zhu, Ge; Zhang, Yanxu; Lu, Xi; Sabel, Clive E; Wang, Haikun

    2018-03-01

    Serious air pollution has caused about one million premature deaths per year in China recently. Besides cross-border atmospheric transport of air pollution, trade also relocates pollution and related health impacts across China as a result of the spatial separation between consumption and production. This study proposes an approach for calculating the health impacts of emissions due to a region's consumption based on a multidisciplinary methodology coupling economic, atmospheric, and epidemiological models. These analyses were performed for China's Beijing and Hebei provinces. It was found that these provinces' consumption-based premature deaths attributable to ambient PM 2.5 were respectively 22,500 and 49,700, which were 23% higher and 37% lower than the numbers solely within their boundaries in 2007. The difference between the effects of trade and trade-related emissions on premature deaths attributable to air pollution in a region has also been clarified. The results illustrate the large and broad impact of domestic trade on regional air quality and the need for comprehensive consideration of supply chains in designing policy to mitigate the negative health impacts of air pollution across China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China.

    PubMed

    Ma, Yuxia; Zhao, Yuxin; Yang, Sixu; Zhou, Jianding; Xin, Jinyuan; Wang, Shigong; Yang, Dandan

    2017-11-01

    Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age <65 yrs and age ≥ 65 yrs) were also examined by single model and multiple-pollutant model. Three major pollutants (SO 2 , NO 2 and PM 10 ) had lag effects of 0-2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m 3 increase in PM 10 , SO 2 and NO 2 were 1.008 (0.997-1.020), 1.008(0.999-1.018) and 1.014(1.003-1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The association between ambient air pollution and selected adverse pregnancy outcomes in China: A systematic review.

    PubMed

    Jacobs, Milena; Zhang, Guicheng; Chen, Shu; Mullins, Ben; Bell, Michelle; Jin, Lan; Guo, Yuming; Huxley, Rachel; Pereira, Gavin

    2017-02-01

    The association between exposure to ambient air pollution and respiratory or cardiovascular endpoints is well-established. An increasing number of studies have shown that this exposure is also associated with adverse pregnancy outcomes. However, the majority of research has been undertaken in high-income western countries, with relatively lower levels of exposure. There is now a sufficient number of studies to warrant an assessment of effects in China, a relatively higher exposure setting. We conducted a systematic review of 25 studies examining the association between ambient air pollution exposure and adverse pregnancy outcomes (lower birth weight, preterm birth, mortality, and congenital anomaly) in China, published between 1980 and 2015. The results indicated that sulphur dioxide (SO 2 ) was more consistently associated with lower birth weight and preterm birth, and that coarse particulate matter (PM 10 ) was associated with congenital anomaly, notably cardiovascular defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A prospective cohort study on ambient air pollution and respiratory morbidities including childhood asthma in adolescents from the western Cape Province: study protocol.

    PubMed

    Olaniyan, Toyib; Jeebhay, Mohamed; Röösli, Martin; Naidoo, Rajen; Baatjies, Roslynn; Künzil, Nino; Tsai, Ming; Davey, Mark; de Hoogh, Kees; Berman, Dilys; Parker, Bhawoodien; Leaner, Joy; Dalvie, Mohamed Aqiel

    2017-09-16

    There is evidence from existing literature that ambient air pollutant exposure in early childhood likely plays an important role in asthma exacerbation and other respiratory symptoms, with greater effect among asthmatic children. However, there is inconclusive evidence on the role of ambient air pollutant exposures in relation to increasing asthma prevalence as well as asthma induction in children. At the population level, little is known about the potential synergistic effects between pollen allergens and air pollutants since this type of association poses challenges in uncontrolled real life settings. In particular, data from sub-Sahara Africa is scarce and virtually absent among populations residing in informal residential settlements. A prospective cohort study of 600 school children residing in four informal settlement areas with varying potential ambient air pollutant exposure levels in the Western Cape in South Africa is carried-out. The study has two follow-up periods of at least six-months apart including an embedded panel study in summer and winter. The exposure assessment component models temporal and spatial variability of air quality in the four study areas over the study duration using land-use regression modelling (LUR). Additionally, daily pollen levels (mould spores, tree, grass and weed pollen) in the study areas are recorded. In the panel study asthma symptoms and serial peak flow measurements is recorded three times daily to determine short-term serial airway changes in relation to varying ambient air quality and pollen over 10-days during winter and summer. The health outcome component of the cohort study include; the presence of asthma using a standardised ISAAC questionnaire, spirometry, fractional exhaled nitric-oxide (FeNO) and the presence of atopy (Phadiatop). This research applies state of the art exposure assessment approaches to characterize the effects of ambient air pollutants on childhood respiratory health, with a specific focus on

  10. Real-Time ambient carbon monoxide and ultrafine particle concentration mapping in a near-road environment

    EPA Science Inventory

    Ambient air quality has traditionally been monitored using a network of fixed point sampling sites that are strategically placed to represent regional (e.g., county or town) rather than local (e.g., neighborhood) air quality trends. This type of monitoring data has been used to m...

