Sample records for ambient pm levels

  1. Different relationships between personal exposure and ambient concentration by particle size.

    PubMed

    Guak, Sooyoung; Lee, Kiyoung

    2018-04-06

    Ambient particulate matter (PM) concentrations at monitoring stations were often used as an indicator of population exposure to PM in epidemiological studies. The correlation between personal exposure and ambient concentrations of PM varied because of diverse time-activity patterns. The aim of this study was to determine the relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 with minimal impact of time-activity pattern on personal exposure. Performance of the MicroPEM, v3.2 was evaluated by collocation with central ambient air monitors for PM 10 and PM 2.5 . A field technician repeatedly conducted measurement of 24 h personal exposures to PM 10 and PM 2.5 with a fixed time-activity pattern of office worker over 26 days in Seoul, Korea. The relationship between the MicroPEM and the ambient air monitor showed good linearity. Personal exposure and ambient concentrations of PM 2.5 were highly correlated with a fixed time-activity pattern compared with PM 10 . The finding implied a high infiltration rate of PM 2.5 and low infiltration rate of PM 10 . The relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 was different for high level episodes. In the Asian dust episode, staying indoors could reduce personal exposure to PM 10 . However, personal exposure to PM 2.5 could not be reduced by staying indoors during the fine dust advisory episode.

  2. Toward refined estimates of ambient PM2.5 exposure: Evaluation of a physical outdoor-to-indoor transport model

    NASA Astrophysics Data System (ADS)

    Hodas, Natasha; Meng, Qingyu; Lunden, Melissa M.; Turpin, Barbara J.

    2014-02-01

    Because people spend the majority of their time indoors, the variable efficiency with which ambient PM2.5 penetrates and persists indoors is a source of error in epidemiologic studies that use PM2.5 concentrations measured at central-site monitors as surrogates for ambient PM2.5 exposure. To reduce this error, practical methods to model indoor concentrations of ambient PM2.5 are needed. Toward this goal, we evaluated and refined an outdoor-to-indoor transport model using measured indoor and outdoor PM2.5 species concentrations and air exchange rates from the Relationships of Indoor, Outdoor, and Personal Air Study. Herein, we present model evaluation results, discuss what data are most critical to prediction of residential exposures at the individual-subject and populations levels, and make recommendations for the application of the model in epidemiologic studies. This paper demonstrates that not accounting for certain human activities (air conditioning and heating use, opening windows) leads to bias in predicted residential PM2.5 exposures at the individual-subject level, but not the population level. The analyses presented also provide quantitative evidence that shifts in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport contribute significantly to variability in indoor ambient organic carbon concentrations and suggest that methods to account for these shifts will further improve the accuracy of outdoor-to-indoor transport models.

  3. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high correlation between PM10 emissions from these sources and ambient key components levels (R2= 0.61-0.98).

  4. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup; Sharma, Anoop Kumar; Wallin, Håkan; Bossi, Rossana; Autrup, Herman; Mølhave, Lars; Ravanat, Jean-Luc; Briedé, Jacob Jan; de Kok, Theo Martinus; Loft, Steffen

    2011-02-18

    Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.

  5. Toward refined estimates of ambient PM2.5 exposure: Evaluation of a physical outdoor-to-indoor transport model

    PubMed Central

    Hodas, Natasha; Meng, Qingyu; Lunden, Melissa M.; Turpin, Barbara J.

    2014-01-01

    Because people spend the majority of their time indoors, the variable efficiency with which ambient PM2.5 penetrates and persists indoors is a source of error in epidemiologic studies that use PM2.5 concentrations measured at central-site monitors as surrogates for ambient PM2.5 exposure. To reduce this error, practical methods to model indoor concentrations of ambient PM2.5 are needed. Toward this goal, we evaluated and refined an outdoor-to-indoor transport model using measured indoor and outdoor PM2.5 species concentrations and air exchange rates from the Relationships of Indoor, Outdoor, and Personal Air Study. Herein, we present model evaluation results, discuss what data are most critical to prediction of residential exposures at the individual-subject and populations levels, and make recommendations for the application of the model in epidemiologic studies. This paper demonstrates that not accounting for certain human activities (air conditioning and heating use, opening windows) leads to bias in predicted residential PM2.5 exposures at the individual-subject level, but not the population level. The analyses presented also provide quantitative evidence that shifts in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport contribute significantly to variability in indoor ambient organic carbon concentrations and suggest that methods to account for these shifts will further improve the accuracy of outdoor-to-indoor transport models. PMID:25798047

  6. PM4 crystalline silica emission factors and ambient concentrations at aggregate-producing sources in California.

    PubMed

    Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John

    2009-11-01

    The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3. The measured ambient concentrations in the PM4 size range are consistent with previously published ambient crystalline silica data applicable to the PM2.5 and PM of aerodynamic diameter of 10 microm or less (PM10) size ranges.

  7. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.6 National primary and secondary ambient air quality standards for PM10. (a) The level of the national...

  8. Exploring relationships between outdoor air particulate-associated polycyclic aromatic hydrocarbon and PM 2.5: A case study of benzo(a)pyrene in California metropolitan regions

    NASA Astrophysics Data System (ADS)

    Lobscheid, Agnes B.; McKone, Thomas E.; Vallero, Daniel A.

    Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM 2.5). Because PM 2.5 is listed by the US EPA as a "Criteria Pollutant", it is monitored regularly at sites nationwide. In contrast, very limited data is available on measured ambient air concentrations of PAHs. However, between 1999 and 2001, ambient air concentrations of PM 2.5 and benzo(a)pyrene (BaP) are available for California locations. We use multivariate linear regression models (MLRMs) to predict ambient air levels of BaP in four air basins based on reported PM 2.5 concentrations and spatial, temporal and meteorological variables as variates. We obtain an R2 ranging from 0.57 to 0.72 among these basins. Significant variables ( p<0.05) include the average daily PM 2.5 concentration, wind speed, temperature and relative humidity, and the coastal distance as well as season, and holiday or weekend. Combining the data from all sites and using only these variables to estimate ambient BaP levels, we obtain an R2 of 0.55. These R2-values, combined with analysis of the residual error and cross validation using the PRESS-statistic, demonstrate the potential of our method to estimate reported outdoor air PAH exposure levels in metropolitan regions. These MLRMs provide a first step towards relating outdoor ambient PM 2.5 and PAH concentrations for epidemiological studies when PAH measurements are unavailable, or limited in spatial coverage, based on publicly available meteorological and PM 2.5 data.

  9. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals.

    PubMed

    Rodosthenous, Rodosthenis S; Coull, Brent A; Lu, Quan; Vokonas, Pantel S; Schwartz, Joel D; Baccarelli, Andrea A

    2016-03-08

    Air pollution from particulate matter (PM) has been linked to cardiovascular morbidity and mortality; however the underlying biological mechanisms remain to be uncovered. Gene regulation by microRNAs (miRNAs) that are transferred between cells by extracellular vesicles (EVs) may play an important role in PM-induced cardiovascular risk. This study sought to determine if ambient PM2.5 levels are associated with expression of EV-encapsulated miRNAs (evmiRNAs), and to investigate the participation of such evmiRNAs in pathways related to cardiovascular disease (CVD). We estimated the short- (1-day), intermediate- (1-week and 1-month) and long-term (3-month, 6-month, and 1-year) moving averages of ambient PM2.5 levels at participants' addresses using a validated hybrid spatio-temporal land-use regression model. We collected 42 serum samples from 22 randomly selected participants in the Normative Aging Study cohort and screened for 800 miRNAs using the NanoString nCounter® platform. Mixed effects regression models, adjusted for potential confounders were used to assess the association between ambient PM2.5 levels and evmiRNAs. All p-values were adjusted for multiple comparisons. In-silico Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways that are regulated by PM-associated evmiRNAs. We found a significant association between long-term ambient PM2.5 exposures and levels of multiple evmiRNAs circulating in serum. In the 6-month window, ambient PM2.5 exposures were associated with increased levels of miR-126-3p (0.74 ± 0.21; p = 0.02), miR-19b-3p (0.52 ± 0.15; p = 0.02), miR-93-5p (0.78 ± 0.22; p = 0.02), miR-223-3p (0.74 ± 0.22; p = 0.02), and miR-142-3p (0.81 ± 0.21; p = 0.03). Similarly, in the 1-year window, ambient PM2.5 levels were associated with increased levels of miR-23a-3p (0.83 ± 0.23; p = 0.02), miR-150-5p (0.90 ± 0.24; p = 0.02), miR-15a-5p (0.70 ± 0.21; p = 0.02), miR-191-5p (1.20 ± 0.35; p = 0.02), and let-7a-5p (1.42 ± 0.39; p = 0.02). In silico pathway analysis on PM2.5-associated evmiRNAs identified several key CVD-related pathways including oxidative stress, inflammation, and atherosclerosis. We found an association between long-term ambient PM2.5 levels and increased levels of evmiRNAs circulating in serum. Further observational studies are warranted to confirm and extend these important findings in larger and more diverse populations, and experimental studies are needed to elucidate the exact roles of evmiRNAs in PM-induced CVD.

  10. METALS MIMIC AIRWAY EPITHELIAL INJURY INDUCED BY IN VITRO EXPOSURE TO UTAH VALLEY AMBIENT PARTICULATE MATTER EXTRACTS

    EPA Science Inventory

    Abstract

    Epidemiologic studies have shown positive associationsbetween changes in ambient particulate matter (PM) levels in Utah Valley during 1986-1988, and the respiratory health of the local population. Ambient PM reductions coincided withclosure of an open-hearth steel...

