NASA Astrophysics Data System (ADS)
Lugmayr, Artur
2006-02-01
The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.;
2017-01-01
NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.
NASA Astrophysics Data System (ADS)
Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.
2017-08-01
The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler-shifted spectrum constructed from the simulated test ion velocities excellently reproduces the experimental measurements, verifying that the observed ambient ion motion corresponds to collisionless coupling through the laminar electric field.
Computation of structural flexibility for bridge health monitoring using ambient modal data
DOT National Transportation Integrated Search
1996-01-01
The issues surrounding the use of ambient vibration modes for the location of structural damage via dynamically : measured flexibility are examined. Several methods for obtaining the required mass-normalized : dynamic mode shapes from ambient modal d...
Meeting People's Needs in a Fully Interoperable Domotic Environment
Miori, Vittorio; Russo, Dario; Concordia, Cesare
2012-01-01
The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes ‘invisible’, as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space. PMID:22969322
Meeting people's needs in a fully interoperable domotic environment.
Miori, Vittorio; Russo, Dario; Concordia, Cesare
2012-01-01
The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes 'invisible', as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space.
Cloud motion in relation to the ambient wind field
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Scoggins, J. R.
1975-01-01
Trajectories of convective clouds were computed from a mathematical model and compared with trajectories observed by radar. The ambient wind field was determined from the AVE IIP data. The model includes gradient, coriolis, drag, lift, and lateral forces. The results show that rotational effects may account for large differences between the computed and observed trajectories and that convective clouds may move 10 to 20 degrees to the right or left of the average wind vector and at speeds 5 to 10 m/sec faster or slower than the average ambient wind speed.
Ambient noise adjoint tomography for a linear array in North China
NASA Astrophysics Data System (ADS)
Zhang, C.; Yao, H.; Liu, Q.; Yuan, Y. O.; Zhang, P.; Feng, J.; Fang, L.
2017-12-01
Ambient noise tomography based on dispersion data and ray theory has been widely utilized for imaging crustal structures. In order to improve the inversion accuracy, ambient noise tomography based on the 3D adjoint approach or full waveform inversion has been developed recently, however, the computational cost is tremendous. In this study we present 2D ambient noise adjoint tomography for a linear array in north China with significant computational efficiency compared to 3D ambient noise adjoint tomography. During the preprocessing, we first convert the observed data in 3D media, i.e., surface-wave empirical Green's functions (EGFs) from ambient noise cross-correlation, to the reconstructed EGFs in 2D media using a 3D/2D transformation scheme. Different from the conventional steps of measuring phase dispersion, the 2D adjoint tomography refines 2D shear wave speeds along the profile directly from the reconstructed Rayleigh wave EGFs in the period band 6-35s. With the 2D initial model extracted from the 3D model from traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime misfits between the reconstructed EGFs and synthetic Green function (SGFs) in 2D media generated by the spectral-element method (SEM), with a preconditioned conjugate gradient method. The multitaper traveltime difference measurement is applied in four period bands during the inversion: 20-35s, 15-30s, 10-20s and 6-15s. The recovered model shows more detailed crustal structures with pronounced low velocity anomaly in the mid-lower crust beneath the junction of Taihang Mountains and Yin-Yan Mountains compared with the initial model. This low velocity structure may imply the possible intense crust-mantle interactions, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of the region. To our knowledge, it's first time that ambient noise adjoint tomography is implemented in 2D media. Considering the intensive computational cost and storage of 3D adjoint tomography, this 2D ambient noise adjoint tomography has potential advantages to get high-resolution 2D crustal structures with limited computational resource.
Stanford/NASA-Ames Center of Excellence in model-based human performance
NASA Technical Reports Server (NTRS)
Wandell, Brian A.
1990-01-01
The human operator plays a critical role in many aeronautic and astronautic missions. The Stanford/NASA-Ames Center of Excellence in Model-Based Human Performance (COE) was initiated in 1985 to further our understanding of the performance capabilities and performance limits of the human component of aeronautic and astronautic projects. Support from the COE is devoted to those areas of experimental and theoretical work designed to summarize and explain human performance by developing computable performance models. The ultimate goal is to make these computable models available to other scientists for use in design and evaluation of aeronautic and astronautic instrumentation. Within vision science, two topics have received particular attention. First, researchers did extensive work analyzing the human ability to recognize object color relatively independent of the spectral power distribution of the ambient lighting (color constancy). The COE has supported a number of research papers in this area, as well as the development of a substantial data base of surface reflectance functions, ambient illumination functions, and an associated software package for rendering and analyzing image data with respect to these spectral functions. Second, the COE supported new empirical studies on the problem of selecting colors for visual display equipment to enhance human performance in discrimination and recognition tasks.
Language/culture/mind/brain. Progress at the margins between disciplines.
Kuhl, P K; Tsao, F M; Liu, H M; Zhang, Y; De Boer, B
2001-05-01
At the forefront of research on language are new data demonstrating infants' strategies in the early acquisition of language. The data show that infants perceptually "map" critical aspects of ambient language in the first year of life before they can speak. Statistical and abstract properties of speech are picked up through exposure to ambient language. Moreover, linguistic experience alters infants' perception of speech, warping perception in a way that enhances native-language speech processing. Infants' strategies are unexpected and unpredicted by historical views. At the same time, research in three additional disciplines is contributing to our understanding of language and its acquisition by children. Cultural anthropologists are demonstrating the universality of adult speech behavior when addressing infants and children across cultures, and this is creating a new view of the role adult speakers play in bringing about language in the child. Neuroscientists, using the techniques of modern brain imaging, are revealing the temporal and structural aspects of language processing by the brain and suggesting new views of the critical period for language. Computer scientists, modeling the computational aspects of childrens' language acquisition, are meeting success using biologically inspired neural networks. Although a consilient view cannot yet be offered, the cross-disciplinary interaction now seen among scientists pursuing one of humans' greatest achievements, language, is quite promising.
A Cloud-Based Internet of Things Platform for Ambient Assisted Living
Cubo, Javier; Nieto, Adrián; Pimentel, Ernesto
2014-01-01
A common feature of ambient intelligence is that many objects are inter-connected and act in unison, which is also a challenge in the Internet of Things. There has been a shift in research towards integrating both concepts, considering the Internet of Things as representing the future of computing and communications. However, the efficient combination and management of heterogeneous things or devices in the ambient intelligence domain is still a tedious task, and it presents crucial challenges. Therefore, to appropriately manage the inter-connection of diverse devices in these systems requires: (1) specifying and efficiently implementing the devices (e.g., as services); (2) handling and verifying their heterogeneity and composition; and (3) standardizing and managing their data, so as to tackle large numbers of systems together, avoiding standalone applications on local servers. To overcome these challenges, this paper proposes a platform to manage the integration and behavior-aware orchestration of heterogeneous devices as services, stored and accessed via the cloud, with the following contributions: (i) we describe a lightweight model to specify the behavior of devices, to determine the order of the sequence of exchanged messages during the composition of devices; (ii) we define a common architecture using a service-oriented standard environment, to integrate heterogeneous devices by means of their interfaces, via a gateway, and to orchestrate them according to their behavior; (iii) we design a framework based on cloud computing technology, connecting the gateway in charge of acquiring the data from the devices with a cloud platform, to remotely access and monitor the data at run-time and react to emergency situations; and (iv) we implement and generate a novel cloud-based IoT platform of behavior-aware devices as services for ambient intelligence systems, validating the whole approach in real scenarios related to a specific ambient assisted living application. PMID:25093343
A cloud-based Internet of Things platform for ambient assisted living.
Cubo, Javier; Nieto, Adrián; Pimentel, Ernesto
2014-08-04
A common feature of ambient intelligence is that many objects are inter-connected and act in unison, which is also a challenge in the Internet of Things. There has been a shift in research towards integrating both concepts, considering the Internet of Things as representing the future of computing and communications. However, the efficient combination and management of heterogeneous things or devices in the ambient intelligence domain is still a tedious task, and it presents crucial challenges. Therefore, to appropriately manage the inter-connection of diverse devices in these systems requires: (1) specifying and efficiently implementing the devices (e.g., as services); (2) handling and verifying their heterogeneity and composition; and (3) standardizing and managing their data, so as to tackle large numbers of systems together, avoiding standalone applications on local servers. To overcome these challenges, this paper proposes a platform to manage the integration and behavior-aware orchestration of heterogeneous devices as services, stored and accessed via the cloud, with the following contributions: (i) we describe a lightweight model to specify the behavior of devices, to determine the order of the sequence of exchanged messages during the composition of devices; (ii) we define a common architecture using a service-oriented standard environment, to integrate heterogeneous devices by means of their interfaces, via a gateway, and to orchestrate them according to their behavior; (iii) we design a framework based on cloud computing technology, connecting the gateway in charge of acquiring the data from the devices with a cloud platform, to remotely access and monitor the data at run-time and react to emergency situations; and (iv) we implement and generate a novel cloud-based IoT platform of behavior-aware devices as services for ambient intelligence systems, validating the whole approach in real scenarios related to a specific ambient assisted living application.
Comparison of Highly Resolved Model-Based Exposure ...
Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low co
The Ambient and Perturbed Solar Wind: From the Sun to 1 AU
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1997-01-01
The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.
NASA Technical Reports Server (NTRS)
Oliver, Michael J.
2014-01-01
The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.
Characterizing and Optimizing the Performance of the MAESTRO 49-Core Processor
2014-03-27
process large volumes of data, it is necessary during testing to vary the dimensions of the inbound data matrix to determine what effect this has on the...needed that can process the extra data these systems seek to collect. However, the space environment presents a number of threats, such as ambient or...induced faults, and that also have sufficient computational power to handle the large flow of data they encounter. This research investigates one
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.
2013-06-01
Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.
Middleware Architecture for Ambient Intelligence in the Networked Home
NASA Astrophysics Data System (ADS)
Georgantas, Nikolaos; Issarny, Valerie; Mokhtar, Sonia Ben; Bromberg, Yerom-David; Bianco, Sebastien; Thomson, Graham; Raverdy, Pierre-Guillaume; Urbieta, Aitor; Cardoso, Roberto Speicys
With computing and communication capabilities now embedded in most physical objects of the surrounding environment and most users carrying wireless computing devices, the Ambient Intelligence (AmI) / pervasive computing vision [28] pioneered by Mark Weiser [32] is becoming a reality. Devices carried by nomadic users can seamlessly network with a variety of devices, both stationary and mobile, both nearby and remote, providing a wide range of functional capabilities, from base sensing and actuating to rich applications (e.g., smart spaces). This then allows the dynamic deployment of pervasive applications, which dynamically compose functional capabilities accessible in the pervasive network at the given time and place of an application request.
NASA Astrophysics Data System (ADS)
Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea
2010-12-01
Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.
Volumetric ambient occlusion for real-time rendering and games.
Szirmay-Kalos, L; Umenhoffer, T; Toth, B; Szecsi, L; Sbert, M
2010-01-01
This new algorithm, based on GPUs, can compute ambient occlusion to inexpensively approximate global-illumination effects in real-time systems and games. The first step in deriving this algorithm is to examine how ambient occlusion relates to the physically founded rendering equation. The correspondence stems from a fuzzy membership function that defines what constitutes nearby occlusions. The next step is to develop a method to calculate ambient occlusion in real time without precomputation. The algorithm is based on a novel interpretation of ambient occlusion that measures the relative volume of the visible part of the surface's tangent sphere. The new formula's integrand has low variation and thus can be estimated accurately with a few samples.
Pignolo, L; Riganello, F; Dolce, G; Sannita, W G
2013-04-01
Ambient Intelligence (AmI) provides extended but unobtrusive sensing and computing devices and ubiquitous networking for human/environment interaction. It is a new paradigm in information technology compliant with the international Integrating Healthcare Enterprise board (IHE) and eHealth HL7 technological standards in the functional integration of biomedical domotics and informatics in hospital and home care. AmI allows real-time automatic recording of biological/medical information and environmental data. It is extensively applicable to patient monitoring, medicine and neuroscience research, which require large biomedical data sets; for example, in the study of spontaneous or condition-dependent variability or chronobiology. In this respect, AML is equivalent to a traditional laboratory for data collection and processing, with minimal dedicated equipment, staff, and costs; it benefits from the integration of artificial intelligence technology with traditional/innovative sensors to monitor clinical or functional parameters. A prototype AmI platform (MIMERICA*) has been implemented and is operated in a semi-intensive unit for the vegetative and minimally conscious states, to investigate the spontaneous or environment-related fluctuations of physiological parameters in these conditions.
Seismic signal processing on heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Fichtner, Andreas
2015-04-01
The processing of seismic signals - including the correlation of massive ambient noise data sets - represents an important part of a wide range of seismological applications. It is characterized by large data volumes as well as high computational input/output intensity. Development of efficient approaches towards seismic signal processing on emerging high performance computing systems is therefore essential. Heterogeneous supercomputing systems introduced in the recent years provide numerous computing nodes interconnected via high throughput networks, every node containing a mix of processing elements of different architectures, like several sequential processor cores and one or a few graphical processing units (GPU) serving as accelerators. A typical representative of such computing systems is "Piz Daint", a supercomputer of the Cray XC 30 family operated by the Swiss National Supercomputing Center (CSCS), which we used in this research. Heterogeneous supercomputers provide an opportunity for manifold application performance increase and are more energy-efficient, however they have much higher hardware complexity and are therefore much more difficult to program. The programming effort may be substantially reduced by the introduction of modular libraries of software components that can be reused for a wide class of seismology applications. The ultimate goal of this research is design of a prototype for such library suitable for implementing various seismic signal processing applications on heterogeneous systems. As a representative use case we have chosen an ambient noise correlation application. Ambient noise interferometry has developed into one of the most powerful tools to image and monitor the Earth's interior. Future applications will require the extraction of increasingly small details from noise recordings. To meet this demand, more advanced correlation techniques combined with very large data volumes are needed. This poses new computational problems that require dedicated HPC solutions. The chosen application is using a wide range of common signal processing methods, which include various IIR filter designs, amplitude and phase correlation, computing the analytic signal, and discrete Fourier transforms. Furthermore, various processing methods specific for seismology, like rotation of seismic traces, are used. Efficient implementation of all these methods on the GPU-accelerated systems represents several challenges. In particular, it requires a careful distribution of work between the sequential processors and accelerators. Furthermore, since the application is designed to process very large volumes of data, special attention had to be paid to the efficient use of the available memory and networking hardware resources in order to reduce intensity of data input and output. In our contribution we will explain the software architecture as well as principal engineering decisions used to address these challenges. We will also describe the programming model based on C++ and CUDA that we used to develop the software. Finally, we will demonstrate performance improvements achieved by using the heterogeneous computing architecture. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID d26.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1992-01-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Astrophysics Data System (ADS)
Hoadley, A. W.; Porter, A. J.
1992-07-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Assessing Model Characterization of Single Source ...
Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci
. To assess the ambient concentration levels of the six criteria air pollutants regulated by National Ambient Air Quality Standards (NAAQS), the U.S. Environmental Protection Agency (EPA) developed a systematic framework of: (a) field measurements of ambient air pollutant levels ...
'Designing Ambient Interactions - Pervasive Ergonomic Interfaces for Ageing Well' (DAI'10)
NASA Astrophysics Data System (ADS)
Geven, Arjan; Prost, Sebastian; Tscheligi, Manfred; Soldatos, John; Gonzalez, Mari Feli
The workshop will focus on novel computer based interaction mechanisms and interfaces, which boost natural interactivity and obviate the need for conventional tedious interfaces. Such interfaces are increasingly used in ambient intelligence environments and related applications, including application boosting elderly cognitive support, cognitive rehabilitation and Ambient Assisted Living (AAL). The aim of the workshop is to provide insights on the technological underpinnings of such interfaces, along with tools and techniques for their design and evaluation.
Computer-Assisted Visual Search/Decision Aids as a Training Tool for Mammography
1999-07-01
display of a digital mammogram that compensates for the display brightness, the ambient light and the useful range of pixel intensities in the image...described here extends the work of Liu and Nodine (7) to include adjusting the gray-scale transform for ambient illumination and adjusting the mammogram...visible" disk in each band. The observer’s responses are affected by the display contrast and the ambient room lighting. The contrast of each indicated
Ambient Assisted Living spaces validation by services and devices simulation.
Fernández-Llatas, Carlos; Mocholí, Juan Bautista; Sala, Pilar; Naranjo, Juan Carlos; Pileggi, Salvatore F; Guillén, Sergio; Traver, Vicente
2011-01-01
The design of Ambient Assisted Living (AAL) products is a very demanding challenge. AAL products creation is a complex iterative process which must accomplish exhaustive prerequisites about accessibility and usability. In this process the early detection of errors is crucial to create cost-effective systems. Computer-assisted tools can suppose a vital help to usability designers in order to avoid design errors. Specifically computer simulation of products in AAL environments can be used in all the design phases to support the validation. In this paper, a computer simulation tool for supporting usability designers in the creation of innovative AAL products is presented. This application will benefit their work saving time and improving the final system functionality.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
NASA Astrophysics Data System (ADS)
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-01
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Amelie: A Recombinant Computing Framework for Ambient Awareness
NASA Astrophysics Data System (ADS)
Metaxas, Georgios; Markopoulos, Panos; Aarts, Emile
This paper presents Amelie, a service oriented framework that supports the implementation of awareness systems. Amelie adopts the tenets of Recombinant computing to address an important non-functional requirement for Ambient Intelligence software, namely the heterogeneous combination of services and components. Amelie is founded upon FN-AAR an abstract model of Awareness Systems which enables the immediate expression and implementation of socially salient requirements, such as symmetry and social translucence. We discuss the framework and show how system behaviours can be specified using the Awareness Mark-up Language AML.
ERIC Educational Resources Information Center
Stokes, Stephanie F.; Surendran, Dinoj
2005-01-01
The notion of a universal pattern of phonological development, rooted in basic physiological constraints, is controversial, with some researchers arguing for a strong environmental (ambient language) influence on phonological development or an interaction of both physiological constraints and ambient language effects. This research examines the…
Computer Modeling of a Rotating Detonation Engine in a Rocket Configuration
2015-03-01
than the ambient pressure P0, the nozzle was fully supersonic . If the calculated pressure P9 after the normal shock was less than the ambient...18 Gas Properties...66 vii Nomenclature Variable Definition 3∗ Entrance to RDE 4 RDE exit 8 Nozzle 9 Nozzle exit A Area a Speed of
Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L.; Moya, Jose M.; Risco-Martín, José L.
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time. PMID:23112621
Ubiquitous green computing techniques for high demand applications in Smart environments.
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Rayleigh wave ellipticity across the Iberian Peninsula and Morocco
NASA Astrophysics Data System (ADS)
Gómez García, Clara; Villaseñor, Antonio
2015-04-01
Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared to inversions based on phase velocities alone.
Ambient belonging: how stereotypical cues impact gender participation in computer science.
Cheryan, Sapna; Plaut, Victoria C; Davies, Paul G; Steele, Claude M
2009-12-01
People can make decisions to join a group based solely on exposure to that group's physical environment. Four studies demonstrate that the gender difference in interest in computer science is influenced by exposure to environments associated with computer scientists. In Study 1, simply changing the objects in a computer science classroom from those considered stereotypical of computer science (e.g., Star Trek poster, video games) to objects not considered stereotypical of computer science (e.g., nature poster, phone books) was sufficient to boost female undergraduates' interest in computer science to the level of their male peers. Further investigation revealed that the stereotypical broadcast a masculine stereotype that discouraged women's sense of ambient belonging and subsequent interest in the environment (Studies 2, 3, and 4) but had no similar effect on men (Studies 3, 4). This masculine stereotype prevented women's interest from developing even in environments entirely populated by other women (Study 2). Objects can thus come to broadcast stereotypes of a group, which in turn can deter people who do not identify with these stereotypes from joining that group.
Time-of-flight camera via a single-pixel correlation image sensor
NASA Astrophysics Data System (ADS)
Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua
2018-04-01
A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.
Lee, Chia-Cheng; Jhang, Yuna; Chen, Li-mei; Relyea, George; Oller, D. Kimbrough
2016-01-01
Prior research on ambient-language effects in babbling has often suggested infants produce language-specific phonological features within the first year. These results have been questioned in research failing to find such effects and challenging the positive findings on methodological grounds. We studied English- and Chinese-learning infants at 8, 10, and 12 months and found listeners could not detect ambient-language effects in the vast majority of infant utterances, but only in items deemed to be words or to contain canonical syllables that may have made them sound like words with language-specific shapes. Thus, the present research suggests the earliest ambient-language effects may be found in emerging lexical items or in utterances influenced by language-specific features of lexical items. Even the ambient-language effects for infant canonical syllables and words were very small compared with ambient-language effects for meaningless but phonotactically well-formed syllable sequences spoken by adult native speakers of English and Chinese. PMID:28496393
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi
2014-03-27
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.
Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi
2014-01-01
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile. PMID:24681671
Validation of the solar heating and cooling high speed performance (HISPER) computer code
NASA Technical Reports Server (NTRS)
Wallace, D. B.
1980-01-01
Developed to give a quick and accurate predictions HISPER, a simplification of the TRNSYS program, achieves its computational speed by not simulating detailed system operations or performing detailed load computations. In order to validate the HISPER computer for air systems the simulation was compared to the actual performance of an operational test site. Solar insolation, ambient temperature, water usage rate, and water main temperatures from the data tapes for an office building in Huntsville, Alabama were used as input. The HISPER program was found to predict the heating loads and solar fraction of the loads with errors of less than ten percent. Good correlation was found on both a seasonal basis and a monthly basis. Several parameters (such as infiltration rate and the outside ambient temperature above which heating is not required) were found to require careful selection for accurate simulation.
Big data, smart homes and ambient assisted living.
Vimarlund, V; Wass, S
2014-08-15
To discuss how current research in the area of smart homes and ambient assisted living will be influenced by the use of big data. A scoping review of literature published in scientific journals and conference proceedings was performed, focusing on smart homes, ambient assisted living and big data over the years 2011-2014. The health and social care market has lagged behind other markets when it comes to the introduction of innovative IT solutions and the market faces a number of challenges as the use of big data will increase. First, there is a need for a sustainable and trustful information chain where the needed information can be transferred from all producers to all consumers in a structured way. Second, there is a need for big data strategies and policies to manage the new situation where information is handled and transferred independently of the place of the expertise. Finally, there is a possibility to develop new and innovative business models for a market that supports cloud computing, social media, crowdsourcing etc. The interdisciplinary area of big data, smart homes and ambient assisted living is no longer only of interest for IT developers, it is also of interest for decision makers as customers make more informed choices among today's services. In the future it will be of importance to make information usable for managers and improve decision making, tailor smart home services based on big data, develop new business models, increase competition and identify policies to ensure privacy, security and liability.
REVIEW ARTICLE: Sensor communication technology towards ambient intelligence
NASA Astrophysics Data System (ADS)
Delsing, J.; Lindgren, P.
2005-04-01
This paper is a review of the fascinating development of sensors and the communication of sensor data. A brief historical introduction is given, followed by a discussion on architectures for sensor networks. Further, realistic specifications on sensor devices suitable for ambient intelligence and ubiquitous computing are given. Based on these specifications, the status and current frontline development are discussed. In total, it is shown that future technology for ambient intelligence based on sensor and actuator devices using standardized Internet communication is within the range of possibilities within five years.
Meeting the challenges--the role of medical informatics in an ageing society.
Koch, Sabine
2006-01-01
The objective of this paper is to identify trends and new technological developments that appear due to an ageing society and to relate them to current research in the field of medical informatics. A survey of the current literature reveals that recent technological advances have been made in the fields of "telecare and home-monitoring", "smart homes and robotics" and "health information systems and knowledge management". Innovative technologies such as wearable devices, bio- and environmental sensors and mobile, humanoid robots do already exist and ambient assistant living environments are being created for an ageing society. However, those technologies have to be adapted to older people's self-care processes and coping strategies, and to support new ways of healthcare delivery. Medical informatics can support this process by providing the necessary information infrastructure, contribute to standardisation, interoperability and security issues and provide modelling and simulation techniques for educational purposes. Research fields of increasing importance with regard to an ageing society are, moreover, the fields of knowledge management, ubiquitous computing and human-computer interaction.
Aural-Nondetectability Model Predictions for Night-Vision Goggles across Ambient Lighting Conditions
2015-12-01
ARL-TR-7564 ● DEC 2015 US Army Research Laboratory Aural-Nondetectability Model Predictions for Night -Vision Goggles across...ARL-TR-7564 ● DEC 2015 US Army Research Laboratory Aural-Nondetectability Model Predictions for Night -Vision Goggles across Ambient...May 2015–30 Sep 2015 4. TITLE AND SUBTITLE Aural-Nondetectability Model Predictions for Night -Vision Goggles across Ambient Lighting Conditions 5a
NASA Astrophysics Data System (ADS)
Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.
2016-10-01
The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.
Ambient and laboratory evaluation of a low-cost particulate matter sensor.
Kelly, K E; Whitaker, J; Petty, A; Widmer, C; Dybwad, A; Sleeth, D; Martin, R; Butterfield, A
2017-02-01
Low-cost, light-scattering-based particulate matter (PM) sensors are becoming more widely available and are being increasingly deployed in ambient and indoor environments because of their low cost and ability to provide high spatial and temporal resolution PM information. Researchers have begun to evaluate some of these sensors under laboratory and environmental conditions. In this study, a low-cost, particulate matter sensor (Plantower PMS 1003/3003) used by a community air-quality network is evaluated in a controlled wind-tunnel environment and in the ambient environment during several winter-time, cold-pool events that are associated with high ambient levels of PM. In the wind-tunnel, the PMS sensor performance is compared to two research-grade, light-scattering instruments, and in the ambient tests, the sensor performance is compared to two federal equivalent (one tapered element oscillating microbalance and one beta attenuation monitor) and gravimetric federal reference methods (FEMs/FRMs) as well as one research-grade instrument (GRIMM). The PMS sensor response correlates well with research-grade instruments in the wind-tunnel tests, and its response is linear over the concentration range tested (200-850 μg/m 3 ). In the ambient tests, this PM sensor correlates better with gravimetric methods than previous studies with correlation coefficients of 0.88. However additional measurements under a variety of ambient conditions are needed. Although the PMS sensor correlated as well as the research-grade instrument to the FRM/FEMs in ambient conditions, its response varies with particle properties to a much greater degree than the research-grade instrument. In addition, the PMS sensors overestimate ambient PM concentrations and begin to exhibit a non-linear response when PM 2.5 concentrations exceed 40 μg/m 3 . These results have important implications for communicating results from low-cost sensor networks, and they highlight the importance of using an appropriate correction factor for the target environmental conditions if the user wants to compare the results to FEM/FRMs. Copyright © 2016 Elsevier Ltd. All rights reserved.
ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS
ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...
ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS
ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS.
Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *South...
Validation of Model Forecasts of the Ambient Solar Wind
NASA Technical Reports Server (NTRS)
Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.
2009-01-01
Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.
Computer Graphic Design Using Auto-CAD and Plug Nozzle Research
NASA Technical Reports Server (NTRS)
Rogers, Rayna C.
2004-01-01
The purpose of creating computer generated images varies widely. They can be use for computational fluid dynamics (CFD), or as a blueprint for designing parts. The schematic that I will be working on the summer will be used to create nozzles that are a part of a larger system. At this phase in the project, the nozzles needed for the systems have been fabricated. One part of my mission is to create both three dimensional and two dimensional models on Auto-CAD 2002 of the nozzles. The research on plug nozzles will allow me to have a better understanding of how they assist in the thrust need for a missile to take off. NASA and the United States military are working together to develop a new design concept. On most missiles a convergent-divergent nozzle is used to create thrust. However, the two are looking into different concepts for the nozzle. The standard convergent-divergent nozzle forces a mixture of combustible fluids and air through a smaller area in comparison to where the combination was mixed. Once it passes through the smaller area known as A8 it comes out the end of the nozzle which is larger the first or area A9. This creates enough thrust for the mechanism whether it is an F-18 fighter jet or a missile. The A9 section of the convergent-divergent nozzle has a mechanism that controls how large A9 can be. This is needed because the pressure of the air coming out nozzle must be equal to that of the ambient pressure other wise there will be a loss of performance in the machine. The plug nozzle however does not need to have an A9 that can vary. When the air flow comes out it can automatically sense what the ambient pressure is and will adjust accordingly. The objective of this design is to create a plug nozzle that is not as complicated mechanically as it counterpart the convergent-divergent nozzle.
Designing for Persuasion: Toward Ambient Eco-Visualization for Awareness
NASA Astrophysics Data System (ADS)
Kim, Tanyoung; Hong, Hwajung; Magerko, Brian
When people are aware of their lifestyle's ecological consequences, they are more likely to adjust their behavior to reduce their impact. Persuasive design that provides feedback to users without interfering with their primary tasks can increases the awareness of neighboring problems. As a case study of design for persuasion, we designed two ambient displays as desktop widgets. Both represent a users' computer usage time, but in different visual styles. In this paper, we present the results of a comparative study of two ambient displays. We discuss the gradual progress of persuasion supported by the ambient displays and the differences in users' perception affected by the different visualization styles. Finally, Our empirical findings lead to a series of design implications for persuasive media.
Haux, Reinhold; Hein, Andreas; Kolb, Gerald; Künemund, Harald; Eichelberg, Marco
2014-01-01
This Special Issue of Informatics for Health and Social Care is presenting outcomes of the Lower Saxony Research Network Design of Environments for Ageing (abbreviated as GAL), probably one of the largest inter- and multidisciplinary research projects on aging and technology. In order to investigate and provide answers on whether new information and communication technologies can contribute to keeping, or even improving quality of life, health and self-sufficiency in ageing societies through new ways of living and new forms of care, GAL had been established as a five-year research project, running from 2008 to 2013. Ambient-assisted living technologies in personal and home environments were especially important. During the five years of research in GAL, more than seventy researchers from computer science, economics, engineering, geriatrics, gerontology, informatics, medicine, nursing science and rehabilitation pedagogy intensively collaborated in finding answers.
Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...
Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions
Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng
2015-01-01
Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant 13C diamond via composite pulses and an optimized control method. PMID:26602456
Human factors with nonhumans - Factors that affect computer-task performance
NASA Technical Reports Server (NTRS)
Washburn, David A.
1992-01-01
There are two general strategies that may be employed for 'doing human factors research with nonhuman animals'. First, one may use the methods of traditional human factors investigations to examine the nonhuman animal-to-machine interface. Alternatively, one might use performance by nonhuman animals as a surrogate for or model of performance by a human operator. Each of these approaches is illustrated with data in the present review. Chronic ambient noise was found to have a significant but inconsequential effect on computer-task performance by rhesus monkeys (Macaca mulatta). Additional data supported the generality of findings such as these to humans, showing that rhesus monkeys are appropriate models of human psychomotor performance. It is argued that ultimately the interface between comparative psychology and technology will depend on the coordinated use of both strategies of investigation.
Security architecture for health grid using ambient intelligence.
Naqvi, S; Riguidel, M; Demeure, I
2005-01-01
To propose a novel approach of incorporating ambient intelligence in the health grid security architecture. Security concerns are severely impeding the grid community effort in spreading its wings in health applications. In this paper, we have proposed a high level approach to incorporate ambient intelligence for health grid security architecture and have argued that this will significantly improve the current state of the grid security paradigm with an enhanced user-friendly environment. We believe that the time is right to shift the onus of traditional security mechanisms onto the new technologies. The incorporation of ambient intelligence in the security architecture of a grid will not only render a security paradigm robust but also provide an attractive vision for the future of computing by bringing the two worlds together. In this article we propose an evolutionary approach of utilizing smart devices for grid security architecture. We argue that such an infrastructure will impart unique features to the existing grid security paradigms by offering fortified and relentless monitoring. This new security architecture will be comprehensive in nature but will not be cumbersome for the users due to its typical characteristics of not prying into their lives and adapting to their needs. We have identified a new paradigm of the security architecture for a health grid that will not only render a security mechanism robust but will also provide the high levels of user-friendliness. As our approach is a first contribution to this problem, a number of other issues for future research remain open. However, the prospects are fascinating.
Big Data, Smart Homes and Ambient Assisted Living
Wass, S.
2014-01-01
Summary Objectives To discuss how current research in the area of smart homes and ambient assisted living will be influenced by the use of big data. Methods A scoping review of literature published in scientific journals and conference proceedings was performed, focusing on smart homes, ambient assisted living and big data over the years 2011-2014. Results The health and social care market has lagged behind other markets when it comes to the introduction of innovative IT solutions and the market faces a number of challenges as the use of big data will increase. First, there is a need for a sustainable and trustful information chain where the needed information can be transferred from all producers to all consumers in a structured way. Second, there is a need for big data strategies and policies to manage the new situation where information is handled and transferred independently of the place of the expertise. Finally, there is a possibility to develop new and innovative business models for a market that supports cloud computing, social media, crowdsourcing etc. Conclusions The interdisciplinary area of big data, smart homes and ambient assisted living is no longer only of interest for IT developers, it is also of interest for decision makers as customers make more informed choices among today’s services. In the future it will be of importance to make information usable for managers and improve decision making, tailor smart home services based on big data, develop new business models, increase competition and identify policies to ensure privacy, security and liability. PMID:25123734
Vaporization of irradiated droplets
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; O'Rourke, P. J.; Zardecki, A.
1986-11-01
The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid-gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (``CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous-fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian-Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor.
NASA Astrophysics Data System (ADS)
Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.
2009-05-01
Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral ratio.
Ambient Volatility of Triethyl Phosphate
2017-08-01
AMBIENT VOLATILITY OF TRIETHYL PHOSPHATE ECBC-TR-1476 James H. Buchanan John J. Mahle RESEARCH AND...TECHNOLOGY DIRECTORATE David E. Tevault JOINT RESEARCH AND DEVELOPMENT, INC. Belcamp, MD 21017-1552 August 2017 Approved for public release...21010-5424 Joint Research and Development, Inc.; 4694 Millennium Drive, Suite 105, Belcamp, MD 21017-1552 8. PERFORMING ORGANIZATION REPORT
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua
2018-01-01
We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.
Shading of a computer-generated hologram by zone plate modulation.
Kurihara, Takayuki; Takaki, Yasuhiro
2012-02-13
We propose a hologram calculation technique that enables reconstructing a shaded three-dimensional (3D) image. The amplitude distributions of zone plates, which generate the object points that constitute a 3D object, were two-dimensionally modulated. Two-dimensional (2D) amplitude modulation was determined on the basis of the Phong reflection model developed for computer graphics, which considers the specular, diffuse, and ambient reflection light components. The 2D amplitude modulation added variable and constant modulations: the former controlled the specular light component and the latter controlled the diffuse and ambient components. The proposed calculation technique was experimentally verified. The reconstructed image showed specular reflection that varied depending on the viewing position.
1981-01-15
system is attacted to the delivery aircraft until it Impacto a target, it is exposed to electromagnetic radiation from emitters aboard the delivery...homogeneous, isotropic, ambient medium may be a lossy dielectric. Antenna computations include cur- rent distribution, input impedance, radiation...permissible ambient interference level in the system, and when determining the expected signal-to-inter- ference ratio of the signal transmission circuits
Estimation of equivalence ratio distribution in diesel spray using a computational fluid dynamics
NASA Astrophysics Data System (ADS)
Suzuki, Yasumasa; Tsujimura, Taku; Kusaka, Jin
2014-08-01
It is important to understand the mechanism of mixing and atomization of the diesel spray. In addition, the computational prediction of mixing behavior and internal structure of a diesel spray is expected to promote the further understanding about a diesel spray and development of the diesel engine including devices for fuel injection. In this study, we predicted the formation of diesel fuel spray with 3D-CFD code and validated the application by comparing experimental results of the fuel spray behavior and the equivalence ratio visualized by Layleigh-scatter imaging under some ambient, injection and fuel conditions. Using the applicable constants of KH-RT model, we can predict the liquid length spray on a quantitative level. under various fuel injection, ambient and fuel conditions. On the other hand, the change of the vapor penetration and the fuel mass fraction and equivalence ratio distribution with change of fuel injection and ambient conditions quantitatively. The 3D-CFD code used in this study predicts the spray cone angle and entrainment of ambient gas are predicted excessively, therefore there is the possibility of the improvement in the prediction accuracy by the refinement of fuel droplets breakup and evaporation model and the quantitative prediction of spray cone angle.
