Sample records for ambient light level

  1. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions

    NASA Astrophysics Data System (ADS)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper M.; Bech, Søren; Andersen, Jakob Dahl; Forchhammer, Søren

    2015-01-01

    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate the effect of the ambient light from having an important influence on the quality grades to no influence at all.

  2. A comparison of the light-reduction capacity of commonly used incubator covers.

    PubMed

    Lee, Yi-Hui; Malakooti, Nima; Lotas, Marilyn

    2005-01-01

    The use of incubator covers to enhance preterm infants' rest and recovery is common in the NICU. However, the kinds of covers used vary extensively among and within nurseries. Few data exist on the effectiveness of different types of covers in reducing light levels to the infant. This study compared several types of commonly used incubator covers as to efficacy of light reduction. A descriptive, comparative design was used in this study. Twenty-three incubator covers were tested, including professional, receiving blanket, hand-crocheted, three-layer quilt, and flannel. The percentage of light level reduction of different incubator covers under various ambient light level settings. The amount of light reduction provided by incubator covers varies depending on type of fabric as well as percentage of incubator surface shielded by the cover. Dark-colored covers provided greater light reduction than bright/light-colored covers when covers identical in fabric type were compared. The light-reduction efficiency of the covers varied depending on the level of ambient light. Covers provided less light reduction in higher ambient light levels.

  3. The influence of ambient light on the driver

    NASA Astrophysics Data System (ADS)

    Klinger, Karsten D.; Lemmer, Uli

    2008-04-01

    Increasingly, cars are fitted with interior ambient lighting which is switched on while driving. This special kind of interior light emphasizes the interior design of the car, it makes a car look special and gives the buyers a new option to personalize their automobiles. But how does ambient interior light influence the driver? We conducted a series of over 50 tests to study the influence of interior ambient light on contrast perception under different illumination levels, colors and positions of the illuminated areas. Our tests show that in many cases the ambient lighting can improve the visual contrast for seeing objects in the headlamp beam. But the test persons mentioned that the tested brightness looked too bright and that they felt glared. The measured values instead proved that no disability glare exists. Therefore, provided that the drivers can adjust the intensity of the ambient light to avoid glare, the ambient light has no negative effect on the drivers' contrast perception.

  4. Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes.

    PubMed

    Versteeg, Ruth I; Stenvers, Dirk J; Visintainer, Dana; Linnenbank, Andre; Tanck, Michael W; Zwanenburg, Gooitzen; Smilde, Age K; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J; la Fleur, Susanne E; Bisschop, Peter H

    2017-04-01

    Ambient light intensity is signaled directly to hypothalamic areas that regulate energy metabolism. Observational studies have shown associations between ambient light intensity and plasma glucose and lipid levels, but human data on the acute metabolic effects of light are scarce. Since light is the main signal indicating the onset of the diurnal phase of physical activity and food intake in humans, we hypothesized that bright light would affect glucose and lipid metabolism. Therefore, we determined the acute effects of bright light on plasma glucose and lipid concentrations in 2 randomized crossover trials: (1) in 8 healthy lean men and (2) in 8 obese men with type 2 diabetes. From 0730 h, subjects were exposed to either bright light (4000 lux) or dim light (10 lux) for 5 h. After 1 h of light exposure, subjects consumed a 600-kcal mixed meal. Primary endpoints were fasting and postprandial plasma glucose levels. In healthy men, bright light did not affect fasting or postprandial plasma glucose levels. However, bright light increased fasting and postprandial plasma triglycerides. In men with type 2 diabetes, bright light increased fasting and postprandial glucose levels. In men with type 2 diabetes, bright light did not affect fasting triglyceride levels but increased postprandial triglyceride levels. We show that ambient light intensity acutely affects human plasma glucose and triglyceride levels. Our findings warrant further research into the consequences of the metabolic effects of light for the diagnosis and prevention of hyperglycemia and dyslipidemia.

  5. Flicker-induced retinal arteriole dilation is reduced by ambient lighting.

    PubMed

    Noonan, Jonathan E; Dusting, Gregory J; Nguyen, Thanh T; Man, Ryan E K; Best, William J; Lamoureux, Ecosse L

    2014-08-07

    To investigate the impact of ambient room lighting on the magnitude of flicker light-induced retinal vasodilations in healthy individuals. Twenty healthy nonsmokers participated in a balanced 2 × 2 crossover study. Retinal vascular imaging was performed with the dynamic vessel analyzer under reduced or normal ambient lighting, then again after 20 minutes under the alternate condition. Baseline calibers of selected arteriole and venule segments were recorded in measurement units. Maximum percentage dilations from baseline during 20 seconds of luminance flicker were calculated from the mean of three measurement cycles. Within-subject differences were assessed by repeated measures analysis of variance with the assumption of no carryover effects and pairwise comparisons from the fitted model. Mean (SD) maximum arteriole dilations during flicker stimulation under reduced and normal ambient lighting were 4.8% (2.3%) and 4.1% (1.9%), respectively (P = 0.019). Maximum arteriole dilations were (mean ± 95% confidence interval) 0.7% ± 0.6% lower under normal ambient lighting compared with reduced lighting. Ambient lighting had no significant effect on maximum venular dilations during flicker stimulation or on the baseline calibers of arterioles or venules. Retinal arteriole dilation in response to luminance flicker stimulation is reduced under higher ambient lighting conditions. Reduced responses with higher ambient lighting may reflect reduced contrast between the ON and OFF flicker phases. Although it may not always be feasible to conduct studies under reduced lighting conditions, ambient lighting levels should be consistent to ensure that comparisons are valid. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  6. Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes

    PubMed Central

    Versteeg, Ruth I.; Stenvers, Dirk J.; Visintainer, Dana; Linnenbank, Andre; Tanck, Michael W.; Zwanenburg, Gooitzen; Smilde, Age K.; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J.; la Fleur, Susanne E.; Bisschop, Peter H.

    2017-01-01

    Ambient light intensity is signaled directly to hypothalamic areas that regulate energy metabolism. Observational studies have shown associations between ambient light intensity and plasma glucose and lipid levels, but human data on the acute metabolic effects of light are scarce. Since light is the main signal indicating the onset of the diurnal phase of physical activity and food intake in humans, we hypothesized that bright light would affect glucose and lipid metabolism. Therefore, we determined the acute effects of bright light on plasma glucose and lipid concentrations in 2 randomized crossover trials: (1) in 8 healthy lean men and (2) in 8 obese men with type 2 diabetes. From 0730 h, subjects were exposed to either bright light (4000 lux) or dim light (10 lux) for 5 h. After 1 h of light exposure, subjects consumed a 600-kcal mixed meal. Primary endpoints were fasting and postprandial plasma glucose levels. In healthy men, bright light did not affect fasting or postprandial plasma glucose levels. However, bright light increased fasting and postprandial plasma triglycerides. In men with type 2 diabetes, bright light increased fasting and postprandial glucose levels. In men with type 2 diabetes, bright light did not affect fasting triglyceride levels but increased postprandial triglyceride levels. We show that ambient light intensity acutely affects human plasma glucose and triglyceride levels. Our findings warrant further research into the consequences of the metabolic effects of light for the diagnosis and prevention of hyperglycemia and dyslipidemia. PMID:28470119

  7. Effects of different carbon dioxide and LED lighting levels on the anti-oxidative capabilities of Gynura bicolor DC

    NASA Astrophysics Data System (ADS)

    Ren, Jin; Guo, Shuangsheng; Xu, Chunlan; Yang, Chengjia; Ai, Weidang; Tang, Yongkang; Qin, Lifeng

    2014-01-01

    Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol-1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.

  8. Object detectability at increased ambient lighting conditions.

    PubMed

    Pollard, Benjamin J; Chawla, Amarpreet S; Delong, David M; Hashimoto, Noriyuki; Samei, Ehsan

    2008-06-01

    Under typical dark conditions encountered in diagnostic reading rooms, a reader's pupils will contract and dilate as the visual focus intermittently shifts between the high luminance display and the darker background wall, resulting in increased visual fatigue and the degradation of diagnostic performance. A controlled increase of ambient lighting may, however, reduce the severity of these pupillary adjustments by minimizing the difference between the luminance level to which the eyes adapt while viewing an image (L(adp)) and the luminance level of diffusely reflected light from the area surrounding the display (L(s)). Although ambient lighting in reading rooms has conventionally been kept at a minimum to maintain the perceived contrast of film images, proper Digital Imaging and Communications in Medicine (DICOM) calibration of modern medical-grade liquid crystal displays can compensate for minor lighting increases with very little loss of image contrast. This paper describes two psychophysical studies developed to evaluate and refine optimum reading room ambient lighting conditions through the use of observational tasks intended to simulate real clinical practices. The first study utilized the biologic contrast response of the human visual system to determine a range of representative L(adp) values for typical medical images. Readers identified low contrast horizontal objects in circular foregrounds of uniform luminance (5, 12, 20, and 30 cd/m2) embedded within digitized mammograms. The second study examined the effect of increased ambient lighting on the detection of subtle objects embedded in circular foregrounds of uniform luminance (5, 12, and 35 cd/m2) centered within a constant background of 12 cd/m2 luminance. The images were displayed under a dark room condition (1 lux) and an increased ambient lighting level (50 lux) such that the luminance level of the diffusely reflected light from the background wall was approximately equal to the image L(adp) value of 12 cd/m2. Results from the first study demonstrated that observer true positive and false positive detection rates and true positive detection times were considerably better while viewing foregrounds at 12 and 20 cd/m2 than at the other foreground luminance levels. Results from the second study revealed that under increased room illuminance, the average true positive detection rate improved a statistically significant amount from 39.3% to 55.6% at 5 cd/m2 foreground luminance. Additionally, the true positive rate increased from 46.4% to 56.6% at 35 cd/m2 foreground luminance, and decreased slightly from 90.2% to 87.5% at 12 cd/m2 foreground luminance. False positive rates at all foreground luminance levels remained approximately constant with increased ambient lighting. Furthermore, under increased room illuminance, true positive detection times declined at every foreground luminance level, with the most considerable decrease (approximately 500 ms) at the 5 cd/m2 foreground luminance. The first study suggests that L(adp) of typical mammograms lies between 12 and 20 cd/m2, leading to an optimum reading room illuminance of approximately 50-80 lux. Findings from the second study provide psychophysical evidence that ambient lighting may be increased to a level within this range, potentially improving radiologist comfort, without deleterious effects on diagnostic performance.

  9. Determination of the Acceptable Ambient Light Exposure during Drug Product Manufacturing for Long Term Stability of Monoclonal Antibodies.

    PubMed

    Luis, Lin M; Hu, Yuzhe; Zamiri, Camellia; Sreedhara, Alavattam

    2018-05-31

    Monoclonal antibodies (mAbs) are exposed to light during drug product (DP) manufacturing and the acceptable levels of light exposure needs to be determined based on the impact on product quality. In this study, a mild and more representative light model consisting of ambient light instead of stress light as prescribed by ICH Q1B was used to evaluate the impact of light exposure on mAb DP quality. The immediate effect of ambient light exposure on protein drug product quality was determined to be dependent on the amount of light exposure rather than light intensity (up to 5000 lux). The impact on quality of mAbs is product specific due to their differences in light sensitivity, in which mAb II shows larger increases in IEC basic variants and larger decreases in SEC monomer when compared to mAb I after 0.24 million lux hours of light exposure. The acceptable ambient light exposure for mAb II drug product manufacturing was determined to be 0.13 million lux hours, in which no impact on product quality was observed after the short-term light exposure. Additionally, real-time storage (5°C) of the DP after the prescribed ambient light exposure showed no impact to various product quality attributes. The light model used in this study is capable of determining the acceptable amount of ambient light exposure for mAbs, especially during DP manufacturing processes. Copyright © 2018, Parenteral Drug Association.

  10. Ambient lighting: setting international standards for the viewing of softcopy chest images

    NASA Astrophysics Data System (ADS)

    McEntee, Mark F.; Ryan, John; Evanoff, Micheal G.; Keeling, Aoife; Chakraborty, Dev; Manning, David; Brennan, Patrick C.

    2007-03-01

    Clinical radiological judgments are increasingly being made on softcopy LCD monitors. These monitors are found throughout the hospital environment in radiological reading rooms, outpatient clinics and wards. This means that ambient lighting where clinical judgments from images are made can vary widely. Inappropriate ambient lighting has several deleterious effects: monitor reflections reduce contrast; veiling glare adds brightness; dynamic range and detectability of low contrast objects is limited. Radiological images displayed on LCDs are more sensitive to the impact of inappropriate ambient lighting and with these devices problems described above are often more evident. The current work aims to provide data on optimum ambient lighting, based on lesions within chest images. The data provided may be used for the establishment of workable ambient lighting standards. Ambient lighting at 30cms from the monitor was set at 480 Lux (office lighting) 100 Lux (WHO recommendations), 40 Lux and <10 Lux. All monitors were calibrated to DICOM part 14 GSDF. Sixty radiologists were presented with 30 chest images, 15 images having simulated nodular lesions of varying subtlety and size. Lesions were positioned in accordance with typical clinical presentation and were validated radiologically. Each image was presented for 30 seconds and viewers were asked to identify and score any visualized lesion from 1-4 to indicate confidence level of detection. At the end of the session, sensitivity and specificity were calculated. Analysis of the data suggests that visualization of chest lesions is affected by inappropriate lighting with chest radiologists demonstrating greater ambient lighting dependency. JAFROC analyses are currently being performed.

  11. Pilot Study of the Effects of Ambient Light Level Variation on Spectral Domain Anterior Segment OCT-Derived Angle Metrics in Caucasians versus Asians.

    PubMed

    Dastiridou, Anna; Marion, Kenneth; Niemeyer, Moritz; Francis, Brian; Sadda, Srinivas; Chopra, Vikas

    2018-04-11

    To investigate the effects of ambient light level variation on spectral domain anterior segment optical coherence tomography (SD-ΟCT)-derived anterior chamber angle metrics in Caucasians versus Asians. Caucasian (n = 24) and Asian participants of Chinese ancestry (n = 24) with open angles on gonioscopy had one eye imaged twice at five strictly controlled, ambient light levels. Ethnicity was self-reported. Light levels were strictly controlled using a light meter at 1.0, 0.75, 0.5, 0.25, and 0 foot candle illumination levels. SD-OCT 5-line raster scans at the inferior 270° irido-corneal angle were measured by two trained, masked graders from the Doheny Image Reading Center using customized Image-J software. Schwalbe's line-angle opening distance (SL-AOD) and SL-trabecular iris space area (SL-TISA) in different light meter readings (LMRs) between the two groups were compared. Baseline light SL-AOD and SL-TISA measured 0.464 ± 0.115mm/0.351 ± 0.110mm 2 and 0.344 ± 0.118mm/0.257 ± 0.092mm 2 , respectively, in the Caucasian and the Asian group. SL-AOD and SL-TISA in each LMR were significantly larger in the Caucasian group compared to the Asian group (p < 0.05). Despite this difference in angle size between the groups, there were no statistically significant differences in the degree of change in angle parameters from light to dark (% changes in SL-AOD or SL-TISA between the two groups were statistically similar with all p-values >0.3). SL-based angle dimensions using SD-OCT are sensitive to changes in ambient illumination in participants with Caucasian and Asian ancestry. Although Caucasian eyes had larger baseline angle opening under bright light conditions, the light-to-dark change in angle dimensions was similar in the two groups.

  12. Interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological variables in broilers grown to 42 day of age

    USDA-ARS?s Scientific Manuscript database

    The interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological reactions in broilers grown to 42 day of age were investigated. The experiment consisted of 2 levels (Moderate=21.1, High=26.7 °C) of temperatures and 2 light sour...

  13. Image quality evaluation for smart-phone displays at lighting levels of indoor and outdoor conditions

    NASA Astrophysics Data System (ADS)

    Gong, Rui; Xu, Haisong; Wang, Binyu; Luo, Ming Ronnier

    2012-08-01

    The image quality of two active matrix organic light emitting diode (AMOLED) smart-phone displays and two in-plane switching (IPS) ones was visually assessed at two levels of ambient lighting conditions corresponding to indoor and outdoor applications, respectively. Naturalness, colorfulness, brightness, contrast, sharpness, and overall image quality were evaluated via psychophysical experiment by categorical judgment method using test images selected from different application categories. The experimental results show that the AMOLED displays perform better on colorfulness because of their wide color gamut, while the high pixel resolution and high peak luminance of the IPS panels help the perception of brightness, contrast, and sharpness. Further statistical analysis of ANOVA indicates that ambient lighting levels have significant influences on the attributes of brightness and contrast.

  14. The twilight zone: ambient light levels trigger activity in primitive ants.

    PubMed

    Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M

    2010-05-22

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation.

  15. The twilight zone: ambient light levels trigger activity in primitive ants

    PubMed Central

    Narendra, Ajay; Reid, Samuel F.; Hemmi, Jan M.

    2010-01-01

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978

  16. Illumination-compensated non-contact imaging photoplethysmography via dual-mode temporally coded illumination

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Non-contact camera-based imaging photoplethysmography (iPPG) is useful for measuring heart rate in conditions where contact devices are problematic due to issues such as mobility, comfort, and sanitation. Existing iPPG methods analyse the light-tissue interaction of either active or passive (ambient) illumination. Many active iPPG methods assume the incident ambient light is negligible to the active illumination, resulting in high power requirements, while many passive iPPG methods assume near-constant ambient conditions. These assumptions can only be achieved in environments with controlled illumination and thus constrain the use of such devices. To increase the number of possible applications of iPPG devices, we propose a dual-mode active iPPG system that is robust to changes in ambient illumination variations. Our system uses a temporally-coded illumination sequence that is synchronized with the camera to measure both active and ambient illumination interaction for determining heart rate. By subtracting the ambient contribution, the remaining illumination data can be attributed to the controlled illuminant. Our device comprises a camera and an LED illuminant controlled by a microcontroller. The microcontroller drives the temporal code via synchronizing the frame captures and illumination time at the hardware level. By simulating changes in ambient light conditions, experimental results show our device is able to assess heart rate accurately in challenging lighting conditions. By varying the temporal code, we demonstrate the trade-off between camera frame rate and ambient light compensation for optimal blood pulse detection.

  17. Bright ambient light conditions reduce the effect of tryptophan depletion in healthy females.

    PubMed

    Defrancesco, Michaela; Niederstätter, Harald; Parson, Walther; Kemmler, Georg; Hinterhuber, Hartmann; Marksteiner, Josef; Deisenhammer, Eberhard A

    2013-11-30

    Tryptophan depletion (TD) is an established method to influence the serotonergic system and mood. The purpose of this study was to examine the effect of TD under different ambient light conditions, measured through serotonin-associated plasma levels and a visual analog scale (VAS), on healthy females. Thirty-eight healthy female s-allele carriers of the serotonin transporter promoter gene (5-HTTLPR) were administered a TD under dim light conditions (75 lx). A sub-group of 8 participants repeated the procedure randomized in two additional light conditions (585 lx and 1530 lx respectively). Prior to, and 5h following administration of TD, various variables (serotonin-associated plasma levels, VAS) were measured. Due to not normal distributed data, non-parametric statistical tests were used. Overall analysis showed a significant mood lowering effect of TD. Moreover, TD decreased all measured serotonin-associated plasma levels significantly. Significant differences in varying light conditions were found for the VAS and plasma tryptophan, with the greatest effect of TD in the 75 lx condition. Results of our study showed an influence of even slight differences in ambient light intensity on the effect of TD concerning mood as well as on the serotonergic system. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Optimal front light design for reflective displays under different ambient illumination

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Po; Chang, Ting-Ting; Li, Chien-Ju; Bai, Yi-Ho; Hu, Kuo-Jui

    2011-01-01

    The goal of this study is to find out the optimal luminance and color temperature of front light for reflective displays in different ambient illumination by conducting series of psychophysical experiments. A color and brightness tunable front light device with ten LED units was built and been calibrated to present 256 luminance levels and 13 different color temperature at fixed luminance of 200 cd/m2. The experiment results revealed the best luminance and color temperature settings for human observers under different ambient illuminant, which could also assist the e-paper manufacturers to design front light device, and present the best image quality on reflective displays. Furthermore, a similar experiment procedure was conducted by utilizing new flexible e-signage display developed by ITRI and an optimal front light device for the new display panel has been designed and utilized.

  19. Ambient illumination switches contrast preference of specific retinal processing streams

    PubMed Central

    Pearson, James T.

    2015-01-01

    Contrast, a fundamental feature of visual scenes, is encoded in a distributed manner by ∼20 retinal ganglion cell (RGC) types, which stream visual information to the brain. RGC types respond preferentially to positive (ONpref) or negative (OFFpref) contrast and differ in their sensitivity to preferred contrast and responsiveness to nonpreferred stimuli. Vision operates over an enormous range of mean light levels. The influence of ambient illumination on contrast encoding across RGC types is not well understood. Here, we used large-scale multielectrode array recordings to characterize responses of mouse RGCs under lighting conditions spanning five orders in brightness magnitude. We identify three functional RGC types that switch contrast preference in a luminance-dependent manner (Sw1-, Sw2-, and Sw3-RGCs). As ambient illumination increases, Sw1- and Sw2-RGCs shift from ONpref to OFFpref and Sw3-RGCs from OFFpref to ONpref. In all cases, transitions in contrast preference are reversible and track light levels. By mapping spatiotemporal receptive fields at different mean light levels, we find that changes in input from ON and OFF pathways in receptive field centers underlie shifts in contrast preference. Sw2-RGCs exhibit direction-selective responses to motion stimuli. Despite changing contrast preference, direction selectivity of Sw2-RGCs and other RGCs as well as orientation-selective responses of RGCs remain stable across light levels. PMID:25995351

  20. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    NASA Astrophysics Data System (ADS)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  1. The visual perception of metal.

    PubMed

    Todd, James T; Norman, J Farley

    2018-03-01

    The present research was designed to examine how the presence or absence of ambient light influences the appearance of metal. The stimuli depicted three possible objects that were illuminated by three possible patterns of illumination. These were generated by a single point light source, two rectangular area lights, or projecting light onto a translucent white box that contained the object (and the camera) so that the object would be illuminated by ambient light in all directions. The materials were simulated using measured parameters of chrome with four different levels of roughness. Observers rated the metallic appearance and shininess of each depicted object using two sliders. The highest rated appearance of metal and shininess occurred for the surfaces with the lowest roughness in the ambient illumination condition, and these ratings dropped systematically as the roughness was increased. For the objects illuminated by point or area lights, the appearance of metal and shininess were significantly less than in the ambient conditions for the lowest roughness value, and significantly greater than in the ambient condition for intermediate values of roughness. We also included a control condition depicting objects with a shiny plastic reflectance function that had both diffuse and specular components. These objects were rated as highly shiny but they did not appear metallic. A theoretical hypothesis is proposed that the defining characteristic of metal (as opposed to black plastic) is the presence of specular sheen over most of the visible surface area.

  2. Breast screen new South wales generally demonstrates good radiologic viewing conditions.

    PubMed

    Soh, BaoLin Pauline; Lee, Warwick; Diffey, Jennifer L; McEntee, Mark F; Kench, Peter L; Reed, Warren M; Brennan, Patrick C

    2013-08-01

    This study measured reading workstation monitors and the viewing environment currently available within BreastScreen New South Wales (BSNSW) centres to determine levels of adherence to national and international guidelines. Thirteen workstations from four BSNSW service centres were assessed using the American Association of Physicists in Medicine Task Group 18 Quality Control test pattern. Reading workstation monitor performance and ambient light levels when interpreting screening mammographic images were assessed using spectroradiometer CS-2000 and chroma meter CL-200. Overall, radiologic monitors within BSNSW were operating at good acceptable levels. Some non-adherence to published guidelines included the percentage difference in maximum luminance between pairs of primary monitors at individual workstations (61.5 % or 30.8 % of workstations depending on specific guidelines), maximum luminance (23.1 % of workstations), luminance non-uniformity (11.5 % of workstations) and minimum luminance (3.8 % of workstations). A number of ambient light measurements did not comply with the only available evidence-based guideline relevant to the methodology used in this study. Larger ambient light variations across sites are shown when monitors were switched off, suggesting that differences in ambient lighting between sites can be masked when a standard mammogram is displayed for photometric measurements. Overall, BSNSW demonstrated good adherence to available guidelines, although some non-compliance has been shown. Recently updated United Kingdom and Australian guidelines should help reduce confusion generated by the plethora and sometimes dated nature of currently available recommendations.

  3. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Ning, Zhi; Shen, Zhenxing; Li, Guoliang; Zhang, Junke; Lei, Yali; Xu, Hongmei; Sun, Jian; Zhang, Leiming; Westerdahl, Dane; Gali, Nirmal Kumar; Gong, Xuesong

    2017-10-01

    This study investigated the ;roadside-to-ambient; evolution of particle physicochemical and optical properties in typical urban atmospheres of Hong Kong through collection of chemically-resolved PM2.5 data and PM2.5 size distribution at a roadside and an ambient site. Roadside particle size distribution showed typical peaks in the nuclei mode (30-40 nm) while ambient measurements peaked in the Aitken mode (50-70 nm), revealing possible condensation and coagulation growth of freshly emitted particles during aging processes. Much higher levels of anthropogenic chemical components, i.e. nitrate, sulfate, ammonium, organic carbon (OC) and elemental carbon (EC), but lower levels of OC/EC and secondary inorganic aerosols (SIA)/EC ratios appeared in roadside than ambient particles. The high OC/EC and SIA/EC ratios in ambient particles implied high contributions from secondary aerosols. Black carbon (BC), a strong light absorbing material, showed large variations in optical properties when mixed with other inorganic and organic components. Particle-bound polycyclic aromatic hydrocarbons (p-PAHs), an indicator of brown carbon (BrC), showed significant UV-absorbing ability. The average BC and p-PAHs concentrations were 3.8 and 87.6 ng m-3, respectively, at the roadside, but were only 1.5 and 18.1 ng m-3 at the ambient site, suggesting BC and p-PAHs concentrations heavily driven by traffic emissions. In contrast, PM2.5 UV light absorption coefficients (babs-BrC,370nm) at the ambient site (4.2 Mm-1) and at the roadside site (4.1 Mm-1) were similar, emphasizing that particle aging processes enhanced UV light-absorbing properties, a conclusion that was also supported by the finding that the Absorption Ångström coefficient (AAC) value at UV wavelengths (AAC_UV band) at the ambient site were ∼1.7 times higher than that at the roadside. Both aqueous reaction and photochemically produced secondary organic aerosol (SOA) for ambient aerosols contributed to the peak values of babs-BrC,370nm in ambient particles at midnight and around noon, highlighting that secondary BrC had different sources and particle aging in the atmosphere affected BrC and BC properties and related aerosol light absorption.

  4. Negative Lens–Induced Myopia in Infant Monkeys: Effects of High Ambient Lighting

    PubMed Central

    Smith, Earl L.; Hung, Li-Fang; Arumugam, Baskar; Huang, Juan

    2013-01-01

    Purpose. To determine whether high light levels, which have a protective effect against form-deprivation myopia, also retard the development of lens-induced myopia in primates. Methods. Hyperopic defocus was imposed on 27 monkeys by securing −3 diopter (D) lenses in front of one eye. The lens-rearing procedures were initiated at 24 days of age and continued for periods ranging from 50 to 123 days. Fifteen of the treated monkeys were exposed to normal laboratory light levels (∼350 lux). For the other 12 lens-reared monkeys, auxiliary lighting increased the illuminance to 25,000 lux for 6 hours during the middle of the daily 12 hour light cycle. Refractive development, corneal power, and axial dimensions were assessed by retinoscopy, keratometry, and ultrasonography, respectively. Data were also obtained from 37 control monkeys, four of which were exposed to high ambient lighting. Results. In normal- and high-light-reared monkeys, hyperopic defocus accelerated vitreous chamber elongation and produced myopic shifts in refractive error. The high light regimen did not alter the degree of myopia (high light: −1.69 ± 0.84 D versus normal light: −2.08 ± 1.12 D; P = 0.40) or the rate at which the treated eyes compensated for the imposed defocus. Following lens removal, the high light monkeys recovered from the induced myopia. The recovery process was not affected by the high lighting regimen. Conclusions. In contrast to the protective effects that high ambient lighting has against form-deprivation myopia, high artificial lighting did not alter the course of compensation to imposed defocus. These results indicate that the mechanisms responsible for form-deprivation myopia and lens-induced myopia are not identical. PMID:23557736

  5. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos.

    PubMed

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik

    2015-06-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.

  6. Looking for Holes in Sterile Wrapping: How Accurate Are We?

    PubMed

    Rashidifard, Christopher H; Mayassi, Hani A; Bush, Chelsea M; Opalacz, Brian M; Richardson, Mark W; Muccino, Paul M; DiPasquale, Thomas G

    2018-05-01

    Defects in sterile surgical wrapping are identified by the presence of holes through which light can be seen. However, it is unknown how reliably the human eye can detect these defects. The purpose of this study was to determine (1) how often holes in sterile packaging of various sizes could be detected; and (2) whether differences in lighting, experience level of the observer, or time spent inspecting the packaging were associated with improved likelihood of detection of holes in sterile packaging. Thirty participants (10 surgical technicians, 13 operating room nurses, seven orthopaedic surgery residents) inspected sterile sheets for perforations under ambient operating room (OR) lighting and then again with a standard powered OR lamp in addition to ambient lighting. There were no additional criteria for eligibility other than willingness to participate. Each sheet contained one of nine defect sizes with four sheets allocated to each defect size. Ten wraps were controls with no defects. Participants were allowed as much time as necessary for inspection. Holes ≥ 2.5 mm were detected more often than holes ≤ 2 mm (87% [832 of 960] versus 7% [82 of 1200]; odds ratio, 88.6 [95% confidence interval, 66.2-118.6]; p < 0.001). There was no difference in detection accuracy between OR lamp and ambient lightning nor experience level. There was no correlation between inspection time and detection accuracy. Defects ≤ 2 mm were not reliably detected with respect to lighting, time, or level of experience. Future research is warranted to determine defect sizes that are clinically meaningful. Level II, diagnostic study.

  7. Bright versus dim ambient light affects subjective well-being but not serotonin-related biological factors.

    PubMed

    Stemer, Bettina; Melmer, Andreas; Fuchs, Dietmar; Ebenbichler, Christoph; Kemmler, Georg; Deisenhammer, Eberhard A

    2015-10-30

    Light falling on the retina is converted into an electrical signal which stimulates serotonin synthesis. Previous studies described an increase of plasma and CNS serotonin levels after bright light exposure. Ghrelin and leptin are peptide hormones which are involved in the regulation of hunger/satiety and are related to serotonin. Neopterin and kynurenine are immunological markers which are also linked to serotonin biosynthesis. In this study, 29 healthy male volunteers were exposed to bright (5000lx) and dim (50lx) light conditions for 120min in a cross-over manner. Subjective well-being and hunger as well as various serotonin associated plasma factors were assessed before and after light exposure. Subjective well-being showed a small increase under bright light and a small decrease under dim light, resulting in a significant interaction between light condition and time. Ghrelin concentrations increased significantly under both light conditions, but there was no interaction between light and time. Correspondingly, leptin decreased significantly under both light conditions. Hunger increased significantly with no light-time interaction. We also found a significant decrease of neopterin, tryptophan and tyrosine levels, but no interaction between light and time. In conclusion, ambient light was affecting subjective well-being rather than serotonin associated biological factors. Copyright © 2015. Published by Elsevier Ireland Ltd.

  8. A component of retinal light adaptation mediated by the thyroid hormone cascade.

    PubMed

    Bedolla, Diana E; Torre, Vincent

    2011-01-01

    Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2-3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4-8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation.

  9. A Component of Retinal Light Adaptation Mediated by the Thyroid Hormone Cascade

    PubMed Central

    Bedolla, Diana E.; Torre, Vincent

    2011-01-01

    Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2–3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4–8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation. PMID:22039463

  10. Evaluation of low-contrast perceptibility in dental restorative materials under the influence of ambient light conditions

    PubMed Central

    Lobo, I C; Lemos, A L B; Aguiar, M F

    2015-01-01

    Objectives: This study aimed to assess how details on dental restorative composites with different radio-opacities are perceived under the influence of ambient light. Methods: Resin composite step wedges (six steps, each 1-mm thick) were custom manufactured from three materials, respectively: (M1) Filtek™ Z350 (3M/ESPE, Saint Paul, MN); (M2) Prisma AP.H™ (Dentsply International Inc., Brazil) and (M3) Glacier® (SDI Limited, Victoria, Australia). Each step of the manufactured wedge received three standardized drillings of different diameters and depths. An aluminium (Al) step wedge with 12 steps (1-mm thick) was used as an internal standard to calculate the radio-opacity as pixel intensity values. Standardized digital images of the set were obtained, and 11 observers independently recorded the images, noting the number of noticeable details (drillings) under 2 dissimilar conditions: in a light environment (light was turned on in the room) and in low-light conditions (light in the room was turned off). The differences between images in terms of the number of details that were observed were statistically compared using ANOVA, Cronbach's alpha coefficient and Wilcoxon and Kruskal–Wallis tests, with a significance level setting of 5% (α = 0.05). Results: The M2 showed higher radio-opacity, the M1 displayed intermediate radio-opacity and the M3 showed lower radio-opacity, respectively; however, all three were without significance (p > 0.05) compared with each other. The differences in radio-opacity resulted in a significant variation (p < 0.05) in the number of noticeable details in the image, which were influenced by characteristics of details, in addition to the ambient-light level. Conclusions: The radio-opacity of materials and ambient light can affect the perception of details in digital radiographic images. PMID:25629721

  11. Evaluating office lighting environments: Second-level analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B.L.; Fisher, W.S.; Gillette, G.L.

    1989-04-01

    Data from a post-occupancy evaluation (POE) of 912 work stations with lighting power density (LPD), photometric, and occupant-response measures were examined in a detailed, second-level analysis. Seven types of lighting systems were identified with different combinations of direct and indirect ambient lighting, and task lighting and daylight. The mean illuminances at the primary task location were within the IES target values for office task with a range of mean illuminances from 32 to 75 fc, depending on the lighting system. The median LPD was about 2.36 watts/sq ft, with about one-third the work stations having LPD's at or below 2.0more » watts/sq ft. Although a majority of the occupants (69%) were satisfied about their lighting, the highest percentage of those expressing dissatisfaction (37%) with lighting had an indirect fluorescent furniture-mounted (IFFM) system. The negative reaction of so many people to the IFFM system suggests that the combination of task lighting with an indirect ambient system had an important influence on lighting satisfaction, even though task illuminances tended to be higher with the IFFM system. Concepts of lighting quality, visual health, and control were explored, as well as average luminance to explain the negative reactions to the combination of indirect lighting with furniture-mounted lighting.« less

  12. Comparison of visual acuity estimates using three different letter charts under two ambient room illuminations

    PubMed Central

    Chen, Ai-Hong; Norazman, Fatin Nur Najwa; Buari, Noor Halilah

    2012-01-01

    Background: Visual acuity is an essential estimate to assess ability of the visual system and is used as an indicator of ocular health status. Aim: The aim of this study is to investigate the consistency of acuity estimates from three different clinical visual acuity charts under two levels of ambient room illumination. Materials and Methods: This study involved thirty Malay university students aged between 19 and 23 years old (7 males, 23 females), with their spherical refractive error ranging between plano and –7.75D, astigmatism ranging from plano to –1.75D, anisometropia less than 1.00D and with no history of ocular injury or pathology. Right eye visual acuity (recorded in logMAR unit) was measured with Snellen letter chart (Snellen), wall mounted letter chart (WM) and projected letter chart (PC) under two ambient room illuminations, room light on and room light off. Results: Visual acuity estimates showed no statistically significant difference when measured with the room light on and with the room light off (F1,372 = 0.26, P = 0.61). Post-hoc analysis with Tukey showed that visual acuity estimates were significantly different between the Snellen and PC (P = 0.009) and between Snellen and WM (P = 0.002). Conclusions: Different levels of ambient room illumination had no significant effect on visual acuity estimates. However, the discrepancies in estimates of visual acuity noted in this study were purely due to the type of letter chart used. PMID:22446903

  13. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    PubMed

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-07-01

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  14. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird.

    PubMed

    Dwyer, Ross G; Bearhop, Stuart; Campbell, Hamish A; Bryant, David M

    2013-03-01

    Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  15. Effect of ambient light on the time needed to complete a fetal biophysical profile: A randomized controlled trial.

    PubMed

    Said, Heather M; Gupta, Shweta; Vricella, Laura K; Wand, Katy; Nguyen, Thinh; Gross, Gilad

    2017-10-01

    The objective of this study is to determine whether ambient light serves as a fetal stimulus to decrease the amount of time needed to complete a biophysical profile. This is a randomized controlled trial of singleton gestations undergoing a biophysical profile. Patients were randomized to either ambient light or a darkened room. The primary outcome was the time needed to complete the biophysical profile. Secondary outcomes included total and individual component biophysical profile scores and scores less than 8. A subgroup analysis of different maternal body mass indices was also performed. 357 biophysical profile studies were analyzed. 182 studies were performed with ambient light and 175 were performed in a darkened room. There was no difference in the median time needed to complete the biophysical profile based on exposure to ambient light (6.1min in darkened room versus 6.6min with ambient light; P=0.73). No difference was found in total or individual component biophysical profile scores. Subgroup analysis by maternal body mass index did not demonstrate shorter study times with ambient light exposure in women who were normal weight, overweight or obese. Ambient light exposure did not decrease the time needed to complete the biophysical profile. There was no evidence that ambient light altered fetal behavior observed during the biophysical profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Evaluation of Sugar Content of Huanghua Pear on Trees by Visible/Near Infrared Spectroscopy].

    PubMed

    Liu, Hui-jun; Ying, Yi-bin

    2015-11-01

    A method of ambient light correction was proposed to evaluate the sugar content of Huanghua pears on tree by visible/near infrared diffuse reflectance spectroscopy (Vis/NIRS). Due to strong interference of ambient light, it was difficult to collect the efficient spectral of pears on tree. In the field, covering the fruits with a bag blocking ambient light can get better results, but the efficiency is fairly low, the instrument corrections of dark and reference spectra may help to reduce the error of the model, however, the interference of the ambient light cannot be eliminated effectively. In order to reduce the effect of ambient light, a shutter was attached to the front of probe. When opening shutter, the spot spectrum were obtained, on which instrument light and ambient light acted at the same time. While closing shutter, background spectra were obtained, on which only ambient light acted, then the ambient light spectra was subtracted from spot spectra. Prediction models were built using data on tree (before and after ambient light correction) and after harvesting by partial least square (PLS). The results of the correlation coefficient (R) are 0.1, 0.69, 0.924; the root mean square error of prediction (SEP) are 0. 89°Brix, 0.42°Brix, 0.27°Brix; ratio of standard deviation (SD) to SEP (RPD) are 0.79, 1.69, 2.58, respectively. The results indicate that, method of background correction used in the experiment can reduce the effect of ambient lighting on spectral acquisition of Huanghua pears in field, efficiently. This method can be used to collect the visible/near infrared spectrum of fruits in field, and may give full play to visible/near-infrared spectroscopy in preharvest management and maturity testing of fruits in the field.

  17. Looking for light in the din: An examination of the circadian-disrupting properties of a medical intensive care unit.

    PubMed

    Danielson, Samantha J; Rappaport, Charles A; Loher, Michael K; Gehlbach, Brian K

    2018-06-01

    Critically ill patients exhibit profound disturbances of circadian rhythmicity, most commonly in the form of a phase delay. We investigated the specific zeitgeber properties of a medical intensive care unit to develop a model that explained these abnormalities. Prospective, observational study conducted during 2013-2014. Twenty-four-hour ambient light (lux, 672 hours) and sound pressure levels (dBA, 504 hours) were measured in patient rooms. Patients and families were surveyed regarding their perceptions of the environment. University-based adult medical intensive care unit. The timing and intensity of the ambient light-dark cycle and sound environment and the relationship of these measurements to patient/family perceptions. Twenty-four-hour light-dark cycles were extremely weak and phase delayed relative to the solar cycle. Morning light averaged 12.1 (4.8, 37.2) lux, when only 24.9% ± 10.9% of available light was utilised; yet patients and families did not identify low daytime light levels as problematic. Median noise levels were invariably excessive (nighttime 47.9 [45.0, 51.3] dBA) with minimal variation, consistent with the absence of a defined rest period. The intensive care unit functions as a near-constant routine protocol disconnected from solar time. Behavioural interventions to promote entrainment should be supported by objective measurements of light and sound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes

    PubMed Central

    2011-01-01

    In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96. PMID:21711671

  19. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes.

    PubMed

    Alvi, N H; Ul Hasan, Kamran; Nur, Omer; Willander, Magnus

    2011-02-10

    In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96.

  20. An earth-isolated optically coupled wideband high voltage probe powered by ambient light.

    PubMed

    Zhai, Xiang; Bellan, Paul M

    2012-10-01

    An earth-isolated optically-coupled wideband high voltage probe has been developed for pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast light-emitting diode that converts high voltage into an amplitude-modulated optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array, powered by ambient laboratory lighting, charges a capacitor that, when triggered, acts as a short-duration power supply for an on-board amplifier in the probe. The entire system has a noise level ≤0.03 kV, a DC-5 MHz bandwidth, and a measurement range from -6 to 2 kV; this range can be conveniently adjusted.

  1. Light Levels, Refractive Development, and Myopia – a Speculative Review

    PubMed Central

    Norton, Thomas T.; Siegwart, John T.

    2013-01-01

    Recent epidemiological evidence in children indicates that time spent outdoors is protective against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels (similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia. We propose a model in which the ambient illuminance levels produce a continuum of effects on normal refractive development and the response to myopiagenic stimuli such that low light levels favor myopia development and elevated levels are protective. Among possible mechanisms, elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing additional activation of retinal dopaminergic pathways. PMID:23680160

  2. Ambient versus traditional environment in pediatric emergency department.

    PubMed

    Robinson, Patricia S; Green, Jeanette

    2015-01-01

    We sought to examine the effect of exposure to an ambient environment in a pediatric emergency department. We hypothesized that passive distraction from ambient lighting in an emergency department would lead to reduction in patient pain and anxiety and increased caregiver satisfaction with services. Passive distraction has been associated with lower anxiety and pain in patients and affects perception of wait time. A pediatric ED was designed that optimized passive distraction techniques using colorful ambient lighting. Participants were nonrandomly assigned to either an ambient ED environment or a traditional ED environment. Entry and exit questionnaires assessed caregiver expectations and experiences. Pain ratings were obtained with age-appropriate scales, and wait times were recorded. A total of 70 participants were assessed across conditions, that is, 40 in the ambient ED group and 30 in the traditional ED group. Caregivers in the traditional ED group expected a longer wait, had higher anxiety pretreatment, and felt more scared than those in the ambient ED group. Caregivers in the ambient ED group felt more included in the care of their child and rated quality of care higher than caregivers in the traditional ED group. Pain ratings and administrations of pain medication were lower in the ambient ED group. Mean scores for the ambient ED group were in the expected direction on several items measuring satisfaction with ED experiences. Results were suggestive of less stress in caregivers, less pain in patients, and higher satisfaction levels in the ambient ED group. © The Author(s) 2015.

  3. Investigations on electroluminescent tapes and foils in relation to their applications in automotive

    NASA Astrophysics Data System (ADS)

    Plotog, Ioan

    2015-02-01

    The electroluminescent (EL) tapes or foils having barrier films for an additional level of protection against the toughest environments conditions, offer a large area of applications. The EL lights, due to their characteristics, began to be used not only in the entertainment industry, but also for automotive and aerospace applications. In the paper, the investigations regarding EL foils technical performances in relation to their applications as light sources in automotive ambient light were presented. The experiments were designed based on the results of EL foils electrical properties previous investigations done in laboratory conditions, taking into account the range of automotive ambient temperatures for sinusoidal alternative supply voltage. The measurements for different temperatures were done by keeping the EL foils into electronic controlled oven that ensures the dark enclosure offering conditions to use a lux-meter in order to measure and maintain under control light emission intensity. The experiments results define the EL foils characteristics as load in automotive ambient temperatures condition, assuring so the data for optimal design of a dedicated inverter.

  4. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.; hide

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.

  5. A novel screen design for anti-ambient light front projection display with angle-selective absorber

    NASA Astrophysics Data System (ADS)

    Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu

    2016-03-01

    Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.

  6. Influence of room lighting on grey-scale perception with a CRT-and a TFT monitor display.

    PubMed

    Haak, R; Wicht, M J; Hellmich, M; Nowak, G; Noack, M J

    2002-05-01

    To determine the influence of ambient lighting on grey-scale perception using a cathode-ray tube (CRT) and a thin film transistor (TFT) computer display. A cathode ray tube (Nokia XS 446) and a liquid crystal display (Panasonic LC 50S) were used at reduced room lighting (70 lux) and under conditions recommended for a dental operatory (1000 lux). Twenty-seven observers examined twice a modified SMPTE test pattern [0 to 255; 255 to 0] grey-scale values. The corresponding contrast differences were allocated to four ranges of grey levels (I: 0-63; II: 64-127; III: 128-191; IV: 192-255). The influences of monitor type, grey-scale range and illumination were evaluated by means of repeated measures analysis of variance. Detection of differences in monochromatic intensity was significantly earlier with reduced lighting (P<0.0001). When full ambient lighting was used, the TFT display was superior compared to the CRT monitor in ranges II and III (P<0.0001), whereas no differences could be detected for grey intensities between 0 and 63 (P=0.71) and between 192 and 255 (P=0.36). Background lighting hampers grey-scale perception on computer displays. In this study of one TFT and one CRT monitor, the TFT in full ambient lighting was associated with earlier detection of grey scale differences than CRT.

  7. Optimization of fluorescent imaging in the operating room through pulsed acquisition and gating to ambient background cycling

    PubMed Central

    Sexton, Kristian J.; Zhao, Yan; Davis, Scott C.; Jiang, Shudong; Pogue, Brian W.

    2017-01-01

    The design of fluorescence imaging instruments for surgical guidance is rapidly evolving, and a key issue is to efficiently capture signals with high ambient room lighting. Here, we introduce a novel time-gated approach to fluorescence imaging synchronizing acquisition to the 120 Hz light of the room, with pulsed LED excitation and gated ICCD detection. It is shown that under bright ambient room light this technique allows for the detection of physiologically relevant nanomolar fluorophore concentrations, and in particular reduces the light fluctuations present from the room lights, making low concentration measurements more reliable. This is particularly relevant for the light bands near 700nm that are more dominated by ambient lights. PMID:28663895

  8. Radiological image presentation requires consideration of human adaptation characteristics

    NASA Astrophysics Data System (ADS)

    O'Connell, N. M.; Toomey, R. J.; McEntee, M.; Ryan, J.; Stowe, J.; Adams, A.; Brennan, P. C.

    2008-03-01

    Visualisation of anatomical or pathological image data is highly dependent on the eye's ability to discriminate between image brightnesses and this is best achieved when these data are presented to the viewer at luminance levels to which the eye is adapted. Current ambient light recommendations are often linked to overall monitor luminance but this relies on specific regions of interest matching overall monitor brightness. The current work investigates the luminances of specific regions of interest within three image-types: postero-anterior (PA) chest; PA wrist; computerised tomography (CT) of the head. Luminance levels were measured within the hilar region and peripheral lung distal radius and supra-ventricular grey matter. For each image type average monitor luminances were calculated with a calibrated photometer at ambient light levels of 0, 100 and 400 lux. Thirty samples of each image-type were employed, resulting in a total of over 6,000 measurements. Results demonstrate that average monitor luminances varied from clinically-significant values by up to a factor of 4, 2 and 6 for chest, wrist and CT head images respectively. Values for the thoracic hilum and wrist were higher and for the peripheral lung and CT brain lower than overall monitor levels. The ambient light level had no impact on the results. The results demonstrate that clinically important radiological information for common radiological examinations is not being presented to the viewer in a way that facilitates optimised visual adaptation and subsequent interpretation. The importance of image-processing algorithms focussing on clinically-significant anatomical regions instead of radiographic projections is highlighted.

  9. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.

  10. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 μmol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  11. Characterization of the ambient air content of parent polycyclic aromatic hydrocarbons in the Fort McKay region (Canada).

    PubMed

    Wnorowski, Andrzej

    2017-05-01

    This study presents the characterization of the gas-particle partition and size distribution of seven parent polycyclic aromatic hydrocarbons (PAHs) in ambient air samples collected in the proximity of oil sands exploration and compares their time-integrated concentration levels with nineteen analogous oxidation products - quinones. Gas-phase (GP) and particle-phase (PM) ambient air aerosol samples that were collected separately in summer for either 24 h or 12 h (day and night) revealed a higher PAH partition in the GP than in the PM, with the distribution over tenfold higher for light over heavy PAHs. Diurnal/nocturnal samples demonstrated that night conditions lead to lower concentrations, linking some of the sources of these compounds with daytime activity emissions. PAHs were observed to transform more efficiently in the GP, and quinone levels increased in the PM with time. Correlation data indicated that parent PAHs originated from primary emission sources associated with oil sand activities and that quinone formation paralleled a reduction in PAH levels. The findings of this study shed new light on characterization of PAHs in the Athabasca oil sands region. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. High ambient contrast ratio OLED and QLED without a circular polarizer

    NASA Astrophysics Data System (ADS)

    Tan, Guanjun; Zhu, Ruidong; Tsai, Yi-Shou; Lee, Kuo-Chang; Luo, Zhenyue; Lee, Yuh-Zheng; Wu, Shin-Tson

    2016-08-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized.

  13. An investigation of the role of defect levels on the radiation response of synthetic diamond crystals when used as sensors for the detection of mammography X-rays.

    PubMed

    Ade, Nicholas

    2017-09-01

    This study evaluates the role of defects on the performances of synthetic diamond sensors on exposure to mammography X-rays. Through systematic investigations, the main cause of instability of response of examined sensors necessitating pre-irradiation was isolated and ascribed to the presence of ambient light which has the effect of emptying shallow trapping levels. The changes in response between measurements in light and dark conditions varied from 2.8 ± 1.2% to 63.0 ± 0.3%. Sensitivities between 0.4 and 6.7nCGy -1 mm -3 determined for the sensors varied with defect levels. The study indicates that differences in crystal quality due to the presence and influence of defects would cause a discrepancy in the dosimetric performances of various diamond detectors. Once a sensor plate is selected (based on the influence of defect levels) and coupled to the probe housing with the response of the diamond sensor stabilised and appropriately shielded from ambient light, daily priming is not needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots.