  11. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near

  12. Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties

    NASA Astrophysics Data System (ADS)

    Friberg, Mariel D.; Kahn, Ralph A.; Holmes, Heather A.; Chang, Howard H.; Sarnat, Stefanie Ebelt; Tolbert, Paige E.; Russell, Armistead G.; Mulholland, James A.

    2017-06-01

    Spatiotemporal characterization of ambient air pollutant concentrations is increasingly relying on the combination of observations and air quality models to provide well-constrained, spatially and temporally complete pollutant concentration fields. Air quality models, in particular, are attractive, as they characterize the emissions, meteorological, and physiochemical process linkages explicitly while providing continuous spatial structure. However, such modeling is computationally intensive and has biases. The limitations of spatially sparse and temporally incomplete observations can be overcome by blending the data with estimates from a physically and chemically coherent model, driven by emissions and meteorological inputs. We recently developed a data fusion method that blends ambient ground observations and chemical-transport-modeled (CTM) data to estimate daily, spatially resolved pollutant concentrations and associated correlations. In this study, we assess the ability of the data fusion method to produce daily metrics (i.e., 1-hr max, 8-hr max, and 24-hr average) of ambient air pollution that capture spatiotemporal air pollution trends for 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) across five metropolitan areas (Atlanta, Birmingham, Dallas, Pittsburgh, and St. Louis), from 2002 to 2008. Three sets of comparisons are performed: (1) the CTM concentrations are evaluated for each pollutant and metropolitan domain, (2) the data fusion concentrations are compared with the monitor data, (3) a comprehensive cross-validation analysis against observed data evaluates the quality of the data fusion model simulations across multiple metropolitan domains. The resulting daily spatial field estimates of air pollutant concentrations and uncertainties are not only consistent with observations, emissions, and meteorology, but substantially improve CTM-derived results for nearly all pollutants and all cities, with the exception of NO2 for

  13. Characterization of air temperature in modern ion chambers due to phantom geometry and ambient temperature changes.

    PubMed

    Saenz, Daniel L; Kirby, Neil; Gutiérrez, Alonso N

    2016-07-01

    Temperature and pressure corrections are necessary to account for the varying mass of air in the sensitive volume of a vented ionization chamber (IC) when performing absolute dose measurements. Locations commonly used to measure the presumed IC air temperature may not accurately represent the chamber cavity air temperature, and phantoms undergoing temperature changes further compound the problem. Prior studies have characterized thermal equilibrium in separate phantoms for Farmer chambers alone. However, the purpose of this study was to characterize the cavity air temperature dependence on changes in the ambient temperature and phantom geometry configuration for a wider and more modern variety of chambers to determine if previously published wait times apply to these chambers as well. Thermal conduction properties were experimentally investigated by modifying a PTW 0.3 cm(3) Semiflex IC with a thermocouple replacing the central electrode. Air cavity temperature versus time was recorded in three phantom geometries characteristic of common absolute dose measurements. The phantoms were (15 ± 1) °C before measurement with an IC at the treatment vault temperature of (21 ± 1) °C. Simulations were conducted to provide a theoretical basis for the measurements and to simulate temperature response of a PTW PinPoint® and Farmer chamber. The simulation methods were first validated by comparison with measured Semiflex chamber thermal response curves before extension to the other chambers. Two thermal equilibria curves were recorded on different time scales. IC temperature initially dropped to the colder phantom temperature but subsequently increased as the phantom itself equilibrated with the warmer room temperature. In a large phantom of dimensions (25.5 × 25.5 × 23.4) cm(3), 3 min was required before the IC temperature reached within 0.5 °C of its equilibrium within the phantom. Similarly, wait times of 2 min were needed for 7.5 and 2 cm slab phantoms. Recording

  14. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    PubMed

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  15. Occurrence of currently used pesticides in ambient air of Centre Region (France)

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Colin, Patrice; Yahyaoui, Abderrazak; Petrique, Olivier; Yusà, Vicent; Mellouki, Abdelwahid; Pastor, Agustin

    2010-10-01

    Ambient air samples were collected, from 2006 to 2008 at three rural and two urban sites in Centre Region (France) and analyzed for 56 currently used pesticides (CUPs), of which 41 were detected. The four CUPs most frequently detected were the herbicides trifluralin, acetochlor and pendimethalin and the fungicide chlorothalonil, which were found with frequencies ranging between 52 and 78%, and with average concentrations of 1.93, 1.32, 1.84 and 12.15 ng m -3, respectively. Among the detected pesticides, concentrations of eight fungicides (spiroxamine, fenpropimorph, cyprodinil, tolyfluanid, epoxiconazole, vinchlozolin, fluazinam, fludioxinil), two insecticides (propargite, ethoprophos), and one herbicide (oxyfluorfen) are, to our knowledge, reported for the first time in the literature. The majority of the CUPs showed a seasonal trend, with most of the detections and the highest concentrations occurring during the spring and early summer. The most important pesticides detected were related to arable crops and fruit orchards, the main cultures in this region, highlighting the fact that the main sources come from local applications. Minor differences were found in the profiles of pesticides within rural areas and between rural and urban areas.