Research on strategy marine noise map based on i4ocean platform: Constructing flow and key approach
NASA Astrophysics Data System (ADS)
Huang, Baoxiang; Chen, Ge; Han, Yong
2016-02-01
Noise level in a marine environment has raised extensive concern in the scientific community. The research is carried out on i4Ocean platform following the process of ocean noise model integrating, noise data extracting, processing, visualizing, and interpreting, ocean noise map constructing and publishing. For the convenience of numerical computation, based on the characteristics of ocean noise field, a hybrid model related to spatial locations is suggested in the propagation model. The normal mode method K/I model is used for far field and ray method CANARY model is used for near field. Visualizing marine ambient noise data is critical to understanding and predicting marine noise for relevant decision making. Marine noise map can be constructed on virtual ocean scene. The systematic marine noise visualization framework includes preprocessing, coordinate transformation interpolation, and rendering. The simulation of ocean noise depends on realistic surface. Then the dynamic water simulation gird was improved with GPU fusion to achieve seamless combination with the visualization result of ocean noise. At the same time, the profile and spherical visualization include space, and time dimensionality were also provided for the vertical field characteristics of ocean ambient noise. Finally, marine noise map can be published with grid pre-processing and multistage cache technology to better serve the public.
High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays
NASA Astrophysics Data System (ADS)
Ivey, Christopher; Bravo, Luis; Kim, Dokyun
2014-11-01
A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.
Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.
Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan
2014-09-12
At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Ambient intercomparison of direct and indirect methods for ambient nitrogen dioxide
AbstractRecent advances in measurement techniques for nitrogen dioxide (NO2), along with known interferences in the current Federal Reference Method (FRM) have created the need for NO2 measurement method research within EPA’s Office of Research and Development. Current meth...
Learning Group Formation Based on Learner Profile and Context
ERIC Educational Resources Information Center
Muehlenbrock, Martin
2006-01-01
An important but often neglected aspect in Computer-Supported Collaborative Learning (CSCL) is the formation of learning groups. Until recently, most support for group formation was based on learner profile information. In addition, the perspective of ubiquitous computing and ambient intelligence allows for a wider perspective on group formation,…
Temperature prediction of space flight experiments by computer thermal analysis
NASA Technical Reports Server (NTRS)
Birdsong, M. B.; Luttges, M. W.
1994-01-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commerical-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
Temperature prediction of space flight experiments by computer thermal analysis.
Birdsong, M B; Luttges, M W
1995-02-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commercial-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
NASA Astrophysics Data System (ADS)
Ireland, Gareth; Petropoulos, George P.; Carlson, Toby N.; Purdy, Sarah
2015-04-01
Sensitivity analysis (SA) consists of an integral and important validatory check of a computer simulation model before it is used to perform any kind of analysis. In the present work, we present the results from a SA performed on the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model utilising a cutting edge and robust Global Sensitivity Analysis (GSA) approach, based on the use of the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) tool. The sensitivity of the following model outputs was evaluated: the ambient CO2 concentration and the rate of CO2 uptake by the plant, the ambient O3 concentration, the flux of O3 from the air to the plant/soil boundary, and the flux of O3 taken up by the plant alone. The most sensitive model inputs for the majority of model outputs were related to the structural properties of vegetation, namely, the Leaf Area Index, Fractional Vegetation Cover, Cuticle Resistance and Vegetation Height. External CO2 in the leaf and the O3 concentration in the air input parameters also exhibited significant influence on model outputs. This work presents a very important step towards an all-inclusive evaluation of SimSphere. Indeed, results from this study contribute decisively towards establishing its capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of this model worldwide, which also includes research conducted by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale. This research was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO". SimSphere is currently maintained and freely distributed by the Department of Geography and Earth Sciences at Aberystwyth University (http://www.aber.ac.uk/simsphere). Keywords: CO2 flux, ambient CO2, O3 flux, SimSphere, Gaussian process emulators, BACCO GEM-SA, TRANSFORM-EO.
Ambient Field Analysis at Groningen Gas Field
NASA Astrophysics Data System (ADS)
Spica, Z.; Nakata, N.; Beroza, G. C.
2016-12-01
We analyze continuous ambient-field data at Groningen gas field (Netherlands) through cross-correlation processing. The Groningen array is composed of 75 shallow boreholes with 6 km spacing, which contain a 3C surface accelerometer and four 5-Hz 3C borehole geophones spaced at 50 m depth intervals. We successfully retrieve coherent waves from ambient seismic field on the 9 components between stations. Results show high SNR signal in the frequency range of 0.125-1 Hz, and the ZZ, ZR, RZ, RR and TT components show much stronger wave energy than other components as expected. This poster discuss the different type of waves retrieved, the utility of the combination of borehole and surface observations, future development as well as the importance to compute the 9 components of the Green's tensor to better understand the wave field propriety with ambient noise.
Hydrostatic temperature calculations. [in synoptic meteorology
NASA Technical Reports Server (NTRS)
Raymond, William H.
1987-01-01
Comparisons are made between hydrostatically computed temperatures and ambient temperatures associated with nine different data sources, including analyses, forecasts and conventional observations. Five-day averages and the day-to-day variations in the root-mean-square temperature differences are presented. Several different numerical and interpolation procedures are examined. Error correction and a constrained optimum procedure that minimizes ambient minus calculated hydrostatic temperature differences are introduced. Systematic differences between ambient and hydrostatic temperatures are found to be associated with the sinoptic situation. When compared with ambient temperatures, hydrostatic temperatures at 500 mb tend to be too warm at or in front of a trough and too cold behind the trough. In the vertical direction, for the eight-level configuration tested, the average hydrostatic temperatures are too cold at low levels (850, 700 mb) and too warm at upper levels, (300, 250 mb).
Air pollution epidemiologic research has often utilized ambient air concentrations measured from centrally located monitors as a surrogate measure of exposure to these pollutants. Associations between these ambient concentrations and health outcomes such as lung function, hospita...
WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY
AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...
Ambient occlusion effects for combined volumes and tubular geometry.
Schott, Mathias; Martin, Tobias; Grosset, A V Pascal; Smith, Sean T; Hansen, Charles D
2013-06-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.
Ambient Occlusion Effects for Combined Volumes and Tubular Geometry
Schott, Mathias; Martin, Tobias; Grosset, A.V. Pascal; Smith, Sean T.; Hansen, Charles D.
2013-01-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed. PMID:23559506
Technology review: prototyping platforms for monitoring ambient conditions.
Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis
2018-05-08
The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.
Ni, Qin; Patterson, Timothy; Cleland, Ian; Nugent, Chris
2016-08-01
Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Ambient Ionization Mass Spectrometry for Cancer Diagnosis and Surgical Margin Evaluation
Ifa, Demian R.; Eberlin, Livia S.
2017-01-01
Background There is a clinical need for new technologies that would enable rapid disease diagnosis based on diagnostic molecular signatures. Ambient ionization mass spectrometry has revolutionized the means by which molecular information can be obtained from tissue samples in real time and with minimal sample pretreatment. New developments in ambient ionization techniques applied to clinical research suggest that ambient ionization mass spectrometry will soon become a routine medical tool for tissue diagnosis. Content This review summarizes the main developments in ambient ionization techniques applied to tissue analysis, with focus on desorption electrospray ionization mass spectrometry, probe electrospray ionization, touch spray, and rapid evaporative ionization mass spectrometry. We describe their applications to human cancer research and surgical margin evaluation, highlighting integrated approaches tested for ex vivo and in vivo human cancer tissue analysis. We also discuss the challenges for clinical implementation of these tools and offer perspectives on the future of the field. Summary A variety of studies have showcased the value of ambient ionization mass spectrometry for rapid and accurate cancer diagnosis. Small molecules have been identified as potential diagnostic biomarkers, including metabolites, fatty acids, and glycerophospholipids. Statistical analysis allows tissue discrimination with high accuracy rates (>95%) being common. This young field has challenges to overcome before it is ready to be broadly accepted as a medical tool for cancer diagnosis. Growing research in new, integrated ambient ionization mass spectrometry technologies and the ongoing improvements in the existing tools make this field very promising for future translation into the clinic. PMID:26555455
2007-11-28
order to optimize pilot performance in the JSF tactical maneuvering environment • Binaural Capture and Synthesis of Ambient Soundscapes –Create a...technique for capturing and replicating ambient soundscapes , and use the technique to statistically model ambient soundscapes for a wide range of...Actuator (HTCA) • Binaural Capture and Synthesis of Ambient Soundscapes • High Temperature PM Actuator Motor • Manufacturing of New Active Noise
The DFKI Competence Center for Ambient Assisted Living
NASA Astrophysics Data System (ADS)
Frey, Jochen; Stahl, Christoph; Röfer, Thomas; Krieg-Brückner, Bernd; Alexandersson, Jan
The DFKI Competence Center for Ambient Assisted Living (CCAAL) is a cross-project and cross-department virtual organization within the German Research Center for Artificial Intelligence coordinating and conducting research and development in the area of Ambient Assisted Living (AAL). Our demonstrators range from multimodal speech dialog systems to fully instrumented environments allowing the development of intelligent assistant systems, for instance an autonomous wheelchair, or the recognition and processing of everyday activities in a smart home. These innovative technologies are then tested, evaluated and demonstrated in DFKI's living labs.
Health-Enabling and Ambient Assistive Technologies: Past, Present, Future.
Haux, R; Koch, S; Lovell, N H; Marschollek, M; Nakashima, N; Wolf, K-H
2016-06-30
During the last decades, health-enabling and ambient assistive technologies became of considerable relevance for new informatics-based forms of diagnosis, prevention, and therapy. To describe the state of the art of health-enabling and ambient assistive technologies in 1992 and today, and its evolution over the last 25 years as well as to project where the field is expected to be in the next 25 years. In the context of this review, we define health-enabling and ambient assistive technologies as ambiently used sensor-based information and communication technologies, aiming at contributing to a person's health and health care as well as to her or his quality of life. Systematic review of all original articles with research focus in all volumes of the IMIA Yearbook of Medical Informatics. Surveying authors independently on key projects and visions as well as on their lessons learned in the context of health-enabling and ambient assistive technologies and summarizing their answers. Surveying authors independently on their expectations for the future and summarizing their answers. IMIA Yearbook papers containing statements on health-enabling and ambient assistive technologies appear first in 2002. These papers form a minor part of published research articles in medical informatics. However, during recent years the number of articles published has increased significantly. Key projects were identified. There was a clear progress on the use of technologies. However proof of diagnostic relevance and therapeutic efficacy remains still limited. Reforming health care processes and focussing more on patient needs are required. Health-enabling and ambient assistive technologies remain an important field for future health care and for interdisciplinary research. More and more publications assume that a person's home and their interaction therein, are becoming important components in health care provision, assessment, and management.
Health-Enabling and Ambient Assistive Technologies: Past, Present, Future
2016-01-01
Summary Background During the last decades, health-enabling and ambient assistive technologies became of considerable relevance for new informatics-based forms of diagnosis, prevention, and therapy. Objectives To describe the state of the art of health-enabling and ambient assistive technologies in 1992 and today, and its evolution over the last 25 years as well as to project where the field is expected to be in the next 25 years. In the context of this review, we define health-enabling and ambient assistive technologies as ambiently used sensor-based information and communication technologies, aiming at contributing to a person’s health and health care as well as to her or his quality of life. Methods Systematic review of all original articles with research focus in all volumes of the IMIA Yearbook of Medical Informatics. Surveying authors independently on key projects and visions as well as on their lessons learned in the context of health-enabling and ambient assistive technologies and summarizing their answers. Surveying authors independently on their expectations for the future and summarizing their answers. Results IMIA Yearbook papers containing statements on health-enabling and ambient assistive technologies appear first in 2002. These papers form a minor part of published research articles in medical informatics. However, during recent years the number of articles published has increased significantly. Key projects were identified. There was a clear progress on the use of technologies. However proof of diagnostic relevance and therapeutic efficacy remains still limited. Reforming health care processes and focussing more on patient needs are required. Conclusions Health-enabling and ambient assistive technologies remain an important field for future health care and for interdisciplinary research. More and more publications assume that a person‘s home and their interaction therein, are becoming important components in health care provision, assessment, and management. PMID:27362588
In-Flight Pitot-Static Calibration
NASA Technical Reports Server (NTRS)
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
2015-01-27
placed on the user by the required tasks. Design areas that are of concern include seating , input and output device location and design , ambient...software, hardware, and workspace design for the test function of operability that influence operator performance in a computer-based system. 15...PRESENTATION ................... 23 APPENDIX A. SAMPLE DESIGN CHECKLISTS ...................................... A-1 B. SAMPLE TASK CHECKLISTS
1991-09-30
Tool (ASSET) COMPUTER SCIENCE Vicki Sue Abel VIEWER - A User Interface for Failure 49 Lieutenant Commander, U.S. Navy Region Analysis and Medio Monti...California Current System using a Primitive Equation Model Charles C. McGlothin, Jr. Ambient Sound in the Ocean Induced by 257 Lieutenant, U.S. Navy Heavy...parameters,, and ambient flow/oscillating flow combinations using VAX-3520 and NASA’s Supercomputers. Extensive sensitivity analysis has been performed
Impact of AMS-02 Measurements on Reducing GCR Model Uncertainties
NASA Technical Reports Server (NTRS)
Slaba, T. C.; O'Neill, P. M.; Golge, S.; Norbury, J. W.
2015-01-01
For vehicle design, shield optimization, mission planning, and astronaut risk assessment, the exposure from galactic cosmic rays (GCR) poses a significant and complex problem both in low Earth orbit and in deep space. To address this problem, various computational tools have been developed to quantify the exposure and risk in a wide range of scenarios. Generally, the tool used to describe the ambient GCR environment provides the input into subsequent computational tools and is therefore a critical component of end-to-end procedures. Over the past few years, several researchers have independently and very carefully compared some of the widely used GCR models to more rigorously characterize model differences and quantify uncertainties. All of the GCR models studied rely heavily on calibrating to available near-Earth measurements of GCR particle energy spectra, typically over restricted energy regions and short time periods. In this work, we first review recent sensitivity studies quantifying the ions and energies in the ambient GCR environment of greatest importance to exposure quantities behind shielding. Currently available measurements used to calibrate and validate GCR models are also summarized within this context. It is shown that the AMS-II measurements will fill a critically important gap in the measurement database. The emergence of AMS-II measurements also provides a unique opportunity to validate existing models against measurements that were not used to calibrate free parameters in the empirical descriptions. Discussion is given regarding rigorous approaches to implement the independent validation efforts, followed by recalibration of empirical parameters.
The use of ambient audio to increase safety and immersion in location-based games
NASA Astrophysics Data System (ADS)
Kurczak, John Jason
The purpose of this thesis is to propose an alternative type of interface for mobile software being used while walking or running. Our work addresses the problem of visual user interfaces for mobile software be- ing potentially unsafe for pedestrians, and not being very immersive when used for location-based games. In addition, location-based games and applications can be dif- ficult to develop when directly interfacing with the sensors used to track the user's location. These problems need to be addressed because portable computing devices are be- coming a popular tool for navigation, playing games, and accessing the internet while walking. This poses a safety problem for mobile users, who may be paying too much attention to their device to notice and react to hazards in their environment. The difficulty of developing location-based games and other location-aware applications may significantly hinder the prevalence of applications that explore new interaction techniques for ubiquitous computing. We created the TREC toolkit to address the issues with tracking sensors while developing location-based games and applications. We have developed functional location-based applications with TREC to demonstrate the amount of work that can be saved by using this toolkit. In order to have a safer and more immersive alternative to visual interfaces, we have developed ambient audio interfaces for use with mobile applications. Ambient audio uses continuous streams of sound over headphones to present information to mobile users without distracting them from walking safely. In order to test the effectiveness of ambient audio, we ran a study to compare ambient audio with handheld visual interfaces in a location-based game. We compared players' ability to safely navigate the environment, their sense of immersion in the game, and their performance at the in-game tasks. We found that ambient audio was able to significantly increase players' safety and sense of immersion compared to a visual interface, while players performed signifi- cantly better at the game tasks when using the visual interface. This makes ambient audio a legitimate alternative to visual interfaces for mobile users when safety and immersion are a priority.
Ionization-chamber smoke detector system
Roe, Robert F.
1976-10-19
This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.
In this analysis, ambient concentrations and personal exposures to PM2.5, O3, and NO2, air exchange rates, meteorological parameters, and questionnaire survey responses collected during the Detroit Exposure and Aerosol Research Study (DEARS) are used: 1) to evaluate different met...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
Towards pervasive computing in health care - a literature review.
Orwat, Carsten; Graefe, Andreas; Faulwasser, Timm
2008-06-19
The evolving concepts of pervasive computing, ubiquitous computing and ambient intelligence are increasingly influencing health care and medicine. Summarizing published research, this literature review provides an overview of recent developments and implementations of pervasive computing systems in health care. It also highlights some of the experiences reported in deployment processes. There is no clear definition of pervasive computing in the current literature. Thus specific inclusion criteria for selecting articles about relevant systems were developed. Searches were conducted in four scientific databases alongside manual journal searches for the period of 2002 to 2006. Articles included present prototypes, case studies and pilot studies, clinical trials and systems that are already in routine use. The searches identified 69 articles describing 67 different systems. In a quantitative analysis, these systems were categorized into project status, health care settings, user groups, improvement aims, and systems features (i.e., component types, data gathering, data transmission, systems functions). The focus is on the types of systems implemented, their frequency of occurrence and their characteristics. Qualitative analyses were performed of deployment issues, such as organizational and personnel issues, privacy and security issues, and financial issues. This paper provides a comprehensive access to the literature of the emerging field by addressing specific topics of application settings, systems features, and deployment experiences. Both an overview and an analysis of the literature on a broad and heterogeneous range of systems are provided. Most systems are described in their prototype stages. Deployment issues, such as implications on organization or personnel, privacy concerns, or financial issues are mentioned rarely, though their solution is regarded as decisive in transferring promising systems to a stage of regular operation. There is a need for further research on the deployment of pervasive computing systems, including clinical studies, economic and social analyses, user studies, etc.
Ambient-Light-Canceling Camera Using Subtraction of Frames
NASA Technical Reports Server (NTRS)
Morookian, John Michael
2004-01-01
The ambient-light-canceling camera (ALCC) is a proposed near-infrared electronic camera that would utilize a combination of (1) synchronized illumination during alternate frame periods and (2) subtraction of readouts from consecutive frames to obtain images without a background component of ambient light. The ALCC is intended especially for use in tracking the motion of an eye by the pupil center corneal reflection (PCCR) method. Eye tracking by the PCCR method has shown potential for application in human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological deficiencies. In the PCCR method, an eye is illuminated by near-infrared light from a lightemitting diode (LED). Some of the infrared light is reflected from the surface of the cornea. Some of the infrared light enters the eye through the pupil and is reflected from back of the eye out through the pupil a phenomenon commonly observed as the red-eye effect in flash photography. An electronic camera is oriented to image the user's eye. The output of the camera is digitized and processed by algorithms that locate the two reflections. Then from the locations of the centers of the two reflections, the direction of gaze is computed. As described thus far, the PCCR method is susceptible to errors caused by reflections of ambient light. Although a near-infrared band-pass optical filter can be used to discriminate against ambient light, some sources of ambient light have enough in-band power to compete with the LED signal. The mode of operation of the ALCC would complement or supplant spectral filtering by providing more nearly complete cancellation of the effect of ambient light. In the operation of the ALCC, a near-infrared LED would be pulsed on during one camera frame period and off during the next frame period. Thus, the scene would be illuminated by both the LED (signal) light and the ambient (background) light during one frame period, and would be illuminated with only ambient (background) light during the next frame period. The camera output would be digitized and sent to a computer, wherein the pixel values of the background-only frame would be subtracted from the pixel values of the signal-plus-background frame to obtain signal-only pixel values (see figure). To prevent artifacts of motion from entering the images, it would be necessary to acquire image data at a rate greater than the standard video rate of 30 frames per second. For this purpose, the ALCC would exploit a novel control technique developed at NASA s Jet Propulsion Laboratory for advanced charge-coupled-device (CCD) cameras. This technique provides for readout from a subwindow [region of interest (ROI)] within the image frame. Because the desired reflections from the eye would typically occupy a small fraction of the area within the image frame, the ROI capability would make it possible to acquire and subtract pixel values at rates of several hundred frames per second considerably greater than the standard video rate and sufficient to both (1) suppress motion artifacts and (2) track the motion of the eye between consecutive subtractive frame pairs.
The Research Triangle Park (RTP) Particulate Matter (PM) Panel Study represented a one-year investigation of personal, residential and ambient PM mass concentrations across distances as large as 70 km in central North Carolina. One of the primary goals of this effort was to est...
Kosta, Eleni; Pitkänen, Olli; Niemelä, Marketta; Kaasinen, Eija
2010-06-01
Ambient Intelligence provides the potential for vast and varied applications, bringing with it both promise and peril. The development of Ambient Intelligence applications poses a number of ethical and legal concerns. Mobile devices are increasingly evolving into tools to orientate in and interact with the environment, thus introducing a user-centric approach to Ambient Intelligence. The MINAmI (Micro-Nano integrated platform for transverse Ambient Intelligence applications) FP6 research project aims at creating core technologies for mobile device based Ambient Intelligence services. In this paper we assess five scenarios that demonstrate forthcoming MINAmI-based applications focusing on healthcare, assistive technology, homecare, and everyday life in general. A legal and ethical analysis of the scenarios is conducted, which reveals various conflicting interests. The paper concludes with some thoughts on drafting ethical guidelines for Ambient Intelligence applications.
Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities.
Ambrožič, K; Žerovnik, G; Snoj, L
2017-12-01
The JSI TRIGA Mark II, IJS research reactor is equipped with numerous irradiation positions, where samples can be irradiated by neutrons and γ-rays. Irradiation position selection is based on its properties, such as physical size and accessibility, as well as neutron and γ-ray spectra, flux and dose intensities. This paper presents an overview on the neutron and γ-ray fluxes, spectra and dose intensities calculations using Monte Carlo MCNP software and ENDF/B-VII.0 nuclear data libraries. The dose-rates are presented in terms of ambient dose equivalents, air kerma, and silicon dose equivalent. At full reactor power the neutron ambient dose equivalent ranges from 5.5×10 3 Svh -1 to 6×10 6 Svh -1 , silicon dose equivalent from 6×10 2 Gy/h si to 3×10 5 Gy/h si , and neutron air kerma from 4.3×10 3 Gyh -1 to 2×10 5 Gyh -1 . Ratio of fast (1MeV
Beyond the Channel: A Literature Review on Ambient Displays for Learning
ERIC Educational Resources Information Center
Borner, Dirk; Kalz, Marco; Specht, Marcus
2013-01-01
The review analyses work in the research field of ambient display with a focus on the use of such displays for situational awareness, feedback and learning. The purpose of the review is to assess the state-of-the-art of the use of ambient displays with an explicit or implicit learning purpose and the possible classification of respective…
Ambient Temperature and Morbidity: A Review of Epidemiological Evidence
Ye, Xiaofang; Wolff, Rodney; Yu, Weiwei; Vaneckova, Pavla; Pan, Xiaochuan
2011-01-01
Objective: In this paper, we review the epidemiological evidence on the relationship between ambient temperature and morbidity. We assessed the methodological issues in previous studies and proposed future research directions. Data sources and data extraction: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of noncommunicable diseases published in refereed English journals before 30 June 2010. Forty relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heat wave on morbidity, and 1 assessed both temperature and heat wave effects. Data synthesis: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of nonlinear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared with that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded or modified by sociodemographic factors and air pollution. Conclusions: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable. PMID:21824855
Wan, Yue; Yang, Hongwei; Masui, Toshihiko
2005-01-01
At the present time, ambient air pollution is a serious public health problem in China. Based on the concentration-response relationship provided by international and domestic epidemiologic studies, the authors estimated the mortality and morbidity induced by the ambient air pollution of 2000. To address the mechanism of the health impact on the national economy, the authors applied a computable general equilibrium (CGE) model, named AIM/Material China, containing 39 production sectors and 32 commodities. AIM/Material analyzes changes of the gross domestic product (GDP), final demand, and production activity originating from health damages. If ambient air quality met Grade II of China's air quality standard in 2000, then the avoidable GDP loss would be 0.38%o of the national total, of which 95% was led by labor loss. Comparatively, medical expenditure had less impact on national economy, which is explained from the aspect of the final demand by commodities and the production activities by sectors. The authors conclude that the CGE model is a suitable tool for assessing health impacts from a point of view of national economy through the discussion about its applicability.
Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower
NASA Astrophysics Data System (ADS)
Lee, Hyunsub; Son, Gihun
2017-11-01
Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.
Mehl, Matthias R.; Robbins, Megan L.; Deters, Fenne große
2012-01-01
This article introduces a novel, observational ambulatory monitoring method called the Electronically Activated Recorder or EAR. The EAR is a digital audio recorder that runs on a handheld computer and periodically and unobtrusively records snippets of ambient sounds from participants’ momentary environments. In tracking moment-to-moment ambient sounds, it yields acoustic logs of people’s days as they naturally unfold. In sampling only a fraction of the time, it protects participants’ privacy and makes large observational studies feasible. As a naturalistic observation method, it provides an observer’s account of daily life and is optimized for the objective assessment of audible aspects of social environments, behaviors, and interactions (e.g., habitual preferences for social settings, idiosyncratic interaction styles, and subtle emotional expressions). The article discusses the EAR method conceptually and methodologically, reviews prior research with it, and identifies three concrete ways in which it can enrich psychosomatic research. Specifically, it can (a) calibrate psychosocial effects on health against frequencies of real-world behavior, (b) provide ecological, observational measures of health-related social processes that are independent of self-report, and (c) help with the assessment of subtle and habitual social behaviors that evade self-report but have important health implications. An important avenue for future research lies in merging traditional, self-report based ambulatory monitoring methods with observational approaches such as the EAR to allow for the simultaneous yet methodologically independent assessment of inner, experiential (e.g., loneliness) and outer, observable aspects (e.g., social isolation) of real-world social processes to reveal their unique effects on health. PMID:22582338
Mehl, Matthias R; Robbins, Megan L; Deters, Fenne Große
2012-05-01
This article introduces a novel observational ambulatory monitoring method called the electronically activated recorder (EAR). The EAR is a digital audio recorder that runs on a handheld computer and periodically and unobtrusively records snippets of ambient sounds from participants' momentary environments. In tracking moment-to-moment ambient sounds, it yields acoustic logs of people's days as they naturally unfold. In sampling only a fraction of the time, it protects participants' privacy and makes large observational studies feasible. As a naturalistic observation method, it provides an observer's account of daily life and is optimized for the objective assessment of audible aspects of social environments, behaviors, and interactions (e.g., habitual preferences for social settings, idiosyncratic interaction styles, subtle emotional expressions). This article discusses the EAR method conceptually and methodologically, reviews prior research with it, and identifies three concrete ways in which it can enrich psychosomatic research. Specifically, it can (a) calibrate psychosocial effects on health against frequencies of real-world behavior; (b) provide ecological observational measures of health-related social processes that are independent of self-report; and (c) help with the assessment of subtle and habitual social behaviors that evade self-report but have important health implications. An important avenue for future research lies in merging traditional self-report-based ambulatory monitoring methods with observational approaches such as the EAR to allow for the simultaneous yet methodologically independent assessment of inner, experiential aspects (e.g., loneliness) and outer, observable aspects (e.g., social isolation) of real-world social processes to reveal their unique effects on health.
2013-01-01
Much is known about the immediate and predictive antecedents of smoking lapse, which include situations (e.g., presence of other smokers), activities (e.g., alcohol consumption), and contexts (e.g., outside). This commentary suggests smartphone-based systems could be used to infer these predictive antecedents in real time and provide the smoker with just-in-time intervention. The smartphone of today is equipped with an array of sensors, including GPS, cameras, light sensors, barometers, accelerometers, and so forth, that provide information regarding physical location, human movement, ambient sounds, and visual imagery. We propose that libraries of algorithms to infer these antecedents can be developed and then incorporated into diverse mobile research and personalized treatment applications. While a number of challenges to the development and implementation of such applications are recognized, our field benefits from a database of known antecedents to a problem behavior, and further research and development in this exciting area are warranted. PMID:23703731
McClernon, F Joseph; Roy Choudhury, Romit
2013-10-01
Much is known about the immediate and predictive antecedents of smoking lapse, which include situations (e.g., presence of other smokers), activities (e.g., alcohol consumption), and contexts (e.g., outside). This commentary suggests smartphone-based systems could be used to infer these predictive antecedents in real time and provide the smoker with just-in-time intervention. The smartphone of today is equipped with an array of sensors, including GPS, cameras, light sensors, barometers, accelerometers, and so forth, that provide information regarding physical location, human movement, ambient sounds, and visual imagery. We propose that libraries of algorithms to infer these antecedents can be developed and then incorporated into diverse mobile research and personalized treatment applications. While a number of challenges to the development and implementation of such applications are recognized, our field benefits from a database of known antecedents to a problem behavior, and further research and development in this exciting area are warranted.
NASA Astrophysics Data System (ADS)
Sánchez-Sesma, Francisco J.; Piña, José; García-Jerez, Antonio; Luzón, Francisco; Perton, Mathieu
2014-05-01
The microtremor H/V spectral ratio (MHVSR) is widely used to assess the dominant frequency of soil sites. Measurements are relatively simple as only one station is needed. It has been recently proposed a theoretical basis linking ambient noise vibrations with diffuse field theory. In this theory the directional energy density computed as the average spectral density of motion at a point, is proportional to the imaginary part of Green function at the observation point. Appropriate normalization is crucial to make the experimental spectral ratios closer to the theoretical counterpart. According to this theory the square of H/V is twice the ratio ImG11 / ImG33, where ImG11 and ImG33 are the imaginary part of Green functions at the load point for horizontal and vertical components, respectively. In order to efficiently compute the imaginary part of Green's functions in a layered medium we start from an integral on the complex k plane and, using Harkrider's nomenclature, separate formulae for body-, Rayleigh-, and Love-wave components to the spectral densities are obtained. Then the poles allow for integration using the Cauchy residue theorem plus some contributions from branch integrals. It is possible to isolate pseudo reflections from ImG11 and thus constrain the inversion of soil profile. We assess ImG11 removing the influence of illumination spectrum using the H/V spectral ratio and an estimate of ImG33 (from an a priori model) by means of ImG11=0.5(H/V )2*ImG33. It has been found that ImG33 is less sensitive to details of stratigraphy. In fact, the Poisson ratio of the uppermost layer controls the slope in high frequency. With the obtained model ImG33 can be updated and the estimate of ImG11 will be improved. ACKNOWLEDGEMENTS. This research has been partially supported by DGAPA-UNAM under Project IN104712, by the MINECO research project CGL2010-16250, Spain, by the EU with FEDER, and the AXA Research Fund.
NASA Common Research Model Test Envelope Extension With Active Sting Damping at NTF
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Balakrishna, S.
2014-01-01
The NASA Common Research Model (CRM) high Reynolds number transonic wind tunnel testing program was established to generate an experimental database for applied Computational Fluid Dynamics (CFD) validation studies. During transonic wind tunnel tests, the CRM encounters large sting vibrations when the angle of attack approaches the second pitching moment break, which can sometimes become divergent. CRM transonic test data analysis suggests that sting divergent oscillations are related to negative net sting damping episodes associated with flow separation instability. The National Transonic Facility (NTF) has been addressing remedies to extend polar testing up to and beyond the second pitching moment break point of the test articles using an active piezoceramic damper system for both ambient and cryogenic temperatures. This paper reviews CRM test results to gain understanding of sting dynamics with a simple model describing the mechanics of a sting-model system and presents the performance of the damper under cryogenic conditions.
Miller, Colette N; Rayalam, Srujana
2017-01-01
People living in regions of low socioeconomic status are thought to be prone to higher exposures to environmental pollutants, poor nutrition, and numerous preventable diseases and infections. Poverty correlates with pollution and malnutrition; however, limited studies examined their interrelationship. The well-studied, deleterious health effects attributed to environmental pollutants and poor nutrition may act in combination with produce more severe adverse health outcomes than any one factor alone. Deficiencies in specific nutrients render the body more susceptible to injury which may influence the pathways that serve as the mechanistic responses to ambient air pollutants. This review (1) explores specific micronutrients that are of global concern, (2) explains how these nutrients may impact the body's response to ambient air pollution, and (3) provides guidance on designing animal models of nutritional deficiency. It is likely that those individuals who reside in regions of high ambient air pollution are similarly malnourished. Therefore, it is important that research identifies specific nutrients of concern and their impact in identified regions of high ambient air pollution.
Cellular Sentinels Toxicity Platform
2017-02-01
Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace Medicine Aeromedical Research Department 2510 Fifth St...toxicity testing is to assess the likely risks posed to human populations at ambient exposure levels. Unfortunately, current approaches to toxicology... human populations at ambient exposure levels. For the past 50 years, this goal has been met by high dose testing in experimental animals with
ERIC Educational Resources Information Center
Lee, Chia-Cheng; Jhang, Yuna; Chen, Li-mei; Relyea, George; Oller, D. Kimbrough
2017-01-01
Prior research on ambient-language effects in babbling has often suggested infants produce language-specific phonological features within the first year. These results have been questioned in research failing to find such effects and challenging the positive findings on methodological grounds. We studied English- and Chinese-learning infants at 8,…
SeisCORK Engineering Design Study
2006-05-01
Stephen, R. A., et al. (1994a), The seafloor borehole array seismic system (SEABASS) and VLF ambient noise, Marine Geophysical Researches, 16, 243...286. Stephen, R. A., et al. (1994b), The Seafloor Borehole Array Seismic System (SEABASS) and VLF Ambient Noise, Marine Geophysical Researches, 16, 243...Contents Executive Summary 4 Introduction 5 General Science Goals and Justification for Borehole Seismology in the Seafloor 6 Validating Surface Seismic
Transient natural convection with density inversion from a horizontal cylinder
NASA Astrophysics Data System (ADS)
Wang, P.; Kahawita, R.; Nguyen, D. L.
1992-01-01
This paper is devoted to a numerical investigation of the free convection flow about a horizontal cylinder maintained at 0 °C in a water ambient close to the point of maximum density. Complete numerical solutions covering both the transient as well as steady state have been obtained. Principal results indicate that the proximity of the ambient temperature to the point of maximum density plays an important role in the type of convection pattern that may be obtained. When the ambient temperature is within 4.7 °C
Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis
2013-07-01
This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.
2014-12-07
parameters of resin viscosity and preform permeability prior to resin gelation. However, there could be significant variations in these two parameters...during actual manufacturing due to differences in the resin batches, mixes, temperature, ambient conditions for viscosity ; in the preform rolls...optimal injection time and locations for given process parameters of resin viscosity and preform permeability prior to resin gelation. However, there
Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari
2017-08-01
Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.
Naval Operations in an Ice-free Arctic Symposium, 17-18 April 2001
2001-04-01
long wave pattern producing preferred regions of cyclonic storm activity and cyclogenesis. Finally, the current tendency of poleward- propagating ...change both ambient noise and acoustic 15 propagation . Wind-generated waves will make ambient noise in the central Arctic more typical of temperate oceans...Research (ONR), MEDEA , the Arctic Research Commission, and U.S. Coast Guard in which some of these national and strategic issues surrounding operations
NASA Technical Reports Server (NTRS)
Sellers, J. P.
1976-01-01
Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of freeze-thaw thermal vacuum tests conducted on the feasibility VCHP was included. In addition, the results of ambient tests made on the feasibility fluid header are presented, including a comparison with analytical results. A thermal model of a fluid header heat pipe radiator was constructed and a computer program written. The program was used to make a comparison of the VCHP and fluid-header concepts for both single and multiple panel applications. The computer program was also employed for a parametric study, including optimum feeder heat pipe spacing, of the prototype fluid header.
Pre-processing ambient noise cross-correlations with equalizing the covariance matrix eigenspectrum
NASA Astrophysics Data System (ADS)
Seydoux, Léonard; de Rosny, Julien; Shapiro, Nikolai M.
2017-09-01
Passive imaging techniques from ambient seismic noise requires a nearly isotropic distribution of the noise sources in order to ensure reliable traveltime measurements between seismic stations. However, real ambient seismic noise often partially fulfils this condition. It is generated in preferential areas (in deep ocean or near continental shores), and some highly coherent pulse-like signals may be present in the data such as those generated by earthquakes. Several pre-processing techniques have been developed in order to attenuate the directional and deterministic behaviour of this real ambient noise. Most of them are applied to individual seismograms before cross-correlation computation. The most widely used techniques are the spectral whitening and temporal smoothing of the individual seismic traces. We here propose an additional pre-processing to be used together with the classical ones, which is based on the spatial analysis of the seismic wavefield. We compute the cross-spectra between all available stations pairs in spectral domain, leading to the data covariance matrix. We apply a one-bit normalization to the covariance matrix eigenspectrum before extracting the cross-correlations in the time domain. The efficiency of the method is shown with several numerical tests. We apply the method to the data collected by the USArray, when the M8.8 Maule earthquake occurred on 2010 February 27. The method shows a clear improvement compared with the classical equalization to attenuate the highly energetic and coherent waves incoming from the earthquake, and allows to perform reliable traveltime measurement even in the presence of the earthquake.
Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments.
Roy, Nirmalya; Misra, Archan; Cook, Diane
2016-02-01
Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional 'hidden' context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions.
Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments
Misra, Archan; Cook, Diane
2016-01-01
Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional ‘hidden’ context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions. PMID:27042240
Progress in ambient assisted systems for independent living by the elderly.
Al-Shaqi, Riyad; Mourshed, Monjur; Rezgui, Yacine
2016-01-01
One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients' place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks, while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security.
Lyons, Michael A.; Yang, Raymond S.H.; Mayeno, Arthur N.; Reisfeld, Brad
2008-01-01
Background One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. Objectives We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of environmental chloroform source concentrations consistent with human biomonitoring data. The biomonitoring data consist of chloroform blood concentrations measured as part of the Third National Health and Nutrition Examination Survey (NHANES III), and for which no corresponding exposure data were collected. Methods We used a combined PBPK and shower exposure model to consider several routes and sources of exposure: ingestion of tap water, inhalation of ambient household air, and inhalation and dermal absorption while showering. We determined posterior distributions for chloroform concentration in tap water and ambient household air using U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) data as prior distributions for the Bayesian analysis. Results Posterior distributions for exposure indicate that 95% of the population represented by the NHANES III data had likely chloroform exposures ≤ 67 μg/L in tap water and ≤ 0.02 μg/L in ambient household air. Conclusions Our results demonstrate the application of computer simulation to aid in the interpretation of human biomonitoring data in the context of the exposure–health evaluation–risk assessment continuum. These results should be considered as a demonstration of the method and can be improved with the addition of more detailed data. PMID:18709138
NASA Astrophysics Data System (ADS)
Ahonen, Pasi; Alahuhta, Petteri; Daskala, Barbara; Delaitre, Sabine; Hert, Paul De; Lindner, Ralf; Maghiros, Ioannis; Moscibroda, Anna; Schreurs, Wim; Verlinden, Michiel
The brave new world of ambient intelligence is almost upon us. Ambient intelligence is the phrase coined to describe a world in which "intelligence" is embedded in virtually everything around us. It has been called an Internet of things, where radio frequency identification (RFID) tags are attached to all products. It is a world of smart dust with networked sensors and actuators so small as to be virtually invisible, where the clothes you wear, the paint on your walls, the carpets on your floor, and the paper money in your pocket have a computer communications capability. It is a 4G world where today's mobile phone is transformed into a terminal capable of receiving television, accessing the Internet, downloading music, reading RFIDs, taking pictures, enabling interactive video telephony, and much more. It is a world of convergence, where heterogeneous devices are able to communicate seamlessly across today's disparate networks, a world of machine learning and intelligent software, where computers monitor our activities, routines and behaviours to predict what we will do or want next. In the brave new world of ambient intelligence, we will never have to worry about losing track of our children because they will have a location device implanted under the skin or, if they are squeamish about that, then at least they will have one in their wristwatch.
NASA Astrophysics Data System (ADS)
Santos, Olga C.; Saneiro, Mar; Boticario, Jesus G.; Rodriguez-Sanchez, M. C.
2016-01-01
This work explores the benefits of supporting learners affectively in a context-aware learning situation. This features a new challenge in related literature in terms of providing affective educational recommendations that take advantage of ambient intelligence and are delivered through actuators available in the environment, thus going beyond previous approaches which provided computer-based recommendation that present some text or tell aloud the learner what to do. To address this open issue, we have applied TORMES elicitation methodology, which has been used to investigate the potential of ambient intelligence for making more interactive recommendations in an emotionally challenging scenario (i.e. preparing for the oral examination of a second language learning course). Arduino open source electronics prototyping platform is used both to sense changes in the learners' affective state and to deliver the recommendation in a more interactive way through different complementary sensory communication channels (sight, hearing, touch) to cope with a universal design. An Ambient Intelligence Context-aware Affective Recommender Platform (AICARP) has been built to support the whole experience, which represents a progress in the state of the art. In particular, we have come up with what is most likely the first interactive context-aware affective educational recommendation. The value of this contribution lies in discussing methodological and practical issues involved.
Cuban Telecommunications, Computer Networking, and U.S. Policy Implications,
1996-07-01
Informacion para la Prensa Federacion de Mujeres Cubanas Grupo para la Educacion sobre el SIDA Instituto Superior Latinoamericano de Ajedrez...DIR) Informacion sobre Medio Ambiente (DIR) Medicina Alternativa (DIR) Servicio Especial de la Mujer (DIR) Eventos Internacionales (DIR
NASA Astrophysics Data System (ADS)
Ham, Jaap; Midden, Cees
Persuasive technology can influence behavior or attitudes by for example providing interactive factual feedback about energy conservation. However, people often lack motivation or cognitive capacity to consciously process such relative complex information (e.g., numerical consumption feedback). Extending recent research that indicates that ambient persuasive technology can persuade the user without receiving the user's conscious attention, we argue here that Ambient Persuasive Technology can be effective while needing only little cognitive resources, and in general can be more influential than more focal forms of persuasive technology. In an experimental study, some participants received energy consumption feedback by means of a light changing color (more green=lower energy consumption, vs. more red=higher energy consumption) and others by means of numbers indicating kWh consumption. Results indicated that ambient feedback led to more conservation than factual feedback. Also, as expected, only for participants processing factual feedback, additional cognitive load lead to slower processing of that feedback. This research sheds light on fundamental characteristics of Ambient Persuasive Technology and Persuasive Lighting, and suggests that it can have important advantages over more focal persuasive technologies without losing its persuasive potential.
A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air
NASA Astrophysics Data System (ADS)
Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard
2016-11-01
The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.
Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves
2015-09-30
propagation in very fine-grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient noise research is to...forces in silts and clays and the role they play in controlling wave speeds and attenuations. On a 2 quantum mechanical level, these forces are... clays . APPROACH 1) Deep-water ambient noise Three deep-diving, autonomous instrument platforms, known as Deep Sound I, II, & III, have been
NASA Astrophysics Data System (ADS)
Meng, Q. Y.; Svendsgaard, D.; Kotchmar, D. J.; Pinto, J. P.
2012-09-01
Although positive associations between ambient NO2 concentrations and personal exposures have generally been found by exposure studies, the strength of the associations varied among studies. Differences in results could be related to differences in study design and in exposure factors. However, the effects of study design, exposure factors, and sampling and measurement errors on the strength of the personal-ambient associations have not been evaluated quantitatively in a systematic manner. A quantitative research synthesis was conducted to examine these issues based on peer-reviewed publications in the past 30 years. Factors affecting the strength of the personal-ambient associations across the studies were also examined with meta-regression. Ambient NO2 was found to be significantly associated with personal NO2 exposures, with estimates of 0.42, 0.16, and 0.72 for overall pooled, longitudinal and daily average correlation coefficients based on random-effects meta-analysis. This conclusion was robust after correction for publication bias with correlation coefficients of 0.37, 0.16 and 0.45. We found that season and some population characteristics, such as pre-existing disease, were significant factors affecting the strength of the personal-ambient associations. More meaningful and rigorous comparisons would be possible if greater detail were published on the study design (e.g. local and indoor sources, housing characteristics, etc.) and data quality (e.g., detection limits and percent of data above detection limits).
Modeling the influence of nozzle-generated turbulence on diesel sprays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnotti, G M; Matusik, K E; Duke, D J
The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potentialmore » atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased sensitivity of the spray structure to internal nozzle surface finish imperfections at such conditions. The presence of these asymmetries may influence the ability to interpret line-of-sight measurements and their derived SMD values and trends from a single viewing angle of the spray. With this consideration in mind, the measured local sensitivities to ambient density suggest that for ambient densities less than 2.4 kg/m3, aerodynamic effects are likely suppressed, allowing the influence of turbulent-induced breakup to be isolated. In concert with the experimental measurements, we utilize three-dimensional, CFD Lagrangian-Eulerian spray simulations in CONVERGE to evaluate the details of the predicted spray structure. In particular, we compare measured and predicted sensitivities of the SMD distribution to changes in injection and ambient conditions from three different atomization models, namely Kelvin Helmholtz (KH), KH Aerodynamics Cavitation Turbulence (KH-ACT), and the newly developed KH-Faeth hybrid model. While none of the existing hybrid spray models were able to replicate the experimentally observed sensitivities, it was found that the scales characterizing the KH-Faeth model show promise of capturing the experimentally observed trends if the effects of secondary droplet breakup are neglected. These results inform recommendations for future experiments and computational studies that can guide the development of an improved spray breakup model.« less
Ambient Intelligence Research Landscapes: Introduction and Overview
NASA Astrophysics Data System (ADS)
Streitz, Norbert
This paper starts out by introducing the "Landscapes" category at the Joint International Conference on Ambient Intelligence (AmI-2010) and provides an overview over the two sessions. The main part of the paper presents a framework for the role of Ambient Intelligence in the development of the cities of the future. This includes the integration of real and virtual worlds resulting in Hybrid Cities and their transformation into Smart Cities. In the context, it is argued that the technological development has to be monitored by guidelines and goals for maintaining and improving the quality of life leading to what is called Humane Cities, addressing, e.g., social awareness and privacy, trust and identity. The paper closes with proposals for a future research agenda.
Yang, Chun-Yuh; Lee, Min Sheng; Ho, Chi-Kung; Mena, Kristina D.; Wang, Peng-Yau; Chen, Pei-Shih
2014-01-01
Background Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei with a high case-fatality rate. Epidemiological and animal studies show the possibility of inhalation transmission. However, no B. pseudomallei concentrations in ambient air have been researched. Here, we developed a method to quantify ambient B. pseudomallei and then measured concentrations of ambient B. pseudomallei during the typhoon season and the non-typhoon season to determine the factors influencing ambient B. pseudomallei levels. Methods We quantified ambient B. pseudomallei by using a filter/real-time qPCR method in the Zoynan Region in Kaohsiung, southern Taiwan. Twenty-four hour samples were collected at a sampling rate of 20 L/min every day from June 11 to December 21, 2012 including during the typhoon season (June to September) and reference season (October to December). Results We successfully developed a filtration/real-time qPCR method to quantify ambient B. pseudomallei. To our knowledge, this is the first report describing concentrations of ambient B. pseudomallei. Ambient B. pseudomallei were only detected during the typhoon season when compared to the reference season. For the typhoons affecting the Zoynan Region, the positive rates of ambient B. pseudomallei were very high at 80% to 100%. During June to December, rainfall was positively correlated with ambient B. pseudomallei with a statistical significance. Sediment at a nearby pond significantly influenced the concentration of ambient B. pseudomallei. During the typhoon month, the typhoon was positively correlated with ambient B. pseudomallei whereas wind speed was reversely correlated with ambient B. pseudomallei. Conclusions Our data suggest the possibility of transmission of B. pseudomallei via inhalation during the typhoon season. PMID:24874950
Chen, Ya-Lei; Yen, Yu-Chuan; Yang, Chun-Yuh; Lee, Min Sheng; Ho, Chi-Kung; Mena, Kristina D; Wang, Peng-Yau; Chen, Pei-Shih
2014-01-01
Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei with a high case-fatality rate. Epidemiological and animal studies show the possibility of inhalation transmission. However, no B. pseudomallei concentrations in ambient air have been researched. Here, we developed a method to quantify ambient B. pseudomallei and then measured concentrations of ambient B. pseudomallei during the typhoon season and the non-typhoon season to determine the factors influencing ambient B. pseudomallei levels. We quantified ambient B. pseudomallei by using a filter/real-time qPCR method in the Zoynan Region in Kaohsiung, southern Taiwan. Twenty-four hour samples were collected at a sampling rate of 20 L/min every day from June 11 to December 21, 2012 including during the typhoon season (June to September) and reference season (October to December). We successfully developed a filtration/real-time qPCR method to quantify ambient B. pseudomallei. To our knowledge, this is the first report describing concentrations of ambient B. pseudomallei. Ambient B. pseudomallei were only detected during the typhoon season when compared to the reference season. For the typhoons affecting the Zoynan Region, the positive rates of ambient B. pseudomallei were very high at 80% to 100%. During June to December, rainfall was positively correlated with ambient B. pseudomallei with a statistical significance. Sediment at a nearby pond significantly influenced the concentration of ambient B. pseudomallei. During the typhoon month, the typhoon was positively correlated with ambient B. pseudomallei whereas wind speed was reversely correlated with ambient B. pseudomallei. Our data suggest the possibility of transmission of B. pseudomallei via inhalation during the typhoon season.
Association between ambient air pollution and pregnancy rate in women who underwent IVF.
Choe, S A; Jun, Y B; Lee, W S; Yoon, T K; Kim, S Y
2018-06-01
Are the concentrations of five criteria air pollutants associated with probabilities of biochemical pregnancy loss and intrauterine pregnancy in women? Increased concentrations of ambient particulate matter (PM10), nitrogen dioxide (NO2), carbon monoxide (CO) during controlled ovarian stimulation (COS) and after embryo transfer were associated with a decreased probability of intrauterine pregnancy. Exposure to high ambient air pollution was suggested to be associated with low fertility and high early pregnancy loss in women. Using a retrospective cohort study design, we analysed 6621 cycles of 4581 patients who underwent one or more fresh IVF cycles at a fertility centre from January 2006 to December 2014, and lived in Seoul at the time of IVF treatment. To estimate patients' individual exposure to air pollution, we computed averages of hourly concentrations of five air pollutants including PM10, NO2, CO, sulphur dioxide (SO2) and ozone (O3) measured at 40 regulatory monitoring sites in Seoul for each of the four exposure periods: period 1 (start of COS to oocyte retrieval), period 2 (oocyte retrieval to embryo transfer), period 3 (embryo transfer to hCG test), and period 4 (start of COS to hCG test). Hazard ratios (HRs) from the time-varying Cox-proportional hazards model were used to estimate probabilities of biochemical pregnancy loss and intrauterine pregnancy for an interquartile range (IQR) increase in each air pollutant concentration during each period, after adjusting for individual characteristics. We tested the robustness of the result using generalised linear mixed model, accounting for within-woman correlation. Mean age of the women was 35 years. Average BMI was 20.9 kg/m2 and the study population underwent 1.4 IVF cycles on average. Cumulative pregnancy rate in multiple IVF cycles was 51.3% per person. Survival analysis showed that air pollution during periods 1 and 3 was generally associated with IVF outcomes. Increased NO2 (adjusted HR = 0.93, 95% CI: 0.87, 0.99) and CO (0.94, 95% CI: 0.89, 1.00) during period 1 were associated with decreased probability of intrauterine pregnancy. PM10 (0.92, 95% CI: 0.85, 0.99), NO2 (0.93, 95% CI = 0.86, 1.00) and CO (0.93, 95% CI: 0.87, 1.00) levels during period 3 were also inversely associated with intrauterine pregnancy. Both PM10 (1.17, 95% CI: 1.04 1.33) and NO2 (1.18, 95% CI: 1.03, 1.34) during period 3 showed positive associations with biochemical pregnancy loss. The district-specific ambient air pollution treated as an individual exposure may not represent the actual level of each woman's exposure to air pollution. Smoking, working status, parity or gravidity of women, and semen analysis data were not included in the analysis. This study provided evidence of an association between increased ambient concentrations of PM10, NO2 and CO and reduced probabilities for achieving intrauterine pregnancy using multiple IVF cycle data. Specifically, our results indicated that lower intrauterine pregnancy rates in IVF cycles may be linked to ambient air pollution during COS and the post-transfer period. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013 R1A6A3A04059017, 2016 R1D1A1B03933410 and 2018 R1A2B6004608) and the National Cancer Center of Korea (NCC-1810220-01). The authors report no conflicts of interest. N/A.
NASA Astrophysics Data System (ADS)
Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam
2017-04-01
Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.
Towards pervasive computing in health care – A literature review
Orwat, Carsten; Graefe, Andreas; Faulwasser, Timm
2008-01-01
Background The evolving concepts of pervasive computing, ubiquitous computing and ambient intelligence are increasingly influencing health care and medicine. Summarizing published research, this literature review provides an overview of recent developments and implementations of pervasive computing systems in health care. It also highlights some of the experiences reported in deployment processes. Methods There is no clear definition of pervasive computing in the current literature. Thus specific inclusion criteria for selecting articles about relevant systems were developed. Searches were conducted in four scientific databases alongside manual journal searches for the period of 2002 to 2006. Articles included present prototypes, case studies and pilot studies, clinical trials and systems that are already in routine use. Results The searches identified 69 articles describing 67 different systems. In a quantitative analysis, these systems were categorized into project status, health care settings, user groups, improvement aims, and systems features (i.e., component types, data gathering, data transmission, systems functions). The focus is on the types of systems implemented, their frequency of occurrence and their characteristics. Qualitative analyses were performed of deployment issues, such as organizational and personnel issues, privacy and security issues, and financial issues. This paper provides a comprehensive access to the literature of the emerging field by addressing specific topics of application settings, systems features, and deployment experiences. Conclusion Both an overview and an analysis of the literature on a broad and heterogeneous range of systems are provided. Most systems are described in their prototype stages. Deployment issues, such as implications on organization or personnel, privacy concerns, or financial issues are mentioned rarely, though their solution is regarded as decisive in transferring promising systems to a stage of regular operation. There is a need for further research on the deployment of pervasive computing systems, including clinical studies, economic and social analyses, user studies, etc. PMID:18565221
Characterizing the Exposure of Regional-Scale Air Quality in the Northeastern United States
The Clean Air Act (CAA) requires that the United States (U.S.) Environmental Protection Agency (EPA) set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to human health and the environment. Previous research has shown that high ambient ozone leve...
NASA Astrophysics Data System (ADS)
John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.
2016-04-01
We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Eddaoudi; Zaworotko, Michael; Space, Brian
Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable formore » super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:« less
NASA Technical Reports Server (NTRS)
Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Litaker, H. L.; Hanifin, J.; Schwing, B. M.
2016-01-01
Even with no ambient lighting system "on", the International Space Station glows at night. The glow is caused by indicator lamps and displays that are not included with the specification of the ambient lighting system. How does this impact efforts to improve the astronaut's lighting environment to promote more effective sleep patterns? Do the extra indicators and displays add enough light to change the spectrum of light the crew sees during the day as well? If spacecraft environments are specifically engineered to have an ambient lighting system that emits a spectrum promoting a healthy circadian response, is there a way control the impact? The goal of this project is to investigate how additional light sources, such as displays and indicators change the effective light spectrum of the architectural lighting system and how impacts can be mitigated.
Towards full waveform ambient noise inversion
NASA Astrophysics Data System (ADS)
Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas
2018-01-01
In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure are quantified using Hessian-vector products.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Emerging CAE technologies and their role in Future Ambient Intelligence Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2011-03-01
Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.
A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides
Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...
COMPUTATIONAL CHEMISTRY: AN EMERGING TECHNOLOGY FOR SOLVING PROBLEMS IN ATMOSPHERIC CHEMISTRY
Over the past three decades, atmospheric chemistry has served as an important component in developing strategies for reducing ambient concentrations of air pollutants. Laboratory studies are carried out to investigate the key chemical reactions that determine the fates and lif...
Cognitions and 'placebos' in behavioral research on ambient noise
NASA Technical Reports Server (NTRS)
Harcum, E. R.; Monti, P. M.
1973-01-01
Investigation of the effects of noise on visual and psychomotor tasks, with special attention to influences of certain cognitive variables. The results include the finding that 100-dB ambient noise has no effects per se, though cognitive variables in the testing situation affect both performance and ratings of disturbance.
This research describes the neuropathological consequences of subchronic exposure to particulate matter. A genetically modified animal strain (Apo E-/-) which expresses high levels of oxidative stress was exposed to ambient NYC air for 4-6 months. The brains of these animals were...
The U.S. EPA National Exposure Research Laboratory (NERL) collaborated with EPA's Regional offices to establish a monitoring network to characterize ambient air concentrations of particulate matter (PM) and air toxics in lower Manhattan following the collapse of the World Trade...
NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1984 ANNUAL REPORT
Research for 1984 involved performance of a preliminary economic assessment of simulated changes in ambient O3 on U.S. agriculture using recent NCLAN response data for six major crops. Four hypothetical ambient O3 levels are measured and compared with a 1980 base situation. The r...
Design of Affectively Evocative Smart Ambient Media for Learning
ERIC Educational Resources Information Center
Kwok, Ron Chi-Wai; Cheng, Shuk Han; Ip, Horace Ho-Shing; Kong, Joseph Siu-Lung
2011-01-01
This study proposes a teaching and research initiative, named SAMAL (Smart AMbience for Affective Learning) that will provide a unique ambient mediated environment for integrating cognitive and affective approaches to enhance learning. Also, this study illustrates a design of SAMAL classroom with affectively evocative scenarios for learning de…
NASA Technical Reports Server (NTRS)
Flemming, Robert J.; Britton, Randall K.; Bond, Thomas H.
1994-01-01
The cost and time to certify or qualify a rotorcraft for flight in forecast icing has been a major impediment to the development of ice protection systems for helicopter rotors. Development and flight test programs for those aircraft that have achieved certification or qualification for flight in icing conditions have taken many years, and the costs have been very high. NASA, Sikorsky, and others have been conducting research into alternative means for providing information for the development of ice protection systems, and subsequent flight testing to substantiate the air-worthiness of a rotor ice protection system. Model rotor icing tests conducted in 1989 and 1993 have provided a data base for correlation of codes, and for the validation of wind tunnel icing test techniques. This paper summarizes this research, showing test and correlation trends as functions of cloud liquid water content, rotor lift, flight speed, and ambient temperature. Molds were made of several of the ice formations on the rotor blades. These molds were used to form simulated ice on the rotor blades, and the blades were then tested in a wind tunnel to determine flight performance characteristics. These simulated-ice rotor performance tests are discussed in the paper. The levels of correlation achieved and the role of these tools (codes and wind tunnel tests) in flight test planning, testing, and extension of flight data to the limits of the icing envelope are discussed. The potential application of simulated ice, the NASA LEWICE computer, the Sikorsky Generalized Rotor Performance aerodynamic computer code, and NASA Icing Research Tunnel rotor tests in a rotorcraft certification or qualification program are also discussed. The correlation of these computer codes with tunnel test data is presented, and a procedure or process to use these methods as part of a certification or qualification program is introduced.
Hwang, Amy S.; Truong, Khai N.; Cameron, Jill I.; Lindqvist, Eva; Nygård, Louise; Mihailidis, Alex
2015-01-01
Ambient assisted living (AAL) aims to help older persons “age-in-place” and manage everyday activities using intelligent and pervasive computing technology. AAL research, however, has yet to explore how AAL might support or collaborate with informal care partners (ICPs), such as relatives and friends, who play important roles in the lives and care of persons with dementia (PwDs). In a multiphase codesign process with six (6) ICPs, we envisioned how AAL could be situated to complement their care. We used our codesigned “caregiver interface” artefacts as triggers to facilitate envisioning of AAL support and unpack the situated, idiosyncratic context within which AAL aims to assist. Our findings suggest that AAL should be designed to support ICPs in fashioning “do-it-yourself” solutions that complement tacitly improvised care strategies and enable them to try, observe, and adapt to solutions over time. In this way, an ICP could decide which activities to entrust to AAL support, when (i.e., scheduled or spontaneous) and how a system should provide support (i.e., using personalized prompts based on care experience), and when adaptations to system support are needed (i.e., based alerting patterns and queried reports). Future longitudinal work employing participatory, design-oriented methods with care dyads is encouraged. PMID:26161410
Anisotropic Lithospheric Structure of Southern Madagascar from Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Dreiling, J.; Tilmann, F. J.; Yuan, X.; Rumpker, G.
2016-12-01
The island of Madagascar occupied a key region in both the assembly and the multi-stage breakup of Gondwana. Madagascar consists of amalgamated continental material comprising several distinct tectonic units. Because of its key role in the assembly of Gondwana, numerous geological and geophysical investigations have been carried out in Madagascar to understand the evolution of Gondwana.The aim of this study is to characterize the lithospheric structure of Southern Madagascar using ambient seismic noise correlation. Radial anisotropy is determined to learn about the crust/mantle deformation around the central Southern Madagascan shear zones (i.e. the Ampanihy, Beraketa and Ranotsara shear zones) and to shed light on the geological development of Madagascar and its role during the breakup of Gondwana. In the analysis we included seismic data from the SELASOMA project in Southern Madagascar, which is a passive seismic experiment carried out by the GFZ German Research Centre for Geosciences from May 2012 to May 2014. Seismic data recorded by 61 three-component seismometers were pre-processed and cross-correlated. Group velocity dispersion curves were picked manually for the vertical-vertical and transverse-transverse component correlations, which represent the Rayleigh (ZZ) and Love (TT) surface waves, respectively. Velocities from periods between 0.7 and 20 seconds are used for tomography and computation of radial anisotropy of the lithosphere.
Butail, Sachit; Salerno, Philip; Bollt, Erik M; Porfiri, Maurizio
2015-12-01
Traditional approaches for the analysis of collective behavior entail digitizing the position of each individual, followed by evaluation of pertinent group observables, such as cohesion and polarization. Machine learning may enable considerable advancements in this area by affording the classification of these observables directly from images. While such methods have been successfully implemented in the classification of individual behavior, their potential in the study collective behavior is largely untested. In this paper, we compare three methods for the analysis of collective behavior: simple tracking (ST) without resolving occlusions, machine learning with real data (MLR), and machine learning with synthetic data (MLS). These methods are evaluated on videos recorded from an experiment studying the effect of ambient light on the shoaling tendency of Giant danios. In particular, we compute average nearest-neighbor distance (ANND) and polarization using the three methods and compare the values with manually-verified ground-truth data. To further assess possible dependence on sampling rate for computing ANND, the comparison is also performed at a low frame rate. Results show that while ST is the most accurate at higher frame rate for both ANND and polarization, at low frame rate for ANND there is no significant difference in accuracy between the three methods. In terms of computational speed, MLR and MLS take significantly less time to process an image, with MLS better addressing constraints related to generation of training data. Finally, all methods are able to successfully detect a significant difference in ANND as the ambient light intensity is varied irrespective of the direction of intensity change.
Advanced electric propulsion research - 1990
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.; Wilbur, Paul J.
1991-01-01
An experimental study of impingement current collection on the accelerator grid of an ion thruster is presented. The equipment, instruments, and procedures being used to conduct the study are discussed. The contribution to this current due to charge-exchange ions produced close to the grid is determined using a volume-integration procedure and measured ion beam current design, computed neutral atom density and measured beam plasma potential data. This current, which is expected to be almost equal to that measured directly, is found to be an order of magnitude less. The impingement current determined by integrating the current density of ambient ions in the beam plasma close to the grid is found to agree with the directly measured impingement current. Possible reasons for the disagreement between the directly measured and volume integrated impingement currents are discussed.
Internal Mixing Studied for GE/ARL Ejector Nozzle
NASA Technical Reports Server (NTRS)
Zaman, Khairul
2005-01-01
To achieve jet noise reduction goals for the High Speed Civil Transport aircraft, researchers have been investigating the mixer-ejector nozzle concept. For this concept, a primary nozzle with multiple chutes is surrounded by an ejector. The ejector mixes low-momentum ambient air with the hot engine exhaust to reduce the jet velocity and, hence, the jet noise. It is desirable to mix the two streams as fast as possible in order to minimize the length and weight of the ejector. An earlier model of the mixer-ejector nozzle was tested extensively in the Aerodynamic Research Laboratory (ARL) of GE Aircraft Engines at Cincinnati, Ohio. While testing was continuing with later generations of the nozzle, the earlier model was brought to the NASA Lewis Research Center for relatively fundamental measurements. Goals of the Lewis study were to obtain details of the flow field to aid computational fluid dynamics (CFD) efforts and obtain a better understanding of the flow mechanisms, as well as to experiment with mixing enhancement devices, such as tabs. The measurements were made in an open jet facility for cold (unheated) flow without a surrounding coflowing stream.
The Research Triangle Park particulate matter panel study: PM mass concentration relationships
NASA Astrophysics Data System (ADS)
Williams, Ron; Suggs, Jack; Rea, Anne; Leovic, Kelly; Vette, Alan; Croghan, Carry; Sheldon, Linda; Rodes, Charles; Thornburg, Jonathan; Ejire, Ademola; Herbst, Margaret; Sanders, William
The US Environmental Protection Agency has recently performed the Research Triangle Park Particulate Matter Panel Study. This was a 1-year investigation of PM and related co-pollutants involving participants living within the RTP area of North Carolina. Primary goals were to characterize the relationships between ambient and residential PM measures to those obtained from personal exposure monitoring and estimate ambient source contributions to personal and indoor mass concentrations. A total of 38 participants living in 37 homes were involved in personal, residential indoor, residential outdoor and ambient PM 2.5 exposure monitoring. Participants were 30 non-smoking hypertensive African-Americans living in a low-moderate SES neighborhood (SE Raleigh, NC) and a cohort of eight individuals having implanted cardiac defibrillators (Chapel Hill, NC). Residential and ambient monitoring of PM 10 and PM 10-2.5 (coarse by differential) was also performed. The volunteers were monitored for seven consecutive days during each of four seasons (summer 2000, fall 2000, winter 2001, spring 2001). Individual PM 2.5 personal exposure concentrations ranged from 4 to 218 μg m -3 during the study. The highest personal exposures were determined to be the result of passive environmental tobacco exposures. Subsequently, ˜7% of the total number of personal exposure trials were excluded to minimize this pollutant's effect upon the overall analysis. Results indicated that a pooled data set (seasons, cohorts, residences, participants) was appropriate for investigation of the basic mass concentration relationships. Daily personal PM 2.5 mass concentrations were typically higher than their associated residential or ambient measurements (mean personal=23.0, indoor=19.1, outdoor=19.3, ambient=19.2 μg m -3). Mean personal PM 2.5 exposures were observed to be only moderately correlated to ambient PM 2.5 concentrations ( r=0.39).
Extraction of body waves from seismic ambient noise
NASA Astrophysics Data System (ADS)
Kim, Eun Mi; Kang, Tae Seob; Kim, Tae Sung
2014-05-01
Ambient noise cross-correlation is used in seismology to obtain the part of the surface waves and applied to the theoretical researches and various experiments. Obtaining the part of body waves from the ambient noise correlation is difficult to recognize because of the feature decreasing body waves along the travel path. However, the travel times of body waves detected from temporal and spacial events occurrence involve uncertainty of the epicenter and accompany temporal-spacial restriction. On the other hand, ambient noise is always occurred and is obtained at the all stations. So it can be applied to research of the internal earth when the case of extracting the body waves using the cross-correlation is possible. This study shows that body waves can be observed by analyzing the ambient noise recorded seismic data in South Korea. Using 42 broad-band three components stations located on the South Korea. The data removed the mean and trend are filtered high-frequency band(0.5-2Hz). The noise correlations were calculated for all combinations of radial, transverse and veltical components, which required rotation of the horizontal components for each station pair according to the azimuth at each station of the great-circle between the two stations. Removing the part of broad-band signals effected by occurring event, the part of standard deviations more than three times are removed. And it applied spectral whitening to reduce effects of the surface waves. After data processing, all ambient noise signals are cross-correlated and temporal stacked. We found the signals propagating from one station to another station, this signals can be interpreted as the body waves distinguished surface travel-time in high-frequency band.From this analysis, we can extract the body waves using ambient noise cross correlation of continuous data at the stations.
"Advances in Coupled Air Quality, Farm Management and ...
A cropland farm management modeling system for regional air quality and field-scale applications of bi-directional ammonia exchange was presented at ITM XXI. The goal of this research is to improve estimates of nitrogen deposition to terrestrial and aquatic ecosystems and ambient ammonium aerosol particle concentrations injurious to human health. These concepts have been implemented and have been released as options in CMAQ 5.01. This presentation will summarize the integration of these two models and will present model performance results relative to wet deposition measurements, ambient ammonium aerosol and ambient ammonia observations. Results indicate a shift in the timing of current U.S. agricultural emission inventories and improved CMAQ model performance. Comparison to annual wet deposition observations suggests remaining bias may be attributable primarily to precipitation model errors. Preliminary results of CMAQ deposition and ambient ammonia response to interannual variability in farm management activities will also be presented. The USEPA Office of Air and Radiation is currently considering the recommendation of the coupled model for use in standard setting activities and applications are being developed in collaboration with USEPA Office of Water and Regional Offices. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the envi
Influence of room lighting on grey-scale perception with a CRT-and a TFT monitor display.
Haak, R; Wicht, M J; Hellmich, M; Nowak, G; Noack, M J
2002-05-01
To determine the influence of ambient lighting on grey-scale perception using a cathode-ray tube (CRT) and a thin film transistor (TFT) computer display. A cathode ray tube (Nokia XS 446) and a liquid crystal display (Panasonic LC 50S) were used at reduced room lighting (70 lux) and under conditions recommended for a dental operatory (1000 lux). Twenty-seven observers examined twice a modified SMPTE test pattern [0 to 255; 255 to 0] grey-scale values. The corresponding contrast differences were allocated to four ranges of grey levels (I: 0-63; II: 64-127; III: 128-191; IV: 192-255). The influences of monitor type, grey-scale range and illumination were evaluated by means of repeated measures analysis of variance. Detection of differences in monochromatic intensity was significantly earlier with reduced lighting (P<0.0001). When full ambient lighting was used, the TFT display was superior compared to the CRT monitor in ranges II and III (P<0.0001), whereas no differences could be detected for grey intensities between 0 and 63 (P=0.71) and between 192 and 255 (P=0.36). Background lighting hampers grey-scale perception on computer displays. In this study of one TFT and one CRT monitor, the TFT in full ambient lighting was associated with earlier detection of grey scale differences than CRT.
Automated High-Temperature Hall-Effect Apparatus
NASA Technical Reports Server (NTRS)
Parker, James B.; Zoltan, Leslie D.
1992-01-01
Automated apparatus takes Hall-effect measurements of specimens of thermoelectric materials at temperatures from ambient to 1,200 K using computer control to obtain better resolution of data and more data points about three times as fast as before. Four-probe electrical-resistance measurements taken in 12 electrical and 2 magnetic orientations to characterize specimens at each temperature. Computer acquires data, and controls apparatus via three feedback loops: one for temperature, one for magnetic field, and one for electrical-potential data.
A computational engine for bringing environmental consequence analysis into aviation decision-making
DOT National Transportation Integrated Search
2010-04-21
This presentation looks at the methods for ambient masking of non-natural sounds. The masking of sounds is most effective when the masker spectrum overlaps the signal spectrum; more likely to occur if the masker is broadband in nature. Land vehicles ...
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.
Ambient noise levels and characterization in Aegean region, Turkey
NASA Astrophysics Data System (ADS)
Sevim, Fatih; Zor, Ekrem; Açıkgöz, Cem; Tarancıoğlu, Adil
2018-03-01
We assessed the ambient noise level in the Aegean region and analyzed its diurnal variation and its relation to the earthquake detection capability of the Aegean Region Seismic Network (ARSN). We prepared probability density functions (PDFs) for 19 broadband stations in the Aegean region operated by the Earth and Marine Sciences Institute (EMSI) of the Marmara Research Center (MRC) of the Turkish Scientific Research Council (TÜBİTAK). The power spectral densities (PSDs) used to construct PDFs for each station were computed for the periods between 0.02 and 180 s. In addition, we generated noise map of the Aegean region for different periods using the PDFs to assess the origin of the noise. We analyzed earthquake activity in the region and found that there are more local events recorded at night than during the day for each station. This difference is strongly related to diurnal variation of background noise level for the period range mostly covering the frequency range for the local events. We observed daytime noise level 15 to 20 dB higher than that at the nighttime in high frequencies for almost all stations caused by its proximity to settled areas and roads. Additionally, we observed a splitting peak within the Double Frequency (DF) microseism band; it showed a clear noise increase around the short period DF band at all the stations, decreasing inland. This peak may be related to sea waves locally generated in the Aegean Sea. We also identified a prominent increase related to marble saw companies in some stations' noise PDFs.
Çelebi, Mehmet; Huang, Moh; Shakal, Antony; Hooper, John; Klemencic, Ron
2012-01-01
A 64-story, performance-based design building with reinforced concrete core shear-walls and unique dynamic response modification features (tuned liquid sloshing dampers and buckling-restrained braces) has been instrumented with a monitoring array of 72 channels of accelerometers. Ambient vibration data recorded are analyzed to identify modes and associated frequencies and damping. The low-amplitude dynamic characteristics are considerably different than those computed from design analyses, but serve as a baseline against which to compare with future strong shaking responses. Such studies help to improve our understanding of the effectiveness of the added features to the building and help improve designs in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slogar, G.A.; Holder, R.C.