  11. [Association between ambient PM(l0)/PM(2.5) concentration and outpatient department visits due to respiratory disease in a hospital in Jinan, 2013-2015: a time series analysis].

    PubMed

    Zhao, M J; Geng, X Y; Cui, L L; Zhou, J W; Zhang, J

    2017-03-10

    Objective: To estimate the influence of the ambient PM(l0) and PM(2.5) pollution on the hospital outpatient department visit due to respiratory diseases in local residents in Jinan quantitatively. Methods: Time serial analysis using generalized addictive model (GAM) was conducted. After controlling the confounding factors, such as long term trend, weekly pattern and meteorological factors, considering lag effect and the influence of other air pollutants, the excess relative risks of daily hospital visits associated with increased ambient PM(10) and PM(2.5) levels were estimated by fitting a Poisson regression model. Results: A 10 μg/m(3) increase of PM(10) and PM(2.5) levels was associated with an increase of 0.36%(95 %CI : 0.30%-0.43%) and 0.50%(95 %CI : 0.30%-0.70%) respectively for hospital visits due to respiratory diseases. Lag effect of 6 days was strongest, the excess relative risks were 0.65% (95 % CI : 0.58% -0.71% ) and 0.54% (95 % CI : 0.42%-0.67%) respectively. When NO(2) concentration was introduced, the daily hospital visits due to respiratory disease increased by 0.83% as a 10 μg/m(3) increase of PM(10) concentration (95 % CI : 0.76%-0.91%). Conclusion: The ambient PM(l0) and PM(2.5) pollution was positively associated with daily hospital visits due to respiratory disease in Jinan, and ambient NO(2) concentration would have the synergistic effect.

  12. Characterization of fine particulate matter in Ohio: Indoor, outdoor, and personal exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crist, Kevin C.; Liu, Bian; Kim, Myoungwoo

    2008-01-15

    Ambient, indoor, and personal PM{sub 2.5} concentrations were assessed based on an exhaustive study of PM{sub 2.5} performed in Ohio from 1999 to 2000. Locations in Columbus, one in an urban corridor and the other in a suburban area were involved. A third rural location in Athens, Ohio, was also established. At all three locations, elementary schools were utilized to determine outdoor, indoor, and personal PM{sub 2.5} concentrations for fourth and fifth grade students using filter-based measurements. Three groups of 30 students each were used for personal sampling at each school. Continuous ambient PM{sub 2.5} mass concentrations were also measuredmore » with tapered element oscillating microbalances (TEOMs). At all three sites, personal and indoor PM{sub 2.5} concentrations exceeded outdoor levels. This trend is consistent on all week days and most evident in the spring as compared to fall and winter. The ambient PM{sub 2.5} concentrations were similar among the three sites, suggesting the existence of a common regional source influence. At all the three sites, larger variations were found in personal and indoor PM{sub 2.5} than ambient levels. The strongest correlations were found between indoor and personal concentrations, indicating that personal PM{sub 2.5} exposures were significantly affected by indoor PM{sub 2.5} than by ambient PM{sub 2.5}. This was further confirmed by the indoor to outdoor (I/O) ratios of PM{sub 2.5} concentrations, which were greater when school was in session than non-school days when the students were absent.« less

  13. Infiltration of ambient PM 2.5 and levels of indoor generated non-ETS PM 2.5 in residences of four European cities

    NASA Astrophysics Data System (ADS)

    Hänninen, O. O.; Lebret, E.; Ilacqua, V.; Katsouyanni, K.; Künzli, N.; Srám, R. J.; Jantunen, M.

    Ambient fine particle (PM 2.5) concentrations are associated with premature mortality and other health effects. Urban populations spend a majority of their time in indoor environments, and thus exposures are modified by building envelopes. Ambient particles have been found to penetrate indoors very efficiently (penetration efficiency P≈1.0), where they are slowly removed by deposition, adsorption, and other mechanisms. Other particles are generated indoors, even in buildings with no obvious sources like combustion devices, cooking, use of aerosol products, etc.. The health effects of indoor generated particles are currently not well understood, and require information on concentrations and exposure levels. The current work apportions residential PM 2.5 concentrations measured in the EXPOLIS study to ambient and non-ambient fractions. The results show that the mean infiltration efficiency of PM 2.5 particles is similar in all four cities included in the analysis, ranging from 0.59 in Helsinki to 0.70 in Athens, with Basle and Prague in between. Mean residential indoor concentrations of ambient particles range from 7 (Helsinki) to 21 μg m -3 (Athens). Based on PM 2.5 decay rates estimated in the US, estimates of air exchange rates and indoor source strengths were calculated. The mean air exchange rate was highest in Athens and lowest in Prague. Indoor source strengths were similar in Athens, Basle and Prague, but lower in Helsinki. Some suggestions of possible determinants of indoor generated non-ETS PM 2.5 were acquired using regression analysis. Building materials and other building and family characteristics were associated with the indoor generated particle levels. A significant fraction of the indoor concentrations remained unexplained.

  14. ARE MALES MORE SUSCEPTIBLE TO AMBIENT PM THAN FEMALES?

    EPA Science Inventory

    Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...

  15. The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: A multi-city study.

    PubMed

    Chen, Gongbo; Zhang, Wenyi; Li, Shanshan; Zhang, Yongming; Williams, Gail; Huxley, Rachel; Ren, Hongyan; Cao, Wei; Guo, Yuming

    2017-01-01

    There is good evidence that air pollution is a risk factor for adverse respiratory and vascular health outcomes. However, data are limited as to whether ambient fine particles contribute to the transmission of influenza and if so, how the association is modified by weather conditions. We examined the relationship between ambient PM 2.5 and influenza incidence at the national level in China and explored the associations at different temperatures. Daily data on concentrations of particulate matter with aerodynamic diameter<2.5μm (PM 2.5 ) and influenza incidence counts were collected in 47 Chinese cities. A Poisson regression model was used to estimate the city-specific PM 2.5 -influenza association, after controlling for potential confounders. Then, a random-effect meta-analysis was used to pool the effects at national level. In addition, stratified analyses were performed to examine modification effects of ambient temperature. For single lag models, the highest effect of ambient PM 2.5 on influenza incidence appeared at lag day 2, with relative risk (RR) of 1.015 (95% confidence interval (CI): 1.004, 1.025) associated with a 10μg/m 3 increase in PM 2.5 . For moving average lag models, the significant association was found at lag 2-3days, with RR of 1.020 (95% CI: 1.006, 1.034). The RR of influenza transmission associated with PM 2.5 was higher for cold compared with hot days. Overall, 10.7% of incident influenza cases may result from exposure to ambient PM 2.5 . Ambient PM 2.5 may increase the risk of exposure to influenza in China especially on cooler days. Control measures to reduce PM 2.5 concentrations could potentially also be of benefit in lowering the risk of exposure and subsequent transmission of influenza in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of metals within ambient air particulate matter (PM) on human health.

    PubMed

    Chen, Lung Chi; Lippmann, Morton

    2009-01-01

    We review literature providing insights on health-related effects caused by inhalation of ambient air particulate matter (PM) containing metals, emphasizing effects associated with in vivo exposures at or near contemporary atmospheric concentrations. Inhalation of much higher concentrations, and high-level exposures via intratracheal (IT) instillation that inform mechanistic processes, are also reviewed. The most informative studies of effects at realistic exposure levels, in terms of identifying influential individual PM components or source-related mixtures, have been based on (1) human and laboratory animal exposures to concentrated ambient particles (CAPs), and (2) human population studies for which both health-related effects were observed and PM composition data were available for multipollutant regression analyses or source apportionment. Such studies have implicated residual oil fly ash (ROFA) as the most toxic source-related mixture, and Ni and V, which are characteristic tracers of ROFA, as particularly influential components in terms of acute cardiac function changes and excess short-term mortality. There is evidence that other metals within ambient air PM, such as Pb and Zn, also affect human health. Most evidence now available is based on the use of ambient air PM components concentration data, rather than actual exposures, to determine significant associations and/or effects coefficients. Therefore, considerable uncertainties about causality are associated with exposure misclassification and measurement errors. As more PM speciation data and more refined modeling techniques become available, and as more CAPs studies involving PM component analyses are performed, the roles of specific metals and other components within PM will become clearer.

  17. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by characteristics of Ho Chi Minh City's rapidly urbanizing landscape, resulted in systematically higher PM exposures among the poor.

  18. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    NASA Astrophysics Data System (ADS)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures to particulate matter.

  19. Modeling individual exposures to ambient PM2.5 in the diabetes and the environment panel study (DEPS).

    PubMed

    Breen, Michael; Xu, Yadong; Schneider, Alexandra; Williams, Ronald; Devlin, Robert

    2018-06-01

    Air pollution epidemiology studies of ambient fine particulate matter (PM 2.5 ) often use outdoor concentrations as exposure surrogates, which can induce exposure error. The goal of this study was to improve ambient PM 2.5 exposure assessments for a repeated measurements study with 22 diabetic individuals in central North Carolina called the Diabetes and Environment Panel Study (DEPS) by applying the Exposure Model for Individuals (EMI), which predicts five tiers of individual-level exposure metrics for ambient PM 2.5 using outdoor concentrations, questionnaires, weather, and time-location information. Using EMI, we linked a mechanistic air exchange rate (AER) model to a mass-balance PM 2.5 infiltration model to predict residential AER (Tier 1), infiltration factors (F inf_home , Tier 2), indoor concentrations (C in , Tier 3), personal exposure factors (F pex , Tier 4), and personal exposures (E, Tier 5) for ambient PM 2.5 . We applied EMI to predict daily PM 2.5 exposure metrics (Tiers 1-5) for 174 participant-days across the 13 months of DEPS. Individual model predictions were compared to a subset of daily measurements of F pex and E (Tiers 4-5) from the DEPS participants. Model-predicted F pex and E corresponded well to daily measurements with a median difference of 14% and 23%; respectively. Daily model predictions for all 174 days showed considerable temporal and house-to-house variability of AER, F inf_home , and C in (Tiers 1-3), and person-to-person variability of F pex and E (Tiers 4-5). Our study demonstrates the capability of predicting individual-level ambient PM 2.5 exposure metrics for an epidemiological study, in support of improving risk estimation. Copyright © 2018. Published by Elsevier B.V.