  16. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    PubMed

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  17. A Comparison Study of Sampling and Analyzing Volatile Organic Compounds in Air in Kuwait by Using Tedlar Bags/Canisters and GC-MS with a Cryogenic Trap

    PubMed Central

    Tang, Hongmao; Beg, Khaliq R.; Al-Otaiba, Yousef

    2006-01-01

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results. PMID:16699723

  18. A comparison study of sampling and analyzing volatile organic compounds in air in Kuwait by using Tedlar bags/canisters and GC-MS with a cryogenic trap.

    PubMed

    Tang, Hongmao; Beg, Khaliq R; Al-Otaiba, Yousef

    2006-05-12

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results.

  19. Quantifying the contribution of ambient and indoor-generated fine particles to indoor air in residential environments.

    PubMed

    MacNeill, M; Kearney, J; Wallace, L; Gibson, M; Héroux, M E; Kuchta, J; Guernsey, J R; Wheeler, A J

    2014-08-01

    Indoor fine particles (FPs) are a combination of ambient particles that have infiltrated indoors, and particles that have been generated indoors from activities such as cooking. The objective of this paper was to estimate the infiltration factor (Finf ) and the ambient/non-ambient components of indoor FPs. To do this, continuous measurements were collected indoors and outdoors for seven consecutive days in 50 non-smoking homes in Halifax, Nova Scotia in both summer and winter using DustTrak (TSI Inc) photometers. Additionally, indoor and outdoor gravimetric measurements were made for each 24-h period in each home, using Harvard impactors (HI). A computerized algorithm was developed to remove (censor) peaks due to indoor sources. The censored indoor/outdoor ratio was then used to estimate daily Finfs and to determine the ambient and non-ambient components of total indoor concentrations. Finf estimates in Halifax (daily summer median = 0.80; daily winter median = 0.55) were higher than have been reported in other parts of Canada. In both winter and summer, the majority of FP was of ambient origin (daily winter median = 59%; daily summer median = 84%). Predictors of the non-ambient component included various cooking variables, combustion sources, relative humidity, and factors influencing ventilation. This work highlights the fact that regional factors can influence the contribution of ambient particles to indoor residential concentrations. Ambient and non-ambient particles have different risk management approaches, composition, and likely toxicity. Therefore, a better understanding of their contribution to the indoor environment is important to manage the health risks associated with fine particles (FPs) effectively. As well, a better understanding of the factors Finf can help improve exposure assessment and contribute to reduced exposure misclassification in epidemiologic studies. © 2013 Her Majesty the Queen in Right of Canada Indoor Air © 2013 John Wiley & Sons

  20. Maternal exposure to ambient air temperature during pregnancy and early childhood pneumonia.

    PubMed

    Miao, Yufeng; Shen, Yong-Ming; Lu, Chan; Zeng, Ji; Deng, Qihong

    2017-10-01

    Pneumonia has been widely recognized as the leading cause of death in children worldwide, but its etiology still remains unclear. We examined the association between maternal exposure to ambient air temperature during pregnancy and lifetime pneumonia in the offspring. We conducted a cohort study of 2598 preschool children aged 3-6 years in Changsha, China. The lifetime prevalence of pneumonia was assessed using questionnaire. We backwards estimated each child's exposure to air temperature during prenatal and postnatal periods. Multiple regression model was used to examine the association between childhood pneumonia and exposure to air temperature in terms of odd ratios (OR) and 95% confidence interval (CI). Prevalence of childhood pneumonia in Changsha was high up to 38.6%. We found that childhood pneumonia was significantly associated with prenatal exposure to air temperature, with adjusted OR (95% CI) = 1.77 (1.23-2.54) for an interquartile range (IQR) increase in temperature, particularly during the second trimester with adjusted OR (95% CI) = 2.26 (1.32-3.89). Boys are more susceptible to the risk of pneumonia due to air temperature than girls. We further observed that maternal exposure to extreme heat days during pregnancy increased the risk of pneumonia in the offspring. Maternal exposure to air temperature during pregnancy, particularly the second trimester, was associated with pneumonia in the children, providing the evidence for fetal origins of pneumonia. Copyright © 2017 Elsevier Ltd. All rights reserved.