1976-03-01
Full scale engine testswere conducted on a GTCP85-98CK Auxiliary Power Unit and a TPE331-5-251M Turboprop engine. The purpose of this program was to measure exhaust emission of HC, CO, CO/sub 2/, NO/sub x/, and smoke at controlled (temperature, humidity, and pressure) engine inlet conditions. This data along with other available data will provide the data base for the determination of the effects of ambient conditions on gas turbine engines. This volume contains the computer programs for volume 2 data. (GRA)
Computational materials design for energy applications
NASA Astrophysics Data System (ADS)
Ozolins, Vidvuds
2013-03-01
General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.
Calibration of modified Liulin detector for cosmic radiation measurements on-board aircraft.
Kyselová, D; Ambrožová, I; Krist, P; Kubančák, J; Uchihori, Y; Kitamura, H; Ploc, O
2015-06-01
The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them. Aircrew dosimetry is usually performed using special computer programs mostly based on results of Monte Carlo simulations. Contemporary, detectors are used mostly for validation of these computer codes, verification of effective dose calculations and for research purposes. One of such detectors is active silicon semiconductor deposited energy spectrometer Liulin. Output quantities of measurement with the Liulin detector are the absorbed dose in silicon D and the ambient dose equivalent H*(10); to determine it, two calibrations are necessary. The purpose of this work was to develop a calibration methodology that can be used to convert signal from the detector to D independently on calibration performed at Heavy Ion Medical Accelerator facility in Chiba, Japan. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
CHARACTERIZATION OF INCIDENTAL CARBONACEOUS NANOPARTICLES IN AMBIENT AIR AND COMBUSTION EXHAUST
The most important result of this research is one of the most complete datasets to date on the presence of C60 in the aerosol phase in the natural environment. This study expects that C60 fullerenes will not be found at detectable levels in combustion exhaust, ambient carbo...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... Monitoring Reference and Equivalent Methods: Designation of Two New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of two new equivalent methods for monitoring ambient air... accordance with 40 CFR Part 53, two new equivalent methods for measuring concentrations of PM 10 and sulfur...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...
Classroom Noise and Teachers' Voice Production
ERIC Educational Resources Information Center
Rantala, Leena M.; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva
2015-01-01
Purpose: The aim of this study was to research the associations between noise (ambient and activity noise) and objective metrics of teachers' voices in real working environments (i.e., classrooms). Method: Thirty-two female and 8 male teachers from 14 elementary schools were randomly selected for the study. Ambient noise was measured during breaks…
Center for Advanced Power and Energy Research (CAPEC)
2015-01-01
discharge (DCD). A glow discharge at a low ambient density becomes Corona discharge at the elevated ambient pressure condition. The thermal plasma actuator...Elisson and Kogelschlatz [9] has identified that the discharge consists of two distinct positive Corona streamers and diffusion modes. Enloe et al...4 2.3 Physics-Base Discharge Modeling
Forensic applications of ambient ionization mass spectrometry.
Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham
2009-08-01
This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents.
Plant molecular responses to the elevated ambient temperatures expected under global climate change.
Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng
2018-01-02
Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.
A FAST BAYESIAN METHOD FOR UPDATING AND FORECASTING HOURLY OZONE LEVELS
A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows...
40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used... methanol (if applicable) concentrations in ppm carbon, initial and final enclosure ambient temperatures... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel...
NETL - Chemical Looping Reactor
None
2018-02-14
NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.
Optimizing Classroom Acoustics Using Computer Model Studies.
ERIC Educational Resources Information Center
Reich, Rebecca; Bradley, John
1998-01-01
Investigates conditions relating to the maximum useful-to-detrimental sound ratios present in classrooms and determining the optimum conditions for speech intelligibility. Reveals that speech intelligibility is more strongly influenced by ambient noise levels and that the optimal location for sound absorbing material is on a classroom's upper…
DOT National Transportation Integrated Search
2008-09-01
Approximately 85 National Park units with commercial air tours will need Air Tour : Management Plans (ATMPs). The objective of an ATMP is to prevent or mitigate : significant adverse impacts to National Park resources. Noise impacts must be : charact...
Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...
Aircraft electric field measurements: Calibration and ambient field retrieval
NASA Technical Reports Server (NTRS)
Koshak, William J.; Bailey, Jeff; Christian, Hugh J.; Mach, Douglas M.
1994-01-01
An aircraft locally distorts the ambient thundercloud electric field. In order to determine the field in the absence of the aircraft, an aircraft calibration is required. In this work a matrix inversion method is introduced for calibrating an aircraft equipped with four or more electric field sensors and a high-voltage corona point that is capable of charging the aircraft. An analytic, closed form solution for the estimate of a (3 x 3) aircraft calibration matrix is derived, and an absolute calibration experiment is used to improve the relative magnitudes of the elements of this matrix. To demonstrate the calibration procedure, we analyze actual calibration date derived from a Lear jet 28/29 that was equipped with five shutter-type field mill sensors (each with sensitivities of better than 1 V/m) located on the top, bottom, port, starboard, and aft positions. As a test of the calibration method, we analyze computer-simulated calibration data (derived from known aircraft and ambient fields) and explicitly determine the errors involved in deriving the variety of calibration matrices. We extend our formalism to arrive at an analytic solution for the ambient field, and again carry all errors explicitly.
Reducing Risk of Noise-Induced Hearing Loss in Collegiate Music Ensembles Using Ambient Technology.
Powell, Jason; Chesky, Kris
2017-09-01
Student musicians are at risk for noise-induced hearing loss (NIHL) as they develop skills and perform during instructional activities. Studies using longitudinal dosimeter data show that pedagogical procedures and instructor behaviors are highly predictive of NIHL risk, thus implying the need for innovative approaches to increase instructor competency in managing instructional activities without interfering with artistic and academic freedom. Ambient information systems, an emerging trend in human-computer interaction that infuses psychological behavioral theories into technologies, can help construct informative risk-regulating systems. The purpose of this study was to determine the effects of introducing an ambient information system into the ensemble setting. The system used two ambient displays and a counterbalanced within-subjects treatment study design with six jazz ensemble instructors to determine if the system could induce a behavior change that alters trends in measures resulting from dosimeter data. This study assessed efficacy using time series analysis to determine changes in eight statistical measures of behavior over a 9-wk period. Analysis showed that the system was effective, as all instructors showed changes in a combination of measures. This study is in an important step in developing non-interfering technology to reduce NIHL among academic musicians.
NASA Astrophysics Data System (ADS)
Silveira, Graça; Kiselev, Sergey; Stutzmann, Eleonore; Schimmel, Martin; Haned, Abderrahmane; Dias, Nuno; Morais, Iolanda; Custódio, Susana
2015-04-01
Ambient Noise Tomography (ANT) is now widely used to image the subsurface seismic structure, with a resolution mainly dependent on the seismic network coverage. Most of these studies are limited to Rayleigh waves for periods shorter than 40/45 s and, as a consequence, they can image only the crust or, at most, the uppermost mantle. Recently, some studies successfully showed that this analysis could be extended to longer periods, thus allowing a deeper probing. In this work we present the combination of two complementary datasets. The first was obtained from the analysis of ambient noise in the period range 5-50 sec, for Western Iberia, using a dense temporary seismic network that operated between 2010 and 2012. The second one was computed for a global study, in the period range 30-250 sec, from analysis of 150 stations of the global networks GEOSCOPE and GSN. In both datasets, the Empirical Green Functions are computed by phase cross-correlation. The ambient noise phase cross-correlations are stacked using the time-frequency domain phase weighted stack (Schimmel et al. 2011, Geoph. J. Int., 184, 494-506). A bootstrap approach is used to measure the group velocities between pairs of stations and to estimate the corresponding error. We observed a good agreement between the dispersion measurements on both short period and long period datasets for most of the grid nodes. They are then inverted to obtain the 3D S-wave model from the crust to the upper mantle, using a bayesian approach. A simulated annealing method is applied, in which the number of splines that describes the model is adapted within the inversion. We compare the S-wave velocity model at some selected profiles with the S-wave velocity models gathered from Ps and Sp receiver functions joint inversion. Both results, issued from ambient noise tomography and body wave's analysis for the crust and upper mantle are consistent. This work is supported by project AQUAREL (PTDC/CTEGIX/116819/2010) and is a contribution to project QuakeLoc-PT (PTDC/GEO-FIQ/3522/2012).
Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde
NASA Technical Reports Server (NTRS)
Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John
2010-01-01
The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.
Ambient awareness: From random noise to digital closeness in online social networks
Levordashka, Ana; Utz, Sonja
2016-01-01
Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online. PMID:27375343
Ambient awareness: From random noise to digital closeness in online social networks.
Levordashka, Ana; Utz, Sonja
2016-07-01
Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online.
ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...
A simplified gross thrust computing technique for an afterburning turbofan engine
NASA Technical Reports Server (NTRS)
Hamer, M. J.; Kurtenbach, F. J.
1978-01-01
A simplified gross thrust computing technique extended to the F100-PW-100 afterburning turbofan engine is described. The technique uses measured total and static pressures in the engine tailpipe and ambient static pressure to compute gross thrust. Empirically evaluated calibration factors account for three-dimensional effects, the effects of friction and mass transfer, and the effects of simplifying assumptions for solving the equations. Instrumentation requirements and the sensitivity of computed thrust to transducer errors are presented. NASA altitude facility tests on F100 engines (computed thrust versus measured thrust) are presented, and calibration factors obtained on one engine are shown to be applicable to the second engine by comparing the computed gross thrust. It is concluded that this thrust method is potentially suitable for flight test application and engine maintenance on production engines with a minimum amount of instrumentation.
A Survey on Ambient Intelligence in Health Care
Acampora, Giovanni; Cook, Diane J.; Rashidi, Parisa; Vasilakos, Athanasios V.
2013-01-01
Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people’s capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users’ goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths. PMID:24431472
A Survey on Ambient Intelligence in Health Care.
Acampora, Giovanni; Cook, Diane J; Rashidi, Parisa; Vasilakos, Athanasios V
2013-12-01
Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people's capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users' goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths.
In recent years environmental epidemiologists have begun utilizing regionalscale air quality computer models to predict ambient air pollution concentrations in health studies instead of or in addition to monitoring data from central sites. The advantages of using such models i...
Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...
Ambient noise levels in industrial audiometric test rooms.
Frank, T; Williams, D L
1994-05-01
In 1983 the Occupational Safety and Health Administration (OSHA) specified maximum permissible ambient noise levels (MPANLs) that would allow valid hearing threshold measurements in an audiometric test room. However, ambient noise sound pressure levels (SPLs) in rooms used for industrial hearing tests are unknown. The present study reports octave band (125 to 8000 Hz) ambient noise SPLs measured in 490 single-walled prefabricated audiometric test rooms located in industrial settings that were obtained from eight sources. The ambient noise SPLs were highest in the lower frequencies and decreased as frequency increased. All 490 rooms met the OSHA MPANLs. Fortunately, the ambient noise SPLs were considerably lower than the OSHA MPANLs, since previous research has demonstrated that hearing thresholds cannot be obtained down to 0-dB HL in a test room having ambient noise levels equal to the OSHA MPANLs. In fact, 33%, or 162 of the 490 test rooms, met the more stringent MPANLs recently specified by the American National Standards Institute (ANSI) for industrial hearing testing. Given that the OSHA MPANLs are too high and that the test room ambient noise SPLs were considerably less than the OSHA MPANLs, that authors recommend that the OSHA MPANLs be revised to the more stringent ANSI 1991 MPANLs so that hearing thresholds for baseline and annual audiograms can be measured down to 0-dB HL.
NASA Astrophysics Data System (ADS)
Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.
2013-12-01
Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.
NASA Astrophysics Data System (ADS)
Titschack, J.; Baum, D.; Matsuyama, K.; Boos, K.; Färber, C.; Kahl, W.-A.; Ehrig, K.; Meinel, D.; Soriano, C.; Stock, S. R.
2018-06-01
During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AO-derived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance-map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Kolomenski, A.; Hanifin, J.; Schwin, B. M.
2017-01-01
NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial crew feedback.
Ambient Assisted Nutritional Advisor for elderly people living at home.
Lazaro, Juan P; Fides, Alvaro; Navarro, Ana; Guillen, Sergio
2010-01-01
Nutrition is a critical aspect when getting older because bad nutrition habits can accelerate the process of degradation of the physical condition of the old person. In order to mitigate this problem, an Ambient Assisted Living service has been developed. Research with this service is focused on demonstrating that with an Ambient Intelligence systems it is possible to make the nutritional management much more effective by influencing the user, by automatically and seamlessly monitoring and by facilitating tools for nutritional management for people that want to be autonomous. In this paper both requirement acquisition and development processes are described as well.
A field portable mass spectrometer for monitoring organic vapors.
Meier, R W
1978-03-01
A portable mass spectrometer has been designed and built under the sponsorship of the US Army for the purpose of monitoring low concentrations of specified organics in the ambient atmosphere. The goals of the development were discrimination, sensitivity, portability, simplicity of operation, economy and convenience. These objectives were met in a system consisting of a computer operated mass spectrometer with a Llewellyn membrane separator inlet system housed in two 26 x 18 x 9 inch aluminum cases with a total weight less than 150 pounds. This system has shown the capability for field detection of hundreds of specific organic vapors at the parts per billion level in the ambient and workplace environments.
Practical method for appearance match between soft copy and hard copy
NASA Astrophysics Data System (ADS)
Katoh, Naoya
1994-04-01
CRT monitors are often used as a soft proofing device for the hard copy image output. However, what the user sees on the monitor does not match its output, even if the monitor and the output device are calibrated with CIE/XYZ or CIE/Lab. This is especially obvious when correlated color temperature (CCT) of CRT monitor's white point significantly differs from ambient light. In a typical office environment, one uses a computer graphic monitor having a CCT of 9300K in a room of white fluorescent light of 4150K CCT. In such a case, human visual system is partially adapted to the CRT monitor's white point and partially to the ambient light. The visual experiments were performed on the effect of the ambient lighting. Practical method for soft copy color reproduction that matches the hard copy image in appearance is presented in this paper. This method is fundamentally based on a simple von Kries' adaptation model and takes into account the human visual system's partial adaptation and contrast matching.
Infrasonic waves in the ionosphere generated by a weak earthquake
NASA Astrophysics Data System (ADS)
Krasnov, V. M.; Drobzheva, Ya. V.; Chum, J.
2011-08-01
A computer code has been developed to simulate the generation of infrasonic waves (frequencies considered ≤80 Hz) by a weak earthquake (magnitude ˜3.6), their propagation through the atmosphere and their effects in the ionosphere. We provide estimates of the perturbations in the ionosphere at the height (˜160 km) where waves at the sounding frequency (3.59 MHz) of a continuous Doppler radar reflect. We have found that the pressure perturbation is 5.79×10-7 Pa (0.26% of the ambient value), the temperature perturbation is 0.088 K (0.015% of the ambient value) and the electron density perturbation is 2×108 m-3 (0.12% of the ambient value). The characteristic perturbation is found to be a bipolar pulse lasting ˜25 s, and the maximum Doppler shift is found to be ˜0.08 Hz, which is too small to be detected by the Doppler radar at the time of the earthquake.
The Mars climate for a photovoltaic system operation
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.
Role of Water in the Selection of Stable Proteins at Ambient and Extreme Thermodynamic Conditions
NASA Astrophysics Data System (ADS)
Bianco, Valentino; Franzese, Giancarlo; Dellago, Christoph; Coluzza, Ivan
2017-04-01
Proteins that are functional at ambient conditions do not necessarily work at extreme conditions of temperature T and pressure P . Furthermore, there are limits of T and P above which no protein has a stable functional state. Here, we show that these limits and the selection mechanisms for working proteins depend on how the properties of the surrounding water change with T and P . We find that proteins selected at high T are superstable and are characterized by a nonextreme segregation of a hydrophilic surface and a hydrophobic core. Surprisingly, a larger segregation reduces the stability range in T and P . Our computer simulations, based on a new protein design protocol, explain the hydropathy profile of proteins as a consequence of a selection process influenced by water. Our results, potentially useful for engineering proteins and drugs working far from ambient conditions, offer an alternative rationale to the evolutionary action exerted by the environment in extreme conditions.
Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.
2014-05-15
The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilitiesmore » is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.« less
Monitoring earthen dams and levees with ambient seismic noise
NASA Astrophysics Data System (ADS)
Planès, T.; Mooney, M.; Rittgers, J. B.; Kanning, W.; Draganov, D.
2017-12-01
Internal erosion is a major cause of failure of earthen dams and levees and is difficult to detect at an early stage by traditional visual inspection techniques. The passive and non-invasive ambient-noise correlation technique could help detect and locate internal changes taking place within these structures. First, we apply this passive seismic method to monitor a canal embankment model submitted to piping erosion, in laboratory-controlled conditions. We then present the monitoring of a sea levee in the Netherlands. A 150m-long section of the dike shows sandboils in the drainage ditch located downstream of the levee. These sandboils are the sign of concentrated seepage and potential initiation of internal erosion in the structure. Using the ambient-noise correlation technique, we retrieve surface waves propagating along the crest of the dike. Temporal variations of the seismic wave velocity are then computed during the tide cycle. These velocity variations are correlated with local in-situ pore water pressure measurements and are possibly influenced by the presence of concentrated seepage paths.
Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission
NASA Astrophysics Data System (ADS)
Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.
2018-01-01
Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.
Computational Analysis of Gravitational Effects in Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Satti, Rajani P.; Agrawal, Ajay K.
2004-01-01
This study deals with the computational analysis of buoyancy-induced instability in the nearfield of an isothermal helium jet injected into quiescent ambient air environment. Laminar, axisymmetric, unsteady flow conditions were considered for the analysis. The transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum were solved using a staggered grid finite volume method. The jet Richardson numbers of 1.5 and 0.018 were considered to encompass both buoyant and inertial jet flow regimes. Buoyancy effects were isolated by initiating computations in Earth gravity and subsequently, reducing gravity to simulate the microgravity conditions. Computed results concur with experimental observations that the periodic flow oscillations observed in Earth gravity subside in microgravity.
Noseworthy, Theodore J; Finlay, Karen
2009-09-01
This research examined the effects of a casino's auditory character on estimates of elapsed time while gambling. More specifically, this study varied whether the sound heard while gambling was ambient casino sound alone or ambient casino sound accompanied by music. The tempo and volume of both the music and ambient sound were varied to manipulate temporal engagement and introspection. One hundred and sixty (males = 91) individuals played slot machines in groups of 5-8, after which they provided estimates of elapsed time. The findings showed that the typical ambient casino auditive environment, which characterizes the majority of gaming venues, promotes understated estimates of elapsed duration of play. In contrast, when music is introduced into the ambient casino environment, it appears to provide a cue of interval from which players can more accurately reconstruct elapsed duration of play. This is particularly the case when the tempo of the music is slow and the volume is high. Moreover, the confidence with which time estimates are held (as reflected by latency of response) is higher in an auditive environment with music than in an environment that is comprised of ambient casino sounds alone. Implications for casino management are discussed.
Möller, L; Schuetzle, D; Autrup, H
1994-01-01
This paper presents key conclusions and future research needs from a Workshop on the Risk Assessment of Urban Air, Emissions, Exposure, Risk Identification, and Quantification, which was held in Stockholm during June 1992 by 41 participants from 13 countries. Research is recommended in the areas of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out this research. PMID:7529703
Evidence of Non-extensivity in Earth's Ambient Noise
NASA Astrophysics Data System (ADS)
Koutalonis, Ioannis; Vallianatos, Filippos
2017-12-01
The study of ambient seismic noise is one of the important scientific and practical research challenges, due to its use in a number of geophysical applications. In this work, we describe Earth's ambient noise fluctuations in terms of non-extensive statistical physics. We found that Earth's ambient noise increments follow the q-Gaussian distribution. This indicates that Earth's ambient noise's fluctuations are not random and present long-term memory effects that could be described in terms of Tsallis entropy. Our results suggest that q values depend on the time length used and that the non-extensive parameter, q, converges to value q → 1 for short-time windows and a saturation value of q ≈ 1.33 for longer ones. The results are discussed from the point of view of superstatistics introduced by Beck [Contin Mech Thermodyn 16(3):293-304, 2004] and connects the q values with the system's degrees of freedom. Our work indicates that the converged (maximum) value is q = 1.33 and is related to 5 degrees of freedom.
The functional dependence of canopy conductance on water vapor pressure deficit revisited
NASA Astrophysics Data System (ADS)
Fuchs, Marcel; Stanghellini, Cecilia
2018-03-01
Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.
Importance of turbulence-chemistry interactions at low temperature engine conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu
The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less
Importance of turbulence-chemistry interactions at low temperature engine conditions
Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu
2017-06-08
The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less
Vibration criteria for transit systems in close proximity to university research activities
NASA Astrophysics Data System (ADS)
Wolf, Steven
2004-05-01
As some of the newer LRT projects get closer to research facilities the question arisesi ``how do you assess the potential impact of train operations on the activities within these types of facilities?'' There are several new LRT projects that have proposed alignments near or under university research facilities. The traditional ground vibration analysis at these locations is no longer valid but requires a more sophisticated approach to identifying both criteria and impact. APTA, ISO, IES, and FTA vibration criteria may not be adequate for the most sensitive activities involving single cell and nano technology research. The use of existing ambient vibration levels is evaluated as a potential criteria. A statistical approach is used to better understand how the train vibration would affect the ambient vibration levels.
Yu, Hwa-Lung; Wang, Chih-Hsin
2013-02-05
Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.
Effects of respirator ambient air cooling on thermophysiological responses and comfort sensations.
Caretti, David M; Barker, Daniel J
2014-01-01
This investigation assessed the thermophysiological and subjective impacts of different respirator ambient air cooling options while wearing chemical and biological personal protective equipment in a warm environment (32.7 ± 0.4°C, 49.6 ± 6.5% RH). Ten volunteers participated in 90-min heat exposure trials with and without respirator (Control) wear and performed computer-generated tasks while seated. Ambient air cooling was provided to respirators modified to blow air to the forehead (FHC) or to the forehead and the breathing zone (BZC) of a full-facepiece air-purifying respirator using a low-flow (45 L·min(-1)) mini-blower. An unmodified respirator (APR) trial was also completed. The highest body temperatures (TTY) and least favorable comfort ratings were observed for the APR condition. With ambient cooling over the last 60 min of heat exposure, TTY averaged 37.4 ± 0.6°C for Control, 38.0 ± 0.4°C for APR, 37.8 ± 0.5°C for FHC, and 37.6 ± 0.7°C for BZC conditions independent of time. Both the FHC and BZC ambient air cooling conditions reduced facial skin temperatures, reduced the rise in body temperatures, and led to more favorable subjective comfort and thermal sensation ratings over time compared to the APR condition; however statistical differences among conditions were inconsistent. Independent of exposure time, average breathing apparatus comfort scores with BZC (7.2 ± 2.5) were significantly different from both Control (8.9 ± 1.4) and APR (6.5 ± 2.2) conditions when ambient cooling was activated. These findings suggest that low-flow ambient air cooling of the face under low work rate conditions and mild hyperthermia may be a practical method to minimize the thermophysiological strain and reduce perceived respirator discomfort.
Flicker-induced retinal arteriole dilation is reduced by ambient lighting.
Noonan, Jonathan E; Dusting, Gregory J; Nguyen, Thanh T; Man, Ryan E K; Best, William J; Lamoureux, Ecosse L
2014-08-07
To investigate the impact of ambient room lighting on the magnitude of flicker light-induced retinal vasodilations in healthy individuals. Twenty healthy nonsmokers participated in a balanced 2 × 2 crossover study. Retinal vascular imaging was performed with the dynamic vessel analyzer under reduced or normal ambient lighting, then again after 20 minutes under the alternate condition. Baseline calibers of selected arteriole and venule segments were recorded in measurement units. Maximum percentage dilations from baseline during 20 seconds of luminance flicker were calculated from the mean of three measurement cycles. Within-subject differences were assessed by repeated measures analysis of variance with the assumption of no carryover effects and pairwise comparisons from the fitted model. Mean (SD) maximum arteriole dilations during flicker stimulation under reduced and normal ambient lighting were 4.8% (2.3%) and 4.1% (1.9%), respectively (P = 0.019). Maximum arteriole dilations were (mean ± 95% confidence interval) 0.7% ± 0.6% lower under normal ambient lighting compared with reduced lighting. Ambient lighting had no significant effect on maximum venular dilations during flicker stimulation or on the baseline calibers of arterioles or venules. Retinal arteriole dilation in response to luminance flicker stimulation is reduced under higher ambient lighting conditions. Reduced responses with higher ambient lighting may reflect reduced contrast between the ON and OFF flicker phases. Although it may not always be feasible to conduct studies under reduced lighting conditions, ambient lighting levels should be consistent to ensure that comparisons are valid. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Ni, Yan-Chun; Zhang, Feng-Liang
2018-05-01
Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.
NASA Astrophysics Data System (ADS)
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s-1. Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit ( r 2 > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s(-1). Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit (r(2) > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
A New Model of Sensorimotor Coupling in the Development of Speech
ERIC Educational Resources Information Center
Westermann, Gert; Miranda, Eduardo Reck
2004-01-01
We present a computational model that learns a coupling between motor parameters and their sensory consequences in vocal production during a babbling phase. Based on the coupling, preferred motor parameters and prototypically perceived sounds develop concurrently. Exposure to an ambient language modifies perception to coincide with the sounds from…
Simulating Microfracture In Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.; Gotsis, Pascal K.
1994-01-01
Computational procedures developed for simulating microfracture in metal-matrix/fiber composite materials under mechanical and/or thermal loads at ambient and high temperatures. Procedures evaluate microfracture behavior of composites, establish hierarchies and sequences of fracture modes, and examine influences of compliant layers and partial debonding on properties of composites and on initiation of microfractures in them.
Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air
NASA Technical Reports Server (NTRS)
Satti, Rajani P.; Agrawal, Ajay K.
2005-01-01
A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.
Human voice quality measurement in noisy environments.
Ueng, Shyh-Kuang; Luo, Cheng-Ming; Tsai, Tsung-Yu; Yeh, Hsuan-Chen
2015-01-01
Computerized acoustic voice measurement is essential for the diagnosis of vocal pathologies. Previous studies showed that ambient noises have significant influences on the accuracy of voice quality assessment. This paper presents a voice quality assessment system that can accurately measure qualities of voice signals, even though the input voice data are contaminated by low-frequency noises. The ambient noises in our living rooms and laboratories are collected and the frequencies of these noises are analyzed. Based on the analysis, a filter is designed to reduce noise level of the input voice signal. Then, improved numerical algorithms are employed to extract voice parameters from the voice signal to reveal the health of the voice signal. Compared with MDVP and Praat, the proposed method outperforms these two widely used programs in measuring fundamental frequency and harmonic-to-noise ratio, and its performance is comparable to these two famous programs in computing jitter and shimmer. The proposed voice quality assessment method is resistant to low-frequency noises and it can measure human voice quality in environments filled with noises from air-conditioners, ceiling fans and cooling fans of computers.
Clean galena, contaminated lead, and soft errors in memory chips
NASA Astrophysics Data System (ADS)
Lykken, G. I.; Hustoft, J.; Ziegler, B.; Momcilovic, B.
2000-10-01
Lead (Pb) disks were exposed to a radon (Rn)-rich atmosphere and surface alpha particle emissions were detected over time. Cumulative 210Po alpha emission increased nearly linearly with time. Conversely, cumulative emission for each of 218Po and 214Po was constant after one and two hours, respectively. Processing of radiation-free Pb ore (galena) in inert atmospheres was compared with processing in ambient air. Galena processed within a flux heated in a graphite crucible while exposed to an inert atmosphere, resulted in lead contaminated with 210Po (Trial 1). A glove box was next used to prepare a baseline radiation-free flux sample in an alumina crucible that was heated in an oven with an inert atmosphere (Trials 2 and 3). Ambient air was thereafter introduced, in place of the inert atmosphere, to the radiation-free flux mixture during processing (Trial 4). Ambient air introduced Rn and its progeny (RAD) into the flux during processing so that the processed Pb contained Po isotopes. A typical coke used in lead smelting also emitted numerous alpha particles. We postulate that alpha particles from tin/lead solder bumps, a cause of computer chip memory soft errors, may originate from Rn and RAD in the ambient air and/or coke used as a reducing agent in the standard galena smelting procedure.
None
2018-05-16
Bang Goes the Theory: See how this BBC TV show described INL research to one day make electricity from ambient heat. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.
Ambient Noise and Surface Wave Dissipation in the Ocean
1993-06-21
computed frmn a one hour wave gauge record with U10 = 8 m/s. a ) Power spectrum computed rom 1024-point FFr. used throughout this work . b) Power specttrum...this work , equations relating U and N in the form of Equation 1.3 will be referred to as WOTAN equations’. Figure 1.2 shows a figure taken from Evans et...the found that a significant proportion of the dissipated energy (up to 50%) is due to work done by the liquid in entraining air against buoyancy
Rayleigh wave tomography of the British Isles from ambient seismic noise
NASA Astrophysics Data System (ADS)
Nicolson, Heather; Curtis, Andrew; Baptie, Brian
2014-08-01
We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the lower crust such as Northern Ireland, the eastern Irish Sea and northwest Wales.
Computational design of materials for solar hydrogen generation
NASA Astrophysics Data System (ADS)
Umezawa, Naoto
Photocatalysis has a great potential for the production of hydrogen from aquerous solution under solar light. In this talk, two different approaches toward the computational materials desing for solar hydrogen generation will be presented. Tin (Sn), which has two major oxidation states, Sn2+ and Sn4+, is abundant on the earth's crust. Recently, visible-light responsive photocatalytc H2 evolution reaction was identified over a mixed valence tin oxide Sn3O4. We have carried out crystal structure prediction for mixed valence tin oxides in different atomic compositions under ambient pressure condition using advanced computational methods based on the evolutionary crystal-structure search and density-functional theory. The predicted novel crystal structures realize the desirable band gaps and band edge positions for H2 evolution under visible light irradiation. It is concluded that multivalent tin oxides have a great potential as an abundant, cheap and environmentally-benign solar-energy conversion photofunctional materials. Transition metal doping is effective for sensitizing SrTiO3 under visible light. We have theoretically investigated the roles of the doped Cr in STO based on hybrid density-functional calculations. Cr atoms are preferably substituting for Ti under any equilibrium growth conditions. The lower oxidation state Cr3+, which is stabilized under an n-type condition of STO, is found to be advantageous for the photocatalytic performance. It is firther predicted that lanthanum is the best codopant for stabilizing the favorable oxidation state, Cr3+. The prediction was validated by our experiments that La and Cr co-doped STO shows the best performance among examined samples. This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) and International Research Fellow program of Japan Society for the Promotion of Science (JSPS) through project P14207.
X-Ray Computed Tomography Monitors Damage in Composites
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1997-01-01
The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.
An Internet of Things platform architecture for supporting ambient assisted living environments.
Tsirmpas, Charalampos; Kouris, Ioannis; Anastasiou, Athanasios; Giokas, Kostas; Iliopoulou, Dimitra; Koutsouris, Dimitris
2017-01-01
Internet of Things (IoT) is the logical further development of today's Internet, enabling a huge amount of devices to communicate, compute, sense and act. IoT sensors placed in Ambient Assisted Living (AAL) environments, enable the context awareness and allow the support of the elderly in their daily routines, ultimately allowing an independent and safe lifestyle. The vast amount of data that are generated and exchanged between the IoT nodes require innovative context modeling approaches that go beyond currently used models. Current paper presents and evaluates an open interoperable platform architecture in order to utilize the technical characteristics of IoT and handle the large amount of generated data, as a solution to the technical requirements of AAL applications.
Studies of dynamic processes related to active experiments in space plasmas
NASA Technical Reports Server (NTRS)
Banks, Peter M.; Neubert, Torsten
1992-01-01
This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.
Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.
Kawano, Ryuji
2018-02-19
A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diabetes City: How Urban Game Design Strategies Can Help Diabetics
NASA Astrophysics Data System (ADS)
Knöll, Martin
Computer Games are about to leave their “electronic shells” and enter the city. So-called Serious Pervasive Games (SPGs) [1] allow for hybrid - simultaneously physical and virtual - experiences, applying technologies of ubiquitous computing, communication and “intelligent” interfaces. They begin to focus on non-entertaining purposes. The following article a) presents game design strategies as a missing link between pervasive computing, Ambient Intelligence and user’s everyday life. Therefore it spurs a discussion how Pervasive Healthcare focusing on the therapy and prevention of chronic diseases can benefit from urban game design strategies. b) Moreover the article presents the development and work in progress of “DiabetesCity“ - an educational game prototype for young diabetics.
A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation
NASA Astrophysics Data System (ADS)
Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang
2018-03-01
A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.
1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, C.H.; Duncan, D.; Sanchez, R.
1997-08-01
Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiologicalmore » effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.« less
Sources of avoidance motivation: Valence effects from physical effort and mental rotation.
Morsella, Ezequiel; Feinberg, Giles H; Cigarchi, Sepeedeh; Newton, James W; Williams, Lawrence E
2011-09-01
When reaching goals, organisms must simultaneously meet the overarching goal of conserving energy. According to the law of least effort, organisms will select the means associated with the least effort. The mechanisms underlying this bias remain unknown. One hypothesis is that organisms come to avoid situations associated with unnecessary effort by generating a negative valence toward the stimuli associated with such situations. Accordingly, merely using a dysfunctional, 'slow' computer mouse causes participants to dislike ambient neutral images (Study 1). In Study 2, nonsense shapes were liked less when associated with effortful processing (135° of mental rotation) versus easier processing (45° of rotation). Complementing 'fluency' effects found in perceptuo-semantic research, valence emerged from action-related processing in a principled fashion. The findings imply that negative valence associations may underlie avoidance motivations, and have practical implications for educational/workplace contexts in which effort and positive affect are conducive to success.
Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air
An, Sangmin; Long, Christian J
2014-01-01
Summary We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the fundamental eigenmode and the higher eigenmodes. We discuss the dynamic complexities of the tip response in time and frequency space, as well as the average amplitude and phase response. We also illustrate typical images and spectroscopy curves and provide a very brief description of the observed contrast. Overall, our findings are promising in that they help to open the door to increasing sophistication and greater versatility in multi-frequency AFM through the incorporation of a larger number of driven eigenmodes, and in highlighting specific future research opportunities. PMID:25383276
NASA Astrophysics Data System (ADS)
Turmuzi, M.; Suryati, I.; Mashaly, E. T.; Batubara, F.
2018-02-01
One source to decrease urban air ambient quality is transportation sector. Important pollutants are released by gas emissions from vehicles are carbon monoxide (CO), hydrocarbons (HC), nitrogen dioxide (NO2), particulate matter and others. The presence of CO pollutants in the ambient air can be predicted by modeling air quality. This study aims to estimate CO concentration resulting from transportation activities using Delhi Finite Line Source (DFLS) model, comparing CO prediction using a DFLS model with CO observation in the field, and determine the suitability of the DFLS model application on the MT Haryono street in Medan City. Research was conducted for 3 days at two sample points with frequency twice daily. Based on research results, the range of CO concentration from observation between 22.903 μg/m3 - 27.484 μg/m3. CO observation is still below the ambient air quality standard. According to the DFLS calculations, the range of CO concentration between 1.499 μg/m3- 2.051 μg/m3. The calculation index of agreement (IOA) validation test obtained value of d = 0.22. The DFLS model is not suitable to be applied on MT Haryono street because many factors affected such as wind direction and wind velocity, ambient air temperature and humidity
Context Becomes Content: Sensor Data for Computer-Supported Reflective Learning
ERIC Educational Resources Information Center
Muller, Lars; Divitini, Monica; Mora, Simone; Rivera-Pelayo, Veronica; Stork, Wilhelm
2015-01-01
Wearable devices and ambient sensors can monitor a growing number of aspects of daily life and work. We propose to use this context data as content for learning applications in workplace settings to enable employees to reflect on experiences from their work. Learning by reflection is essential for today's dynamic work environments, as employees…
2012-04-01
time , crystal frequency, temperature, and headspace oxygen concentration. 41 Approved for public release; distribution unlimited. C-4. Fuels: In...at ambient pressure. At this point the heater, which is set at 140 °C, is turned on and computer data acquisition is begun. The run time , crystal frequency
COST Action ES1401 TIDES: a European network on TIme DEpendent Seismology
NASA Astrophysics Data System (ADS)
Morelli, Andrea
2016-04-01
Using the full-length records of seismic events and background ambient noise, today seismology is going beyond still-life snapshots of the interior of the Earth, and look into time-dependent changes of its properties. Data availability has grown dramatically with the expansion of seismographic networks and data centers, so as to enable much more detailed and accurate analyses. COST Action ES1401 TIDES (TIme DEpendent Seismology; http://tides-cost.eu) aims at structuring the EU seismological community to enable development of data-intensive, time-dependent techniques for monitoring Earth active processes (e.g., earthquakes, volcanic eruptions, landslides, glacial earthquakes) as well as oil/gas reservoirs. The main structure of TIDES is organised around working groups on: Workflow integration of data and computing resources; Seismic interferometry and ambient noise; Forward problems and High-performance computing applications; Seismic tomography, full waveform inversion and uncertainties; Applications in the natural environment and industry. TIDES is an open network of European laboratories with complementary skills, and is organising a series of events - workshops and advanced training schools - as well as supporting short-duration scientific stays. The first advanced training school was held in Bertinoro (Italy) on June 2015, with attendance of about 100 participants from 20 European countries, was devoted to how to manage and model seismic data with modern tools. The next school, devoted to ambient noise, will be held in 2016 Portugal: the program will be announced at the time of this conference. TIDES will strengthen Europe's role in a critical field for natural hazards and natural resource management.
Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C
2011-03-01
A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.
Hyperactivity in Anorexia Nervosa: Warming Up Not Just Burning-Off Calories
Carrera, Olaia; Adan, Roger A. H.; Gutierrez, Emilio; Danner, Unna N.; Hoek, Hans W.; van Elburg, Annemarie A.; Kas, Martien J. H.
2012-01-01
Excessive physical activity is a common feature in Anorexia Nervosa (AN) that interferes with the recovery process. Animal models have demonstrated that ambient temperature modulates physical activity in semi-starved animals. The aim of the present study was to assess the effect of ambient temperature on physical activity in AN patients in the acute phase of the illness. Thirty-seven patients with AN wore an accelerometer to measure physical activity within the first week of contacting a specialized eating disorder center. Standardized measures of anxiety, depression and eating disorder psychopathology were assessed. Corresponding daily values for ambient temperature were obtained from local meteorological stations. Ambient temperature was negatively correlated with physical activity (p = −.405) and was the only variable that accounted for a significant portion of the variance in physical activity (p = .034). Consistent with recent research with an analogous animal model of the disorder, our findings suggest that ambient temperature is a critical factor contributing to the expression of excessive physical activity levels in AN. Keeping patients warm may prove to be a beneficial treatment option for this symptom. PMID:22848634
Is anthropogenic ambient noise in the ocean increasing?
NASA Astrophysics Data System (ADS)
McCarthy, Elena; Miller, James H.
2002-11-01
It is commonly accepted that the ocean's ambient noise levels are rising due to increased human activities in coastal and offshore areas. It has been estimated that low-frequency noise levels increased more than 10 dB in many parts of the world between 1950 and 1975. [Ross, Acoustics Bulletin, Jan/Feb (1993)]. Several other sources cite an increase in manmade, or anthropogenic, noise over the past few decades. [D. A. Croll et al., Animal Conservation 4(1) (2001); Marine Mammal Commission Report to Congress (1999); C. W. Turl, NOSC Tech. Report 776 (1982)]. However, there are few historical records of ambient noise data to substantiate these claims. This paper examines several sectors of anthropogenic activities to determine their contributions to ambient noise. These activities include shipping, oil and gas exploration, military sonar development, and academic research. A series of indices for each of these industries is developed to predict ambient noise trends in the sea. It is found that the amount of noise generated by individual activities may have decreased overall due to new technologies and improved efficiency even if the intensity of such activities has increased.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
NASA Astrophysics Data System (ADS)
Wespestad, C.; Thurber, C. H.; Zeng, X.; Bennington, N. L.; Cardona, C.; Singer, B. S.
2016-12-01
Laguna del Maule Volcanic Field is a large, restless, rhyolitic system in the Southern Andes that is being heavily studied through several methods, including seismology, by a collaborative team of research institutions. A temporary array of 52 seismometers from OVDAS (the Southern Andean Volcano Observatory), PASSCAL (Portable Array Seismic Studies of the Continental Lithosphere), and the University of Wisconsin-Madison was used to collect the 1.3 years worth of data for this preliminary study. Ambient noise tomography uses surface wave dispersion data obtained from noise correlation functions (NCFs) between pairs of seismic stations, with one of each pair acting as a virtual source, in order to image the velocity structure in 3-D. NCFs were computed for hour-long time windows, and the final NCFs were obtained with phase-weighted stacking. The Frequency-Time Analysis technique was then utilized to measure group velocity between station pairs. NCFs were also analyzed to detect temporal changes in seismic velocity related to magmatic activity at the volcano. With the surface wave data from ambient noise, our small array aperture limits our modeling to the upper crust, so we employed teleseismic tomography to study deeper structures. For picking teleseismic arrivals, we tested two different correlation and stacking programs, which utilize adaptive stacking and multi-channel cross-correlation, to get relative arrival time data for a set of high quality events. Selected earthquakes were larger than magnitude 5 and between 30 and 95 degrees away from the center of the array. Stations that consistently show late arrivals may have a low velocity body beneath them, more clearly visualized via a 3-D tomographic model. Initial results from the two tomography methods indicate the presence of low-velocity zones at several depths. Better resolved velocity models will be developed as more data are acquired.
Cognitions and 'placebos' in behavioral research on ambient noise.
NASA Technical Reports Server (NTRS)
Harcum, E. R.; Monti, P. M.
1973-01-01
The study investigated effects of noise on visual and psychomotor tasks, with particular concern for influences of certain cognitive variables. A first experiment, using visual and card-sorting tasks, found no effects of 100 dB ambient noise per se, although cognitive variables in the testing situation affected both performance and ratings of disturbance. In two subsequent experiments some of the subjects were told that a noise was extraneous to their task of reproducing tachistoscopic patterns, and others were told that effects of the noise were being studied. It appears that in the absence of an adequate 'placebo' to control for cognitive factors, deceptive instructions may always be necessary in studies of ambient noise.
Low power energy harvesting and storage techniques from ambient human powered energy sources
NASA Astrophysics Data System (ADS)
Yildiz, Faruk
Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source.
Improved Ambient Pressure Pyroelectric Ion Source
NASA Technical Reports Server (NTRS)
Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett
2011-01-01
The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.
Examining Trust, Forgiveness and Regret as Computational Concepts
NASA Astrophysics Data System (ADS)
Marsh, Stephen; Briggs, Pamela
The study of trust has advanced tremendously in recent years, to the extent that the goal of a more unified formalisation of the concept is becoming feasible. To that end, we have begun to examine the closely related concepts of regret and forgiveness and their relationship to trust and its siblings. The resultant formalisation allows computational tractability in, for instance, artificial agents. Moreover, regret and forgiveness, when allied to trust, are very powerful tools in the Ambient Intelligence (AmI) security area, especially where Human Computer Interaction and concrete human understanding are key. This paper introduces the concepts of regret and forgiveness, exploring them from social psychological as well as a computational viewpoint, and presents an extension to Marsh's original trust formalisation that takes them into account. It discusses and explores work in the AmI environment, and further potential applications.
Singh, Satyavan; Bhatia, Arti; Tomer, Ritu; Kumar, Vinod; Singh, B; Singh, S D
2013-08-01
Field experiments were conducted in open top chamber during rabi seasons of 2009-10 and 2010-11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80-85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5-10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF + CO2, NF air and 550 ± 50 ppm CO2), elevated ozone (EO, NF air and 25-35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO + CO2, NF air, 25-35 ppb O3 and 550 ± 50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18-20 %. Elevated CO2 (500 ± 50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.
Radiation environment for ATS-F. [including ambient trapped particle fluxes
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.
1974-01-01
The ambient trapped particle fluxes incident on the ATS-F satellite were determined. Several synchronous circular flight paths were evaluated and the effect of parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.
NASA Astrophysics Data System (ADS)
Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Spence, G.
2013-12-01
The Gulf of St. Lawrence (GSL), located north of the southwest-northeast trending Appalachian mountain in eastern Canada, is a major sedimentary basin with huge potentials for hydrocarbon accumulation. Important questions about the geometry and evolution of the crustal and basin structure beneath the gulf are yet to be answered. To address these issues, the Geological Survey of Canada (GSC) with support from the Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity (POLARIS) deployed a temporary array of broadband seismic stations in the GSL region between October 2005 and October 2008. Combined with the permanent stations of the Canadian National Seismograph Network (CNSN) in the region, the station density is sufficient for detailed seismic tomography inversion. In this study, we investigate the upper crustal structure beneath the gulf using 3 years of continuous ambient noise waveforms recorded at 25 (POLARIS and CNSN) stations around the GSL. Cross-correlation functions of the vertical component of the ambient noise wavefield for simultaneously recording station pairs (corresponding to inter-station Green's functions) are computed and analyzed using the frequency-time analysis method. Dispersion curves are measured and Rayleigh wave group velocities are subsequently extracted for periods between 2 and 20s, which are periods sensitive to the upper crustal structures. Preliminary results from the dispersion measurements indicate that mean group velocities in the region range from 2.8 to 3.2 km/s across the range of period specified. 2-D group velocity distribution for each period is determined by linearized inversion of the dispersion data. Our tomography results show prominent lateral velocity variation. Low velocity anomalies are observed at shorter periods (up to ~10 s) which correspond to the sedimentary structures at shallow depths (between 5-10 km), whereas the characteristics of upper crustal structures are shown by velocity anomalies at longer periods. Our results show striking similarities with the tomographic images obtained in the previous Canada-wide ambient noise analysis for areas where both studies overlap and are also consistent with results from receiver function and active seismic profiling studies previously done in the region. A detailed inversion of the 3-D shear velocity structure will be conducted to appropriately delineate the thickness and seismic velocity of the composite geologic units.
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)
2002-01-01
A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.
Optimized Materials From First Principles Simulations: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, G; Gygi, F
2005-07-26
In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less
NASA Astrophysics Data System (ADS)
Kwak, S.; Song, S. G.; Kim, G.; Shin, J. S.
2015-12-01
Recently many seismologists have paid attention to ambient seismic field, which is no more referred as noise and called as Earth's hum, but as useful signal to understand subsurface seismic velocity structure. It has also been demonstrated that empirical Green's functions can be constructed by retrieving both phase and amplitude information from ambient seismic field (Prieto and Beroza 2008). The constructed empirical Green's functions can be used to predict strong ground motions after focal depth and double-couple mechanism corrections (Denolle et al. 2013). They do not require detailed subsurface velocity model and intensive computation for ground motion simulation. In this study, we investigate the capability of predicting long period surface waves by the ambient seismic wave field with a seismic event of Mw 4.0, which occurred with a limestone mine collapse in South Korea on January 31, 2015. This limestone-mine event provides an excellent opportunity to test the efficiency of the ambient seismic wave field in retrieving both phase and amplitude information of Green's functions due to the single force mechanism of the collapse event. In other words, both focal depth and double-couple mechanism corrections are not required for this event. A broadband seismic station, which is about 5.4 km away from the mine event, is selected as a source station. Then surface waves retrieved from the ambient seismic wave field cross-correlation are compared with those generated by the event. Our preliminary results show some potential of the ambient seismic wave field in retrieving both phase and amplitude of Green's functions from a single force impulse source at the Earth's surface. More comprehensive analysis by increasing the time length of stacking may improve the results in further studies. We also aim to investigate the efficiency of retrieving the full empirical Green's functions with the 2007 Mw 4.6 Odaesan earthquake, which is one of the strongest earthquakes occurred in South Korea in the last decade.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...
Code of Federal Regulations, 2014 CFR
2014-07-01
...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...
Code of Federal Regulations, 2013 CFR
2013-07-01
...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...
Code of Federal Regulations, 2012 CFR
2012-07-01
... midnight to midnight (local standard time) that are used in NAAQS computations. Designated monitors are... accordance with part 58 of this chapter. Design values are the metrics (i.e., statistics) that are compared... (referred to as the “annual standard design value”). If spatial averaging has been approved by EPA for a...
ERIC Educational Resources Information Center
van Severen, Lieve; Gillis, Joris J. M.; Molemans, Inge; van den Berg, Renate; De Maeyer, Sven; Gillis, Steven
2013-01-01
The impact of input frequency (IF) and functional load (FL) of segments in the ambient language on the acquisition order of word-initial consonants is investigated. Several definitions of IF/FL are compared and implemented. The impact of IF/FL and their components are computed using a longitudinal corpus of interactions between thirty…
40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead
Code of Federal Regulations, 2012 CFR
2012-07-01
... determine the design value. (B) The “below NAAQS level” test is as follows: Data substitution will be... the recalculated (“test”) result including the high values, shall be used to determine the design... (local standard time), that are used in NAAQS computations. Design value is the site-level metric (i.e...
40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead
Code of Federal Regulations, 2013 CFR
2013-07-01
... determine the design value. (B) The “below NAAQS level” test is as follows: Data substitution will be... the recalculated (“test”) result including the high values, shall be used to determine the design... (local standard time), that are used in NAAQS computations. Design value is the site-level metric (i.e...
40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead
Code of Federal Regulations, 2014 CFR
2014-07-01
... determine the design value. (B) The “below NAAQS level” test is as follows: Data substitution will be... the recalculated (“test”) result including the high values, shall be used to determine the design... (local standard time), that are used in NAAQS computations. Design value is the site-level metric (i.e...
40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead
Code of Federal Regulations, 2010 CFR
2010-07-01
... determine the design value. (B) The “below NAAQS level” test is as follows: Data substitution will be... the recalculated (“test”) result including the high values, shall be used to determine the design... (local standard time), that are used in NAAQS computations. Design value is the site-level metric (i.e...
40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead
Code of Federal Regulations, 2011 CFR
2011-07-01
... determine the design value. (B) The “below NAAQS level” test is as follows: Data substitution will be... the recalculated (“test”) result including the high values, shall be used to determine the design... (local standard time), that are used in NAAQS computations. Design value is the site-level metric (i.e...
RUDO: A Home Ambient Intelligence System for Blind People
Hudec, Milan
2017-01-01
The article introduces an ambient intelligence system for blind people which besides providing assistance in home environment also helps with various situations and roles in which blind people may find themselves involved. RUDO, the designed system, comprises several modules that mainly support or ensure recognition of approaching people, alerting to other household members’ movement in the flat, work on a computer, supervision of (sighted) children, cooperation of a sighted and a blind person (e.g., when studying), control of heating and zonal regulation by a blind person. It has a unified user interface that gives the blind person access to individual functions. The interface for blind people offers assistance with work on a computer, including writing in Braille on a regular keyboard and specialized work in informatics and electronics (e.g., programming). RUDO can complement the standard aids used by blind people at home, it increases their independence and creates conditions that allow them to become fully involved. RUDO also supports blind people sharing a home with sighted people, which contributes to their feeling of security and greater inclusion in society. RUDO has been implemented in a household for two years, which allows an evaluation of its use in practice. PMID:28829372
RUDO: A Home Ambient Intelligence System for Blind People.
Hudec, Milan; Smutny, Zdenek
2017-08-22
The article introduces an ambient intelligence system for blind people which besides providing assistance in home environment also helps with various situations and roles in which blind people may find themselves involved. RUDO, the designed system, comprises several modules that mainly support or ensure recognition of approaching people, alerting to other household members' movement in the flat, work on a computer, supervision of (sighted) children, cooperation of a sighted and a blind person (e.g., when studying), control of heating and zonal regulation by a blind person. It has a unified user interface that gives the blind person access to individual functions. The interface for blind people offers assistance with work on a computer, including writing in Braille on a regular keyboard and specialized work in informatics and electronics (e.g., programming). RUDO can complement the standard aids used by blind people at home, it increases their independence and creates conditions that allow them to become fully involved. RUDO also supports blind people sharing a home with sighted people, which contributes to their feeling of security and greater inclusion in society. RUDO has been implemented in a household for two years, which allows an evaluation of its use in practice.
Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond
NASA Astrophysics Data System (ADS)
Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore
2017-10-01
Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.
Multi-scale Visualization of Molecular Architecture Using Real-Time Ambient Occlusion in Sculptor.
Wahle, Manuel; Wriggers, Willy
2015-10-01
The modeling of large biomolecular assemblies relies on an efficient rendering of their hierarchical architecture across a wide range of spatial level of detail. We describe a paradigm shift currently under way in computer graphics towards the use of more realistic global illumination models, and we apply the so-called ambient occlusion approach to our open-source multi-scale modeling program, Sculptor. While there are many other higher quality global illumination approaches going all the way up to full GPU-accelerated ray tracing, they do not provide size-specificity of the features they shade. Ambient occlusion is an aspect of global lighting that offers great visual benefits and powerful user customization. By estimating how other molecular shape features affect the reception of light at some surface point, it effectively simulates indirect shadowing. This effect occurs between molecular surfaces that are close to each other, or in pockets such as protein or ligand binding sites. By adding ambient occlusion, large macromolecular systems look much more natural, and the perception of characteristic surface features is strongly enhanced. In this work, we present a real-time implementation of screen space ambient occlusion that delivers realistic cues about tunable spatial scale characteristics of macromolecular architecture. Heretofore, the visualization of large biomolecular systems, comprising e.g. hundreds of thousands of atoms or Mega-Dalton size electron microscopy maps, did not take into account the length scales of interest or the spatial resolution of the data. Our approach has been uniquely customized with shading that is tuned for pockets and cavities of a user-defined size, making it useful for visualizing molecular features at multiple scales of interest. This is a feature that none of the conventional ambient occlusion approaches provide. Actual Sculptor screen shots illustrate how our implementation supports the size-dependent rendering of molecular surface features.
Roper, Courtney; Chubb, Lauren G; Cambal, Leah; Tunno, Brett; Clougherty, Jane E; Fattman, Cheryl; Mischler, Steven E
2017-01-01
Filter-based toxicology studies are conducted to establish the biological plausibility of the well-established health impacts associated with fine particulate matter (PM 2.5 ) exposure. Ambient PM 2.5 collected on filters is extracted into solution for toxicology applications, but frequently, characterization is nonexistent or only performed on filter-based PM 2.5 , without consideration of compositional differences that occur during the extraction processes. To date, the impact of making associations to measured components in ambient instead of extracted PM 2.5 has not been investigated. Filter-based PM 2.5 was collected at locations ( n = 5) and detailed characterization of both ambient and extracted PM 2.5 was performed. Alveolar macrophages (AMJ2-C11) were exposed (3, 24, and 48 h) to PM 2.5 and the pro-inflammatory cytokine interleukin (IL)-6 was measured. IL-6 release differed significantly between PM 2.5 collected from different locations; surprisingly, IL-6 release was highest following treatment with PM 2.5 from the lowest ambient concentration location. IL-6 was negatively correlated with the sum of ambient metals analyzed, as well as with concentrations of specific constituents which have been previously associated with respiratory health effects. However, positive correlations of IL-6 with extracted concentrations indicated that the negative associations between IL-6 and ambient concentrations do not accurately represent the relationship between inflammation and PM 2.5 exposure. Additionally, seven organic compounds had significant associations with IL-6 release when considering ambient concentrations, but they were not detected in the extracted solution. Basing inflammatory associations on ambient concentrations that are not necessarily representative of in vitro exposures creates misleading results; this study highlights the importance of characterizing extraction solutions to conduct accurate health impact research.
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
NASA Astrophysics Data System (ADS)
Xu, Jun Hua; Zhu, Lei Ye; Wang, Hai Bin
2018-06-01
Environmental psychology is an interdisciplinary field that focuses on the interplay between individuals and their built and natural environments. Great progress has been made in the areas of environmental psychology by researchers form many countries. However, a thorough quantitative analysis to the emergent research trends and topics has not been found. To reveal the research characteristics and status on Environmental Psychology, 853 related papers from Web of Science core collection were analysed by CiteSpace II. The results show that: (1) the domain of Environmental Psychology was started in 1960s and showed a low growth over the past half century, which reaches a historical peak in 2017. Gifford, USA and the Journal of Environmental Psychology top the list of contributing authors, country and publication respectively. (2) "Environmental Psychology" is the most frequently keywords and has the longest span of the bursts. "ambient scent", "recycling", "children as outsiders" and "ambient temperature" are the top four largest clusters, which are the popular research topics in the domain of environmental psychology.
High-temperature fiber-optic lever microphone
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Cuomo, Frank W.; Nguyen, Trung D.; Rizzi, Stephen A.; Clevenson, Sherman A.
1995-01-01
The design and construction of a fiber-optic lever microphone, capable of operating continuously at temperatures up to 538 C (1000 F) are described. The design is based on the theoretical sensitivities of each of the microphone system components, namely, a cartridge containing a stretched membrane, an optical fiber probe, and an optoelectronic amplifier. Laboratory calibrations include the pistonphone sensitivity and harmonic distortion at ambient temperature, and frequency response, background noise, and optical power transmission at both ambient and elevated temperatures. A field test in the Thermal Acoustic Fatigue Apparatus at Langley Research Center, in which the microphone was subjected to overall sound-pressure levels in the range of 130-160 dB and at temperatures from ambient to 538 C, revealed good agreement with a standard probe microphone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, W. F.
NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.
Development of KRISS standard reference photometer (SRP) for ambient ozone measurement
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, J.
2014-12-01
Surface ozone has adverse impacts on human health and ecosystem. Accurate measurement of ambient ozone concentration is essential for developing effective mitigation strategies and understanding atmospheric chemistry. Korea Research Institute of Standards and Science (KRISS) has developed new ozone standard reference photometers (SRPs) for the calibration of ambient ozone instruments. The basic principle of the KRISS ozone SRPs is to determine the absorption of ultraviolet radiation at a specific wavelength, 253.7 nm, by ozone in the atmosphere. Ozone concentration is calculated by converting UV transmittance through the Beer-Lambert Law. This study introduces the newly developed ozone SRPs and characterizes their performance through uncertainty analysis and comparison with BIPM (International Bureau of Weights and Measures) SRP.
Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control
NASA Astrophysics Data System (ADS)
Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa
2015-09-01
In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.
Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung
2012-03-01
Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung
2012-03-01
Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare.
Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce
NASA Astrophysics Data System (ADS)
Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan
2010-09-01
The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.
The risk of melanoma associated with ambient summer ultraviolet radiation.
Pinault, Lauren; Bushnik, Tracey; Fioletov, Vitali; Peters, Cheryl E; King, Will D; Tjepkema, Michael
2017-05-17
Depletion of the ozone layer has meant that ambient ultraviolet radiation (UVR) has increased in recent decades. At the same time, the incidence of skin cancers, including melanoma, has risen. The relatively few large-scale studies that linked ambient UVR to melanoma found a trend toward rising incidence closer to the equator, where UVR estimates are highest. Similar research has not been conducted in Canada, where ambient UVR is generally lower than in countries further south. Modelled UVR data for the months of June through August during the 1980-to-1990 period were spatially linked in Geographic Information Systems to 2.4 million white members of the 1991 Canadian Census Health and Environment Cohort and tracked for melanoma diagnosis over an 18-year period (1992 to 2009). Standard Cox proportional hazards models were used to estimate melanoma risk associated with increases of ambient summer UVR, assigned by residence at baseline. Models were adjusted for age, sex and socioeconomic (SES) characteristics. Separate analyses by body site of melanoma were conducted. Effect modification of the association between ambient UVR and melanoma by sex, age, outdoor occupation and selected SES characteristics was evaluated. Differences of one standard deviation (446 J/m², or 7% of the mean) in average ambient summer UVR were associated with an increased hazard ratio (HR) for melanoma of 1.22 (95% CI: 1.19 to 1.25) when adjusting for sex, age and SES characteristics. The HR for melanoma in relative UVR (per 1 standard deviation) was larger for men (HR = 1.26; 95% CI: 1.21 to 1.30) than for women (HR = 1.17; 95% CI: 1.13 to 1.22). Ambient summer UVR is associated with a greater risk of melanoma among the white population, even in a country where most people live within a narrow latitudinal belt. A stronger association between melanoma and ambient UVR was evident among men and among people of lower SES.
NASA Astrophysics Data System (ADS)
McQuillen, Isaac; Phelps, LeEllen; Warner, Mark; Hubbard, Robert
2016-08-01
Implementation of an air curtain at the thermal boundary between conditioned and ambient spaces allows for observation over wavelength ranges not practical when using optical glass as a window. The air knife model of the Daniel K. Inouye Solar Telescope (DKIST) project, a 4-meter solar observatory that will be built on Haleakalā, Hawai'i, deploys such an air curtain while also supplying ventilation through the ceiling of the coudé laboratory. The findings of computational fluid dynamics (CFD) analysis and subsequent changes to the air knife model are presented. Major design constraints include adherence to the Interface Control Document (ICD), separation of ambient and conditioned air, unidirectional outflow into the coudé laboratory, integration of a deployable glass window, and maintenance and accessibility requirements. Optimized design of the air knife successfully holds full 12 Pa backpressure under temperature gradients of up to 20°C while maintaining unidirectional outflow. This is a significant improvement upon the .25 Pa pressure differential that the initial configuration, tested by Linden and Phelps, indicated the curtain could hold. CFD post- processing, developed by Vogiatzis, is validated against interferometry results of initial air knife seeing evaluation, performed by Hubbard and Schoening. This is done by developing a CFD simulation of the initial experiment and using Vogiatzis' method to calculate error introduced along the optical path. Seeing error, for both temperature differentials tested in the initial experiment, match well with seeing results obtained from the CFD analysis and thus validate the post-processing model. Application of this model to the realizable air knife assembly yields seeing errors that are well within the error budget under which the air knife interface falls, even with a temperature differential of 20°C between laboratory and ambient spaces. With ambient temperature set to 0°C and conditioned temperature set to 20°C, representing the worst-case temperature gradient, the spatial rms wavefront error in units of wavelength is 0.178 (88.69 nm at λ = 500 nm).
Disseminating Ambient Assisted Living in Rural Areas
Leitner, Gerhard; Felfernig, Alexander; Fercher, Anton J.; Hitz, Martin
2014-01-01
The smart home, ambient intelligence and ambient assisted living have been intensively researched for decades. Although rural areas are an important potential market, because they represent about 80% of the territory of the EU countries and around 125 million inhabitants, there is currently a lack of applicable AAL solutions. This paper discusses the theoretical foundations of AAL in rural areas. This discussion is underlined by the achievements of the empirical field study, Casa Vecchia, which has been carried out over a four-year period in a rural area in Austria. The major goal of Casa Vecchia was to evaluate the feasibility of a specific form of AAL for rural areas: bringing AAL technology to the homes of the elderly, rather than moving seniors to special-equipped care facilities. The Casa Vecchia project thoroughly investigated the possibilities, challenges and drawbacks of AAL related to this specific approach. The findings are promising and somewhat surprising and indicate that further technical, interactional and socio-psychological research is required to make AAL in rural areas reasonable in the future. PMID:25068862
Controlling Hazardous Releases while Protecting Passengers in Civil Infrastructure Systems
NASA Astrophysics Data System (ADS)
Rimer, Sara P.; Katopodes, Nikolaos D.
2015-11-01
The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research develops a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. A computational fluid dynamics model is developed of a simplified public space characterized by a long conduit (e.g. airport terminal) with unidirectional ambient flow that is capable of detecting and mitigating the hazardous contaminant (via boundary ports) over several time horizons using model predictive control optimization. Additionally, a physical prototype is built to test the real-time feasibility of this computational flow control model. The prototype is a blower wind-tunnel with an elongated test section with the capability of sensing (via digital camera) an injected `contaminant' (propylene glycol smoke), and then mitigating that contaminant using actuators (compressed air operated vacuum nozzles) which are operated by a set of pressure regulators and a programmable controller. Finally, an agent-based model is developed to simulate ``agents'' (i.e. building occupants) as they evacuate a public space, and is coupled with the computational flow control model such that agents must interact with a dynamic, threatening environment. NSF-CMMI #0856438.
Ekinci, Yunus Levent
2016-01-01
This paper presents an easy-to-use open source computer algorithm (code) for estimating the depths of isolated single thin dike-like source bodies by using numerical second-, third-, and fourth-order horizontal derivatives computed from observed magnetic anomalies. The approach does not require a priori information and uses some filters of successive graticule spacings. The computed higher-order horizontal derivative datasets are used to solve nonlinear equations for depth determination. The solutions are independent from the magnetization and ambient field directions. The practical usability of the developed code, designed in MATLAB R2012b (MathWorks Inc.), was successfully examined using some synthetic simulations with and without noise. The algorithm was then used to estimate the depths of some ore bodies buried in different regions (USA, Sweden, and Canada). Real data tests clearly indicated that the obtained depths are in good agreement with those of previous studies and drilling information. Additionally, a state-of-the-art inversion scheme based on particle swarm optimization produced comparable results to those of the higher-order horizontal derivative analyses in both synthetic and real anomaly cases. Accordingly, the proposed code is verified to be useful in interpreting isolated single thin dike-like magnetized bodies and may be an alternative processing technique. The open source code can be easily modified and adapted to suit the benefits of other researchers.
Evidence of the non-extensive character of Earth's ambient noise.
NASA Astrophysics Data System (ADS)
Koutalonis, Ioannis; Vallianatos, Filippos
2017-04-01
Investigation of dynamical features of ambient seismic noise is one of the important scientific and practical research challenges. In the same time there isgrowing interest concerning an approach to study Earth Physics based on thescience of complex systems and non extensive statistical mechanics which is a generalization of Boltzmann-Gibbs statistical physics (Vallianatos et al., 2016).This seems to be a promising framework for studying complex systems exhibitingphenomena such as, long-range interactions, and memory effects. Inthis work we use non-extensive statistical mechanics and signal analysis methodsto explore the nature of ambient noise as measured in the stations of the HSNC in South Aegean (Chatzopoulos et al., 2016). In the present work we analyzed the de-trended increments time series of ambient seismic noise X(t), in time windows of 20 minutes to 10 seconds within "calm time zones" where the human-induced noise presents a minimum. Following the non extensive statistical physics approach, the probability distribution function of the increments of ambient noise is investigated. Analyzing the probability density function (PDF)p(X), normalized to zero mean and unit varianceresults that the fluctuations of Earth's ambient noise follows a q-Gaussian distribution asdefined in the frame of non-extensive statisticalmechanics indicated the possible existence of memory effects in Earth's ambient noise. References: F. Vallianatos, G. Papadakis, G. Michas, Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A, 472, 20160497, 2016. G. Chatzopoulos, I.Papadopoulos, F.Vallianatos, The Hellenic Seismological Network of Crete (HSNC): Validation and results of the 2013 aftershock,Advances in Geosciences, 41, 65-72, 2016.
A research study that the U.S. Environmental Protection Agency conducted in Detroit, Michigan, named the Detroit Exposure and Aerosol Research Study (DEARS), will help develop data that improves our understanding of human exposure to various air pollutants in our environment.
Detonation product EOS studies: Using ISLS to refine CHEETAH
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Fried, Larry; Hansen, Donald
2001-06-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Creating a Development Support Bubble for Children
NASA Astrophysics Data System (ADS)
Verhaegh, Janneke; Fontijn, Willem; Aarts, Emile; Boer, Laurens; van de Wouw, Doortje
In this paper we describe an opportunity Ambient Intelligence provides outside the domains typically associated with it. We present a concept for enhancing child development by introducing tangible computing in a way that fits the children and improves current education. We argue that the interfaces used should be simple and make sense to the children. The computer should be hidden and interaction should take place through familiar play objects to which the children already have a connection. Contrary to a straightforward application of personal computers, our solution addresses cognitive, social and fine motor skills in an integrated manner. We illustrate our vision with a concrete example of an application that supports the inevitable transition from free play throughout the classroom to focused play at the table. We also present the validation of the concept with children, parents and teachers, highlighting that they all recognize the benefits of tangible computing in this domain.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2014 CFR
2014-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2012 CFR
2012-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2011 CFR
2011-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2013 CFR
2013-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
NASA Astrophysics Data System (ADS)
Keifer, I. S.; Dueker, K. G.
2016-12-01
In an effort to characterize critical zone development in varying regions, seismologist conduct seismic surveys to assist in the realization of critical zone properties e.g. porosity and regolith thickness. A limitation of traditional critical zone seismology is that data is normally collected along lines, to generate two dimensional transects of the subsurface seismic velocity, even though the critical zone structure is 3D. Hence, we deployed six seismic 2D arrays in southeastern Wyoming to gather ambient seismic fields so that 3D shear velocity models could be produced. The arrays were made up of nominally 400 seismic stations arranged in a 200-meter square grid layout. Each array produced a half Terabyte data volume, so a premium was placed on computational efficiency throughout this study, to handle the roughly 65 billion samples recorded by each array. The ambient fields were cross-correlated on the Yellowstone Super-Computer using the pSIN code (Chen et al., 2016), which decreased correlation run times by a factor of 300 with respect to workstation computers. Group delay times extracted from cross-correlations using 8 Hz frequency bands from 10 Hz to 100 Hz show frequency dispersion at sites with shallow regolith underlain by granite bedrock. Dimensionally, the group velocity map inversion is overdetermined, even after extensive culling of spurious group delay times. Model Resolution matrices for our six arrays show values > 0.7 for most of the modal domain, approaching unity at the center of the model domain; we are then confident that we have an adequate number of rays covering our array space, and should experience minimal smearing of our resultant model due to application of inverse solution on the data. After inverting for the group velocity maps, a second inversion is performed of the group velocity maps for the 3D shear velocity model. This inversion is underdetermined and a second order Tikhonov regularization is used to obtain stable inverse images. Results will be presented.
MASS CONCENTRATION RELATIONSHIPS FROM THE NERL RTP PARTICULATE MATTER PANEL STUDY
The National Exposure Research Laboratory's (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study has completed a one-year investigation of personal, residential and ambient PM-related mass concentrations in two potentially susceptible subpopulations. PM2.5, P...
Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves
2014-09-30
marine sediments. New focus is on very fine- grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient...density, grain size and overburden pressure. A new focus is on the inter-particle cohesive forces in silts and clays and their role in controlling wave...algebraic expressions. The GS theory is the basis for new research on very fine-grained sediments (silts and clays ), in which inter-granular cohesion is
Cooling Different Body Surfaces during Upper-and-Lower Body Exercise.
1986-09-01
exercise (02 uptake, 1.2 lmin -) tests in a hot environment. (ambient temperature - 38*C, relative humidity - 30%) while dressed in a clothing ... exercise (02 uptake, 1.2 l’min-) t,sts in a hot environment (ambient temperature a 380C, relative humidity = 30%) while , - dressed in a clothing ...AD-A173 328 COOLING DIFFERENT BODY SURFACES DURING UPPER-AND-LONEi 1i/I BODY EXERCISE (U) ARMY RESEARCH INST OF ENYVIONMENTAL MEDICINE NATICK MR A J
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Button, Amy; Sweterlitsch, Jeffrey
2011-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.
Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Button, Amy; Sweterlisch, Jeffery J.
2013-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.
Remote monitoring of parental incubation conditions in the greater sandhill crane
Gee, G.F.; Hatfield, J.; Howey, P.J.
1995-01-01
To monitor incubation conditions in nests of greater sandhill cranes, a radiotransmitting egg was built using six temperature sensors, a position sensor, and a light sensor. Sensor readings were received, along with time of observations, and stored in a computer. The egg was used to monitor incubation in nests of six pairs of cranes during 1987 and 1988. Ambient temperature was also measured. Analysis of covariance (ANCOVA) was used to relate highest egg temperature, core egg temperature, and lowest egg temperature to ambient temperature, time since the egg was last turned, and time since the beginning of incubation. Ambient temperature had the greatest effect on egg temperature (P 0.0001), followed by the time since the beginning of incubation and time since the egg was last turned. Pair effect, the class variable in the ANCOVA. was also very significant (P < 0.0001). A nine-term Fourier series was used to estimate the average core egg temperature versus time of day and was found to fit the data well (r2 = 0.94). The Fourier series will be used to run a mechanical incubator to simulate natural incubation conditions for cranes.
Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Button, Amy B.; Sweterlitsch, Jeffrey J.
2013-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.
Neuroradiology Using Secure Mobile Device Review.
Randhawa, Privia A; Morrish, William; Lysack, John T; Hu, William; Goyal, Mayank; Hill, Michael D
2016-04-05
Image review on computer-based workstations has made film-based review outdated. Despite advances in technology, the lack of portability of digital workstations creates an inherent disadvantage. As such, we sought to determine if the quality of image review on a handheld device is adequate for routine clinical use. Six CT/CTA cases and six MR/MRA cases were independently reviewed by three neuroradiologists in varying environments: high and low ambient light using a handheld device and on a traditional imaging workstation in ideal conditions. On first review (using a handheld device in high ambient light), a preliminary diagnosis for each case was made. Upon changes in review conditions, neuroradiologists were asked if any additional features were seen that changed their initial diagnoses. Reviewers were also asked to comment on overall clinical quality and if the handheld display was of acceptable quality for image review. After the initial CT review in high ambient light, additional findings were reported in 2 of 18 instances on subsequent reviews. Similarly, additional findings were identified in 4 of 18 instances after the initial MR review in high ambient lighting. Only one of these six additional findings contributed to the diagnosis made on the initial preliminary review. Use of a handheld device for image review is of adequate diagnostic quality based on image contrast, sharpness of structures, visible artefacts and overall display quality. Although reviewers were comfortable with using this technology, a handheld device with a larger screen may be diagnostically superior.