    PubMed

    Song, Zhiping; Lin, Tianran; Lin, Lihua; Lin, Sen; Fu, Fengfu; Wang, Xinchen; Guo, Liangqia

    2016-02-18

    Stimuli-responsive photoluminescent (PL) materials have been widely used as fluorescent ink for data security applications. However, traditional fluorescent inks are limited in maintaining the secrecy of information because the inks are usually visible by naked eyes either under ambient light or UV-light illumination. Here, we introduced metal-free water-soluble graphitic carbon nitride quantum dots (g-CNQDs) as invisible security ink for information coding, encryption, and decryption. The information written by the g-CNQDs is invisible in ambient light and UV light, but it can be readable by a fluorescence microplate reader. Moreover, the information can be encrypted and decrypted by using oxalic acid and sodium bicarbonate as encryption reagent and decryption reagent, respectively. Our findings provide new opportunities for high-level information coding and protection by using water-soluble g-CNQDs as invisible security ink. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    PubMed Central

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  16. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    NASA Astrophysics Data System (ADS)

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-06-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  17. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal.

    PubMed

    Robert, Kylie A; Lesku, John A; Partecke, Jesko; Chambers, Brian

    2015-10-07

    Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level. © 2015 The Author(s).

  18. Color and illuminance level of lighting can modulate willingness to eat bell peppers.

    PubMed

    Hasenbeck, Aimee; Cho, Sungeun; Meullenet, Jean-François; Tokar, Tonya; Yang, Famous; Huddleston, Elizabeth A; Seo, Han-Seok

    2014-08-01

    Food products are often encountered under colored lighting, particularly in restaurants and retail stores. However, relatively little attention has been paid to whether the color of ambient lighting can affect consumers' motivation for consumption. This study aimed to determine whether color (Experiment 1) and illuminance level (Experiment 2) of lighting can influence consumers' liking of appearance and their willingness to eat bell peppers. For red, green, and yellow bell peppers, yellow and blue lighting conditions consistently increased participants' liking of appearance the most and the least, respectively. Participants' willingness to consume bell peppers increased the most under yellow lighting and the least under blue lighting. In addition, a dark condition (i.e. low level of lighting illuminance) decreased liking of appearance and willingness to eat the bell peppers compared to a bright condition (i.e. high level of lighting illuminance). Our findings demonstrate that lighting color and illuminance level can influence consumers' hedonic impression and likelihood to consume bell peppers. Furthermore, the influences of color and illuminance level of lighting appear to be dependent on the surface color of bell peppers. © 2013 Society of Chemical Industry.

  19. Effects of VDT workstation lighting conditions on operator visual workload.

    PubMed

    Lin, Chiuhsiang Joe; Feng, Wen-Yang; Chao, Chin-Jung; Tseng, Feng-Yi

    2008-04-01

    Industrial lighting covers a wide range of different characteristics of working interiors and work tasks. This study investigated the effects of illumination on visual workload in visual display terminal (VDT) workstation. Ten college students (5 males and 5 females) were recruited as participants to perform VDT signal detection tasks. A randomized block design was utilized with four light colors (red, blue, green and white), two ambient illumination levels (20 lux and 340 lux), with the subject as the block. The dependent variables were the change of critical fusion frequency (CFF), visual acuity, reaction time of targets detection, error rates, and rating scores in a subjective questionnaire. The study results showed that both visual acuity and the subjective visual fatigue were significantly affected by the color of light. The illumination had significant effect on CFF threshold change and reaction time. Subjects prefer to perform VDT task under blue and white lights than green and red. Based on these findings, the study discusses and suggests ways of color lighting and ambient illumination to promote operators' visual performance and prevent visual fatigue effectively.

  20. Projection screen having reduced ambient light scattering

    DOEpatents

    Sweatt, William C [Albuquerque, NM

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  1. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities

    USDA-ARS?s Scientific Manuscript database

    Adaptability and optimum growth of cover crops in plantation crops is affected by the inherent nature of the cover crop species and the light intensity at canopy levels. Globally concentrations of atmospheric CO2 are increasing and this creates higher photosynthesis and nutrient demand by crops as l...

  2. Foraging in the Darkness of the Southern Ocean: Influence of Bioluminescence on a Deep Diving Predator

    PubMed Central

    Vacquié-Garcia, Jade; Royer, François; Dragon, Anne-Cécile; Viviant, Morgane; Bailleul, Frédéric; Guinet, Christophe

    2012-01-01

    How non-echolocating deep diving marine predators locate their prey while foraging remains mostly unknown. Female southern elephant seals (SES) (Mirounga leonina) have vision adapted to low intensity light with a peak sensitivity at 485 nm. This matches the wavelength of bioluminescence produced by a large range of marine organisms including myctophid fish, SES’s main prey. In this study, we investigated whether bioluminescence provides an accurate estimate of prey occurrence for SES. To do so, four SES were satellite-tracked during their post-breeding foraging trip and were equipped with Time-Depth-Recorders that also recorded light levels every two seconds. A total of 3386 dives were processed through a light-treatment model that detected light events higher than ambient level, i.e. bioluminescence events. The number of bioluminescence events was related to an index of foraging intensity for SES dives deep enough to avoid the influence of natural ambient light. The occurrence of bioluminescence was found to be negatively related to depth both at night and day. Foraging intensity was also positively related to bioluminescence both during day and night. This result suggests that bioluminescence likely provides SES with valuable indications of prey occurrence and might be a key element in predator-prey interactions in deep-dark marine environments. PMID:22952706

  3. Solid-state turn coordinator display

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.; Crouch, R. K.; Kelly, W. L., IV

    1975-01-01

    A solid state turn coordinator display which employs light emitting diodes (LED's) as the display medium was developed to demonstrate the feasibility of such displays for aircraft applications. The input to the display is supplied by a fluidic inertial rate sensor used in an aircraft wing leveler system. The display is composed of the LED radial display face and the electronics necessary to address and drive the individual lines of LED's. Three levels of brightness are provided to compensate for the different amounts of ambient light present in the cockpit.

  4. [Influence of ambient light and adjacent tooth in anterior tooth color measurement].

    PubMed

    Wang, Si-qian; Sean, S Lee; Wu, Zhang; Li, Yiming; Ma, Jian-feng

    2007-10-01

    To investigate the influence of different intensity and directions of ambient light and adjacent tooth in anterior tooth color measurement by using colorimeter. Fiber lite MI-150 was used as ambient illuminant and it irradiated from three or twelve o'clock direction through 45 degrees angle above. The light magnitude 0, 50, 75, 100, 125, 150 W were applied in this experiment. The values of CIE L* a* b* were measured by Minolta Chroma meter CR-321 colorimeter on the center labial surface of ten extracted human maxillary central incisors with or without adjacent teeth, then those data were analyzed statistically by using SPSS 11.5. Neither different intensities nor different directions of ambient light could influence the results of color measurement by using Minolta Chroma meter CR-321 colorimeter, so did the adjacent teeth whether those were exist or not. There is no influence of ambient light and adjacent teeth in the color measurement of anterior teeth under this experiment condition, and Minolta Chroma meter CR-321 colorimeter can be used to measure the color directly aside the chair with light.

  5. Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments

    NASA Astrophysics Data System (ADS)

    Hardison, A. K.; Canuel, E. A.; Anderson, I. C.; Tobias, C. R.; Veuger, B.; Waters, M. N.

    2013-08-01

    Microphytobenthos and benthic macroalgae play an important role in system metabolism within shallow coastal bays. However, their independent and interactive influences on sediment organic matter (SOM) are not well understood. We investigated the influence of macroalgae and microphytobenthos on SOM quantity and quality in an experimental mesocosm system using bulk and molecular level (total hydrolyzable amino acids, THAA; phospholipid linked fatty acids, PLFA; pigment) analyses. Our experiment used an incomplete factorial design made up of two factors, each with two levels: (1) light (ambient vs. dark) and (2) macroalgae (presence vs. absence of live macroalgae). Over the course of the 42-day experiment, total organic carbon (TOC) and total nitrogen (TN) increased under ambient light by 173 ± 14 and 141 ± 7%, respectively, compared to in the dark (78 ± 29 and 39 ± 22%). THAA comprised a substantial fraction of SOM (~ 16% of TOC, 35% of TN) and followed TOC and TN accumulation patterns. Mole percent composition of the THAA pool indicated that SOM was composed of more labile organic material (e.g., L-glutamic acid, phenylalanine) under ambient light conditions while SOM in dark treatments was more degraded, with higher proportions of glycine and D-alanine. PLFA content, which represents viable biomass, made up ~ 1% of TOC and contained high levels of algal fatty acids in the light, particularly PLFA derived from diatoms. In the presence of microphytobenthos (i.e., light and macroalgae treatments), SOM lability increased, resulting in the observed increases in bacterial PLFA concentrations. Macroalgae, which were added to half of the light treatments, decreased SOM accumulation compared to light treatments without macroalgae, with TOC and TN increasing by only 130 ± 32 and 94 ± 24%, respectively. This decrease likely resulted from shading by macroalgae, which reduced production of microphytobenthos. The presence of macroalgae decreased SOM lability as well, which resulted in diminished buildup of bacterial biomass. By the final day of the experiment, principal component analysis revealed that sediment composition in treatments with macroalgae was more similar to dark treatments and less similar to light treatments without macroalgae. Overall, microphytobenthos and benthic macroalgae fundamentally altered SOM quality and quantity, which may have notable ecological consequences for shallow-water systems such as increased hypoxia/anoxia, sulfide accumulation, enhanced mineralization and/or stimulated denitrification.

  6. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Litaker, H. L.; Hanifin, J.; Schwing, B. M.

    2016-01-01

    Even with no ambient lighting system "on", the International Space Station glows at night. The glow is caused by indicator lamps and displays that are not included with the specification of the ambient lighting system. How does this impact efforts to improve the astronaut's lighting environment to promote more effective sleep patterns? Do the extra indicators and displays add enough light to change the spectrum of light the crew sees during the day as well? If spacecraft environments are specifically engineered to have an ambient lighting system that emits a spectrum promoting a healthy circadian response, is there a way control the impact? The goal of this project is to investigate how additional light sources, such as displays and indicators change the effective light spectrum of the architectural lighting system and how impacts can be mitigated.

  7. Light-Regulated Thyroid Hormone Signaling Is Required for Rod Photoreceptor Development in the Mouse Retina.

    PubMed

    Sawant, Onkar; Horton, Amanda M; Shukla, Meenal; Rayborn, Mary E; Peachey, Neal S; Hollyfield, Joe G; Rao, Sujata

    2015-12-01

    Ambient light is both a stimulus for visual function and a regulator of photoreceptor physiology. However, it is not known if light can regulate any aspect of photoreceptor development. The purpose of this study was to investigate whether ambient light is required for the development of mouse rod photoreceptors. Newborn mouse pups (C57BL/6) were reared in either cyclic light (LD) or constant dark (DD). Pups were collected at postnatal day (P)5, P10, P17, or P24. We performed retinal morphometric and cell death analysis at P5, P10, and P17. Rhodopsin expression was assessed using immunofluorescence, Western blot, and quantitative RT-PCR analysis. Electroretinograms were performed at P17 and P24. Radioimmunoassay and ELISA were used to follow changes in thyroid hormone levels in the serum and vitreous. In the DD pups, the outer nuclear layer was significantly thinner at P10 and there were higher numbers of apoptotic cells at P5 compared to the LD pups. Rhodopsin expression was lower at P10 and P17 in DD pups. Electroretinogram a-waves were reduced in amplitude at P17 in the DD pups. The DD animals had lower levels of circulating thyroid hormones at P10. Light-mediated changes in thyroid hormones occur as early as P5, as we detected lower levels of total triiodothyronine in the vitreous from the DD animals. Drug-induced developmental hypothyroidism resulted in lower rhodopsin expression at P10. Our data demonstrate that light exposure during postnatal development is required for rod photoreceptor development and that this effect could be mediated by thyroid hormone signaling.

  8. Determination of washout performance of various monochrome displays under simulated flight ambient and solar lighting conditions

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Robertson, James B.; Parrish, Russell V.

    1990-01-01

    The aircraft cockpit ambient lighting simulation system (ACALSS) has been developed to study display readability and associated pilot/vehicle performance effects in a part-task simulator cockpit. In the study reported here, the ACALSS was used to determine the illumination levels at which subjects lose the ability to maintain aircraft states when using three display technologies as display media for primary flight displays: a standard monochrome EL (electroluminescent) flat-panel, a laboratory-class monochrome CRT, and an enhanced-brightness EL flat-panel. The multivariate statistical technique of modified profile analysis was used to test for performance differences between display devices as functions of illumination levels. The standard monochrome EL flat-panel display began to washout after the 2500 foot-candle level of illumination. The monochrome CRT began to washout after the 5500 foot-candle level of illumination. No performance decrements by increased illumination up to the 12,000 foot-candle level were found for the enhanced-brightness EL flat-panel display. What was not anticipated was that half the subjects would subjectively prefer the CRT over the enhanced-brightness EL, even though their performance errors would have indicated the opposite.

  9. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness

    PubMed Central

    Wang, Xianzhong; Lewis, James D.; Tissue, David T.; Seemann, Jeffrey R.; Griffin, Kevin L.

    2001-01-01

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants. PMID:11226264

  10. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.

    PubMed

    Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L

    2001-02-27

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.

  11. a Study of the Bioluminescence of Larger Zooplankton and the Effects of Low-Level Light Changes on Their Behavior.

    NASA Astrophysics Data System (ADS)

    van Keuren, Jeffrey Robert

    A bio-optical study was undertaken to quantify the relationships which exist between counter-illuminating organisms and the downwelling spectral light field in which they exist. The basic hypothesis behind counter-illumination is that the animal emits light using ventrally-oriented photophores to disrupt or eliminate the shadowed area on ventral surfaces. An organism lacking photophores sharply silhouettes against the highly directional downwelling irradiance, whereas by distributing photophores over the ventral surface of the body and closely matching the spectral and intensity characteristics of the downwelling light, this silhouette is obscured. Analysis carried out on changes in vertical distribution patterns in response to low-level intensity changes in ambient surface light suggested that diel migrating organisms begin to shift vertically in the water column when surface scalar irradiance decreased below or increased above 1.0 times10^{-2} muEin m^{-2} sec^ {-1}. Maximum aggregations of organisms, as defined by MOCNESS net sampling or single-frequency acoustic backscatter, appeared to remain within definable in situ blue-green isolume ranges varying less than a factor of ten throughout each night. Comparisons made between organism counter-illumination capacity and modeled in situ downwelling irradiance levels suggested that euphausiids, decapods and myctophids use between 1-10 percent of their maximum counter-illumination capacity to match the ambient downwelling light conditions. Modeling also suggested that up to 40 percent of the maximum measured bioluminescence output is required to match ambient irradiance in the shallower surface zones where aggregations of copepods, potential food sources, were commonly found at night. An optical study to quantify the radiative transfer of bioluminescence from a point source revealed that non -isotropic point sources produce radiance patterns that cannot be simply explained by inverse square losses. Therefore simple inverse-square estimates of bioluminescent propagation loss rates from organisms in the ocean are an oversimplification of the radiative transfer processes that occur when these emissions occur. Additionally, in evaluating counter-illumination, the distance of the receptor, such as the eyes of a potential predator, is critical in determining the effectiveness of the organisms in matching the uniform light field of their surrounding environment and ultimately avoiding detection and predation.

  12. The roles of temperature and light in black band disease (BBD) progression on corals of the genus Diploria in Bermuda.

    PubMed

    Kuehl, Kristin; Jones, Ross; Gibbs, David; Richardson, Laurie

    2011-03-01

    On Bermuda reefs the brain coral Diploria labyrinthiformis is rarely documented with black band disease (BBD), while BBD-affected colonies of Diploria strigosa are common. D. labyrinthiformis on these reefs may be more resistant to BBD or less affected by prevailing environmental conditions that potentially diminish host defenses. To determine whether light and/or temperature influence BBD differently on these two species, infection experiments were conducted under the following experimental treatments: (1) 26 °C, ambient light; (2) 30 °C, ambient light; (3) 30 °C, low light; and (4) 30 °C, high light. A digital photograph of the affected area of each coral was taken each day for 7 days and analyzed with ImageJ image processing software. The final affected area was not significantly different between species in any of the four treatments. BBD lesions were smaller on both species infected under ambient light at 26 °C versus 30 °C. Low light at 30 °C significantly reduced the lesion size on both species when compared to colonies infected at the same temperature under ambient light. Under high light at 30 °C, BBD lesions were larger on colonies of D. strigosa and smaller on colonies of D. labyrinthiformis when compared to colonies infected under ambient light at the same temperature. The responses of both species suggests that BBD progression on both D. strigosa and D. labyrinthiformis is similarly influenced by a combination of light and temperature and that other factors present before infections become established likely contribute to the difference in BBD prevalence in Bermuda. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Ocean noise in the tropical and subtropical Pacific Ocean.

    PubMed

    Sirović, Ana; Wiggins, Sean M; Oleson, Erin M

    2013-10-01

    Ocean ambient noise is well studied in the North Pacific and North Atlantic but is poorly described for most of the worlds' oceans. Calibrated passive acoustic recordings were collected during 2009-2010 at seven locations in the central and western tropical and subtropical Pacific. Monthly and hourly mean power spectra (15-1000 Hz) were calculated in addition to their skewness, kurtosis, and percentile distributions. Overall, ambient noise at these seven sites was 10-20 dB lower than reported recently for most other locations in the North Pacific. At frequencies <100 Hz, spectrum levels were equivalent to those predicted for remote or light shipping. Noise levels in the 40 Hz band were compared to the presence of nearby and distant ships as reported to the World Meteorological Organization Voluntary Observing Ship Scheme (VOS) project. There was a positive, but nonsignificant correlation between distant shipping and low frequency noise (at 40 Hz). There was a seasonal variation in ambient noise at frequencies >200 Hz with higher levels recorded in the winter than in the summer. Several species of baleen whales, humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (B. physalus) whales, also contributed seasonally to ambient noise in characteristic frequency bands.

  14. Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films.

    PubMed

    He, Ziming; Xu, Qingchi; Tan, Timothy Thatt Yang

    2011-12-01

    TiO(2)-InVO(4) nanostructured films were coated onto glass substrates and systematically investigated for their bactericidal activities using Escherichia coli (E. coli) as the model bacterium under ambient light illumination. The uniform TiO(2)-InVO(4) nanostructured films were prepared using titanium isopropoxide (TTIP) as the precursor via a simple sol-gel approach. Polyethylenimine (PEI) was used as a surfactant to ensure uniform dispersion of InVO(4) and a sacrificial pore-inducing agent, generating nanostructured films. Compared to unmodified TiO(2) film, the current TiO(2)-InVO(4) films exhibited enhanced bactericidal activities under ambient light illumination. Bacterial cell "photo-fixation" was demonstrated to be crucial in enhancing the bactericidal activity. A bacterial-nanostructured surface interaction mechanism was proposed for the current ambient-light activated nanostructured film.

  15. The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model.

    PubMed

    Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew Ja

    2017-01-01

    The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging.

  16. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam.

    PubMed

    Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung

    2012-03-01

    Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung

    2012-03-01

    Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare.

  18. Growth Kinetics, Carbohydrate, and Leaf Phosphate Content of Clover (Trifolium subterraneum L.) after Transfer to a High CO2 Atmosphere or to High Light and Ambient Air 1

    PubMed Central

    Morin, Francoise; André, Marcel; Betsche, Thomas

    1992-01-01

    Intact air-grown (photosynthetic photon flux density, 400 microeinsteins per square meter per second) clover plants (Trifolium subterraneum L.) were transfered to high CO2 (4000 microliters CO2 per liter; photosynthetic photon flux density, 400 microeinsteins per square meter per second) or to high light (340 microliters CO2 per liter; photosynthetic photon flux density, 800 microeinsteins per square meter per second) to similarly stimulate photosynthetic net CO2 uptake. The daily increment of net CO2 uptake declined transiently in high CO2, but not in high light, below the values in air/standard light. After about 3 days in high CO2, the daily increment of net CO2 uptake increased but did not reach the high light values. Nightly CO2 release increased immediately in high light, whereas there was a 3-day lag phase in high CO2. During this time, starch accumulated to a high level, and leaf deterioration was observed only in high CO2. After 12 days, starch was two- to threefold higher in high CO2 than in high light, whereas sucrose was similar. Leaf carbohydrates were determined during the first and fourth day in high CO2. Starch increased rapidly throughout the day. Early in the day, sucrose was low and similar in high CO2 and ambient air (same light). Later, sucrose increased considerably in high CO2. The findings that (a) much more photosynthetic carbon was partitioned into the leaf starch pool in high CO2 than in high light, although net CO2 uptake was similar, and that (b) rapid starch formation occurred in high CO2 even when leaf sucrose was only slightly elevated suggest that low sink capacity was not the main constraint in high CO2. It is proposed that carbon partitioning between starch (chloroplast) and sucrose (cytosol) was perturbed by high CO2 because of the lack of photorespiration. Total phosphate pools were determined in leaves. Concentrations based on fresh weight of orthophosphate, soluble esterified phosphate, and total phosphate markedly declined during 13 days of exposure of the plants to high CO2 but changed little in high light/ambient air. During this time, the ratio of orthophosphate to soluble esterified phosphate decreased considerably in high CO2 and increased slightly in high light/ambient air. It appears that phosphate uptake and growth were similarly stimulated by high light, whereas the coordination was weak in high CO2. PMID:16668889

  19. Lighting constraints on lunar surface operations

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    1991-01-01

    An investigation into the levels of ambient lighting on the lunar surface indicates that for most nearside locations, illumination will be adequate throughout most of the lunar night to conduct EVAs with only minor artificial illumination. The maximum lighting available during the lunar night from Earthshine will be similar to the light level on a July evening at approximately 8:00 pm in the southern United States (approximately 15 minutes after sunset). Because of the captured rotation of the Moon about the Earth, the location of the Earth will remain approximately constant throughout the lunar night, with consequent constant shadow length and angle. Variations in the level of Earthside illumination will be solely a function of Earth phase angle. Experience during the Apollo Program suggests that EVA activities during the period around the lunar noon may be difficult due to lack of surface definition caused by elimination of shadows.

  20. Effects of illumination on human nocturnal serum melatonin levels and performance

    NASA Technical Reports Server (NTRS)

    Dollins, A. B.; Lynch, H. J.; Wurtman, R. J.; Deng, M. H.; Lieberman, H. R.

    1993-01-01

    In humans, exposure to bright light at night suppresses the normal nocturnal elevation in circulating melatonin. Oral administration of pharmacological doses of melatonin during the day, when melatonin levels are normally minimal, induces fatigue. To examine the relationship between illumination, human pineal function, and behavior, we monitored the overnight serum melatonin profiles and behavioral performance of 24 healthy male subjects. On each of three separate occasions subjects participated in 13.5 h (1630-0800 h) testing sessions. Each subject was assigned to an individually illuminated workstation that was maintained throughout the night at an illumination level of approximately 300, 1500, or 3000 lux. Melatonin levels were significantly diminished by light treatment, F(2, 36) = 12.77, p < 0.001, in a dose-dependent manner. Performance on vigilance, reaction time, and other tasks deteriorated throughout the night, consistent with known circadian variations in these parameters, but independent of ambient light intensity and circulating melatonin levels.

  1. Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments

    NASA Astrophysics Data System (ADS)

    Hardison, A. K.; Canuel, E. A.; Anderson, I. C.; Tobias, C. R.; Veuger, B.; Waters, M.

    2013-02-01

    Benthic macroalgae are a common symptom of eutrophication in shallow coastal bays as a result of increased nutrient loads. Microphytobenthos (MPB) and benthic macroalgae play an important role in system metabolism within shallow coastal bays. However, their independent and interactive influences on sediment organic matter (SOM) are not well understood. We investigated the influence of macroalgae and MPB on SOM quantity and quality in an experimental mesocosm system using bulk and molecular level (total hydrolyzable amino acids, THAA; phospholipid linked fatty acids, PLFA; pigment) analyses. Our experiment used an incomplete factorial design made up of two factors, each with two levels: (1) light (ambient vs. dark) and (2) macroalgae (presence vs. absence of live macroalgae). Over the course of the 42-day experiment, total organic carbon (TOC) and total nitrogen (TN) increased under ambient light by 173 ± 14 and 141 ± 7%, respectively, compared to in the dark (78 ± 29 and 39 ± 22%). THAA comprised a substantial fraction of SOM (∼16% of TOC, 35% of TN) and followed TOC and TN accumulation patterns. Mole percent composition of the THAA pool indicated that SOM was composed of more labile organic material (e.g. L-glutamic acid, phenylalanine) under ambient light conditions while SOM in dark treatments was more degraded, with higher proportions of glycine and D-alanine. PLFA content, which represents viable biomass, made up ∼1% of TOC and contained high levels of algal fatty acids in the light, particularly PLFA derived from diatoms. In the presence of MPB (i.e. light and macroalgae treatments), SOM lability increased, resulting in the observed increases in bacterial PLFA concentrations. Macroalgae, which were added to half of the light treatments, decreased SOM accumulation compared to light treatments without macroalgae, with TOC and TN increasing by only 130 ± 32 and 94 ± 24 %, respectively. This decrease likely resulted from shading by macroalgae, which reduced production of MPB. The presence of macroalgae decreased SOM lability as well, which resulted in diminished buildup of bacterial biomass. By the final day of the experiment, PCA analyses revealed that sediment composition in treatments with macroalgae were more similar to dark treatments and less similar to light treatments without macroalgae. Overall MPB and benthic macroalgae fundamentally altered SOM quality and quantity, which may have notable ecological consequences for shallow-water systems such as increased hypoxia/anoxia, sulfide accumulation, enhanced mineralization and/or stimulated denitrification.

  2. Aerosol chemical composition and light scattering during a winter season in Beijing

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Zhang, Leiming; Gao, Jian; Wang, Han; Chai, Faihe; Wang, Shulan

    2015-06-01

    To evaluate PM2.5 contributions to light scattering under different air pollution levels, PM2.5 and its major chemical components, PM10, size-segregated water-soluble ions, and aerosol scattering coefficient (bsp) under dry conditions were measured at an urban site in Beijing in January 2013 when heavy pollution events frequently occurred. Measurements were categorized into three pollution levels including heavy-polluted (Air Quality Index (AQI) ≥ 200), light-polluted (200 > AQI ≥ 100) and clean periods (AQI < 100). The average PM2.5 mass concentration was 248 μg m-3 during the heavy-polluted period, which was 2.4 and 5.6 times of those during the light-polluted (104 μg m-3) and clean (44 μg m-3) periods, respectively. The concentrations of SO42-, NO3- and NH4+ increased much more than those of OC and EC during the heavy-polluted period compared with those during the light-polluted and clean periods. Good correlations between PM2.5 and bsp were found (R2 > 0.95) during the different pollution levels. The mass scattering efficiency (MSE) of PM2.5 was 4.9 m2 g-1 during the heavy-polluted period, which was higher than those during the light-polluted (4.3 m2 g-1) and clean periods (3.6 m2 g-1). To further evaluate the impact of individual chemical components of PM2.5 on light scattering, a multiple linear regression equation of measured bsp against the mass concentration of (NH4)2SO4, NH4NO3, Organic Matter (OM), EC, Fine Soil (FS), Coarse Matter (CM) and Other chemical compounds were performed. (NH4)2SO4, NH4NO3 and OM were the dominant species contributing to bsp under both dry and ambient conditions. OM contributed more to bsp than the sum of (NH4)2SO4 and NH4NO3 did under the dry condition during all the pollution periods and this was also the case under the ambient condition during the light-polluted and clean periods. However, the total contributions of (NH4)2SO4 and NH4NO3 to bsp under the ambient condition was 55%, much more than the 29% contribution from OM during the heavy-polluted period. High (NH4)2SO4 and NH4NO3 concentrations and their hygroscopicity were the main reasons causing visibility degradation during the heavy-polluted period, and the effect can be enhanced under high RH conditions.

  3. Aural-Nondetectability Model Predictions for Night-Vision Goggles across Ambient Lighting Conditions

    DTIC Science & Technology

    2015-12-01

    ARL-TR-7564 ● DEC 2015 US Army Research Laboratory Aural-Nondetectability Model Predictions for Night -Vision Goggles across...ARL-TR-7564 ● DEC 2015 US Army Research Laboratory Aural-Nondetectability Model Predictions for Night -Vision Goggles across Ambient...May 2015–30 Sep 2015 4. TITLE AND SUBTITLE Aural-Nondetectability Model Predictions for Night -Vision Goggles across Ambient Lighting Conditions 5a

  4. Influence of high ambient illuminance and display luminance on readability and subjective preference

    NASA Astrophysics Data System (ADS)

    De Moor, Katrien; Andrén, Börje; Guo, Yi; Brunnström, Kjell; Wang, Kun; Drott, Anton; Hermann, David S.

    2015-03-01

    Many devices, such as tablets, smartphones, notebooks, fixed and portable navigation systems are used on a (nearly) daily basis, both in in- and outdoor environments. It is often argued that contextual factors, such as the ambient illuminance in relation to characteristics of the display (e.g., surface treatment, screen reflectance, display luminance …) may have a strong influence on the use of such devices and corresponding user experiences. However, the current understanding of these influence factors is still rather limited. In this work, we therefore focus in particular on the impact of lighting and display luminance on readability, visual performance, subjective experience and preference. A controlled lab study (N=18) with a within-subjects design was performed to evaluate two car displays (one glossy and one matte display) in conditions that simulate bright outdoor lighting conditions. Four ambient luminance levels and three display luminance settings were combined into 7 experimental conditions. More concretely, we investigated for each display: (1) whether and how readability and visual performance varied with the different combinations of ambient luminance and display luminance and (2) whether and how they influenced the subjective experience (through self-reported valence, annoyance, visual fatigue) and preference. The results indicate a limited, yet negative influence of increased ambient luminance and reduced contrast on visual performance and readability for both displays. Similarly, we found that the self-reported valence decreases and annoyance and visual fatigue increase as the contrast ratio decreases and ambient luminance increases. Overall, the impact is clearer for the matte display than for the glossy display.

  5. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials

    PubMed Central

    Pallas, J. E.; Michel, B. E.; Harris, D. G.

    1967-01-01

    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg. Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential. Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects. Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels. Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered. Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity. PMID:16656488

  6. The impact of faceplate surface characteristics on detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Toomey, R. J.; Ryan, J. T.; McEntee, M. F.; McNulty, J.; Evanoff, M. G.; Cuffe, F.; Yoneda, T.; Stowe, J.; Brennan, P. C.

    2009-02-01

    Introduction In order to prevent specular reflections, many monitor faceplates have features such as tiny dimples on their surface to diffuse ambient light incident on the monitor, however, this "anti-glare" surface may also diffuse the image itself. The purpose of the study was to determine whether the surface characteristics of monitor faceplates influence the detection of pulmonary nodules under low and high ambient lighting conditions. Methods and Materials Separate observer performance studies were conducted at each of two light levels (<1 lux and >250 lux). Twelve examining radiologists with the American Board of Radiology participated in the darker condition and eleven in the brighter condition. All observers read on both smooth "glare" and dimpled "anti-glare" faceplates in a single lighting condition. A counterbalanced methodology was utilized to minimise memory effects. In each reading, observers were presented with thirty chest images in random order, of which half contained a single simulated pulmonary nodule. They were asked to give their confidence that each image did or did not contain a nodule and to mark the suspicious location. ROC analysis was applied to resultant data. Results No statistically significant differences were seen in the trapezoidal area under the ROC curve (AUC), sensitivity, specificity or average time per case at either light level for chest specialists or radiologists from other specialities. Conclusion The characteristics of the faceplate surfaces do not appear to affect detection of pulmonary nodules. Further work into other image types is being conducted.

  7. Methods for assessing the impacts of ultraviolet-B radiation on aquatic invertebrates

    USGS Publications Warehouse

    Hurtubise, R.D.; Little, Edward E.; Havel, J.E.; Little, Edward E.; Greenberg, Bruce M.; Delonay, Aaron J.

    1998-01-01

    A standard methodology for assessing the impacts of simulated solar ultraviolet-B radiation (UV-B) on aquatic invertebrates was established. A solar simulator was used to expose a variety of aquatic invertebrates to different levels of UV-B. The simulator was calibrated as close as possible to match local ambient solar radiation measured in and out of water with a scanning spectroradiometer. A series of repeated exposures were conducted to determine the effects of UV-B on two species of Ceriodaphnia. Survivorship of C. reticulata declined with increasing UV-B with 100% mortality occurring after four daily 5 hr exposures to a UV-B irradiance that was 14% of ambient sunlight (40.8/μW/cm2) and 70% mortality for C. dubia after seven days of an exposure to 5% of ambient (14.5μW/cm2). Significant reductions in fertility (#young/adult) was observed in both low and high light adapted individuals with low light individuals appearing to be more sensitive. This methodology allowed us to make comparisons to natural conditions in aquatic habitats and to make risk assessments for individual species.

  8. Ambient-Light Simulator For Testing Cockpit Displays

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Gupton, Lawrence E.

    1995-01-01

    Apparatus provides illumination from outside, through windows and into interior of simulated airplane cockpit. Simulates sunlight, darkness, or lightning on demand. Ambient-lighting simulator surrounds forward section of simulated airplane. Provides control over intensity, color, and diffuseness of solar illumination and of position of Sun relative to airplane. Used to evaluate aircraft-instrumentation display devices under realistic lighting conditions.

  9. Ambient-Light-Canceling Camera Using Subtraction of Frames

    NASA Technical Reports Server (NTRS)

    Morookian, John Michael

    2004-01-01

    The ambient-light-canceling camera (ALCC) is a proposed near-infrared electronic camera that would utilize a combination of (1) synchronized illumination during alternate frame periods and (2) subtraction of readouts from consecutive frames to obtain images without a background component of ambient light. The ALCC is intended especially for use in tracking the motion of an eye by the pupil center corneal reflection (PCCR) method. Eye tracking by the PCCR method has shown potential for application in human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological deficiencies. In the PCCR method, an eye is illuminated by near-infrared light from a lightemitting diode (LED). Some of the infrared light is reflected from the surface of the cornea. Some of the infrared light enters the eye through the pupil and is reflected from back of the eye out through the pupil a phenomenon commonly observed as the red-eye effect in flash photography. An electronic camera is oriented to image the user's eye. The output of the camera is digitized and processed by algorithms that locate the two reflections. Then from the locations of the centers of the two reflections, the direction of gaze is computed. As described thus far, the PCCR method is susceptible to errors caused by reflections of ambient light. Although a near-infrared band-pass optical filter can be used to discriminate against ambient light, some sources of ambient light have enough in-band power to compete with the LED signal. The mode of operation of the ALCC would complement or supplant spectral filtering by providing more nearly complete cancellation of the effect of ambient light. In the operation of the ALCC, a near-infrared LED would be pulsed on during one camera frame period and off during the next frame period. Thus, the scene would be illuminated by both the LED (signal) light and the ambient (background) light during one frame period, and would be illuminated with only ambient (background) light during the next frame period. The camera output would be digitized and sent to a computer, wherein the pixel values of the background-only frame would be subtracted from the pixel values of the signal-plus-background frame to obtain signal-only pixel values (see figure). To prevent artifacts of motion from entering the images, it would be necessary to acquire image data at a rate greater than the standard video rate of 30 frames per second. For this purpose, the ALCC would exploit a novel control technique developed at NASA s Jet Propulsion Laboratory for advanced charge-coupled-device (CCD) cameras. This technique provides for readout from a subwindow [region of interest (ROI)] within the image frame. Because the desired reflections from the eye would typically occupy a small fraction of the area within the image frame, the ROI capability would make it possible to acquire and subtract pixel values at rates of several hundred frames per second considerably greater than the standard video rate and sufficient to both (1) suppress motion artifacts and (2) track the motion of the eye between consecutive subtractive frame pairs.

  10. The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model

    PubMed Central

    Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew JA

    2017-01-01

    Objective: The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. Methods: After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Results: Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Conclusions: Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging. PMID:29348978

  11. Effects of several environmental factors on sweetpotato growth

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Bonsi, C. K.; Mortley, D. G.; Wheeler, R. M.; Mackowiak, C. L.; Hill, W. A.; Morris, C. E.; Trotman, A. A.; David, P. P.

    1994-01-01

    Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 C and diurnal 28:222 C day:night) and different CO2 levels (ambient, 400, 1 000 and 10 000 microL/L-400, 1 000 and 10 000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were prodcued for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 C. For the same photoperiod, when a 28:22 C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod. 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 C diurnal temperature variation than with a constant 28 C temperature regime. Preliminary results with both 'Ga Jet' and 'TI-155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1 000, and 10 000 microL/L.

  12. Recreating the shading effects of ship wake induced turbidity to test acclimation responses in the seagrass Thalassia hemprichii

    NASA Astrophysics Data System (ADS)

    Browne, Nicola K.; Yaakub, Siti Maryam; Tay, Jason K. L.; Todd, Peter A.

    2017-12-01

    Elevated sediment delivery and resuspension in coastal waters from human activities such as shipping can have detrimental effects on seagrass health by limiting light penetration. Managing seagrasses requires knowledge of their light acclamatory abilities so guidelines for coastal activities (e.g. ship movements) that influence sediment dynamics can be created. Guidelines typically focus on ensuring that seagrasses are able to meet their minimal light requirements (MLR). MLRs can be achieved by different light regimes, but it remains unknown whether a chronically low yet stable light regime is less or more detrimental than a highly variable regime with periods of extreme low to no light. To test this, we compared the physiological and morphological responses of Thalassia hemprichii among three light regimes: an open control (30-40% ambient light), a shaded control with (11-15% ambient light), and a fluctuating shade (4-30% ambient light). The MLR for the T. hemprichii we studied was lower (4-10% ambient light) than previous reports (mean = 18%) illustrating enhanced light acclimation in Singapore's chronically turbid waters. Seagrass shoots in the shaded control, however, exhibited significantly more morphological stress symptoms, with reduced shoot growth and lower below ground biomass. These data suggest that for seagrass exposed to periods of acute light stress, energetic costs associated with photo-acclimation to more variable light regimes can be offset if the plant can meet its daily light requirements during periods of high light. Management of seagrass beds should incorporate regular light monitoring and move towards an adaptive feedback-based approach to ensure the long-term viability of these vulnerable ecosystems.

  13. Very preterm infants can detect small variations in light levels in incubators.

    PubMed

    Zores, Claire; Dufour, André; Pebayle, Thierry; Langlet, Claire; Astruc, Dominique; Kuhn, Pierre

    2015-10-01

    This prospective observational study was designed to improve our understanding of the responses of very preterm infants to light level variations in incubators and to evaluate what determined those reactions. The physiological responses of 27 very preterm infants were analysed following variations in the light level environments of their incubators over 10 hours. Heart and respiratory rates, systemic oxygen saturation and regional cerebral oxygen saturations were recorded using near-infrared spectroscopy, and the variation of each parameter was analysed. We analysed 332 light level changes. Heart rate increased by 3.8 beats per minute (range -2.6 to 12.6), respiratory rate by six cycles per minute (-1.5 to 26) and regional cerebral oxygen saturation by 1.1% (-0.5% to 3.9%) (p < 0.05 each) when delta lux was over 50. Only respiratory rate decreased significantly, by -8.4 cycles per minute (-28 to -0.4), when delta lux was 50 or lower (p < 0.05). The initial level of illumination altered the very preterm infants' responses, with higher reactivity for higher ambient light levels. Very preterm infants reacted to moderate variations in illumination in their incubator, within recommended ranges of light levels, suggesting that they may detect even small light level variations. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  14. An enhancing effect of visible light and UV radiation on phenolic compounds and various antioxidants in broad bean seedlings.

    PubMed

    Younis, Mahmoud El-Baz; Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed

    2010-10-01

    Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV-radiation. © 2010 Landes Bioscience

  15. An enhancing effect of visible light and UV radiation on phenolic compounds and various antioxidants in broad bean seedlings

    PubMed Central

    Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed

    2010-01-01

    Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV radiation. PMID:20505357

  16. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Kolomenski, A.; Hanifin, J.; Schwin, B. M.

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial crew feedback.

  17. Multiagent robotic systems' ambient light sensor

    NASA Astrophysics Data System (ADS)

    Iureva, Radda A.; Maslennikov, Oleg S.; Komarov, Igor I.

    2017-05-01

    Swarm robotics is one of the fastest growing areas of modern technology. Being subclass of multi-agent systems it inherits the main part of scientific-methodological apparatus of construction and functioning of practically useful complexes, which consist of rather autonomous independent agents. Ambient light sensors (ALS) are widely used in robotics. But speaking about swarm robotics, the technology which has great number of specific features and is developing, we can't help mentioning that its important to use sensors on each robot not only in order to help it to get directionally oriented, but also to follow light emitted by robot-chief or to help to find the goal easier. Key words: ambient light sensor, swarm system, multiagent system, robotic system, robotic complexes, simulation modelling

  18. The effect of ambient illuminance on the development of deprivation myopia in chicks.

    PubMed

    Ashby, Regan; Ohlendorf, Arne; Schaeffel, Frank

    2009-11-01

    Recent epidemiologic studies have shown that children who spend a higher proportion of time outdoors are less likely to develop myopia. This study was undertaken to investigate whether light levels may be a relevant factor in the development of myopia. METHODS; Paradigm 1: Chicks were fitted with translucent diffusers for 5 days, with the diffusers removed daily for 15 minutes under one of three lighting conditions: (1) normal laboratory lighting (500 lux), (2) intense laboratory lighting (15,000 lux), or (3) daylight (30,000 lux). A control group, which continuously wore diffusers, was also kept under an illumination of 500 lux. Paradigm 2: Chicks fitted with translucent diffusers were raised for 4 days under one of three lighting conditions: (1) low laboratory lighting (50 lux, n = 9), (2) normal laboratory lighting (500 lux, n = 18), or (3) intense laboratory lights (15,000 lux, n = 9). In groups 1 and 3, the chicks were exposed to either low or high ambient illuminances for a period of 6 hours per day (10 AM-4 PM), but were kept under 500 lux for the remaining time of the light phase. Axial length and refraction were measured at the commencement and cessation of all treatments, with corneal curvature measured additionally in paradigm 2. Paradigm 1: The chicks exposed daily to sunlight for 15 minutes had significantly shorter eyes (8.81 +/- 0.05 mm; P < 0.01) and less myopic refractions (-1.1 +/- 0.45 D; P < 0.01) than did the chicks that had their diffusers removed under normal laboratory light levels (8.98 +/- 0.03 mm, -5.3 +/- 0.5 D). If the diffusers were removed under intense laboratory lights, the chicks also developed shorter eyes (8.88 +/- 0.04 mm; P < 0.01) and less myopic refractions (-3.4 +/- 0.6D; P < 0.01). Paradigm 2: The chicks that wore diffusers continuously under high illuminance had shorter eyes (8.54 +/- 0.02 mm; P < 0.01) and less myopic refractions (+0.04 +/- 0.7D; P < 0.001) compared with those chicks reared under normal light levels (8.64 +/- 0.06 mm, -5.3 +/- 0.9 D). Low illuminance (50 lux) did not further increase deprivation myopia. Exposing chicks to high illuminances, either sunlight or intense laboratory lights, retards the development of experimental myopia. These results, in conjunction with recent epidemiologic findings, suggest that daily exposure to high light levels may have a protective effect against the development of school-age myopia in children.

  19. Developmental effects of ambient UV-B light and landfill leachate in Rana blairi and Hyla chrysoscelis.

    PubMed

    Bruner, M A; Shipman, P A; Rao, M; Bantle, J A

    2002-09-01

    This study assessed the effects of ambient UV light on the development of two native species of anurans, Rana blairi and Hyla chrysoscelis, during their normal breeding season in Oklahoma. Additionally, the effects of ambient UV light and water contaminated with landfill leachate in Rana blairi were examined. Embryos were collected from the field and distributed equally among replicates of four filter treatments of ambient UV light in experimental tubs filled with either FETAX solution or landfill leachate diluted to 25, 10, and 5% concentrations. Three endpoints (mortality, teratogenesis, and growth) were compared between filter treatments. By itself, UV-B caused no significant effects. Leachate at 10 and 25% concentrations caused 100% mortality across all filter treatments. There was a significant interaction between filter treatment and water toxicity at leachate concentrations of 5% for both malformation and growth. Increased UV-B exposure decreased the malformation rate and increased growth in the leachate treatments.

  20. Ambient Persuasive Technology Needs Little Cognitive Effort: The Differential Effects of Cognitive Load on Lighting Feedback versus Factual Feedback

    NASA Astrophysics Data System (ADS)

    Ham, Jaap; Midden, Cees

    Persuasive technology can influence behavior or attitudes by for example providing interactive factual feedback about energy conservation. However, people often lack motivation or cognitive capacity to consciously process such relative complex information (e.g., numerical consumption feedback). Extending recent research that indicates that ambient persuasive technology can persuade the user without receiving the user's conscious attention, we argue here that Ambient Persuasive Technology can be effective while needing only little cognitive resources, and in general can be more influential than more focal forms of persuasive technology. In an experimental study, some participants received energy consumption feedback by means of a light changing color (more green=lower energy consumption, vs. more red=higher energy consumption) and others by means of numbers indicating kWh consumption. Results indicated that ambient feedback led to more conservation than factual feedback. Also, as expected, only for participants processing factual feedback, additional cognitive load lead to slower processing of that feedback. This research sheds light on fundamental characteristics of Ambient Persuasive Technology and Persuasive Lighting, and suggests that it can have important advantages over more focal persuasive technologies without losing its persuasive potential.

  1. Synchronous Crepuscular Flight of Female Asian Gypsy Moths: Relationships of Light Intensity and Ambient and Body Temperatures

    Treesearch

    Ralph E. Charlton; Ring T. Carde; William E. Wallner; William E. Wallner

    1999-01-01

    Female gypsy moths (Lymantria dispar) of Asian heritage studied in central Siberia and Germany exhibit a highly synchronous flight at dusk, after light intensity falls to about 2 lux. This critical light intensity sets the timing of flight behaviors independent of ambient temperature. Flight follows several minutes of preflight wing fanning during which females in...

  2. A compact multi-channel fluorescence sensor with ambient light suppression

    NASA Astrophysics Data System (ADS)

    Egly, Dominik; Geörg, Daniel; Rädle, Matthias; Beuermann, Thomas

    2012-03-01

    A multi-channel fluorescence sensor has been developed for process monitoring and fluorescence diagnostics. It comprises a fiber-optic set-up with an immersion probe and an intensity-modulated high power ultraviolet light-emitting diode as a light source for fluorescence excitation. By applying an electronic lock-in procedure, fluorescence signals are selectively detectable at ambient light levels of 1000 000 times higher intensity. The sensor was designed to be compact, low cost and easily adaptable to a wide field of application. The set-up was used to simultaneously monitor three important metabolic fluorophores: NAD(P)H, flavins and porphyrins during the cultivation of a baker's yeast. Moreover, the accumulation and degradation kinetics of protoporphyrin IX induced by 5-aminolevulinic acid on the skin could be recorded by the sensor. The detection limit for protoporphyrin IX was determined to be 4 × 10-11 mol L-1. The linear signal amplification of the sensor and time courses of fluorescence signals monitored during yeast fermentations were validated using a commercial CCD spectrometer. The robust and flexible set-up of the fiber-optic measurement system promises easy implementation of this non-invasive analytical tool to fluorescence monitoring and diagnostics in R&D and production.

  3. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L.

    PubMed

    Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja

    2017-02-01

    UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Using the Transient Response of WO₃ Nanoneedles under Pulsed UV Light in the Detection of NH₃ and NO₂.

    PubMed

    Gonzalez, Oriol; Welearegay, Tesfalem G; Vilanova, Xavier; Llobet, Eduard

    2018-04-26

    Here we report on the use of pulsed UV light for activating the gas sensing response of metal oxides. Under pulsed UV light, the resistance of metal oxides presents a ripple due to light-induced transient adsorption and desorption phenomena. This methodology has been applied to tungsten oxide nanoneedle gas sensors operated either at room temperature or under mild heating (50 °C or 100 °C). It has been found that by analyzing the rate of resistance change caused by pulsed UV light, a fast determination of gas concentration is achieved (ten-fold improvement in response time). The technique is useful for detecting both oxidizing (NO₂) and reducing (NH₃) gases, even in the presence of different levels of ambient humidity. Room temperature operated sensors under pulsed UV light show good response towards ammonia and nitrogen dioxide at low power consumption levels. Increasing their operating temperature to 50 °C or 100 °C has the effect of further increasing sensitivity.

  5. Correlated colour temperature of morning light influences alertness and body temperature.

    PubMed

    Te Kulve, Marije; Schlangen, Luc; Schellen, Lisje; Souman, Jan L; van Marken Lichtenbelt, Wouter

    2018-03-01

    Though several studies have reported human alertness to be affected by the intensity and spectral composition of ambient light, the mechanism behind this effect is still largely unclear, especially for daytime exposure. Alerting effects of nocturnal light exposure are correlated with melatonin suppression, but melatonin levels are generally low during the day. The aim of this study was to explore the alerting effect of light in the morning for different correlated colour temperature (CCT) values, as well as its interaction with ambient temperature. Body temperature and perceived comfort were included in the study as possible mediating factors. In a randomized crossover design, 16 healthy females participated in two sessions, once under 2700K and once under 6500K light (both 55lx). Each session consisted of a baseline, a cool, a neutral and a warm thermal environment. Alertness as measured in a reaction time task was lower for the 6500K exposure, while subjective sleepiness was not affected by CCT. Also, core body temperature was higher under 6500K. Skin temperature parameters and perceived comfort were positively correlated with subjective sleepiness. Reaction time correlated with heat loss, but this association did not explain why the reaction time was improved for 2700K. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Computer-Assisted Visual Search/Decision Aids as a Training Tool for Mammography

    DTIC Science & Technology

    1999-07-01

    display of a digital mammogram that compensates for the display brightness, the ambient light and the useful range of pixel intensities in the image...described here extends the work of Liu and Nodine (7) to include adjusting the gray-scale transform for ambient illumination and adjusting the mammogram...visible" disk in each band. The observer’s responses are affected by the display contrast and the ambient room lighting. The contrast of each indicated

  7. Changes in the performance characteristics of a GaAs near infrared light emitting diode when exposed to various current and thermal stresses

    NASA Technical Reports Server (NTRS)

    Thomas, E. F., Jr.