  20. Air pollution exposure modeling of individuals

    EPA Science Inventory

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  1. EVALUATION OF ULTRAFINE PARTICLES AS PART OF A HEALTH EFFECTS EXPOSURE STUDY

    EPA Science Inventory

    Ambient particulate matter (PM) is a complex mixture that includes bioactive and toxic compounds of natural and anthropogenic origin. Numerous epidemiological studies have reported associations between exposure to ambient levels of PM and various indices of cardiopulmonary morbi...

  2. Time to harmonize national ambient air quality standards.

    PubMed

    Kutlar Joss, Meltem; Eeftens, Marloes; Gintowt, Emily; Kappeler, Ron; Künzli, Nino

    2017-05-01

    The World Health Organization has developed ambient air quality guidelines at levels considered to be safe or of acceptable risk for human health. These guidelines are meant to support governments in defining national standards. It is unclear how they are followed. We compiled an inventory of ambient air quality standards for 194 countries worldwide for six air pollutants: PM 2.5 , PM 10 , ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. We conducted literature and internet searches and asked country representatives about national ambient air quality standards. We found information on 170 countries including 57 countries that did not set any air quality standards. Levels varied greatly by country and by pollutant. Ambient air quality standards for PM 2.5 , PM 10 and SO 2 poorly complied with WHO guideline values. The agreement was higher for CO, SO 2 (10-min averaging time) and NO 2 . Regulatory differences mirror the differences in air quality and the related burden of disease around the globe. Governments worldwide should adopt science based air quality standards and clean air management plans to continuously improve air quality locally, nationally, and globally.

  3. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.

    PubMed

    Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria

    2010-04-01

    Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement.

  4. Long-Term Effects of Ambient PM2.5 on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults.

    PubMed

    Lin, Hualiang; Guo, Yanfei; Zheng, Yang; Di, Qian; Liu, Tao; Xiao, Jianpeng; Li, Xing; Zeng, Weilin; Cummings-Vaughn, Lenise A; Howard, Steven W; Vaughn, Michael G; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2017-05-01

    Long-term exposure to ambient fine particulate pollution (PM 2.5 ) has been associated with cardiovascular diseases. Hypertension, a major risk factor for cardiovascular diseases, has also been hypothesized to be linked to PM 2.5 However, epidemiological evidence has been mixed. We examined long-term association between ambient PM 2.5 and hypertension and blood pressure. We interviewed 12 665 participants aged 50 years and older and measured their blood pressures. Annual average PM 2.5 concentrations were estimated for each community using satellite data. We applied 2-level logistic regression models to examine the associations and estimated hypertension burden attributable to ambient PM 2.5 For each 10 μg/m 3 increase in ambient PM 2.5 , the adjusted odds ratio of hypertension was 1.14 (95% confidence interval, 1.07-1.22). Stratified analyses found that overweight and obesity could enhance the association, and consumption of fruit was associated with lower risk. We further estimated that 11.75% (95% confidence interval, 5.82%-18.53%) of the hypertension cases (corresponding to 914, 95% confidence interval, 453-1442 cases) could be attributable to ambient PM 2.5 in the study population. Findings suggest that long-term exposure to ambient PM 2.5 might be an important risk factor of hypertension and is responsible for significant hypertension burden in adults in China. A higher consumption of fruit may mitigate, whereas overweight and obesity could enhance this effect. © 2017 American Heart Association, Inc.

  5. Ambient PM2.5 and stroke: effect modifiers and population attributable risk in six low- and middle-income countries

    PubMed Central

    Lin, Hualiang; Guo, Yanfei; Di, Qian; Zheng, Yang; Kowal, Paul; Xiao, Jianpeng; Liu, Tao; Li, Xing; Zeng, Weilin; Howard, Steven W.; Nelson, Erik J.; Qian, Zhengmin (Min); Ma, Wenjun; Wu, Fan

    2017-01-01

    Background and Purpose Short-term exposure to ambient fine particulate pollution (PM2.5) has been linked to increased stroke. Few studies, however, have examined the effects of long-term exposure. Methods A total of 45,625 participants were interviewed and included in this study, the participants came from the Study on Global AGEing and Adult Health, a prospective cohort in six low- and middle-income countries. Ambient PM2.5 levels were estimated for participants’ communities using satellite data. A multi-level logistic regression model was used to examine the association between long-term PM2.5 exposure and stroke. Potential effect modification by physical activity and consumption of fruit and vegetables was assessed. Results The odds of stroke were 1.13 (95% CI: 1.04, 1.22) for each 10 μg/m3 increase in PM2.5. This effect remained after adjustment for confounding factors including age, sex, smoking and indoor air pollution (adjusted OR=1.12, 95% CI: 1.04, 1.21). Further stratified analyses suggested that participants with higher levels of physical activity had greater odds of stroke, while those with higher consumption of fruit and vegetables had lower odds of stroke. These effects remained robust in sensitivity analyses. We further estimated that 6.55% (95% CI: 1.97%, 12.01%) of the stroke cases could be attributable to ambient PM2.5 in the study population. Conclusions This study suggests that ambient PM2.5 may increase the risk of stroke, and may be responsible for the astounding stroke burden in low- and middle-income countries. Additionally, greater physical activity may enhance, whereas greater consumption of fruit and vegetables may mitigate the effect. PMID:28386038

  6. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  7. Predicting airborne particle levels aboard Washington State school buses

    NASA Astrophysics Data System (ADS)

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Sally Liu, L.-J.

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM 2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission reducing retrofits. To assess onboard concentrations, continuous PM 2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least squares regression models for PM 2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM 2.5 levels, ambient weather, and bus and route characteristics. Average concentrations aboard school buses (21 μg m -3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM 2.5 levels between the buses and lead vehicles indicated an average of 7 μg m -3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM 2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross-validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  8. Engineering system for simultaneous inhalation exposures of rodents to fine and ultrafine concentrated ambient particulate matter from a common air source

    EPA Science Inventory

    Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...

  9. Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas.

    PubMed

    Allen, G; Sioutas, C; Koutrakis, P; Reiss, R; Lurmann, F W; Roberts, P T

    1997-06-01

    Increased interest in the health effects of ambient particulate mass (PM) has focused attention on the evaluation of existing mass measurement methodologies and the definition of PM in ambient air. The Rupprecht and Patashnick Tapered Element Oscillating MicroBalance (TEOM) method for PM is compared with time-integrated gravimetric (manual) PM methods in large urban areas during different seasons. Comparisons are conducted for both PM10 and PM2.5 concentrations. In urban areas, a substantial fraction of ambient PM can be semi-volatile material. A larger fraction of this component of PM10 may be lost from the TEOM-heated filter than the Federal Reference Method (FRM). The observed relationship between TEOM and FRM methods varied widely among sites and seasons. In East Coast urban areas during the summer, the methods were highly correlated with good agreement. In the winter, correlation was somewhat lower, with TEOM PM concentrations generally lower than the FRM. Rubidoux, CA, and two Mexican sites (Tlalnepantla and Merced) had the highest levels of PM10 and the largest difference between TEOM and manual methods. PM2.5 data from collocation of 24-hour manual samples with the TEOM are also presented. As most of the semi-volatile PM is in the fine fraction, differences between these methods are larger for PM2.5 than for PM10.

  10. Estimation of personal PM2.5 and BC exposure by a modeling approach - Results of a panel study in Shanghai, China.

    PubMed

    Chen, Chen; Cai, Jing; Wang, Cuicui; Shi, Jingjin; Chen, Renjie; Yang, Changyuan; Li, Huichu; Lin, Zhijing; Meng, Xia; Zhao, Ang; Liu, Cong; Niu, Yue; Xia, Yongjie; Peng, Li; Zhao, Zhuohui; Chillrud, Steven; Yan, Beizhan; Kan, Haidong

    2018-06-06

    Epidemiologic studies of PM 2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) and black carbon (BC) typically use ambient measurements as exposure proxies given that individual measurement is infeasible among large populations. Failure to account for variation in exposure will bias epidemiologic study results. The ability of ambient measurement as a proxy of exposure in regions with heavy pollution is untested. We aimed to investigate effects of potential determinants and to estimate PM 2.5 and BC exposure by a modeling approach. We collected 417 24 h personal PM 2.5 and 130 72 h personal BC measurements from a panel of 36 nonsmoking college students in Shanghai, China. Each participant underwent 4 rounds of three consecutive 24-h sampling sessions through December 2014 to July 2015. We applied backwards regression to construct mixed effect models incorporating all accessible variables of ambient pollution, climate and time-location information for exposure prediction. All models were evaluated by marginal R 2 and root mean square error (RMSE) from a leave-one-out-cross-validation (LOOCV) and a 10-fold cross-validation (10-fold CV). Personal PM 2.5 was 47.6% lower than ambient level, with mean (±Standard Deviation, SD) level of 39.9 (±32.1) μg/m 3 ; whereas personal BC (6.1 (±2.8) μg/m 3 ) was about one-fold higher than the corresponding ambient concentrations. Ambient levels were the most significant determinants of PM 2.5 and BC exposure. Meteorological and season indicators were also important predictors. Our final models predicted 75% of the variance in 24 h personal PM 2.5 and 72 h personal BC. LOOCV analysis showed an R 2 (RMSE) of 0.73 (0.40) for PM 2.5 and 0.66 (0.27) for BC. Ten-fold CV analysis showed a R 2 (RMSE) of 0.73 (0.41) for PM 2.5 and 0.68 (0.26) for BC. We used readily accessible data and established intuitive models that can predict PM 2.5 and BC exposure. This modeling approach can be a feasible solution for PM exposure estimation in epidemiological studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Comparison of Personal PM2.5 Exposure in Various Micro-Environments during Haze and Clean Days in Nanjing