Chang, Howard H; Fuentes, Montserrat; Frey, H Christopher
2012-09-01
This paper describes a modeling framework for estimating the acute effects of personal exposure to ambient air pollution in a time series design. First, a spatial hierarchical model is used to relate Census tract-level daily ambient concentrations and simulated exposures for a subset of the study period. The complete exposure time series is then imputed for risk estimation. Modeling exposure via a statistical model reduces the computational burden associated with simulating personal exposures considerably. This allows us to consider personal exposures at a finer spatial resolution to improve exposure assessment and for a longer study period. The proposed approach is applied to an analysis of fine particulate matter of <2.5 μm in aerodynamic diameter (PM(2.5)) and daily mortality in the New York City metropolitan area during the period 2001-2005. Personal PM(2.5) exposures were simulated from the Stochastic Human Exposure and Dose Simulation. Accounting for exposure uncertainty, the authors estimated a 2.32% (95% posterior interval: 0.68, 3.94) increase in mortality per a 10 μg/m(3) increase in personal exposure to PM(2.5) from outdoor sources on the previous day. The corresponding estimates per a 10 μg/m(3) increase in PM(2.5) ambient concentration was 1.13% (95% confidence interval: 0.27, 2.00). The risks of mortality associated with PM(2.5) were also higher during the summer months.
Ambient air pollution, traffic noise and adult asthma prevalence: a BioSHaRE approach.
Cai, Yutong; Zijlema, Wilma L; Doiron, Dany; Blangiardo, Marta; Burton, Paul R; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Elliott, Paul; Hansell, Anna L; Hodgson, Susan
2017-01-01
We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank).Residential exposures to ambient air pollution (particulate matter with aerodynamic diameter ≤10 µm (PM 10 ) and nitrogen dioxide (NO 2 )) were estimated by a pan-European Land Use Regression model for 2007. Traffic noise for 2009 was modelled at home addresses by adapting a standardised noise assessment framework (CNOSSOS-EU). A cross-sectional analysis of 646 731 participants aged ≥20 years was undertaken using DataSHIELD to pool data for individual-level analysis via a "compute to the data" approach. Multivariate logistic regression models were fitted to assess the effects of each exposure on lifetime and current asthma prevalence.PM 10 or NO 2 higher by 10 µg·m -3 was associated with 12.8% (95% CI 9.5-16.3%) and 1.9% (95% CI 1.1-2.8%) higher lifetime asthma prevalence, respectively, independent of confounders. Effects were larger in those aged ≥50 years, ever-smokers and less educated. Noise exposure was not significantly associated with asthma prevalence.This study suggests that long-term ambient PM 10 exposure is associated with asthma prevalence in western European adults. Traffic noise is not associated with asthma prevalence, but its potential to impact on asthma exacerbations needs further investigation. Copyright ©ERS 2017.
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Properties of Carbon Nanotubes: Defects, Adsorbates, and Gas Sensing
NASA Astrophysics Data System (ADS)
Eastman, Micah C.
Carbon naotubes and graphene have been a trending research topic in the past decade. These graphitic compounds exhibit numerous advantageous properties (electronic, mechanical, thermal, optical, etc) which industry and researchers alike are excited to take advantage of. Beyond the challenges of yield and controlled growth, there are a number of standing questions which govern some of the more fundamental characteristics of these materials: What role do lattice defects play in the adsorption of gas molecules on the surface of carbon nanotubes? How are the electronic states of the carbon nanotubes influenced by these adsorbed molecules? And how can we develop models to predict useful applications of this knowledge? In order to address these questions, this study combines Raman spectroscopy and electronic measurements carried out in highly controlled environments of carbon nanotube transistors. Assessing these data in conjunction shows that the defect density of a carbon nanotube channel has no correlation with observed threshold voltage shifts, or change in Schottky barrier, due to the presence of ambient oxygen. With these insights in mind, a dynamic adsorption-desorption model is proposed which addresses the oxygen sensitivity of carbon nanotube transistors. Instrumentation and computational developments which facilitated these measurements are also disclosed.
PM: RESEARCH METHODS FOR PM TOXIC COMPOUNDS - PARTICLE METHODS EVALUATION AND DEVELOPMENT
The Federal Reference Method (FRM) for Particulate Matter (PM) developed by EPA's National Exposure Research Laboratory (NERL) forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the National Ambient Air Quality Standard...
Determination of heavy metals in the ambient atmosphere.
Suvarapu, Lakshmi Narayana; Baek, Sung-Ok
2017-01-01
Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.
Studies of Methane Counterflow Flames at Low Pressures
NASA Astrophysics Data System (ADS)
Burrell, Robert Roe
Methane is the smallest hydrocarbon molecule, the fuel most widely studied in fundamental flame structure studies, and a major component of natural gas. Despite many decades of research into the fundamental chemical kinetics involved in methane oxidation, ongoing advancements in research suggest that more progress can be made. Though practical combustors of industrial and commercial significance operate at high pressures and turbulent flow conditions, fundamental understanding of combustion chemistry in flames is more readily obtained for low pressure and laminar flow conditions. Measurements were performed from 1 to 0.1 atmospheres for premixed methane/air and non-premixed methane-nitrogen/oxygen flames in a counterflow. Comparative modeling with quasi-one-dimensional strained flame codes revealed bias-induced errors in measured velocities up to 8% at 0.1 atmospheres due to tracer particle phase velocity slip in the low density gas reacting flow. To address this, a numerically-assisted correction scheme consisting of direct simulation of the particle phase dynamics in counterflow was implemented. Addition of reactions describing the prompt dissociation of formyl radicals to an otherwise unmodified USC Mech II kinetic model was found to enhance computed flame reactivity and substantially improve the predictive capability of computed results for measurements at the lowest pressures studied. Yet, the same modifications lead to overprediction of flame data at 1 atmosphere where results from the unmodified USC Mech II kinetic mechanism agreed well with ambient pressure flame data. The apparent failure of a single kinetic model to capture pressure dependence in methane flames motivates continued skepticism regarding the current understanding of pressure dependence in kinetic models, even for the simplest fuels.
Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum
NASA Technical Reports Server (NTRS)
Redemann, J.; Russell, P. B.; Hamill, P.
2000-01-01
Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This assumption then enters the estimate of the single scattering albedo at ambient relative humidity. To investigate the validity of this assumption we have carried out modeling studies of the absorption humidification factor, assuming that the aerosols contain an insoluble soot core and a coating which determines its hygroscopic growth behavior. The aerosol optical properties are then computed on the basis of the shell/core particle morphology using a Mie-code for concentric shells. From basic physical principles, it is conceivable that aerosol absorption increases when an atmospheric aerosol particle collects a non-absorbing shell, since the soot core is then exposed to an increased (focused) electric field strength. Indeed, our preliminary modeling studies show that the absorption of an atmospheric aerosol particle composed of a soot core and an aqueous sulfuric acid shell may increase by a factor of 50% due to a change in ambient relative humidity from 30 to 95%. We will show how this increased absorption is a function of the initial particle size and soot mass fraction.
Zhang, Ying; Shao, Yi; Shang, Kezheng; Wang, Shigong; Wang, Jinyan
2014-09-01
Set up the model of forecasting the number of circulatorys death toll based on back-propagation (BP) artificial neural networks discuss the relationship between the circulatory system diseases death toll meteorological factors and ambient air pollution. The data of tem deaths, meteorological factors, and ambient air pollution within the m 2004 to 2009 in Nanjing were collected. On the basis of analyzing the ficient between CSDDT meteorological factors and ambient air pollution, leutral network model of CSDDT was built for 2004 - 2008 based on factors and ambient air pollution within the same time, and the data of 2009 est the predictive power of the model. There was a closely system diseases relationship between meteorological factors, ambient air pollution and the circulatory system diseases death toll. The ANN model structure was 17 -16 -1, 17 input notes, 16 hidden notes and 1 output note. The training precision was 0. 005 and the final error was 0. 004 999 42 after 487 training steps. The results of forecast show that predict accuracy over 78. 62%. This method is easy to be finished with smaller error, and higher ability on circulatory system death toll on independent prediction, which can provide a new method for forecasting medical-meteorological forecast and have the value of further research.
Exposure to ambient air pollutants and spontaneous abortion.
Moridi, Maryam; Ziaei, Saeideh; Kazemnejad, Anoshirvan
2014-03-01
This study aimed to evaluate the correlation between ambient concentrations of air pollutants and first-trimester spontaneous abortion. This was a retrospective case–control study, which was conducted on 296 women from June 2010 to February 2011 in Tehran, Iran. Cases were 148 women who experienced a spontaneous abortion before 14 weeks of gestation while the controls were 148 pregnant women after 14 weeks of gestation and groups were matched on sociodemographics and obstetrics characteristics. The samples were recruited randomly from 10 hospitals. In total, pollutants concentrations were collected at 29 stations hourly throughout the study area. We estimated the mean exposure for each participant and investigated the association between spontaneous abortion and ambient pollutants. Findings demonstrated that the average of ambient air pollutants in the cases was significantly higher than in the controls (P < 0.05). The odd ratios of abortion in the areas with higher concentrations of CO, NO₂, O₃ and PM₁₀ were 1.98, 0.96, 0.94 and 1.01, respectively (P < 0.05). Also, the model showed that there was no significant association between prenatal exposures to SO₂ and abortion (P > 0.05). Our findings suggest that pregnant women exposed to ambient air pollutants may be at increased risk of spontaneous abortion. Confirmation by further research is needed.
Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications
Roper, Courtney; Chubb, Lauren G.; Cambal, Leah; Tunno, Brett; Clougherty, Jane E.; Mischler, Steven E.
2016-01-01
Research on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.5 suspended on filters. Removal efficiency was found to be 98.0 ± 1.4% when measured using pre- and post-removal filter weights, however, this efficiency was significantly reduced to 80.2 ± 0.8% when measured based on particle mass in the extraction solution. Furthermore, only 47.2 ± 22.3% of metals and 24.8 ± 14.5% of organics measured on the ambient filter were found in the extraction solution. Individual metallic and organic components were extracted with varying efficiency, with many organics being lost entirely during extraction. Finally, extraction efficiencies of specific PM2.5 components were inversely correlated with total mass. This study details a method to assess compositional alterations resulting from extraction of PM2.5 from filters, emphasizing the need for standardized procedures that maintain compositional integrity of ambient samples for use in toxicology studies of PM2.5. PMID:26446919
Lee, Pei-Chen; Liu, Li-Ling; Sun, Yu; Chen, Yu-An; Liu, Chih-Ching; Li, Chung-Yi; Yu, Hwa-Lung; Ritz, Beate
2016-11-01
Ambient air pollution has been associated with many health conditions, but little is known about its effects on neurodegenerative diseases, such as Parkinson's disease (PD). In this study, we investigated the influence of ambient air pollution on PD in a nationwide population-based case-control study in Taiwan. We identified 11,117 incident PD patients between 2007 and 2009 from the Taiwanese National Health Insurance Research Database and selected 44,468 age- and gender-matched population controls from the longitudinal health insurance database. The average ambient pollutant exposure concentrations from 1998 through the onset of PD were estimated using quantile-based Bayesian Maximum Entropy models. Basing from logistic regression models, we estimated the odds ratios (ORs) and 95% confidence intervals (CIs) of ambient pollutant exposures and PD risk. We observed positive associations between NO x , CO exposures, and PD. In multi-pollutant models, for NO x and CO above the 75th percentile exposure compared with the lowest percentile, the ORs of PD were 1.37 (95% CI=1.23-1.52) and 1.17 (95% CI=1.07-1.27), respectively. This study suggests that ambient air pollution exposure, especially from traffic-related pollutants such as NO x and CO, increases PD risk in the Taiwanese population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Space plasma contactor research, 1987
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1988-01-01
A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.
Ambient ultraviolet radiation exposure and hepatocellular carcinoma incidence in the United States.
VoPham, Trang; Bertrand, Kimberly A; Yuan, Jian-Min; Tamimi, Rulla M; Hart, Jaime E; Laden, Francine
2017-08-18
Hepatocellular carcinoma (HCC), the most commonly occurring type of primary liver cancer, has been increasing in incidence worldwide. Vitamin D, acquired from sunlight exposure, diet, and dietary supplements, has been hypothesized to impact hepatocarcinogenesis. However, previous epidemiologic studies examining the associations between dietary and serum vitamin D reported mixed results. The purpose of this study was to examine the association between ambient ultraviolet (UV) radiation exposure and HCC risk in the U.S. The Surveillance, Epidemiology, and End Results (SEER) database provided information on HCC cases diagnosed between 2000 and 2014 from 16 population-based cancer registries across the U.S. Ambient UV exposure was estimated by linking the SEER county with a spatiotemporal UV exposure model using a geographic information system. Poisson regression with robust variance estimation was used to calculate incidence rate ratios (IRRs) and 95% confidence intervals (CIs) for the association between ambient UV exposure per interquartile range (IQR) increase (32.4 mW/m 2 ) and HCC risk adjusting for age at diagnosis, sex, race, year of diagnosis, SEER registry, and county-level information on prevalence of health conditions, lifestyle, socioeconomic, and environmental factors. Higher levels of ambient UV exposure were associated with statistically significant lower HCC risk (n = 56,245 cases; adjusted IRR per IQR increase: 0.83, 95% CI 0.77, 0.90; p < 0.01). A statistically significant inverse association between ambient UV and HCC risk was observed among males (p for interaction = 0.01) and whites (p for interaction = 0.01). Higher ambient UV exposure was associated with a decreased risk of HCC in the U.S. UV exposure may be a potential modifiable risk factor for HCC that should be explored in future research.
2014-01-01
Background Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. Methods Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’ homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. Results When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. Conclusions Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies. PMID:24410940
Introduction: The SERENITY vision
NASA Astrophysics Data System (ADS)
Maña, Antonio; Spanoudakis, George; Kokolakis, Spyros
In this chapter we present an overview of the SERENITY approach. We describe the SERENITY model of secure and dependable applications and show how it addresses the challenge of developing, integrating and dynamically maintaining security and dependability mechanisms in open, dynamic, distributed and heterogeneous computing systems and in particular Ambient Intelligence scenarios. The chapter describes the basic concepts used in the approach and introduces the different processes supported by SERENITY, along with the tools provided.
NASA Astrophysics Data System (ADS)
Galuk, Yu P.; Nickolaenko, A. P.; Hayakawa, M.
2018-04-01
The real structure of lower ionosphere should be taken into account when modeling the sub-ionospheric radio propagation in the extremely low frequency (ELF) band and studying the global electromagnetic (Schumann) resonance of the Earth-ionosphere cavity. In the present work we use the 2D (two dimensional) telegraph equations (2DTE) for evaluating the effect of the ionosphere day-night non-uniformity on the electromagnetic field amplitude at the Schumann resonance and higher frequencies. Properties of the cavity upper boundary were taken into account by the full wave solution technique for realistic vertical profiles of atmosphere conductivity in the ambient day and ambient night conditions. We solved the electromagnetic problem in a cavity with the day-night non-uniformity by using the 2DTE technique. Initially, the testing of the 2DTE solution was performed in the model of the sharp day-night interface. The further computations were carried out in the model of the smooth day-night transition. The major attention was directed to the effects at propagation paths "perpendicular" or "parallel" to the solar terminator line. Data were computed for a series of frequencies, the comparison of the results was made and interpretation was given to the observed effects.
A review of lithium and non-lithium based solid state batteries
NASA Astrophysics Data System (ADS)
Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam
2015-05-01
Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby D.; Rodriguez, Salvador B.; Carlson, Matthew David
This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows formore » measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.« less
Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.
2002-01-01
Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are plotted to illustrate temporal variations in micrometeorological and soil-water content data. Substantial precipitation at the end of an El Ni?o cycle in early 1998 resulted in measurable water penetration to a depth of 1.25 meters at one of the four experimental soil-monitoring sites.
Long-period noise source inversion in a 3-D heterogeneous Earth
NASA Astrophysics Data System (ADS)
Sager, K.; Ermert, L. A.; Afanasiev, M.; Boehm, C.; Fichtner, A.
2017-12-01
We have implemented a new method for ambient noise source inversion that fully honors finite-frequency wave propagation and 3-D heterogeneous Earth structure.Here, we present results of its first application to the Earth's long-period background signal, the hum, in a period band of around 120 - 300 s. In addition to being a computationally convenient test case, the hum is also the topic of ongoing research in its own right, because different physical mechanisms have been proposed for its excitation. The broad patterns of this model for South and North hemisphere winter are qualitatively consistent with previous long-term studies of the hum sources; however, thanks to methodological improvements, the iterative refinement, and the use of a comparatively extensive dataset, we retrieve a more detailed model in certain locations. In particular, our results support findings that the dominant hum sources are focused along coasts and shelf areas, particularly in the North hemisphere winter, with a possible though not well-constrained contribution of pelagic sources. Additionally, our findings indicate that hum source locations in the ocean, tentatively linked to locally high bathymetry, are important contributors particularly during South hemisphere winter. These results, in conjunction with synthetic recovery tests and observed cross-correlation waveforms, suggest that hum sources are rather narrowly concentrated in space, with length scales on the order of few hundred kilometers. Future work includes the extension of the model to spring and fall season and to shorter periods, as well as its use in full-waveform ambient noise inversion for 3-D Earth structure.
Han, Liliang; Su, Derong; Lv, Shihai; Luo, Yan; Li, Xingfu; Jiao, Jian; Diao, Zhaoyan; Bu, He
2017-08-27
Climate warming generates a tremendous threat to the stability of geographically-isolated wetland (GIW) ecosystems and changes the type of evaporation and atmospheric precipitation in a region. The intrinsic balance of biogeochemical processes and enzyme activity in GIWs may be altered as well. In this paper, we sampled three types of GIWs exhibiting different kinds of flooding periods. With the participation of real-time temperature regulation measures, we assembled a computer-mediated wetland warming micro-system in June 2016 to simulate climate situation of ambient temperature (control group) and two experimental temperature differences (+2.5 °C and +5.0 °C) following a scientific climate change circumstance based on daily and monthly temperature monitoring at a two-minutes scale. Our results demonstrate that the contents of the total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) in the warmed showed, roughly, a balance or a slight decrease than the control treatment. Warming obstructed the natural subsidence of sediment, but reinforced the character of the ecological source, and reduced the activity of urease (URE), but promoted the activity of alkaline phosphatase (AKP) and sucrase (SUC). Redundancy analysis showed that sucrase, urease, available phosphorus (AP), and pH were the major correlating factors under warming conditions in our research scope. Total organic carbon, total nitrogen, sucrase, catalase (CAT), and alkaline phosphatase were the principal reference factors to reflect the ambient temperature variations. Nutrient compositions and enzyme activities in GIW ecosystems could be reconstructed under the warming influence.
Using data from ambient assisted living and smart homes in electronic health records.
Knaup, P; Schöpe, L
2014-01-01
This editorial is part of the Focus Theme of Methods of Information in Medicine on "Using Data from Ambient Assisted Living and Smart Homes in Electronic Health Records". To increase efficiency in the health care of the future, data from innovative technology like it is used for ambient assisted living (AAL) or smart homes should be available for individual health decisions. Integrating and aggregating data from different medical devices and health records enables a comprehensive view on health data. The objective of this paper is to present examples of the state of the art in research on information management that leads to a sustainable use and long-term storage of health data provided by innovative assistive technologies in daily living. Current research deals with the perceived usefulness of sensor data, the participatory design of visual displays for presenting monitoring data, and communication architectures for integrating sensor data from home health care environments with health care providers either via a regional health record bank or via a telemedical center. Integrating data from AAL systems and smart homes with data from electronic patient or health records is still in an early stage. Several projects are in an advanced conceptual phase, some of them exploring feasibility with the help of prototypes. General comprehensive solutions are hardly available and should become a major issue of medical informatics research in the near future.
NASA Astrophysics Data System (ADS)
Myles, L.; Heuer, M. W.
2012-12-01
Atmospheric ammonia (NH3) is a reduced form of reactive nitrogen that is primarily emitted from agricultural activities. NH3 volatilizes from animal waste and fertilized land directly into the atmosphere where it can either react with other gases to form fine particulate matter or deposit on surfaces through air-surface exchange processes. Field measurements in different ecosystems and under various conditions are necessary to improve the understanding of the complex relationships between ambient NH3 and meteorological parameters, such as temperature and relative humidity, which influence volatilization rates and ultimately, ambient concentrations near emission sources. However, the measurement of ambient NH3 is challenging. NH3 is hydroscopic and reactive, and measurement techniques are subject to errors caused by sampling artifacts and other interferences. Recent advancements have led to improved techniques that allow real-time measurement of ambient NH3. A cavity ring-down spectrometer was deployed at a cattle research facility in Knoxville, TN during spring 2012 to measure ambient NH3, and meteorological instrumentation was collocated to measure 3-D winds, temperature, relative humidity, precipitation and other parameters (z = 2 m). The study site was rolling pasture typical of the eastern Tennessee Valley and included two large barns and approximately 30-40 cattle. Daytime ambient NH3 averaged 15-20 ppb most days with lows of approximately 7 ppb at night. Higher concentrations (greater than 50 ppb) seemed to correlate with higher temperatures (greater than 27 C), although the data are not consistent. Several instances of 100 ppb concentrations were measured when temperatures were high and winds were from the direction of the barns. Overall, the study shows that ambient NH3 levels near agricultural emission sources may vary greatly with time and a variety of factors, including meteorological conditions. The data support the need for real-time measurements of NH3 to determine how environmental conditions can affect ambient concentrations and therefore, the amount of NH3 available in the atmosphere to form particulate matter or participate in deposition processes.
Strand, Linn B; Barnett, Adrian G; Tong, Shilu
2011-04-01
Seasonal patterns of birth outcomes, such as low birth weight, preterm birth and stillbirth, have been found around the world. As a result, there has been an increasing interest in evaluating short-term exposure to ambient temperature as a determinant of adverse birth outcomes. This paper reviews the epidemiological evidence on seasonality of birth outcomes and the impact of prenatal exposure to ambient temperature on birth outcomes. We identified 20 studies that investigated seasonality of birth outcomes, and reported statistically significant seasonal patterns. Most of the studies found peaks of preterm birth, stillbirth and low birth weight in winter, summer or both, which indicates the extremes of temperature may be an important determinant of poor birth outcomes. We identified 13 studies that investigated the influence of exposure to ambient temperature on birth weight and preterm birth (none examined stillbirth). The evidence for an adverse effect of high temperatures was stronger for birth weight than for preterm birth. More research is needed to clarify whether high temperatures have a causal effect on fetal health. Copyright © 2011 Elsevier Inc. All rights reserved.
Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y; Schwegler, Eric
2016-10-21
Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na + , K + , and Cl - ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.
Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J
2010-02-01
Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that couples computational modeling with experiments can significantly accelerate the discovery of novel storage materials (155 references).
NASA Technical Reports Server (NTRS)
Jacobsen, R. A.; Bivens, C. C.; Rediess, N. A.; Hindson, W. S.; Aiken, E. W.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. The principal systems that are being installed in the aircraft are a Helmet Mounted Display (HMD) and imaging system, and a programmable full authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. The paper will describe the capabilities of these systems and their current state of development. A brief description of initial research applications is included. The wide (40 X 60 degree) field-of-view HMD system has been provided by Kaiser Electronics. It can be configured as a monochromatic system for use in bright daylight conditions, a two color system for darker ambients, or a full color system for use in night viewing conditions. Color imagery is achieved using field sequential video and a mechanical color wheel. In addition to the color symbology, high resolution computer-gene rated imagery from an onboard Silicon Graphics Reality Engine Onyx processor is available for research in virtual reality applications. This synthetic imagery can also be merged with real world video from a variety of imaging systems that can be installed easily on the front of the helicopter. These sensors include infrared or tv cameras, or potentially small millimeter wave radars. The Research Flight Control System is being developed for the aircraft by a team of contractors led by Boeing Helicopters. It consists of a full authority high bandwidth fly-by-wire actuators that drive the main rotor swashplate actuators and the tail rotor actuator in parallel. This arrangement allows the basic mechanical flight control system of the Black Hawk to be retained so that the safety pilot can monitor the operation of the system through the action of his own controls. The evaluation pilot will signal the fly-by-wire actuators through the flight computer from electrical sidearm controllers located in the right hand cockpit. The system will have very substantial input/output capacity and impressive computational power. These systems are installed in the aircraft using predominantly a MIL-STD 1553B data bus architecture. Sensor data from the RFCS, the basic aircraft and rotor system instrumentation including navigation information, and the HMD system are easily exchanged among user systems, or are available at the systems operator station located in the cabin for real time monitoring or data recording.
PARTICIPANT RECRUITMENT AND RETENTION FOR THE NERL RTP PM PANEL STUDY
EPA's National Exposure Research Laboratory (NERL) completed a 12 month Particulate Matter (PM) Panel Study in the Research Triangle Park, NC area in May 2001. A primary goal of the study was to compare PM levels measured at an ambient and residential sites with those from per...
77 FR 20217 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... Planning and Standards (OAQPS), U.S. Environmental Protection Agency, Mail Code C504-06, Research Triangle... of Research 3. Implementation Challenges 4. Monitoring Plan Development and Stakeholder Participation B. Summary of Proposed Evaluation of Monitoring Methods C. Comments on Field Pilot Program and...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2013 CFR
2013-07-01
..., National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle....2.3For which a quantitative relationship to a reference or equivalent method for PM 10 has been established at the use site. Procedures for establishing a quantitative site-specific relationship are...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2014 CFR
2014-07-01
..., National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle....2.3For which a quantitative relationship to a reference or equivalent method for PM 10 has been established at the use site. Procedures for establishing a quantitative site-specific relationship are...
A recently developed, organic tracer-based method was used to estimate the secondary contributions of biogenic and anthropogenic precursor hydrocarbons to ambient organic carbon concentrations in PM2.5 during 2006 in Research Triangle Park, North Carolina, USA. Forty-s...
Effects of ambient turbulence on the near wake of a wind turbine
NASA Astrophysics Data System (ADS)
Kim, Yusik; Jost, Eva; Bangga, Galih; Weihing, Pascal; Lutz, Thorsten
2016-09-01
Developments of the near wake behind the Avatar research turbine (radius of 102.88 m) in ambient turbulence are investigated using high fidelity numerical simulations. A moderate level of background turbulence with a wide range of scales, which has not been considered in the previous studies is applied. With ambient turbulence, a significant impact on the near wake development is observed. The mean velocity profile becomes Gaussian after 450 m distance downstream, which is a demarcation between the near and the far wake. From the spectral analysis of the wake, clear peaks in the spectra are observed at the blade passing frequency, but the distributions of the peak extend into a wide range of frequency domain. Such aspects provide useful information in classifying periodic and stochastic fluctuations, and their contributions to the momentum mixing in the wake.
El-Jaby, Samy
2016-06-01
A recent paper published in Life Sciences in Space Research (El-Jaby and Richardson, 2015) presented estimates of the secondary neutron ambient and effective dose equivalent rates, in air, from surface altitudes up to suborbital altitudes and low Earth orbit. These estimates were based on MCNPX (LANL, 2011) (Monte Carlo N-Particle eXtended) radiation transport simulations of galactic cosmic radiation passing through Earth's atmosphere. During a recent review of the input decks used for these simulations, a systematic error was discovered that is addressed here. After reassessment, the neutron ambient and effective dose equivalent rates estimated are found to be 10 to 15% different, though, the essence of the conclusions drawn remains unchanged. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
The cycle life chemistry of ambient-temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Somoano, R.; Carter, B. J.; Subba Rao, S.; Shen, D.; Yen, S. P. S.
1985-01-01
The Jet Propulsion Laboratory is involved in a NASA-sponsored research program to demonstrate the feasibility of ambient-temperature secondary lithium batteries for geosynchronous space applications. Encouraging cycle life has been demonstrated in sealed, cathode-limited laboratory cells. However, the cell capacity declines with cycle life. The results of recent studies of the lithium electrode passivation chemistry, and of conductive diluents for TiS2 cathodes and their possible contribution to capacity decline, are here presented. Technical issues associated with the unique operational requirements of a geosynchronous mission are also described.
Infrared Laser System for Extended Area Monitoring of Air Pollution
NASA Technical Reports Server (NTRS)
Snowman, L. R.; Gillmeister, R. J.
1971-01-01
An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.
CHANGES IN AMBIENT TEMPERATURE TRIGGER YAWNING BUT NOT STRETCHING IN RATS
Gallup, Andrew C.; Miller, Ralph R.; Clark, Anne B.
2010-01-01
Yawning appears to be involved in arousal, state change, and activity across vertebrates. Recent research suggests that yawning may support effective changes in mental state or vigilance through cerebral cooling. To further investigate the relationship between yawning, state change, and thermoregulation, 12 Sprague-Dawley rats (Rattus norvegicus) were exposed to a total of two hours of ambient temperature manipulation over a period of 48 hours. Using a repeated measures design, each rat experienced a range of increasing (22→32°C), decreasing (32→22°C), and constant temperatures (22°C; 32°C). Yawning and locomotor activity occurred most frequently during initial changes in temperature, irrespective of direction, compared to more extended periods of temperature manipulation. The rate of yawning also diminished during constant high temperatures (32°C) compared to low temperatures (22°C). Unlike yawning, however, stretching was unaffected by ambient temperature variation. These findings are compared to recent work on budgerigars (Melopsittacus undulatus), and the ecological selective pressures for yawning in challenging thermal environments are discussed. The results support previous comparative research connecting yawning with arousal and state change, and contribute to refining the predictions of the thermoregulatory hypothesis across vertebrates. PMID:21132114
Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels
NASA Technical Reports Server (NTRS)
Pasion, A. J.; Thomas, I.
1977-01-01
An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.
Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center
Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto
2015-01-01
Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004
Feasibility of energy harvesting techniques for wearable medical devices.
Voss, Thaddaeus J; Subbian, Vignesh; Beyette, Fred R
2014-01-01
Wearable devices are arguably one of the most rapidly growing technologies in the computing and health care industry. These systems provide improved means of monitoring health status of humans in real-time. In order to cope with continuous sensing and transmission of biological and health status data, it is desirable to move towards energy autonomous systems that can charge batteries using passive, ambient energy. This not only ensures uninterrupted data capturing, but could also eliminate the need to frequently remove, replace, and recharge batteries. To this end, energy harvesting is a promising area that can lead to extremely power-efficient portable medical devices. This paper presents an experimental prototype to study the feasibility of harvesting two energy sources, solar and thermoelectric energy, in the context of wearable devices. Preliminary results show that such devices can be powered by transducing ambient energy that constantly surrounds us.
Benner, W.H.
1984-05-08
An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.
Benner, William H.
1986-01-01
An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.
Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighton, Daniel; Rugh, John
Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 degmore » C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.« less
Episodic Reasoning for Vision-Based Human Action Recognition
Martinez-del-Rincon, Jesus
2014-01-01
Smart Spaces, Ambient Intelligence, and Ambient Assisted Living are environmental paradigms that strongly depend on their capability to recognize human actions. While most solutions rest on sensor value interpretations and video analysis applications, few have realized the importance of incorporating common-sense capabilities to support the recognition process. Unfortunately, human action recognition cannot be successfully accomplished by only analyzing body postures. On the contrary, this task should be supported by profound knowledge of human agency nature and its tight connection to the reasons and motivations that explain it. The combination of this knowledge and the knowledge about how the world works is essential for recognizing and understanding human actions without committing common-senseless mistakes. This work demonstrates the impact that episodic reasoning has in improving the accuracy of a computer vision system for human action recognition. This work also presents formalization, implementation, and evaluation details of the knowledge model that supports the episodic reasoning. PMID:24959602
Impact of combustion products from Space Shuttle launches on ambient air quality
NASA Technical Reports Server (NTRS)
Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.
1974-01-01
The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.
[Decompression problems in diving in mountain lakes].
Bühlmann, A A
1989-08-01
The relationship between tolerated high-pressure tissue nitrogen and ambient pressure is practically linear. The tolerated nitrogen high pressure decreases at altitude, as the ambient pressure is lower. Additionally, tissues with short nitrogen half-times have a higher tolerance than tissues which retain nitrogen for longer duration. For the purpose of determining safe decompression routines, the human body can be regarded as consisting of 16 compartments with half-times from 4 to 635 minutes for nitrogen. The coefficients for calculation of the tolerated nitrogen-high pressure in the tissues can be deduced directly from the half-times for nitrogen. We show as application the results of 573 simulated air dives in the pressure-chamber and 544 real dives in mountain lakes in Switzerland (1400-2600 m above sea level) and in Lake Titicaca (3800 m above sea level). They are in accordance with the computed limits of tolerance.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Howard, W M; Fried, L E
2001-08-08
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars
2015-01-01
Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633
Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars
2015-08-07
Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.
Imaging Subsurface Structure of Central Zagros Zone/Iran Using Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Vahidravesh, Shaghayegh; Pakzad, Mehrdad, ,, Dr.; Hatami, Mohammad Reza, ,, Dr.
2017-04-01
The Central Zagros zone, of west Iran & east Iraq, is surrounded by many active faults (including Main Zagros Reversed Fault, Main Recent Fault, High Zagros Fault, Zagros Fold, & Thrust Belt). Recent studies show that cross-correlation of a long-term ambient seismic noise data recorded in station-pair, includes important information regarding empirical Green's functions (EGFs) between stations. Hence, ambient seismic noise carries valuable information of the wave propagation path (which can be extracted). The 2D model of surface waves (Rayleigh & Love) velocities for the studied area is obtained by seismic ambient noise tomography (ANT) method. Throughout this research, we use continuous records of all three vertical, radial, and tangential components (obtained by rotation) recorded by IRSC (Iranian Seismological Center) and IIEES (International Institute of Earthquake Engineering) networks for this area of interest. The IRSC & IIEES networks are equipped by SS-1 kinematics and Guralp CMG-3T sensors respectively. Data of 20 stations were used for 12 months from 2014/Nov. to 2015/Nov. The performed data processing is similar to the one, put into words in detail by Bensen et al. (2007) including the processed daily base data. Mean, trend, and instrument response were removed and the data were decimated to 5 sps (sample per second) to reduce the amount of storage space and computational time required. We then applied merge to handle data gaps. One-bit time-domain normalization was also applied to suppress the influence of instrument irregularities and earthquake signals followed by spectral (frequency-domain) normalization between 0.05-0.2 Hz (period 5-20 sec). After cross-correlation (processing step), we perform rms stacking (new approach of stacking) to stack many cross-correlation functions based on the highest energy in a time interval which we accordingly anticipate to receive Rayleigh & Love waves fundamental modes. To evaluate quality of the stacking process stability quantitatively, we calculate signal-to-noise ratio (SNR), defined as a ratio of the peak amplitude within a time window to the root-mean-square of noise trailing the signal arrival window (Bensen et al., 2007), for each cross-correlation. The cross-correlated time-series is equivalent to the Green's functions between pairs of receivers. We then apply multiple phase-matched filter method of Herrmann (2005) to measure the correct group velocity dispersion of the interferometric surface waves. Eventually, we apply fast marching surface wave tomography (FMST), the iterative nonlinear inversion package developed by Rawlinson, 2005, to extract the velocity model of shallow structure in Central Zagros zone /Iran.
NASA Technical Reports Server (NTRS)
Gasso, B. S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.;
2000-01-01
Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of attitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands or the EOS-AM ("Terra") detectors, MODIS and MISR. The UWPH measured (sigma(sub sp)) at 2 RHs, one below and the other above ambient conditions. Ambient (sigma(sub sp)) was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of (sigma(sub sp)) on RH, defined by (sigma(sub sp))(RH) = k. ((1 - RH/100)(exp -gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 + 0.06. Based on the measured (gamma)(s), the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the pre-launch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values ror dry composition. y and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least some aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.
Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini
NASA Astrophysics Data System (ADS)
Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.