    1974-01-01

    The changes that occurred in the optical and electrical characteristics of a near infrared, GaAs light emitting diode, when operated under various levels and combinations of current and thermal stresses are discussed. A total of forty parts were operated for two thousand hours under eight different sets of dc current and ambient temperature conditions. Degradation in the radiant optical power of these devices was thirty-four percent when operated at their rated current and an ambient temperature of 298K (25 C). Derating the current and/or the thermal stress reduced the degradation of this parameter in approximately a linear manner. All degraded devices behaved similarly, exhibiting rapid nonlinear degradation followed by a gradual linear degradation and finally a period of stable operation. An attempt was made to correlate initial device condition to degradation during stress testing, but met with little success.

  8. Interference Resilient Sigma Delta-Based Pulse Oximeter.

    PubMed

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet

    2016-06-01

    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  9. Camouflage Visualization

    DTIC Science & Technology

    1992-04-07

    reflected light seen by the viewer does not depend on the viewer’s position. Such surfaces are dull or matte and the luminance of the diffuse reflected light...vegetation and reflect only the skylight . Generally, the reflectance of the ambient light is approximately represented as a global value, constant over all the...allowing the ambient contribution provided by skylight to vary with the orientation of the surface relative to zenith. This approximation takes into

  10. Oscillations studied with the smartphone ambient light sensor

    NASA Astrophysics Data System (ADS)

    Sans, J. A.; Manjón, F. J.; Pereira, A. L. J.; Gomez-Tejedor, J. A.; Monsoriu, J. A.

    2013-11-01

    This paper makes use of a smartphone's ambient light sensor to analyse a system of two coupled springs undergoing either simple or damped oscillatory motion. The period, frequency and stiffness of the spring, together with the damping constant and extinction time, are extracted from light intensity curves obtained using a free Android application. The results demonstrate the instructional value of mobile phone sensors as a tool in the physics laboratory.

  11. Ambient and laboratory evaluation of a low-cost particulate matter sensor.

    PubMed

    Kelly, K E; Whitaker, J; Petty, A; Widmer, C; Dybwad, A; Sleeth, D; Martin, R; Butterfield, A

    2017-02-01

    Low-cost, light-scattering-based particulate matter (PM) sensors are becoming more widely available and are being increasingly deployed in ambient and indoor environments because of their low cost and ability to provide high spatial and temporal resolution PM information. Researchers have begun to evaluate some of these sensors under laboratory and environmental conditions. In this study, a low-cost, particulate matter sensor (Plantower PMS 1003/3003) used by a community air-quality network is evaluated in a controlled wind-tunnel environment and in the ambient environment during several winter-time, cold-pool events that are associated with high ambient levels of PM. In the wind-tunnel, the PMS sensor performance is compared to two research-grade, light-scattering instruments, and in the ambient tests, the sensor performance is compared to two federal equivalent (one tapered element oscillating microbalance and one beta attenuation monitor) and gravimetric federal reference methods (FEMs/FRMs) as well as one research-grade instrument (GRIMM). The PMS sensor response correlates well with research-grade instruments in the wind-tunnel tests, and its response is linear over the concentration range tested (200-850 μg/m 3 ). In the ambient tests, this PM sensor correlates better with gravimetric methods than previous studies with correlation coefficients of 0.88. However additional measurements under a variety of ambient conditions are needed. Although the PMS sensor correlated as well as the research-grade instrument to the FRM/FEMs in ambient conditions, its response varies with particle properties to a much greater degree than the research-grade instrument. In addition, the PMS sensors overestimate ambient PM concentrations and begin to exhibit a non-linear response when PM 2.5 concentrations exceed 40 μg/m 3 . These results have important implications for communicating results from low-cost sensor networks, and they highlight the importance of using an appropriate correction factor for the target environmental conditions if the user wants to compare the results to FEM/FRMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Treesearch

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  13. 77 FR 37445 - Notice of Permit Modification Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... depth, swim speed, ambient temperature, and light levels, stomach temperature, heat flux and skin temperature. An additional stroke frequency sensor is glued to the base of the tail. These tests and... photogrammetric models and infrared analysis and ultrasound measurements of blubber depth, collect blood samples...

  14. Detecting persons concealed in a vehicle

    DOEpatents

    Tucker, Jr., Raymond W.

    2005-03-29

    An improved method for detecting the presence of humans or animals concealed within in a vehicle uses a combination of the continuous wavelet transform and a ratio-based energy calculation to determine whether the motion detected using seismic sensors placed on the vehicle is due to the presence of a heartbeat within the vehicle or is the result of motion caused by external factors such as the wind. The method performs well in the presence of light to moderate ambient wind levels, producing far fewer false alarm indications. The new method significantly improves the range of ambient environmental conditions under which human presence detection systems can reliably operate.

  15. Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes.

    PubMed

    Meyer, Lars A; Sullivan, S Mazeika P

    2013-09-01

    Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1-0.5 lux; moderate, 0.6-2.0 lux; high, 2.1-4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10-12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic-terrestrial fluxes of invertebrates.

  16. Association between ultraviolet radiation, skin sun sensitivity and risk of pancreatic cancer.

    PubMed

    Tran, Bich; Whiteman, David C; Webb, Penelope M; Fritschi, Lin; Fawcett, Jonathan; Risch, Harvey A; Lucas, Robyn; Pandeya, Nirmala; Schulte, Annaka; Neale, Rachel E

    2013-12-01

    Ecological studies showing an inverse association between pancreatic cancer incidence and mortality and levels of ultraviolet radiation (UVR), suggest that higher levels of sun exposure may reduce risks of pancreatic cancer but there has been only one individual-level study that examined this issue. We aimed to examine the association between pancreatic cancer and markers of exposure to solar UVR, namely skin type, treatment of skin lesions, ambient UVR and time outdoors on work days. We used data from an Australian case-control study. Location at birth, residential location during adulthood, outdoors work, history of skin lesion treatment and sensitivity of the skin to the sun were obtained by questionnaire. We limited the analyses to Caucasians who answered the questionnaire about UVR (controls=589/711 recruited; cases=496/705 recruited). We used NASA's Total Ozone Mapping Spectrometer to estimate ambient UVR. Being born in or living in areas of higher ambient UVR (compared to lower ambient UVR) was associated with about 30-40% lower risk of pancreatic cancer. People with fair skin colour had 47% lower risk of pancreatic cancer than those with dark skin colour (95% CI 0.37-0.75). There was some suggestion of increased risk with increased average number of hours spent outside at work. This study suggests that people with light skin colour or those born or living in areas of high ambient UVR have lower risk of pancreatic cancer. Our analysis supports an association between UVR and pancreatic cancer, possibly mediated through production of vitamin D. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Response of the macaque nasal epithelium to ambient levels of ozone. A morphologic and morphometric study of the transitional and respiratory epithelium.

    PubMed Central

    Harkema, J. R.; Plopper, C. G.; Hyde, D. M.; St George, J. A.; Wilson, D. W.; Dungworth, D. L.

    1987-01-01

    Although ozone (O3)-induced bronchiolitis has been morphologically characterized, effects of O3 on the upper respiratory tract have not been thoroughly investigated. The purpose of this study was to determine whether exposures to ambient levels of O3 induce lesions in the nasal mucosa. Bonnet monkeys were exposed to 0.00, 0.15, or 0.30 ppm O3 for 6 or 90 days, 8 hours/day. After exposure, nasal mucosa was processed for light and electron microscopy. Quantitative changes were evident in the nasal transitional and respiratory epithelium. At 6 or 90 days of exposure to 0.15 or 0.30 ppm O3 lesions consisted of ciliated cell necrosis, shortened cilia, and secretory cell hyperplasia. Inflammatory cell influx was only present at 6 days of exposure. Ultrastructural changes in goblet cells were evident at 90 days. Ambient levels of O3 can induce significant nasal epithelial lesions, which may compromise upper respiratory defense mechanisms. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:3605312

  18. Evaluating white LEDs for outdoor landscape lighting application

    NASA Astrophysics Data System (ADS)

    Shakir, Insiya; Narendran, Nadarajah

    2002-11-01

    A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.

  19. Characterization of particulate matter size distributions and indoor concentrations from kerosene and diesel lamps.

    PubMed

    Apple, J; Vicente, R; Yarberry, A; Lohse, N; Mills, E; Jacobson, A; Poppendieck, D

    2010-10-01

    Over one-quarter of the world's population relies on fuel-based lighting. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel-based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM(2.5) concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM(2.5) and PM(10) concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM(2.5) and PM(10), but will be exposed to elevated 0.02-0.3 μm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM(2.5) mass if they switched from a simple wick lamp to an electric lighting technology. Changing lighting technologies to achieve increased efficiency and energy service levels can provide ancillary health benefits. The cheapest, crudest kerosene lamps emit the largest amounts of PM(2.5). Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.

  20. Laser-Induced Plasmas in Ambient Air for Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Dixneuf, Sophie; Orphal, Johannes

    2015-06-01

    The emission from a laser-induced plasma in ambient air, generated by a high power femtosecond laser, was utilized as pulsed incoherent broadband light source in the center of a quasi-confocal high finesse cavity. The time dependent spectra of the light leaking from the cavity was compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses of the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S_1←S_0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air as well as the strongly forbidden γ--band in molecular oxygen: b^1σ^+_g (ν'=2)← X^3σ^-_g (ν''=0)

  1. Perceived color shift of ceramics according to the change of illuminating light with spectroradiometer

    PubMed Central

    Cha, Hyun-Suk; Yu, Bin

    2013-01-01

    PURPOSE Perceived color of ceramics changes by the spectral power distribution of ambient light. This study aimed to quantify the amount of shifts in color and color coordinates of clinically simulated seven all-ceramics due to the switch of three ambient light sources using a human vision simulating spectroradiometer. MATERIALS AND METHODS CIE color coordinates, such as L*, a* and b*,of ceramic specimens were measured under three light sources, which simulate the CIE standard illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp). Shifts in color and color coordinate by the switch of lights were determined. Influence of the switched light (D65 to A, or D65 to F9), shade of veneer ceramics (A2 or A3), and brand of ceramics on the shifts was analyzed by a three-way ANOVA. RESULTS Shifts in color and color coordinates were influenced by three factors (P<.05). Color shifts by the switch to A were in the range of 5.9 to 7.7 ΔE*abunits, and those by the switch to F9 were 7.7 to 10.2; all of which were unacceptable (ΔE*ab > 5.5). When switched to A, CIE a* increased (Δa*: 5.6 to 7.6), however, CIE b* increased (Δb*: 4.9 to 7.8) when switched to F9. CONCLUSION Clinically simulated ceramics demonstrated clinically unacceptable color shifts according to the switches in ambient lights based on spectroradiometric readings. Therefore, shade matching and compatibility evaluation should be performed considering ambient lighting conditions and should be done under most relevant lighting condition. PMID:24049567

  2. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    NASA Astrophysics Data System (ADS)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  3. Effects of background, direction and intensity of ambient light, measuring position, and adjacent teeth, on anterior tooth colour measurement in vitro.

    PubMed

    Ma, Jian Feng; Du, Ruo Xi; Wang, Si Qian; Li, Yi Ming

    2010-01-01

    to investigate the effects of different background colours (black, white or pink), direction and intensity of ambient light, measuring position, and the adjacent teeth, on the in vitro colour measurement of maxillary anterior teeth, using the Minolta CR-321 colorimeter. ten extracted human maxillary central incisors were selected. A fibre-optic light MI-150 was used as the ambient illuminant. Teeth were irradiated from a 3- or 12-o'clock direction. L*a*b* values of seven sites on the labial surfaces were obtained by means of the Minolta CR-321 colorimeter, using three background colours, with or without the adjacent teeth. The recorded data were analysed with two-tailed Student t tests and analysis of variance (α = 0.05). the ambient light did not affect the colour measurement of anterior teeth, regardless of the presence or absence of the adjacent teeth. There were no statistically significant differences in L*a*b* values at the same position under different background colours, except ΔE12 (colour difference between site 1 and site 2) between black and white backgrounds. ΔE12 (under black background), ΔE13 and ΔE15 were greater than 1.5, while the others were lower than 1.5. the background, ambient light and the presence of adjacent teeth did not affect the colour measurement of anterior teeth using the Minolta CR-321 colorimeter in vitro. The inherent disadvantages of using the naked eye during clinical visual shade assessment may be overcome by the colorimeter.

  4. The influence of ambient ultraviolet light on sperm quality and sexual ornamentation in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Rick, Ingolf P; Mehlis, Marion; Eßer, Elisabeth; Bakker, Theo C M

    2014-02-01

    Exposure to enhanced levels of ambient ultraviolet (UV) radiation (UVR) can have adverse effects on aquatic organisms including damage at the cellular and molecular level and impairment of development, fecundity and survival. Much research has been conducted on the role of the harmful UVB radiation. However, due to its greater penetration in water the more abundant UVA radiation can also act as an environmental stressor. Little is known about UVR effects on sperm characteristics although sperm cells should be especially prone to UV-induced oxidative stress. Moreover, UV-related changes in oxidative status may affect the phenotypic expression of energetically costly sexual ornaments. We investigated the effects of long-term exposure to ecologically relevant levels of simulated UVA radiation on sperm quality and sexual ornamentation in three-spined sticklebacks (Gasterosteus aculeatus). Males were assigned to three spectral exposure treatments differing in the UV spectral part so that they received either enhanced, moderate or no UVA radiation. The results reveal that exposure to enhanced ambient UVA levels had detrimental effects on both male breeding coloration and sperm velocity providing evidence that UVR affects traits targeted by pre- and post-copulatory sexual selection. By highlighting the role of UVA as a factor influencing fitness-relevant traits, our findings may contribute to a better understanding of the consequences of current and future levels of solar UVR for mating systems and life history.

  5. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  6. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  7. Ozone modeling in an ethanol, gasoline and diesel fuels environment: The metropolitan area of Sao Paulo, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, M.F.; Miguel, A.H.; Seinfeld, J.H.

    1995-12-01

    Over the past several years, in the Metropolitan Area of Sao Paulo (MASP), ambient ozone concentrations have reached over five times the concentration considered protective of public health by the World Health Organization, with routine occurrence of levels that exceed Brazil`s 1 hour National Ambient Air Quality Standard (160 {mu}g/m{sup 3}). For the past 19 years, ethanol has been used both as fuel (E95) and as gasoline additive (E20G80) in light duty vehicles. This talk will discuss the results of the application of the CIT photochemical airshed model to the February 16-17, 1989 meteorological experiment carried out in the MASP.more » Simulated hourly ozone concentrations for the 1989 vehicular fleet included three cases: (1) the actual fleet (F.95, E20G80, and diesels), (2) a light duty fleet fueled with E95 only, and (3) entirely with gasoline.« less

  8. Effects of various runway lighting parameters upon the relation between runway visual range and visual range of centerline and edge lights in fog

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.

  9. Multi-scale Visualization of Molecular Architecture Using Real-Time Ambient Occlusion in Sculptor.

    PubMed

    Wahle, Manuel; Wriggers, Willy

    2015-10-01

    The modeling of large biomolecular assemblies relies on an efficient rendering of their hierarchical architecture across a wide range of spatial level of detail. We describe a paradigm shift currently under way in computer graphics towards the use of more realistic global illumination models, and we apply the so-called ambient occlusion approach to our open-source multi-scale modeling program, Sculptor. While there are many other higher quality global illumination approaches going all the way up to full GPU-accelerated ray tracing, they do not provide size-specificity of the features they shade. Ambient occlusion is an aspect of global lighting that offers great visual benefits and powerful user customization. By estimating how other molecular shape features affect the reception of light at some surface point, it effectively simulates indirect shadowing. This effect occurs between molecular surfaces that are close to each other, or in pockets such as protein or ligand binding sites. By adding ambient occlusion, large macromolecular systems look much more natural, and the perception of characteristic surface features is strongly enhanced. In this work, we present a real-time implementation of screen space ambient occlusion that delivers realistic cues about tunable spatial scale characteristics of macromolecular architecture. Heretofore, the visualization of large biomolecular systems, comprising e.g. hundreds of thousands of atoms or Mega-Dalton size electron microscopy maps, did not take into account the length scales of interest or the spatial resolution of the data. Our approach has been uniquely customized with shading that is tuned for pockets and cavities of a user-defined size, making it useful for visualizing molecular features at multiple scales of interest. This is a feature that none of the conventional ambient occlusion approaches provide. Actual Sculptor screen shots illustrate how our implementation supports the size-dependent rendering of molecular surface features.

  10. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica).

    PubMed

    Henry-Kirk, Rebecca A; Plunkett, Blue; Hall, Miriam; McGhie, Tony; Allan, Andrew C; Wargent, Jason J; Espley, Richard V

    2018-03-01

    Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV. © 2018 John Wiley & Sons Ltd.

  11. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light.

    PubMed

    Foulds, Wallace S; Barathi, Veluchamy A; Luu, Chi D

    2013-12-09

    To determine whether progressive ametropia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. One-day-old chicks were raised in red light (90% red, 10% yellow-green) or in blue light (85% blue, 15% green) with a 12 hour on/off cycle for 14 to 42 days. Refraction was determined by streak retinoscopy, and by automated infrared photoretinoscopy and ocular biometry by A-scan ultrasonography. Red light induced progressive myopia (mean refraction ± SD at 28 days, -2.83 ± 0.25 diopters [D]). Progressive hyperopia was induced by blue light (mean refraction at 28 days, +4.55 ± 0.21 D). The difference in refraction between the groups was highly significant at P < 0.001. Induced myopia or hyperopia was axial as confirmed by ultrasound biometry. Myopia induced by 21 days of red light (-2.21 ± 0.21 D) was reversed to hyperopia (+2.50 ± 0.29 D) by subsequent 21 days of blue light. Hyperopia induced by 21 days of blue light (+4.21 ± 0.19 D) was reversed to myopia (-1.23 ± 0.12 D) by 21 days of red light. Rearing chicks in red light caused progressive myopia, while rearing in blue light caused progressive hyperopia. Light-induced myopia or hyperopia in chicks can be reversed to hyperopia or myopia, respectively, by an alteration in the chromaticity of ambient light. Manipulation of chromaticity may be applicable to the management of human childhood myopia.

  12. Field measurements of the ambient ozone formation potential in Beijing during winter

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh; Kramer, Louisa; Thomson, Steven; Lee, James; Squires, Freya; Bloss, William

    2017-04-01

    The air quality issues in Beijing have been well-documented, and the severe air pollution levels result in a unique chemical mix in the urban boundary layer, both in terms of concentration and composition. As many of the atmospheric chemical process are non-linear and interlinked, this makes predictions difficult for species formed in atmosphere, such as ozone, requiring field measurements to understand these processes in order to guide mitigation efforts. To investigate the ozone formation potential of ambient air, we employed a custom built instrument to measure in near real time the potential for in situ ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for the sampled ambient air mixture. Measurements were performed as part of the Air Pollution and Human Health (APHH) field campaign in November / December 2016 at a suburban site in central Beijing. We also conducted experiments to examine the ozone production sensitivity to NOx. We will present preliminarily results from ambient sampling and NOx experiments demonstrating changes in the ozone production potential during clean and haze periods in Beijing.

  13. Response of sun-grown and shade-grown northern red oak seedlings to outplanting in clearcuts and shelterwoods in North Alabama

    Treesearch

    Callie Jo Schweitzer; Emile S. Gardiner; David L. Loftis

    2006-01-01

    The primary objective of this study was to determine if greenhouse light environment would affect outplanting success for northern red oak (Quercus rubra L.) in clearcuts and shelterwoods. In 2002, northern red oak seedlings were grown from acorns under full-ambient (sun) and half-ambient (shade) light conditions in a greenhouse. Seedlings grown...

  14. The Investigation of the Effects of Gravity on Single Bubble Sonoluminescence

    NASA Technical Reports Server (NTRS)

    Dzikowicz, Ben; Thiessen, David B.; Marston, Philip

    2000-01-01

    In single bubble following it's rapid collapse each cycle of oscillation of an ultrasonic field. Since widely varying length and time scales affect the bubble dynamics and optical emission processes, it is difficult to anticipate the importance of the effects of gravity present for observations on earth. Our bubble is driven in an acoustically resonating cavity at it's first harmonic mode. The acoustical radiation pressure (Bjerknes force) will then keep it suspended in the center near the pressure antinode. When driven in a region where the diffusive processes balance the bubble it acts in a nonlinear but regular way, emitting a short (approx. 200ps) burst of light each acoustic cycle. Balancing the Bjerknes force with buoyancy, as in, we can see that the bubble should be displaced from the velocity node approximately 20m at normal gravity. Therefore, water flows past the bubble at the time of collapse. Gravitation also changes the ambient pressure at the bubble's location, as Delta.P = rho.g.h this gives a change of approximately -0.5% in our experiment when going from 1.8g to 0g. Studies of ambient pressure changes were also done in order to assess these effects. Inside a pressure sealed chamber a spherical glass cell is filled with distilled water which has been degassed to 120mmHg. A bubble is then trapped in the center and driven by a piezoelectric transducer at 32.2kHz attached to the side of the cell. An optical system is then set up to take strobbed video images along and light emission data simultaneously. Temperature, pressure, drive voltage, and listener voltage are also monitored. PMT output in Volts The radii of the bubbles for both experiment s are fit using the Rayleigh-Plesset equation and the acoustic drive amplitude and the ambient bubble radius are found. There is little change in the acoustic drive amplitude as we expect, since we are not varying the drive voltage. However. the ambient bubble radius goes up considerably. These changes (increased light output, increased maximum bubble radius, and increased ambient bubble radius) are also observed when the ambient pressure is varied in the laboratory by an amount similar to that due to gravitation. The changes in the ambient bubble radius and light output with a change in ambient pressure are predicted by the "dissociation hypothesis" and have been observed by other groups in the laboratory. It seems clear that buoyancy's effect on light output and bubble radius, are at best on the same order as the effects of ambient pressure.

  15. Two-dimensional gas chromatographic analysis of ambient light hydrocarbons.

    PubMed

    Liao, Wei-Chen; Ou-Yang, Cheng-Feng; Wang, Chieh-Heng; Chang, Chih-Chung; Wang, Jia-Lin

    2013-06-14

    Ambient level hydrocarbons lighter than C6 were analyzed by the Deans switch-modulated comprehensive two-dimensional gas chromatography (GC×GC) method with flame ionization detection (FID). A thermal desorption (TD) device built in-house connects the GC×GC system to pre-concentrate the target compounds at ambient levels prior to GC analysis. Because the conventional orthogonality based on polarity difference for normal GC×GC separation does not provide sufficient retention for the target compounds of extremely high volatility, the orthogonality of non-polar vs. adsorptive force was adopted instead. The system employed a 100% polydimethyl siloxane column serving as the first-dimension column to provide separation based on dispersive interaction, with a short PLOT column serving as the second-dimension column to provide the needed retention based on gas-solid adsorption interactions. The shortest possible length of the PLOT column was tested to minimize the modulation period (PM) and wraparound and, at the same time, to maintain the desired resolution. The tests led to the final optimal parameters of 1.1m for the PLOT column length, 9s for the PM, 0.013 for the modulation duty cycle (DC) and a modulation ratio (MR) of 3.7 with minimal wraparound. Important criteria for quality assurance of precision and linearity are reported. The low cost and ease of construction and operation make the in-house Deans switch TD-GC×GC-FID system practical and useful for the analysis of light hydrocarbons in urban or industrial environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Quality aspects of digital radiography in general dental practice.

    PubMed

    Hellén-Halme, Kristina

    2007-01-01

    The number of dentists who have converted from conventional film radiography to digital radiography continues to grow. A digital system has numerous advantages, but there are also many new aspects to consider. The overall aim of this thesis was to study how digital radiography was used in general dental practices. The specific aims were to study how different factors affected image quality. To determine whether there were any differences in image quality between conventional film radiographs and digital radiographs, 4863 images (540 cases) were evaluated. The cases had been sent to the Swedish Dental Insurance Office for prior treatment approval. The image quality of digital radiographs was found to be significantly lower than that of film radiographs. This result led to a questionnaire study of dentists experienced in digital radiography. In 2003, a questionnaire was sent to the 139 general practice dentists who worked with digital radiography in Skine, Sweden; the response rate was 94%. Many general practice dentists had experienced several problems (65%), and less than half of the digital systems (40%) underwent some kind of quality control. One of the weaker links in the technical chain of digital radiography appeared to be the monitor. A field study to 19 dentists at their clinics found that the brightness and contrast settings of the monitors had to be adjusted to obtain the subjectively best image quality. The ambient light in the evaluation room was also found to affect the diagnostic outcome of low-contrast patterns in radiographs. To evaluate the effects of ambient light and technical adjustments of the monitor, a study using standardised set-ups was designed. Seven observers evaluated radiographs of 100 extracted human teeth for approximal caries under five different combinations of brightness and contrast settings on two different occasions with high and low ambient light levels in the evaluation room. The ability to diagnose carious lesions was found to be significantly better in a room with lower ambient light and on a monitor with well-adjusted brightness and contrast values than in a room with bright light and on an unadjusted monitor. In conclusion, many problems with dental digital radiography were identified. Knowledge of digital techniques and how to optimise each link in the system to maintain high radiographic quality at all times must be improved.

  17. Sunlight-readable display technology: a dual-use case study

    NASA Astrophysics Data System (ADS)

    Blanchard, Randall D.

    1996-05-01

    This paper describes our vision of sunlight readable color display requirements, an alternate technology that offers a high level of performance, and how we implemented it for the military avionics display market. This knowledge base and product development experience was then applied with a comparable level of performance to commercial applications. The successful dual use of this technology for these two diverse markets is presented. Details of the technical commonality and a comparison of the design and performance differences are presented. A basis for specifying the required level of performance for a sunlight readable full color display is discussed. With the objective of providing a high level of image brightness and high ambient light rejection, a display architecture using collimated light is used. The resulting designs of two military cockpit display products, with contrast ratios above 20:1 in sunlight are shown. The performance of a commercial display providing several thousand foot- Lamberts of image brightness is presented.

  18. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  19. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  20. Regulation of L-asparaginase in a Chlamydomonas species in response to ambient concentrations of combined nitrogen.

    PubMed Central

    Paul, J H; Cooksey, K E

    1981-01-01

    Cellular levels of an L-asparaginase in a Chlamydomonas species were found to be greater in nitrogen-limited batch cultures than in batch cultures grown in ample nitrogen. Cells grown in high nitrogen medium (5 mM NH4Cl) and suspended in nitrogen-free medium showed a 2- to 3.5-fold increase in activity after 24 to 48 h. This increase in activity was inhibited by cycloheximide and by the addition of high levels of combined nitrogen (5 mM NH4Cl, NaNO3, or L-asparagine), suggesting repression by ambient nitrogen levels as the mode of regulation of this enzyme. Derepressed L-asparaginase activity did not disappear in the presence of high concentrations of medium nitrogen, indicating the absence of an asparaginase-degrading system. Derepression of asparaginase by this organism was light dependent and inhibited by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea suggesting a requirement for photosynthetic energy. PMID:7240099

  1. Practical method for appearance match between soft copy and hard copy

    NASA Astrophysics Data System (ADS)

    Katoh, Naoya

    1994-04-01

    CRT monitors are often used as a soft proofing device for the hard copy image output. However, what the user sees on the monitor does not match its output, even if the monitor and the output device are calibrated with CIE/XYZ or CIE/Lab. This is especially obvious when correlated color temperature (CCT) of CRT monitor's white point significantly differs from ambient light. In a typical office environment, one uses a computer graphic monitor having a CCT of 9300K in a room of white fluorescent light of 4150K CCT. In such a case, human visual system is partially adapted to the CRT monitor's white point and partially to the ambient light. The visual experiments were performed on the effect of the ambient lighting. Practical method for soft copy color reproduction that matches the hard copy image in appearance is presented in this paper. This method is fundamentally based on a simple von Kries' adaptation model and takes into account the human visual system's partial adaptation and contrast matching.

  2. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 Januarymore » 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.« less

  3. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; hide

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

  4. Effect of ambient light and age-related macular degeneration on precision walking.

    PubMed

    Alexander, M Scott; Lajoie, Kim; Neima, David R; Strath, Robert A; Robinovitch, Stephen N; Marigold, Daniel S

    2014-08-01

    To determine how age-related macular degeneration (AMD) and changes in ambient light affect the control of foot placement while walking. Ten older adults with AMD and 11 normal-sighted controls performed a precision walking task under normal (∼600 lx), dim (∼0.7 lx), and after a sudden reduction (∼600 to 0.7 lx) of light. The precision walking task involved subjects walking and stepping to the center of a series of irregularly spaced, low-contrast targets. Habitual visual acuity and contrast sensitivity and visual field function were also assessed. There were no differences between groups when performing the walking task in normal light (p > 0.05). In reduced lighting, older adults with AMD were less accurate and more variable when stepping across the targets compared to controls (p < 0.05). A sudden reduction of light proved the most challenging for this population. In the AMD group, contrast sensitivity and visual acuity were not significantly correlated with walking performance. Visual field thresholds in the AMD group were only associated with greater foot placement error and variability in the dim light walking condition (r = -0.69 to -0.87, p < 0.05). While walking performance is similar between groups in normal light, poor ambient lighting results in decreased foot placement accuracy in older adults with AMD. Improper foot placement while walking can lead to a fall and possible injury. Thus, to improve the mobility of those with AMD, strategies to enhance the environment in reduced lighting situations are necessary.

  5. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.

  6. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.

    PubMed

    Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori

    2017-04-18

    Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.

  7. Differential effects of ambient or diminished CO2 and O2 levels on thylakoid membrane structure in light-stressed plants.

    PubMed

    Tsabari, Onie; Nevo, Reinat; Meir, Sagit; Carrillo, L Ruby; Kramer, David M; Reich, Ziv

    2015-03-01

    Over-reduction of the photosynthetic electron transport chain may severely damage the photosynthetic apparatus as well as other constituents of the chloroplast and the cell. Here, we exposed Arabidopsis leaves to saturating light either under normal atmospheric conditions or under CO2--and O2 -limiting conditions, which greatly increase excitation and electron pressures by draining terminal electron acceptors. The two treatments were found to have very different, often opposing, effects on the structure of the thylakoid membranes, including the width of the granal lumenal compartment. Modulation of the latter is proposed to be related to movements of ions across the thylakoid membrane, which alter the relative osmolarity of the lumen and stroma and affect the partitioning of the proton motive force into its electrical and osmotic components. The resulting changes in thylakoid organization and lumenal width should facilitate the repair of photodamaged photosystem II complexes in response to light stress under ambient conditions, but are expected to inhibit the repair cycle when the light stress occurs concurrently with CO2 and O2 depletion. Under the latter conditions, the changes in thylakoid structure are predicted to complement other processes that restrict the flow of electrons into the high-potential chain, thus moderating the production of deleterious reactive oxygen species at photosystem I. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Biofouling and the continuous monitoring of underwater light from a seagrass perspective

    USGS Publications Warehouse

    Onuf, C.P.

    2006-01-01

    For more than a decade, inexpensive electronic instruments have made continuous underwater light monitoring an integral part of many seagrass studies. Although biofouling, if not controlled, compromises the utility of the record. A year-long assessment of the time course of sensor fouling, in the Laguna Madre of Texas established that light transmitted through the fouling layer after 2 wk of exposure exceeded 90% except for a 6-8 wk period in May and June. On that basis, a 2-wk interval was chosen for routine servicing. Subsequent monitoring proved this choice to be grossly in error. The period of sub-90% transmittance after 2 wk extended to 4-6 mo annually over the next 3 yr. Fouling was strongly correlated with temperature, ambient light, and year. Since an algal bloom of 7-yr duration finally waned during this study, increased ambient light seemed most likely to explain increased fouling later in the study. The explanatory value of light was less than temperature or year in multiple regression, requiring some other explanation of the date effect than change in ambient light. Allelopathic and suspension-feeding depressant effects of the brown tide are offered as the most likely cause of unusually low fouling in the first year. Biofouling was so unpredictable and rapid in this study that at least weekly maintenance would be required to assure reliability of the light monitoring record. ?? 2006 Estuarine Research Federation.

  9. Illuminant-adaptive color reproduction for mobile display

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Man; Park, Kee-Hyon; Kwon, Oh-Seol; Cho, Yang-Ho; Ha, Yeong-Ho

    2006-01-01

    This paper proposes an illuminant-adaptive reproduction method using light adaptation and flare conditions for a mobile display. Mobile displays, such as PDAs and cellular phones, are viewed under various lighting conditions. In particular, images displayed in daylight are perceived as quite dark due to the light adaptation of the human visual system, as the luminance of a mobile display is considerably lower than that of an outdoor environment. In addition, flare phenomena decrease the color gamut of a mobile display by increasing the luminance of dark areas and de-saturating the chroma. Therefore, this paper presents an enhancement method composed of lightness enhancement and chroma compensation. First, the ambient light intensity is measured using a lux-sensor, then the flare is calculated based on the reflection ratio of the display device and the ambient light intensity. The relative cone response is nonlinear to the input luminance. This is also changed by the ambient light intensity. Thus, to improve the perceived image, the displayed luminance is enhanced by lightness linearization. In this paper, the image's luminance is transformed by linearization of the response to the input luminance according to the ambient light intensity. Next, the displayed image is compensated according to the physically reduced chroma, resulting from flare phenomena. The reduced chroma value is calculated according to the flare for each intensity. The chroma compensation method to maintain the original image's chroma is applied differently for each hue plane, as the flare affects each hue plane differently. At this time, the enhanced chroma also considers the gamut boundary. Based on experimental observations, the outer luminance-intensity generally ranges from 1,000 lux to 30,000 lux. Thus, in the case of an outdoor environment, i.e. greater than 1,000 lux, this study presents a color reproduction method based on an inverse cone response curve and flare condition. Consequently, the proposed algorithm improves the quality of the perceived image adaptive to an outdoor environment.

  10. A comparison of intubation success for paediatric transport team paramedics using lighted vs regular tracheal tube stylets.

    PubMed

    MacNab, A J; MacPhail, I; MacNab, M K; Noble, R; O'Flaherty, D

    1998-01-01

    We conducted a prospective randomized study of success rate and time to intubation using Trachlight and Surch-Lite lighted stylets versus a regular tracheal tube stylet, in a training setting. Participants, 18 paediatric transport paramedics, performed two intubations with each of the three devices, using an airway management trainer. There was no significant difference in mean time for intubation between the three devices. The times for external confirmation of correct tube placement were comparable using the two lighted stylets. External confirmation of the tube placement using the lighted stylets was quicker than laryngoscopic visualization. In darkness, with a nonfunctioning laryngoscope, intubations were successfully performed 100% of the time with the lighted stylet, but only 11% of the time with the regular stylet. All paramedics felt that a lighted stylet would be a useful airway management adjunct for the transport environment for complicated intubations or for use in very high or low levels of ambient light.

  11. An assessment of the performance and quality control procedures of PACS workstation monitors used in Irish radiology departments

    NASA Astrophysics Data System (ADS)

    Wade, Cherrie; Brennan, Patrick C.; Mc Entee, Mark F.

    2005-04-01

    Diagnostic efficacy in soft-copy reporting relies heavily on the quality of workstation monitors and an investigation performed in 2002 demonstrated that CRT monitors in Dublin imaging departments were not operating at optimal levels. The current work examines the performance of CRTs being used in Dublin and other parts of Ireland to establish if problems reported in the earlier work have been rectified. All hospitals performing soft-copy reporting for general radiology using CRTs were included in the work. Examination of ambient lighting, calibration of monitors and analysis of CRT performance using the SMPTE test pattern and a selection of the AAPM test images was performed. Maximum luminance, spatial uniformity of luminance, temporal luminance stability, gamma, geometry, sharpness, veiling glare and spatial resolution of each monitor was evaluated. Ambient lighting in all reporting areas was within recommended levels. All the monitors were calibrated appropriately and were performing at acceptable levels for maximum luminance and temporal stability and only one of the thirty-three investigated failed to reach the standard for spatial uniformity. In contrast a number of the CRTs investigated showed poor adherence to acceptable levels for geometrical distortions, veiling glare and spatial resolution all of which are important influencers of image quality. Gamma values also appeared to be low for a number of monitors but this interpretation is provisional and subject to the establishment of ratified guideline values. The results demonstrate that although some improvement on the previous situation is evident, greater adherence to acceptable levels is required for certain parameters.

  12. Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force

    NASA Astrophysics Data System (ADS)

    Lu, Jinsheng; Yang, Hangbo; Zhou, Lina; Yang, Yuanqing; Luo, Si; Li, Qiang; Qiu, Min

    2017-01-01

    Optical force, coming from momentum exchange during light-matter interactions, has been widely utilized to manipulate microscopic objects, though mostly in vacuum or in liquids. By contrast, due to the light-induced thermal effect, photophoretic force provides an alternative and effective way to transport light-absorbing particles in ambient gases. However, in most cases these forces work independently. Here, by employing the synergy of optical force and photophoretic force, we propose and experimentally demonstrate a configuration which can drive a micron-size metallic plate moving back and forth on a tapered fiber with supercontinuum light in ambient air. Optical pulling and oscillation of the metallic plate are experimentally realized. The results might open exhilarating possibilities in applications of optical driving and energy conversion.

  13. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.

    PubMed

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-12-31

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  14. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation

    PubMed Central

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-01-01

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms. PMID:26729122

  15. Lighting and perceptual cues: Effects on gait measures of older adults at high and low risk for falls

    PubMed Central

    2011-01-01

    Background The visual system plays an important role in maintaining balance. As a person ages, gait becomes slower and stride becomes shorter, especially in dimly lighted environments. Falls risk has been associated with reduced speed and increased gait variability. Methods Twenty-four older adults (half identified at risk for falls) experienced three lighting conditions: pathway illuminated by 1) general ceiling-mounted fixtures, 2) conventional plug-in night lights and 3) plug-in night lights supplemented by laser lines outlining the pathway. Gait measures were collected using the GAITRite© walkway system. Results Participants performed best under the general ceiling-mounted light system and worst under the night light alone. The pathway plus night lights increased gait velocity and reduced step length variability compared to the night lights alone in those at greater risk of falling. Conclusions Practically, when navigating in more challenging environments, such as in low-level ambient illumination, the addition of perceptual cues that define the horizontal walking plane can potentially reduce falls risks in older adults. PMID:21864387

  16. Optical fiber bundle displacement sensor using an ac-modulated light source with subnanometer resolution and low thermal drift

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1995-09-01

    An optical fiber bundle displacement sensor with subnanometer order resolution and low thermal drift is proposed. The setup is based on a carrier amplifier system and involves techniques to eliminate fluctuation in the light power of the source. The achieved noise level of the sensor was 0.03 nm/ \\radical Hz \\end-radical . The stability was estimated by comparing the outputs of two different sensors from the same target for 4 ks (67 min). The relative displacements between the fiber bundle ends of the two sensors and the target surface varied in the area of 400 nm depending on the ambient temperature variation at 2 deg C. However, the difference in output between the two sensor systems is within 2 nm for more than 1 hour of measurement. It is expected that it would be reduced to within the area of 0.1 nm if the ambient temperature were controlled to within +/-0.1 deg C. It is concluded that the stability of the sensors is sufficiently good to be used with nanotechnological instruments.

  17. Visual ergonomic evaluations on four different designs of LED traffic signs

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Huang, Ting-Yuan; Lee, Tsung-Xian; Sun, Ching-Cherng

    2017-08-01

    To investigate the legibility and visual comfort of LED traffic signs, an ergonomic experiment is performed on four custom-designed LED traffic signs, including three self-luminous ones as LED lightbox, LED backlight and regional LED backlight, and one non-self-luminous sign with external LED lighting. The four signs are hanged side-by-side and evaluated by observers through questionnaires. The signage dimension is one-sixth of the real freeway traffic signs, and the observation distance is 25 m. The luminance of three self-luminous signs is 216 cd/m2. The illuminance of external LED lighting is 400 lux on the traffic sign. The ambient illuminance is 2.8 and 6.0 lux in two rounds. The results show that self-luminous traffic signs provide superior legibility, visual comfort and user preference than the non-self-luminous one. Among the three self-luminous signs, regional LED backlight is most susceptible to the ambient illumination. LED lightbox has significantly better preference score than LED backlight under darker ambient lighting. Only LED lightbox has significantly better visual comfort than external LED lighting in the brighter environment. Based on the four LED traffic signs evaluated in this study, we suggest LED lightbox as the prior choice. Further investigations on the effect of ambient illumination and other designs of self-luminous traffic signs are in progress.

  18. Digital image color analysis compared to direct dental CIE colorimeter assessment under different ambient conditions.

    PubMed

    Knösel, Michael; Attin, Rengin; Jung, Klaus; Brunner, Edgar; Kubein-Meesenburg, Dietmar; Attin, Thomas

    2009-04-01

    To evaluate the concordance and repeatability of two in vivo methods for dental color assessment and to clarify the influence of different ambient light conditions and subject's head position on the assessed color variables. Color assessments were performed by two examiners on 16 arbitrarily selected subjects under two different, standardized conditions of illumination and at two different standardized head angulations. CIE (L*a*b*) data for upper and lower central incisors were recorded in two different ways: (1) by an intra-oral contact dental colorimeter and (2) by processing digital images for performing color calculation using Adobe Photoshop software. The influence of the different ambient conditions on both methods, as well as the concordance of measurements was analyzed statistically using several mixed linear models. Ambient light as a single factor had no significant influence on maxillary L*, a* and b* values, but it did have an effect on mandible assessments. Head angulation variation resulted in significant L* value differences using the photo method. The operator had a significant influence on values a* and b* for the photo method and on a* values for the colorimeter method. In fully lit ambient condition, the operator had a significant influence on the segregated L*, a*, and b* values. With dimmed lights, head angulation became significant, but not the operator. Evaluation of segregated L* values was error prone in both methods. Comparing both methods, deltaE values did not exceed 2.85 units, indicating that color differences between methods and recorded under varying ambient conditions were well below the sensitivity of the naked eye.

  19. Effect of varying displays and room illuminance on caries diagnostic accuracy in digital dental radiographs.

    PubMed

    Pakkala, T; Kuusela, L; Ekholm, M; Wenzel, A; Haiter-Neto, F; Kortesniemi, M

    2012-01-01

    In clinical practice, digital radiographs taken for caries diagnostics are viewed on varying types of displays and usually in relatively high ambient lighting (room illuminance) conditions. Our purpose was to assess the effect of room illuminance and varying display types on caries diagnostic accuracy in digital dental radiographs. Previous studies have shown that the diagnostic accuracy of caries detection is significantly better in reduced lighting conditions. Our hypothesis was that higher display luminance could compensate for this in higher ambient lighting conditions. Extracted human teeth with approximal surfaces clinically ranging from sound to demineralized were radiographed and evaluated by 3 observers who detected carious lesions on 3 different types of displays in 3 different room illuminance settings ranging from low illumination, i.e. what is recommended for diagnostic viewing, to higher illumination levels corresponding to those found in an average dental office. Sectioning and microscopy of the teeth validated the presence or absence of a carious lesion. Sensitivity, specificity and accuracy were calculated for each modality and observer. Differences were estimated by analyzing the binary data assuming the added effects of observer and modality in a generalized linear model. The observers obtained higher sensitivities in lower illuminance settings than in higher illuminance settings. However, this was related to a reduction in specificity, which meant that there was no significant difference in overall accuracy. Contrary to our hypothesis, there were no significant differences between the accuracy of different display types. Therefore, different displays and room illuminance levels did not affect the overall accuracy of radiographic caries detection. Copyright © 2012 S. Karger AG, Basel.

  20. The importance of illumination in nest site choice and nest characteristics of cavity nesting birds.

    PubMed

    Podkowa, Paweł; Surmacki, Adrian

    2017-05-02

    Light has a significant impact on many aspects of avian biology, physiology and behaviour. An increasing number of studies show that illumination may positively influences birds' offspring fitness by e.g. acceleration of embryo development, stimulation of skeleton growth or regulation of circadian rhythm. Because nest cavities have especially low illumination, suitable light levels may be especially important for species which nest there. We may therefore expect that birds breeding in relatively dim conditions should prefer brighter nest sites and/or evolve behavioral mechanisms to secure sufficient light levels in the nest. Using nest boxes with modified internal illumination, we experimentally tested whether light regime is a cue for nest site selection of secondary cavity-nesting species. Additionally, we investigated whether nest building strategies are tuned to internal illumination. Our results demonstrate that, nest boxes with elevated illumination were chosen twice as often as dark nest boxes. Moreover, birds built higher nests in dark nest boxes than birds in boxes with elevated illumination, which suggests a mechanism of compensating for low light conditions. Our results provide the first experimental support for the idea that nest site choice and nest building behaviour in cavity-nesting birds are influenced by ambient illumination.

  1. Raspberry Pi Eclipse Experiments

    NASA Astrophysics Data System (ADS)

    Chizek Frouard, Malynda

    2018-01-01

    The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.

  2. Kerosene lighting contributes to household air pollution in rural Uganda.

    PubMed

    Muyanja, D; Allen, J G; Vallarino, J; Valeri, L; Kakuhikire, B; Bangsberg, D R; Christiani, D C; Tsai, A C; Lai, P S

    2017-09-01

    The literature on the contribution of kerosene lighting to indoor air particulate concentrations is sparse. In rural Uganda, kitchens are almost universally located outside the main home, and kerosene is often used for lighting. In this study, we obtained longitudinal measures of particulate matter 2.5 microns or smaller in size (PM 2.5 ) from living rooms and kitchens of 88 households in rural Uganda. Linear mixed-effects models with a random intercept for household were used to test the hypotheses that primary reported lighting source and kitchen location (indoor vs outdoor) are associated with PM 2.5 levels. During initial testing, households reported using the following sources of lighting: open-wick kerosene (19.3%), hurricane kerosene (45.5%), battery-powered (33.0%), and solar (1.1%) lamps. During follow-up testing, these proportions changed to 29.5%, 35.2%, 18.2%, and 9.1%, respectively. Average ambient, living room, and kitchen PM 2.5 levels were 20.2, 35.2, and 270.0 μg/m 3 . Living rooms using open-wick kerosene lamps had the highest PM 2.5 levels (55.3 μg/m 3 ) compared to those using solar lighting (19.4 μg/m 3 ; open wick vs solar, P=.01); 27.6% of homes using open-wick kerosene lamps met World Health Organization indoor air quality standards compared to 75.0% in homes using solar lighting. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.; Barger, Laura K.; Wright, Kenneth P., Jr.; Ronda, Joseph

    2009-01-01

    Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crew members during long-duration stays on the space station.

  4. Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulated atmospheres.

    PubMed Central

    Pitts, J N

    1983-01-01

    The growing use of coal for heating and electric power generation and diesel engines in light duty motor vehicles will increase not only the existing atmospheric concentrations of criteria pollutants such as NO2, SO2, O3 and fine particulates, but also the concentrations of a number of highly reactive gaseous copollutants such as HONO, HONO2, PAN and the nitrate radical, NO3. These gaseous noncriteria pollutants are of interest not only because of their roles in the chemistry of the "clean" and polluted troposphere, including "acid rain," but also because they may pose health risks disproportionate to their relatively low ambient concentrations, and through complex heterogeneous reactions, they may serve as precursors or catalysts in the formation of "nonclassical" particulate mutagens and carcinogens such as certain nitroarenes associated with combustion generated particulate polycyclic organic matter (POM). Results of research efforts to establish current ambient levels of these noncriteria pollutants and to develop an understanding of their sources, formation and sinks are reported here. First, long pathlength (greater than or equal to 1 km) infrared and UV-visible spectroscopic studies of ambient levels of gaseous HONO, NO3, HONO2, PAN, HCHO and HCOOH in southern California atmospheres are described, and data given on their ambient concentrations. Second, an integrated chemical/microbiological investigation is described. It is directed toward identifying the nature of direct-acting mutagens found in extracts of diesel and ambient POM, as well as those formed upon exposure of environmentally relevant PAH to simulated natural and polluted atmospheres. The identification of certain of these mutagens, including a newly identified class of mutagenic PAH-lactones is discussed, along with the mechanisms of their formation and fate in the natural and polluted troposphere. PMID:6337822

  5. Control of the Diurnal Pattern of Methane Emission from Emergent Aquatic Macrophytes by Gas Transport Mechanisms

    NASA Technical Reports Server (NTRS)

    Whiting, Gary J.; Chanton, Jeffrey P.

    1995-01-01

    Methane emissions from Typha latifolia (L.) showed a large mid-morning transient peak associated with rising light levels. This peak was also associated with a steep decline in lacunal CH, concentrations near the stem base. This pattern contrasted sharply with emissions from Peltandra virginica (L.) that gradually rose to a peak in the mid-afternoon corresponding to elevated air temperatures. Internal CH4 concentrations within P. virginica stems did not change significantly over the diurnal period. Stomatal conductance appeared to correlate directly with light levels in both plant types and were not associated with peak CH4 emission events in either plant. These patterns are consistent with a convective throughflow and diffusive gas ventilation systems for Typha and Peltandra, respectively. Further effects of the convective throughflow in T. latifolia were evident in the elevated CH4 concentrations measured within brown leaves as contrasted to the near ambient levels measured within live green leaves. Experimental manipulation of elevated and reduced CO2 levels in the atmosphere surrounding the plants and of light/dark periods suggested that stomatal aperture has little or no control of methane emissions from T. latifolia.

  6. Effect of light and atmosphere on the cultivation of the golden oyster culinary-medicinal mushroom, Pleurotus citrinopileatus (higher Basidiomycetes).

    PubMed

    Hu, Shu-Hui; Wu, Chiu-Yeh; Chen, Yu-Kuei; Wang, Jinn-Chyi; Chang, Sue-Joan

    2013-01-01

    With an aim to explore the productivity and quality of the fruiting body of culinary-medicinal golden oyster mushroom Pleurotus citrinopileatus, the carbon dioxide (CO₂) concentration of the ambient atmosphere was adjusted and a light-emitting diode panel was used to illuminate the colonized mycelium at different wavelengths. Biological efficiency and yield were higher at CO₂ levels of 0.05 and 0.1% than other tested CO₂ levels, and the mature fruiting body showed the highest yellow value at a CO₂ level of 0.1% (of all tested CO₂ levels). The highest biological efficiency and yield was obtained at the 720-nm wavelength. The ergosterol content of the pileus of the fruiting body was higher than that of the stipe in any flush time at a 720-nm wavelength of light and a CO₂ concentration of 0.1%. The decreased percentages of cellulose and lignin at the appearance of primordia were larger than those of mycelial growth duration. The fruiting quality of P. citrinopileatus might thus be enhanced by 720-nm illumination and an atmosphere with a CO₂ concentration of 0.1 to 0.15%.