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2015-12-01

    There is a long term trend of haze in East China. As a main component of haze, fine particle (PM2.5) in various micro-environments (MEs) is a cause for concern regarding the environment and public health. To estimate individual PM2.5 exposures in distinct, non-residential MEs and to determine exposure characteristics during haze and clean days, we conducted personal PM2.5 monitoring with portable PM2.5 personal environment monitors (MicroPEM) in 19 indoor/outdoor MEs in Nanjing, and compared personal exposure data with ambient PM2.5 levels. Personal PM2.5 exposure patterns displayed notable spatial variance, peaking in snack streets and restaurants and dipping in subways and labs. Under both haze and non-haze conditions, different characteristics of MEs and the background PM2.5 level jointly determine the spatial variance of individual exposure. Indoor MEs with better ventilation systems led to lower personal PM2.5 exposure levels. During haze days, impact from high ambient PM2.5 overwhelms influence from other factors and dominates personal exposure trends.

  12. Genetic cardiovascular diseases influence pulmonary inflammatory responses to oxidant pollutants - insights from transcription profiling

    EPA Science Inventory

    Metals are ubiquitously present in ambient PM especially in the vicinity of coal and oilfired power plants, smelters and roads. The presence of neighboring emission sources influences ambient levels of metals. Because inhaled PM-associated metals can be labile, their translocati...

  13. Air Pollution Exposure Modeling for Epidemiology Studies and Public Health

    EPA Science Inventory

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  14. Source contributions to PM2.5 in Guangdong province, China by numerical modeling: Results and implications

    NASA Astrophysics Data System (ADS)

    Yin, Xiaohong; Huang, Zhijiong; Zheng, Junyu; Yuan, Zibing; Zhu, Wenbo; Huang, Xiaobo; Chen, Duohong

    2017-04-01

    As one of the most populous and developed provinces in China, Guangdong province (GD) has been experiencing regional haze problems. Identification of source contributions to ambient PM2.5 level is essential for developing effective control strategies. In this study, using the most up-to-date emission inventory and validated numerical model, source contributions to ambient PM2.5 from eight emission source sectors (agriculture, biogenic, dust, industry, power plant, residential, mobile and others) in GD in 2012 were quantified. Results showed that mobile sources are the dominant contributors to the ambient PM2.5 (24.0%) in the Pearl River Delta (PRD) region, the central and most developed area of GD, while industry sources are the major contributors (21.5% 23.6%) to those in the Northeastern GD (NE-GD) region and the Southwestern GD (SW-GD) region. Although many industries have been encouraged to move from the central GD to peripheral areas such as NE-GD and SW-GD, their emissions still have an important impact on the PM2.5 level in the PRD. In addition, agriculture sources are responsible for 17.5% to ambient PM2.5 in GD, indicating the importance of regulations on agricultural activities, which has been largely ignored in the current air quality management. Super-regional contributions were also quantified and their contributions to the ambient PM2.5 in GD are significant with notable seasonal differences. But they might be overestimated and further studies are needed to better quantify the transport impacts.

  15. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal.

    PubMed

    Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen

    2018-03-15

    Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diameter<10μm) in summer 2016 at four locations in Chitwan, Nepal, and investigate its association with meteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  16. Assessing the impact of a wood stove replacement program on air quality and children's health.

    PubMed

    Noonan, Curtis W; Ward, Tony J; Navidi, William; Sheppard, Lianne; Bergauff, Megan; Palmer, Chris

    2011-12-01

    Many rural mountain valley communities experience elevated ambient levels of fine particulate matter (PM*) in the winter, because of contributions from residential wood-burning appliances and sustained temperature inversion periods during the cold season. A wood stove change-out program was implemented in a community heavily affected by wood-smoke-derived PM2.5 (PM < or = 2.5 microm in aerodynamic diameter). The objectives of this study were to evaluate the impact of this intervention program on ambient and indoor PM2.5 concentrations and to identify possible corresponding changes in the frequency of childhood respiratory symptoms and infections and illness-related school absences. Over 1100 old wood stoves were replaced with new EPA-certified wood stoves or other heating sources. Ambient PM2.5 concentrations were 30% lower in the winter after the changeout program, compared with baseline winters, which brought the community's ambient air within the PM2.5 standards of the U.S. Environmental Protection Agency (U.S. EPA). The installation of a new wood stove resulted in an overall reduction in indoor PM2.5 concentrations in a small sample of wood-burning homes, but the effects were highly variable across homes. Community-level reductions in wood-smoke-derived PM2.5 concentration were associated with decreased reports of childhood wheeze and of other childhood respiratory health conditions. The association was not limited to children living in homes with wood stoves nor does it appear to be limited to susceptible children (e.g., children with asthma). Community-level reductions in wood-smoke-derived PM2.5 concentration were also associated with lower illness-related school absences among older children, but this finding was not consistent across all age-groups. This community-level intervention provided a unique opportunity to prospectively observe exposure and outcome changes resulting from a targeted air pollution reduction strategy.

  17. Increment of ambient exposure to fine particles and the reduced human fertility rate in China, 2000-2010.

    PubMed

    Xue, Tao; Zhu, Tong

    2018-06-13

    Epidemiological and toxicological studies suggest that exposure to ambient fine particles (PM 2.5 ) can reduce human reproductive capacity. We previously reported, based on spatial epidemiology, that higher levels of PM 2.5 exposure were associated with a lower fertility rate (FR) in China. However, that study was limited by a lack of temporal variation. Using first-difference regression, we linked temporal changes in FR and PM 2.5 with adjustment for ecological covariates across 2806 counties in China during 2000-2010. Next, we performed a sensitivity analysis of the variation in the PM 2.5 -FR association according to (1) geographic region, (2) indicators of the level of development, and (3) PM 2.5 concentrations. Also, we quantified the reduction in the FR attributable to ambient PM 2.5 in China for the first time. The FR decreased by 3.3% (1.2%, 5.3%) for each 10 μg/m 3 increment in PM 2.5 . The association varied significantly among the geographic regions, but not with the level of development. Nonlinearity analysis suggested a linear exposure-response function with an effect threshold of ~8 μg/m 3 . We also found that comparing to the 2000 scenario, increment of PM 2.5 in 2010 might result in a reduction of 2.50 (2.44, 2.60) infants per 1000 women aged 15-44 years per year in China. Our results confirm the statistical association between ambient particles and FR and suggest that poor air quality may contribute to childlessness in China. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Source identification of ambient PM 2.5 during summer inhalation exposure studies in Detroit, MI

    NASA Astrophysics Data System (ADS)

    Morishita, Masako; Keeler, Gerald J.; Wagner, James G.; Harkema, Jack R.

    Particulate air pollution is associated with cardiopulmonary morbidity and mortality in heavily populated urban centers of the United States. Because ambient fine particulate matter (aerodynamic diameter ⩽2.5 μm; PM 2.5) is a complex mixture resulting from multiple sources and variable atmospheric conditions, it is difficult to identify specific components of PM 2.5 that are responsible for adverse health effects. During four consecutive summers from 2000 to 2003 we characterized the ambient gaseous and PM 2.5 air quality in an urban southwest Detroit community where childhood asthma hospitalization rates are more than twice the statewide average. Both integrated and continuous PM measurements together with gaseous air pollution measurements were performed using a mobile air research facility, AirCARE1, in which concurrent toxicological studies were being conducted. Chemical and physical characterizations of PM 2.5 as well as receptor modeling using positive matrix factorization (PMF) were completed. Results from PMF indicated that six major sources contributed to the observed ambient PM 2.5 mass during the summer months. Primary sources included (1) coal combustion/secondary sulfate aerosol, (2) motor vehicle/urban road dust, (3) municipal waste incinerators, (4) oil combustion/refineries, (5) sewage sludge incinerators, and (6) iron/steel manufacturing. Although the contribution of the coal/secondary sulfate aerosol source was greater than other factors, increased levels of urban PM 2.5 from local combustion sources were also observed. In addition to characterization of ambient PM 2.5 and their sources in southwest Detroit, this paper discusses possible associations of ambient PM 2.5 from local combustion sources, specifically incinerator and refinery emissions and the observed adverse health effects during the inhalation exposure campaigns.