2017-12-01
The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on measurements of chemical tracers in ambient aerosol samples and these results will be discussed during the conference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Richardson, Joseph; Zhang, Yanliang
Most wireless sensor network (comprising of thousands of WSNs) applications require operation over extended periods of time beginning with their deployment. Network lifetime is extremely critical for most applications and is one of the limiting factors for energy-constrained networks. Based on applications, there are wide ranges of different energy sources suitable for powering WSNs. A battery is traditionally used to power WSNs. The deployed WSN is required to last for long time. Due to finite amount of energy present in batteries, it is not feasible to replace batteries. Recently there has been a new surge in the area of energymore » harvesting were ambient energy in the environment can be utilized to prolong the lifetime of WSNs. Some of the sources of ambient energies are solar power, thermal gradient, human motion and body heat, vibrations, and ambient RF energy. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, and retransmission, which result in unanticipated power losses. This report focuses rigorous stochastic modeling of power demand for a schedule-driven WSN utilizing Institute of Electrical and Electronics Engineers 802.11 and 802.15.4 communication protocols. The model captures the generic operation of a schedule-driven WSN when an external event occurs, i.e., sensing, following by processing, and followed by communication. The report will present development of an expression to compute the expected energy consumption per operational cycle of a schedule-driven WSN by taking into consideration the node level activities, i.e., sensing and processing, and the network level activities, i.e., channel access, packet collision, retransmission attempts, and transmission of a data packet.« less
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Jackman, Charles H.; Stolarski, Richard S.
1989-01-01
A fast two-dimensional residual circulation stratospheric family transport model, designed to minimize computer requirements, is developed. The model was used to calculate the ambient and perturbed atmospheres in which odd nitrogen species are transported as a family, and the results were compared with calculations in which HNO3, N2O5, ClONO2, and HO2NO2 are transported separately. It was found that ozone distributions computed by the two models for a present-day atmosphere are nearly identical. Good agreement was also found between calculated species concentrations and the ozone response, indicating the general applicability of the odd-nitrogen family approximations.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma
NASA Astrophysics Data System (ADS)
Bondarenko, Anton
2016-10-01
The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...
Tunable Nitride Josephson Junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missert, Nancy A.; Henry, Michael David; Lewis, Rupert M.
We have developed an ambient temperature, SiO 2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the Ta xN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlO x barriers for low - power, high - performance computing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sampling time. The concentration of SO2 in the ambient air is computed and expressed in micrograms per... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...
Code of Federal Regulations, 2012 CFR
2012-07-01
... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...
Code of Federal Regulations, 2013 CFR
2013-07-01
... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...
Deep Water Ocean Acoustics (DWOA): The Philippine Sea, OBSANP, and THAAW Experiments
2015-09-30
the travel times. 4 The ocean state estimates were then re-computed to fit the acoustic travel times as integrals of the sound speed, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Deep Water Ocean Acoustics (DWOA): The Philippine Sea...deep-water acoustic propagation and ambient noise has been collected in a wide variety of environments over the last few years with ONR support
Williams during Sleep-Long Experiment in the US Lab during Expedition 15
2007-05-24
ISS015-E-09447 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.
Williams during Sleep-Long Experiment in the US Lab during Expedition 15
2007-05-24
ISS015-E-09449 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.
NASA Astrophysics Data System (ADS)
Kamarudin, A. F.; Noh, M. S. Md; Mokhatar, S. N.; Anuar, M. A. Mohd; Ibrahim, A.; Ibrahim, Z.; Daud, M. E.
2018-04-01
Ambient vibration (AV) technique is widely used nowadays for ground fundamental frequency prediction. This technique is easy, quick, non-destructive, less operator required and reliable result. The input motions of ambient vibration are originally collected from surrounding natural and artificial excitations. But, careful data acquisition controlled must be implemented to reduce the intrusion of short period noise that could imply the quality of frequency prediction of an investigated site. In this study, investigation on the primary noise intrusion under peak (morning, afternoon and evening) and off peak (early morning) traffic flows (only 8 meter from sensor to road shoulder) against the stability and quality of ground fundamental frequency prediction were carried out. None of specific standard is available for AV data acquisition and processing. Thus, some field and processing parameters recommended by previous studies and guideline were considered. Two units of 1 Hz tri-axial seismometer sensor were closely positioned in front of the main entrance Universiti Tun Hussein Onn Malaysia. 15 minutes of recording length were taken during peak and off peak periods of traffic flows. All passing vehicles were counted and grouped into four classes. Three components of ambient vibration time series recorded in the North-South: NS, East-West: EW and vertical: UD directions were automatically computed into Horizontal to Vertical Spectral Ratio (HVSR), by using open source software of GEOPSY for fundamental ground frequency, Fo determination. Single sharp peak pattern of HVSR curves have been obtained at peak frequencies between 1.33 to 1.38 Hz which classified under soft to dense soil classification. Even identical HVSR curves pattern with close frequencies prediction were obtained under both periods of AV measurement, however the total numbers of stable and quality windows selected for HVSR computation were significantly different but both have satisfied the requirement given by SESAME (2004) guideline. Besides, the second peak frequencies from the early morning HVSR curve was clearly indicated between 8.23 to 8.55 Hz at very low amplitude (Ao < 2), but it should be neglected according to the similar guideline criteria. In conclusion, the ground fundamental frequency using HVSR method was successfully determined by 1 Hz seismometer instrument with recommended to specific parameters consideration on field as well as data processing, without disruption from the nearest traffic excitations.
NASA Astrophysics Data System (ADS)
Sepulveda, F.; Thangraj, J. S.; Quiros, D.; Pulliam, J.; Queen, J. H.; Queen, M.; Iovenitti, J. L.
2017-12-01
Seismic interferometry that makes use of ambient noise requires that cross-correlations of data recorded at two or more stations be stacked over a "long enough" time interval that off-axis sources cancel and the estimated inter-station Green's function converges to the actual function. However, the optimal length of the recording period depends on the characteristics of ambient noise at the site, which vary over time and are therefore not known before data acquisition. Data acquisition parameters cannot be planned in ways that will ensure success while minimizing cost and effort. Experiment durations are typically either too long or too short. Automated, in-field processing can provide inter-station Green's functions in near-real-time, allowing for the immediate evaluation of results and enabling operators to alter data acquisition parameters before demobilizing. We report on the design, system integration, and testing of a strategy for the automation of data acquisition, distribution, and processing of ambient noise using industry-standard, widely-available instrumentation (Reftek 130-01 digitizers and 4.5 Hz geophones). Our solution utilizes an inexpensive embedded system (Raspberry Pi 3), which is configured to acquire data from the Reftek and insert it into a big data store called Apache Cassandra. Cassandra distributes and maintains up-to-date copies of the data, through a WiFi network, as defined by tunable consistency levels and replication factors thus allowing for efficient multi-station computations. At regular intervals, data is extracted from Cassandra and is used to compute Green's functions for all receiver pairs. Results are reviewed and progress toward convergence can be assessed. We successfully tested a 20-node prototype of what we call the "Raspberry Pi-Enhanced Reftek" (RaPiER) array at the Soda Lake Geothermal Field in Nevada in June 2017. While intermittent problems with the WiFi network interfered with the real-time data delivery from some stations, the system performed robustly overall and produced hourly sets of steadily improving virtual source gathers. Most importantly, the effects of data shortfalls on results can be assessed immediately, in the field, so the array's acquisition parameters can be modified and the deployment duration extended as necessary.
Cho, Kwang Rae; Kim, Myoung-Hun; Ko, Myoung Jin; Jung, Jae Wook; Lee, Ki Hwa; Park, Yei-Heum; Kim, Yong Han; Kim, Ki Hoon; Kim, Jin Soo
2014-12-01
Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF) is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients. The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter) and temperature selection (high, medium, low and ambient). All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant. Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG) respectively (high, medium, low and ambient temperature set). ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances. ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.
Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; ...
2013-05-14
We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmore » to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.« less
Natural Frequencies Evaluation on Partially Damaged Building using Ambient Vibration Technique
NASA Astrophysics Data System (ADS)
Kamarudin, A. F.; Zainal Abidin, M. H.; Daud, M. E.; Noh, M. S. Md; Madun, A.; Ibrahim, A.; Matarul, J.; Mokhatar, S. N.
2018-04-01
Severe damages observed on the school blocks, roads, retaining walls and drainage within the compound of SMK Kundasang Sabah possibly due to the ground movements triggered by the Ranau earthquake in 1991. Ambient vibration measurements were carried on the remaining demolished 3-storey building which partially damaged in order to measure the predominant building frequencies using tri-axial 1 Hz seismometer sensors. Popular methods of Horizontal-to-vertical spectral ratios (HVSR) and Fourier amplitude spectra (FAS) were used to compute the ambient vibration wave fields of each building axes (Transverse or North-South (NS), Longitudinal or East-West (EW) and vertical) into Fourier spectra. Two main modes of translation and torsion were observed from the peaks frequencies obtained at 2.99 to 3.10 Hz (1st mode), 4.85 Hz (2nd mode) and 5.63 to 5.85 Hz (3rd mode). The building experiencing translation modes of bending and shear in the NS and EW directions. It could be seen when the amplitudes tends to increase when the floor are increased. Meanwhile, the torsional bending mode is expected to occur when the deformation amplitudes are found to be increasing horizontally, when moving into partially structural damaged section located on the East wing of building.
High-Dimensional Intrinsic Interpolation Using Gaussian Process Regression and Diffusion Maps
Thimmisetty, Charanraj A.; Ghanem, Roger G.; White, Joshua A.; ...
2017-10-10
This article considers the challenging task of estimating geologic properties of interest using a suite of proxy measurements. The current work recast this task as a manifold learning problem. In this process, this article introduces a novel regression procedure for intrinsic variables constrained onto a manifold embedded in an ambient space. The procedure is meant to sharpen high-dimensional interpolation by inferring non-linear correlations from the data being interpolated. The proposed approach augments manifold learning procedures with a Gaussian process regression. It first identifies, using diffusion maps, a low-dimensional manifold embedded in an ambient high-dimensional space associated with the data. Itmore » relies on the diffusion distance associated with this construction to define a distance function with which the data model is equipped. This distance metric function is then used to compute the correlation structure of a Gaussian process that describes the statistical dependence of quantities of interest in the high-dimensional ambient space. The proposed method is applicable to arbitrarily high-dimensional data sets. Here, it is applied to subsurface characterization using a suite of well log measurements. The predictions obtained in original, principal component, and diffusion space are compared using both qualitative and quantitative metrics. Considerable improvement in the prediction of the geological structural properties is observed with the proposed method.« less
High-Dimensional Intrinsic Interpolation Using Gaussian Process Regression and Diffusion Maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Ghanem, Roger G.; White, Joshua A.
This article considers the challenging task of estimating geologic properties of interest using a suite of proxy measurements. The current work recast this task as a manifold learning problem. In this process, this article introduces a novel regression procedure for intrinsic variables constrained onto a manifold embedded in an ambient space. The procedure is meant to sharpen high-dimensional interpolation by inferring non-linear correlations from the data being interpolated. The proposed approach augments manifold learning procedures with a Gaussian process regression. It first identifies, using diffusion maps, a low-dimensional manifold embedded in an ambient high-dimensional space associated with the data. Itmore » relies on the diffusion distance associated with this construction to define a distance function with which the data model is equipped. This distance metric function is then used to compute the correlation structure of a Gaussian process that describes the statistical dependence of quantities of interest in the high-dimensional ambient space. The proposed method is applicable to arbitrarily high-dimensional data sets. Here, it is applied to subsurface characterization using a suite of well log measurements. The predictions obtained in original, principal component, and diffusion space are compared using both qualitative and quantitative metrics. Considerable improvement in the prediction of the geological structural properties is observed with the proposed method.« less
Manufactured Porous Ambient Surface Simulants
NASA Technical Reports Server (NTRS)
Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul
2016-01-01
The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).
Comparison of stationary and personal air sampling with an ...
Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency’s Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and −0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. The purpose of the study was to investigate the use of air-dispersion modeling as an approach to exposure assessment for ambient manganese.
The visual perception of metal.
Todd, James T; Norman, J Farley
2018-03-01
The present research was designed to examine how the presence or absence of ambient light influences the appearance of metal. The stimuli depicted three possible objects that were illuminated by three possible patterns of illumination. These were generated by a single point light source, two rectangular area lights, or projecting light onto a translucent white box that contained the object (and the camera) so that the object would be illuminated by ambient light in all directions. The materials were simulated using measured parameters of chrome with four different levels of roughness. Observers rated the metallic appearance and shininess of each depicted object using two sliders. The highest rated appearance of metal and shininess occurred for the surfaces with the lowest roughness in the ambient illumination condition, and these ratings dropped systematically as the roughness was increased. For the objects illuminated by point or area lights, the appearance of metal and shininess were significantly less than in the ambient conditions for the lowest roughness value, and significantly greater than in the ambient condition for intermediate values of roughness. We also included a control condition depicting objects with a shiny plastic reflectance function that had both diffuse and specular components. These objects were rated as highly shiny but they did not appear metallic. A theoretical hypothesis is proposed that the defining characteristic of metal (as opposed to black plastic) is the presence of specular sheen over most of the visible surface area.
Computational Study of Near-limit Propagation of Detonation in Hydrogen-air Mixtures
NASA Technical Reports Server (NTRS)
Yungster, S.; Radhakrishnan, K.
2002-01-01
A computational investigation of the near-limit propagation of detonation in lean and rich hydrogen-air mixtures is presented. The calculations were carried out over an equivalence ratio range of 0.4 to 5.0, pressures ranging from 0.2 bar to 1.0 bar and ambient initial temperature. The computations involved solution of the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing (TVD) scheme, and a point implicit, first-order-accurate, time marching algorithm. The hydrogen-air combustion was modeled with a 9-species, 19-step reaction mechanism. A multi-level, dynamically adaptive grid was utilized in order to resolve the structure of the detonation. The results of the computations indicate that when hydrogen concentrations are reduced below certain levels, the detonation wave switches from a high-frequency, low amplitude oscillation mode to a low frequency mode exhibiting large fluctuations in the detonation wave speed; that is, a 'galloping' propagation mode is established.
76 FR 46083 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
...-1145, by one of the following methods: http://www.regulations.gov : Follow the on-line instructions for..., Research Triangle Park, NC 27711; telephone: 919- 541-4650; fax: 919-541-2357; e-mail: [email protected] Complementary Areas of Research Implementation Challenges 5. Final Monitoring Plan Development and Stakeholder...
Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively “multipollutant” manne...
2006 Children's Health Protection Advisory Committee Meeting Agendas
Objectives for the three meetings in 2006 include discussing emerging chemicals of concern, Children's Health Research Center, toxicology screening, green chemistry, body burden, perchlorate, and National Ambient Air Quality for particulates.
Xu, Xiaohui; Ha, Sandie Uyen; Basnet, Rakshya
2016-01-01
There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology. PMID:27547751
Ambient Intelligence 2.0: Towards Synergetic Prosperity
NASA Astrophysics Data System (ADS)
Aarts, Emile; Grotenhuis, Frits
Ten years of research in Ambient Intelligence have revealed that the original ideas and assertions about the way the concept should develop no longer hold and should be substantially revised. Early scenario's in Ambient Intelligence envisioned a world in which individuals could maximally exploit personalized, context aware, wireless devices thus enabling them to become maximally productive, while living at an unprecedented pace. Environments would become smart and proactive, enriching and enhancing the experience of participants thus supporting maximum leisure possibly even at the risk of alienation. New insights have revealed that these brave new world scenarios are no longer desirable and that people are more in for a balanced approach in which technology should serve people instead of driving them to the max. We call this novel approach Synergetic Prosperity, referring to meaningful digital solutions that balance mind and body, and society and earth thus contributing to a prosperous and sustainable development of mankind.
Nardone, Anthony; Neophytou, Andreas M; Balmes, John; Thakur, Neeta
2018-04-16
Given racial disparities in ambient air pollution (AAP) exposure and asthma risk, this review offers an overview of the literature investigating the ambient air pollution-asthma relationship in children of color between 2013 and 2017. AAP is likely a key contributor to the excess burden of asthma in children of color due to pervasive exposure before birth, at home, and in school. Recent findings suggest that psychosocial stressors may modify the relationship between AAP and asthma. The effect of AAP on asthma in children of color is likely modulated by multiple unique psychosocial stressors and gene-environment interactions. Although children of color are being included in asthma studies, more research is still needed on impacts of specific criteria pollutants throughout the life course. Additionally, future studies should consider historical factors when analyzing current exposure profiles.
Wissler, Eugene H; Havenith, George
2009-03-01
Overall resistances for heat and vapor transport in a multilayer garment depend on the properties of individual layers and the thickness of any air space between layers. Under uncomplicated, steady-state conditions, thermal and mass fluxes are uniform within the garment, and the rate of transport is simply computed as the overall temperature or water concentration difference divided by the appropriate resistance. However, that simple computation is not valid under cool ambient conditions when the vapor permeability of the garment is low, and condensation occurs within the garment. Several recent studies have measured heat and vapor transport when condensation occurs within the garment (Richards et al. in Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002; Havenith et al. in J Appl Physiol 104:142-149, 2008). In addition to measuring cooling rates for ensembles when the skin was either wet or dry, both studies employed a flat-plate apparatus to measure resistances of individual layers. Those data provide information required to define the properties of an ensemble in terms of its individual layers. We have extended the work of previous investigators by developing a rather simple technique for analyzing heat and water vapor transport when condensation occurs within a garment. Computed results agree well with experimental results reported by Richards et al. (Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002) and Havenith et al. (J Appl Physiol 104:142-149, 2008). We discuss application of the method to human subjects for whom the rate of sweat secretion, instead of the partial pressure of water on the skin, is specified. Analysis of a more complicated five-layer system studied by Yoo and Kim (Text Res J 78:189-197, 2008) required an iterative computation based on principles defined in this paper.
Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.
2008-01-01
A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.
NASA Astrophysics Data System (ADS)
Aroudam, El. H.
In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.
NASA Astrophysics Data System (ADS)
Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
1996-08-01
An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.
NASA Technical Reports Server (NTRS)
Bauman, Steven W.
1990-01-01
The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.
Droplet Combustion Experiments Aboard the International Space Station
NASA Astrophysics Data System (ADS)
Dietrich, Daniel L.; Nayagam, Vedha; Hicks, Michael C.; Ferkul, Paul V.; Dryer, Frederick L.; Farouk, Tanvir; Shaw, Benjamin D.; Suh, Hyun Kyu; Choi, Mun Y.; Liu, Yu Cheng; Avedisian, C. Thomas; Williams, Forman A.
2014-10-01
This paper summarizes the first results from isolated droplet combustion experiments performed on the International Space Station (ISS). The long durations of microgravity provided in the ISS enable the measurement of droplet and flame histories over an unprecedented range of conditions. The first experiments were with heptane and methanol as fuels, initial droplet droplet diameters between 1.5 and 5.0 m m, ambient oxygen mole fractions between 0.1 and 0.4, ambient pressures between 0.7 and 3.0 a t m and ambient environments containing oxygen and nitrogen diluted with both carbon dioxide and helium. The experiments show both radiative and diffusive extinction. For both fuels, the flames exhibited pre-extinction flame oscillations during radiative extinction with a frequency of approximately 1 H z. The results revealed that as the ambient oxygen mole fraction was reduced, the diffusive-extinction droplet diameter increased and the radiative-extinction droplet diameter decreased. In between these two limiting extinction conditions, quasi-steady combustion was observed. Another important measurement that is related to spacecraft fire safety is the limiting oxygen index (LOI), the oxygen concentration below which quasi-steady combustion cannot be supported. This is also the ambient oxygen mole fraction for which the radiative and diffusive extinction diameters become equal. For oxygen/nitrogen mixtures, the LOI is 0.12 and 0.15 for methanol and heptane, respectively. The LOI increases to approximately 0.14 (0.14 O 2/0.56 N 2/0.30 C O 2) and 0.17 (0.17 O 2/0.63 N 2/0.20 C O 2) for methanol and heptane, respectively, for ambient environments that simulated dispersing an inert-gas suppressant (carbon dioxide) into a nominally air (1.0 a t m) ambient environment. The LOI is approximately 0.14 and 0.15 for methanol and heptane, respectively, when helium is dispersed into air at 1 atm. The experiments also showed unique burning behavior for large heptane droplets. After the visible hot flame radiatively extinguished around a large heptane droplet, the droplet continued to burn with a cool flame. This phenomena was observed repeatably over a wide range of ambient conditions. These cool flames were invisible to the experiment imaging system but their behavior was inferred by the sustained quasi-steady burning after visible flame extinction. Verification of this new burning regime was established by both theoretical and numerical analysis of the experimental results. These innovative experiments have provided a wealth of new data for improving the understanding of droplet combustion and related aspects of fire safety, as well as offering important measurements that can be used to test sophisticated evolving computational models and theories of droplet combustion.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
NASA Astrophysics Data System (ADS)
Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.
2002-07-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Numerical Simulations of Buoyancy Effects in low Density Gas Jets
NASA Technical Reports Server (NTRS)
Satti, R. P.; Pasumarthi, K. S.; Agrawal, A. K.
2004-01-01
This paper deals with the computational analysis of buoyancy effects in the near field of an isothermal helium jet injected into quiescent ambient air environment. The transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum were solved using a staggered grid finite volume method. Laminar, axisymmetric, unsteady flow conditions were considered for the analysis. An orthogonal system with non-uniform grids was used to capture the instability phenomena. Computations were performed for Earth gravity and during transition from Earth to different gravitational levels. The flow physics was described by simultaneous visualizations of velocity and concentration fields at Earth and microgravity conditions. Computed results were validated by comparing with experimental data substantiating that buoyancy induced global flow oscillations present in Earth gravity are absent in microgravity. The dependence of oscillation frequency and amplitude on gravitational forcing was presented to further quantify the buoyancy effects.
1977-10-01
PLUME FROM THE COMPRESSOR JtESEARCHJAC ILITY AT WRIGHT- /ATTERSON AIR FORCE JBASE, OHIO , r= mrm (.) Gary R./Ludwig 9. PERFORMING ORGANIZATION NAME... ms Mass flux of stack exhaust gas (slugs/sec) nrtfl Mass flux of ambient air and stack exhaust gas mixture st plume cross-section A (slugs/sec...the horizontal momentum flux in the ambient wind be the same in the model as it is in full-scale. /»» Ms M i a. ’ ro P>"S P*» + ’f (3) where 0
Timeseries Signal Processing for Enhancing Mobile Surveys: Learning from Field Studies
NASA Astrophysics Data System (ADS)
Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Atherton, E. E.; Laybolt, W. D.
2015-12-01
Vehicle-based surveys using laser and other analyzers are now commonplace in research and industry. In many cases when these studies target biologically-relevant gases like methane and carbon dioxide, the minimum detection limits are often coarse (ppm) relative to the analyzer's capabilities (ppb), because of the inherent variability in the ambient background concentrations across the landscape that creates noise and uncertainty. This variation arises from localized biological sinks and sources, but also atmospheric turbulence, air pooling, and other factors. Computational processing routines are widely used in many fields to increase resolution of a target signal in temporally dense data, and offer promise for enhancing mobile surveying techniques. Signal processing routines can both help identify anomalies at very low levels, or can be used inversely to remove localized industrially-emitted anomalies from ecological data. This presentation integrates learnings from various studies in which simple signal processing routines were used successfully to isolate different temporally-varying components of 1 Hz timeseries measured with laser- and UV fluorescence-based analyzers. As illustrative datasets, we present results from industrial fugitive emission studies from across Canada's western provinces and other locations, and also an ecological study that aimed to model near-surface concentration variability across different biomes within eastern Canada. In these cases, signal processing algorithms contributed significantly to the clarity of both industrial, and ecological processes. In some instances, signal processing was too computationally intensive for real-time in-vehicle processing, but we identified workarounds for analyzer-embedded software that contributed to an improvement in real-time resolution of small anomalies. Signal processing is a natural accompaniment to these datasets, and many avenues are open to researchers who wish to enhance existing, and future datasets.
2002-01-01
1-hour and proposed 8-hour National Ambient Air Quality Standards. Reactive biogenic (natural) volatile organic compounds emitted from plants have...uncertainty in predicting plant species composition and frequency. Isoprene emissions computed for the study area from the project’s high-resolution...Landcover Database (BELD 2), while monoterpene and other reactive volatile organic compound emission rates were almost 26% and 28% lower, respectively
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)
1976-01-01
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.
2014-05-01
temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection... diesel engine operating conditions. The objective of this report is to demonstrate the modeling capability of a recently adopted 3D-Computational Fluid
Europa Scene: Plume, Galileo, Magnetic Field (Artist's Concept)
2018-05-14
Artist's illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa's surface. A new computer simulation gives us an idea of how the magnetic field interacted with a plume. The magnetic field lines (depicted in blue) show how the plume interacts with the ambient flow of Jovian plasma. The red colors on the lines show more dense areas of plasma. https://photojournal.jpl.nasa.gov/catalog/PIA21922
MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Lecocq, T.; Caudron, C.; Brenguier, F.
2013-12-01
Earthquakes occur every day all around the world and are recorded by thousands of seismic stations. In between earthquakes, stations are recording "noise". In the last 10 years, the understanding of this noise and its potential usage have been increasing rapidly. The method, called "seismic interferometry", uses the principle that seismic waves travel between two recorders and are multiple-scattered in the medium. By cross-correlating the two records, one gets an information on the medium below/between the stations. The cross-correlation function (CCF) is a proxy to the Green Function of the medium. Recent developments of the technique have shown those CCF can be used to image the earth at depth (3D seismic tomography) or study the medium changes with time. We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. We present a validation of the software on a dataset acquired during the UnderVolc[1] project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011.
Towards Full-Waveform Ambient Noise Inversion
NASA Astrophysics Data System (ADS)
Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.
2016-12-01
Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source location, and thereby to contribute to a better understanding of noise generation. We introduce an operator-based formulation for the computation of correlation functions and apply the continuous adjoint method that allows us to compute first and second derivatives of misfit functionals with respect to source distribution and Earth structure efficiently. Based on these developments we design an inversion scheme using a 2D finite-difference code. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: The capability of different misfit functionals to image wave speed anomalies and source distribution. Possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus, which allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.
Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less
Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; ...
2016-10-17
Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less
Source identification of ambient PM 2.5 during summer inhalation exposure studies in Detroit, MI
NASA Astrophysics Data System (ADS)
Morishita, Masako; Keeler, Gerald J.; Wagner, James G.; Harkema, Jack R.
Particulate air pollution is associated with cardiopulmonary morbidity and mortality in heavily populated urban centers of the United States. Because ambient fine particulate matter (aerodynamic diameter ⩽2.5 μm; PM 2.5) is a complex mixture resulting from multiple sources and variable atmospheric conditions, it is difficult to identify specific components of PM 2.5 that are responsible for adverse health effects. During four consecutive summers from 2000 to 2003 we characterized the ambient gaseous and PM 2.5 air quality in an urban southwest Detroit community where childhood asthma hospitalization rates are more than twice the statewide average. Both integrated and continuous PM measurements together with gaseous air pollution measurements were performed using a mobile air research facility, AirCARE1, in which concurrent toxicological studies were being conducted. Chemical and physical characterizations of PM 2.5 as well as receptor modeling using positive matrix factorization (PMF) were completed. Results from PMF indicated that six major sources contributed to the observed ambient PM 2.5 mass during the summer months. Primary sources included (1) coal combustion/secondary sulfate aerosol, (2) motor vehicle/urban road dust, (3) municipal waste incinerators, (4) oil combustion/refineries, (5) sewage sludge incinerators, and (6) iron/steel manufacturing. Although the contribution of the coal/secondary sulfate aerosol source was greater than other factors, increased levels of urban PM 2.5 from local combustion sources were also observed. In addition to characterization of ambient PM 2.5 and their sources in southwest Detroit, this paper discusses possible associations of ambient PM 2.5 from local combustion sources, specifically incinerator and refinery emissions and the observed adverse health effects during the inhalation exposure campaigns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sionit, N.
1992-12-31
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO{sub 2}, may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO{sub 2}, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO{sub 2} levels. Native tall grass prairie plots were exposed continuously to ambient and twice-ambient CO{sub 2}. We compared our results to an unfertilized companion experiment on the same research site. Above- and below-ground biomass production and leafmore » area of fertilized plots were greater with elevated than ambient CO{sub 2}. Nitrogen concentration was lower in plants exposed to elevated CO{sub 2}, but total standing crop N was greater at high CO{sub 2} increased root biomass under elevated CO{sub 2} apparently increased N uptake. The biomass production response to elevated CO{sub 2} was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated C{sub 2} was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and below-ground biomass could slow microbial degradation of soil organic matter and surface litter. The reduced tissue N concentration higher acid detergent fiber under elevated CO{sub 2} compared to ambient for forage indicated that ruminant growth and reproduction could be reduced under elevated CO{sub 2}.« less
Exposure to particulate matter in India: A synthesis of findings and future directions.
Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E
2016-05-01
Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact of ambient temperature on children's health: a systematic review.
Xu, Zhiwei; Etzel, Ruth A; Su, Hong; Huang, Cunrui; Guo, Yuming; Tong, Shilu
2012-08-01
Children are vulnerable to temperature extremes. This paper aimed to review the literature regarding the relationship between ambient temperature and children's health and to propose future research directions. A literature search was conducted in February 2012 using the databases including PubMed, ProQuest, ScienceDirect, Scopus and Web of Science. Empirical studies regarding the impact of ambient temperature on children's mortality and morbidity were included. The existing literature indicates that very young children, especially children under one year of age, are particularly vulnerable to heat-related deaths. Hot and cold temperatures mainly affect cases of infectious diseases among children, including gastrointestinal diseases, malaria, hand, foot and mouse disease, and respiratory diseases. Pediatric allergic diseases, like eczema, are also sensitive to temperature extremes. During heat waves, the incidences of renal disease, fever and electrolyte imbalance among children increase significantly. Future research is needed to examine the balance between hot- and cold-temperature related mortality and morbidity among children; evaluate the impacts of cold spells on cause-specific mortality in children; identify the most sensitive temperature exposure and health outcomes to quantify the impact of temperature extremes on children; elucidate the possible modifiers of the temperature and children's health relationship; and project children's disease burden under different climate change scenarios. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Biosynthesis of highly porous bacterial cellulose nanofibers
NASA Astrophysics Data System (ADS)
Hosseini, Hadi; Kokabi, Mehrdad; Mousavi, Seyyed Mohammad
2018-01-01
Bacterial cellulose nanofibers (BCNFs) as a sustainable and biodegradable polymer has drawn tremendous research attention in tissue engineering, bacterial sensors and drug delivery due to its extraordinary properties such as high purity, high crystallinity, high water absorption capacity and excellent mechanical strength in the wet state. This awesome properties, is attributed to BCNFs structure, therefore its characterization is important. In this work, the bacterial strain, Gluconacetobacter xylinus (PTCC 1734, obtained from Iranian Research Organization for Science and Technology (IROST)), was used to produce BCNFs hydrogel using bacterial fermentation under static condition at 29 °C for 10 days in the incubator. Then, the biosynthesized BCNFs wet gel, were dried at ambient temperature and pressure and characterized using Brunauer-Emmett-Teller (BET) and Field emission scanning electron microscopy (FE-SEM) analysis. FESEM image displayed highly interconnected and porous structure composed of web-like continuous, nanofibers with an average diameter of 48.5±2.1 nm. BET result analysis depicted BCNFs dried at ambient conditions had IV isotherm type, according to the IUPAC classification, indicating that BCNFs dried at ambient condition is essentially mesoporous. On the other hand, BET results depicted, mesoporous structure is around 85%. In addition, Specific surface area (SBET) obtained 81.45 m2/g. These results are in accordance with the FESEM observation.
NASA Technical Reports Server (NTRS)
Falconer, P. D.; Pratt, R. W.
1979-01-01
The annual variations of ozone near the tropopause are derived from aircraft exhibit year-to-year differences which are not explicitly accounted for by the simple, classical ozone transport theory. Phenomena such as tropopause lifting, interannual variations in the rates of stratospheric-tropospheric exchange and meridional mixing, contribute differently to the distribution of ozone in this altitude region. Ozone encounter climatologies have been represented by global maps which show the probabilities of exceeding ambient ozone levels of 200, 300, and 400 ppbV along flight routes during the year. Continuous ozone records obtained from the GASP system revealed the presence of gravity waves whose wavelength is of the order 20 km. The GASP data cannot, however, be utilized for the evaluation of horizontal fluxes of such quantities as ozone, sensible heat, and zonal momentum; the data are too sparsely and irregularly distributed for the computation of stable correlations. Multiple species data from the unique circumglobal flight of a Pan American airliner on 28-30 October 1977 are discussed with particular regard to the apparent interhemispheric differences in tropospheric species concentrations, variation between the Arctic and Antarctic stratospheres, to possible covariations between species, and to potential source regions for various constituents.
This compilation of methods is the result of a Regional Methods project between the U.S. Environmental Protection Agency Region 4 and the EPA’s Office of Research and Development. The research leading to these methods was conducted in response to an observed need to update an EPA...
Warren E. Heilman; Xindi Bain
2013-01-01
Recent research suggests that high levels of ambient near-surface atmospheric turbulence are often associated with rapid and sometimes erratic wildland fire spread that may eventually lead to large burn areas. Previous research has also examined the feasibility of using near-surface atmospheric turbulent kinetic energy (TKEs) alone or in...
This status report documents the effort by the National Exposure Research Laboratory (NERL), Office of Research and Development (ORD) of the U.S. Environmental Protection Agency (U.S. EPA) to provide methods of measurement, including calibration procedures, that meet the requir...
Measurement of the mass and composition of particulate matter (PM) as a function of size is important for research studies for chemical mass balance, factor analysis, air quality model evaluation, epidemiology, and risk assessment. Such measurements are also important in underst...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2012 CFR
2012-07-01
..., 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For... measurements, and 5.1.2.3For which a quantitative relationship to a reference or equivalent method for PM10 has...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2011 CFR
2011-07-01
..., 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For... measurements, and 5.1.2.3For which a quantitative relationship to a reference or equivalent method for PM10 has...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For... measurements, and 5.1.2.3For which a quantitative relationship to a reference or equivalent method for PM10 has...
NASA Astrophysics Data System (ADS)
Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich
2016-04-01
Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"
Temperature dependence of interfacial structures and acidity of clay edge surfaces
NASA Astrophysics Data System (ADS)
Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng
2015-07-01
In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.
Time series analysis of cholera in Matlab, Bangladesh, during 1988-2001.
Ali, Mohammad; Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael
2013-03-01
The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001 were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab.
Sack, Coralynn; Vedal, Sverre; Sheppard, Lianne; Raghu, Ganesh; Barr, R Graham; Podolanczuk, Anna; Doney, Brent; Hoffman, Eric A; Gassett, Amanda; Hinckley-Stukovsky, Karen; Williams, Kayleen; Kawut, Steve; Lederer, David J; Kaufman, Joel D
2017-12-01
We studied whether ambient air pollution is associated with interstitial lung abnormalities (ILAs) and high attenuation areas (HAAs), which are qualitative and quantitative measurements of subclinical interstitial lung disease (ILD) on computed tomography (CT).We performed analyses of community-based dwellers enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA) study. We used cohort-specific spatio-temporal models to estimate ambient pollution (fine particulate matter (PM 2.5 ), nitrogen oxides (NO x ), nitrogen dioxide (NO 2 ) and ozone (O 3 )) at each home. A total of 5495 participants underwent serial assessment of HAAs by cardiac CT; 2671 participants were assessed for ILAs using full lung CT at the 10-year follow-up. We used multivariable logistic regression and linear mixed models adjusted for age, sex, ethnicity, education, tobacco use, scanner technology and study site.The odds of ILAs increased 1.77-fold per 40 ppb increment in NO x (95% CI 1.06 to 2.95, p = 0.03). There was an overall trend towards an association between higher exposure to NO x and greater progression of HAAs (0.45% annual increase in HAAs per 40 ppb increment in NO x ; 95% CI -0.02 to 0.92, p = 0.06). Associations of ambient fine particulate matter (PM 2.5 ), NO x and NO 2 concentrations with progression of HAAs varied by race/ethnicity (p = 0.002, 0.007, 0.04, respectively, for interaction) and were strongest among non-Hispanic white people.We conclude that ambient air pollution exposures were associated with subclinical ILD. The content of this work is not subject to copyright. Design and branding are copyright ©ERS 2017.
NASA Astrophysics Data System (ADS)
Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.
2015-04-01
Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.
Three-component ambient noise beamforming in the Parkfield area
NASA Astrophysics Data System (ADS)
Löer, Katrin; Riahi, Nima; Saenger, Erik H.
2018-06-01
We apply a three-component beamforming algorithm to an ambient noise data set recorded at a seismic array to extract information about both isotropic and anisotropic surface wave velocities. In particular, we test the sensitivity of the method with respect to the array geometry as well as to seasonal variations in the distribution of noise sources. In the earth's crust, anisotropy is typically caused by oriented faults or fractures and can be altered when earthquakes or human activities cause these structures to change. Monitoring anisotropy changes thus provides time-dependent information on subsurface processes, provided they can be distinguished from other effects. We analyse ambient noise data at frequencies between 0.08 and 0.52 Hz recorded at a three-component array in the Parkfield area, California (US), between 2001 November and 2002 April. During this time, no major earthquakes were identified in the area and structural changes are thus not expected. We compute dispersion curves of Love and Rayleigh waves and estimate anisotropy parameters for Love waves. For Rayleigh waves, the azimuthal source coverage is too limited to perform anisotropy analysis. For Love waves, ambient noise sources are more widely distributed and we observe significant and stable surface wave anisotropy for frequencies between 0.2 and 0.4 Hz. Synthetic data experiments indicate that the array geometry introduces apparent anisotropy, especially when waves from multiple sources arrive simultaneously at the array. Both the magnitude and the pattern of apparent anisotropy, however, differ significantly from the anisotropy observed in Love wave data. Temporal variations of anisotropy parameters observed at frequencies below 0.2 Hz and above 0.4 Hz correlate with changes in the source distribution. Frequencies between 0.2 and 0.4 Hz, however, are less affected by these variations and provide relatively stable results over the period of study.
Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.
Maryn, Youri; Ysenbaert, Femke; Zarowski, Andrzej; Vanspauwen, Robby
2017-03-01
The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels. One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system. These recordings were acquired in one condition without ambient noise and in four conditions with increased ambient noise. A total of 10 acoustic voice markers were obtained in the program Praat. Differences between MCDs and noise condition were assessed with Friedman repeated-measures test and posthoc Wilcoxon signed-rank tests, both for related samples, after Bonferroni correction. (1) Except median fundamental frequency and seven nonsignificant differences, MCD samples have significantly higher acoustic markers than clinical reference samples in minimal environmental noise. (2) Except median fundamental frequency, jitter local, and jitter rap, all acoustic measures on samples recorded with the reference system experienced significant influence from room noise levels. Fundamental frequency is resistant to recording system, environmental noise, and their combination. All other measures, however, were impacted by both recording system and noise condition, and especially by their combination, often already in the reference/baseline condition without added ambient noise. Caution is therefore warranted regarding implementation of MCDs as clinical recording tools, particularly when applied for treatment outcomes assessments. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Ambient vibrations of unstable rock slopes - insights from numerical modeling
NASA Astrophysics Data System (ADS)
Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat
2017-04-01
The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.
Nasari, Masoud M; Szyszkowicz, Mieczysław; Chen, Hong; Crouse, Daniel; Turner, Michelle C; Jerrett, Michael; Pope, C Arden; Hubbell, Bryan; Fann, Neal; Cohen, Aaron; Gapstur, Susan M; Diver, W Ryan; Stieb, David; Forouzanfar, Mohammad H; Kim, Sun-Young; Olives, Casey; Krewski, Daniel; Burnett, Richard T
2016-01-01
The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.
Crustal seismic structure of Tohoku region, Japan constrained by ambient noises
NASA Astrophysics Data System (ADS)
Chen, K. X.; Gung, Y.; Kuo, B. Y.; Huang, T. Y.
2016-12-01
We present 3D crustal models of Vs and Vs azimuthal anisotropy of Tohoku region, Japan. We construct the models by using short to intermediate periods of Rayleigh waves retreated from noise interferometry and a wavelet-based multi-scale inversion technique. We employ the Welch's method to derive the empirical Green's functions (EGF) of Rayleigh waves from one year of continuous records of 123 short-period stations of the dense high-sensitivity seismograph network (Hi-net), operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We compute EGFs for about 4000 station pairs with interstation distance less than 300 km. For each qualified EGF, we measure the dispersion in the period range from 2 to 18 seconds. While our results are still at the preliminary stage, we have noticed few interesting features in the models: (1) the quasi-N-S trend volcano front seems to be a major boundary for the variations of both velocity and anisotropy, with the eastern part characterized by higher Vs and the western part by low Vs anomalies, consistent with their corresponding surface geology; (2) patterns of the Vs azimuthal anisotropy demonstrate a clear depth-dependent variation, with fast polarization direction (FPD) parallels the strike of the island at the shallow crust; at the larger depths, the FPD gradually rotates to the direction of absolute plate motion in the SW region, and is getting complicated in the NW region, respectively. We present the revealed depth-dependent anisotropy and discuss the tectonic implications of our models. Key words: Tohoku, ambient noise, seismic anisotropy, surface wave tomography We present 3D crustal models of Vs and Vs azimuthal anisotropy of Tohoku region, Japan. We construct the models by using short to intermediate periods of Rayleigh waves retreated from noise interferometry and a wavelet-based multi-scale inversion technique. We employ the Welch's method to derive the empirical Green's functions (EGF) of Rayleigh waves from one year of continuous records of 123 short-period stations of the dense high-sensitivity seismograph network (Hi-net), operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We compute EGFs for about 4000 station pairs with interstation distance less than 300 km. For each qualified EGF, we measure the dispersion in the period range from 2 to 18 seconds. While our results are still at the preliminary stage, we have noticed few interesting features in the models: (1) the quasi-N-S trend volcano front seems to be a major boundary for the variations of both velocity and anisotropy, with the eastern part characterized by higher Vs and the western part by low Vs anomalies, consistent with their corresponding surface geology; (2) patterns of the Vs azimuthal anisotropy demonstrate a clear depth-dependent variation, with fast polarization direction (FPD) parallels the strike of the island at the shallow crust; at the larger depths, the FPD gradually rotates to the direction of absolute plate motion in the SW region, and is getting complicated in the NW region, respectively. We present the revealed depth-dependent anisotropy and discuss the tectonic implications of our models. Key words: Tohoku, ambient noise, seismic anisotropy, surface wave tomography
SOUTHERN CALIFORNIA PARTICLE CENTER (SCPC)
The research proposed by the SCPC will provide extensive characterization of chemical composition, activity, and toxicological potential of a wide variety of ambient PM, including samples collected at freeways, air and sea ports, indoors and outdoors under varying climatologic...
NASA Astrophysics Data System (ADS)
Jakovlev, Andrey; Kaviani, Ayoub; Ruempker, Georg
2017-04-01
Here we present results of the investigation of the upper crust in the Albertine rift around the Rwenzori Mountains. We use a data set collected from a temporary network of 33 broadband stations operated by the RiftLink research group between September 2009 and August 2011. During this period, 82639 P-wave and 73408 S-wave travel times from 12419 local and regional earthquakes were registered. This presents a very rare opportunity to apply both local travel-time and ambient-noise tomography to analyze data from the same network. For the local travel-time tomographic inversion the LOTOS algorithm (Koulakov, 2009) was used. The algorithm performs iterative simultaneous inversions for 3D models of P- and S-velocity anomalies in combination with earthquake locations and origin times. 28955 P- and S-wave picks from 2769 local earthquakes were used. To estimate the resolution and stability of the results a number of the synthetic and real data tests were performed. To perform the ambient noise tomography we use the following procedure. First, we follow the standard procedure described by Bensen et al. (2007) as modified by Boué et al. (2014) to compute the vertical component cross-correlation functions between all pairs of stations. We also adapted the algorithm introduced by Boué et al. (2014) and use the WHISPER software package (Briand et al., 2013) to preprocess individual daily vertical-component waveforms. On the next step, for each period, we use the method of Barmin et al. (2001) to invert the dispersion measurements along each path for group velocity tomographic maps. Finally, we adapt a modified version of the algorithm suggested by Macquet et al. (2014) to invert the group velocity maps for shear velocity structure. We apply several tests, which show that the best resolution is obtained at a period of 8 seconds, which correspond to a depth of approximately 6 km. Models of the seismic structure obtained by the two methods agree well at shallow depth of about 5 km Low velocities surround the mountain range from western and southern sides and coincide with the location of the rift valley. The Rwenzori Mountains itself and the eastern rift shoulder are represented by increased velocities. At greater depths of 10 - 15 km some differences in the models care observed. Thus, beneath the Rwenzories the travel time tomography shows low S-velocities, whereas the ambient noise tomography exhibits high S-velocities. This can be possibly explained by the fact that the ambient noise tomography is characterized by higher vertical resolution. Also, the number of the rays used for tomographic inversion in the ambient noise tomography is significantly smaller. This study was partly supported by the grant of Russian Foundation of Science #14-17-00430. References: Barmin, M.P., Ritzwoller, M.H. & Levshin, A.L., 2001. A fast and reliable method for surface wave tomography, Pure appl. Geophys., 158, 1351-1375. Bensen G.D., Ritzwoller M.H., Barmin M.P., Levshin A.L., Lin F., Moschetti M.P., Shapiro N.M., Yang Y., 2001, A fast and reliable method for surface wave tomography. Geophys. J. Int. 169, 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x. Boué P., Poli P., Campillo M., Roux P., 2014, Reverberations, coda waves and ambient-noise: correlations at the global scale and retrieval of the deep phases. Earth planet. Sci. Lett., 391, 137-145. Briand X., Campillo M., Brenguier F., Boué P., Poli P., Roux P., Takeda T. AGU Fall Meeting. San Francisco, CA; 2013. Processing of terabytes of data for seismic noise analysis with the Python codes of the Whisper Suite. 9-13 December, in Proceedings of the , Abstract n°IN51B-1544. Koulakov, I. (2009), LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bull. Seismol. Soc. Am., 99, 194-214, doi:10.1785/0120080013.
Gaseous optical contamination of the spacecraft environment: A review
NASA Technical Reports Server (NTRS)
Tran, N. H.; Maris, M. A.; Kofsky, I. L.; Murad, E.
1990-01-01
Interactions between the ambient atmosphere and orbiting spacecraft, sounding rockets, and suborbital vehicles, and with their effluents, give rise to optical (extreme UV to LWIR) foreground radiation which constitutes noise that raises the detection threshold for terrestrial and celestial radiations, as well as military targets. Researchers review the current information on the on-orbit optical contamination. Its source species are created in interaction processes that can be grouped into three categories: (1) Reactions in the gas phase between the ambient atmosphere and desorbates and exhaust; (2) Reactions catalyzed by exposed ram surfaces, which occur spontaneously even in the absence of active material releases from the vehicles; and (3) Erosive excitative reactions with exposed bulk (organic) materials, which have recently been identified in the laboratory though not as yet observed on spacecraft. Researchers also assess the effect of optical pumping by earthshine and sunlight of both reaction products and effluents.
Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis.
Jayaraj, Richard L; Rodriguez, Eric A; Wang, Yi; Block, Michelle L
2017-06-01
Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.
The aetiology of obesity beyond eating more and exercising less.
Dhurandhar, Emily J; Keith, Scott W
2014-08-01
Although recent increases in availability of energy dense, processed foods and reductions in institutionally driven physical activity have created an environment that is permissible for obesity to occur, several other factors may contribute to the development of obesity in this context. We review evidence for eleven such factors: endocrine disruptors, intrauterine effects, epigenetics, maternal age, differential fecundity and assortative mating by body mass index, microorganisms, reduction in variability of ambient temperatures, smoking cessation, sleep debt, and pharmaceutical iatrogenesis. Evidence for the role of endocrine disruptors, microorganisms, ambient temperatures, sleep and reproductive factors is accumulating, but additional research is needed to confirm the causative role of these factors in human obesity. However, the role of certain pharmaceuticals and smoking cessation in development of human obesity is clear. Practice points for consideration and future research needed are highlighted for each factor. Copyright © 2014 Elsevier Ltd. All rights reserved.
A new model of sensorimotor coupling in the development of speech.
Westermann, Gert; Reck Miranda, Eduardo
2004-05-01
We present a computational model that learns a coupling between motor parameters and their sensory consequences in vocal production during a babbling phase. Based on the coupling, preferred motor parameters and prototypically perceived sounds develop concurrently. Exposure to an ambient language modifies perception to coincide with the sounds from the language. The model develops motor mirror neurons that are active when an external sound is perceived. An extension to visual mirror neurons for oral gestures is suggested.
Use of the Maximum Likelihood Method in the Analysis of Chamber Air Dives
1988-01-01
the total gas pressure in compartment i, P0 is the current ambient pressure, 0 [ and A and B are constants (0.0026 min-’ -ATA- and 8.31 ATA...computer model (4), the Kidd- Stubbs 1971 decompression tables (11), and the current Defence and Civil Institute 20 of Environmental Medicine (DCIEM...it could be applied. Since the models are not suitable for this test, then within T ese no-deco current limits of statistical theory, the results can
1976-02-18
shows three different body-fixed Cartesian coordinate systems used in the present analysis . The Cartesian coordinate system with the axes x, y, and z... using the analysis of the previous section. A different situation exists when the base pressure is greater than the ambient value. Now it becomes... USED IN THE PRESENT ANALYSIS Figure 26. Computational model used in Section!!. D. 85 FIN BODY 00 C> Z t t Voa (b) FLOW FOR V oa z
Mineral resource of the month: iron oxide pigments
,
2008-01-01
The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.
Compressible flow across narrow passages: Comparison of theory and experiment for face seals
NASA Technical Reports Server (NTRS)
Allen, G. P.; Wisander, D. W.; Hady, W. F.
1978-01-01
Computer calculation for determining compressible flow across radial face seals were compared with measured results obtained in a seal simulator rig at pressure ratios to 0.9 (ambient pressure/sealed pressure). In general, the measured and calculated leakages across the seal dam agreed within 3 percent. The resultant loss coefficient, dependent upon the pressure ratio, ranged from 0.47 to 0.68. The calculated pressures were within 2.5 N/cu um of the measured values.
NASA Astrophysics Data System (ADS)
Olson, Michael R.
The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in methanol. Ambient samples showed similar MACs for the water and methanol extracts. Dichloromethane extracts did not have a significant light absorption characteristics for ambient samples. BrC and BC were measured in Beijing, China. Both were reduced significantly when restrictive air pollution controls were put in place. The industrial regions south and east of Beijing were the highest contributors to ambient BrC and BC. The controls reduced BrC more than BC as compared to observations during the regions heating period. Using the color characteristics of ambient PM, a model was developed to estimate elemental and organic carbon (EC/OC). The method will allow fast and cost effective quantification of PM composition in combination with large climate and health studies, especially in the developing world.
The role of the large-scale coronal magnetic field in the eruption of prominence/cavity systems
NASA Astrophysics Data System (ADS)
de Toma, G.; Gibson, S. E.; Fan, Y.; Torok, T.
2013-12-01
Prominence/cavity systems are large-scale coronal structures that can live for many weeks and even months and often end their life in the form of large coronal eruptions. We investigate the role of the surrounding ambient coronal field in stabilizing these systems against eruption. In particular, we examine the extent to which the decline with height of the external coronal magnetic field influences the evolution of these coronal systems and their likelihood to erupt. We study prominence/cavity systems during the rising phase of cycle 24 in 2010-2013, when a significant number of CMEs were associated with polar crown or large filament eruptions. We use EUV observations from SDO/AIA to identify stable and eruptive coronal cavities, and SDO/HMI magnetograms as boundary conditions to PFSS extrapolation to derive the ambient coronal field. We compute the decay index of the potential field for the two groups and find that systematic differences exist between eruptive and non-eruptive systems.
On the axisymmetric stability of heated supersonic round jets
2016-01-01
We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691
Thermal, electronic and ductile properties of lead-chalcogenides under pressure.
Gupta, Dinesh C; Bhat, Idris Hamid
2013-09-01
Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-06-01
The Workspace Satisfaction Survey measures occupant satisfaction with the thermal, lighting, acoustical, and air quality aspects of the work environment. In addition to ratings of these ambient environmental features, occupants also rate their satisfaction with a number of functional and aesthetic features of the office environment as well as their satisfaction with specific kinds of workspaces (e.g., computer rooms, the lobby, employee lounge, etc.). Each section on ambient conditions includes questions on the frequency with which people experience particular kinds of discomforts or problems, how much the discomfort bothers them, and how much it interferes with their work. Occupants aremore » also asked to identify how they cope with discomfort or environmental problems, and to what extent these behaviors enable them to achieve more satisfactory conditions. This report documents the results of this survey of the occupants of the Emerald People's Utility District office building in Eugene, Oregon.« less
Shape and dynamics of thermoregulating honey bee clusters.
Sumpter, D J; Broomhead, D S
2000-05-07
A model of simple algorithmic "agents" acting in a discrete temperature field is used to investigate the movement of individuals in thermoregulating honey bee (Apis mellifera) clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual bees attempting to regulate their own body temperatures. At ambient temperatures above 0( degrees )C, a clustering bee will move relative to its neighbours so as to put its local temperature within some ideal range. The proposed model incorporates this behaviour into an algorithm for bee agents moving on a two-dimensional lattice. Heat transport on the lattice is modelled by a discrete diffusion process. Computer simulation of this model demonstrates qualitative behaviour which agrees with that of real honey bee clusters. In particular, we observe the formation of both disc- and ring-like cluster shapes. The simulation also suggests that at lower ambient temperatures, clusters do not always have a stable shape but can oscillate between insulating rings of different sizes and densities. Copyright 2000 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-06-01
The Workspace Satisfaction Survey measures occupant satisfaction with the thermal, lighting, acoustical, and air quality aspects of the work environment. In addition to ratings of these ambient environmental features, occupants also rate their satisfaction with a number of functional and aesthetic features of the office environment as well as their satisfaction with specific kinds of workspaces (e.g., computer rooms, the lobby, employee lounge, etc.) Each section on ambient conditions includes questions on the frequency with which people experience particular kinds of discomforts or problems, how much the discomfort bothers them, and how much it interferes with their work. Occupants aremore » also asked to identify how they cope with discomfort or environmental problems, and to what extent these behaviors enable them to achieve more satisfactory conditions. Results of this survey of occupants of the four story Eugene Water Electric Boards (EWEB) main office building on the banks of the Wilamette River in Eugene, Oregon are the subject of this report.« less
Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.
Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less
Saldaña Barrios, Juan Jose; Mendoza, Luis; Pitti, Edgardo; Vargas, Miguel
2016-10-21
In this work, the authors present two eHealth platforms that are examples of how health systems are migrating from client-server architecture to the web-based and ubiquitous paradigm. These two platforms were modeled, designed, developed and implemented with positive results. First, using ambient-assisted living and ubiquitous computing, the authors enhance how palliative care is being provided to the elderly patients and patients with terminal illness, making the work of doctors, nurses and other health actors easier. Second, applying machine learning methods and a data-centered, ubiquitous, patient's results' repository, the authors intent to improve the Down's syndrome risk estimation process with more accurate predictions based on local woman patients' parameters. These two eHealth platforms can improve the quality of life, not only physically but also psychologically, of the patients and their families in the country of Panama. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Hamaguchi, Nana; Yamamoto, Keiko; Iwai, Daisuke; Sato, Kosuke
We investigate ambient sensing techniques that recognize writer's psychological states by measuring vibrations of handwriting on a desk panel using a piezoelectric contact sensor attached to its underside. In particular, we describe a technique for estimating the subjective difficulty of a question for a student as the ratio of the time duration of thinking to the total amount of time spent on the question. Through experiments, we confirm that our technique correctly recognizes whether or not a person writes something down on paper by measured vibration data at the accuracy of over 80 %, and that the order of computed subjective difficulties of three questions is coincident with that reported by the subject in 60 % of experiments. We also propose a technique to estimate a writer's psychological stress by using the standard deviation of the spectrum of the measured vibration. Results of a proof-of-concept experiment show that the proposed technique correctly estimates whether or not the subject feels stress at least 90 % of the time.
Ambient intelligence in health care.
Riva, Giuseppe
2003-06-01
Ambient Intelligence (AmI) is a new paradigm in information technology, in which people are empowered through a digital environment that is aware of their presence and context, and is sensitive, adaptive, and responsive to their needs, habits, gestures and emotions. The most ambitious expression of AmI is Intelligent Mixed Reality (IMR), an evolution of traditional virtual reality environments. Using IMR, it is possible to integrate computer interfaces into the real environment, so that the user can interact with other individuals and with the environment itself in the most natural and intuitive way. How does the emergence of the AmI paradigm influence the future of health care? Using a scenario-based approach, this paper outlines the possible role of AmI in health care by focusing on both its technological and relational nature. In this sense, clinicians and health care providers that want to exploit AmI potential need a significant attention to technology, ergonomics, project management, human factors and organizational changes in the structure of the relevant health service.
Podgórski, Daniel; Majchrzycka, Katarzyna; Dąbrowska, Anna; Gralewicz, Grzegorz; Okrasa, Małgorzata
2017-03-01
Recent developments in domains of ambient intelligence (AmI), Internet of Things, cyber-physical systems (CPS), ubiquitous/pervasive computing, etc., have led to numerous attempts to apply ICT solutions in the occupational safety and health (OSH) area. A literature review reveals a wide range of examples of smart materials, smart personal protective equipment and other AmI applications that have been developed to improve workers' safety and health. Because the use of these solutions modifies work methods, increases complexity of production processes and introduces high dynamism into thus created smart working environments (SWE), a new conceptual framework for dynamic OSH management in SWE is called for. A proposed framework is based on a new paradigm of OSH risk management consisting of real-time risk assessment and the capacity to monitor the risk level of each worker individually. A rationale for context-based reasoning in SWE and a respective model of the SWE-dedicated CPS are also proposed.
Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition
Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.; ...
2017-04-10
Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less
Çelebi, Mehmet; Toksöz, Nafi; Büyüköztürk, Oral
2014-01-01
A state-of-the-art seismic monitoring system comprising 36 accelerometers and a data-logger with real-time capability was recently installed at Building 54 on the Massachusetts Institute of Technology's (MIT) Cambridge, MA, campus. The system is designed to record translational, torsional, and rocking motions, and to facilitate the computation of drift between select pairs of floors. The cast-in-place, reinforced concrete building is rectangular in plan but has vertical irregularities. Heavy equipment is installed asymmetrically on the roof. Spectral analyses and system identification performed on five sets of low-amplitude ambient data reveal distinct and repeatable fundamental translational frequencies in the structural NS and EW directions (0.75 Hz and 0.68 Hz, respectively), a torsional frequency of 1.49 Hz, a rocking frequency of 0.75 Hz, and very low damping. Such results from low-amplitude data serve as a baseline against which to compare the behavior and performance of the building during stronger shaking caused by future earthquakes in the region.
NASA Astrophysics Data System (ADS)
Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José
2014-05-01
This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax valley allow the construction of microzonation maps, which are very useful for public administrations and private geotechnical companies. ACKNOWLEDGEMENTS. This research has been partially supported by the MINECO research project CGL2010-16250, Spain, by the EU with FEDER, by DGAPA-UNAM under Project IN104712, and the AXA Research Fund.
Effect of Various Parameters on Evolution of 2D Free Jets and their Associated Entrainment Rates
NASA Astrophysics Data System (ADS)
Amin, Mazyar; Dabiri, Dana; Navaz, Homayun
2006-11-01
Refrigerated vertical display cases are extensively used in supermarkets and grocery stores. Cold air is supplied vertically across the open face of the display case from the top, creating a cold air curtain acting as a barrier to separate the cold air within the case from the warm ambient air. Typically, 70-80% of the load on these vertical display cases is due to cooling of infiltrated warm ambient air. Our goal is to understand parameters affecting warm air infiltration into the case so as to minimize the cooling load. Towards this end, steady state behavior of 2D vertical air jets at Reynolds numbers 2,000 to 10,000 with low and high turbulence intensities (0% &10%) at the nozzle exit are experimentally and computationally investigated both within a quiescent ambient and next to an open cavity. Four different velocity profile shapes (top-hat, parabola, skewed parabola and linear) at the jet exit are also studied to determine profile effects on the evolution of and entrainment into the jet. Results will be presented to show the effect of these parameters on the total entrainment into the jet, as well as the variation of entrainment across the jet at different downstream locations. The results of this work can help better understand how to design air curtains as a buffer to minimize infiltration into open refrigerated vertical display cases.
A flexible routing scheme for patients with topographical disorientation.
Torres-Solis, Jorge; Chau, Tom
2007-11-28
Individuals with topographical disorientation have difficulty navigating through indoor environments. Recent literature has suggested that ambient intelligence technologies may provide patients with navigational assistance through auditory or graphical instructions delivered via embedded devices. We describe an automatic routing engine for such an ambient intelligence system. The method routes patients with topographical disorientation through indoor environments by repeatedly computing the route of minimal cost from the current location of the patient to a specified destination. The cost of a given path not only reflects the physical distance between end points, but also incorporates individual patient abilities, the presence of mobility-impeding physical barriers within a building and the dynamic nature of the indoor environment. We demonstrate the method by routing simulated patients with either topographical disorientation or physical disabilities. Additionally, we exemplify the ability to route a patient from source to destination while taking into account changes to the building interior. When compared to a random walk, the proposed routing scheme offers potential cost-savings even when the patient follows only a subset of instructions. The routing method presented reduces the navigational effort for patients with topographical disorientation in indoor environments, accounting for physical abilities of the patient, environmental barriers and dynamic building changes. The routing algorithm and database proposed could be integrated into wearable and mobile platforms within the context of an ambient intelligence solution.
Monitoring the tidal response of a sea levee with ambient seismic noise
NASA Astrophysics Data System (ADS)
Planès, Thomas; Rittgers, Justin B.; Mooney, Michael A.; Kanning, Wim; Draganov, Deyan
2017-03-01
Internal erosion, a major cause of failure of earthen dams and levees, is often difficult to detect at early stages using traditional visual inspection. The passive seismic-interferometry technique could enable the early detection of internal changes taking place within these structures. We test this technique on a portion of the sea levee of Colijnsplaat, Netherlands, which presents signs of concentrated seepage in the form of sandboils. Applying seismic interferometry to ambient noise collected over a 12-hour period, we retrieve surface waves propagating along the levee. We identify the contribution of two dominant ambient seismic noise sources: the traffic on the Zeeland bridge and a nearby wind turbine. Here, the sea-wave action does not constitute a suitable noise source for seismic interferometry. Using the retrieved surface waves, we compute time-lapse variations of the surface-wave group velocities during the 12-hour tidal cycle for different frequency bands, i.e., for different depth ranges. The estimated group-velocity variations correlate with variations in on-site pore-water pressure measurements that respond to tidal loading. We present lateral profiles of these group-velocity variations along a 180-meter section of the levee, at four different depth ranges (0m-40m). On these profiles, we observe some spatially localized relative group-velocity variations of up to 5% that might be related to concentrated seepage.
White, David E; Nates, Roy J; Bartley, Jim
2014-02-06
Continuous positive air pressure (CPAP) users frequently report troublesome symptoms of airway dryness and nasal congestion. Clinical investigations have demonstrated that supplementary humidification reduces these symptoms but the reason for their occurrence remains unexplained. Investigations using human computational air-conditioning models are unable to reproduce or quantify the apparent airway drying experienced during CPAP therapy. The purpose of this study was to determine whether augmented air pressures change overall mucosal airway surface liquid (ASL) water supply and, if so, the extent of this effect. In an original in vitro experimental set up, maximal ASL supply was determined in whole bovine trachea when exposed to simulated tidal breathing stresses over a range of air pressures. At ambient pressure, the maximal supply of ASL was found to compare well to previously published data (31.2 μl/cm2.hr). CPAP pressures from 5 cm H2O above ambient were found to reduce ASL supply by 22%. Statistical analysis (n = 8) showed a significant difference existed between the ambient and CPAP results (p < 0.0001), and that there was no significant variation between all pressurized results (p = 0.716). These findings provide preliminary data that ASL supply is reduced by CPAP therapy which may explain the airway drying symptoms associated with this therapy.
Molecular controlled of quantum nano systems
NASA Astrophysics Data System (ADS)
Paltiel, Yossi
2014-03-01
A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.
Beck, Peter; Bartlett, David; Lindborg, Lennart; McAulay, Ian; Schnuer, Klaus; Schraube, Hans; Spurny, Frantisek
2006-01-01
In May 2000, the chairman of the European Radiation Dosimetry Group (EURADOS) invited a number of experts with experience of cosmic radiation dosimetry to form a working group (WG 5) on aircraft crew dosimetry. Three observers from the Article 31 Group of Experts as well as one observer from the Joint Aviation Authorities (JAA) were also appointed. The European Commission funded the meetings. Full meetings were organised in January 2001 and in November 2001. An editorial group, who are the authors of this publication, started late in 2002 to finalise a draft report, which was submitted to the Article 31 Group of Experts in June 2003. The methods and data reported are the product of the work of 26 research institutes from the EU, USA and Canada. Some of the work was supported by contracts with the European Commission, Directorate General XII, Science, Research and Development. A first overview of the EC report was published late in 2004. In this publication we focus on a comparison of measured and calculated ambient dose rate data using the EURADOS In-Flight Data Base. The evaluation of results obtained by different methods and groups, and comparison of measurement results and the results of calculations were performed in terms of the operational quantity ambient dose equivalent, H*(10). Aspects of measurement uncertainty are reported also. The paper discusses the estimation of annual doses for given flight hours and gives an outline of further research needed in the field of aircraft crew dosimetry, such as the influence of solar particle events.
The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...
COMPENDIUM OF METHODS FOR THE DETERMINATION ...
Until recently, limited quidance has been available to federal, state and local agencies and to other organizations concerned with the determination of pollutant concentrations in ambient air. As a result, agencies, industry, and the general public have had to develop their own monitoring strategies. To address these needs, EPA’s Office of Research and Development has developed a collection of methods for measurement of inorganic pollutants of interest in ambient air. This compendium contains a set of 17 methods (in 5 categories) presented in a standardized format. A visual guide to the organization of the inorganic compendium is illustrated in figure 1, while Table 1 lists the 17 methods. Information
Cottone, F; Vocca, H; Gammaitoni, L
2009-02-27
Ambient energy harvesting has been in recent years the recurring object of a number of research efforts aimed at providing an autonomous solution to the powering of small-scale electronic mobile devices. Among the different solutions, vibration energy harvesting has played a major role due to the almost universal presence of mechanical vibrations. Here we propose a new method based on the exploitation of the dynamical features of stochastic nonlinear oscillators. Such a method is shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.
Susceptibility study of audio recording devices to electromagnetic stimulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.
2014-02-01
Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less
An integrated system for rainfall induced shallow landslides modeling
NASA Astrophysics Data System (ADS)
Formetta, Giuseppe; Capparelli, Giovanna; Rigon, Riccardo; Versace, Pasquale
2014-05-01
Rainfall induced shallow landslides (RISL) cause significant damages involving loss of life and properties. Predict susceptible locations for RISL is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, statistic. Usually to accomplish this task two main approaches are used: statistical or physically based model. In this work an open source (OS), 3-D, fully distributed hydrological model was integrated in an OS modeling framework (Object Modeling System). The chain is closed by linking the system to a component for safety factor computation with infinite slope approximation able to take into account layered soils and suction contribution to hillslope stability. The model composition was tested for a case study in Calabria (Italy) in order to simulate the triggering of a landslide happened in the Cosenza Province. The integration in OMS allows the use of other components such as a GIS to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. Finally, model performances were quantified by comparing modelled and simulated trigger time. This research is supported by Ambito/Settore AMBIENTE E SICUREZZA (PON01_01503) project.
Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway
NASA Astrophysics Data System (ADS)
Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas
2003-11-01
Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.
Five domains of environmental quality and infant mortality
The relationship between environmental conditions and human health varies by environmental media. In order to account for multiple ambient environmental conditions, we constructed an Environmental Quality Index (EQI) for health research. We used U.S. county level data representin...
AMBIENT POLLUTION AND HEART RATE VARIABILITY. (R826780)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
A PRIMER ON THE EPIDEMIOLOGIC FIELD STUDY OF YOUNG CHILDREN
Concern about children's environmental health is increasing as newly characterized risks are indentified. Often little data is available to guide policy decisions. Research on children's ambient exposures to environmental contaminants is essential to understand the magnitude ...
MEETING REPORT - APPLYING BIOMARKER RESEARCH
Public health and environmental professionals have generally focused on monitoring the ambient environment to assess exposures to the public. To understand exposures and effects and predict onset or course of disease, it is also important to look inside the (human) organism.
...
Environmental quality and infant mortality
The relationship between environmental conditions and human health varies by environmental media. In order to account for multiple ambient environmental conditions, we constructed an Environmental Quality Index (EQI)for use in health research. We used u.s. county level data repre...
Development of ambient PM 2.5 management strategies.
DOT National Transportation Integrated Search
2009-10-01
"Using analyzed and modeled field data on air quality and meteorology, researchers identified major contributors of fine particulate matter (PM2.5) in Fairbanks. This : project was an effort to help the city meet U.S. Environmental Protection Agency ...
NASA Astrophysics Data System (ADS)
Xu, Wei-Kang; Chen, Feng-Xiang; Cao, Gong-Hui; Wang, Jia-Qi; Wang, Li-Sheng
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 51702245) and the Fundamental Research Funds for the Central Universities, China (Grant No. WUT: 2017IB013).
NASA Astrophysics Data System (ADS)
Antao, Dion Savio
Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.
NASA Astrophysics Data System (ADS)
Dai, Quanqi; Harne, Ryan L.
2017-04-01
Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.
Dehydration of trehalose dihydrate at low relative humidity and ambient temperature.
Jones, Matthew D; Hooton, Jennifer C; Dawson, Michelle L; Ferrie, Alan R; Price, Robert
2006-04-26
The physico-chemical behaviour of trehalose dihydrate during storage at low relative humidity and ambient temperature was investigated, using a combination of techniques commonly employed in pharmaceutical research. Weight loss, water content determinations, differential scanning calorimetry and X-ray powder diffraction showed that at low relative humidity (0.1% RH) and ambient temperature (25 degrees C) trehalose dihydrate dehydrates forming the alpha-polymorph. Physical examination of trehalose particles by scanning electron microscopy and of the dominant growth faces of trehalose crystals by environmentally controlled atomic force microscopy revealed significant changes in surface morphology upon partial dehydration, in particular the formation of cracks. These changes were not fully reversible upon complete rehydration at 50% RH. These findings should be considered when trehalose dihydrate is used as a pharmaceutical excipient in situations where surface properties are key to behaviour, for example as a carrier in a dry powder inhalation formulations, as morphological changes under common processing or storage conditions may lead to variations in formulation performance.
Immersion Freezing of Total Ambient Aerosols and Ice Residuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar
This laboratory study reports pre-activation measurements of the size-selected un-activated ambient or total aerosols at the temperature range from -26 to -34°C using two continuous-flow diffusion chamber style ice nucleation chambers. Two different experiments (A and B) were performed in immersion freezing mode. In experiment A, frozen fraction of total aerosol was measured, whereas in experiment B frozen fraction of ice residuals (IR) obtained through sublimation of nucleated ice crystals was measured. Frozen fractions at respective temperatures from experiment B were observed to be higher than A, and therefore it was concluded that ambient particles show pre-activation phenomenon. Furthermore, single-particlemore » elemental composition analyses of the total aerosols showed that majority of the particles are dust particles coated by organic matter. In general, this study suggests that such internally mixed complex total aerosols are efficient ice nucleating particles (INPs) and motivates further research to examine the physio-chemical properties of IR particles to explain the phenomenon of pre-activation.« less
Jacobs, Milena; Zhang, Guicheng; Chen, Shu; Mullins, Ben; Bell, Michelle; Jin, Lan; Guo, Yuming; Huxley, Rachel; Pereira, Gavin
2017-02-01
The association between exposure to ambient air pollution and respiratory or cardiovascular endpoints is well-established. An increasing number of studies have shown that this exposure is also associated with adverse pregnancy outcomes. However, the majority of research has been undertaken in high-income western countries, with relatively lower levels of exposure. There is now a sufficient number of studies to warrant an assessment of effects in China, a relatively higher exposure setting. We conducted a systematic review of 25 studies examining the association between ambient air pollution exposure and adverse pregnancy outcomes (lower birth weight, preterm birth, mortality, and congenital anomaly) in China, published between 1980 and 2015. The results indicated that sulphur dioxide (SO 2 ) was more consistently associated with lower birth weight and preterm birth, and that coarse particulate matter (PM 10 ) was associated with congenital anomaly, notably cardiovascular defects. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wołoszczuk, Katarzyna; Skubacz, Krystian
2018-01-01
Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).
Complementary p- and n-type polymer doping for ambient stable graphene inverter.
Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk
2014-01-28
Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.
Health effects associated with exposure to ambient air pollution.
Samet, Jonathan; Krewski, Daniel
2007-02-01
The World Health Organization has identified ambient air pollution as a high public health priority, based on estimates of air pollution related death and disability-adjusted life years derived in its Global Burden of Disease initiative. The NERAM Colloquium Series on Health and Air Quality was initiated to strengthen the linkage between scientists, policymakers, and other stakeholders by reviewing the current state of science, identifying policy-relevant gaps and uncertainties in the scientific evidence, and proposing a path forward for research and policy to improve air quality and public health. The objective of this paper is to review the current state of science addressing the impacts of air pollution on human health. The paper is one of four background papers prepared for the 2003 NERAM/AirNet Conference on Strategies for Clean Air and Health, the third meeting in the international Colloquium Series. The review is based on the framework and findings of the U.S. National Research Committee (NRC) on Research Priorities for Airborne Particulate Matter and addresses key questions underlying air quality risk management policy decisions.