  7. Recovery from the impact of light reduction on the seagrass Amphibolis griffithii, insights for dredging management.

    PubMed

    McMahon, Kathryn; Lavery, Paul S; Mulligan, Michael

    2011-02-01

    A large-scale, manipulative experiment was conducted to examine the extent and rate of recovery of meadows of the temperate Australian seagrass, Amphibolis griffithii to different light-reduction scenarios typical of dredging operations, and to identify potential indicators of recovery from light reduction stress. Shade cloth was used to mimic different intensities, durations and start times of light reduction, and then was removed to assess the recovery. The meadow could recover from 3 months of light stress (5-18% ambient) following 10 months re-exposure to ambient light, even when up to 72% of leaf biomass was lost, much faster recovery rates than has previously been observed for large seagrasses. However, when the meadow had been shaded for 6-9 months and more than 82% of leaf biomass was lost, no recovery was detected up to 23 months after the light stress had ceased, consistent with other studies. Five potential indicators of recovery were recommended. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.

    2017-12-01

    The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.

  9. Investigation of Carbonaceous Aerosol Optical Properties to Understand Impacts on Air Quality and Composition

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.

    The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in methanol. Ambient samples showed similar MACs for the water and methanol extracts. Dichloromethane extracts did not have a significant light absorption characteristics for ambient samples. BrC and BC were measured in Beijing, China. Both were reduced significantly when restrictive air pollution controls were put in place. The industrial regions south and east of Beijing were the highest contributors to ambient BrC and BC. The controls reduced BrC more than BC as compared to observations during the regions heating period. Using the color characteristics of ambient PM, a model was developed to estimate elemental and organic carbon (EC/OC). The method will allow fast and cost effective quantification of PM composition in combination with large climate and health studies, especially in the developing world.

  10. Dual LED/incandescent security fixture

    DOEpatents

    Gauna, Kevin Wayne

    2005-06-21

    A dual LED and incandescent security lighting system uses a hybrid approach to LED illumination. It combines an ambient LED illuminator with a standard incandescent lamp on a motion control sensor. The LED illuminator will activate with the onset of darkness (daylight control) and typically remain on during the course of the night ("always on"). The LED illumination, typically amber, is sufficient to provide low to moderate level lighting coverage to the wall and ground area adjacent to and under the fixture. The incandescent lamp is integrated with a motion control circuit and sensor. When movement in the field of view is detected (after darkness), the incandescent lamp is switched on, providing an increased level of illumination to the area. Instead of an "always on" LED illuminator, the LEDs may also be switched off when the incandescent lamp is switched on.

  11. [Reconstructed ambient light extinction coefficient and its contribution factors in Beijing in January, 2010].

    PubMed

    Zhu, Li-Hua; Tao, Jun; Chen, Zhong-Ming; Zhao, Yue; Zhang, Ren-Jian; Cao, Jun-Ji

    2012-01-01

    Aerosol samples for PM2.5 were collected from 1st January to 31st January 2010, in Beijing. The concentrations of organic carbon, elemental carbon, water-solubile ions and soil elements of all particle samples were determined by thermal/optical carbon analyzer, ion chromatography and X-ray fluorescence spectrometer, respectively. The scattering coefficients (b(sp)), absorbing coefficients (b(ap)) and meteorological parameters for this period were also measured. Ambient light extinction coefficients were reconstructed by IMPROVE formula and were compared with measured light extinction coefficients. The results showed that the average mass concentration of PM2.5 was (144.3 +/- 89.1) microg x m(-3) during campaigning period. The average values of measured b(ap), b(sp) and extinction coefficient (b(ext)) were (67.4 +/- 54.3), (328.5 +/- 353.8) and (395.9 +/- 405.2) Mm(-1), respectively. IMPROVE formula is suitable for source apportionment of light extinction coefficient in campaign period. The average value of calculated b'(ext) was (611 +/- 503) Mm(-1) in January, 2010. The major contributors to ambient light extinction coefficients included (NH4) 2SO4 (24.6%), NH4NO3 (11.6%), OM (45.5%), EC (11.9%) and FS (6.4%), respectively.

  12. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    PubMed

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-05-19

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  13. Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Alpatov, A. M.; Wassmer, G. T.; Rietveld, W. J.; Fuller, C. A.

    2003-01-01

    Circadian function is affected by exposure to altered ambient force environments. Under non-earth gravitational fields, both basic features of circadian rhythms and the expression of the clock responsible for these rhythms are altered. We examined the activity rhythm of the tenebrionid beetle, Trigonoscelis gigas, in conditions of microgravity (microG; spaceflight), earth's gravity (1 G) and 2 G (centrifugation). Data were recorded under a light-dark cycle (LD), constant light (LL), and constant darkness (DD). Free-running period (tau) was significantly affected by both the gravitational field and ambient light intensity. In DD, tau was longer under 2 G than under either 1 G or microG. In addition, tauLL was significantly different from tauDD under microG and 1 G, but not under 2 G.

  14. Neuroradiology Using Secure Mobile Device Review.

    PubMed

    Randhawa, Privia A; Morrish, William; Lysack, John T; Hu, William; Goyal, Mayank; Hill, Michael D

    2016-04-05

    Image review on computer-based workstations has made film-based review outdated. Despite advances in technology, the lack of portability of digital workstations creates an inherent disadvantage. As such, we sought to determine if the quality of image review on a handheld device is adequate for routine clinical use. Six CT/CTA cases and six MR/MRA cases were independently reviewed by three neuroradiologists in varying environments: high and low ambient light using a handheld device and on a traditional imaging workstation in ideal conditions. On first review (using a handheld device in high ambient light), a preliminary diagnosis for each case was made. Upon changes in review conditions, neuroradiologists were asked if any additional features were seen that changed their initial diagnoses. Reviewers were also asked to comment on overall clinical quality and if the handheld display was of acceptable quality for image review. After the initial CT review in high ambient light, additional findings were reported in 2 of 18 instances on subsequent reviews. Similarly, additional findings were identified in 4 of 18 instances after the initial MR review in high ambient lighting. Only one of these six additional findings contributed to the diagnosis made on the initial preliminary review. Use of a handheld device for image review is of adequate diagnostic quality based on image contrast, sharpness of structures, visible artefacts and overall display quality. Although reviewers were comfortable with using this technology, a handheld device with a larger screen may be diagnostically superior.

  15. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmüller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W. A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2011-09-01

    We present the first laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet (UV) wavelength (i.e. 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA';s acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

  16. The light cycle controls the hatching rhythm in Bombyx mori via negative feedback loop of the circadian oscillator.

    PubMed

    Tao, Hui; Li, Xue; Qiu, Jian-Feng; Liu, Heng-Jiang; Zhang, Da-Yan; Chu, Feng; Sima, Yanghu; Xu, Shi-Qing

    2017-10-01

    Hatching behavior is a key target in silkworm (Bombyx mori) rearing, especially for the control of Lepidoptera pests. According to previous research, hatching rhythms appear to be controlled by a clock mechanism that restricts or "gates" hatching to a particular time. However, the underlying mechanism remains elusive. Under 12-h light:12-h dark photoperiod (LD) conditions, the transcriptional levels of the chitinase5 (Cht5) and hatching enzyme-like (Hel) genes, as well as the enzymatic activities of their gene products, oscillated in time with ambient light cycles, as did the transcriptional levels of the cryptochrome 1, cryptochrome 2, period (per), and timeless genes, which are key components of the negative feedback loop of the circadian rhythm. These changes were related to the expression profile of the ecdysteroid receptor gene and the hatching behavior of B. mori eggs. However, under continuous light or dark conditions, the hatching behavior, the expression levels of Cht5 and Hel, as well as the enzymatic activities of their gene products, were not synchronized unlike under LD conditions. In addition, immunohistochemistry experiments showed that light promoted the translocation of PER from the cytoplasm to the nucleus. In conclusion, LD cycles regulate the hatching rhythm of B. mori via negative feedback loop of the circadian oscillator. © 2017 Wiley Periodicals, Inc.

  17. EFFECT OF AMBIENT LIGHT, AERIAL EXPOSURE, AND SEASON ON EELGRASS (ZOSTERA MARINA) METRICS IN A NORTHEAST PACIFIC (USA) ESTUARY

    EPA Science Inventory

    Although light is the principal factor controlling the lower depth limit of seagrasses, little attention has been given to how reduced winter lighting may affect intertidal plants. In the present study intertidal light intensity, temperature, and aerial exposure were measured ove...

  18. Modular Elastomer Photoresins for Digital Light Processing Additive Manufacturing.

    PubMed

    Thrasher, Carl J; Schwartz, Johanna J; Boydston, Andrew J

    2017-11-15

    A series of photoresins suitable for the production of elastomeric objects via digital light processing additive manufacturing are reported. Notably, the printing procedure is readily accessible using only entry-level equipment under ambient conditions using visible light projection. The photoresin formulations were found to be modular in nature, and straightforward adjustments to the resin components enabled access to a range of compositions and mechanical properties. Collectively, the series includes silicones, hydrogels, and hybrids thereof. Printed test specimens displayed maximum elongations of up to 472% under tensile load, a tunable swelling behavior in water, and Shore A hardness values from 13.7 to 33.3. A combination of the resins was used to print a functional multimaterial three-armed pneumatic gripper. These photoresins could be transformative to advanced prototyping applications such as simulated human tissues, stimuli-responsive materials, wearable devices, and soft robotics.

  19. Emi-Flective Display Device with Attribute of High Glare-Free-Ambient-Contrast-Ratio

    NASA Astrophysics Data System (ADS)

    Yang, Bo-Ru; Hsu, Chuan-Wei; Shieh, Han-Ping D.

    2007-11-01

    We have demonstrated the integration of an organic light emitting device (OLED) and a reflective liquid crystal display (R-LCD) which was termed an emi-flective display. The glare-free-ambient-contrast-ratio (GFA-CR) was used to evaluate the image quality of display devices under ambient light. Through integrating the OLED with R-LCD, the GFA-CR of the device achieved an improvement by a factor of 8 compared with that of the OLED alone. Moreover, the integrated R-LCD showed a GFA-CR of 100:1 within a viewing cone of 20° which can suppress the wash-out of OLED and is more power-saving in the sunlight. Therefore, an emi-flective display is a promising technique for mobile applications.

  20. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (<100 meV), and thus allows RISC at ambient temperature. We found that the EL emission in OLED based on the exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  1. A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light

    NASA Astrophysics Data System (ADS)

    Sinha, Sudarson Sekhar; Verma, Pramod Kumar; Makhal, Abhinandan; Pal, Samir Kumar

    2009-05-01

    In this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels. It is demonstrated using this setup that even low optical signal from a liquid sample under strong UV-exposure for the picosecond-resolved fluorescence transient measurement can reliably be detected by ultrasensitive microchannel plate photomultiplier tube solid state detector. The kinetics of photodeterioration of vitamin B2 measured using our setup is consistent with that reported in the literature. Our present studies also justify the usage of tungsten light than the fluorescent light for the healthy preservation of food with vitamin B2.

  2. VLC-beacon detection with an under-sampled ambient light sensor

    NASA Astrophysics Data System (ADS)

    Green, Jacob; Pérez-Olivas, Huetzin; Martínez-Díaz, Saúl; García-Márquez, Jorge; Domínguez-González, Carlos; Santiago-Montero, Raúl; Guan, Hongyu; Rozenblat, Marc; Topsu, Suat

    2017-08-01

    LEDs will replace in a near future the current worldwide lighting mainly due to their low production-cost and energy-saving assets. Visible light communications (VLC) will turn gradually the existing lighting network into a communication network. Nowadays VLC transceivers can be found in some commercial centres in Europe; some of them broadcast continuously an identification tag that contains its coordinate position. In such a case, the transceiver acts as a geolocation beacon. Nevertheless, mobile transceivers represent a challenge in the VLC communication chain, as smartphones have not integrated yet a VLC customized detection stage. In order to make current smartphones capable to detect VLC broadcasted signals, their Ambient Light Sensor (ALS) is adapted as a VLC detector. For this to be achieved, lighting transceivers need to adapt their modulation scheme. For instance, frequencies representing start bit, 1, and 0 logic values can be set to avoid flicker from illumination and to permit detecting the under-sampled signal. Decoding the signal requires a multiple steps real-time signal processing as shown here.

  3. Initiator and Photocatalyst-Free Visible Light Induced One-Pot Reaction: Concurrent RAFT Polymerization and CuAAC Click Reaction.

    PubMed

    Wang, Jie; Wang, Xinbo; Xue, Wentao; Chen, Gaojian; Zhang, Weidong; Zhu, Xiulin

    2016-05-01

    A new, visible light-catalyzed, one-pot and one-step reaction is successfully employed to design well-controlled side-chain functionalized polymers, by the combination of ambient temperature revisible addtion-fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymerizations are well controlled in a living way under the irradiation of visible light-emitting diode (LED) light without photocatalyst and initiator, using the trithiocarbonate agent as iniferter (initiator-transfer agent-terminator) agent at ambient temperature. Fourier transfer infrared spectroscopy (FT-IR), NMR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) data confirm the successful one-pot reaction. Compared to the reported zero-valent metal-catalyzed one-pot reaction, the polymerization rate is much faster than that of the click reaction, and the visible light-catalyzed one-pot reaction can be freely and easily regulated by turning on and off the light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro

    NASA Astrophysics Data System (ADS)

    Kam, Winnie; Cheung, Kalam; Daher, Nancy; Sioutas, Constantinos

    2011-03-01

    Elevated concentrations of particulate matter (PM) have been found in a number of worldwide underground transit systems, with major implications regarding exposure of commuters to PM and its associated health effects. An extensive sampling campaign was conducted in May-August 2010 to measure PM concentrations in two lines of the Los Angeles Metro system - an underground subway line (Metro red line) and a ground-level light-rail line (Metro gold line). The campaign goals were to: 1) determine personal PM exposure of commuters of both lines, and 2) measure and compare PM concentrations at station platforms and inside the train. Considering that a commuter typically spent 75% of time inside the train and 25% of time waiting at a station, subway commuters were exposed on average to PM 10 and PM 2.5 concentrations that were 1.9 and 1.8 times greater than the light-rail commuters. The average PM 10 concentrations for the subway line at station platforms and inside the train were 78.0 μg m -3 and 31.5 μg m -3, respectively; for the light-rail line, corresponding PM 10 concentrations were 38.2 μg m -3 and 16.2 μg m -3. Regression analysis demonstrated that personal exposure concentrations for the light-rail line are strongly associated with ambient PM levels ( R2 = 0.61), while PM concentrations for the subway line are less influenced by ambient conditions ( R2 = 0.38) and have a relatively stable background level of about 21 μg m -3. Our findings suggest that local emissions (i.e., vehicular traffic, road dust) are the main source of airborne PM for the light-rail line. The subway line, on the other hand, has an additional source of PM, most likely generated from the daily operation of trains. Strong inter-correlation of PM 10 between the train and station microenvironments shows that airborne PM at stations are the main source of PM inside the trains for both lines ( R2 = 0.91 and 0.81 for subway and light-rail line, respectively). In addition, PM 2.5 and coarse PM (PM 10-2.5) are also strongly correlated for the subway line ( R2 = 0.89) and the light-rail line ( R2 = 0.52-0.92), suggesting that PM 2.5 and coarse PM originate from a common source. Finally, in comparison to worldwide subway systems, the L.A. Metro system is relatively 'clean'. Since the system is comparatively new (in operation since 1993), its ventilation system and braking technology are probably more efficient and more advanced than older subway systems.

  5. Measurements of the potential ozone production rate in a forest

    NASA Astrophysics Data System (ADS)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  6. Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems

    PubMed Central

    Kyba, Christopher C. M.; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz

    2011-01-01

    The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered. PMID:21399694

  7. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems.

    PubMed

    Kyba, Christopher C M; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz

    2011-03-02

    The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this "ecological light pollution". We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered.

  8. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    PubMed

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Helicopter flights with night-vision goggles: Human factors aspects

    NASA Technical Reports Server (NTRS)

    Brickner, Michael S.

    1989-01-01

    Night-vision goggles (NVGs) and, in particular, the advanced, helmet-mounted Aviators Night-Vision-Imaging System (ANVIS) allows helicopter pilots to perform low-level flight at night. It consists of light intensifier tubes which amplify low-intensity ambient illumination (star and moon light) and an optical system which together produce a bright image of the scene. However, these NVGs do not turn night into day, and, while they may often provide significant advantages over unaided night flight, they may also result in visual fatigue, high workload, and safety hazards. These problems reflect both system limitations and human-factors issues. A brief description of the technical characteristics of NVGs and of human night-vision capabilities is followed by a description and analysis of specific perceptual problems which occur with the use of NVGs in flight. Some of the issues addressed include: limitations imposed by a restricted field of view; problems related to binocular rivalry; the consequences of inappropriate focusing of the eye; the effects of ambient illumination levels and of various types of terrain on image quality; difficulties in distance and slope estimation; effects of dazzling; and visual fatigue and superimposed symbology. These issues are described and analyzed in terms of their possible consequences on helicopter pilot performance. The additional influence of individual differences among pilots is emphasized. Thermal imaging systems (forward looking infrared (FLIR)) are described briefly and compared to light intensifier systems (NVGs). Many of the phenomena which are described are not readily understood. More research is required to better understand the human-factors problems created by the use of NVGs and other night-vision aids, to enhance system design, and to improve training methods and simulation techniques.

  10. Association between ambient noise exposure and school performance of children living in an urban area: a cross-sectional population-based study.

    PubMed

    Pujol, Sophie; Levain, Jean-Pierre; Houot, Hélène; Petit, Rémy; Berthillier, Marc; Defrance, Jérôme; Lardies, Joseph; Masselot, Cyril; Mauny, Frédéric

    2014-04-01

    Most of the studies investigating the effects of the external noise on children's school performance have concerned pupils in schools exposed to high levels due to aircraft or freeway traffic noise. However, little is known about the consequences of the chronic ambient noise exposure at a level commonly encountered in residential urban areas. This study aimed to assess the relationship between the school performance of 8- to 9-year-old-children living in an urban environment and their chronic ambient noise exposure at home and at school. The children's school performances on the national standardized assessment test in French and mathematics were compared with the environmental noise levels. Children's exposure to ambient noise was calculated in front of their bedrooms (Lden) and schools (LAeq,day) using noise prediction modeling. Questionnaires were distributed to the families to collect potential confounding factors. Among the 746 respondent children, 586 were included in multilevel analyses. On average, the LAeq,day at school was 51.5 dB (SD= 4.5 dB; range = 38-58 dB) and the outdoor Lden at home was 56.4 dB (SD= 4.4 dB; range = 44-69 dB). LAeq,day at school was associated with impaired mathematics score (p = 0.02) or impaired French score (p = 0.01). For a + 10 dB gap, the French and mathematics scores were on average lower by about 5.5 points. Lden at home was significantly associated with impaired French performance when considered alone (p < 10(-3)) and was borderline significant when the combined home-school exposure was considered (p = 0.06). The magnitude of the observed effect on school performance may appear modest, but should be considered in light of the number of people who are potentially chronically exposed to similar environmental noise levels.

  11. Waddling on the Dark Side: Ambient Light Affects Attendance Behavior of Little Penguins.

    PubMed

    Rodríguez, Airam; Chiaradia, André; Wasiak, Paula; Renwick, Leanne; Dann, Peter

    2016-04-01

    Visible light on Earth largely comes from the sun, including light reflected from the moon. Predation risk is strongly determined by light conditions, and some animals are nocturnal to reduce predation. Artificial lights and its consequent light pollution may disrupt this natural behavior. Here, we used 13 years of attendance data to study the effects of sun, moon, and artificial light on the attendance pattern of a nocturnal seabird, the little penguin Eudyptula minor at Phillip Island, Australia. The little penguin is the smallest and the only penguin species whose activity on land is strictly nocturnal. Automated monitoring systems recorded individually marked penguins every time they arrived (after sunset) at or departed (before sunrise) from 2 colonies under different lighting conditions: natural night skylight and artificial lights (around 3 lux) used to enhance penguin viewing for ecotourism around sunset. Sunlight had a strong effect on attendance as penguins arrived on average around 81 min after sunset and departed around 92 min before sunrise. The effect of moonlight was also strong, varying according to moon phase. Fewer penguins came ashore during full moon nights. Moon phase effect was stronger on departure than arrival times. Thus, during nights between full moon and last quarter, arrival times (after sunset) were delayed, even though moonlight levels were low, while departure times (before sunrise) were earlier, coinciding with high moonlight levels. Cyclic patterns of moon effect were slightly out of phase but significantly between 2 colonies, which could be due to site-specific differences or presence/absence of artificial lights. Moonlight could be overridden by artificial light at our artificially lit colony, but the similar amplitude of attendance patterns between colonies suggests that artificial light did not mask the moonlight effect. Further research is indeed necessary to understand how seabirds respond to the increasing artificial night light levels. © 2016 The Author(s).

  12. Exploring the Photovoltaic Properties of Metal Bipyridine Complexes (Metal = Fe, Zn, Cr, and Ru) by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Irfan, Ahmad; Abbas, Ghulam

    2018-03-01

    The synthesis and characterisation of mononuclear Fe complexes were carried out by using bipyridine (Compound 1) at ambient conditions. Additionally, three more derivatives were designed by substituting the central Fe metal with Zn, Cr, and Ru (Compound 2, Compound 3, and Compound 4), respectively. The ground state geometry calculations were carried out by using density functional theory (DFT) at B3LYP/6-31G** (LANL2DZ) level of theory. We shed light on the frontier molecular orbitals, electronic properties, photovoltaic parameters, and structure-property relationship. The open-circuit voltage is a promising parameter that considerably affects the photovoltaic performance; thus, we have estimated its value by considering the complexes as donors whereas TiO2 and/or Si were used as acceptors. The solar cell performance behaviour was also studied by shedding light on the band alignment and energy level offset.

  13. Examination of a Novel Method for Non-Contact, Low-Cost, and Automated Heart-Rate Detection in Ambient Light Using Photoplethysmographic Imaging

    DTIC Science & Technology

    2014-10-01

    a period of time by electrodes attached to the surface of the skin, are used in almost every clinical environment. Pulse oximeters , which measure the...medical devices, for example, pulse oximeters , vascular diagnostics, and digital beat-to-beat blood pressure measurement systems (Allen 2007). PPG is...principle is pulse oximetry. 1.2 Pulse Oximetry A pulse oximeter monitors the blood-oxygen saturation level and pulse rate in the human blood by using

  14. Optimum display luminance depends on white luminance under various ambient illuminance conditions

    NASA Astrophysics Data System (ADS)

    Kim, Minkoo; Jeon, Dong-Hwan; Kim, Jeong-Sik; Yu, Byung-Chang; Park, YungKyung; Lee, Seung-Woo

    2018-02-01

    This paper reports display luminance levels for good visibility under nine ambient illuminance conditions (50, 100, 200, 500, 1000, 2000, 5000, 10,000, and 20,000 lx) for a given white luminance level, chosen from five candidates (100, 200, 500, 1000, and 2000 cd / m2), through a psychophysical experiment. This work reveals that the luminance levels for good visibility increase as the maximum white luminance of the display increases. The white luminance dependency of display luminance is caused by the fact that the human visual system adapts to the maximum white luminance and evaluates the brightness of the display based on it. Based on the experimental results, an appropriate luminance zone under various illuminance conditions is proposed. The appropriate luminance zone varies with the maximum white luminance of the displays. This may be understood to mean that there is no absolute luminance level under a given lighting condition. To solve this issue, a new method is proposed to determine optimum luminance levels by considering both visibility and power consumption. By the proposed method, it is reported that the optimum maximum luminance lies between 200 and 500 cd / m2 for indoor use (below 500 lx). These results were verified by young adults with normal vision.

  15. The evolution of adult light emission color in North American fireflies

    PubMed Central

    Hall, David W.; Sander, Sarah E.; Pallansch, Jennifer C.; Stanger-Hall, Kathrin F.

    2016-01-01

    Firefly species (Lampyridae) vary in the color of their adult bioluminescence. It has been hypothesized that color is selected to enhance detection by conspecifics. One mechanism to improve visibility of the signal is to increase contrast against ambient light. High contrast implies that fireflies active early in the evening will emit yellower luminescence to contrast against ambient light reflected from green vegetation, especially in habitats with high vegetation cover. Another mechanism to improve visibility is to use reflection off the background to enhance the light signal. Reflectance predicts that sedentary females will produce greener light to maximize reflection off the green vegetation on which they signal. To test these predictions, we recorded over 7500 light emission spectra and determined peak emission wavelength for 675 males, representing 24 species, at 57 field sites across the Eastern United States. We found support for both hypotheses: males active early in more vegetated habitats produced yellower flashes in comparison to later-active males with greener flashes. Further, in 2 of the 8 species with female data, female light emissions were significantly greener as compared to males. PMID:27412777

  16. Dynamics and Afterglow Light Curves of Gamma-Ray Burst Blast Waves Encountering a Density Bump or Void

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  17. Dynamics and afterglow light curves of gamma-ray burst blast waves encountering a density bump or void

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhm, Z. Lucas; Zhang, Bing, E-mail: uhm@pku.edu.cn, E-mail: zhang@physics.unlv.edu

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blastmore » waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.« less

  18. Abnormal environmental light exposure in the intensive care environment.

    PubMed

    Fan, Emily P; Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C; Maas, Matthew B

    2017-08-01

    We sought to characterize ambient light exposure in the intensive care unit (ICU) environment to identify patterns of light exposure relevant to circadian regulation. A light monitor was affixed to subjects' bed at eye level in a modern intensive care unit and continuously recorded illuminescence for at least 24h per subject. Blood was sampled hourly and measured for plasma melatonin. Subjects underwent hourly vital sign and bedside neurologic assessments. Care protocols and the ICU environment were not modified for the study. A total of 67,324 30-second epochs of light data were collected from 17 subjects. Light intensity peaked in the late morning, median 64.1 (interquartile range 19.7-138.7) lux. The 75th percentile of light intensity exceeded 100lx only between 9AM and noon, and never exceeded 150lx. There was no correlation between melatonin amplitude and daytime, nighttime or total light exposure (Spearman's correlation coefficients all <0.2 and p>0.5). Patients' environmental light exposure in the intensive care unit is consistently low and follows a diurnal pattern. No effect of nighttime light exposure was observed on melatonin secretion. Inadequate daytime light exposure in the ICU may contribute to abnormal circadian rhythms. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  20. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.

    PubMed

    Borniger, Jeremy C; Maurya, Santosh K; Periasamy, Muthu; Nelson, Randy J

    2014-10-01

    The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the metabolic effects of short-term (<2 weeks) exposure to DLAN are unspecified. We hypothesized that metabolic alterations would arise in response to just 2 weeks of DLAN. Specifically, we predicted that mice exposed to dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to "internal desynchrony" between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.

  1. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chun Sheng; Zhao, Gang; Tao, Jiang Chuan; Xu, Wanyun; Ma, Nan; Bian, Yu Xuan

    2018-05-01

    Water condensed on ambient aerosol particles plays significant roles in atmospheric environment, atmospheric chemistry and climate. Before now, no instruments were available for real-time monitoring of ambient aerosol liquid water contents (ALWCs). In this paper, a novel method is proposed to calculate ambient ALWC based on measurements of a three-wavelength humidified nephelometer system, which measures aerosol light scattering coefficients and backscattering coefficients at three wavelengths under dry state and different relative humidity (RH) conditions, providing measurements of light scattering enhancement factor f(RH). The proposed ALWC calculation method includes two steps: the first step is the estimation of the dry state total volume concentration of ambient aerosol particles, Va(dry), with a machine learning method called random forest model based on measurements of the dry nephelometer. The estimated Va(dry) agrees well with the measured one. The second step is the estimation of the volume growth factor Vg(RH) of ambient aerosol particles due to water uptake, using f(RH) and the Ångström exponent. The ALWC is calculated from the estimated Va(dry) and Vg(RH). To validate the new method, the ambient ALWC calculated from measurements of the humidified nephelometer system during the Gucheng campaign was compared with ambient ALWC calculated from ISORROPIA thermodynamic model using aerosol chemistry data. A good agreement was achieved, with a slope and intercept of 1.14 and -8.6 µm3 cm-3 (r2 = 0.92), respectively. The advantage of this new method is that the ambient ALWC can be obtained solely based on measurements of a three-wavelength humidified nephelometer system, facilitating the real-time monitoring of the ambient ALWC and promoting the study of aerosol liquid water and its role in atmospheric chemistry, secondary aerosol formation and climate change.

  2. Feasibility and technology for making remote measurements of solutes in water

    USGS Publications Warehouse

    Goldberg, Marvin C.; Weiner, Eugene R.

    1977-01-01

    An indepth evaluation of the available technology in the field of laser-Raman spectroscopy indicates that a TV-type detector, a single monochromator with a holographic grating, an entrance slit filter blocking the Rayleigh light, and a pulsed laser coupled to signal averaging electronics is the best combination of commercial equipment that is presently available for building a remote water-quality sensor. The resultant sensor would be capable of measuring oxyanions in water at concentrations from 10 to 50 milligrams per liter at distances from ground level to 30 meters above the sample. The main interferences would be ambient light, bioluminescence, and natural fluorescence, all of which are minimized when taking advantage of the signal generating and readout capability contained in this equipment package.

  3. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone.

    PubMed

    Chen, Yuan; Fu, Qiangqiang; Li, Dagang; Xie, Jun; Ke, Dongxu; Song, Qifang; Tang, Yong; Wang, Hong

    2017-11-01

    Smartphone biosensors could be cost-effective, portable instruments to be used for the readout of liquid colorimetric assays. However, current reported smartphone colorimetric readers have relied on photos of liquid assays captured using a camera, and then analyzed using software programs. This approach results in a relatively low accuracy and low generality. In this work, we reported a novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays. The portable and low-cost ($0.15) reader utilized a simplified electronic and light path design. Furthermore, our reported smartphone colorimetric reader can be compatible with different smartphones. As a proof of principle, the utility of this device was demonstrated using it in conjunction with an enzyme-linked immunosorbent assay to detect zearalenone. Results were consistent with those obtained using a professional microplate reader. The developed smartphone colorimetric reader was capable of providing scalable, cost-effective, and accurate results for liquid colorimetric assays that related to clinical diagnoses, environment pollution, and food testing. Graphical abstract A novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays.

  4. Cost-Effective Hyperspectral Transmissometers for Oceanographic Applications: Performance Analysis

    PubMed Central

    Ramírez-Pérez, Marta; Röttgers, Rüdiger; Torrecilla, Elena; Piera, Jaume

    2015-01-01

    The recent development of inexpensive, compact hyperspectral transmissometers broadens the research capabilities of oceanographic applications. These developments have been achieved by incorporating technologies such as micro-spectrometers as detectors as well as light emitting diodes (LEDs) as light sources. In this study, we evaluate the performance of the new commercial LED-based hyperspectral transmissometer VIPER (TriOS GmbH, Rastede, Germany), which combines different LEDs to emulate the visible light spectrum, aiming at the determination of attenuation coefficients in coastal environments. For this purpose, experimental uncertainties related to the instrument stability, the effect of ambient light and derived temperature, and salinity correction factors are analyzed. Our results identify some issues related to the thermal management of the LEDs and the contamination of ambient light. Furthermore, the performance of VIPER is validated against other transmissometers through simultaneous field measurements. It is demonstrated that VIPER provides a compact and cost-effective alternative for beam attenuation measurements in coastal waters, but it requires the consideration of several optimizations. PMID:26343652

  5. Lighting system with heat distribution face plate

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  6. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  7. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  8. Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response.

    PubMed

    Rasulov, Bahtijor; Talts, Eero; Niinemets, Ülo

    2016-12-01

    Plant isoprene emissions respond to light and temperature similarly to photosynthesis, but CO 2 dependencies of isoprene emission and photosynthesis are profoundly different, with photosynthesis increasing and isoprene emission decreasing with increasing CO 2 concentration due to reasons not yet understood. We studied isoprene emission, net assimilation rate, and chlorophyll fluorescence under different CO 2 and O 2 concentrations in the strong isoprene emitter hybrid aspen (Populus tremula × Populus tremuloides), and used rapid changes in ambient CO 2 or O 2 concentrations or light level to induce oscillations. As isoprene-emitting species support very high steady-state chloroplastic pool sizes of the primary isoprene substrate, dimethylallyl diphosphate (DMADP), which can mask the effects of oscillatory dynamics on isoprene emission, the size of the DMADP pool was experimentally reduced by either partial inhibition of isoprenoid synthesis pathway by fosmidomycin-feeding or by changes in ambient gas concentrations leading to DMADP pool depletion in intact leaves. In feedback-limited conditions observed at low O 2 and/or high CO 2 concentration under which the rate of photosynthesis is governed by the limited rate of ATP and NADPH formation due to low chloroplastic phosphate levels, oscillations in photosynthesis and isoprene emission were repeatedly induced by rapid environmental modifications in both partly fosmidomycin-inhibited leaves and in intact leaves with in vivo reduced DMADP pools. The oscillations in net assimilation rate and isoprene emission in feedback-inhibited leaves were in the same phase, and relative changes in the pools of photosynthetic metabolites and DMADP estimated by in vivo kinetic methods were directly proportional through all oscillations induced by different environmental perturbations. We conclude that the oscillations in isoprene emission provide direct experimental evidence demonstrating that the response of isoprene emission to changes in ambient gas concentrations is controlled by the chloroplastic reductant supply. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Growth in elevated CO(2) can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition.

    PubMed

    Hymus, G J; Baker, N R; Long, S P

    2001-11-01

    Biochemically based models of C(3) photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO(2) partial pressure (pCO(2)) will increase light-saturated linear electron flow through photosystem II (J(t)). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J(c)) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J(o)). Where elevated pCO(2) increases J(t), then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO(2), and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J(t) was significantly higher in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). This was due to a significant increase in J(c) exceeding any suppression of J(o). This increase in photochemistry at elevated pCO(2) protected against photoinhibition at high light. For plants grown at low nitrogen, J(t) was significantly lower in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). Elevated pCO(2) again suppressed J(o); however growth in elevated pCO(2) resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J(c). Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO(2).

  10. Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response1

    PubMed Central

    2016-01-01

    Plant isoprene emissions respond to light and temperature similarly to photosynthesis, but CO2 dependencies of isoprene emission and photosynthesis are profoundly different, with photosynthesis increasing and isoprene emission decreasing with increasing CO2 concentration due to reasons not yet understood. We studied isoprene emission, net assimilation rate, and chlorophyll fluorescence under different CO2 and O2 concentrations in the strong isoprene emitter hybrid aspen (Populus tremula × Populus tremuloides), and used rapid changes in ambient CO2 or O2 concentrations or light level to induce oscillations. As isoprene-emitting species support very high steady-state chloroplastic pool sizes of the primary isoprene substrate, dimethylallyl diphosphate (DMADP), which can mask the effects of oscillatory dynamics on isoprene emission, the size of the DMADP pool was experimentally reduced by either partial inhibition of isoprenoid synthesis pathway by fosmidomycin-feeding or by changes in ambient gas concentrations leading to DMADP pool depletion in intact leaves. In feedback-limited conditions observed at low O2 and/or high CO2 concentration under which the rate of photosynthesis is governed by the limited rate of ATP and NADPH formation due to low chloroplastic phosphate levels, oscillations in photosynthesis and isoprene emission were repeatedly induced by rapid environmental modifications in both partly fosmidomycin-inhibited leaves and in intact leaves with in vivo reduced DMADP pools. The oscillations in net assimilation rate and isoprene emission in feedback-inhibited leaves were in the same phase, and relative changes in the pools of photosynthetic metabolites and DMADP estimated by in vivo kinetic methods were directly proportional through all oscillations induced by different environmental perturbations. We conclude that the oscillations in isoprene emission provide direct experimental evidence demonstrating that the response of isoprene emission to changes in ambient gas concentrations is controlled by the chloroplastic reductant supply. PMID:27770061

  11. Methods for Characterizing the Distribution of Exhaust Emissions from Light-Duty, Gasoline-Powered Motor Vehicles in the U.S. Fleet

    EPA Science Inventory

    Mobile sources significantly contribute to ambient concentrations of airborne particulate matter. Source apportionment studies for PMlO and PM2.5 indicate that mobile sources can be responsible for over half of the ambient PM measured in an urban area. Recent source apportionment...

  12. Stylophora pistillata in the Red Sea demonstrate higher GFP fluorescence under ocean acidification conditions

    NASA Astrophysics Data System (ADS)

    Grinblat, Mila; Fine, Maoz; Tikochinski, Yaron; Loya, Yossi

    2018-03-01

    Ocean acidification is thought to exert a major impact on calcifying organisms, including corals. While previous studies have reported changes in the physiological response of corals to environmental change, none have described changes in expression of the ubiquitous host pigments—fluorescent proteins (FPs)—to ocean acidification. The function of FPs in corals is controversial, with the most common consideration being that these primarily regulate the light environment in the coral tissue and protect the host from harmful UV radiation. Here, we provide for the first time experimental evidence that increased fluorescence of colonies of the coral Stylophora pistillata is independent of stress and can be regulated by a non-stressful decrease in pH. Stylophora pistillata is the most abundant and among the most resilient coral species in the northern Gulf of Eilat/Aqaba (GoE/A). Fragmented "sub-colonies" ( n = 72) incubated for 33 days under three pH treatments (ambient, 7.9, and 7.6), under ambient light, and running seawater showed no stress or adverse physiological performance, but did display significantly higher fluorescence, with lower pH. Neither the average number of planulae shed from the experimental sub-colonies nor planulae green fluorescent protein (GFP) expression changed significantly among pH treatments. Sub-colonies incubated under the lower-than-ambient pH conditions showed an increase in both total protein and GFP expression. Since extensive protein synthesis requires a high level of transcription, we suggest that GFP constitutes a UV protection mechanism against potential RNA as well as against DNA damage caused by UV exposure. Manipulating the regulation of FPs in adult corals and planulae, under controlled and combined effects of pH, light, and temperature, is crucial if we are to obtain a better understanding of the role played by this group of proteins in cnidarians.

  13. Preferred viewing distance and screen angle of electronic paper displays.

    PubMed

    Shieh, Kong-King; Lee, Der-Song

    2007-09-01

    This study explored the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 495 mm and 123.7 degrees. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 500 mm, significantly longer than Sony electronic ink display, 491 mm. Screen angle for Kolin was 127.4 degrees, significantly greater than that of Sony, 120.0 degrees. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 500 mm, but greater than normal paper at about 360 mm. The mean screen angle was around 123.7 degrees, which in terms of viewing angle is 29.5 degrees below horizontal eye level. This result is similar to the general suggested viewing angle between 20 degrees and 50 degrees below the horizontal line of sight.

  14. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel

    2015-01-01

    Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643

  15. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-08-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.

  16. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    PubMed Central

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  17. Metabolomic Responses of Arabidopsis Suspension Cells to Bicarbonate under Light and Dark Conditions

    PubMed Central

    Misra, Biswapriya B.; Yin, Zepeng; Geng, Sisi; de Armas, Evaldo; Chen, Sixue

    2016-01-01

    Global CO2 level presently recorded at 400 ppm is expected to reach 550 ppm in 2050, an increment likely to impact plant growth and productivity. Using targeted LC-MS and GC-MS platforms we quantified 229 and 29 metabolites, respectively in a time-course study to reveal short-term responses to different concentrations (1, 3, and 10 mM) of bicarbonate (HCO3−) under light and dark conditions. Results indicate that HCO3− treatment responsive metabolomic changes depend on the HCO3− concentration, time of treatment, and light/dark. Interestingly, 3 mM HCO3− concentration treatment induced more significantly changed metabolites than either lower or higher concentrations used. Flavonoid biosynthesis and glutathione metabolism were common to both light and dark-mediated responses in addition to showing concentration-dependent changes. Our metabolomics results provide insights into short-term plant cellular responses to elevated HCO3− concentrations as a result of ambient increases in CO2 under light and dark. PMID:27762345

  18. Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes.

    PubMed

    Chen, Jianfeng; Cao, Te; Zhang, Xiaolin; Xi, Yilong; Ni, Leyi; Jeppesen, Erik

    2016-10-03

    To evaluate the relative importance of photosynthetic versus morphological adaptations of submersed macrophytes to low light intensity in lakes, rapid light curves (RLCs), morphological parameters, relative growth rate (RGR), clonal reproduction and abundance of two submersed macrophytes (Potamogeton maackianus and Vallisneria natans) were examined under 2.8%, 7.1%, 17.1% and 39.5% ambient light in a field and outdoor experimental study. The plants increased their initial slope of RLCs (α) and decreased their minimum saturating irradiance (E k ) and maximum relative electron transport rate (ETRm) of RLCs under low light stress, but V. natans was more sensitive in RLCs than P. maackianus. Accordingly, the RGR, plant height and abundance of P. maackianus were higher in the high light regimes (shallow water) but lower in the low light regimes than those of V. natans. At the 2.8% ambient light, V. natans produced ramets and thus fulfilled its population expansion, in contrast to P. maackianus. The results revealed that P. maackianus as a canopy-former mainly elongated its shoot length towards the water surface to compensate for the low light conditions, however, it became limited in severe low light stress conditions. V. natans as a rosette adapted to low light stress mainly through photosynthetic adjustments and superior to severely low light than shoot elongation.

  19. The effect of bright light on lens compensation in chicks.

    PubMed

    Ashby, Regan S; Schaeffel, Frank

    2010-10-01

    It has been shown that sunlight or bright indoor light can inhibit the development of deprivation myopia in chicks. It remains unclear whether light merely acts on deprivation myopia or, more generally, modulates the rate of emmetropization and its set point. This study was conducted to test how bright light interacts with compensation for imposed optical defocus. Furthermore, a dopamine antagonist was applied to test whether the protective effect of light is mediated by dopamine. Experiment A: Chicks monocularly wore either -7 or +7 D lenses for a period of 5 days, either under normal laboratory illuminance (500 lux, n = 12 and 16, respectively) or under high ambient illuminance (15,000 lux, n = 12 and 16). Experiment B: Chicks wore diffusers for a period of 4 days, either under normal laboratory illuminance (500 lux, n = 9) or high ambient illuminance (15,000 lux), with the bright-light group intravitreally injected daily with either the dopamine D(2) antagonist spiperone (500 μM, n = 9) or a vehicle solution (0.1% ascorbic acid, n = 9), with an untreated group serving as the control (n = 6). Axial length and refraction were measured at the commencement and cessation of all treatments. Exposure to high illuminances (15,000 lux) for 5 hours per day significantly slowed compensation for negative lenses, compared with that seen under 500 lux, although full compensation was still achieved. Compensation for positive lenses was accelerated by exposure to high illuminances but, again, the end point refraction was unchanged, compared with that of the 500-lux group. High illuminance also reduced deprivation myopia by roughly 60%, compared with that seen under 500 lux. This protective effect was abolished, however, by the daily injection of spiperone, but was unaffected by the injection of a vehicle solution. High illuminance levels reduce the rate of compensation for negative lenses and enhance the rate for positive lenses, but do not change the set point of emmetropization (target refraction). The retardation of myopia development by light is partially mediated by dopamine, as the injection of a dopamine antagonist abolishes the protective effect of light, at least in the case of deprivation myopia.

  20. Thermoregulation and aggregation in neonatal bearded dragons (Pogona vitticeps).

    PubMed

    Khan, Jameel J; Richardson, Jean M L; Tattersall, Glenn J

    2010-05-11

    Ectothermic vertebrates, such as reptiles, thermoregulate behaviorally by choosing from available temperatures in their environment. As neonates, bearded dragons (Pogona vitticeps) are often observed to aggregate in vertical strata. A proximate mechanism for this behavior is the thermal advantage of heat storage (i.e., grouped lizards benefit through a decreased surface area to volume ratio), although competition for limited thermal resources, or aggregation for social reasons are alternative explanations. This study was designed to gain an understanding of how aggregation and thermoregulation interact. We observed that both isolated and grouped individuals achieved a similar level of thermoregulation (mean T(b) over trial) within a thermal gradient, but that individuals within a group had lower thermoregulatory precision. An experimental design in which light and ambient temperature (T(a)) (20 versus 30 degrees C) were altered established that a light bulb (source of heat) was a limited and valuable resource to both isolated and grouped neonatal lizards. Lizards aggregated more when the light was on at both temperatures, suggesting that individuals were equally attracted to or repelled from the heat source, depending on the ambient temperature. These data suggest aggregation occurs in neonatal bearded dragons through mutual attraction to a common resource. Further, increased variability in thermal preference occurs in groups, demonstrating the potential for agonistic behaviors to compromise optimal thermoregulation in competitive situations, potentially leading to segregation, rather than aggregation. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  1. The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World

    PubMed Central

    Glas, Martin S.; Fabricius, Katharina E.; de Beer, Dirk; Uthicke, Sven

    2012-01-01

    Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA. PMID:23166810

  2. Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city.

    PubMed

    Sapkota, Amir; Symons, J Morel; Kleissl, Jan; Wang, Lu; Parlange, Marc B; Ondov, John; Breysse, Patrick N; Diette, Gregory B; Eggleston, Peyton A; Buckley, Timothy J

    2005-01-01

    With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these forest fires was examined using a combination of a moderate-resolution imaging spectroradiometer satellite image, back-trajectories using a hybrid single-particle Lagrangian integrated trajectory, and local light detection and ranging measurements. Time- and size-resolved PM was evaluated at three ambient and four indoor measurement sites using a combination of direct reading instruments (laser, time-of-flight aerosol spectrometer, nephelometer, and an oscillating microbalance). The transport and monitoring results consistently identified a forest fire related PM episode in Baltimore that occurred the first weekend of July 2002 and resulted in as much as a 30-fold increase in ambientfine PM. On the basis of tapered element oscillating microbalance measurements, the 24 h PM25 concentration reached 86 microg/m3 on July 7, 2002, exceeding the 24 h national ambient air quality standard. The episode was primarily comprised of particles less than 2.5 microm in aerodynamic diameter, highlighting the preferential transport of the fraction of PM that is of greatest health concern. Penetration of the ambient episode indoors was efficient (median indoor-to-outdoor ratio 0.91) such that the high ambient levels were similarly experienced indoors. These results are significant in demonstrating the impact of a natural source thousands of kilometers away on ambient levels of and potential exposures to air pollution within an urban center. This research highlights the significance of transboundary air pollution and the need for studies that assess the public health impacts associated with such sources and transport processes.

  3. Single bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Dan, Manas

    In recent years considerable attention has been directed to the phenomenon of single bubble sonoluminescence, SBSL in which a single, stable, acoustically levitated bubble is made to oscillate with sufficiently large amplitude so as to emit picosecond light pulses in each cycle of the acoustic drive pressure. Remarkably, the phenomenon represents about twelve orders of magnitude of energy focusing. SBSL has been carefully and thoroughly studied in part of parameter space by previous authors. In the present work, the experimental observation of the influence of another important parameter namely the ambient pressure will be presented. It is the first complete and controlled study of the modifications of the bubble dynamics and SL emission due to the variation of the ambient pressure. It has been observed that the equilibrium radius as well as the maximum radius increase as the ambient pressure is decreased at constant driving pressure. Furthermore the expansion ratio (Rmax/ Rmin) increases as the ambient pressure is decreased, resulting in a change in the SL radiation. The intensity of SL emission increases about seven times for only a fifteen percent decrease of ambient pressure at constant driving pressure. However, it is not possible to push SL radiation beyond a certain limit by continuously decreasing the ambient pressure. On the other hand increasing the ambient pressure decreases the equilibrium radius, as well as the expansion ratio leading to a decrease of SL intensity. Amongst the SBSL emissions the light emission has been investigated rather elaborately. The other single bubble emission is the acoustic emission, AE. Here a detailed study of AE will be presented. The AE has been measured by a calibrated needle hydrophone in different regimes of bubble motion. The hydrophone response shows a large amplitude AE pulse which corresponds to the principal collapse, along with smaller amplitude pulses which can be associated with the after bounces of the bubble just after the initial collapse. The pressure amplitudes of the main AE spike are much weaker below the sonoluminescing regime. The amplitude of the principal AE spike in the sonoluminescing regime is about 1.2 atm at 7.2 mm from the bubble. The rise time as well as the FWHM of the principal spikes and after bounces in three different regimes of bubble motion has been reported. A light scattering experiment has been carried out to study the bubble dynamics. An extremely strong correlation between the results of light scattering and those of AE has been found.

  4. The evolution of adult light emission color in North American fireflies.

    PubMed

    Hall, David W; Sander, Sarah E; Pallansch, Jennifer C; Stanger-Hall, Kathrin F

    2016-09-01

    Firefly species (Lampyridae) vary in the color of their adult bioluminescence. It has been hypothesized that color is selected to enhance detection by conspecifics. One mechanism to improve visibility of the signal is to increase contrast against ambient light. High contrast implies that fireflies active early in the evening will emit yellower luminescence to contrast against ambient light reflected from green vegetation, especially in habitats with high vegetation cover. Another mechanism to improve visibility is to use reflection off the background to enhance the light signal. Reflectance predicts that sedentary females will produce greener light to maximize reflection off the green vegetation on which they signal. To test these predictions, we recorded over 7500 light emission spectra and determined peak emission wavelength for 675 males, representing 24 species, at 57 field sites across the Eastern United States. We found support for both hypotheses: males active early in more vegetated habitats produced yellower flashes in comparison to later-active males with greener flashes. Further, in two of the eight species with female data, female light emissions were significantly greener as compared to males. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  5. Specific innovative semi-transparent solar cell for indoor and outdoor LiFi applications.

    PubMed

    Bialic, Emilie; Maret, Luc; Kténas, Dimitri

    2015-09-20

    Research in light-fidelity (LiFi), also called visible light communication (VLC), has gained huge interest. In such a communication system, an optical sensor translates the received luminous modulation flux into an electrical signal which is decoded. To consider LiFi as an alternative solution for wireless communication, the receiver must be operational in indoor and outdoor configurations. Photovoltaic modules could appear as a solution to this issue. In this paper, we present signal-to-noise ratio (SNR) response in the frequency of two different kinds of photovoltaic modules. We characterize in detail the SNR by using an experimental setup which connects a software-based direct current optical (DCO)-orthogonal frequency division multiiplexing emitter and receiver to hardware optical front ends. We analyze LiFi performances under different lighting conditions. We prove that the available bandwidth depends drastically on ambient lighting configurations. Under specific lighting conditions, a bandwidth around 4 MHz corresponding a data rate around 8 Mbit/s could be achieved. We present the lighting saturation effects and we prove that the semi-transparent solar cell under study improves their performances (both bandwidth and data rate) in high ambient lighting environments.