  19. Exposure to Indoor Particulate Matter Worsens the Symptoms and Acute Exacerbations in Chronic Obstructive Pulmonary Disease Patients of Southwestern Taiwan: A Pilot Study

    PubMed Central

    Chi, Miao-Ching; Guo, Su-Er; Hwang, Su-Lun; Chou, Chiang-Ting; Lin, Chieh-Mo; Lin, Yu-Ching

    2016-01-01

    Ambient particulate matter (PM) can trigger adverse reactions in the respiratory system, but less is known about the effect of indoor PM. In this longitudinal study, we investigated the relationships between indoor PM and clinical parameters in patients with moderate to very severe chronic obstructive pulmonary disease (COPD). Indoor air quality (PM2.5 and PM10 levels) was monitored in the patients’ bedroom, kitchen, living room, and front door at baseline and every two months for one year. At each home visit, the patients were asked to complete spirometry and questionnaire testing. Exacerbations were assessed by chart review and questionnaires during home visits. Generalized estimating equation (GEE) analysis (n = 83) showed that the level of wheezing was significantly higher in patients whose living room and kitchen had abnormal (higher than ambient air quality standards in Taiwan) PM2.5 and PM10 levels. Patients who lived in houses with abnormal outdoor PM2.5 levels had higher COPD Assessment Test scores (physical domain), and those who lived in houses with abnormal PM10 levels in the living room and kitchen had higher London Chest Activity of Daily Living scores. Increased PM levels were associated with worse respiratory symptoms and increased risk of exacerbation in patients with moderate to very severe COPD. PMID:28025521

  20. Temporal evolution of main ambient PM2. 5 sources in Santiago, Chile, from 1998 to 2012

    NASA Astrophysics Data System (ADS)

    Barraza, Francisco; Lambert, Fabrice; Jorquera, Héctor; María Villalobos, Ana; Gallardo, Laura

    2017-08-01

    The inhabitants of Santiago, Chile have been exposed to harmful levels of air pollutants for decades. The city's poor air quality is a result of steady economic growth, and stable atmospheric conditions adverse to mixing and ventilation that favor the formation of oxidants and secondary aerosols. Identifying and quantifying the sources that contribute to the ambient levels of pollutants is key for designing adequate mitigation measures. Estimating the evolution of source contributions to ambient pollution levels is also paramount to evaluating the effectiveness of pollution reduction measures that have been implemented in recent decades. Here, we quantify the main sources that have contributed to fine particulate matter (PM2. 5) between April 1998 and August 2012 in downtown Santiago by using two different source-receptor models (PMF 5.0 and UNMIX 6.0) that were applied to elemental measurements of 1243 24 h filter samples of ambient PM2.5. PMF resolved six sources that contributed to ambient PM2. 5, with UNMIX producing similar results: motor vehicles (37.3 ± 1.1 %), industrial sources (18.5 ± 1.3 %), copper smelters (14.4 ± 0.8 %), wood burning (12.3 ± 1.0 %), coastal sources (9.5 ± 0.7 %) and urban dust (3.0 ± 1.2 %). Our results show that over the 15 years analyzed here, four of the resolved sources significantly decreased [95 % confidence interval]: motor vehicles 21.3 % [2.6, 36.5], industrial sources 39.3 % [28.6, 48.4], copper smelters 81.5 % [75.5, 85.9], and coastal sources 58.9 % [38.5, 72.5], while wood burning did not significantly change and urban dust increased by 72 % [48.9, 99.9]. These changes are consistent with emission reduction measures, such as improved vehicle emission standards, cleaner smelting technology, introduction of low-sulfur diesel for vehicles and natural gas for industrial processes, public transport improvements, etc. However, it is also apparent that the mitigation expected from the above regulations has been partially offset by the increasing amount of private vehicle use in the city, with motor vehicles becoming the dominant source of ambient PM2. 5 in recent years. Consequently, Santiago still experiences ambient PM2. 5 levels above the annual and 24 h Chilean and World Health Organization standards, and further regulations are required to reach ambient air quality standards.

  1. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models.

    PubMed Central

    Costa, D L; Dreher, K L

    1997-01-01

    Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two oil and one coal fly ash) and four ambient airsheds (St. Louis, MO; Washington; Dusseldorf, Germany; and Ottawa, Canada). PM was administered to rats by intratracheal instillation in equimass or equimetal doses to address directly the influence of PM mass versus metal content on acute lung injury and inflammation. Our results indicated that the lung dose of bioavailable transition metal, not instilled PM mass, was the primary determinant of the acute inflammatory response for both the combustion source and ambient PM samples. Residual oil fly ash, a combustion PM rich in bioavailable metal, was evaluated in a rat model of cardiopulmonary disease (pulmonary vasculitis/hypertension) to ascertain whether the disease state augmented sensitivity to that PM. Significant mortality and enhanced airway responsiveness were observed. Analysis of the lavaged lung fluids suggested that the milieu of the inflamed lung amplified metal-mediated oxidant chemistry to jeopardize the compromised cardiopulmonary system. We propose that soluble metals from PM mediate the array of PM-associated injuries to the cardiopulmonary system of the healthy and at-risk compromised host. PMID:9400700

  2. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    PubMed

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  3. The attributable risk of chronic obstructive pulmonary disease due to ambient fine particulate pollution among older adults.

    PubMed

    Lin, Hualiang; Qian, Zhengmin Min; Guo, Yanfei; Zheng, Yang; Ai, Siqi; Hang, Jian; Wang, Xiaojie; Zhang, Lingli; Liu, Tao; Guan, Weijie; Li, Xing; Xiao, Jianpeng; Zeng, Weilin; Xian, Hong; Howard, Steven W; Ma, Wenjun; Wu, Fan

    2018-04-01

    The linkage between ambient fine particle pollution (PM 2.5 ) and chronic obstructive pulmonary disease (COPD) and the attributable risk remained largely unknown. This study determined the cross-sectional association between ambient PM 2.5 and prevalence of COPD among adults ≥50 years of age. We surveyed 29,290 participants aged 50 years and above in this study. The annual average concentrations of PM 2.5 derived from satellite data were used as the exposure indicator. A mixed effect model was applied to determine the associations and the burden of COPD attributable to PM 2.5. RESULTS: Among the participants, 1872 (6.39%) were classified as COPD cases. Our analysis observed a threshold concentration of 30 μg/m 3 in the PM 2.5 -COPD association, above which we found a linear positive exposure-response association between ambient PM 2.5 and COPD. The odds ratio (OR) for each 10 μg/m 3 increase in ambient PM 2.5 was 1.21(95% CI: 1.13, 1.30). Stratified analyses suggested that males, older subjects (65 years and older) and those with lower education attainment might be the vulnerable subpopulations. We further estimated that about 13.79% (95% CI: 7.82%, 21.62%) of the COPD cases could be attributable to PM 2.5 levels higher than 30 μg/m 3 in the study population. Our analysis indicates that ambient PM 2.5 exposure could increase the risk of COPD and accounts for a substantial fraction of COPD among the study population. Copyright © 2018. Published by Elsevier Ltd.

  4. Ambient PM2.5 and Stroke: Effect Modifiers and Population Attributable Risk in Six Low- and Middle-Income Countries.

    PubMed

    Lin, Hualiang; Guo, Yanfei; Di, Qian; Zheng, Yang; Kowal, Paul; Xiao, Jianpeng; Liu, Tao; Li, Xing; Zeng, Weilin; Howard, Steven W; Nelson, Erik J; Qian, Zhengmin; Ma, Wenjun; Wu, Fan

    2017-05-01

    Short-term exposure to ambient fine particulate pollution (PM 2.5 ) has been linked to increased stroke. Few studies, however, have examined the effects of long-term exposure. A total of 45 625 participants were interviewed and included in this study, the participants came from the Study on Global Ageing and Adult Health, a prospective cohort in 6 low- and middle-income countries. Ambient PM 2.5 levels were estimated for participants' communities using satellite data. A multilevel logistic regression model was used to examine the association between long-term PM 2.5 exposure and stroke. Potential effect modification by physical activity and consumption of fruit and vegetables was assessed. The odds of stroke were 1.13 (95% confidence interval, 1.04-1.22) for each 10 μg/m 3 increase in PM 2.5 . This effect remained after adjustment for confounding factors including age, sex, smoking, and indoor air pollution (adjusted odds ratio=1.12; 95% confidence interval, 1.04-1.21). Further stratified analyses suggested that participants with higher levels of physical activity had greater odds of stroke, whereas those with higher consumption of fruit and vegetables had lower odds of stroke. These effects remained robust in sensitivity analyses. We further estimated that 6.55% (95% confidence interval, 1.97%-12.01%) of the stroke cases could be attributable to ambient PM 2.5 in the study population. This study suggests that ambient PM 2.5 may increase the risk of stroke and may be responsible for the astounding stroke burden in low- and middle-income countries. In addition, greater physical activity may enhance, whereas greater consumption of fruit and vegetables may mitigate the effect. © 2017 American Heart Association, Inc.

  5. Particulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in mice.

    PubMed

    Liu, Xuemei; Qian, Xin; Xing, Jing; Wang, Jinhua; Sun, Yixuan; Wang, Qin'geng; Li, Huiming

    2018-04-23

    Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro- and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with pro-inflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA filtered air for 4 weeks may exert antidepressant like effects in mice. Pro-inflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor cAMP-response-element binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the two groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of pro-inflammatory cytokines, down-regulation of interleukin-10 (IL-10), BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.

  6. Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Jia, Y.; Clements, A.

    2008-12-01

    In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results where sampled and resuspended agricultural soil, native soil and road dusts are used to characterize direct emissions of these sources to ambient fine and coarse particulate matter.

  7. Respiratory hospitalizations in association with fine PM and its ...

    EPA Pesticide Factsheets

    Despite observed geographic and temporal variation in particulate matter (PM)-related health morbidities, only a small number of epidemiologic studies have evaluated the relation between PM2.5 chemical constituents and respiratory disease. Most assessments are limited by inadequate spatial and temporal resolution of ambient PM measurements and/or by their approaches to examine the role of specific PM components on health outcomes. In a case-crossover analysis using daily average ambient PM2.5 total mass and species estimates derived from the Community Multiscale Air Quality (CMAQ) model and available observations, we examined the association between the chemical components of PM (including elemental and organic carbon, sulfate, nitrate, ammonium, and other remaining) and respiratory hospitalizations in New York State. We evaluated relationships between levels (low, medium, high) of PM constituent mass fractions, and assessed modification of the PM2.5–hospitalization association via models stratified by mass fractions of both primary and secondary PM components. In our results, average daily PM2.5 concentrations in New York State were generally lower than the 24-hr average National Ambient Air Quality Standard (NAAQS). Year-round analyses showed statistically significant positive associations between respiratory hospitalizations and PM2.5 total mass, sulfate, nitrate, and ammonium concentrations at multiple exposure lags (0.5–2.0% per interquartile range [IQR

  8. Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing.