  6. The consistent difference in red fluorescence in fishes across a 15 m depth gradient is triggered by ambient brightness, not by ambient spectrum.

    PubMed

    Harant, Ulrike Katharina; Michiels, Nicolaas Karel; Anthes, Nils; Meadows, Melissa Grace

    2016-02-17

    Organisms adapt to fluctuations or gradients in their environment by means of genetic change or phenotypic plasticity. Consistent adaptation across small spatial scales measured in meters, however, has rarely been reported. We recently found significant variation in fluorescence brightness in six benthic marine fish species across a 15 m depth gradient. Here, we investigate whether this can be explained by phenotypic plasticity alone, using the triplefin Tripterygion delaisi as a model species. In two separate experiments, we measure change in red fluorescent brightness to spectral composition and ambient brightness, two central parameters of the visual environment that change rapidly with depth. Changing the ambient spectra simulating light at -5 or -20 m depth generated no detectable changes in mean fluorescence brightness after 4-6 weeks. In contrast, a reduction in ambient brightness generated a significant and reversible increase in mean fluorescence, most of this within the first week. Although individuals can quickly up- and down-regulate their fluorescence around this mean value using melanosome aggregation and dispersal, we demonstrate that this range around the mean remained unaffected by either treatment. We show that the positive association between fluorescence and depth observed in the field can be fully explained by ambient light brightness, with no detectable additional effect of spectral composition. We propose that this change is achieved by adjusting the ratio of melanophores and fluorescent iridophores in the iris.

  7. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  8. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community.

    PubMed

    Rosemond, A D

    1993-07-01

    Using stream-side, flow-through channels, I tested for the effects of nutrients (NU) (nitrogen plus phosphorus), irradiance (L), and snail grazing (G) on a benthic algal community in a small, forested stream. Grazed communities were-dominated by a chlorophyte (basal cells ofStigeoclonium) and a cyanophyte (Chamaesiphon investiens), whereas ungrazed communities were comprised almost entirely of diatoms, regardless of nutrient and light levels. Snails maintained low algal biomass in all grazed treatments, presumably by consuming increased algal production in treatments to which L and NU were increased. When nutrients were increased, cellular nutrient content increased under ambient conditions (shaded, grazed) and biomass and productivity increased when snails were removed and light was increased. Together, nutrients and light had positive effects and grazing had negative effects on biomass (chlorophylla, AFDM, algal biovolume) and chlorophyll-and areal-specific productivity in ANOVAs. However, in most cases, only means from treatments in which all three factors were manipulated (ungrazed, +NU&L treatments) were significantly different from controls; effects of single factors were generally undetectable. These results indicate that all three factors simultaneously limited algal biomass and productivity in this stream during the summer months. Additionally, the effects of these factors in combination were in some cases different from the effects of single factors. For example, light had slight negative effects on some biomass parameters when added at ambient snail densities and nutrient concentrations, but had strong positive effects in conjunction with nutrient addition and snail removal. This study demonstrates that algal biomass and productivity can be under multiple constraints by irradiance, nutrients, and herbivores and indicates the need to employ multifactor experiments to test for such interactive effects.

  9. A new radiometric unit of measure to characterize SWIR illumination

    NASA Astrophysics Data System (ADS)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  10. Comparison of three noninvasive methods for hemoglobin screening of blood donors.

    PubMed

    Ardin, Sergey; Störmer, Melanie; Radojska, Stela; Oustianskaia, Larissa; Hahn, Moritz; Gathof, Birgit S

    2015-02-01

    To prevent phlebotomy of anemic individuals and to ensure hemoglobin (Hb) content of the blood units, Hb screening of blood donors before donation is essential. Hb values are mostly evaluated by measurement of capillary blood obtained from fingerstick. Rapid noninvasive methods have recently become available and may be preferred by donors and staff. The aim of this study was to evaluate for the first time all different noninvasive methods for Hb screening. Blood donors were screened for Hb levels in three different trials using three different noninvasive methods (Haemospect [MBR Optical Systems GmbH & Co. KG], NBM 200 [LMB Technology GmbH], Pronto-7 [Masimo Europe Ltd]) in comparison to the established fingerstick method (CompoLab Hb [Fresenius Kabi GmbH]) and to levels obtained from venous samples on a cell counter (Sysmex [Sysmex Europe GmbH]) as reference. The usability of the noninvasive methods was assessed with an especially developed survey. Technical failures occurred by using the Pronto-7 due to nail polish, skin color, or ambient light. The NBM 200 also showed a high sensitivity to ambient light and noticeably lower Hb levels for women than obtained from the Sysmex. The statistical analysis showed the following bias and standard deviation of differences of all methods in comparison to the venous results: Haemospect, -0.22 ± 1.24; NBM, 200 -0.12 ± 1.14; Pronto-7, -0.50 ± 0.99; and CompoLab Hb, -0.53 ± 0.81. Noninvasive Hb tests represent an attractive alternative by eliminating pain and reducing risks of blood contamination. The main problem for generating reliable results seems to be preanalytical variability in sampling. Despite the sensitivity to environmental stress, all methods are suitable for Hb measurement. © 2014 AABB.

  11. Design Definition Study Report. Full Crew Interaction Simulator-Laboratory Model (FCIS-LM) (Device X17B7). Volume I. Problem Analysis.

    DTIC Science & Technology

    1978-06-01

    and Sound Levels. Tank sound characteris- tics can be categorized by four areas of tank operation. These are: engine starting and running, mobility or...the use of the ballistic computer system. The indirect sighting and fire control system consists of the elevation quadrant M13A3, a control light source...in low ambient 2-22 temperatures. No controls or indicators are provided for the engine air intake system. The exhaust system has four engine

  12. The Forward Masking Effects of Low-Level Laser Glare on Target Location Performance in a Visual Search Task.

    DTIC Science & Technology

    1992-01-01

    Oxford University Press, NY, 1984. 24. Neisser , U ., Cognitive Psychology; Chap. 2, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967. 25. Enoch, J.M...in this study. (ýRA•,’&l AI IC TA U J Ia oiic ti .y ......... .......... ........ DTIC ~ZTL7 c ~T~DIBy Distribu fo. I "". ’.1’...•’.. - , . 1 ii •0... u -der low-ambient lighting conditions, visual search inside the cockpit on a CRT monitor mounted in the instrument panel is not disrupted by laser

  13. An improved light hydrocarbon analysis system. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamontagne, R.A.

    1982-05-11

    A system for extracting and measuring ambient levels of C1-C4 hydrocarbons and carbon monoxide (CO) in seawater is described. The analytical instrument is a gas chromatograph with flame ionization detectors that incorporates a catalytic conversion of CO to CH4 (methane). The samples are concentrated prior to introduction to the chromatographic system. The volatile hydrocarbons are extracted from the seawater by the use of a helium flow stream and concentrated on dry ice-acetone cold traps. Air samples can be processed in a similar way.

  14. MS2 inactivation by TiO2 nanoparticles in the presence of quartz sand

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2017-04-01

    Virus inactivation by nanoparticles (NPs) is hypothesized to affect virus fate and transport in the subsurface. This study examines the interactions of viruses with titanium dioxide (TiO2) anatase NPs, which is a good disinfectant with unique physiochemical properties, using three different virus concentrations. The bacteriophage MS2 was used as a model virus. A series of batch experiments of MS2 inactivation by TiO2 NPs were conducted at room temperature (25 °C), in the presence of quartz sand, with and without ambient light. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. Quartz sand was shown to affect MS2 inactivation by TiO2 NPs both in the presence and absence of ambient light, because, under the experimental conditions of this study, the quartz sand offers a protection to the attached MS2 against inactivation. Moreover, in most cases similar inactivation rates were observed in reactor and control tubes (absence of TiO2 NPs) suggesting that low TiO2 concentration (10 mg/L) affects only slightly MS2 inactivation with and without ambient light.

  15. A smartphone-based chip-scale microscope using ambient illumination.

    PubMed

    Lee, Seung Ah; Yang, Changhuei

    2014-08-21

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the image resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction are performed on the device using a custom-built Android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

  16. A smartphone-based chip-scale microscope using ambient illumination

    PubMed Central

    Lee, Seung Ah; Yang, Changhuei

    2014-01-01

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the imaging resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system. PMID:24964209

  17. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    PubMed

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-01-01

    The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (<10 l×) from 17:00 to 09:00 next morning; CR-LL, n = 81, lights on (>400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (<10 l×) during the whole experiment. Systolic (SBP) and diastolic (DBP) BP, HR and BT were measured every 2 h. For comparison, the results of the former studies performed under conditions of regular life with an activity period from 07:00 to 23:00 h and sleep from 23:00 till 07:00 h (Control) were reanalyzed. Seven-day Ambulatory Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former dark time and darkness during the former light time, the CR-LL and CR-DD groups were each compared with the CR-LD group. Light delayed the evening decrease of BT, most likely via a suppression of the melatonin rise. Besides, it had a prominent arousal effect on SBP both in the former light and dark phases, a moderate effect on DBP and no effect on HR. Darkness induced decline in BT. BP values were decreased during the former light time. No effects on HR were found. Altogether, the results of the present paper show that BT, BP and HR are affected by exogenous factors differently. Moreover, the effect was gender-specific. Especially, the response of BT and BP to ambient light was evident only in females. We suppose that the distinct, gender-specific responses of SBP, DBP and HR to activity, sleep and ambient light do reflect fundamental differences in the circadian control of various cardiovascular functions. Furthermore, the presented data are important for the elaboration of updated reference standards, the interpretation of rhythm disorders and for personalized chronotherapeutic approaches to prevent adverse cardiovascular events more effectively.

  18. No Effect of Ambient Odor on the Affective Appraisal of a Desktop Virtual Environment with Signs of Disorder

    PubMed Central

    Toet, Alexander; van Schaik, Martin; Theunissen, Nicolet C. M.

    2013-01-01

    Background Desktop virtual environments (VEs) are increasingly deployed to study the effects of environmental qualities and interventions on human behavior and safety related concerns in built environments. For these applications it is essential that users appraise the affective qualities of the VE similar to those of its real world counterpart. Previous studies have shown that factors like simulated lighting, sound and dynamic elements all contribute to the affective appraisal of a desktop VE. Since ambient odor is known to affect the affective appraisal of real environments, and has been shown to increase the sense of presence in immersive VEs, it may also be an effective tool to tune the affective appraisal of desktop VEs. This study investigated if exposure to ambient odor can modulate the affective appraisal of a desktop VE with signs of public disorder. Method Participants explored a desktop VE representing a suburban neighborhood with signs of public disorder (neglect, vandalism and crime), while being exposed to either room air or subliminal levels of unpleasant (tar) or pleasant (cut grass) ambient odor. Whenever they encountered signs of disorder they reported their safety related concerns and associated affective feelings. Results Signs of crime in the desktop VE were associated with negative affective feelings and concerns for personal safety and personal property. However, there was no significant difference between reported safety related concerns and affective connotations in the control (no-odor) and in each of the two ambient odor conditions. Conclusion Ambient odor did not affect safety related concerns and affective connotations associated with signs of disorder in the desktop VE. Thus, semantic congruency between ambient odor and a desktop VE may not be sufficient to influence its affective appraisal, and a more realistic simulation in which simulated objects appear to emit scents may be required to achieve this goal. PMID:24250810

  19. No effect of ambient odor on the affective appraisal of a desktop virtual environment with signs of disorder.

    PubMed

    Toet, Alexander; van Schaik, Martin; Theunissen, Nicolet C M

    2013-01-01

    Desktop virtual environments (VEs) are increasingly deployed to study the effects of environmental qualities and interventions on human behavior and safety related concerns in built environments. For these applications it is essential that users appraise the affective qualities of the VE similar to those of its real world counterpart. Previous studies have shown that factors like simulated lighting, sound and dynamic elements all contribute to the affective appraisal of a desktop VE. Since ambient odor is known to affect the affective appraisal of real environments, and has been shown to increase the sense of presence in immersive VEs, it may also be an effective tool to tune the affective appraisal of desktop VEs. This study investigated if exposure to ambient odor can modulate the affective appraisal of a desktop VE with signs of public disorder. Participants explored a desktop VE representing a suburban neighborhood with signs of public disorder (neglect, vandalism and crime), while being exposed to either room air or subliminal levels of unpleasant (tar) or pleasant (cut grass) ambient odor. Whenever they encountered signs of disorder they reported their safety related concerns and associated affective feelings. Signs of crime in the desktop VE were associated with negative affective feelings and concerns for personal safety and personal property. However, there was no significant difference between reported safety related concerns and affective connotations in the control (no-odor) and in each of the two ambient odor conditions. Ambient odor did not affect safety related concerns and affective connotations associated with signs of disorder in the desktop VE. Thus, semantic congruency between ambient odor and a desktop VE may not be sufficient to influence its affective appraisal, and a more realistic simulation in which simulated objects appear to emit scents may be required to achieve this goal.

  20. Conspecific aggregations mitigate the effects of ocean acidification on calcification of the coral Pocillopora verrucosa.

    PubMed

    Evensen, Nicolas R; Edmunds, Peter J

    2017-03-15

    In densely populated communities, such as coral reefs, organisms can modify the physical and chemical environment for neighbouring individuals. We tested the hypothesis that colony density (12 colonies each placed ∼0.5 cm apart versus ∼8 cm apart) can modulate the physiological response (measured through rates of calcification, photosynthesis and respiration in the light and dark) of the coral Pocillopora verrucosa to partial pressure of CO 2 ( P CO 2 ) treatments (∼400 μatm and ∼1200 μatm) by altering the seawater flow regimes experienced by colonies placed in aggregations within a flume at a single flow speed. While light calcification decreased 20% under elevated versus ambient P CO 2  for colonies in low-density aggregations, light calcification of high-density aggregations increased 23% at elevated versus ambient P CO 2 As a result, densely aggregated corals maintained calcification rates over 24 h that were comparable to those maintained under ambient P CO 2 , despite a 45% decrease in dark calcification at elevated versus ambient P CO 2 Additionally, densely aggregated corals experienced reduced flow speeds and higher seawater retention times between colonies owing to the formation of eddies. These results support recent indications that neighbouring organisms, such as the conspecific coral colonies in the present example, can create small-scale refugia from the negative effects of ocean acidification. © 2017. Published by The Company of Biologists Ltd.

  1. Rapid thermal annealing of CH 3 NH 3 PbI 3 perovskite thin films by intense pulsed light with aid of diiodomethane additive

    DOE PAGES

    Ankireddy, Krishnamraju; Ghahremani, Amir H.; Martin, Blake; ...

    2018-01-01

    Perovskite thin films are thermally annealed using a rapid intense pulsed light technique enabled by an alkyl halide that collectively improves device performance when processed in ambient conditions.

  2. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep.

    PubMed

    Zylinski, Sarah; Johnsen, Sönke

    2011-11-22

    Animals in the lower mesopelagic zone (600-1,000 m depth) of the oceans have converged on two major strategies for camouflage: transparency and red or black pigmentation [1]. Transparency conveys excellent camouflage under ambient light conditions, greatly reducing the conspicuousness of the animal's silhouette [1, 2]. Transparent tissues are seldom perfectly so, resulting in unavoidable internal light scattering [2]. Under directed light, such as that emitted from photophores thought to function as searchlights [3-8], the scattered light returning to a viewer will be brighter than the background, rendering the animal conspicuous [2, 4]. At depths where bioluminescence becomes the dominant source of light, most animals are pigmented red or black, thereby reflecting little light at wavelengths generally associated with photophore emissions and visual sensitivities [3, 9-14]. However, pigmented animals are susceptible to being detected via their silhouettes [5, 9-11]. Here we show evidence for rapid switching between transparency and pigmentation under changing optical conditions in two mesopelagic cephalopods, Japetella heathi and Onychoteuthis banksii. Reflectance measurements of Japetella show that transparent tissue reflects twice as much light as pigmented tissue under direct light. This is consistent with a dynamic strategy to optimize camouflage under ambient and searchlight conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Elevated Ambient Light and Temperature Constrain Light Perception in Arctic Krill

    NASA Astrophysics Data System (ADS)

    Cohen, J.; Jørgen, B.; Moline, M. A.; Johnsen, G.

    2016-02-01

    Krill play an important role in polar ecosystems as grazers on phytoplankton and microzooplankton, as well as in the subsequent transfer of this energy to higher trophic levels including fish, birds, and marine mammals. In the Barents Sea ecosystem, krill are a particularly important food source sustaining the region's extensive fisheries production. Climate variability over the past half-century, including advection of warmer North Atlantic water and boreal euphausiid taxa, has impacted both krill and fish populations in the Barents Sea, as well as dependencies between them. To better understand these dependencies in the context of climate warming, sea ice loss, and increased winter/spring light levels, we examined temperature- and light-acclimation effects on the visual physiology of krill, which utilize vision for both capturing prey and avoiding predators. Here we show that both elevated temperature and light acclimation lead to changes in visual function in krill Thysanoessa inermis collected from Kongsfjord (Svalbard) in late winter. We found that krill eyes were faster, but less sensitive, in warmer and brighter conditions. Predicting the ecological implications of such physiological shifts is challenging. When coupled with models of the underwater light field and visual perception, these findings suggest that krill in the Barents Sea may be more effective at evading fish predators under future climate scenarios with increased North Atlantic water influence. However, shoaling of krill during the daytime phase of their diel vertical migration could oppose this and favor visual predation on krill by fish.

  4. Characteristics, determinants, and spatial variations of ambient fungal levels in the subtropical Taipei metropolis

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Hua; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Chao, H. Jasmine

    This study was conducted to investigate the temporal and spatial distributions, compositions, and determinants of ambient aeroallergens in Taipei, Taiwan, a subtropical metropolis. We monitored ambient culturable fungi in Shin-Jhuang City, an urban area, and Shi-Men Township, a rural area, in Taipei metropolis from 2003 to 2004. We collected ambient fungi in the last week of every month during the study period, using duplicate Burkard portable samplers and Malt Extract Agar. The median concentration of total fungi was 1339 colony-forming units m -3 of air over the study period. The most prevalent fungi were non-sporulating fungi, Cladosporium, Penicillium, Curvularia and Aspergillus at both sites. Airborne fungal concentrations and diversity of fungal species were generally higher in urban than in rural areas. Most fungal taxa had significant seasonal variations, with higher levels in summer. Multivariate analyses showed that the levels of ambient fungi were associated positively with temperature, but negatively with ozone and several other air pollutants. Relative humidity also had a significant non-linear relationship with ambient fungal levels. We concluded that the concentrations and the compositions of ambient fungi are diverse in urban and rural areas in the subtropical region. High ambient fungal levels were related to an urban environment and environmental conditions of high temperature and low ozone levels.

  5. Scientific Verification Test of Orbitec Deployable Vegetable Production System for Salad Crop Growth on ISS- Gas Exchange System design and function

    NASA Technical Reports Server (NTRS)

    Eldemire, Ashleigh

    2007-01-01

    The ability to produce and maintain salad crops during long term missions would be a great benefit to NASA; the renewable food supply would save cargo space, weight and money. The ambient conditions of previous ground controlled crop plant experiments do not reflect the microgravity and high CO2 concentrations present during orbit. It has been established that microgravity does not considerably alter plant growth. (Monje, Stutte, Chapman, 2005). To support plants in a space-craft environment efficient and effective lighting and containment units are necessary. Three lighting systems were previously evaluated for radish growth in ambient air; fluorescent lamps in an Orbitec Biomass Production System Educational (BPSE), a combination of red, blue, and green LED's in a Deployable Vegetable Production System (Veggie), and a combination of red and blue LED's in a Veggie. When mass measurements compared the entire possible growing area vs. power consumed by the respective units, the Veggies clearly exceeded the BPSE indicating that the LED units were a more resource efficient means of growing radishes under ambient conditions in comparison with fluorescent lighting. To evaluate the most productive light treatment system for a long term space mission a more closely simulated ISS environment is necessary. To induce a CO2 dense atmosphere inside the Veggie's and BPSE a gas exchange system has been developed to maintain a range of 1000-1200 ppm CO2 during a 21-day light treatment experiment. This report details the design and function of the gas exchange system. The rehabilitation, trouble shooting, maintenance and testing of the gas exchange system have been my major assignments. I have also contributed to the planting, daily measurements and harvesting of the radish crops 21-day light treatment verification test.

  6. Bottlenose dolphin iris asymmetries enhance aerial and underwater vision

    NASA Astrophysics Data System (ADS)

    Rivamonte, Andre

    2009-02-01

    When the iris of the Bottlenose dolphin (Tursiops truncatus) contracts it constrains the path of light that can focus onto the two areas of the retina having a finer retinal mosaic. Under high ambient light conditions the operculum of the iris shields the lens and forms in the process two asymmetrically shaped, sized and positioned slit pupils. Tracing rays of light in the reverse direction through the pupils from the retinal regions associated with higher resolution confirm behaviorally observed preferred aerial and underwater viewing directions. In the forward and downward viewing direction, the larger temporal pupil admits light that is focused by the weakly refractive margin of a bifocal lens onto the temporal area centralis compensating for the addition of the optically strong front surface of the cornea in air. A schematic dolphin eye model incorporating a bifocal lens offers an explanation for a dolphin's comparable visual acuities in air and water for both high and low ambient light conditions. Comparison of methods for curve fitting psychometric ogive functions to behavioral visual acuity and spectral sensitivity data are discussed.

  7. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    PubMed Central

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai

    2015-01-01

    Summary Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. PMID:26171286

  8. Metallated DNA Aptamers for Prostate Cancer Treatment. Revision

    DTIC Science & Technology

    2013-10-01

    determined using Matlab software. Dynamic light scattering (DLS) was performed under ambient conditions using a Malvern Zetasizer nano series ZEN-1600... entangling porphyrins as suitable vessels for light-induced energy and electron transfer. J Mater Chem 2008;18:802-5. 57. Meenakshisundaram G, Eteshola

  9. Dye-sensitized solar cells for efficient power generation under ambient lighting

    NASA Astrophysics Data System (ADS)

    Freitag, Marina; Teuscher, Joël; Saygili, Yasemin; Zhang, Xiaoyu; Giordano, Fabrizio; Liska, Paul; Hua, Jianli; Zakeeruddin, Shaik M.; Moser, Jacques-E.; Grätzel, Michael; Hagfeldt, Anders

    2017-06-01

    Solar cells that operate efficiently under indoor lighting are of great practical interest as they can serve as electric power sources for portable electronics and devices for wireless sensor networks or the Internet of Things. Here, we demonstrate a dye-sensitized solar cell (DSC) that achieves very high power-conversion efficiencies (PCEs) under ambient light conditions. Our photosystem combines two judiciously designed sensitizers, coded D35 and XY1, with the copper complex Cu(II/I)(tmby) as a redox shuttle (tmby, 4,4‧,6,6‧-tetramethyl-2,2‧-bipyridine), and features a high open-circuit photovoltage of 1.1 V. The DSC achieves an external quantum efficiency for photocurrent generation that exceeds 90% across the whole visible domain from 400 to 650 nm, and achieves power outputs of 15.6 and 88.5 μW cm-2 at 200 and 1,000 lux, respectively, under illumination from a model Osram 930 warm-white fluorescent light tube. This translates into a PCE of 28.9%.

  10. Versatile functional roles of horizontal cells in the retinal circuit.

    PubMed

    Chaya, Taro; Matsumoto, Akihiro; Sugita, Yuko; Watanabe, Satoshi; Kuwahara, Ryusuke; Tachibana, Masao; Furukawa, Takahisa

    2017-07-17

    In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.

  11. Ambient illumination revisited: A new adaptation-based approach for optimizing medical imaging reading environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, Amarpreet S.; Samei, Ehsan; Duke Advanced Imaging Laboratories, Departments of Radiology, Physics, Medical Physics, and Biomedical Engineering, Duke University, Durham, North Carolina 27705

    2007-01-15

    Ambient lighting in soft-copy reading rooms is currently kept at low values to preserve contrast rendition in the dark regions of a medical image. Low illuminance levels, however, create inadequate viewing conditions and may also cause eye strain. This eye strain may be potentially attributed to notable variations in the luminance adaptation state of the reader's eyes when moving the gaze intermittently between the brighter display and darker surrounding surfaces. This paper presents a methodology to minimize this variation and optimize the lighting conditions of reading rooms by exploiting the properties of liquid crystal displays (LCDs) with low diffuse reflectionmore » coefficients and high luminance ratio. First, a computational model was developed to determine a global luminance adaptation value, L{sub adp}, when viewing a medical image on display. The model is based on the diameter of the pupil size, which depends on the luminance of the observed object. Second, this value was compared with the luminance reflected off surrounding surfaces, L{sub s}, under various conditions of room illuminance, E, different values of diffuse reflection coefficients of surrounding surfaces, R{sub s}, and calibration settings of a typical LCD. The results suggest that for typical luminance settings of current LCDs, it is possible to raise ambient illumination to minimize differences in eye adaptation, potentially reducing visual fatigue while also complying with the TG18 specifications for controlled contrast rendition. Specifically, room illumination in the 75-150 lux range and surface diffuse reflection coefficients in the practical range of 0.13-0.22 sr{sup -1} provide an ideal setup for typical LCDs. Future LCDs with lower diffuse reflectivity and with higher inherent luminance ratios can provide further improvement of ergonomic viewing conditions in reading rooms.« less

  12. Does non-ionizing radiant energy affect determination of the evaporation rate by the gradient method?

    PubMed

    Kjartansson, S; Hammarlund, K; Oberg, P A; Sedin, G

    1991-01-01

    A study was performed to investigate whether measurements of the evaporation rate from the skin of newborn infants by the gradient method are affected by the presence of non-ionizing radiation from phototherapy equipment or a radiant heater. The evaporation rate was measured experimentally with the measuring sensors either exposed to or protected from non-ionizing radiation. Either blue light (phototherapy) or infrared light (radiant heater) was used; in the former case the evaporation rate was measured from a beaker of water covered with a semipermeable membrane, and in the latter case from the hand of an adult subject, aluminium foil or with the measuring probe in the air. No adverse effect on the determinations of the evaporation rate was found in the presence of blue light. Infrared radiation caused an error of 0.8 g/m2h when the radiant heater was set at its highest effect level or when the ambient humidity was high. At low and moderate levels the observed evaporation rate was not affected. It is concluded that when clinical measurements are made from the skin of newborn infants nursed under a radiant heater, the evaporation rate can appropriately be determined by the gradient method.

  13. Assessment of Levels of Ultraviolet A Light Protection in Automobile Windshields and Side Windows.

    PubMed

    Boxer Wachler, Brian S

    2016-07-01

    Ultraviolet A (UV-A) light is associated with the risks of cataract and skin cancer. To assess the level of UV-A light protection in the front windshields and side windows of automobiles. In this cross-sectional study, 29 automobiles from 15 automobile manufacturers were analyzed. The outside ambient UV-A radiation, along with UV-A radiation behind the front windshield and behind the driver's side window of all automobiles, was measured. The years of the automobiles ranged from 1990 to 2014, with an average year of 2010. The automobile dealerships were located in Los Angeles, California. Amount of UV-A blockage from windshields and side windows. The average percentage of front-windshield UV-A blockage was 96% (range, 95%-98% [95% CI, 95.7%-96.3%]) and was higher than the average percentage of side-window blockage, which was 71% (range, 44%-96% [95% CI, 66.4%-75.6%]). The difference between these average percentages is 25% (95% CI, 21%-30% [P < .001]). A high level of side-window UV-A blockage (>90%) was found in 4 of 29 automobiles (13.8%). The level of front-windshield UV-A protection was consistently high among automobiles. The level of side-window UV-A protection was lower and highly variable. These results may in part explain the reported increased rates of cataract in left eyes and left-sided facial skin cancer. Automakers may wish to consider increasing the degree of UV-A protection in the side windows of automobiles.

  14. Draft guidelines for measurement and assessment of low-level ambient noise

    DOT National Transportation Integrated Search

    1998-03-31

    This document describes an ambient noise measurement protocol, a detailed methodology for characterizing ambient noise in low-level environments such as the National Parks. It presents definitions of terminology useful for understanding the mea...

  15. Ambient and at-the-ear occupational noise exposure and serum lipid levels.

    PubMed

    Arlien-Søborg, Mai C; Schmedes, Astrid S; Stokholm, Z A; Grynderup, M B; Bonde, J P; Jensen, C S; Hansen, Å M; Frederiksen, T W; Kristiansen, J; Christensen, K L; Vestergaard, J M; Lund, S P; Kolstad, H A

    2016-10-01

    Occupational and residential noise exposure has been related to increased risk of cardiovascular disease. Alteration of serum lipid levels has been proposed as a possible causal pathway. The objective of this study was to investigate the relation between ambient and at-the-ear occupational noise exposure and serum levels of total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and triglycerides when accounting for well-established predictors of lipid levels. This cross-sectional study included 424 industrial workers and 84 financial workers to obtain contrast in noise exposure levels. They provided a serum sample and wore portable dosimeters that every 5-s recorded ambient noise exposure levels during a 24-h period. We extracted measurements obtained during work and calculated the full-shift mean ambient noise level. For 331 workers who kept a diary on the use of a hearing protection device (HPD), we subtracted 10 dB from every noise recording obtained during HPD use and estimated the mean full-shift noise exposure level at the ear. Mean ambient noise level was 79.9 dB (A) [range 55.0-98.9] and the mean estimated level at the ear 77.8 dB (A) [range 55.0-94.2]. Ambient and at-the-ear noise levels were strongly associated with increasing levels of triglycerides, cholesterol-HDL ratio, and decreasing levels of HDL-cholesterol, but only in unadjusted analyses that did not account for HPD use and other risk factors. No associations between ambient or at-the-ear occupational noise exposure and serum lipid levels were observed. This indicates that a causal pathway between occupational and residential noise exposure and cardiovascular disease does not include alteration of lipid levels.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankireddy, Krishnamraju; Ghahremani, Amir H.; Martin, Blake

    Perovskite thin films are thermally annealed using a rapid intense pulsed light technique enabled by an alkyl halide that collectively improves device performance when processed in ambient conditions.

  17. Human DNA adduct measurements: State of the art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.C.; Weston, A.

    1996-10-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either {sup 32}P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presentedmore » that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. 156 refs., 1 fig., 3 tabs.« less

  18. Shading of a computer-generated hologram by zone plate modulation.

    PubMed

    Kurihara, Takayuki; Takaki, Yasuhiro

    2012-02-13

    We propose a hologram calculation technique that enables reconstructing a shaded three-dimensional (3D) image. The amplitude distributions of zone plates, which generate the object points that constitute a 3D object, were two-dimensionally modulated. Two-dimensional (2D) amplitude modulation was determined on the basis of the Phong reflection model developed for computer graphics, which considers the specular, diffuse, and ambient reflection light components. The 2D amplitude modulation added variable and constant modulations: the former controlled the specular light component and the latter controlled the diffuse and ambient components. The proposed calculation technique was experimentally verified. The reconstructed image showed specular reflection that varied depending on the viewing position.

  19. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display.

    PubMed

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-03-09

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times.

  20. Phase Sensitive Demodulation in Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Fisher, Walt G.; Piston, David W.; Wachter, Eric A.

    2002-06-01

    Multiphoton laser scanning microscopy offers advantages in depth of penetration into intact samples over other optical sectioning techniques. To achieve these advantages it is necessary to detect the emitted light without spatial filtering. In this nondescanned (nonconfocal) approach, ambient room light can easily contaminate the signal, forcing experiments to be performed in absolute darkness. For multiphoton microscope systems employing mode-locked lasers, signal processing can be used to reduce such problems by taking advantage of the pulsed characteristics of such lasers. Specifically, by recovering fluorescence generated at the mode-locked frequency, interference from stray light and other ambient noise sources can be significantly reduced. This technology can be adapted to existing microscopes by inserting demodulation circuitry between the detector and data collection system. The improvement in signal-to-noise ratio afforded by this approach yields a more robust microscope system and opens the possibility of moving multiphoton microscopy from the research lab to more demanding settings, such as the clinic.

  1. Near-infrared light absorption by brown carbon in the ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  2. Low cost sonoluminescence experiment in pressurized water

    NASA Astrophysics Data System (ADS)

    Bernal, L.; Insabella, M.; Bilbao, L.

    2012-06-01

    We present a low cost design for demostration and mesurements of light emmision from a sonoluminescence experiment. Using presurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  3. Optimised mounting conditions for poly (ether sulfone) in radiation detection.

    PubMed

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Yamada, Tatsuya; Kitamura, Hisashi; Takahashi, Sentaro

    2014-09-01

    Poly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES. Here, we optimise the optical coupling and surface treatment of the PES, and characterise its background. Optical grease was used to enhance the optical coupling between the PES and the photodetector; absorption by the grease of short-wavelength light emitted from PES was negligible. Diffuse reflection induced by surface roughening increased the light yield for PES, despite the high effective refractive index. Background radiation derived from the PES sample and its impurities was negligible above the ambient, natural level. Overall, these results serve to optimise the mounting conditions for PES in radiation detection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Fishery research in the Great Lakes using a low-cost remotely operated vehicle

    USGS Publications Warehouse

    Kennedy, Gregory W.; Brown, Charles L.; Argyle, Ray L.

    1988-01-01

    We used a MiniROVER MK II remotely operated vehicle (ROV) to collect ground-truth information on fish and their habitat in the Great Lakes that have traditionally been collected by divers, or with static cameras, or submersibles. The ROV, powered by 4 thrusters and controlled by the pilot at the surface, was portable and efficient to operate throughout the Great Lakes in 1987, and collected a total of 30 h of video data recorded for later analysis. We collected 50% more substrate information per unit of effort with the ROV than with static cameras. Fish behavior ranged from no avoidance reaction in ambient light, to erratic responses in the vehicle lights. The ROV's field of view depended on the time of day, light levels, and density of zooplankton. Quantification of the data collected with the ROV (either physical samples or video image data) will serve to enhance the use of the ROV as a research tool to conduct fishery research on the Great Lakes.

  5. Influence of p-GaN annealing on the optical and electrical properties of InGaN/GaN MQW LEDs

    NASA Astrophysics Data System (ADS)

    Sun, Li; Weng, Guo-En; Liang, Ming-Ming; Ying, Lei-Ying; Lv, Xue-Qin; Zhang, Jiang-Yong; Zhang, Bao-Ping

    2014-06-01

    Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance.

  6. Energy harvesting: small scale energy production from ambient sources

    NASA Astrophysics Data System (ADS)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  7. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE PAGES

    Yu, Qian; Kacher, Josh; Gammer, Christoph; ...

    2017-07-04

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  8. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Qian; Kacher, Josh; Gammer, Christoph

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  9. Ambient Assistive Technologies (AAT): socio-technology as a powerful tool for facing the inevitable sociodemographic challenges?

    PubMed

    Schülke, Astrid M; Plischke, Herbert; Kohls, Niko B

    2010-06-07

    Due to the socio-demographic change in most developed western countries, elderly populations have been continuously increasing. Therefore, preventive and assistive systems that allow elderly people to independently live in their own homes as long as possible will become an economical if not ethical necessity. These respective technologies are being developed under the term "Ambient Assistive Technologies" (AAT). The EU-funded AAT-project Ambient Lighting Assistance for an Ageing Population (ALADIN) has established the long-term goal to create an adaptive system capable of improving the residential lighting conditions of single living elderly persons also aiming at supporting the preservation of their independence.Results of an earlier survey revealed that the elderly perceived their current lighting situation as satisfactory, whereas interviewers assessed in-house lighting as too dark and risk-laden. The overall results of ALADIN showed a significant increase in well-being from the baseline final testing with the new adaptive lighting system.Positive results for wellbeing and life quality suggest that the outcome effects may be attributed to the introduction of technology as well as to social contacts arising from participating in the study. The technological guidance of the study supervisors, in particular, may have produced a strong social reactivity effect that was first observed in the famous Hawthorne experiments in the 1930s. As older adults seem to benefit both from meaningful social contacts as well as assistive technologies, the question arises how assistive technology can be socially embedded to be able to maximize positive health effects. Therefore ethical guidelines for development and use of new assistive technologies for handicapped/older persons have to be developed and should be discussed with regard to their applicability in the context of AAT.

  10. Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats.

    PubMed

    Meng, Qinghe; Lian, Yuzheng; Jiang, Jianjun; Wang, Wei; Hou, Xiaohong; Pan, Yao; Chu, Hongqian; Shang, Lanqin; Wei, Xuetao; Hao, Weidong

    2018-04-18

    Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12 : 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.

  11. Phasic Dopaminergic Signaling and the Presymptomatic Phase of Parkinson’s Disease

    DTIC Science & Technology

    2005-07-01

    provides an ambient , steady- state level of extracellular dopamine, whereas phasic signaling results in a transient increase (i.e., a short-lived...certain ambient extracellular level of dopamine is essential for movement to occur [116]. Phasic signaling involves synchronized high frequency firing of...microdialysis. A measurement of the ambient level of dopamine by microdialysis in animal studies shows that extracellular dopamine levels are normal

  12. Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations

    PubMed Central

    Prato, Frank S; Desjardins-Holmes, Dawn; Keenliside, Lynn D; McKay, Julia C; Robertson, John A; Thomas, Alex W

    2008-01-01

    Previous experiments with mice have shown that repeated 1 hour daily exposure to an ambient magnetic field-shielded environment induces analgesia (antinociception). The exposures were carried out in the dark (less than 2.0×1016 photons s−1 m−2) during the mid-light phase of the diurnal cycle. However, if the mice were exposed in the presence of visible light (2.0×1018 photons s−1 m−2, 400–750 nm), then the analgesic effects of shielding were eliminated. Here, we show that this effect of light is intensity and wavelength dependent. Introduction of red light (peak at 635 nm) had little or no effect, presumably because mice do not have photoreceptors sensitive to red light above 600 nm in their eyes. By contrast, introduction of ultraviolet light (peak at 405 nm) abolished the effect, presumably because mice do have ultraviolet A receptors. Blue light exposures (peak at 465 nm) of different intensities demonstrate that the effect has an intensity threshold of approximately 12% of the blue light in the housing facility, corresponding to 5×1016 photons s−1 m−2 (integral). This intensity is similar to that associated with photoreceptor-based magnetoreception in birds and in mice stimulates photopic/cone vision. Could the detection mechanism that senses ambient magnetic fields in mice be similar to that in bird navigation? PMID:18583276

  13. Immersive Input Display Device (I2D2) for tactical information viewing

    NASA Astrophysics Data System (ADS)

    Tremper, David E.; Burnett, Kevin P.; Malloy, Andrew R.; Wert, Robert

    2006-05-01

    Daylight readability of hand-held displays has been an ongoing issue for both commercial and military applications. In an effort to reduce the effects of ambient light on the readability of military displays, the Naval Research Laboratory (NRL) began investigating and developing advanced hand-held displays. Analysis and research of display technologies with consideration for vulnerability to environmental conditions resulted in the complete design and fabrication of the hand-held Immersive Input Display Device (I2D2) monocular. The I2D2 combines an Organic Light Emitting Diode (OLED) SVGA+ micro-display developed by eMagin Corporation with an optics configuration inside a cylindrical housing. A rubber pressure-eyecup allows view ability only when the eyecup is depressed, eliminating light from both entering and leaving the device. This feature allows the I2D2 to be used during the day, while not allowing ambient light to affect the readability. It simultaneously controls light leakage, effectively eliminating the illumination, and thus preserving the tactical position, of the user in the dark. This paper will examine the characteristics and introduce the design of the I2D2.

  14. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  15. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-03-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect - oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.

  16. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China

    NASA Astrophysics Data System (ADS)

    Wu, Pei-Chih; Tsai, Jui-Chen; Li, Fang-Chun; Lung, Shih-Chun; Su, Huey-Jen

    2004-09-01

    Fungi are ubiquitous in nature and their spores are often dispersed into the atmosphere through turbulent airstreams. As yellow sandstorm blown from deserts in China had affected the ambient air quality with increasing levels of ambient particulates, often including significant amounts of biologically active particles has therefore become imperative for concerns of their health implications. Our study was aimed to examine the effects of yellow sandstorm events on the fungal composition and concentrations in ambient air. Atmospheric fungal spores were continuously collected using Burkard Volumetric Spore Trap. Samples collected between December 2000 and April 2001 were selected for priority analysis from days when the yellow sandstorms were reported to affect Taiwan according to the Central Weather Bureau in Taiwan. The composition of dominant spores such as Basidiospore, Penicillium/Aspergillus, Nigrospora, Arthrinium, Curvularia, Rusts, Stemphylium, Cercospora, Pithomyces, and unidentified fungi were significantly higher than those of background days. The increase of Basidiospore, Penicillium/Aspergillus, Nigrospora, and those unidentified fungi seems to be significantly associated with the increase of ambient particulate levels with regression coefficients ranging from 0.887 to 31.98. Our study has identified increasing ambient concentrations during sandstorm episodes are observed for some major fungi, Basidiospore, Penicillium, Aspergillus, and those unidentified fungi and the trends of the increase seems to associate with ambient particulate levels. Further efforts to clarify the relationship between those high fungal spore exposures and clinical adverse health effects are suggested in the future. In addition, effects of climatic factors and other particulate levels on the variation of ambient fungal spore levels are also desired in further study. Additional monitoring of ambient fungal spores in the first line of west coastline is hoped to assist in differentiating changes of local spores and contribution for sandstorms during the episodes.

  17. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.

    PubMed

    George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W

    2015-11-03

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.

  18. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system.

    PubMed

    Kwon, Sangil; Park, Yonghee; Park, Junhong; Kim, Jeongsoo; Choi, Kwang-Ho; Cha, Jun-Seok

    2017-01-15

    This paper presents the on-road nitrogen oxides (NO x ) emissions measurements from Euro 6 light-duty diesel vehicles using a portable emissions measurement system on the predesigned test routes in the metropolitan area of Seoul, Korea. Six diesel vehicles were tested and the NO x emissions results were analyzed according to the driving routes, driving conditions, data analysis methods, and ambient temperatures. Total NO x emissions for route 1, which has higher driving severity than route 2, differed by -4-60% from those for route 2. The NO x emissions when the air conditioner (AC) was used were higher by 68% and 85%, on average, for routes 1 and 2, respectively, compared to when the AC was not used. The analytical results for NO x emissions by the moving averaging window method were higher by 2-31% compared to the power binning method. NO x emissions at lower ambient temperatures (0-5°C) were higher by 82-192% compared to those at higher ambient temperatures (15-20°C). This result shows that performance improvements of exhaust gas recirculation and the NO x after-treatment system will be needed at lower ambient temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Efficient polymer light-emitting diode with air-stable aluminum cathode

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Doumon, N. Y.; Blom, P. W. M.

    2016-03-01

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlOx) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtained by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlOx cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlOx into the emissive layer. PLEDs with an AlOx cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.

  20. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  1. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    PubMed

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  2. A real-time 3D range image sensor based on a novel tip-tilt-piston micromirror and dual frequency phase shifting

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor

    2015-03-01

    Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.

  3. Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes

    2016-04-01

    Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).

  4. On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors.

    PubMed

    Frey, Laurent; Masarotto, Lilian; D'Aillon, Patrick Gros; Pellé, Catherine; Armand, Marilyn; Marty, Michel; Jamin-Mornet, Clémence; Lhostis, Sandrine; Le Briz, Olivier

    2014-07-10

    Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal-dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.

  5. EPA's Reference and Equivalent Supporting NAAQS Implementation through Methods Research Program: Research, Development, and Analysis

    EPA Science Inventory

    . To assess the ambient concentration levels of the six criteria air pollutants regulated by National Ambient Air Quality Standards (NAAQS), the U.S. Environmental Protection Agency (EPA) developed a systematic framework of: (a) field measurements of ambient air pollutant levels ...

  6. Characterization of measurement artefacts in fluoroptic temperature sensors: implications for laser thermal therapy at 810 nm.

    PubMed

    Davidson, Sean R H; Vitkin, I Alex; Sherar, Michael D; Whelan, William M

    2005-04-01

    Fluoroptic sensors are used to measure interstitial temperatures but their utility for monitoring laser interstitial thermal therapy (LITT) is unclear because these sensors exhibit a measurement artefact when exposed to the near-infrared (NIR) treatment light. This study investigates the cause of the artefact to determine whether fluoroptic sensors can provide reliable temperature measurements during LITT. The temperature rise measured by a fluoroptic sensor irradiated in non-absorbing media (air and water) was considered an artefact. Temperature rise was measured as a function of distance from a laser source. Two different sensor designs and several laser powers were investigated. A relationship between fluence rate and measurement artefact in water was determined and coupled with a numerical simulation of LITT in liver to estimate the error in temperature measurements made by fluoroptic sensors in tissue in proximity to the laser source. The effect of ambient light on the performance of sensors capped with a transparent material ("clear-capped sensors") was also investigated. The temperature rise recorded in air by both clear- and black-capped fluoroptic sensors decreased with distance from a laser source in a manner similar to fluence rate. Sensor cap material, laser power, and the thermal properties of the surrounding medium affected the magnitude of the artefact. Numerical simulations indicated that the accuracy of a clear-capped fluoroptic sensor used to monitor a typical LITT treatment in liver is > 1 degrees C provided the sensor is further than approximately 3 mm from the source. It was also shown that clear-capped fluoroptic sensors are affected by ambient light. The measurement artefact experienced by both black-capped and clear-capped fluoroptic sensors irradiated by NIR light scales with fluence rate and is due to direct absorption of the laser light, which results in sensor self-heating. Clear-capped fluoroptic sensors can be used to accurately monitor LITT in tissue but should be shielded from ambient light. Copyright 2005 Wiley-Liss, Inc.

  7. Evolution of robust circadian clocks in Drosophila melanogaster populations reared in constant dark for over 330 generations

    NASA Astrophysics Data System (ADS)

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K. L.; Sharma, Vijay Kumar

    2016-10-01

    Robustness is considered to be an important feature of biological systems which may evolve when the functionality of a trait is associated with higher fitness across multiple environmental conditions. Thus, the ability to maintain stable biological phenotypes across environments is thought to be of adaptive value. Previously, we have reported higher intrinsic activity levels (activity levels of free-running rhythm in constant darkness) and power of rhythm (as assessed by amplitude of the periodogram) in Drosophila melanogaster populations (stocks) reared in constant darkness (DD stocks) as compared to those reared in constant light (LL stocks) and 12:12-h light-dark cycles (LD stocks) for over 19 years (˜330 generations). In the current study, we intended to examine whether the enhanced levels of activity observed in DD stocks persist under various environments such as photoperiods, ambient temperatures, non-24-h light-dark (LD) cycles, and semi-natural conditions (SN). We found that DD stocks largely retain their phenotype of enhanced activity levels across most of the above-mentioned environments suggesting the evolution of robust circadian clocks in DD stocks. Furthermore, we compared the peak activity levels of the three stocks across different environmental conditions relative to their peaks in constant darkness and found that the change in peak activity levels upon entrainment was not significantly different across the three stocks for any of the examined environmental conditions. This suggests that the enhancement of activity levels in DD stocks is not due to differential sensitivity to environment. Thus, these results suggest that rearing in constant darkness (DD) leads to evolution of robust circadian clocks suggesting a possible adaptive value of possessing such rhythms under constant dark environments.

  8. Evolution of robust circadian clocks in Drosophila melanogaster populations reared in constant dark for over 330 generations.

    PubMed

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar

    2016-10-01

    Robustness is considered to be an important feature of biological systems which may evolve when the functionality of a trait is associated with higher fitness across multiple environmental conditions. Thus, the ability to maintain stable biological phenotypes across environments is thought to be of adaptive value. Previously, we have reported higher intrinsic activity levels (activity levels of free-running rhythm in constant darkness) and power of rhythm (as assessed by amplitude of the periodogram) in Drosophila melanogaster populations (stocks) reared in constant darkness (DD stocks) as compared to those reared in constant light (LL stocks) and 12:12-h light-dark cycles (LD stocks) for over 19 years (∼330 generations). In the current study, we intended to examine whether the enhanced levels of activity observed in DD stocks persist under various environments such as photoperiods, ambient temperatures, non-24-h light-dark (LD) cycles, and semi-natural conditions (SN). We found that DD stocks largely retain their phenotype of enhanced activity levels across most of the above-mentioned environments suggesting the evolution of robust circadian clocks in DD stocks. Furthermore, we compared the peak activity levels of the three stocks across different environmental conditions relative to their peaks in constant darkness and found that the change in peak activity levels upon entrainment was not significantly different across the three stocks for any of the examined environmental conditions. This suggests that the enhancement of activity levels in DD stocks is not due to differential sensitivity to environment. Thus, these results suggest that rearing in constant darkness (DD) leads to evolution of robust circadian clocks suggesting a possible adaptive value of possessing such rhythms under constant dark environments.

  9. InP Transferred Electron Cathodes: Basic to Manufacturing Methods

    DTIC Science & Technology

    2007-08-29

    Source: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; January/February 2003; v.21, no.1, p.219-225 Optimization and...Vacuum, Surfaces and Films ; Sept/Oct 2007 V. 25, No. 5 List of papers submitted or published that acknowledge ARO support during this reporting period...technologies. Night vision devices gather existing ambient light (starlight, moonlight or infra-red light) through a front lens. This light goes into a

  10. Surgical instrument biocontaminant fluorescence detection in ambient lighting conditions for hospital reprocessing and sterilization department (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baribeau, François; Bubel, Annie; Dumont, Guillaume; Vachon, Carl; Lépine, André; Rochefort, Stéphane; Massicotte, Martin; Buteau-Vaillancourt, Louis; Gallant, Pascal; Mermut, Ozzy

    2017-03-01

    Hospitals currently rely on simple human visual inspection for assessing cleanliness of surgical instruments. Studies showed that surgical site infections are in part attributed to inadequate cleaning of medical devices. Standards groups recognize the need to objectively quantify the amount of residues on surgical instruments and establish guidelines. We developed a portable technology for the detection of contaminants on surgical instruments through fluorescence following cleaning. Weak fluorescence signals are usually detected in the obscurity only with the lighting of the excitation source. The key element of this system is that it works in ambient lighting conditions, a requirement to not disturb the normal workflow of hospital reprocessing facilities. A biocompatible fluorescent dye is added to the detergent and labels the proteins of organic residues. It is resistant to the harsh environment in a washer-disinfector. Two inspection devices have been developed with a 488nm laser as the excitation source: a handheld scanner and a tabletop station using spectral-domain and time-domain ambient light cancellation schemes. The systems are eye safe and equipped with image processing and interfacing software to provide visual or audible warnings to the operator based on a set of adjustable signal thresholds. Micron-scale residues are detected by the system which can also evaluate soil size and mass. Unlike swabbing, it can inspect whole tools in real-time. The technology has been validated in an independent hospital decontamination research laboratory. It also has potential applications in the forensics, agro-food, and space fields. Technical aspects and results will be presented and discussed.

  11. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  12. Use of a Reflective Ultraviolet Imaging System (RUVIS) on Two-Dimensional Dust Impressions Created with Footwear on Multiple Substrates

    NASA Astrophysics Data System (ADS)

    Engelson, Brian Aaron

    Footwear impression evidence in dust is often difficult to locate in ambient light and is a fragile medium that both collection and enhancement techniques can destroy or distort. The collection of footwear impression evidence always begins with non-destructive photographic techniques; however, current methods are limited to oblique lighting of the impression followed by an attempt to photograph in situ. For the vast majority of footwear impressions, an interactive collection method, and thus a potentially destructive procedure, is subsequently carried out to gather the evidence. Therefore, alternative non-destructive means for the preservation and enhancement of footwear impressions in dust merits further attention. Previous research performed with reflected ultraviolet (UV) photography and reflected ultraviolet imaging systems (RUVIS) has shown that there are additional non-destructive methodologies that can be applied to the search for and documentation of footwear impressions in dust. Unfortunately, these prior studies did not include robust comparisons to traditional oblique white light, instead choosing to focus on different UV wavelengths. This study, however, seeks to evaluate the use of a RUVIS device paired with a 254 nanometer (nm) UV light source to locate 2-D footwear impressions in dust on multiple substrates against standard oblique white light techniques and assess the visibility of the impression and amount of background interference present. The optimal angle of incident UV light for each substrate was also investigated. Finally, this study applied an image enhancement technique in order to evaluate its usefulness when looking at the visibility of a footwear impression and the amount of background interference present for enhanced white light and RUVIS pictures of footwear impressions in dust. A collection of eight different substrate types was gathered for investigation, including vinyl composition tile (VCT), ceramic tile, marble tile, magazine paper, steel sheet metal, vinyl flooring, wood flooring, and carpet. Heel impressions were applied to the various substrates utilizing vacuum collected dust and normal walking pressure. Each substrate was then explored and photographed in ambient fluorescent light, oblique white light at 0°, 15°, 30°, and 0° with the light source below the surface plane of the substrate, and 254 nm UV light at 0°, 15°, 30°, 45°, 60°, 75°, 90° and 0° with the light source below the surface plane of the substrate. All pictures were evaluated for clarity and visible detail of the footwear impression and the amount of background interference present, selecting for the best images within a lighting condition group. Additional intra- and intergroup comparisons were carried out to explore differences created by the various lighting conditions. Enhanced images were then created with the best scored pictures and evaluated for additional modifications in impression visibility and background interference. Photographs of footwear impressions in dust illuminated with ambient fluorescent light proved to be the most difficult conditions under which a footwear impression could be visualized. However, both oblique white light and 254 nm UV light lighting conditions showed improvements in either visualization or background dropout, or both, over ambient light conditions. An assessment of the white light and 254 nm UV light RUVIS images also demonstrated that the best angles for the light source for all substrates were oblique 0 and oblique 0° below the surface plane of the substrate lighting. It was found that white light photographs generally provided higher visibility ratings, while RUVIS 254 nm UV light photographs provided better grades for reducing background interference. Enhanced images of white light conditions provided generally poorer quality and quantity of details, while enhanced RUVIS images seemed to improve upon these areas. The use of a RUVIS to capture photographs of footwear impression evidence in dust was found to be a successful secondary non-destructive technique that can be paired with traditional oblique white light procedures. Additionally, the use of below the surface plane of the substrate lighting techniques were found to improve either visibility or background dropout, or both, over standard 0 oblique lighting, depending on the light source, and should be employed, when applicable. Finally, further investigation into digital photo-editing enhancement techniques for footwear impression evidence in dust is needed.

  13. Directional orientation of birds by the magnetic field under different light conditions

    PubMed Central

    Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2010-01-01

    This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under ‘white’ and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) ‘Fixed direction’ responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is ‘fixed’ in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system. PMID:19864263

  14. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    PubMed Central

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  15. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  16. Handheld Device Adapted to Smartphone Cameras for the Measurement of Sodium Ion Concentrations at Saliva-Relevant Levels via Fluorescence

    PubMed Central

    Lipowicz, Michelle; Garcia, Antonio

    2015-01-01

    The use of saliva sampling as a minimally-invasive means for drug testing and monitoring physiology is a subject of great interest to researchers and clinicians. This study describes a new optical method based on non-axially symmetric focusing of light using an oblate spheroid sample chamber. The device is simple, lightweight, low cost and is easily attached to several different brands/models of smartphones (Apple, Samsung, HTC and Nokia) for the measurement of sodium ion levels at physiologically-relevant saliva concentrations. The sample and fluorescent reagent solutions are placed in a specially-designed, lightweight device that excludes ambient light and concentrates 470-nm excitation light, from a low-power photodiode, within the sample through non-axially-symmetric refraction. The study found that smartphone cameras and post-image processing quantitated sodium ion concentration in water over the range of 0.5–10 mM, yielding best-fit regressions of the data that agree well with a data regression of microplate luminometer results. The data suggest that fluorescence can be used for the measurement of salivary sodium ion concentrations in low-resource or point-of-care settings. With further fluorescent assay testing, the device may find application in a variety of enzymatic or chemical assays. PMID:28955016

  17. A field study of the ventilatory response to ambient temperature and pressure in sport diving.

    PubMed Central

    Muller, F L

    1995-01-01

    This study reports on the relationship between minute ventilation (VE) and environmental variables of temperature (T) and pressure (P) during open water diving. The author conducted a total of 38 dives involving either a light (20 dives) or a moderate (18 dives) level of physical activity. Within each of these groups, P and T taken together accounted for about two thirds of the variance in the VE data. A very significant increase in VE was observed as T decreased (1 < T(degrees C) < 22), and the magnitude of this increase at a given pressure level was similar in the 'light' and the 'moderate' data sets. A second order observation, particularly notable at lower temperature, was the decrease in VE with increasing pressure under conditions of light work. Empirical functions of the from VE = A+B/P n[1 + exp(T - 8)/10], where A, B, and n are adjustable variables, could accommodate both data sets over the whole range of T and P. These results are the first obtained under actual diving conditions to provide evidence for interactions between P, T, and VE. Understanding the physiological mechanisms by which these interactions occur would assist in appreciation of the limitations imposed on scuba divers by the environmental conditions as they affect their ventilatory responses. PMID:8800853

  18. Highly reactive light-dependent monoterpenes in the Amazon

    NASA Astrophysics Data System (ADS)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  19. Effects of atmospheric aerosols on scattering reflected visible light from earth resource features

    NASA Technical Reports Server (NTRS)

    Noll, K. E.; Tschantz, B. A.; Davis, W. T.

    1972-01-01

    The vertical variations in atmospheric light attenuation under ambient conditions were identified, and a method through which aerial photographs of earth features might be corrected to yield quantitative information about the actual features was provided. A theoretical equation was developed based on the Bouguer-Lambert extinction law and basic photographic theory.

  20. Light-duty vehicle PM and VOC speciated emissions at differing ambient temperatues with ethanol blend gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the U.S., interest is increasing in how these fuel blends affect PM and VOC emissions. EPA conducted a study characterizing emissions from two flex-fuel and one non-flex-fueled light-duty vehicles operated on a chassis dynamom...

  1. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices

    NASA Astrophysics Data System (ADS)

    Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.

    2016-08-01

    Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

  2. Ambient noise levels in industrial audiometric test rooms.

    PubMed

    Frank, T; Williams, D L

    1994-05-01

    In 1983 the Occupational Safety and Health Administration (OSHA) specified maximum permissible ambient noise levels (MPANLs) that would allow valid hearing threshold measurements in an audiometric test room. However, ambient noise sound pressure levels (SPLs) in rooms used for industrial hearing tests are unknown. The present study reports octave band (125 to 8000 Hz) ambient noise SPLs measured in 490 single-walled prefabricated audiometric test rooms located in industrial settings that were obtained from eight sources. The ambient noise SPLs were highest in the lower frequencies and decreased as frequency increased. All 490 rooms met the OSHA MPANLs. Fortunately, the ambient noise SPLs were considerably lower than the OSHA MPANLs, since previous research has demonstrated that hearing thresholds cannot be obtained down to 0-dB HL in a test room having ambient noise levels equal to the OSHA MPANLs. In fact, 33%, or 162 of the 490 test rooms, met the more stringent MPANLs recently specified by the American National Standards Institute (ANSI) for industrial hearing testing. Given that the OSHA MPANLs are too high and that the test room ambient noise SPLs were considerably less than the OSHA MPANLs, that authors recommend that the OSHA MPANLs be revised to the more stringent ANSI 1991 MPANLs so that hearing thresholds for baseline and annual audiograms can be measured down to 0-dB HL.

  3. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.

  4. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L.) seedlings to light.

    PubMed

    Danyagri, Gabriel; Dang, Qing-Lai

    2013-01-01

    Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1)) and elevated (784 µmol mol(-1)) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.

  5. Effects of Elevated [CO2] and Low Soil Moisture on the Physiological Responses of Mountain Maple (Acer spicatum L.) Seedlings to Light

    PubMed Central

    Danyagri, Gabriel; Dang, Qing-Lai

    2013-01-01

    Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol−1) and elevated (784 µmol mol−1) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable. PMID:24146894

  6. Experimental investigation of analog and digital dimming techniques on photometric performance of an indoor Visible Light Communication (VLC) system

    NASA Astrophysics Data System (ADS)

    Zafar, Fahad; Kalavally, Vineetha; Bakaul, Masuduzzaman; Parthiban, R.

    2015-09-01

    For making commercial implementation of light emitting diode (LED) based visible light communication (VLC) systems feasible, it is necessary to incorporate it with dimming schemes which will provide energy savings, moods and increase the aesthetic value of the places using this technology. There are two general methods which are used to dim LEDs commonly categorized as analog and digital dimming. Incorporating fast data transmission with these techniques is a key challenge in VLC. In this paper, digital and analog dimming for a 10 Mb/s non return to zero on-off keying (NRZ-OOK) based VLC system is experimentally investigated considering both photometric and communicative parameters. A spectrophotometer was used for photometric analysis and a line of sight (LOS) configuration in the presence of ambient light was used for analyzing communication parameters. Based on the experimental results, it was determined that digital dimming scheme is preferable for use in indoor VLC systems requiring high dimming precision and data transmission at lower brightness levels. On the other hand, analog dimming scheme is a cost effective solution for high speed systems where dimming precision is insignificant.

  7. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  8. Artificial light on water attracts turtle hatchlings during their near shore transit

    PubMed Central

    Thums, Michele; Whiting, Scott D.; Reisser, Julia; Pendoley, Kellie L.; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G.

    2016-01-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s−1. This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal. PMID:27293795

  9. Artificial light on water attracts turtle hatchlings during their near shore transit.

    PubMed

    Thums, Michele; Whiting, Scott D; Reisser, Julia; Pendoley, Kellie L; Pattiaratchi, Charitha B; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G

    2016-05-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.

  10. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display

    PubMed Central

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-01-01

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times. PMID:26957019

  11. The spectral energy distribution of the scattered light from dark clouds

    NASA Technical Reports Server (NTRS)

    Mattila, Kalevi; Schnur, G. F. O.

    1989-01-01

    A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.

  12. Image degradation by glare in radiologic display devices

    NASA Astrophysics Data System (ADS)

    Badano, Aldo; Flynn, Michael J.

    1997-05-01

    No electronic devices are currently available that can display digital radiographs without loss of visual information compared to traditional transilluminated film. Light scattering within the glass faceplate of cathode-ray tube (CRT) devices causes excessive glare that reduces image contrast. This glare, along with ambient light reflection, has been recognized as a significant limitation for radiologic applications. Efforts to control the effect of glare and ambient light reflection in CRTs include the use of absorptive glass and thin film coatings. In the near future, flat panel displays (FPD) with thin emissive structures should provide very low glare, high performance devices. We have used an optical Monte Carlo simulation to evaluate the effect of glare on image quality for typical CRT and flat panel display devices. The trade-off between display brightness and image contrast is described. For CRT systems, achieving good glare ratio requires a reduction of brightness to 30-40 percent of the maximum potential brightness. For FPD systems, similar glare performance can be achieved while maintaining 80 percent of the maximum potential brightness.

  13. Fish with red fluorescent eyes forage more efficiently under dim, blue-green light conditions.

    PubMed

    Harant, Ulrike Katharina; Michiels, Nicolaas Karel

    2017-04-20

    Natural red fluorescence is particularly conspicuous in the eyes of some small, benthic, predatory fishes. Fluorescence also increases in relative efficiency with increasing depth, which has generated speculation about its possible function as a "light organ" to detect cryptic organisms under bluish light. Here we investigate whether foraging success is improved under ambient conditions that make red fluorescence stand out more, using the triplefin Tripterygion delaisi as a model system. We repeatedly presented 10 copepods to individual fish (n = 40) kept under a narrow blue-green spectrum and compared their performance with that under a broad spectrum with the same overall brightness. The experiment was repeated for two levels of brightness, a shaded one representing 0.4% of the light present at the surface and a heavily shaded one with about 0.01% of the surface brightness. Fish were 7% more successful at catching copepods under the narrow, fluorescence-friendly spectrum than under the broad spectrum. However, this effect was significant under the heavily shaded light treatment only. This outcome corroborates previous predictions that fluorescence may be an adaptation to blue-green, heavily shaded environments, which coincides with the opportunistic biology of this species that lives in the transition zone between exposed and heavily shaded microhabitats.

  14. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.

    PubMed

    Schmitz, Lars; Wainwright, Peter C

    2011-11-19

    Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  15. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis.

    PubMed

    Ha, Jun-Ho; Kim, Ju-Heon; Kim, Sang-Gyu; Sim, Hee-Jung; Lee, Gisuk; Halitschke, Rayko; Baldwin, Ian T; Kim, Jeong-Il; Park, Chung-Mo

    2018-06-01

    Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS-induced growth promotion facilitates rapid escape of the roots from non-natural light. Meanwhile, long-term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far-red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot-derived ABA signals induce a peroxidase-mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark-grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot-to-root ABA signaling links shoot phyB-mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA-mediated shoot-to-root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  16. Changes in dopamine and ZENK during suppression of myopia in chicks by intense illuminance.

    PubMed

    Lan, Weizhong; Yang, Zhikuan; Feldkaemper, Marita; Schaeffel, Frank

    2016-04-01

    High ambient illuminances have been found to slow the development of deprivation myopia in several animal models. Almost complete inhibition of myopia was observed in chickens when intermittent episodes of high illuminance were alternated with standard office illuminance (50% duty cycle, alternate periods of 1 min 15,000 lux and 1 min 500 lux, continued for 10 h per day), or when illuminances were increased to 40,000 lux. Since the mechanisms by which bright light suppresses myopia are poorly understood, we have studied the roles of two well-established signaling molecules in myopia, dopamine and ZENK, in the chicken. In line with previous studies, we found that retinal dopamine release (as reflected by vitreal DOPAC content) was severely reduced during development of deprivation myopia. We found that illuminance of 15,000 lux, provided by quartz-halogen lamps, partially rescued the drop in retinal dopamine release. The finding is in line with the assumption that dopamine is involved in the light-induced inhibition of myopia. No differences in vitreal DOPAC were found when bright light was provided continuously or with 1:1 min alternating exposure with 500 lux. As previously described by others, wearing diffusers suppressed the expression of ZENK protein in glucagonergic amacrine cells (GACs) but neither continuous nor 1:1 min alternating bright to normal light could rescue the suppression of ZENK in GACs. While it is well known that light increases global retinal ZENK mRNA and protein levels, the changes of ZENK protein induced specifically in GACs by diffuser wear appear independent of light levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light

    PubMed Central

    Zhao, Baozhong; Summers, Fiona A.; Mason, Ronald P.

    2012-01-01

    The Amplex Red assay, a fluorescent assay for the detection of H2O2, relies on the reaction of H2O2 and colorless, nonfluorescent Amplex Red with a 1:1 stoichiometry to form colored, fluorescent resorufin, catalyzed by horseradish peroxidase (HRP). We have found that resorufin is artifactually formed when Amplex Red is exposed to light. In the absence of H2O2 and HRP, the absorption and fluorescence spectra of Amplex Red changed during exposure to ambient room light or instrumental excitation light, clearly indicating that the fluorescent product resorufin had formed. This photochemistry was initiated by trace amounts of resorufin that are present in Amplex Red stock solutions. ESR spin-trapping studies demonstrated that superoxide radical was an intermediate in this process. Oxygen consumption measurements further confirmed that superoxide and H2O2 were artifactually produced by the photooxidation of Amplex Red. The artifactual formation of resorufin was also significantly increased by the presence of superoxide dismutase or HRP. This photooxidation process will result in a less sensitive assay for H2O2 under ambient light exposure and potentially invalid measurements under high energy exposure such as UVA irradiation. In general, precautions should be taken to minimize exposure to light during measurement of oxidative stress with Amplex Red. PMID:22765927

  18. Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light.

    PubMed

    Zhao, Baozhong; Summers, Fiona A; Mason, Ronald P

    2012-09-01

    The Amplex Red assay, a fluorescent assay for the detection of H(2)O(2), relies on the reaction of H(2)O(2) and colorless, nonfluorescent Amplex Red with a 1:1 stoichiometry to form colored, fluorescent resorufin, catalyzed by horseradish peroxidase (HRP). We have found that resorufin is artifactually formed when Amplex Red is exposed to light. In the absence of H(2)O(2) and HRP, the absorption and fluorescence spectra of Amplex Red changed during exposure to ambient room light or instrumental excitation light, clearly indicating that the fluorescent product resorufin had formed. This photochemistry was initiated by trace amounts of resorufin that are present in Amplex Red stock solutions. ESR spin-trapping studies demonstrated that superoxide radical was an intermediate in this process. Oxygen consumption measurements further confirmed that superoxide and H(2)O(2) were artifactually produced by the photooxidation of Amplex Red. The artifactual formation of resorufin was also significantly increased by the presence of superoxide dismutase or HRP. This photooxidation process will result in a less sensitive assay for H(2)O(2) under ambient light exposure and potentially invalid measurements under high energy exposure such as UVA irradiation. In general, precautions should be taken to minimize exposure to light during measurement of oxidative stress with Amplex Red. Published by Elsevier Inc.

  19. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    PubMed

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  20. System requirements for head down and helmet mounted displays in the military avionics environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, M.F.; Kalmanash, M.; Sethna, V.

    1996-12-31

    The introduction of flat panel display technologies into the military avionics cockpit is a challenging proposition, due to the very difficult system level requirements which must be met. These relate to environmental extremes (temperature and vibrational), sever ambient lighting conditions (10,000 fL to nighttime viewing), night vision system compatibility, and wide viewing angle. At the same time, the display system must be packaged in minimal space and use minimal power. The authors will present details on the display system requirements for both head down and helmet mounted systems, as well as information on how these challenges may be overcome.

  1. Multi Spectral Fluorescence Imager (MSFI)

    NASA Technical Reports Server (NTRS)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  2. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    PubMed

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  3. White LED performance

    NASA Astrophysics Data System (ADS)

    Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul

    2004-10-01

    Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.

  4. Deficient GABAergic gliotransmission may cause broader sensory tuning in schizophrenia.

    PubMed

    Hoshino, Osamu

    2013-12-01

    We examined how the depression of intracortical inhibition due to a reduction in ambient GABA concentration impairs perceptual information processing in schizophrenia. A neural network model with a gliotransmission-mediated ambient GABA regulatory mechanism was simulated. In the network, interneuron-to-glial-cell and principal-cell-to-glial-cell synaptic contacts were made. The former hyperpolarized glial cells and let their transporters import (remove) GABA from the extracellular space, thereby lowering ambient GABA concentration, reducing extrasynaptic GABAa receptor-mediated tonic inhibitory current, and thus exciting principal cells. In contrast, the latter depolarized the glial cells and let the transporters export GABA into the extracellular space, thereby elevating the ambient GABA concentration and thus inhibiting the principal cells. A reduction in ambient GABA concentration was assumed for a schizophrenia network. Multiple dynamic cell assemblies were organized as sensory feature columns. Each cell assembly responded to one specific feature stimulus. The tuning performance of the network to an applied feature stimulus was evaluated in relation to the level of ambient GABA. Transporter-deficient glial cells caused a deficit in GABAergic gliotransmission and reduced ambient GABA concentration, which markedly deteriorated the tuning performance of the network, broadening the sensory tuning. Interestingly, the GABAergic gliotransmission mechanism could regulate local ambient GABA levels: it augmented ambient GABA around stimulus-irrelevant principal cells, while reducing ambient GABA around stimulus-relevant principal cells, thereby ensuring their selective responsiveness to the applied stimulus. We suggest that a deficit in GABAergic gliotransmission may cause a reduction in ambient GABA concentration, leading to a broadening of sensory tuning in schizophrenia. The GABAergic gliotransmission mechanism proposed here may have an important role in the regulation of local ambient GABA levels, thereby improving the sensory tuning performance of the cortex.

  5. Assessing the effects of oil sands related ozone precursor emissions on ambient ozone levels in the Alberta oil sands region, Canada

    NASA Astrophysics Data System (ADS)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun

    2017-11-01

    A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.

  6. Highly Reflective Nonalloyed Ni/Ag/Pt Contact to Mg-Si Codoped p-GaN for Enhanced Efficiency of Light-Emitting Diodes.

    PubMed

    Oh, Munsik; Kim, Hyunsoo

    2015-10-01

    The authors report enhanced efficiency of GaN-based light-emitting diodes (LEDs) fabricated with highly reflective nonalloyed Ni/Ag/Pt contact. The Ni/Ag/Pt contact formed on the Mg-Si codoped p-GaN produced the low specific contact resistance of 7.9 x 10(-4) Ωcm2 under as-deposited condition, which is comparable to the reference reflector (annealed at 500 °C for 1 min in oxygen ambient). Current-voltage-temperature measurements and the secondary ion mass spectroscopy revealed that the ohmic mechanism of the nonalloyed Ni/Ag/Pt contact is due to the more generated deep-level states associated with Mg-Si codoping, which act as the efficient hopping centers for the carrier transport at the contact/p-GaN interface. Due to the absence of interfacial reaction, the nonalloyed Ni/Ag/Pt contact showed much higher optical reflectivity (93.4% at 450 nm) as compared to the annealed sample (57.7%), resulting in a 40.5% brighter light output power as compared to the reference LEDs.

  7. Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models

    NASA Astrophysics Data System (ADS)

    Petrova, Kremena S.; Stoykova, Elena V.

    2006-09-01

    Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.

  8. Error correcting coding-theory for structured light illumination systems

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben

    2017-06-01

    Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.

  9. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  10. Light Exposure and Eye Growth in Childhood.

    PubMed

    Read, Scott A; Collins, Michael J; Vincent, Stephen J

    2015-10-01

    The purpose of this study was to examine the relationship between objectively measured ambient light exposure and longitudinal changes in axial eye growth in childhood. A total of 101 children (41 myopes and 60 nonmyopes), 10 to 15 years of age participated in this prospective longitudinal observational study. Axial eye growth was determined from measurements of ocular optical biometry collected at four study visits over an 18-month period. Each child's mean daily light exposure was derived from two periods (each 14 days long) of objective light exposure measurements from a wrist-worn light sensor. Over the 18-month study period, a modest but statistically significant association between greater average daily light exposure and slower axial eye growth was observed (P = 0.047). Other significant predictors of axial eye growth in this population included children's refractive error group (P < 0.001), sex (P < 0.01), and age (P < 0.001). Categorized according to their objectively measured average daily light exposure and adjusting for potential confounders (age, sex, baseline axial length, parental myopia, nearwork, and physical activity), children experiencing low average daily light exposure (mean daily light exposure: 459 ± 117 lux, annual eye growth: 0.13 mm/y) exhibited significantly greater eye growth than children experiencing moderate (842 ± 109 lux, 0.060 mm/y), and high (1455 ± 317 lux, 0.065 mm/y) average daily light exposure levels (P = 0.01). In this population of children, greater daily light exposure was associated with less axial eye growth over an 18-month period. These findings support the role of light exposure in the documented association between time spent outdoors and childhood myopia.

  11. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices.

    PubMed

    Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin

    2017-03-27

    Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.

  12. Improved aethalometer

    DOEpatents

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  13. Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites

    PubMed Central

    Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong

    2018-01-01

    In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523

  14. Comparative ozone responses of cutleaf coneflowers (Rudbeckia laciniata var. digitata, var. ampla) from Rocky Mountain and Great Smoky Mountains National Parks, USA.

    PubMed

    Neufeld, Howard S; Johnson, Jennifer; Kohut, Robert

    2018-01-01

    Cutleaf coneflower (Rudbeckia laciniata L. var. digitata) is native to Great Smoky Mountains National Park (GRSM) and an ozone bioindicator species. Variety ampla, whose ozone sensitivity is less well known, is native to Rocky Mountain National Park (ROMO). In the early 2000s, researchers found putative ozone symptoms on var. ampla and rhizomes were sent to Appalachian State University to verify that the symptoms were the result of ozone exposure. In 2011, potted plants were exposed to ambient ozone from May to August. These same plants were grown in open-top chambers (OTCs) in 2012 and 2013, and exposed to charcoal-filtered (CF), non-filtered (NF), elevated ozone (EO), NF+50ppb in 2012 for 47days and NF+30/NF+50ppb ozone in 2013 for 36 and 36days, respectively. Ozone symptoms similar to those found in ROMO (blue-black adaxial stippling) were reproduced both in ambient air and in the OTCs. Both varieties exhibited foliar injury in the OTCs in an exposure-dependent manner, verifying that symptoms resulted from ozone exposure. In two of the three study years, var. digitata appeared more sensitive than var. ampla. Exposure to EO caused reductions in ambient photosynthetic rate (A) and stomatal conductance (g s ) for both varieties. Light response curves indicated that ozone reduced A, g s , and the apparent quantum yield while it increased the light compensation point. In CF air, var. ampla had higher light saturated A (18.2±1.04 vs 11.6±0.37μmolm -2 s -1 ), higher light saturation (1833±166.7 vs 1108±141.7μmolm -2 s -1 ), and lower Ci/Ca ratio (0.67±0.01 vs 0.77±0.01) than var. digitata. Coneflowers in both Parks are adversely affected by exposure to ambient ozone and if ozone concentrations increase in the Rocky Mountains, greater amounts of injury on var. ampla can be expected. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2.

    PubMed

    Gillespie, Kelly M; Xu, Fangxiu; Richter, Katherine T; McGrath, Justin M; Markelz, R J Cody; Ort, Donald R; Leakey, Andrew D B; Ainsworth, Elizabeth A

    2012-01-01

    Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unprecedented rate and will surpass 550 ppm by 2050. This study investigated the molecular, biochemical and physiological changes in soybean exposed to elevated [O(3) ] in a background of ambient [CO(2)] and elevated [CO(2)] in the field. Previously, it has been difficult to demonstrate any link between antioxidant defences and O(3) stress under field conditions. However, this study used principle components analysis to separate variability in [O(3)] from variability in other environmental conditions (temperature, light and relative humidity). Subsequent analysis of covariance determined that soybean antioxidant metabolism increased with increasing [O(3)], in both ambient and elevated [CO(2)]. The transcriptional response was dampened at elevated [CO(2)], consistent with lower stomatal conductance and lower O(3) flux into leaves. Energetically expensive increases in antioxidant metabolism and tetrapyrrole synthesis at elevated [O(3)] were associated with greater transcript levels of enzymes involved in respiratory metabolism. © 2011 Blackwell Publishing Ltd.

  16. On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses--the ISOS-3 inter-laboratory collaboration.

    PubMed

    Teran-Escobar, Gerardo; Tanenbaum, David M; Voroshazi, Eszter; Hermenau, Martin; Norrman, Kion; Lloyd, Matthew T; Galagan, Yulia; Zimmermann, Birger; Hösel, Markus; Dam, Henrik F; Jørgensen, Mikkel; Gevorgyan, Suren; Kudret, Suleyman; Maes, Wouter; Lutsen, Laurence; Vanderzande, Dirk; Würfel, Uli; Andriessen, Ronn; Rösch, Roland; Hoppe, Harald; Rivaton, Agnès; Uzunoğlu, Gülşah Y; Germack, David; Andreasen, Birgitta; Madsen, Morten V; Bundgaard, Eva; Krebs, Frederik C; Lira-Cantu, Monica

    2012-09-07

    This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N(2)) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO(3)), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.

  17. Socioeconomic disparities and sexual dimorphism in neurotoxic effects of ambient fine particles on youth IQ: A longitudinal analysis

    PubMed Central

    Younan, Diana; Franklin, Meredith; Lurmann, Fred; Wu, Jun; Baker, Laura A.; Chen, Jiu-Chiuan

    2017-01-01

    Mounting evidence indicates that early-life exposure to particulate air pollutants pose threats to children’s cognitive development, but studies about the neurotoxic effects associated with exposures during adolescence remain unclear. We examined whether exposure to ambient fine particles (PM2.5) at residential locations affects intelligence quotient (IQ) during pre-/early- adolescence (ages 9–11) and emerging adulthood (ages 18–20) in a demographically-diverse population (N = 1,360) residing in Southern California. Increased ambient PM2.5 levels were associated with decreased IQ scores. This association was more evident for Performance IQ (PIQ), but less for Verbal IQ, assessed by the Wechsler Abbreviated Scale of Intelligence. For each inter-quartile (7.73 μg/m3) increase in one-year PM2.5 preceding each assessment, the average PIQ score decreased by 3.08 points (95% confidence interval = [-6.04, -0.12]) accounting for within-family/within-individual correlations, demographic characteristics, family socioeconomic status (SES), parents’ cognitive abilities, neighborhood characteristics, and other spatial confounders. The adverse effect was 150% greater in low SES families and 89% stronger in males, compared to their counterparts. Better understanding of the social disparities and sexual dimorphism in the adverse PM2.5–IQ effects may help elucidate the underlying mechanisms and shed light on prevention strategies. PMID:29206872

  18. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage.

    PubMed

    Meyer-Rochow, V B

    2001-12-01

    Compound eyes, nauplius eyes, frontal organs, intracerebral ocelli, and caudal photoreceptors are the main light and darkness detectors in crustaceans, but they need not be present all at once in an individual and in some crustaceans no photoreceptors whatsoever are known. Compound eye designs reflect on their functions and have evolved to allow the eye to operate optimally under a variety of environmental conditions. Dark-light-adaptational changes manifest themselves in pigment granule translocations, cell movements, and optical adjustments which fine-tune an eye's performance to rapid and unpredictable fluctuations in ambient light intensities as well as to the slower and predictable light level changes associated with day and night oscillations. Recycling of photoreceptive membrane and light-induced membrane collapse are superficially similar events that involve the transduction cascade, intracellular calcium, and membrane fatty acid composition, but which differ in aetiology and longterm consequence. Responses to intermittant illumination and linearly polarized light evoke in the eye of many crustaceans characteristic responses that appear to be attuned to each species' special needs. How the visual responses are processed more centrally and to what extent a crustacean makes behavioural use of e-vector discrimination and flickering lights are questions, however, that still have not been satisfactorily answered for the vast majority of all crustacean species. The degree of light-induced photoreceptor damage depends on a large number of variables, but once manifest, it tends to be progressive and irreversible. Concomittant temperature stress aggravates the situation and there is evidence that free radicals and lipid hydroperoxides are involved.

  19. A global simulation approach to optics, lighting, rendering, and human perception for the improvement of safety in automobiles

    NASA Astrophysics Data System (ADS)

    Delacour, Jacques; Fournier, Laurent; Menu, Jean-Pierre

    2005-02-01

    In order to provide optimum comfort and safety conditions, information must be seen as clearly as possible by the driver and in all lighting conditions, by day and by night. Therefore, it is becoming fundamental to anticipate in order to predict what the driver will see in a vehicle, in various configurations of scene and observation conditions, so as to optimize the lighting, the ergonomics of the interfaces and the choice of surrounding materials which can be a source of reflection. This information and choices which will depend on it, make it necessary to call upon simulation techniques capable of modeling, globally and simultaneously, the entire light phenomena: surrounding lighting, display technologies, the inside lighting, taking into consideration the multiple reflections caused by the reflection of this light inside the vehicle. This has been the object of an important development, which results in the solution SPEOS Visual Ergonomics, led by company OPTIS. A unique human vision model was developed in collaboration with worldwide specialists in visual perception to transform spectral luminance information into perceived visual information. This model, based on physiological aspects, takes into account the response of the eye to light levels, to color, to contrast, and to ambient lighting, as well as to rapid changes in surrounding luminosity, in accordance with the response of the retina. This unique tool, and information now accessible, enable ergonomists and designers of on board systems to improve the conditions of global visibility, and in so doing the global perception of the environment that the driver will have.

  20. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    PubMed

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  1. 49 CFR 325.35 - Ambient conditions; highway operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Ambient conditions; highway operations. 325.35... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Highway Operations § 325.35 Ambient conditions; highway operations. (a)(1) Sound. The ambient A-weighted sound level at the microphone...

  2. 49 CFR 325.35 - Ambient conditions; highway operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Ambient conditions; highway operations. 325.35... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Highway Operations § 325.35 Ambient conditions; highway operations. (a)(1) Sound. The ambient A-weighted sound level at the microphone...

  3. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  4. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  5. Efficient polymer light-emitting diode with air-stable aluminum cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbaszadeh, D.; Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven; Wetzelaer, G. A. H.

    2016-03-07

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlO{sub x}) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtainedmore » by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlO{sub x} cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlO{sub x} into the emissive layer. PLEDs with an AlO{sub x} cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.« less

  6. Defining the unknowns of sonoluminescence

    NASA Astrophysics Data System (ADS)

    Barber, Bradley P.; Hiller, Robert A.; Löfstedt, Ritva; Putterman, Seth J.; Weninger, Keith R.

    1997-03-01

    As the intensity of a standing sound wave is increased the pulsations of a bubble of gas trapped at a velocity node attain sufficient amplitude so as to emit picosecond flashes of light with a broadband spectrum that increases into the ultraviolet. The acoustic resonator can be tuned so that the flashes of light occur with a clocklike regularity: one flash for each cycle of sound with a jitter in the time between flashes that is also measured in picoseconds. This phenomenon (sonoluminescence or “SL”) is remarkable because it is the only means of generating picosecond flashes of light that does not use a laser and the input acoustic energy density must be concentrated by twelve orders of magnitude in order to produce light. Light scattering measurements indicate that the bubble wall is collapsing at more than 4 times the ambient speed of sound in the gas just prior to the light emitting moment when the gas has been compressed to a density determined by its van der Waals hard core. Experiments indicate that the collapse is remarkably spherical, water is the best fluid for SL, some noble gas is essential for stable SL, and that the light intensity increases as the ambient temperature is lowered. In the extremely stable experimental configuration consisting of an air bubble in water, measurements indicate that the bubble chooses an ambient radius that is not explained by mass diffusion. Experiments have not yet been able to map out the complete spectrum because above 6 eV it is obscured by the cutoff imposed by water, and furthermore experiments have only determined an upper bound on the flash widths. In addition to the above puzzles, the theory for the light emitting mechanism is still open. The scenario of a supersonic bubble collapse launching an imploding shock wave which ionizes the bubble contents so as to cause it to emit Bremsstrahlung radiation is the best candidate theory but it has not been shown how to extract from it the richness of this phenomenon. Most exciting is the issue of whether SL is a classical effect or whether Planck's constant should be invoked to explain how energy which enters a medium at the macroscopic scale holds together and focuses so as to be emitted at the microscopic scale.

  7. Ergonomics: The Forgotten Variable.

    ERIC Educational Resources Information Center

    Fitterman, L. Jeffrey

    1998-01-01

    Defines ergonomics and discusses design and environmental considerations. Suggests work-space requirements for: tables, chairs, monitor height, ambient noise and light, electricity, and environmental hazards. Includes sources for additional information related to ergonomic design. (AEF)

  8. ALADIN - a Magic Lamp for the Elderly?

    NASA Astrophysics Data System (ADS)

    Maier, Edith; Kempter, Guido

    Like Aladdin in the medieval oriental folk-tale, the assistive lighting system developed by ALADIN (Ambient Lighting Assistance for an Ageing Population), a research project co-financed by the European Commission, is expected to bring enchantment to people's lives. But this will not be achieved by magic and genies, but by exploiting our knowledge about the impact of lighting. adaptive lighting can contribute considerably to sound sleep and a regular sleep-wake cycle regulated by people's 'inner clock'. This tends to deteriorate with ageing, but is essential to preserve and enhance comfort and wellbeing. And this is the main goal of the assistive ALADIN lighting system.

  9. Pulsed-light imaging for fluorescence guided surgery under normal room lighting.

    PubMed

    Sexton, Kristian; Davis, Scott C; McClatchy, David; Valdes, Pablo A; Kanick, Stephen C; Paulsen, Keith D; Roberts, David W; Pogue, Brian W

    2013-09-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required by current FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room light by using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protoporphyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo.

  10. Photosynthetic responses of yellow poplar and white oak to long term atmospheric CO sub 2 enrichment in the field. [Liriondendron tulipifera L; Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, C.A.; Norby, R.J.

    1991-05-01

    A critical consideration in evaluating forest response to rising atmospheric CO{sub 2} is whether the enhancement of net photosynthesis (P{sub N}) by elevated CO{sub 2} can be sustained over the long term. There are reports of declining enhancement of P{sub N} with duration of exposure to elevated CO{sub 2}, associated with decreases in photosynthetic capacity and carboxylation efficiency. We investigated whether this photosynthetic acclimation occurs in two tree species under field conditions. Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were planted in the ground within six open-top field chambers in May 1989 and have beenmore » exposed continuously to CO{sub 2} enrichment during the last two growing seasons. The three CO{sub 2} treatment levels were: ambient, ambient +150, and ambient +300 {mu}L/L. Throughout the second season, gas exchange of upper, light-saturated leaves was surveyed periodically, and leaves of different ages and canopy positions were measured occasionally. Net photosynthesis remained higher at higher CO{sub 2} levels (28-32% higher in +150 and 49-67% higher in +300 seedlings) in both species throughout the season, regardless of increasing leaf age and duration of exposure to CO{sub 2} enrichment. Stomatal conductance remained unchanged or decreased slightly with increasing CO{sub 2}, but instantaneous water use efficiency (P{sub N}/transpiration) increased significantly with CO{sub 2}. Analysis of P{sub N} versus internal CO{sub 2} concentration indicated no significant treatment differences in carboxylation efficiency, CO{sub 2}-saturated P{sub N}, or CO{sub 2} compensation point. There was no evidence of a downward acclimation of photosynthesis to CO{sub 2} enrichment in this system.« less

  11. Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.

    PubMed

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin

    2017-02-08

    We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.

  12. Continuous determination of gaseous ammonia in the ambient atmosphere using fluorescence derivatization

    NASA Astrophysics Data System (ADS)

    Abbas, Rana; Tanner, Roger L.

    A method for continuous determination of ambient ammonia levels employing o-phthalaldehyde fluorescence derivatization is described. A simplified Venturi scrubber and gas-liquid separator have been employed for reproducible measurements of ⩾ 0.1 ppb ambient ammonia with less than 2 min time resolution. The scrubbing efficiency of the ammonia gas collection system was determined to be 29 ± 1 %. During 4 d in August 1979 ambient ammonia levels at the Brookhaven National Laboratory site averaged about 1.5 ± 1.1 ppb during afternoon daylight hours.

  13. Light at Night and Breast Cancer Risk Among California Teachers

    PubMed Central

    Hurley, Susan; Goldberg, Debbie; Nelson, David; Hertz, Andrew; Horn-Ross, Pamela L.; Bernstein, Leslie; Reynolds, Peggy

    2014-01-01

    Background There is convincing evidence that circadian disruption mediated by exposure to light at night promotes mammary carcinogenesis in rodents. The role that light at night plays in human breast cancer etiology remains unknown. We evaluated the relationship between estimates of indoor and outdoor light at night and the risk of breast cancer among members of the California Teachers Study. Methods Indoor light-at-night estimates were based on questionnaire data regarding sleep habits and use of night time lighting while sleeping. Estimates of outdoor light at night were derived from imagery data obtained from the U.S. Defense Meteorological Satellite Program assigned to geocoded addresses of study participants. Analyses were conducted among 106,731 California Teachers Study members who lived in California, had no prior history of breast cancer, and provided information on lighting while sleeping. 5,095 cases of invasive breast cancer diagnosed 1995–2010 were identified via linkage to the California Cancer Registry. We used age-stratified Cox proportional hazard models to calculate hazard ratios (HRs) with 95% confidence intervals (CIs), adjusting for breast cancer risk factors and neighborhood urbanization and socioeconomic class. Results An increased risk was found for women living in areas with the highest quintile of outdoor light at night exposure estimates (HR=1.12 [95% CI=1.00 – 1.26], test for trend, P=0.06). While more pronounced among premenopausal women (HR=1.34 [95% CI=1.07 – 1.69], test for trend, P=0.04), the associations did not differ statistically by menopausal status (test for interaction, P=0.34). Conclusions Women living in areas with high levels of ambient light at night may be at an increased risk of breast cancer. Future studies that integrate quantitative measurements of indoor and outdoor light at night are warranted. PMID:25061924

  14. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula).

    PubMed

    Dominoni, Davide M; Partecke, Jesko

    2015-05-05

    Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radio-telemetry, to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula)

    PubMed Central

    Dominoni, Davide M.; Partecke, Jesko

    2015-01-01

    Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radio-telemetry, to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod. PMID:25780232

  16. Son et lumière: Sound and light effects on spatial distribution and swimming behavior in captive zebrafish.

    PubMed

    Shafiei Sabet, Saeed; Van Dooren, Dirk; Slabbekoorn, Hans

    2016-05-01

    Aquatic and terrestrial habitats are heterogeneous by nature with respect to sound and light conditions. Fish may extract signals and exploit cues from both ambient modalities and they may also select their sound and light level of preference in free-ranging conditions. In recent decades, human activities in or near water have altered natural soundscapes and caused nocturnal light pollution to become more widespread. Artificial sound and light may cause anxiety, deterrence, disturbance or masking, but few studies have addressed in any detail how fishes respond to spatial variation in these two modalities. Here we investigated whether sound and light affected spatial distribution and swimming behavior of individual zebrafish that had a choice between two fish tanks: a treatment tank and a quiet and light escape tank. The treatments concerned a 2 × 2 design with noisy or quiet conditions and dim or bright light. Sound and light treatments did not induce spatial preferences for the treatment or escape tank, but caused various behavioral changes in both spatial distribution and swimming behavior within the treatment tank. Sound exposure led to more freezing and less time spent near the active speaker. Dim light conditions led to a lower number of crossings, more time spent in the upper layer and less time spent close to the tube for crossing. No interactions were found between sound and light conditions. This study highlights the potential relevance for studying multiple modalities when investigating fish behavior and further studies are needed to investigate whether similar patterns can be found for fish behavior in free-ranging conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5

    PubMed Central

    Kim, Sara; Hwang, Geonhee; Lee, Seulgi; Zhu, Jia-Ying; Paik, Inyup; Nguyen, Thom Thi; Kim, Jungmook; Oh, Eunkyoo

    2017-01-01

    Anthocyanins are flavonoid compounds that protect plant tissues from many environmental stresses including high light irradiance, freezing temperatures, and pathogen infection. Regulation of anthocyanin biosynthesis is intimately associated with environmental changes to enhance plant survival under stressful environmental conditions. Various factors, such as UV, visible light, cold, osmotic stress, and pathogen infection, can induce anthocyanin biosynthesis. In contrast, high temperatures are known to reduce anthocyanin accumulation in many plant species, even drastically in the skin of fruits such as grape berries and apples. However, the mechanisms by which high temperatures regulate anthocyanin biosynthesis in Arabidopsis thaliana remain largely unknown. Here, we show that high ambient temperatures repress anthocyanin biosynthesis through the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the positive regulator of anthocyanin biosynthesis ELONGATED HYPOCOTYL5 (HY5). We show that an increase in ambient temperature decreases expression of genes required in both the early and late steps of the anthocyanin biosynthesis pathway in Arabidopsis seedlings. As a result, seedlings grown at a high temperature (28°C) accumulate less anthocyanin pigment than those grown at a low temperature (17°C). We further show that high temperature induces the degradation of the HY5 protein in a COP1 activity-dependent manner. In agreement with this finding, anthocyanin biosynthesis and accumulation do not respond to ambient temperature changes in cop1 and hy5 mutant plants. The degradation of HY5 derepresses the expression of MYBL2, which partially mediates the high temperature repression of anthocyanin biosynthesis. Overall, our study demonstrates that high ambient temperatures repress anthocyanin biosynthesis through a COP1-HY5 signaling module. PMID:29104579

  18. Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions

    NASA Astrophysics Data System (ADS)

    Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-02-01

    Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.

  19. The Best Enzyme Investigation Ever? Probably.

    ERIC Educational Resources Information Center

    Cooper, Phil

    2000-01-01

    Uses alkaline phosphate to remove the phosphate group from phenolphthalein diphosphate. Discusses problems which include the interference of ambient light and temperature variation. Provides detailed information about the apparatus and the experimental procedure. (ASK)

  20. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  1. CO2 AND N-FERTILIZATION EFFECTS ON FINE ROOT LENGTH, PRODUCTION, AND MORTALITY: A 4-YEAR PONDEROSA PINE STUDY

    EPA Science Inventory

    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  2. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    NASA Astrophysics Data System (ADS)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  3. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed:more » benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.« less

  4. DETAILED ANALYSIS OF SOA ORIGINATING FROM THE PHOTOOXIDATION OF D-LIMONENE IN THE PRESENCE OF NO X AND UV LIGHT AND ITS IMPLICATION TO AMBIENT PM 2.5

    EPA Science Inventory

    A detailed analysis was carried out of the aerosol phase originated from the photooxidation of d-limonene in the presence of NOx and artificial light with the analytical emphasis on the identification of oxygenated organic compounds. The major components included six ...

  5. Underwater detectibility of a lighting system on a helicopter escape exit.

    PubMed

    O'Neill, Brendan D; Kozey, John W; Brooks, Chris J

    2004-06-01

    When a helicopter ditches into water, it immediately inverts due to the weight of the engines and then fills with water. Locating the emergency exit for escape under such conditions is a difficult task. A new lighting system for an escape exit has been developed that illuminates on contact with water. The detectibility of the lighting was investigated under varying conditions of ambient illumination, water turbidity, and viewing distance. A total of 288 underwater detection trials were carried out by 9 subjects with an illuminated hatch placed at 2 distances (1.5 m and 3.1 m), under 2 ambient illuminations (bright: > 3000 lux and dark: < 0.1 lux), and in 2 conditions of water turbidity. The water temperature was 12 degrees C for all conditions. At 1.5 m, the lighting system was detectable in less than 1.5 s by all subjects in both clear and turbid water and under both bright and dark conditions. At 3.1 m, the lights were detectable in both clear and turbid water under the dark condition and in clear water under the bright condition. However, the lighting was not reliably detected in turbid water under bright condition. The system met original design requirements in terms of detectibility at 1.5 m. The detection time was always under 1.5 s. It could also be detected at 3.1 m in clear and turbid water, under dark conditions. However, the detectibility at 3.1 m in turbid water, under bright condition was less reliable.

  6. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    PubMed Central

    2011-01-01

    Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687

  7. Radiative absorption enhancement from coatings on black carbon aerosols.

    PubMed

    Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao; Chen, Bing; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2016-05-01

    The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4±0.8m(2)g(-1) was enhanced to 9.6±1.8m(2)g(-1) at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (EMAC) rises from 1.4±0.3 in fresh combustion emissions to ~3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25±0.55, and sulfates were primary drivers of the enhanced BC absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A high-resolution ambient seismic noise model for Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  9. Ambient noise levels in mobile audiometric testing facilities: compliance with industry standards.

    PubMed

    Lankford, J E; Perrone, D C; Thunder, T D

    1999-04-01

    Excessive ambient noise levels in audiometric test booths may elevate and therefore invalidate hearing thresholds of employees included in a hearing conservation program. This study was conducted to determine if a sample of mobile test vans and trailers operating in the Midwest met the 1983 Occupational Safety and Health Administration (OSHA) maximum permissible ambient noise levels (MPANLs), the MPANLs in the American National Standards Institute (ANSI) S3.1-1991, and the suggested National Hearing Conservation Association (NHCA) values. Ambient noise levels were measured in 13 audiometric test booths contained in 12 different industrial mobile test vans and trailers operating in the Midwest. Results indicated that all 13 (100%) of the industrial mobile test vans and trailers evaluated complied with 1983 OSHA permissible levels and the NHCA 1996 recommended levels. With regard to the 1991 ANSI MPANLs, 5 (38%) of the 13 booths were in compliance at all frequencies. Those that failed did so at 125, 250, and 500 Hz. It appears that the NHCA levels need to be used for all hearing conservation programs with respect to compliance for noise levels in mobile audiometric test booths.

  10. Influence of the Environment on Body Temperature of Racing Greyhounds.

    PubMed

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted.

  11. Influence of the Environment on Body Temperature of Racing Greyhounds

    PubMed Central

    McNicholl, Jane; Howarth, Gordon S.; Hazel, Susan J.

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1–3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r2 = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38oC, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted. PMID:27446941

  12. Single photon detection imaging of Cherenkov light emitted during radiation therapy

    NASA Astrophysics Data System (ADS)

    Adamson, Philip M.; Andreozzi, Jacqueline M.; LaRochelle, Ethan; Gladstone, David J.; Pogue, Brian W.

    2018-03-01

    Cherenkov imaging during radiation therapy has been developed as a tool for dosimetry, which could have applications in patient delivery verification or in regular quality audit. The cameras used are intensified imaging sensors, either ICCD or ICMOS cameras, which allow important features of imaging, including: (1) nanosecond time gating, (2) amplification by 103-104, which together allow for imaging which has (1) real time capture at 10-30 frames per second, (2) sensitivity at the level of single photon event level, and (3) ability to suppress background light from the ambient room. However, the capability to achieve single photon imaging has not been fully analyzed to date, and as such was the focus of this study. The ability to quantitatively characterize how a single photon event appears in amplified camera imaging from the Cherenkov images was analyzed with image processing. The signal seen at normal gain levels appears to be a blur of about 90 counts in the CCD detector, after going through the chain of photocathode detection, amplification through a microchannel plate PMT, excitation onto a phosphor screen and then imaged on the CCD. The analysis of single photon events requires careful interpretation of the fixed pattern noise, statistical quantum noise distributions, and the spatial spread of each pulse through the ICCD.