    PubMed

    Qi, Meng; Zhu, Xi; Du, Wei; Chen, Yilin; Chen, Yuanchen; Huang, Tianbo; Pan, Xuelian; Zhong, Qirui; Sun, Xu; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2017-01-01

    Because people spend most of their time indoors, the characterization of indoor air quality is important for exposure assessment. Unfortunately, indoor air data are scarce, leading to a major data gap in risk assessment. In this study, PM 2.5 concentrations in both indoor and outdoor air were simultaneously measured using on-line particulate counters in 13 households in Haidian, Beijing for both heating and non-heating seasons. A bimodal distribution of PM 2.5 concentrations suggests rapid transitions between polluted and non-polluted situations. The PM 2.5 concentrations in indoor and outdoor air varied synchronously, with the indoor variation lagging. The lag time in the heating season was longer than that in the non-heating season. The particle sizes in indoor air were smaller than those in ambient air in the heating season and vice versa in the non-heating season. PM 2.5 concentrations in indoor air were generally lower than those in ambient air except when ambient concentrations dropped sharply to very low levels or there were internal emissions from cooking or other activities. The effectiveness of an air cleaner to reduce indoor PM 2.5 concentrations was demonstrated. Non-linear regression models were developed to predict indoor air PM 2.5 concentrations based on ambient data with lag time incorporated. The models were applied to estimate the overall population exposure to PM 2.5 and the health consequences in Haidian. The health impacts would be significantly overestimated without the indoor exposure being taken into consideration, and this bias would increase as the ambient air quality improved in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lacrimal Cytokines Assessment in Subjects Exposed to Different Levels of Ambient Air Pollution in a Large Metropolitan Area

    PubMed Central

    Matsuda, Monique; Bonatti, Rodolfo; Marquezini, Mônica V.; Garcia, Maria L. B.; Santos, Ubiratan P.; Braga, Alfésio L. F.; Alves, Milton R.

    2015-01-01

    Background Air pollution is one of the most environmental health concerns in the world and has serious impact on human health, particularly in the mucous membranes of the respiratory tract and eyes. However, ocular hazardous effects to air pollutants are scarcely found in the literature. Design Panel study to evaluate the effect of different levels of ambient air pollution on lacrimal film cytokine levels of outdoor workers from a large metropolitan area. Methods Thirty healthy male workers, among them nineteen professionals who work on streets (taxi drivers and traffic controllers, high pollutants exposure, Group 1) and eleven workers of a Forest Institute (Group 2, lower pollutants exposure compared to group 1) were evaluated twice, 15 days apart. Exposure to ambient PM2.5 (particulate matter equal or smaller than 2.5 μm) was 24 hour individually collected and the collection of tears was performed to measure interleukins (IL) 2, 4, 5 and 10 and interferon gamma (IFN-γ) levels. Data from both groups were compared using Student’s t test or Mann- Whitney test for cytokines. Individual PM2.5 levels were categorized in tertiles (lower, middle and upper) and compared using one-way ANOVA. Relationship between PM2.5 and cytokine levels was evaluated using generalized estimating equations (GEE). Results PM2.5 levels in the three categories differed significantly (lower: ≤22 μg/m3; middle: 23–37.5 μg/m3; upper: >37.5 μg/m3; p<0.001). The subjects from the two groups were distributed unevenly in the lower category (Group 1 = 8%; Group 2 = 92%), the middle category (Group 1 = 89%; Group 2 = 11%) and the upper category (Group 1 = 100%). A significant relationship was found between IL-5 and IL-10 and PM2.5 levels of the group 1, with an average decrease of 1.65 pg/mL of IL-5 level and of 0.78 pg/mL of IL-10 level in tear samples for each increment of 50 μg/m3 of PM2.5 (p = 0.01 and p = 0.003, respectively). Conclusion High levels of PM2.5 exposure is associated with decrease of IL-5 and IL-10 levels suggesting a possible modulatory action of ambient air pollution on ocular surface immune response. PMID:26588473

  10. AIR POLLUTION AND EXERCISE-INDUCED BRONCHOCONSTRICTION

    EPA Science Inventory

    If ambient PM is toxic, a statistical relationship might be expected between personal exposure to ambient PM and health effects due to ambient PM. However, some exposure analysts seem to believe that there cannot be a meaningful relationship between ambient concentrations of PM ...

  11. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    PubMed

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  12. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China.

    PubMed

    Cheng, Zhen; Ma, Xin; He, Yujie; Jiang, Jingkun; Wang, Xiaoliang; Wang, Yungang; Sheng, Li; Hu, Jiangkai; Yan, Naiqiang

    2017-07-01

    The ambient PM 2.5 pollution problem in China has drawn substantial international attentions. The mass extinction efficiency (MEE) and hygroscopicity factor (f(RH)) of PM 2.5 can be readily applied to study the impacts on atmospheric visibility and climate. The few previous investigations in China only reported results from pilot studies and are lack of spatial representativeness. In this study, hourly average ambient PM 2.5 mass concentration, relative humidity, and atmospheric visibility data from China national air quality and meteorological monitoring networks were retrieved and analyzed. It includes 24 major Chinese cities from nine city-clusters with the period of October 2013 to September 2014. Annual average extinction coefficient in urban China was 759.3±258.3Mm -1 , mainly caused by dry PM 2.5 (305.8.2±131.0Mm -1 ) and its hygroscopicity (414.6±188.1Mm -1 ). High extinction coefficient values were resulted from both high ambient PM 2.5 concentration (68.5±21.7µg/m 3 ) and high relative humidity (69.7±8.6%). The PM 2.5 mass extinction efficiency varied from 2.87 to 6.64m 2 /g with an average of 4.40±0.84m 2 /g. The average extinction hygroscopic factor f(RH=80%) was 2.63±0.45. The levels of PM 2.5 mass extinction efficiency and hygroscopic factor in China were in comparable range with those found in developed countries in spite of the significant diversities among all 24 cities. Our findings help to establish quantitative relationship between ambient extinction coefficient (visual range) and PM 2.5 & relative humidity. It will reduce the uncertainty of extinction coefficient estimation of ambient PM 2.5 in urban China which is essential for the research of haze pollution and climate radiative forcing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  14. Ambient air pollution and birth weight in full-term infants in Atlanta, 1994-2004.

    PubMed

    Darrow, Lyndsey A; Klein, Mitchel; Strickland, Matthew J; Mulholland, James A; Tolbert, Paige E

    2011-05-01

    An emerging body of evidence suggests that ambient levels of air pollution during pregnancy are associated with fetal growth. We examined relationships between birth weight and temporal variation in ambient levels of carbon monoxide, nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone, particulate matter ≤ 10 μm in diameter (PM₁₀), ≤ 2.5 μm (PM(2.5)), 2.5 to 10 µm (PM(2.5-10)), and PM(2.5) chemical component measurements for 406,627 full-term births occurring between 1994 and 2004 in five central counties of metropolitan Atlanta. We assessed relationships between birth weight and pollutant concentrations during each infant's first month of gestation and third trimester, as well as in each month of pregnancy using distributed lag models. We also conducted capture-area analyses limited to mothers residing within 4 miles (6.4 km) of each air quality monitoring station. In the five-county analysis, ambient levels of NO₂, SO₂, PM(2.5) elemental carbon, and PM(2.5) water-soluble metals during the third trimester were significantly associated with small reductions in birth weight (-4 to -16 g per interquartile range increase in pollutant concentrations). Third-trimester estimates were generally higher in Hispanic and non-Hispanic black infants relative to non-Hispanic white infants. Distributed lag models were also suggestive of associations between air pollutant concentrations in late pregnancy and reduced birth weight. The capture-area analyses provided little support for the associations observed in the five-county analysis. Results provide some support for an effect of ambient air pollution in late pregnancy on birth weight in full-term infants.

  15. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: a repeated-measure study.

    PubMed

    Baccarelli, Andrea; Barretta, Francesco; Dou, Chang; Zhang, Xiao; McCracken, John P; Díaz, Anaité; Bertazzi, Pier Alberto; Schwartz, Joel; Wang, Sheng; Hou, Lifang

    2011-12-21

    Particulate Matter (PM) exposure is critical in Beijing due to high population density and rapid increase in vehicular traffic. PM effects on blood pressure (BP) have been investigated as a mechanism mediating cardiovascular risks, but results are still inconsistent. The purpose of our study is to determine the effects of ambient and personal PM exposure on BP. Before the 2008 Olympic Games (June 15-July 27), we examined 60 truck drivers and 60 office workers on two days, 1-2 weeks apart (n = 240). We obtained standardized measures of post-work BP. Exposure assessment included personal PM(2.5) and Elemental Carbon (EC, a tracer of traffic particles) measured using portable monitors during work hours; and ambient PM(10) averaged over 1-8 days pre-examination. We examined associations of exposures (exposure group, personal PM(2.5)/EC, ambient PM(10)) with BP controlling for multiple covariates. Mean personal PM(2.5) was 94.6 μg/m(3) (SD = 64.9) in office workers and 126.8 (SD = 68.8) in truck drivers (p-value < 0.001). In all participants combined, a 10 μg/m(3) increase in 8-day ambient PM(10) was associated with BP increments of 0.98 (95%CI 0.34; 1.61; p-value = 0.003), 0.71 (95%CI 0.18; 1.24; p-value = 0.01), and 0.81 (95%CI 0.31; 1.30; p-value = 0.002) mmHg for systolic, diastolic, and mean BP, respectively. BP was not significantly different between the two groups (p-value > 0.14). Personal PM(2.5) and EC during work hours were not associated with increased BP. Our results indicate delayed effects of ambient PM(10) on BP. Lack of associations with exposure groups and personal PM(2.5)/EC indicates that PM effects are related to background levels of pollution in Beijing, and not specifically to work-related exposure.

  16. Burden of mortality and years of life lost due to ambient PM10 pollution in Wuhan, China.

    PubMed

    Zhang, Yunquan; Peng, Minjin; Yu, Chuanhua; Zhang, Lan

    2017-11-01

    Ambient particulate matter (PM) has been mainly linked with mortality and morbidity when assessing PM-associated health effects. Up-to-date epidemiologic evidence is very sparse regarding the relation between PM and years of life lost (YLL). The present study aimed to estimate the burden of YLL and mortality due to ambient PM pollution. Individual records of all registered deaths and daily data on PM 10 and meteorology during 2009-2012 were obtained in Wuhan, central China. Using a time-series study design, we applied generalized additive model to assess the short-term association of 10-μg/m 3 increase in PM 10 with daily YLL and mortality, adjusting for long-term trend and seasonality, mean temperature, relative humidity, public holiday, and day of the week. A linear-no-threshold dose-response association was observed between daily ambient PM 10 and mortality outcomes. PM 10 pollution along lag 0-1 days was found to be mostly strongly associated with mortality and YLL. The effects of PM 10 on cause-specific mortality and YLL showed generally similar seasonal patterns, with stronger associations consistently occurring in winter and/or autumn. Compared with males and younger persons, females and the elderly suffered more significantly from both increased YLL and mortality due to ambient PM 10 pollution. Stratified analyses by education level (0-6 and 7 + years) demonstrated great mortality impact on both subgroups, whereas only low-educated persons were strongly affected by PM 10 -associated burden of YLL. Our study confirmed that short-term PM 10 exposure was linearly associated with significant increases in both mortality incidence and years of life lost. Given the non-threshold adverse effects on mortality burden, the on-going efforts to reduce particulate air pollution would substantially benefit public health in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Variation of Ambient Ammonia Pollution in Relation With PM2.5 Characteristics in Winter of Delhi, India

    NASA Astrophysics Data System (ADS)

    S., Sr.; Saxena, M., , Dr; Mandal, T. K., , Dr; Kotnala, R. K.; Sharma, S. K., , Dr

    2017-12-01

    Ambient ammonia, SO2 and NOx are primary precursor gases for the formation of particulate matter (PM2.5) which result in photochemical smog and haze formation specifically in winter season. The ambient ammonia, other trace gases and fine particles were monitored in winter season from Jan 2013 to Dec 2015 at CSIR-NPL, Delhi. The average mixing ratios of ambient NH3, NO, NO2 and SO2 over the entire period of winter season were recorded as 25.3±4.6 (ppb), 21.4±7.2 (ppb), 20.8±5.9 (ppb) and 1.9±0.5 (ppm), respectively. The NH4+ and other ionic species in PM2.5 were also simultaneously observed at the the study site to see the transformation of NH3 and NH4+. The results indicated that the concentration level of NH3 and NH4+/NH3 ratios grew simultaneously with the increase of PM2.5 levels. NH3 enhanced the formation of ammonium sulphate and ammonium nitrate and exert a significant impact on ion chemistry of PM2.5. In the wintertime atmosphere of urban Delhi, NH3 was sufficient in fully neutralizing the fine particulates. The important role of ammonia is recognized in increasing PM2.5 mass concentration as it help in formation of ammonium aerosol due to reaction with acid gases. Keywords: Air quality, Ammonia, Trace Gases, Particulates

  18. A Decadal Spatial and Temporal Analysis of PM10 in Istanbul: 1998-2008

    NASA Astrophysics Data System (ADS)

    Kilic, D.; Baltacibasi, S.; Unal, A.; Kindap, T.

    2012-04-01

    This study provides valuable new insights into the key contributors to ambient air quality in Istanbul, one of the largest mega-cities in Europe. The study builds on work in Europe that links air quality with national dynamics such as economical, vehicle activity and, meteorology in the long-term. Spatial and temporal analysis was performed on PM10 levels measured at 10 air quality monitoring sta- tions (AQMSs) in Istanbul from 1998 to 2008. The analysis found that ambient air quality levels are linked with winter temperatures as well as economic activity. The mean annual PM10 levels in 2001 are among the three lowest years in the period. This decrease corresponds with daily temperature data and annual number of heating degree days which shows that 2001 was one of the warmest winters in Istanbul. Warmer temperatures led to a decrease in energy demand for heating purposes, as demonstrated by the coal sales data. Low ambient air quality levels in 2001 also correspond to a decrease in gross domestic product and electricity demand due to the national economic crisis in March 2001 which affected industrial activity and as a result industrial and energy production related emissions. The study also found that air quality levels in Istanbul are a threat to human health and the environment. Based on the annual and seasonal PM10 profiles of the stations, 5 of the 6 AQMSs in the European Side of the city had mean PM10 values above the EU limit for PM10 for over 50% of the time. According to the linear regression analysis, there is no significant increase or decrease in the annual PM10 trend in Istanbul, this may be due warm winter and economic crisis in 2001.

  19. Association between exposure to ambient air pollution and renal function in Korean adults.

    PubMed

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  < 0.05). In the full covariate model, interquartile range increases in the annual mean concentrations of PM 10 and NO 2 were associated with decreases in eGFR levels of 0.46 (95% CI = - 0.87, - 0.04) and 0.85 (95% CI = - 1.40, - 0.30), respectively. Three of the ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p  < 0.0001), but all significant associations disappeared after adjusting for covariates (all p  > 0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  20. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    PubMed

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  1. Impact of National Ambient Air Quality Standards Nonattainment Designations on Particulate Pollution and Health.

    PubMed

    Zigler, Corwin M; Choirat, Christine; Dominici, Francesca

    2018-03-01

    Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.

  2. Analysis of PM10, PM2.5, and PM2 5-10 concentrations in Santiago, Chile, from 1989 to 2001.

    PubMed

    Koutrakis, Petros; Sax, Sonja N; Sarnat, Jeremy A; Coull, Brent; Demokritou, Phil; Oyola, Pedro; Garcia, Javier; Gramsch, Ernesto

    2005-03-01

    Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.

  3. Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city.

    PubMed

    Sapkota, Amir; Symons, J Morel; Kleissl, Jan; Wang, Lu; Parlange, Marc B; Ondov, John; Breysse, Patrick N; Diette, Gregory B; Eggleston, Peyton A; Buckley, Timothy J

    2005-01-01

    With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these forest fires was examined using a combination of a moderate-resolution imaging spectroradiometer satellite image, back-trajectories using a hybrid single-particle Lagrangian integrated trajectory, and local light detection and ranging measurements. Time- and size-resolved PM was evaluated at three ambient and four indoor measurement sites using a combination of direct reading instruments (laser, time-of-flight aerosol spectrometer, nephelometer, and an oscillating microbalance). The transport and monitoring results consistently identified a forest fire related PM episode in Baltimore that occurred the first weekend of July 2002 and resulted in as much as a 30-fold increase in ambientfine PM. On the basis of tapered element oscillating microbalance measurements, the 24 h PM25 concentration reached 86 microg/m3 on July 7, 2002, exceeding the 24 h national ambient air quality standard. The episode was primarily comprised of particles less than 2.5 microm in aerodynamic diameter, highlighting the preferential transport of the fraction of PM that is of greatest health concern. Penetration of the ambient episode indoors was efficient (median indoor-to-outdoor ratio 0.91) such that the high ambient levels were similarly experienced indoors. These results are significant in demonstrating the impact of a natural source thousands of kilometers away on ambient levels of and potential exposures to air pollution within an urban center. This research highlights the significance of transboundary air pollution and the need for studies that assess the public health impacts associated with such sources and transport processes.

  4. Follow-up of the air pollution and the human male-to-female ratio analysis in São Paulo, Brazil: a times series study

    PubMed Central

    Miraglia, Simone Georges El Khouri; Veras, Mariana Matera; Amato-Lourenço, Luis Fernando; Rodrigues-Silva, Fernando; Saldiva, Paulo Hilário Nascimento

    2013-01-01

    Objectives In order to assess if ambient air pollution in urban areas could be related to alterations in male/female ratio this study objectives to evaluate changes in ambient particulate matter (PM10) concentrations after implementation of pollution control programmes in São Paulo city and the secondary sex ratio (SRR). Design and methods A time series study was conducted. São Paulo’s districts were stratified according to the PM10 concentrations levels and were used as a marker of overall air pollution. The male ratio was chosen to represent the secondary sex ratio (SSR=total male birth/total births). The SSR data from each area was analysed according to the time variation and PM10 concentration areas using descriptive statistics. The strength association between annual average of PM10 concentration and SSR was performed through exponential regression, and it was adopted as a statistical significance level of p<0.05. Results The exponential regression showed a negative and significant association between PM10 and SSR. SSR varied from 51.4% to 50.7% in São Paulo in the analysed period (2000–2007). Considering the PM10 average concentration in São Paulo city of 44.72 μg/m3 in the study period, the SSR decline reached almost 4.37%, equivalent to 30 934 less male births. Conclusions Ambient levels of PM10 are negatively associated with changes in the SSR. Therefore, we can speculate that higher levels of particulate pollution could be related to increased rates of female births. PMID:23892420

  5. INFLUENCE OF ALTERNATIVE PM COMPONENTS IN MASS ASSOCIATIONS WITH PHILADELPHIA, PA MORTALITY AND HOSPITAL ADMISSIONS

    EPA Science Inventory

    Epidemiological analyses of hospital admissions and mortality data have indicated that adverse human health effects are associated with present-day ambient particualte matter (PM) pollution levels. However, the PM mass measurement is chemically non-specific, ignoring the fact th...