  13. Climate change reverses the competitive balance of ash and beech seedlings under simulated forest conditions.

    PubMed

    Saxe, H; Kerstiens, G

    2005-07-01

    This study identifies the important role of climate change and photosynthetic photon flux density (PPFD) in the regenerative competence of ash and beech seedlings in 12 inter- and intra-specific competition designs in simulated mixed ash-beech forest gaps under conditions of non-limiting soil volume, water and nutrient supply. The growth conditions simulated natural forest conditions as closely as possible. Simulations were performed by growing interacting seedling canopies for one season in temperature-regulated closed-top chambers (CTCs). Eight CTCs were used in a factorial design with replicate treatments of [CO2] x temperature x PPFD x competition design. [CO2] tracked ambient levels or was 360 micromol mol-1 higher. Temperature tracked ambient levels or was 2.8 degrees C higher. PPFD on two plant tables inside each CTC was 16% and 5% of open-field levels, respectively, representative of typical light flux levels in a natural forest gap. In several of the competition designs, climate change made the ash seedlings grow taller than the beech seedlings and, at the same time, attain a larger leaf area and a larger total biomass. Advantages of this type for ash were found particularly at lower PPFD. There was a positive synergistic interaction of elevated temperature x [CO2] for both species, but more so for ash. There are many uncertainties when a study of chambered seedlings is to be projected to real changes in natural forests. Nevertheless, this study supports a possible future shift towards ash in north European, unmanaged, mixed ash-beech forests in response to the predicted climate change.

  14. Selection of Phototransduction Genes in Homo sapiens.

    PubMed

    Christopher, Mark; Scheetz, Todd E; Mullins, Robert F; Abràmoff, Michael D

    2013-08-13

    We investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level. SNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively. Six of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes. There is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.

  15. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors.

    PubMed

    Mallaney, Mary; Wang, Szu-Han; Sreedhara, Alavattam

    2014-01-01

    During a small-scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small-scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production. © 2014 American Institute of Chemical Engineers.

  16. Detection of wavelengths in the visible range using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Díaz, Leonardo; Morales, Yailteh; Mattos, Lorenzo; Torres, Cesar O.

    2013-11-01

    This paper shows the design and implementation of a fiber optic sensor for detecting and identifying wavelengths in the visible range. The system consists of a diffuse optical fiber, a conventional laser diode 650nm, 2.5mW of power, an ambient light sensor LX1972, a PIC 18F2550 and LCD screen for viewing. The principle used in the detection of the lambda is based on specular reflection and absorption. The optoelectronic device designed and built used the absorption and reflection properties of the material under study, having as active optical medium a bifurcated optical fiber, which is optically coupled to an ambient light sensor, which makes the conversion of light signals to electricas, procedure performed by a microcontroller, which acquires and processes the signal. To verify correct operation of the assembly were utilized the color cards of sewing thread and nail polish as samples for analysis. This optoelectronic device can be used in many applications such as quality control of industrial processes, classification of corks or bottle caps, color quality of textiles, sugar solutions, polymers and food among others.

  17. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  18. Humpback whale-generated ambient noise levels provide insight into singers' spatial densities.

    PubMed

    Seger, Kerri D; Thode, Aaron M; Urbán-R, Jorge; Martínez-Loustalot, Pamela; Jiménez-López, M Esther; López-Arzate, Diana

    2016-09-01

    Baleen whale vocal activity can be the dominant underwater ambient noise source for certain locations and seasons. Previous wind-driven ambient-noise formulations have been adjusted to model ambient noise levels generated by random distributions of singing humpback whales in ocean waveguides and have been combined to a single model. This theoretical model predicts that changes in ambient noise levels with respect to fractional changes in singer population (defined as the noise "sensitivity") are relatively unaffected by the source level distributions and song spectra of individual humpback whales (Megaptera novaeangliae). However, the noise "sensitivity" does depend on frequency and on how the singers' spatial density changes with population size. The theoretical model was tested by comparing visual line transect surveys with bottom-mounted passive acoustic data collected during the 2013 and 2014 humpback whale breeding seasons off Los Cabos, Mexico. A generalized linear model (GLM) estimated the noise "sensitivity" across multiple frequency bands. Comparing the GLM estimates with the theoretical predictions suggests that humpback whales tend to maintain relatively constant spacing between one another while singing, but that individual singers either slightly increase their source levels or song duration, or cluster more tightly as the singing population increases.

  19. Dissecting the determinants of light sensitivity in amphioxus microvillar photoreceptors: possible evolutionary implications for melanopsin signaling.

    PubMed

    Ferrer, Camilo; Malagón, Gerardo; Gomez, María Del Pilar; Nasi, Enrico

    2012-12-12

    Melanopsin, a photopigment related to the rhodopsin of microvillar photoreceptors of invertebrates, evolved in vertebrates to subserve nonvisual light-sensing functions, such as the pupillary reflex and entrainment of circadian rhythms. However, vertebrate circadian receptors display no hint of a microvillar specialization and show an extremely low light sensitivity and sluggish kinetics. Recently in amphioxus, the most basal chordate, melanopsin-expressing photoreceptors were characterized; these cells share salient properties with both rhabdomeric photoreceptors of invertebrates and circadian receptors of vertebrates. We used electrophysiology to dissect the gain of the light-transduction process in amphioxus and examine key features that help outline the evolutionary transition toward a sensor optimized to report mean ambient illumination rather than mediating spatial vision. By comparing the size of current fluctuations attributable to single photon melanopsin isomerizations with the size of single-channels activated by light, we concluded that the gain of the transduction cascade is lower than in rhabdomeric receptors. In contrast, the expression level of melanopsin (gauged by measuring charge displacements during photo-induced melanopsin isomerization) is comparable with that of canonical visual receptors. A modest amplification in melanopsin-using receptors is therefore apparent in early chordates; the decrease in photopigment expression-and loss of the anatomical correlates-observed in vertebrates subsequently enabled them to attain the low photosensitivity tailored to the role of circadian receptors.

  20. Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California.

    PubMed

    McDonald, Mark A; Hildebrand, John A; Wiggins, Sean M

    2006-08-01

    Recent measurement at a previously studied location illustrates the magnitude of increases in ocean ambient noise in the Northeast Pacific over the past four decades. Continuous measurements west of San Nicolas Island, California, over 138 days, spanning 2003-2004 are compared to measurements made during the 1960s at the same site. Ambient noise levels at 30-50 Hz were 10-12 dB higher (95% CI = 2.6 dB) in 2003-2004 than in 1964-1966, suggesting an average noise increase rate of 2.5-3 dB per decade. Above 50 Hz the noise level differences between recording periods gradually diminished to only 1-3 dB at 100-300 Hz. Above 300 Hz the 1964-1966 ambient noise levels were higher than in 2003-2004, owing to a diel component which was absent in the more recent data. Low frequency (10-50 Hz) ocean ambient noise levels are closely related to shipping vessel traffic. The number of commercial vessels plying the world's oceans approximately doubled between 1965 and 2003 and the gross tonnage quadrupled, with a corresponding increase in horsepower. Increases in commercial shipping are believed to account for the observed low-frequency ambient noise increase.

  1. Effects of color combination and ambient illumination on visual perception time with TFT-LCD.

    PubMed

    Lin, Chin-Chiuan; Huang, Kuo-Chen

    2009-10-01

    An empirical study was carried out to examine the effects of color combination and ambient illumination on visual perception time using TFT-LCD. The effect of color combination was broken down into two subfactors, luminance contrast ratio and chromaticity contrast. Analysis indicated that the luminance contrast ratio and ambient illumination had significant, though small effects on visual perception. Visual perception time was better at high luminance contrast ratio than at low luminance contrast ratio. Visual perception time under normal ambient illumination was better than at other ambient illumination levels, although the stimulus color had a confounding effect on visual perception time. In general, visual perception time was better for the primary colors than the middle-point colors. Based on the results, normal ambient illumination level and high luminance contrast ratio seemed to be the optimal choice for design of workplace with video display terminals TFT-LCD.

  2. Electrophysiology and Innervation of the Photosensitive Epistellar Body in the Lesser Octopus Eledone cirrhosa.

    PubMed

    Cobb, C S; Williamson, R

    1998-08-01

    The innervation and responses to light of the cephalopod epistellar body were investigated in preparations isolated from the stellate ganglia of the lesser or northern octopus, Eledone cirrhosa. Extracellular generator potentials in response to flashes of light were recorded from these photosensitive vesicles, with the amplitude of the response being found to be dependent upon the intensity of the flash and the level of ambient illumination. Intracellular recordings from photoreceptor cells of the epistellar body showed that they had resting potentials of about -49 +/- 7 mV (mean +/- SD, n = 43) and were depolarized by flashes of white, but not red (>650 nm) light. The evoked depolarization consisted of a transient component, followed by a steady plateau in which the amplitude of the depolarization was well correlated with the log of the stimulus intensity. The evoked depolarizations induced action potentials in the photoreceptor cells, with the frequency of firing being well correlated with the stimulus intensity. The morphologies of individual photoreceptor cells were visualized by intracellular injections of the fluorescent dye Lucifer yellow, and the path of the epistellar nerve across the stellate ganglion, into the pallial nerve, toward the brain was traced using the lipophilic dye Di-I. This pathway was confirmed physiologically by recording light-evoked responses from the cut end of the pallial nerve.

  3. A self-photoprotection mechanism helps Stipa baicalensis adapt to future climate change

    PubMed Central

    Song, Xiliang; Zhou, Guangsheng; Xu, Zhenzhu; Lv, Xiaomin; Wang, Yuhui

    2016-01-01

    We examined the photosynthetic responses of Stipa baicalensis to relative long-term exposure (42 days) to the predicted elevated temperature and water availability changes to determine the mechanisms through which the plant would acclimate to future climate change. Two thermal regimes (ambient and +4 °C) and three irrigation levels (partial, normal and excess) were used in environmental control chambers. The gas exchange parameters, light response curves and A/Ci curves were determined. The elevated temperature and partial irrigation reduced the net photosynthetic rate due to a limitation in the photosynthetic capacity instead of the intercellular CO2 concentration. Partial irrigation decreased Rubisco activation and limited RuBP regeneration. The reduction in Vcmax increased with increasing temperature. Excess irrigation offset the negative effect of drought and led to a partial recovery of the photosynthetic capacity. Although its light use efficiency was restricted, the use of light and dark respiration by Stipa baicalensis was unchanged. We concluded that nonstomatal limitation was the primary reason for photosynthesis regulation in Stipa baicalensis under relative long-term climate change conditions. Although climate change caused reductions in the light use efficiency and photosynthetic rate, a self-photoprotection mechanism in Stipa baicalensis resulted in its high ability to maintain normal live activities. PMID:27161934

  4. Carbon monoxide levels in athletes during exercise in an urban environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honigman, B.; Cromer, R.; Kurt, T.L.

    Thirty-six nonsmoking adults were tested on 7 days of different ambient CO pollution between December 1978 and March 1979. Only runners who jogged daily for longer than 6 months and averaged 21 miles/week were chosen. It was found that submaximal exercise can proceed safely with a net loss of expired breath CO at ambient CO levels of 6.5 ppM and below, while ambient levels above 6.5 ppM result in a net gain of biologically acquired CO. Further study was recommended. (JMT)

  5. Influence of non-line of sight luminescent emitters in visible light communication systems

    NASA Astrophysics Data System (ADS)

    Ghorai, Anaranya; Walvekar, Pratik; Nayak, Shreyas; Narayan, K. S.

    2018-01-01

    We introduce and demonstrate concepts which utilize the non-line of sight fraction of light incident on a detector assembly in a visible-light communication (VLC) system. In addition to ambient light, realistic enclosures where VLC is implemented consist of a sizable fraction of scattered and reflected light. We present results of VLC systems with detectors responding to contributions from the light source scattered off a surface embedded with fluorescent and phosphorescent emitters besides the direct line of sight signal. Contribution from the emitters takes a form of discernible fluctuations in the detector signal. The implication of our results from noise analysis of these fluctuations indicates the possibility of utilizing smart coatings to further tailor VLC capabilities.

  6. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  7. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  8. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  9. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  10. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  11. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  12. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  13. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  14. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by a...

  15. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by a...

  16. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.6 National primary and secondary ambient air quality standards for PM10. (a) The level of the national...

  17. Examining the free radical bonding mechanism of benzoquinone- and hydroquinone-methanol passivation of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Kotulak, Nicole A.; Chen, Meixi; Schreiber, Nikolas; Jones, Kevin; Opila, Robert L.

    2015-11-01

    The surface passivation of p-benzoquinone (BQ) and hydroquinone (HQ) when dissolved in methanol (ME) has been examined through effective lifetime testing of crystalline silicon (c-Si) wafers treated with the aforementioned solutions. Changes in the availability of both photons and protons in the solutions were demonstrated to affect the level of passivation achieved. The requirement of both excess protons and ambient light exposure to maintain high effective lifetimes supports the presence of a free radical species that drives the surface passivation. Surface analysis suggests a 1:1 ratio of HQ-like bonds to methoxy bonds on the c-Si surface after treatment with a BQ/ME solution.

  18. Pulsed-light imaging for fluorescence guided surgery under normal room lighting

    PubMed Central

    Sexton, Kristian; Davis, Scott C.; McClatchy, David; Valdes, Pablo A.; Kanick, Stephen C.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.

    2013-01-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required bycurrent FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room lightby using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protopor-phyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo. PMID:23988926

  19. Ocular diurnal rhythms and eye growth regulation: Where we are 50 years after Lauber

    PubMed Central

    Nickla, Debora L.

    2013-01-01

    Many ocular processes show diurnal oscillations that optimize retinal function under the different conditions of ambient illumination encountered over the course of the 24 h light/dark cycle. Abolishing the diurnal cues by the use of constant darkness or constant light results in excessive ocular elongation, corneal flattening, and attendant refractive errors. A prevailing hypothesis is that the absence of the Zeitgeber of light and dark alters ocular circadian rhythms in some manner, and results in an inability of the eye to regulate its growth in order to achieve emmetropia, the matching of the front optics to eye length. Another visual manipulation that results in the eye growth system going into a “default” mode of excessive growth is form deprivation, in which a translucent diffuser deprives the eye of visual transients (spatial or temporal) while not significantly reducing light levels; these eyes rapidly elongate and become myopic. It has been hypothesized that form deprivation might constitute a type of “constant condition” whereby the absence of visual transients drives the eye into a similar default mode as that in response to constant light or dark. Interest in the potential influence of light cycles and ambient lighting in human myopia development has been spurred by a recent study showing a positive association between the amount of time that children spent outdoors and a reduced prevalence of myopia. The growing eyes of chickens and monkeys show a diurnal rhythm in axial length: Eyes elongate more during the day than during the night. There is also a rhythm in choroidal thickness that is in approximate anti-phase to the rhythm in eye length. The phases are altered in eyes growing too fast, in response to form deprivation or negative lenses, or too slowly, in response to myopic defocus, suggesting an influence of phase on the emmetropization system. Other potential rhythmic influences include dopamine and melatonin, which form a reciprocal feedback loop, and signal “day” and “night” respectively. Retinal dopamine is reduced during the day in form deprived myopic eyes, and dopamine D2 agonists inhibit ocular growth in animal models. Rhythms in intraocular pressure as well, may influence eye growth, perhaps as a mechanical stimulus triggering changes in scleral extracellular matrix synthesis. Finally, evidence shows varying influences of environmental lighting parameters on the emmetropization system, such as high intensity light being protective against myopia in chickens. This review will cover the evidence for the possible influence of these various factors on ocular growth. The recognition that ocular rhythms may play a role in emmetropization is a first step toward understanding how they may be manipulated in treatment therapies to prevent myopia in humans. PMID:23298452

  20. Re-analysis of the association of temperature or sunshine with hyperthymic temperament using lithium levels of drinking water.

    PubMed

    Matsuzaki, Hideki; Terao, Takeshi; Inoue, Takeshi; Takaesu, Yoshikazu; Ishii, Nobuyoshi; Kohno, Kentaro; Takeshima, Minoru; Baba, Hajime; Honma, Hiroshi

    2017-12-01

    The Japanese archipelago stretches over 4000km from north to south and has four large islands: Hokkaido, Honshu, Shikoku, and Kyushu. Previously, using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego-auto questionnaire version (TEMPS-A), we compared the hyperthymic scores of residents in Sapporo, Obihiro, Takaoka, Koshigaya, and Oita cities (which are located at latitudes of 43°N, 42°N, 36°N, 36°N and 33°N with various combinations of ambient temperament and sunshine in Japan, respectively). We found that latitude predicted significant variance in hyperthymic temperament, and that ambient temperature, but not sunshine, significantly affected hyperthymic temperament scores. However, the analysis failed to consider the effects of naturally occurring low-dose lithium on temperament. In addition to the TEMPS-A data previously collected, we measured lithium levels of the five cities. The effect of temperature, sunshine, and lithium levels on hyperthymic temperament was analyzed for the five cities. A stepwise multiple regression analysis revealed that lithium levels as well as latitude, but not temperature or sunshine, predicted significant variance in hyperthymic temperament scores. Hyperthymic temperament scores were significantly and positively associated with lithium levels whereas they were significantly and negatively associated with latitude. The light, temperature, lithium exposure that residents actually received was not measured. The number of regions studied was limited. The findings might not be generalized to residents across Japan or other countries. The present findings suggest that lithium in drinking water may positively maintain hyperthymic temperament, and that latitude may negatively maintain it. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Interfacial Energy-Level Alignment for High-Performance All-Inorganic Perovskite CsPbBr3 Quantum Dot-Based Inverted Light-Emitting Diodes.

    PubMed

    Subramanian, Alagesan; Pan, Zhenghui; Zhang, Zhenbo; Ahmad, Imtiaz; Chen, Jing; Liu, Meinan; Cheng, Shuang; Xu, Yijun; Wu, Jun; Lei, Wei; Khan, Qasim; Zhang, Yuegang

    2018-04-18

    All-inorganic perovskite light-emitting diode (PeLED) has a high stability in ambient atmosphere, but it is a big challenge to achieve high performance of the device. Basically, device design, control of energy-level alignment, and reducing the energy barrier between adjacent layers in the architecture of PeLED are important factors to achieve high efficiency. In this study, we report a CsPbBr 3 -based PeLED with an inverted architecture using lithium-doped TiO 2 nanoparticles as the electron transport layer (ETL). The optimal lithium doping balances the charge carrier injection between the hole transport layer and ETL, leading to superior device performance. The device exhibits a current efficiency of 3 cd A -1 , a luminance efficiency of 2210 cd m -2 , and a low turn-on voltage of 2.3 V. The turn-on voltage is one of the lowest values among reported CsPbBr 3 -based PeLEDs. A 7-fold increase in device efficiencies has been obtained for lithium-doped TiO 2 compared to that for undoped TiO 2 -based devices.

  2. Electric Power Load Analysis (EPLA) for Surface Ships

    DTIC Science & Technology

    2012-09-17

    112 - Shipping: Emergency Lighting And Power Systems (Copies of this document are available from the Superintendent of Documents, U.S. Government...number of (dry bulb ) temperature/relative humidity ambient conditions and an associated percentage of time the ship is spent operating in the particular...propulsion cannot be otherwise restored in less than 2 minutes. c. Machinery space class W and circle W ventilation. d. Emergency lighting . DDS 310-1

  3. The effects of direct-current magnetic fields on turtle retinas vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raybourn, M.S.

    1983-05-13

    Direct-current magnetic fields of 10 to 100 gauss cause a significant short-term reduction of the in vitro electroretinographic b-wave response in turtle retina. This response compression is not accompanied by the usual reduction in retinal sensitivity that occurs with background illumination. Furthermore, this effect is obtained only briefly after the offset of ambient lighting in the diurnal light-dark cycle of nonhibernating animals.

  4. Design and technical evaluation of fibre-coupled Raman probes for the image-guided discrimination of cancerous skin

    NASA Astrophysics Data System (ADS)

    Schleusener, J.; Reble, C.; Helfmann, J.; Gersonde, I.; Cappius, H.-J.; Glanert, M.; Fluhr, J. W.; Meinke, M. C.

    2014-03-01

    Two different designs for fibre-coupled Raman probes are presented that are optimized for discriminating cancerous and normal skin by achieving high epithelial sensitivity to detect a major component of the Raman signal from the depth range of the epithelium. This is achieved by optimizing Raman spot diameters to the range of ≈200 µm, which distinguishes this approach from the common applications of either Raman microspectroscopy (1-5 µm) or measurements on larger sampling volume using spot sizes of a few mm. Video imaging with a depicted area in the order of a few cm, to allow comparing Raman measurements to the location of the histo-pathologic findings, is integrated in both designs. This is important due to the inhomogeneity of cancerous lesions. Video image acquisition is achieved using white light LED illumination, which avoids ambient light artefacts. The design requirements focus either on a compact light-weight configuration, for pen-like handling, or on a video-visible measurement spot to enable increased positioning accuracy. Both probes are evaluated with regard to spot size, Rayleigh suppression, background fluorescence, depth sensitivity, clinical handling and ambient light suppression. Ex vivo measurements on porcine ear skin correlates well with findings of other groups.

  5. Dependency between light intensity and refractive development under light-dark cycles.

    PubMed

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Solomon, Arieh S; Polat, Uri

    2011-01-01

    The emmetropization process involves fine-tuning the refractive state by altering the refractive components toward zero refraction. In this study, we provided light-dark cycle conditions at several intensities and examined the effect of light intensity on the progression of chicks' emmetropization. Chicks under high-, medium-, and low-light intensities (10,000, 500, and 50 lux, respectively) were followed for 90 days by retinoscopy, keratometry, as well as ultrasound measurements. Emmetropization was reached from days 30-50 and from days 50-60 for the low- and medium-intensity groups, respectively. On day 90, most chicks in the low-intensity group were myopic, with a mean refraction of -2.41D (95% confidence interval (CI) -2.9 to -1.8D), whereas no chicks in the high-intensity group developed myopia, but they exhibited a stable mean hyperopia of +1.1D. The medium-intensity group had a mean refraction of +0.03D. The low-intensity group had a deeper vitreous chamber depth and a longer axial length compared with the high-intensity group, and shifted refraction to the myopic side. The low-intensity group had a flatter corneal curvature, a deeper anterior chamber, and a thinner lens compared with the high-intensity group, and shifted refraction to the hyperopic side. In all groups the corneal power was correlated with the three examined levels of log light intensity for all examined times (e.g., day 20 r = 0.6 P < 0.0001, day 90 r = 0.56 P < 0.0001). Thus, under light-dark cycles, light intensity is an environmental factor that modulates the process of emmetropization, and the low intensity of ambient light is a risk factor for developing myopia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong

    2012-10-01

    This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.

  7. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    PubMed

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  8. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  9. California Publicly-Owned Utilities (POUs) – LBNL ‘Beyond Widgets’ Project. Task: ambient lighting and occupancy-based plug load control. System Program Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Mathew, Paul A.; Regnier, Cynthia

    This program manual contains detailed technical information for implementing an incentive program for task-ambient lighting and occupancy-based plug load control. This manual was developed by Lawrence Berkeley National Laboratory, in collaboration with the California Publicly-Owned Utilities (CA POUs) as a partner in the ‘Beyond Widgets’ program funded by the U.S. Department of Energy Building Technologies Office. The primary audience for this manual is the program staff of the various CA POUs. It may also be used by other utility incentive programs to help develop similar programs. It is anticipated that the content of this manual be utilized by the CAmore » POU staff for developing related documents such as the Technical Resource Manual and other filings pertaining to the rollout of an energy systems-based rebate incentive program.« less

  10. Assessing the effect of marginal water use efficiency on water use of loblolly pine and sweetgum in ambient and elevated CO2 conditions

    NASA Astrophysics Data System (ADS)

    Kim, D.; Medvigy, D.; Xu, X.; Oren, R.; Ward, E. J.

    2017-12-01

    Stomata are the common pathways through which diffusion of CO2 and water vapor take place in a plant. Therefore, the responses of stomatal conductance to environmental conditions are important to quantify carbon assimilation and water use of plants. In stomatal optimality theory, plants may adjust the stomatal conductance to maximize carbon assimilation for a given water availability. The carbon cost for unit water loss, marginal water use efficiency (λ), depends on changes in atmospheric CO2 concentration and pre-dawn leaf water potential. The relationship can be described by λ with no water stress (λ0) and the sensitivity of λ to pre-dawn leaf water potential (β0), which may vary by plant functional type. Assessment of sensitivity of tree and canopy water use to those parameters and the estimation of the parameters for individual plant functional type or species are needed. We modeled tree water use of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in ambient and elevated CO2 (+200 µmol mol-1) at the Duke Forest free-air CO2 enrichment (FACE) site with Ecosystem Demography model 2 (ED2), a demographic terrestrial biosphere model that scales up individual-level competition for light, water and nutrients to the ecosystem-level. Simulated sap flux density for different tree size classes and species was compared to observations. The sensitivity analysis with respect to the model's hydraulic parameters was performed. The initial results showed that the impacts of λ on tree water use were greater than other hydraulic traits in the model, such as vertical hydraulic conductivity and leaf and stem capacitance. With 10% increase in λ, modeled water flow from root to leaf decreased by 2.5 and 1.6% for P. taeda and by 7.9 and 5.1% for L. styraciflua in ambient and elevated CO2 conditions, respectively. Values of hydraulic traits (λ0 and β0) for P. taeda and L. styraciflua in ambient an elevated CO2 conditions were also suggested.

  11. UV dose measurements of photosensitive dermatosis patients by polycrystalline GaN-based portable self-data-acquisition UV monitors.

    PubMed

    Yagi, Shigeru; Iwanaga, Takeshi; Kojima, Hiroshi; Shoji, Yoshio; Suzuki, Seiji; Seno, Kunihiro; Mori, Hisayoshi; Tokura, Yoshiki; Takigawa, Masahiro; Moriwaki, Shin-Ichi

    2002-12-01

    We have developed a UV monitor with polycrystalline (poly-) gallium nitride (GaN) UV sensors and evaluated its performance from the viewpoint of its effectiveness for use with photosensitive dermatosis patients. The poly-GaN UV sensor is sensitive to UV light from 280 to 410 nm even without optical filters. The UV monitor is a portable self-data-acquisition instrument with a minimum detection level (defined as average UV intensity over 290 to 400 nm) of 2 microW/cm2 and can store UV dose data for 128 days. It allows easy measurement of four orders of magnitude of ambient UV intensity and dose from indoor light to direct solar radiation in summer. Trial use of the UV monitor by five xeroderma pigmentosum patients started in June 2000 and was carried out for 1 year. It was demonstrated that the UV monitor was useful in improving their quality of life.

  12. Highly reactive light-dependent monoterpenes in the Amazon

    DOE PAGES

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; ...

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore » of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  13. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  14. Assessment of ambient noise levels in the urban residential streets of Eastern Alexandria, Egypt.

    PubMed

    Zaki, Gehan R

    2012-12-01

    Street of Alexandria have numerous unplanned, mixed, and noisy activities that may interfere with public health and comfort. The aim of this study was to assess A-weighted ambient noise levels in urban residential streets of Eastern Alexandria, Egypt, from September 2010 to January 2011, with the objective of recommending corrective actions to minimize high noise levels. A descriptive cross-sectional study was carried out, in which A-weighted ambient noise levels were measured on the basis of 24-h periods, using Ono sokki la-5120--precision integrating sound level meter, from September 2010 to January 2011. The measurements were taken on three streets, which were selected using stratified random sampling. Seven measurement sites, along the three streets under study, were selected by site visits according to predetermined criteria. A-weighted ambient noise levels (LAeq) were the highest [70.7 (24.2) dB] on high-traffic-density and high-human-activity streets followed by streets with moderate and low traffic density and human activity [67.5 (31.3) and 62.8 (38.2) dB], respectively. It varied significantly depending on means of transportation (road traffic, train, and/or tram) and human activities (parking lots, shops, and/or street merchants). The A-weighted ambient noise levels on urban residential streets of Eastern Alexandria, Egypt, exceeded the Egyptian National Standards during the three periods of the day (daytime, evening, and night), except in some relatively quiet locations during the night. Consequently, remedial actions to reduce noise levels were recommended.

  15. Thin-film transistors based on poly(3,3‴-dialkyl-quarterthiophene) and zinc oxide nanowires with improved ambient stability

    NASA Astrophysics Data System (ADS)

    Vieira, Sara M. C.; Hsieh, Gen-Wen; Unalan, Husnu E.; Dag, Sefa; Amaratunga, Gehan A. J.; Milne, William I.

    2011-03-01

    The ambient stability of thin-film transistors (TFTs) based on zinc oxide (ZnO) nanowires embedded in poly(3,3‴-dialkyl-quarterthiophene) was monitored through time dependence of electrical characteristics over a period of 16 months. The hybrid-based TFT showed an initial hole mobility in the linear regime of 4.2×10-4 cm2/V s. After 16 months storage in ambient conditions (exposed to air, moisture, and light) the mobility decreased to 2.3×10-5 cm2/V s. Comparatively the organic-based TFT lost total carrier mobility after one month storage making the hybrid-based TFTs more suitable for transistor applications when improved stability combined with structural flexibility are required.

  16. Ambient air monitoring of Beijing MSW logistics facilities in 2006.

    PubMed

    Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu

    2008-11-01

    In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.

  17. Lack of exposure to natural light in the workspace is associated with physiological, sleep and depressive symptoms.

    PubMed

    Harb, Francine; Hidalgo, Maria Paz; Martau, Betina

    2015-04-01

    The diurnal light cycle has a crucial influence on all life on earth. Unfortunately, modern society has modified this life-governing cycle by stressing maximum production and by giving insufficient attention to the ecological balance and homeostasis of the human metabolism. The aim of this study is to evaluate the effects of exposure or lack of exposure to natural light in a rest/activity rhythm on cortisol and melatonin levels, as well as on psychological variables in humans under natural conditions. This is a cross-sectional study. The subjects were allocated split into two groups according to their workspace (10 employees in the "with window" group and 10 in the "without window" group). All participants were women and wore anactigraph (Actiwatch 2, Philips Respironics), which measures activity and ambient light exposure, for seven days. Concentrations of melatonin and cortisol were measured from the saliva samples. Participants were instructed to collect saliva during the last day of use of the actigraph at 08:00 am, 4:00 pm and 10:00 pm. The subjects answered the Self-Reporting Questionnaire-20 (SRQ-20) to measure the presence of minor psychiatric disorders; the Montgomery-Asberg (MA) scale was used to measure depression symptoms, and the Pittsburgh Sleep Quality Index questionnaire (PSQI) was used to evaluate the quality of sleep. The Rayleigh analysis indicates that the two groups, "with window" an d "without window", exhibited similar activities and light acrophases. In relation to light exposure, the mesor was significantly higher (t = -2.651, p = 0.023) in t he "with window" group (191.04 ± 133.36) than in the "without window" group (73.8 ± 42.05). Additionally, the "with window" group presented the highest amplitude of light exposure (298.07 ± 222.97). Cortisol levels were significantly different between the groups at 10:00 pm (t = 3.009, p = 0.008; "without window" (4.01 ± 0.91) "with window" (3.10 ± 0.30)). In terms of the melatonin levels, the groups differed at two different times of day: 08:00 am (t = 2.593, p = 0.018) and 10:00 pm (t = -2.939, p = 0.009). The "with window" group had a lower melatonin level at 08:00 am (3.54 ± 0.60) but a higher level at 10:00 pm (24.74 ± 4.22) than the "without window" group. Higher cortisol levels were positively correlated with minor psychiatric disorders and depressive symptoms (MA) at 10:00 pm. Lower melatonin levels at 10:00 pm were correlated with depressive symptoms and poor quality of sleep (PSQI). Our study demonstrated that not only may light pollution affect human physiology but also lack of exposure to natural light is related to high levels of cortisol and lower levels of melatonin at night, and these, in turn, are related to depressive symptoms and poor quality of sleep.

  18. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird

    PubMed Central

    Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa

    2016-01-01

    Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315

  19. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    NASA Astrophysics Data System (ADS)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  20. Testing pop-up satellite tags as a tool for identifying critical habitat for Pacific halibut (Hippoglossus stenolepis) in the Gulf of Alaska

    USGS Publications Warehouse

    Seitz, Andrew C.; Wilson, Derek; Nielsen, Jennifer L.

    2002-01-01

    To maintain healthy commercial and sport fisheries for Pacific halibut (Hippoglossus stenolepis), critical habitat must be defined by determining life history patterns on a daily and seasonal basis. Pop-up satellite archival transmitting (PSAT) tags provide a fisheries-independent method of collecting environmental preference data (depth and ambient water temperature) as well as daily geolocation estimates based on ambient light conditions. In this study, 14 adult halibut (107-165 cm FL) were tagged and released with PSAT tags in and around Resurrection Bay, Alaska. Commercial fishermen recovered two tags, while five tags transmitted data to ARGOS satellites. Horizontal migration was not consistent among fish as three halibut remained in the vicinity of release while four traveled up to 358 km from the release site. Vertical migration was not consistent among fish and over time, but they spent most their time between 150-350 m. The minimum and maximum depths reached by any of the halibut were 2m and 502m, respectively. The fish preferred water temperatures of roughly 6 °C while experiencing ambient temperatures between 4.3 °C and 12.2 °C. Light attenuation with depth prevented existing geolocation software and light sensing hardware from accurately estimating geoposition, however, information from temperature, depth, ocean bathymetry, and pop-off locations provided inference on fish movement in the study area. PSAT tags were a viable tool for determining daily and seasonal behavior and identifying critical halibut habitat, which will aid fisheries managers in future decisions regarding commercial and sport fishing regulations.

  1. Effects of Desiccation Practices of Cultured Atlantic Oysters (Crassostrea virginica) on Vibrio spp. in Portersville Bay, Alabama, USA.

    PubMed

    Grodeska, Stephanie M; Jones, Jessica L; Arias, Covadonga R; Walton, William C

    2017-08-01

    The expansion of off-bottom aquaculture to the Gulf of Mexico has raised public health concerns for human health officials. High temperatures in the Gulf of Mexico are associated with high levels of Vibrio parahaemolyticus and Vibrio vulnificus. Routine desiccation practices associated with off-bottom aquaculture expose oysters to ambient air, allowing Vibrio spp. to proliferate in the closed oyster. Currently, there is limited research on the length of time needed for Vibrio spp. levels in desiccated oysters to return to background levels, defined as the levels found in oysters that remain continually submersed and not exposed to ambient air. This study determined the time needed to return V. parahaemolyticus, V. vulnificus, and Vibrio cholerae levels to background levels in oysters exposed to the following desiccation practices: 3-h freshwater dip followed by 24-h ambient air exposure, 27-h ambient air exposure, and control. All oysters were submerged at least 2 weeks prior to the beginning of each trial, with the control samples remaining submerged for the duration of each trial. Vibrio spp. levels were enumerated from samples collected on days 0, 1, 2, 3, 7, 10, and 14 after resubmersion using a three-tube most-probable-number enrichment followed by BAX PCR. V. cholerae levels were frequently (92%) below the limit of detection at all times, so they were not statistically analyzed. V. parahaemolyticus and V. vulnificus levels in the 27-h ambient air exposure and the 3-h freshwater dip followed by 24-h ambient air exposure samples were significantly elevated compared with background samples. In most cases, the Vibrio spp. levels in oysters in both desiccation treatments remained elevated compared with background levels until 2 or 3 days post-resubmersion. However, there was one trial in which the Vibrio spp. levels did not return to background levels until day 7. The results of this study provide scientific support that oyster farmers should be required to implement a minimum 7-day resubmersion regimen. This length of time allowed the Vibrio spp. levels to become not significantly different across all treatments.

  2. Long- and short-term photoacclimation in epipsammon from non-tidal coastal shallows compared to epipelon from intertidal mudflat

    NASA Astrophysics Data System (ADS)

    Pniewski, Filip F.; Richard, Pierre; Latała, Adam; Blanchard, Gerard

    2018-06-01

    Long- and short-term photoacclimation and their interaction were determined in two types of microphytobenthos assemblages, i.e. epipelon from an intertidal mudflat and epipsammon from non-tidal sandy coastal shallows collected during summer and autumn months. Microphytobenthos photophysiology was assessed from steady-state light curve (SSLC) and rapid light-response curves (RLC) of variable chlorophyll fluorescence. The epipelon was low light acclimated, whereas in the epipsammon high light acclimation was observed. The epipelon turned out to be more susceptible to high light and in autumn a clear down turn in the relative electron transport rates was recorded. Long-term photoacclimation strongly affected both microphytobenthos types' short-term light responses. The epipelon acclimated to high ambient light intensities through the decreased light absorption and energy dissipation. The epipsammon, on the other hand, developed physiological flexibility allowing efficient use of the absorbed light and thus providing protection against higher irradiance.

  3. Enhancing the performance of tungsten doped InZnO thin film transistors via sequential ambient annealing

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Woo; Song, Aeran; Kwon, Sera; Choi, Dukhyun; Kim, Younghak; Jun, Byung-Hyuk; Kim, Han-Ki; Chung, Kwun-Bum

    2018-03-01

    This study suggests a sequential ambient annealing process as an excellent post-treatment method to enhance the device performance and stability of W (tungsten) doped InZnO thin film transistors (WIZO-TFTs). Sequential ambient annealing at 250 °C significantly enhanced the device performance and stability of WIZO-TFTs, compared with other post-treatment methods, such as air ambient annealing and vacuum ambient annealing at 250 °C. To understand the enhanced device performance and stability of WIZO-TFT with sequential ambient annealing, we investigate the correlations between device performance and stability and electronic structures, such as band alignment, a feature of the conduction band, and band edge states below the conduction band. The enhanced performance of WIZO-TFTs with sequential ambient annealing is related to the modification of the electronic structure. In addition, the dominant mechanism responsible for the enhanced device performance and stability of WIZO-TFTs is considered to be a change in the shallow-level and deep-level band edge states below the conduction band.

  4. The infant incubator in the neonatal intensive care unit: unresolved issues and future developments.

    PubMed

    Antonucci, Roberto; Porcella, Annalisa; Fanos, Vassilios

    2009-01-01

    Since the 19th century, devices termed incubators were developed to maintain thermal stability in low birth weight (LBW) and sick newborns, thus improving their chances of survival. Remarkable progress has been made in the production of infant incubators, which are currently highly technological devices. However, they still need to be improved in many aspects. Regarding the temperature and humidity control, future incubators should minimize heat loss from the neonate and eddies around him/her. An unresolved issue is exposure to high noise levels in the Neonatal Intensive Care Unit (NICU). Strategies aimed at modifying the behavior of NICU personnel, along with structural improvements in incubator design, are required to reduce noise exposure. Light environment should be taken into consideration in designing new models of incubators. In fact, ambient NICU illumination may cause visual pathway sequelae or possibly retinopathy of prematurity (ROP), while premature exposure to continuous lighting may adversely affect the rest-activity patterns of the newborn. Accordingly, both the use of incubator covers and circadian lighting in the NICU might attenuate these effects. The impact of electromagnetic fields (EMFs) on infant health is still unclear. However, future incubators should be designed to minimize the EMF exposure of the newborn.

  5. Stainless steel in coastal seawater: sunlight counteracts biologically enhanced cathodic kinetics.

    PubMed

    Eashwar, M; Lakshman Kumar, A; Sreedhar, G; Kennedy, J; Suresh Bapu, R H

    2014-09-01

    The influence of sunlight of varying intensity on the performance of UNS S30400 stainless steel (SS) was explored under conditions of natural biofilm development in coastal seawater. In a series of tests performed outdoors under an opaque roof, a range of shades were fashioned to impart varied amounts of diurnal light. These were an ambient level where the underwater illumination was ~ 5% of full sunlight, two intermediate ranges of lighting with ~ 2.5% and ~ 1% of the daylight, and a condition of full darkness. In comparison with the dark, increments of sunlight rendered the SS progressively less aggressive as cathodes in galvanic couples with UNS C70600 alloy. Likewise, welded SS with pre-initiated localized corrosion sites exhibited substantially lower rates of propagation with light. Thus, biofilms and sunlight affected cathodic kinetics in opposite ways. Surface analytical tests showed that the accumulation of manganese (Mn) within the biofilms was small relative to reports from waters of lower salinity. These results not only reveal that extremely low amounts of sunlight are adequate to offset the microbial effect, but also highlight the lack of convincing evidence for Mn cycling as a potent mechanism for enhanced cathodic kinetics in full-strength seawater.

  6. Refinement of a limit cycle oscillator model of the effects of light on the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Kronauer, R. E.; Brown, E. N. (Principal Investigator)

    1998-01-01

    In 1990, Kronauer proposed a mathematical model of the effects of light on the human circadian pacemaker. Although this model predicted many general features of the response of the human circadian pacemaker to light exposure, additional data now available enable us to refine the original model. We first refined the original model by incorporating the results of a dose response curve to light into the model's predicted relationship between light intensity and the strength of the drive onto the pacemaker. Data from three bright light phase resetting experiments were then used to refine the amplitude recovery characteristics of the model. Finally, the model was tested and further refined using data from an extensive phase resetting experiment in which a 3-cycle bright light stimulus was presented against a background of dim light. In order to describe the results of the four resetting experiments, the following major refinements to the original model were necessary: (i) the relationship between light intensity (I) and drive onto the pacemaker was reduced from I1/3 to I0.23 for light levels between 150 and 10,000 lux; (ii) the van der Pol oscillator from the original model was replaced with a higher-order limit cycle oscillator so that amplitude recovery is slower near the singularity and faster near the limit cycle; (iii) a direct effect of light on circadian period (tau x) was incorporated into the model such that as I increases, tau x decreases, which is in accordance with "Aschoff's rule". This refined model generates the following testable predictions: it should be difficult to enhance normal circadian amplitude via bright light; near the critical point of a type 0 phase response curve (PRC) the slope should be steeper than it is in a type 1 PRC; and circadian period measured during forced desynchrony should be directly affected by ambient light intensity.

  7. Changes in nitrate and nitrite content of four vegetables during storage at refrigerated and ambient temperatures.

    PubMed

    Chung, J-C; Chou, S-S; Hwang, D-F

    2004-04-01

    The nitrate and nitrite contents of four kinds of vegetables (spinach, crown daisy, organic Chinese spinach and organic non-heading Chinese cabbage) in Taiwan were determined during storage at both refrigerated (5 +/- 1 degrees C) and ambient temperatures (22 +/- 1 degrees C) for 7 days. During storage at ambient temperature, nitrate levels in the vegetables dropped significantly from the third day while nitrite levels increased dramatically from the fourth day of storage. However, refrigerated storage did not lead to changes in nitrate and nitrite levels in the vegetables over 7 days.

  8. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  9. 7 CFR 301.50-4 - Conditions governing the interstate movement of regulated articles from quarantined areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... conditions, such as traffic lights or stop signs) during October, November, or December, or when ambient air...

  10. Design and implementation of an air monitoring program in support of a brownfields redevelopment program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maisel, B.E.; Hunt, G.T.; Devaney, R.J. Jr.

    EPA`s Brownfields Economic Redevelopment Initiative has sparked renewal of industrial and commercial parcels otherwise idled or under-utilized because of real or perceived environmental contamination. In certain cases, restoring such parcels to productive economic use requires a redevelopment effort protective of human health and welfare through minimizing offsite migration of environmental contaminants during cleanup, demolition and remediation activities. To support these objectives, an air monitoring program is often required as an integral element of a comprehensive brownfields redevelopment effort. This paper presents a strategic framework for design and execution of an ambient air monitoring program in support of a brownfields remediationmore » effort ongoing in Lawrence, MA. Based on site characterization, the program included sample collection and laboratory analysis of ambient air samples for polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), total suspended particulate (TSP), inhalable particulate (PM10), and lead. The program included four monitoring phases, identified as background, wintertime, demolition/remediation and post-demolition. Air sampling occurred over a 16 month period during 1996--97, during which time nine sampling locations were utilized to produce approximately 1,500 ambient air samples. Following strict data review and validation procedures, ambient air data interpretation focused on the following: evaluation of upwind/downwind sample pairs, comparison of ambient levels to existing regulatory standards, relation of ambient levels to data reported in the open literature, and, determination of normal seasonal variations in existing background burden, comparison of ambient levels measured during site activity to background levels.« less

  11. Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lau, O. W.; Luk, S. F.

    Bauhinia blakeana was used as a biomonitor to monitor the air quality in Hong Kong. Equations were set up to relate the ambient iron, copper, zinc and lead concentrations with those in leaves of the biomonitor and good correlations were observed. The concentration of sulphate in the leaves of Bauhinia blakeana was found to be directly related to ambient sulphur dioxide and total suspended particulates. Using these equations the ambient pollutant levels in different districts of Hong Kong were determined quantitatively according to the concentrations of pollutants in leaves. As many residential buildings are close to congested roads, the ambient pollutant concentrations at selected roads were evaluated. Many temples are known to be heavily polluted with air particulates, and thus the air quality inside are suspected to be poor. The air quality inside temples may be reflected by the air quality outside these buildings, which were also assessed using the proposed method of biomonitoring. The levels of ambient lead and copper outside these temples were higher than their respective background levels while the levels of pollutants at the kerbsides were reported to be 10-300% higher than those of the background.

  12. Williams during Sleep-Long Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-24

    ISS015-E-09447 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.

  13. Williams during Sleep-Long Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-24

    ISS015-E-09449 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.

  14. Black and Brown Carbon in Biogenic Settings with Different Levels of Anthropogenic Influence, and The Effect of Semivolatile Compounds on Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Tasoglou, A.; Ramachandran, S.; Khlystov, A.; Saha, P.; Grieshop, A. P.; Pandis, S. N.

    2015-12-01

    Secondary organic aerosol (SOA) is a major contributor to the global aerosol burden. Black carbon (BC) is a significant climate warming agent, while light-absorbing organic carbon (brown carbon, BrC), also impacts the atmospheric radiative balance. The optical properties of ambient aerosols can be affected by biogenic SOA through the lensing effect (coating of BC cores by semivolatile SOA), and by the potential formation of BrC from biogenic sources influenced by anthropogenic sources. To evaluate these effects, measurements of ambient aerosol optical properties and BC concentrations were made in rural Centreville, AL (a remote site with little anthropogenic influence) in summer 2013 and at Duke Forest in Chapel Hill, NC (a site close to high density vehicular traffic and industrial sources), during summer 2015. Photoacoustic extinctiometers (PAX, 405 nm and 532 nm) measured particulate light absorption and a single particle soot photometer (SP2) measured BC mass at both locations. A seven-wavelength Aethalometer and a three-wavelength nephelometer were also deployed at Duke Forest. A third PAX (870 nm) was deployed at Centreville. For absorption and BC measurements, the sample was cycled between a dry line and a dry/thermally-denuded line. Hourly samples were collected with a steam jet aerosol collector (SJAC) for online (2013) and offline (2015) chemical composition analysis. BC concentrations were generally higher at Duke Forest compared to the rural Centreville site. The Aethalometer readings at Duke Forest show greater absorption at the shorter wavelengths (370 nm and 470 nm) than expected from the absorption at 880 nm coupled with an inverse wavelength dependence, suggesting the presence of brown carbon. This presentation will examine the evidence for brown carbon at the two sites, as well as the effect of non-BC coatings on BC light absorption (the lensing effect.)

  15. FOLIAR NITROGEN CONCENTRATIONS AND NATURAL ABUNDANCE OF 15N SUGGEST NITROGEN ALLOCATION PATTERNS OF DOUGLAS-FIR AND MYCORRHIZAL FUNGI DURING DEVELOPMENT IN ELEVATED CARBON DIOXIDE CONCENTRATION AND TEMPERATURE

    EPA Science Inventory

    In an experiment using Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings and a 2x2 factorial design in enclosed mesocosms, temperatures were maintained at ambient or +3.5 degrees C above ambient, and CO2 levels were maintained at ambient or 179 ppm above ambient. Two ...

  16. Effects of Ambient Environmental Factors on the Stereotypic Behaviors of Giant Pandas (Ailuropoda melanoleuca).

    PubMed

    Liu, He; Duan, Hejun; Wang, Cheng

    2017-01-01

    Stereotypies are commonly observed in zoo animals, and it is necessary to better understand whether ambient environmental factors contribute to stereotypy and how to affect animal welfare in zoo settings. This study investigated the relationships between stereotypic behaviors and environmental factors including ambient temperatures, humidity, light intensity, sound intensity and number of visitors. Seven giant pandas were observed in three indoor enclosures and three outdoor enclosures. Environmental factors were measured for both indoor and outdoor enclosures and the effect they had on stereotypical behaviors was investigated. Our research found that light intensity significantly correlated with all stereotypies behaviors. Higher environmental temperature reduced the duration of pacing but increased the frequency of pacing, the duration and frequency of door-directed, meanwhile the duration of head-toss. However, we found no noticeable effect of humidity on stereotypic behaviors except for the frequency of head-toss. We also found that sound intensity was not correlated with stereotypies. Finally, the growth of visitors was negatively associated with the duration of door-directed. These results demonstrated that various environmental factors can have significant effects on stereotypic behaviors causing the expression of various stereotypies. Thus, stereotypies in zoo animals may not simply represent suboptimal welfare, but rather might be adopted as a means of coping with an aversive environment.

  17. Environmentally stable perovskite film for active material of high stability solid state solar cells

    NASA Astrophysics Data System (ADS)

    Bahtiar, A.; Putri, M.; Nurazizah, E. S.; Risdiana; Furukawa, Y.

    2018-05-01

    We studied new perovskite material lead (II) thiocyanate [Pb(SCN)2] in ambient air with humidity above 90%. We prepared perovskite film by use of two-step method combination of spin-coating and dip-coating technique. The Pb(SCN)2 film was first spin-coated either on bare glass or TiO2 coated glass and then followed by dipping it into methylammonium iodide (MAI) solution. The UV-Vis spectrum of Pb(SCN)2 film shows absorption at wavelength shorter than 400 nm. Meanwhile, perovskite MAPb(SCN)xI3-x film absorps light ranging from 300 nm to 760 nm, which shows that the perovskite film can absorp more light to be converted into free charge carrier for generating electricity in solar cells. The XRD patterns shows that perovskite peaks are clearly observed which confirms that perovskite is already well formed. We also observe no significant changes in XRD pattern of perovskite films after stored for five days at ambient air with humidity exceed 90%. This result shows that perovskite MAPb(SCN)XI3-X film is environmentally stable, therefore high stability perovskite solar cells is expected to be produced in ambient air with high humidity. This is in accordance with the SEM images of surface morphology that shows no “pin-hole”.

  18. Field measurements on the exchange of carbonyl sulfide between lichens and the atmosphere

    NASA Astrophysics Data System (ADS)

    Kuhn, U.; Wolf, A.; Gries, C.; , T. H. Nash, III; Kesselmeier, J.

    The exchange of carbonyl sulfide (COS) between lichens and the atmosphere was investigated under natural field conditions. Using dynamic enclosures flushed with ambient air, we demonstrate that lichens act as a major sink for atmospheric COS in the investigated ecosystem. Diel courses of the exchange are shown in an open oak woodland ecosystem at a rural site in central California. The measurements were distributed over a variety of weather conditions during the dry (May/June) and the wet season (Nov/Dec). The physiological parameters (CO 2 exchange and thallus hydration status) plus environmental variables (temperature, irradiance, atmospheric humidity and ambient COS mixing ratio) were recorded. Lichens are capable of continuous uptake of COS in the dark as well as in the light, depending mainly on their moisture status. Results indicate that the uptake is additionally dependent on temperature and COS ambient mixing ratio. Enzyme inactivation by high temperature denaturation demonstrate that the uptake is under physiological control. Light and thus photosynthetic activity do not have a direct influence on the uptake rate. Under these field investigations the COS uptake on a dry weight basis ranged between 0.015 and 0.071 pmol g-1 s-1. On a thallus surface area basis the sink strength is comparable to the uptake by higher vegetation.

  19. Laboratory Experiments Modelling Sediment Transport by River Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Gingras, Murray; Knudson, Calla; Steverango, Luke; Surma, Chris

    2016-11-01

    Through lock-release laboratory experiments, the transport of particles by hypopycnal (surface) currents is examined as they flow into a uniform-density and a two-layer ambient fluid. In most cases the tank is tilted so that the current flows over a slope representing an idealization of a sediment-bearing river flowing into the ocean and passing over the continental shelf. When passing into a uniform-density ambient, the hypopycnal current slows and stops as particles rain out, carrying some of the light interstitial fluid with them. Rather than settling on the bottom, in many cases the descending particles accumulate to form a hyperpycnal (turbidity) current that flows downslope. This current then slows and stops as particles both rain out to the bottom and also rise again to the surface, carried upward by the light interstitial fluid. For a hypopycnal current flowing into a two-layer fluid, the current slows as particles rain out and accumulate at the interface of the two-layer ambient. Eventually these particles penetrate through the interface and settle to the bottom with no apparent formation of a hyperpycnal current. Analyses are performed to characterize the speed of the currents and stopping distances as they depend upon experiment parameters. Natural Sciences and Engineering Research Council.

  20. Effects of Ambient Environmental Factors on the Stereotypic Behaviors of Giant Pandas (Ailuropoda melanoleuca)

    PubMed Central

    Liu, He; Duan, Hejun; Wang, Cheng

    2017-01-01

    Stereotypies are commonly observed in zoo animals, and it is necessary to better understand whether ambient environmental factors contribute to stereotypy and how to affect animal welfare in zoo settings. This study investigated the relationships between stereotypic behaviors and environmental factors including ambient temperatures, humidity, light intensity, sound intensity and number of visitors. Seven giant pandas were observed in three indoor enclosures and three outdoor enclosures. Environmental factors were measured for both indoor and outdoor enclosures and the effect they had on stereotypical behaviors was investigated. Our research found that light intensity significantly correlated with all stereotypies behaviors. Higher environmental temperature reduced the duration of pacing but increased the frequency of pacing, the duration and frequency of door-directed, meanwhile the duration of head-toss. However, we found no noticeable effect of humidity on stereotypic behaviors except for the frequency of head-toss. We also found that sound intensity was not correlated with stereotypies. Finally, the growth of visitors was negatively associated with the duration of door-directed. These results demonstrated that various environmental factors can have significant effects on stereotypic behaviors causing the expression of various stereotypies. Thus, stereotypies in zoo animals may not simply represent suboptimal welfare, but rather might be adopted as a means of coping with an aversive environment. PMID:28107477

  1. Laser pumped 4He magnetometer with light shift suppression

    NASA Astrophysics Data System (ADS)

    Lin, Zaisheng; Wang, He; Peng, Xiang; Wu, Teng; Guo, Hong

    2016-11-01

    We report a laser-pumped 4He atomic magnetometer with light shift suppression through the atomic sensor itself. A linearly polarized light is used to optically align the 4He metastable atoms and we monitor the magneto-optical double resonance (MODR) signals produced by the left- and right-circularly orthogonal components. It is shown that light shift leads to the atomic alignment to orientation conversion effect, and thus, the difference between the two MODR signals. One of these two MODR signals is locked at the Larmor frequency and is used to measure the ambient magnetic field, while the differential signal is, simultaneously, fed back to suppress the light shift. The scheme could be of the advantage to the design of compact magnetometers by reducing the systematic errors due to light shift.

  2. Low intensity X-ray and gamma-ray imaging device. [fiber optics

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1979-01-01

    A radiation to visible light converter is combined with a visible light intensifier. The converter is a phosphor or scintillator material which is modified to block ambient light. The intensifier includes fiber optics input and output face plates with a photocathode-microchannel plate amplifier-phosphor combination. Incoming radiation is converted to visible light by the converter which is piped into the intensifier by the input fiber optics face plate. The photocathode converts the visible light to electrons which are amplified by a microchannel plate amplifier. The electrons are converted back to light by a phosphor layer and piped out for viewing by the output fiber optics faces plate. The converter-intensifier combination may be further combined with its own radiation source or used with an independent source.

  3. Hydrostatic temperature calculations. [in synoptic meteorology

    NASA Technical Reports Server (NTRS)

    Raymond, William H.

    1987-01-01

    Comparisons are made between hydrostatically computed temperatures and ambient temperatures associated with nine different data sources, including analyses, forecasts and conventional observations. Five-day averages and the day-to-day variations in the root-mean-square temperature differences are presented. Several different numerical and interpolation procedures are examined. Error correction and a constrained optimum procedure that minimizes ambient minus calculated hydrostatic temperature differences are introduced. Systematic differences between ambient and hydrostatic temperatures are found to be associated with the sinoptic situation. When compared with ambient temperatures, hydrostatic temperatures at 500 mb tend to be too warm at or in front of a trough and too cold behind the trough. In the vertical direction, for the eight-level configuration tested, the average hydrostatic temperatures are too cold at low levels (850, 700 mb) and too warm at upper levels, (300, 250 mb).

  4. Nitrous oxide causes a regulated hypothermia: rats select a cooler ambient temperature while becoming hypothermic.

    PubMed

    Ramsay, Douglas S; Seaman, Jana; Kaiyala, Karl J

    2011-04-18

    An initial administration of 60% nitrous oxide (N(2)O) evokes hypothermia in rats and if the administration continues for more than 1-2h, acute tolerance typically develops such that the initial reduction in core temperature (Tc) reverses and Tc recovers toward control values. Calorimeter studies at normal ambient temperature indicate that hypothermia results from a transient reduction in heat production (HP) combined with an elevation in heat loss. Acute tolerance develops primarily due to progressive increases in HP. Our aim was to determine whether rats provided a choice of ambient temperatures would behaviorally facilitate or oppose N(2)O-induced hypothermia. A gas-tight thermally-graded alleyway (range, 6.7-37.0°C) enabled male Long-Evans rats (n=12) to select a preferred ambient temperature during a 5-hour steady-state administration of 60% N(2)O and a separate paired control gas exposure (order counterbalanced). Tc was measured telemetrically from a sensor surgically implanted into the peritoneal cavity >7days before testing. Internal LED lighting maintained the accustomed day:night cycle (light cycle 0700-1900h) during sessions lasting 45.5h. Rats entered the temperature gradient at 1100h, and the 5-h N(2)O or control gas period did not start until 23h later to provide a long habituation/training period. Food and water were provided ad libitum at the center of the alleyway. The maximum decrease of mean Tc during N(2)O administration occurred at 0.9h and was -2.05±0.25°C; this differed significantly (p<0.0001) from the corresponding Tc change at 0.9h during control gas administration (0.01±0.14°C). The maximum decrease of the mean selected ambient temperature during N(2)O administration occurred at 0.7h and was -13.58±1.61°C; this differed significantly (p<0.0001) from the corresponding mean change in the selected ambient temperature at 0.7h during control gas administration (0.30±1.49°C). N(2)O appears to induce a regulated hypothermia because the selection of a cool ambient temperature facilitates the reduction in Tc. The recovery of Tc during N(2)O administration (i.e., acute tolerance development) could have been facilitated by selection of ambient temperatures that were warmer than those chosen during control administrations, but interestingly, this did not occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Nitrous Oxide Causes a Regulated Hypothermia: Rats Select a Cooler Ambient Temperature While Becoming Hypothermic

    PubMed Central

    Ramsay, Douglas S.; Seaman, Jana; Kaiyala, Karl J.

    2011-01-01

    An initial administration of 60% nitrous oxide (N2O) evokes hypothermia in rats and if the administration continues for more than 1 – 2 hours, acute tolerance typically develops such that the initial reduction in core temperature (Tc) reverses and Tc recovers toward control values. Calorimeter studies at normal ambient temperature indicate that hypothermia results from a transient reduction in heat production (HP) combined with an elevation in heat loss. Acute tolerance develops primarily due to progressive increases in HP. Our aim was to determine whether rats provided a choice of ambient temperatures would behaviorally facilitate or oppose N2O -induced hypothermia. A gas-tight thermally-graded alleyway (range, 6.7 – 37.0°C) enabled male Long-Evans rats (n=12) to select a preferred ambient temperature during a 5-hour steady-state administration of 60% N2O and a separate paired control gas exposure (order counterbalanced). Tc was measured telemetrically from a sensor surgically implanted into the peritoneal cavity > 7 days before testing. Internal LED lighting maintained the accustomed day:night cycle (light cycle 0700 – 1900 h) during sessions lasting 45.5 hours. Rats entered the temperature gradient at 1100 h, and the 5-h N2O or control gas period did not start until 23 hours later to provide a long habituation / training period. Food and water were provided ad libitum at the center of the alleyway. The maximum decrease of mean Tc during N2O administration occurred at 0.9 h and was −2.05 ± 0.25°C; this differed significantly (p<0.0001) from the corresponding Tc change at 0.9 h during control gas administration (0.01 ± 0.14°C). The maximum decrease of mean selected ambient temperature during N2O administration occurred at 0.7 h and was −13.58 ± 1.61°C; this differed significantly (p < 0.0001) from the corresponding mean change in selected ambient temperature at 0.7 h during control gas administration (0.30 ± 1.49°C). N2O appears to induce a regulated hypothermia because the selection of a cool ambient temperature facilitates the reduction in Tc. The recovery of Tc during N2O administration (i.e., acute tolerance development) could have been facilitated by selection of ambient temperatures that were warmer than those chosen during control administrations, but interestingly, this did not occur. PMID:21184766

  6. Comparison between DICOM-calibrated and uncalibrated consumer grade and 6-MP displays under different lighting conditions in panoramic radiography

    PubMed Central

    Haapea, M; Liukkonen, E; Huumonen, S; Tervonen, O; Nieminen, M T

    2015-01-01

    Objectives: To compare observer performance in the detection of anatomical structures and pathology in panoramic radiographs using consumer grade with and without digital imaging and communication in medicine (DICOM)-calibration and 6-megapixel (6-MP) displays under different lighting conditions. Methods: 30 panoramic radiographs were randomly evaluated on three displays under bright (510 lx) and dim (16 lx) ambient lighting by two observers with different years of experience. Dentinoenamel junction, dentinal caries and periapical inflammatory lesions, visibility of cortical border of the floor and pathological lesions in maxillary sinus were evaluated. Consensus between the observers was considered as reference. Intraobserver agreement was determined. Proportion of equivalent ratings and weighted kappa were used to assess reliability. The level of significance was set to p < 0.05. Results: The proportion of equivalent ratings with consensus differed between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in the lower molar in dim lighting (p = 0.021) and between DICOM-calibrated consumer grade and 6-MP display in bright lighting (p = 0.038) for an experienced observer. Significant differences were found between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in bright lighting (p = 0.044) and periapical lesions in the upper molar in dim lighting (p = 0.008) for a less experienced observer. Intraobserver reliability was better at detecting dentinal caries than at detecting periapical and maxillary sinus pathology. Conclusions: DICOM calibration may improve observer performance in panoramic radiography in different lighting conditions. Therefore, a DICOM-calibrated consumer grade display can be used instead of a medical display in dental practice without compromising the diagnostic quality. PMID:25564888

  7. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors emitted by newer vehicles appears to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the nonmethane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. By comparing this study with a companion study of diesel trucks, we conclude that both primary PM emissions and SOA production for light-duty gasoline vehicles are much greater than for late-model (2007 and later) on-road heavy-duty diesel trucks.

  8. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the non-methane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. These results for light-duty gasoline vehicles contrast with the results from a companion study of on-road heavy-duty diesel trucks; in that study late model (2007 and later) diesel trucks equipped with catalyzed diesel particulate filters emitted very little primary PM, and the photo-oxidized emissions produced negligible amounts of SOA.

  9. Integrating Nephelometer Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uin, J.

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as wellmore » as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).« less

  10. Aethalometer

    DOEpatents

    Hansen, Anthony D.

    1990-01-01

    An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.

  11. Energy and economic efficiency alternatives for electric lighting in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, C L; Hunter, K C; Carlisle, N

    1985-10-01

    This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categoriesmore » offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.« less

  12. The relationship between ambient illumination and psychological factors in viewing of display Images

    NASA Astrophysics Data System (ADS)

    Iwanami, Takuya; Kikuchi, Ayano; Kaneko, Takashi; Hirai, Keita; Yano, Natsumi; Nakaguchi, Toshiya; Tsumura, Norimichi; Yoshida, Yasuhiro; Miyake, Yoichi

    2009-01-01

    In this paper, we have clarified the relationship between ambient illumination and psychological factors in viewing of display images. Psychological factors were obtained by the factor analysis with the results of the semantic differential (SD) method. In the psychological experiments, subjects evaluated the impressions of displayed images with changing ambient illuminating conditions. The illumination conditions were controlled by a fluorescent ceiling light and a color LED illumination which was located behind the display. We experimented under two kinds of conditions. One was the experiment with changing brightness of the ambient illumination. The other was the experiment with changing the colors of the background illumination. In the results of the experiment, two factors "realistic sensation, dynamism" and "comfortable," were extracted under different brightness of the ambient illumination of the display surroundings. It was shown that the "comfortable" was improved by the brightness of display surroundings. On the other hand, when the illumination color of surroundings was changed, three factors "comfortable," "realistic sensation, dynamism" and "activity" were extracted. It was also shown that the value of "comfortable" and "realistic sensation, dynamism" increased when the display surroundings were illuminated by the average color of the image contents.

  13. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.

    PubMed

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2008-10-01

    Effect of different photosynthetic photon flux densities (0, 500, 1000, 1500 and 2000 μmol m(-2)s(-1)), temperatures (20, 25, 30, 35 and 40 °C) and CO2 concentrations (250, 350, 450, 550, 650 and 750 μmol mol(-1)) on gas and water vapour exchange characteristics of Cannabis sativa L. were studied to determine the suitable and efficient environmental conditions for its indoor mass cultivation for pharmaceutical uses. The rate of photosynthesis (PN) and water use efficiency (WUE) of Cannabis sativa increased with photosynthetic photon flux densities (PPFD) at the lower temperatures (20-25 °C). At 30 °C, PN and WUE increased only up to 1500 μmol m(-2)s(-1) PPFD and decreased at higher light levels. The maximum rate of photosynthesis (PN max) was observed at 30 °C and under 1500 μmol m(-2)s(-1) PPFD. The rate of transpiration (E) responded positively to increased PPFD and temperature up to the highest levels tested (2000 μmol m(-2)s(-1) and 40 °C). Similar to E, leaf stomatal conductance (gs) also increased with PPFD irrespective of temperature. However, gs increased with temperature up to 30 °C only. Temperature above 30 °C had an adverse effect on gs in this species. Overall, high temperature and high PPFD showed an adverse effect on PN and WUE. A continuous decrease in intercellular CO2 concentration (Ci) and therefore, in the ratio of intercellular CO2 to ambient CO2 concentration (Ci/Ca) was observed with the increase in temperature and PPFD. However, the decrease was less pronounced at light intensities above 1500 μmol m(-2)s(-1). In view of these results, temperature and light optima for photosynthesis was concluded to be at 25-30 °C and ∼1500 μmol m(-2)s(-1) respectively. Furthermore, plants were also exposed to different concentrations of CO2 (250, 350, 450, 550, 650 and 750 μmol mol(-1)) under optimum PPFD and temperature conditions to assess their photosynthetic response. Rate of photosynthesis, WUE and Ci decreased by 50 %, 53 % and 10 % respectively, and Ci/Ca, E and gs increased by 25 %, 7 % and 3 % respectively when measurements were made at 250 μmol mol-1 as compared to ambient CO2 (350 μmol mol(-1)) level. Elevated CO2 concentration (750 μmol mol(-1)) suppressed E and gs ∼ 29% and 42% respectively, and stimulated PN, WUE and Ci by 50 %, 111 % and 115 % respectively as compared to ambient CO2 concentration. The study reveals that this species can be efficiently cultivated in the range of 25 to 30 °C and ∼1500 μmol m(-2)s(-1) PPFD. Furthermore, higher PN, WUE and nearly constant Ci/Ca ratio under elevated CO2 concentrations in C. sativa, reflects its potential for better survival, growth and productivity in drier and CO2 rich environment.

  14. Current ambient concentrations of ozone in Panama modulate the leaf chemistry of the tropical tree Ficus insipida.

    PubMed

    Schneider, Gerald F; Cheesman, Alexander W; Winter, Klaus; Turner, Benjamin L; Sitch, Stephen; Kursar, Thomas A

    2017-04-01

    Tropospheric ozone (O 3 ) is a major air pollutant and greenhouse gas, affecting carbon dynamics, ecological interactions, and agricultural productivity across continents and biomes. Elevated [O 3 ] has been documented in tropical evergreen forests, the epicenters of terrestrial primary productivity and plant-consumer interactions. However, the effects of O 3 on vegetation have not previously been studied in these forests. In this study, we quantified ambient O 3 in a region shared by forests and urban/commercial zones in Panama and found levels two to three times greater than in remote tropical sites. We examined the effects of these ambient O 3 levels on the growth and chemistry of seedlings of Ficus insipida, a regionally widespread tree with high stomatal conductance, using open-top chambers supplied with ozone-free or ambient air. We evaluated the differences across treatments in biomass and, using UPLC-MS-MS, leaf secondary metabolites and membrane lipids. Mean [O 3 ] in ambient air was below the levels that induce chronic stress in temperate broadleaved trees, and biomass did not differ across treatments. However, leaf secondary metabolites - including phenolics and a terpenoid - were significantly downregulated in the ambient air treatment. Membrane lipids were present at lower concentrations in older leaves grown in ambient air, suggesting accelerated senescence. Thus, in a tree species with high O 3 uptake via high stomatal conductance, current ambient [O 3 ] in Panamanian forests are sufficient to induce chronic effects on leaf chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ergonomics: The Forgotten Variable.

    ERIC Educational Resources Information Center

    Fitterman, L. Jeffrey

    This paper describes ergonomics and the need to adapt worksites and technologies for individuals with physical or sensory disabilities. It provides suggestions for how to design an appropriate setup, design considerations, environmental considerations, chairs, monitor height, ambient noise, light, and electricity. Recommendations include: (1)…

  16. California's Ozone-Reduction Strategy for Light Duty Vehicles - An Economic Assessment

    DOT National Transportation Integrated Search

    1996-01-01

    California has adopted an aggressive plan to bring the state into compliance with national ambient air quality standards. California's strategy includes strict emission standards on mobile and stationary sourcs and on area sources such as solvents, p...

  17. LiDAR for Air Quality Measurements

    DOT National Transportation Integrated Search

    2017-02-02

    The overall goal of this research is to investigate a unique light detection and ranging (LiDAR) technology for ambient air quality measurement of particulate matter. The ODU team has recently received a state-of-the-art elastic LiDAR from NASA Langl...

  18. Road weather and the connected vehicle : improving road weather awareness.

    DOT National Transportation Integrated Search

    2011-01-01

    Good drivers know what is happening in and around their vehicles, but today they are not alone in sensing the roadway environment. Right now, many vehicles collect information on vehicle conditions (lights, wipers, etc.), ambient temperature, and atm...

  19. Optical Linear Algebra for Computational Light Transport

    NASA Astrophysics Data System (ADS)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical probing---that provides unprecedented control over which light paths contribute to a photo.

  20. A Chemical Approach to Mitigate Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Marty-Rivera, M.; Yudowski, G.

    2016-02-01

    Changes in sea surface temperature and irradiance can induce bleaching and increase mortality in corals. Coral bleaching occurs when symbiotic algae living inside the coral is degraded or expelled, reducing the availability of energetic resources. Oxidative stress has been suggested as a possible molecular mechanism triggering bleaching. We hypothesized that reduction of reactive oxygen species (ROS) during stress could mitigate or prevent coral bleaching. We utilized the coral Porites Astreoides as our model to test the effects of two natural antioxidants, catechin and Resveratrol, on thermally induced bleaching. Coral fragments were exposed to four treatments: high temperature (32°C), high temperature plus antioxidants (1μM), ambient temperature (25°C), or ambient temperature (25°C) plus antioxidant for four days. A total of 8 corals were used per treatment. We measured several photobiological parameters, such as maximum quantum yield and light curves to assess the viability of symbiodinium spp. after thermal stress in the presence of antioxidants. Preliminary experiments on a model species, the sea anemone Aiptasia pallida and corals, showed that exposure to antioxidants reduced intracellular levels of ROS. Additionally, antioxidant-treated anemones showed higher photosynthetic efficiency (67%) than those exposed to high-temperature alone.

  1. Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure

    PubMed Central

    Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming

    2011-01-01

    Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5–15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter—increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed. PMID:21476688

  2. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    NASA Astrophysics Data System (ADS)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  3. Revised self-noise estimates for Güralp broadband seismometers concerning ambient noise levels of the UK mainland: implications for detectability of induced seismic events

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Hill, P.; Goessen, S.; Rietbrock, A.; Garth, T.

    2016-12-01

    The self-noise level of a broadband seismometer sensor is a commonly-used parameter used to evaluate instrument performance. There are several independent studies of various instruments' self-noise (e.g. Ringler & Hutt, 2010; Tasič & Runovc, 2012). However, due to ongoing developments in instrument design (i.e. mechanics and electronics), it is essential to regularly assess any changes in self-noise, which could indicate improvements/deterioration in instrument design and performance over time. We present new self-noise estimates for a range of Güralp broadband seismometers (3T, 3ESPC, 40T, 6T). We use the three-channel coherence analysis estimate of Sleeman et al. (2006) to measure self-noise of these instruments. Based on coherency analysis, we also perform a mathematical rotation of measured waveforms to account for any relative sensor misalignment errors, which can cause artefacts of amplified self-noise around the microseismic peak (Tasič & Runovc, 2012). The instruments were tested for a period of several months at a seismic vault located at the Eskdalemuir array in southern Scotland. We discuss the implications of these self-noise estimates within the framework of the ambient noise level across the mainland United Kingdom. Using attenuation relationships derived for the United Kingdom, we investigate the detection capability thresholds of the UK National Seismic Network within the framework of a Traffic Light System (TLS) that has been proposed for monitoring of induced seismic events due to shale gas extraction.

  4. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the brown carbon contribution to the aerosol light absorption at shorter wavelengths is not negligible in the PRD region, with a rough magnitude of 10%. Key words: Light absorption, Absorption Angstrom Exponent (AAE), Brown carbon (BrC), Black carbon (BC)

  5. METALS MIMIC AIRWAY EPITHELIAL INJURY INDUCED BY IN VITRO EXPOSURE TO UTAH VALLEY AMBIENT PARTICULATE MATTER EXTRACTS

    EPA Science Inventory

    Abstract

    Epidemiologic studies have shown positive associationsbetween changes in ambient particulate matter (PM) levels in Utah Valley during 1986-1988, and the respiratory health of the local population. Ambient PM reductions coincided withclosure of an open-hearth steel...

  6. Effect of enhanced geomagnetic activity on hypothermia and mortality in rats

    NASA Astrophysics Data System (ADS)

    Bureau, Y. R. J.; Persinger, M. A.; Parker, G. H.

    1996-12-01

    The hypothesis was investigated that variability in the severity of limbic seizure-induced hypothermia in rats was affected by ambient geomagnetic activity. Data were obtained in support of this hypothesis. The depth of the hypothermia was significantly ( P < 0.001) reduced if the ambient geomagnetic activity exceeded 35 nT to 40 nT. Mortality during the subsequent 5 days was increased when the geomagnetic activity was > 20 nT. The magnitude of the effect was comparable to the difference between exposure to light or to darkness during the 20 h after the induction of limbic seizures.

  7. Fiber optic humidity sensor using water vapor condensation.

    PubMed

    Limodehi, Hamid E; Légaré, François

    2017-06-26

    The rate of vapor condensation on a solid surface depends on the ambient relative humidity (RH). Also, surface plasmon resonance (SPR) on a metal layer is sensitive to the refractive index change of its adjacent dielectric. The SPR effect appears as soon as a small amount of moisture forms on the sensor, resulting in a decrease in the amount of light transmitted due to plasmonic loss. Using this concept, we developed a fiber optic humidity sensor based on SPR. It can measure the ambient RH over a dynamic range from 10% to 85% with an accuracy of 3%.

  8. Characterising the ambient sound environment for infants in intensive care wards.

    PubMed

    Shoemark, Helen; Harcourt, Edward; Arnup, Sarah J; Hunt, Rod W

    2016-04-01

    The purpose of this study is to characterise ambient sound levels of paediatric and neonatal intensive care units in an old and new hospital according to current standards. The sound environment was surveyed for 24-h data collection periods (n = 80) in the Neonatal and Paediatric Intensive Care Units (NICUs and PICUs) and Special Care Nursery of the old and new Royal Children's Hospital Melbourne. The ambient sound environment was characterised as the proportion of time the ongoing ambient sound met standard benchmarks, the mean 5-s sound levels and the number and duration of noise events. In the old hospital, none of the data collection periods in the NICU and PICU met the standard benchmark for ongoing ambient sound, while only 5 of the 22 data collection periods in the new hospital met the recommended level. There was no change in proportion of time at recommended Leq between the old and the new Special Care Nursery. There was strong evidence for a difference in the mean number of events >65 dBA (Lmax ) in the old and new hospital (rate ratio = 0.82, 95% confidence interval: 0.73 to 0.92, P = 0.001). The NICU and PICU were above 50 dBA in 75% of all data collection periods, with ventilatory equipment associated with higher ongoing ambient sound levels. The ongoing ambient sound suggests that the background sound environment of the new hospital is not different to the old hospital. However, there may be a reduction in the number of noise events. © 2016 The Authors Journal of Paediatrics and Child Health © 2016 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  9. Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt

    USGS Publications Warehouse

    Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad

    2015-01-01

    In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.

  10. Field performance measurements of half-facepiece respirators: steel mill operations.

    PubMed

    Myers, W R; Zhuang, Z

    1998-11-01

    Ambient and in-facepiece samples to evaluate the protection provided by negative-pressure, half-facepiece respirators were collected on workers in different areas of a steel mill including a sinter plant and a basic oxygen process shop. Protection was assessed by workplace protection factors (WPF). All the in-facepiece concentrations were dramatically less than the corresponding ambient concentration levels or permissible exposure limits. The geometric mean (GM) ambient and in-facepiece concentrations of iron were found to vary among tasks. Significant differences were also found to occur between the GM ambient exposure levels in which some of the respirators were used. Significant differences in respirator performance as measured by WPF or in-facepiece iron concentration were observed among different brands of respirators. For all job classifications and at all levels of airborne exposure, the fifth percentile estimates for the WPF distributions for each brand of respirator were all greater than 20.

  11. County-level environmental quality and associations with cancer incidence

    EPA Science Inventory

    Cancer has been associated with individual ambient environmental exposures such as PM2.5 and arsenic. However, the role of the overall ambient environment is not well-understood. A novel county-level Environmental Quality Index (EQI) was developed for all U.S. counties (n=3,141)...

  12. A solvent-based intelligence ink for oxygen.

    PubMed

    Mills, Andrew; Hazafy, David

    2008-02-01

    A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film -- made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein -- loses its colour rapidly (<30 s) upon exposure to UVA light and remains colourless in an oxygen-free atmosphere, returning to its original blue colour upon exposure to air. In the latter step the rate of colour recovery is proportional to the level of ambient oxygen and the same film can be UV-activated repeatedly. The mechanism of this novel, UV-activated, solvent-based, colorimetric oxygen indicator is discussed, along with its possible applications.

  13. On the viewing angle dependence of blazar variability

    NASA Astrophysics Data System (ADS)

    Eldar, Avigdor; Levinson, Amir

    2000-05-01

    Internal shocks propagating through an ambient radiation field are subject to a radiative drag that, under certain conditions, can significantly affect their dynamics, and consequently the evolution of the beaming cone of emission produced behind the shocks. The resultant change of the Doppler factor combined with opacity effects leads to a strong dependence on the viewing angle of the variability pattern produced by such systems; specifically, the shape of the light curves and the characteristics of correlated emission. One implication is that objects oriented at relatively large viewing angles to the observer should exhibit a higher level of activity at high synchrotron frequencies (above the self-absorption frequency), and also at gamma-ray energies below the threshold energy of pair production, than at lower (radio/millimetre) frequencies.

  14. Photosynthesis, growth and survival of the Mediterranean seagrass Posidonia oceanica in response to simulated salinity increases in a laboratory mesocosm system

    NASA Astrophysics Data System (ADS)

    Marín-Guirao, Lázaro; Sandoval-Gil, José M.; Ruíz, Juan M.; Sánchez-Lizaso, José L.

    2011-04-01

    This study aims to examine the effect of increased salinity on the photosynthetic activity of the Mediterranean seagrass Posidonia oceanica in a laboratory mesocosm system. To do this, large rhizome fragments were transplanted in a mesocosm laboratory system and maintained at 37 (ambient salinity, control treatment), 39, 41 and 43 (hypersaline treatments) for 47 days. Pigment content, light absorption, photosynthetic characteristics (derived from P vs. E curves and fluorescence parameters), and shoot size, growth rates and net shoot change were determined at the end of the experimental period. Both net and gross photosynthetic rates of plants under hypersaline conditions were significantly reduced, with rates some 25-33% and 13-20% lower than in control plants. The pigment content (Chl a, Chl b, Chl b:Chl a molar ratio, total carotenoids and carotenoids:Chl a ratio), leaf absorptance and maximum quantum yield of PSII ( F v/ F m) of control plants showed little or no changes under hypersaline conditions, which suggests that alterations to the capacity of the photosynthetic apparatus to capture and process light were not responsible for the reduced photosynthetic rates. In contrast, dark respiration rates increased substantially, with mean values up to 98% higher than in control leaves. These results suggest that the respiratory demands of the osmoregulatory process are likely to be responsible for the observed decrease in photosynthetic rates, although alterations to photosynthetic carbon assimilation and reduction could also be involved. As a consequence, leaf carbon balance was considerably impaired and leaf growth rates decreased as salinity increased above the ambient (control) salinity. No significant differences were found in the percentage of net shoot change, but mean values were clearly negative at salinity levels of 41 and 43. Results presented here indicate that photosynthesis of P. oceanica is highly sensitive to hypersaline stress and that it likely account for the decline in leaf growth and shoot survival reported in this and previous studies in response to even small increments of the ambient salinity.

  15. Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions.

    PubMed

    Kumari, Sumita; Agrawal, Madhoolika

    2014-03-01

    The present study was designed to study the growth and yield responses of a tropical potato variety (Solanum tuberosum L. cv. Kufri chandramukhi) to different levels of carbon dioxide (382 and 570ppm) and ozone (50 and 70ppb) in combinations using open top chambers (OTCs). Plants were exposed to three ozone levels in combination with ambient CO2 and two ozone levels at elevated CO2. Significant increments in leaf area and total biomass were observed under elevated CO2 in combination with ambient O3 (ECO2+AO3) and elevated O3 (ECO2+EO3), compared to the plants grown under ambient concentrations (ACO2+AO3). Yield measured as fresh weight of potato also increased significantly under ECO2+AO3 and ECO2+EO3. Yield, however, reduced under ambient (ACO2+AO3) and elevated ozone (ACO2+EO3) compared to ACO2 (filtered chamber). Number, fresh and dry weights of tubers of size 35-50mm and>50mm used for direct consumption and industrial purposes, respectively increased maximally under ECO2+AO3. Ambient as well as elevated levels of O3 negatively affected the growth parameters and yield mainly due to reductions in number and weight of tubers of sizes >35mm. The quality of potato tubers was also modified under different treatments. Starch content increased and K, Zn and Fe concentrations decreased under ECO2+AO3 and ECO2+EO3 compared to ACO2+AO3. Starch content reduced under ACO2+AO3 and ACO2+EO3 treatments compared to ACO2. These results clearly suggest that elevated CO2 has provided complete protection to ambient O3 as the potato yield was higher under ECO2+AO3 compared to ACO2. However, ambient CO2 is not enough to protect the plants under ambient O3 levels. Elevated CO2 also provided protection against elevated O3 by improving the yield. Quality of tubers is modified by both CO2 and O3, which have serious implications on human health at present and in future. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea M.; Sullivan, Gregory P.; Davis, Robert G.

    Documentation of the Yuma Sector Border Patrol Area lighting LED trial demonstration continues to provide a better understanding of LED technology performance in a high ambient temperature and high solar radiation environment. Measured data at the project site showed illuminances changing more rapidly than anticipated. As previously predicted, the causes for these observed changes are mostly if not completely explained by dirt accumulation. The laboratory measurements showed not only the effect of dirt on lumen output, but also on the distribution of light exiting the luminaire.

  17. Analysis and Application of the Bi-Directional Scatter Distribution Function of Photonic Crystals

    DTIC Science & Technology

    2009-03-01

    and reflected light ..................17 10. A CASI source box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear...off of a semi-reflective beam chopper , shown in Figure 10. Any variation in the output of the laser is detected by it, and the incident power is...box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear polarizers. 20 The CASI is not sensitive to ambient light

  18. The Growing Threat of Light Pollution to Ground-Based Observatories

    NASA Astrophysics Data System (ADS)

    Green, Richard F.; Luginbuhl, Christian; Wainscoat, Richard J.; Duriscoe, Dan

    2018-01-01

    With few exceptions, growing sky glow from artificial sources negatively impacts the sky background recorded at major observatories around the world. We report techniques for measuring night sky brightness and extracting the contribution of artificial sky glow at observatories and other protected sites. The increase in artificial ambient light and its changing spectrum with LED replacements is likely to be significant. A compendium of worldwide regulatory approaches to astronomical site protection gives insight on multiple effective strategies.

  19. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light.

    PubMed

    Faithfull, C L; Mathisen, P; Wenzel, A; Bergström, A K; Vrede, T

    2015-03-01

    This study demonstrates that clear and humic freshwater pelagic communities respond differently to the same environmental stressors, i.e. nutrient and light availability. Thus, effects on humic communities cannot be generalized from existing knowledge about these environmental stressors on clear water communities. Small humic lakes are the most numerous type of lake in the boreal zone, but little is known about how these lakes will respond to increased inflows of nutrients and terrestrial dissolved organic C (t-DOC) due to climate change and increased human impacts. Therefore, we compared the effects of nutrient addition and light availability on pelagic humic and clear water lake communities in a mesocosm experiment. When nutrients were added, phytoplankton production (PPr) increased in both communities, but pelagic energy mobilization (PEM) and bacterial production (BP) only increased in the humic community. At low light conditions, the addition of nutrients led to increased PPr only in the humic community, suggesting that, in contrast to the clear water community, humic phytoplankton were already adapted to lower ambient light levels. Low light significantly reduced PPr and PEM in the clear water community, but without reducing total zooplankton production, which resulted in a doubling of food web efficiency (FWE = total zooplankton production/PEM). However, total zooplankton production was not correlated with PEM, PPr, BP, PPr:BP or C:nutrient stoichiometry for either community type. Therefore, other factors such as food chain length, food quality, ultra-violet radiation or duration of the experiment, must have determined total zooplankton production and ultimately FWE.

  20. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.

    2015-06-01

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  1. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    PubMed

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  2. Skyglow effects in UV and visible spectra: Radiative fluxes

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  3. Contralateral ear occlusion for improving the reliability of otoacoustic emission screening tests.

    PubMed

    Papsin, Emily; Harrison, Adrienne L; Carraro, Mattia; Harrison, Robert V

    2014-01-01

    Newborn hearing screening is an established healthcare standard in many countries and testing is feasible using otoacoustic emission (OAE) recording. It is well documented that OAEs can be suppressed by acoustic stimulation of the ear contralateral to the test ear. In clinical otoacoustic emission testing carried out in a sound attenuating booth, ambient noise levels are low such that the efferent system is not activated. However in newborn hearing screening, OAEs are often recorded in hospital or clinic environments, where ambient noise levels can be 60-70 dB SPL. Thus, results in the test ear can be influenced by ambient noise stimulating the opposite ear. Surprisingly, in hearing screening protocols there are no recommendations for avoiding contralateral suppression, that is, protecting the opposite ear from noise by blocking the ear canal. In the present study we have compared transient evoked and distortion product OAEs measured with and without contralateral ear plugging, in environmental settings with ambient noise levels <25 dB SPL, 45 dB SPL, and 55 dB SPL. We found out that without contralateral ear occlusion, ambient noise levels above 55 dB SPL can significantly attenuate OAE signals. We strongly suggest contralateral ear occlusion in OAE based hearing screening in noisy environments.

  4. Measurement errors in the assessment of exposure to solar ultraviolet radiation and its impact on risk estimates in epidemiological studies.

    PubMed

    Dadvand, Payam; Basagaña, Xavier; Barrera-Gómez, Jose; Diffey, Brian; Nieuwenhuijsen, Mark

    2011-07-01

    To date, many studies addressing long-term effects of ultraviolet radiation (UVR) exposure on human health have relied on a range of surrogates such as the latitude of the city of residence, ambient UVR levels, or time spent outdoors to estimate personal UVR exposure. This study aimed to differentiate the contributions of personal behaviour and ambient UVR levels on facial UVR exposure and to evaluate the impact of using UVR exposure surrogates on detecting exposure-outcome associations. Data on time-activity, holiday behaviour, and ambient UVR levels were obtained for adult (aged 25-55 years old) indoor workers in six European cities: Athens (37°N), Grenoble (45°N), Milan (45°N), Prague (50°N), Oxford (52°N), and Helsinki (60°N). Annual UVR facial exposure levels were simulated for 10,000 subjects for each city, using a behavioural UVR exposure model. Within-city variations of facial UVR exposure were three times larger than the variation between cities, mainly because of time-activity patterns. In univariate models, ambient UVR levels, latitude and time spent outdoors, each accounted for less than one fourth of the variation in facial exposure levels. Use of these surrogates to assess long-term exposure to UVR resulted in requiring more than four times more participants to achieve similar statistical power to the study that applied simulated facial exposure. Our results emphasise the importance of integrating both personal behaviour and ambient UVR levels/latitude in exposure assessment methodologies.

  5. MONOTERPENE LEVELS IN NEEDLES OF DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE

    EPA Science Inventory

    Levels of monoterpenes in current year needles of douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the conclusion of four years of exposure to ambient or elevated CO2 (+ 179 mmol.mol-1), and ambient or elevated temperature (+ 3.5 C). Eleven monoterpen...

  6. Acutely Decreased Thermoregulatory Energy Expenditure or Decreased Activity Energy Expenditure Both Acutely Reduce Food Intake in Mice

    PubMed Central

    Kaiyala, Karl J.; Morton, Gregory J.; Thaler, Joshua P.; Meek, Thomas H.; Tylee, Tracy; Ogimoto, Kayoko; Wisse, Brent E.

    2012-01-01

    Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure. PMID:22936977

  7. Classification of collective behavior: a comparison of tracking and machine learning methods to study the effect of ambient light on fish shoaling.

    PubMed

    Butail, Sachit; Salerno, Philip; Bollt, Erik M; Porfiri, Maurizio

    2015-12-01

    Traditional approaches for the analysis of collective behavior entail digitizing the position of each individual, followed by evaluation of pertinent group observables, such as cohesion and polarization. Machine learning may enable considerable advancements in this area by affording the classification of these observables directly from images. While such methods have been successfully implemented in the classification of individual behavior, their potential in the study collective behavior is largely untested. In this paper, we compare three methods for the analysis of collective behavior: simple tracking (ST) without resolving occlusions, machine learning with real data (MLR), and machine learning with synthetic data (MLS). These methods are evaluated on videos recorded from an experiment studying the effect of ambient light on the shoaling tendency of Giant danios. In particular, we compute average nearest-neighbor distance (ANND) and polarization using the three methods and compare the values with manually-verified ground-truth data. To further assess possible dependence on sampling rate for computing ANND, the comparison is also performed at a low frame rate. Results show that while ST is the most accurate at higher frame rate for both ANND and polarization, at low frame rate for ANND there is no significant difference in accuracy between the three methods. In terms of computational speed, MLR and MLS take significantly less time to process an image, with MLS better addressing constraints related to generation of training data. Finally, all methods are able to successfully detect a significant difference in ANND as the ambient light intensity is varied irrespective of the direction of intensity change.

  8. Design of light guide sleeve on hyperspectral imaging system for skin diagnosis

    NASA Astrophysics Data System (ADS)

    Yan, Yung-Jhe; Chang, Chao-Hsin; Huang, Ting-Wei; Chiang, Hou-Chi; Wu, Jeng-Fu; Ou-Yang, Mang

    2017-08-01

    A hyperspectral imaging system is proposed for early study of skin diagnosis. A stable and high hyperspectral image quality is important for analysis. Therefore, a light guide sleeve (LGS) was designed for the embedded on a hyperspectral imaging system. It provides a uniform light source on the object plane with the determined distance. Furthermore, it can shield the ambient light from entering the system and increasing noise. For the purpose of producing a uniform light source, the LGS device was designed in the symmetrical double-layered structure. It has light cut structures to adjust distribution of rays between two layers and has the Lambertian surface in the front-end to promote output uniformity. In the simulation of the design, the uniformity of illuminance was about 91.7%. In the measurement of the actual light guide sleeve, the uniformity of illuminance was about 92.5%.

  9. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demchik, S.M.; Day, T.A.

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollenmore » was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.« less

  10. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers.

    PubMed

    Liu, Q W; Feng, J H; Chao, Z; Chen, Y; Wei, L M; Wang, F; Sun, R P; Zhang, M H

    2016-04-01

    This study was undertaken to investigate the effects of ambient temperature, crude protein levels and their interaction on performance and serum biochemical parameters of broiler chickens. A total of 216 Arbor Acre broiler chickens (108 males and 108 females) were used in a 2 × 3 factorial arrangement and randomly reared at two temperatures (normal temperature: 23 °C; daily cyclic high temperature: 28-32 °C) and fed on three diets with different crude protein levels (153.3, 183.3 or 213.3 g/kg, with constant essential amino acids) from 28 to 42 days of age. Daily cyclic high ambient temperature decreased final body weight, average daily weight gain, average daily feed intake and serum total protein contents (p < 0.001, p < 0.001, p < 0.001, p = 0.008 respectively), but increased feed/gain, mortality, respiratory rate, rectal temperature, serum uric acid contents and serum creatine kinase activity (p = 0.008, p = 0.003, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.003 respectively), irrespective of crude protein levels. At the ambient temperature, reducing crude protein levels resulted in an increase in feed/gain (p < 0.001), but a decrease in serum total protein and uric acid contents. Only serum creatine kinase activity in broiler chickens was interacted by daily cyclic high ambient temperature and dietary crude protein levels (p = 0.003). These results indicated that daily cyclic high ambient temperature had a great effect on performance and serum biochemical parameters in broiler chickens, whereas dietary crude protein levels affected them partially. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Contamination of hospital compressed air with nitric oxide: unwitting replacement therapy.

    PubMed

    Pinsky, M R; Genc, F; Lee, K H; Delgado, E

    1997-06-01

    Inhaled nitric oxide (NO) at levels between 5 and 80 ppm has been used experimentally to treat a variety of conditions. NO also is a common environmental air pollutant in industrial regions. As compressed hospital air is drawn from the local environment, we speculated that it may contain NO contamination, which, if present, would provide unwitting inhaled NO therapy to all subjects respiring this compressed gas. NO levels were measured twice daily from ambient hospital air and compressed gas sources driving positive pressure ventilation from two adjacent hospitals and compared with NO levels reported daily by local Environmental Protection Agency sources. An NO chemiluminescence analyzer (Sievers 270B; Boulder, Colo) sensitive to > or =2 parts per billion was used to measure NO levels in ambient air and compressed gas. NO levels in ambient air and hospital compressed air covaried from day to day, and absolute levels of NO differed between hospitals with the difference never exceeding 1.4 ppm (range, 0 to 1.4 ppm; median, 0.07 ppm). The hospital with the highest usage level of compressed air had the highest levels of NO, which approximated ambient levels of NO. NO levels were lowest on weekends in both hospitals. We also documented inadvertent NO contamination in one hospital occurring over 5 days, which corresponded to welding activity near the intake port for fresh gas. This contamination resulted in system-wide NO levels of 5 to 8 ppm. Hospital compressed air contains highly variable levels of NO that tend to covary with ambient NO levels and to be highest when the rate of usage is high enough to preclude natural degradation of NO in 21% oxygen. Assuming that inhaled NO may alter gas exchange, pulmonary hemodynamics, and outcome from acute lung injury, the role of unwitting variable NO of hospital compressed air needs to be evaluated.

  12. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    PubMed

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  13. Characterization of available light for seagrass and patch reef productivity in Sugarloaf Key, Lower Florida Keys

    USGS Publications Warehouse

    Toro-Farmer, Gerardo; Muller-Karger, Frank E.; Vega-Rodriguez, Maria; Melo, Nelson; Yates, Kimberly K.; Johns, Elizabeth; Cerdeira-Estrada, Sergio; Herwitz, Stan R.

    2016-01-01

    Light availability is an important factor driving primary productivity in benthic ecosystems, but in situ and remote sensing measurements of light quality are limited for coral reefs and seagrass beds. We evaluated the productivity responses of a patch reef and a seagrass site in the Lower Florida Keys to ambient light availability and spectral quality. In situ optical properties were characterized utilizing moored and water column bio-optical and hydrographic measurements. Net ecosystem productivity (NEP) was also estimated for these study sites using benthic productivity chambers. Our results show higher spectral light attenuation and absorption, and lower irradiance during low tide in the patch reef, tracking the influx of materials from shallower coastal areas. In contrast, the intrusion of clearer surface Atlantic Ocean water caused lower values of spectral attenuation and absorption, and higher irradiance in the patch reef during high tide. Storms during the studied period, with winds >10 m·s−1, caused higher spectral attenuation values. A spatial gradient of NEP was observed, from high productivity in the shallow seagrass area, to lower productivity in deeper patch reefs. The highest daytime NEP was observed in the seagrass, with values of almost 0.4 g·O2·m−2·h−1. Productivity at the patch reef area was lower in May than during October 2012 (mean = 0.137 and 0.177 g·O2·m−2·h−1, respectively). Higher photosynthetic active radiation (PAR) levels measured above water and lower light attenuation in the red region of the visible spectrum (~666 to ~699 nm) had a positive correlation with NEP. Our results indicate that changes in light availability and quality by suspended or resuspended particles limit benthic productivity in the Florida Keys.

  14. Analysis of wind-driven ambient noise in a shallow water environment with a sandy seabed.

    PubMed

    Knobles, D P; Joshi, S M; Gaul, R D; Graber, H C; Williams, N J

    2008-09-01

    On the New Jersey continental shelf ambient sound levels were recorded during tropical storm Ernesto that produced wind speeds up to 40 knots in early September 2006. The seabed at the position of the acoustic measurements can be approximately described as coarse sand. Differences between the ambient noise levels for the New Jersey shelf measurements and deep water reference measurements are modeled using both normal mode and ray methods. The analysis is consistent with a nonlinear frequency dependent seabed attenuation for the New Jersey site.

  15. Method and system for controlling the position of a beam of light

    DOEpatents

    Steinkraus, Jr., Robert F.; Johnson, Gary W [Livermore, CA; Ruggiero, Anthony J [Livermore, CA

    2011-08-09

    An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.

  16. Sleepless in Town – Drivers of the Temporal Shift in Dawn Song in Urban European Blackbirds

    PubMed Central

    Nordt, Anja; Klenke, Reinhard

    2013-01-01

    Organisms living in urban environments are exposed to different environmental conditions compared to their rural conspecifics. Especially anthropogenic noise and artificial night light are closely linked to urbanization and pose new challenges to urban species. Songbirds are particularly affected by these factors, because they rely on the spread of acoustic information and adjust their behaviour to the rhythm of night and day, e.g. time their dawn song according to changing light intensities. Our aim was to clarify the specific contributions of artificial night light and traffic noise on the timing of dawn song of urban European Blackbirds (Turdus merula). We investigated the onset of blackbird dawn song along a steep urban gradient ranging from an urban forest to the city centre of Leipzig, Germany. This gradient of anthropogenic noise and artificial night light was reflected in the timing of dawn song. In the city centre, blackbirds started their dawn song up to 5 hours earlier compared to those in semi-natural habitats. We found traffic noise to be the driving factor of the shift of dawn song into true night, although it was not completely separable from the effects of ambient night light. We additionally included meteorological conditions into the analysis and found an effect on the song onset. Cloudy and cold weather delayed the onset, but cloud cover was assumed to reflect night light emissions, thus, amplified sky luminance and increased the effect of artificial night light. Beside these temporal effects, we also found differences in the spatial autocorrelation of dawn song onset showing a much higher variability in noisy city areas than in rural parks and forests. These findings indicate that urban hazards such as ambient noise and light pollution show a manifold interference with naturally evolved cycles and have significant effects on the activity patterns of urban blackbirds. PMID:23940759

  17. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  18. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  19. 78 FR 44485 - Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ...] Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan... Rule Regarding ``Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State... ground-level ozone formation. B. What should I consider as I prepare my comments for the EPA? 1...

  20. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

Top