  6. EFFECTS OF RESIDUAL OIL FLY ASH ON CARDIAC, PULMONARY, AND THERMOREGULATORY PARAMETERS IN RATS

    EPA Science Inventory

    Epidemiological studies have associated ambient levels of particulate matter (PM) with the incidence of cardiopulmonary morbidity and mortality. Additionally, elevated levels of PM have been associated with reduced lung function. More recent published data have suggested a relati...

  7. Human health risk characterization of petroleum coke calcining facility emissions.

    PubMed

    Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D

    2015-12-01

    Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China.

    PubMed

    Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu

    2015-12-01

    Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m(3) in PM2.5 concentration in the lowest temperature range (-9.7∼2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38∼2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m(3) in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92∼3.33 %) in the highest level (23.50∼31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7∼2.6 °C): for an increase of 10 μg/m(3) in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46∼2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.

  9. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu

    2015-12-01

    Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m3 in PM2.5 concentration in the lowest temperature range (-9.7˜2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38˜2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m3 in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92˜3.33 %) in the highest level (23.50˜31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7˜2.6 °C): for an increase of 10 μg/m3 in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46˜2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.

  10. Mechanistic Insights into the Relationship between Lung and Vascular Response to Ambient Particulate Matter (PM)

    EPA Science Inventory

    The mechanisms by which pulmonary-encountered ambient PM induces vascular response are not well understood. We examined lung and aortic response of rats following intratracheal instillation of three ambient PM. Chemically characterized PM10 and PM2.5 from th...

  11. Associations among plasma metabolite levels and short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort.

    EPA Science Inventory

    RATIONALE: Exposure to ambient particulate matter (PM) and ozone has been associated with cardiovascular disease (CVD). However, the mechanisms linking PM and ozone exposure to CVD remain poorly understood .OBJECTIVE: This study explored associations between short-term exposures ...

  12. PARTICIPANT RECRUITMENT AND RETENTION FOR THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) completed a 12 month Particulate Matter (PM) Panel Study in the Research Triangle Park, NC area in May 2001. A primary goal of the study was to compare PM levels measured at an ambient and residential sites with those from per...

  13. DIFFERENCES IN CARDIOVASCULAR RESPONSE TO PM EXPOSURE BETWEEN SPONTANEOUSLY HYPERTENSIVE STROKE-PRONE (SHSP) AND WISTAR-KYOTO (WKY) RATS.

    EPA Science Inventory

    ABSTRACT BODY: Epidemiological studies have shown that cardiovascular morbidity and mortality are associated with exposure to elevated levels of ambient particulate matter (PM), notably in people with pre-existing cardiopulmonary disease. To better understand the mechanisms of PM...

  14. Spatio-temporal Variations and Source Contributions of China's Premature Deaths Attributable to Ambient PM2.5

    NASA Astrophysics Data System (ADS)

    Rong, X.; Wang, H.

    2016-12-01

    With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantifications of the spatial and temporal variations of health impacts attributed to ambient fine particulate matter (PM2.5) are not only important for designing effective strategies in mitigating the health damage of air pollution, but also provide valuable references for other developing regions in the world. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2014 attributed to ambient PM2.5 in accord with Global Burden of Disease (GBD) based on a high resolution population density map, satellite retrieved PM2.5 concentration, and provincial health data. An Integrated Exposure Response (IER) model was applied to analyze the premature deaths for four leading causes (ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC), stroke) in China. The contributions of emission sources to air pollution and related mortality burdens across China were further evaluated by incorporating CMAQ model. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides the increased PM2.5 concentration, rapid urbanization has been attracting large population migration into the more developed eastern coastal urban areas, intensifying the overall health impacts. Our analysis implies that the health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. China's regulations on PM2.5 should not be loosened on inner provinces to avoid such national level environmental inequities, and furthermore policies should be designed to form incentive mechanisms to transfer advanced technologies of production and emissions control from the coastal regions to the interior regions. Finally, we discussed the contributions of various emission sources (e.g., power plant, transportation, industries, residential) to premature deaths due to ambient PM2.5 across China.

  15. Ambient fine particulate matter in China: Its negative impacts and possible countermeasures.

    PubMed

    Qi, Zihan; Chen, Tingjia; Chen, Jiang; Qi, Xiaofei

    2018-03-01

    In recent decades, China has experienced rapid economic development accompanied by increasing concentrations of ambient PM 2.5 , particulate matter of less than 2.5 μm in diameter. PM 2.5 is now believed to be a carcinogen, causing higher lung cancer risks and generating losses to the economy and society. This meta-analysis evaluates the losses generated by ambient PM 2.5 in Suzhou from 2014 to 2016 and predicts losses at different concentrations. Estimations of total losses in Beijing, Shanghai, Hangzhou, Guangzhou, Dalian, and Xiamen are also presented, with a total national loss in 2015. The authors then demonstrate that lowering ambient PM 2.5 concentrations would be a realistic way for China to reduce the evaluated social losses in the short term. Possible legal measures are listed for lowering ambient PM 2.5 concentrations. The present findings quantify the economic effects of ambient PM 2.5 due to the increased incidence rate and mortality rate of lung cancer. Lowering ambient PM 2.5 concentrations would be the most realistic way for China to reduce tghe evaluated social losses in the short term. Possible legal measures for lowering ambient PM 2.5 concentrations to reduce the total losses are identified.

  16. Properties and cellular effects of particulate matter from direct emissions and ambient sources.

    PubMed

    Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2016-10-14

    The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.

  17. County-level environmental quality and associations with cancer incidence

    EPA Science Inventory

    Cancer has been associated with individual ambient environmental exposures such as PM2.5 and arsenic. However, the role of the overall ambient environment is not well-understood. A novel county-level Environmental Quality Index (EQI) was developed for all U.S. counties (n=3,141)...

  18. THE EXPOSURE PARADOX IN PARTICULATE MATTER COMMUNITY TIME-SERIES EPIDEMIOLOGY: CAN AMBIENT CONCENTRATIONS OF PM BE USED AS A SURROGATE FOR PERSONAL EXPOSURE TO PM ?

    EPA Science Inventory

    Objective: Explain why epidemiologic studies find a statistically significant relationship between ambient concentrations of PM and health effects even though only a near-zero correlation is found between ambient concentrations of PM and personal exposures to PM. Method: Consider...

  19. US EPA Nonattainment Areas and Designations-24 Hour PM2.5 (2006 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layers: PM2.5 24hr 2006 NAAQS State Level and PM2.5 24hr 2006 NAAQS National. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2006PM2524hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-ter

  20. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    PubMed

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  1. Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China.

    PubMed

    Liang, Linlin; Engling, Guenter; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui; Liu, Xuyan; He, Kebin

    2016-05-01

    Saccharides are important constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of saccharides in aerosols in Beijing, China, saccharide composition was measured in ambient PM samples collected at an urban site in Beijing. The highest concentrations of total saccharides in Beijing were observed in autumn, while an episode with abnormal high total saccharide levels was observed from 15 to 23 June, 2011, due to extensive agricultural residue burning in northern China during the wheat harvest season. Compared to the other two categories of saccharides, sugars and sugar alcohols, anhydrosugars were the predominant saccharide group, indicating that biomass burning contributions to Beijing urban aerosol were significant. Ambient sugar and sugar alcohol levels in summer and autumn were higher than those in spring and winter, while they were more abundant in PM2.5 during winter time. Levoglucosan was the most abundant saccharide compound in both PM2.5 and PM10, the annual contributions of which to total measured saccharides in PM2.5 and PM10 were 61.5% and 54.1%, respectively. To further investigate the sources of the saccharides in ambient aerosols in Beijing, the PM10 datasets were subjected to positive matrix factorization (PMF) analysis. Based on the objective function to be minimized and the interpretable factors identified by PMF, six factors appeared to be optimal as to the probable origin of saccharides in the atmosphere in Beijing, including biomass burning, soil or dust, isoprene SOA and the direct release of airborne fungal spores and pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Determination of carbonyl pollutants adsorbed on ambient particulate matter of type PM2.5 by using magnetic molecularly imprinted microspheres for sample pretreatment and capillary electrophoresis for separation and quantitation.

    PubMed

    Li, Yunling; Sun, Hui; Lai, Jiaping; Chang, Xiangyang; Zhang, Ping; Chen, Shili

    2018-01-19

    The authors describe a method for the determination of carbonyl pollutants adsorbed on ambient particulate matter (diameter < 2.5 μm; PM2.5). 2,4-Dinitrophenylhydrazine (DNPH) was used to derivatize carbonyl compounds. Magnetic molecularly imprinted polymers (MMIPs) selective for 2,4-DNPH were synthesized to remove excess of the derivatization reagent 2,4-DNPH. Micellar electrokinetic chromatography (MEKC) was then applied to the separation of DNPH-derivatized carbonyl compounds. The increased sensitivity of MEKC with UV detection and the sample cleanup resulted in drastically reduced sampling times (15 min) with detection limits ranging from 0.005-0.068 μg·m -3 for different carbonyls. The method was applied to continuous monitoring of carbonyl compounds on ambient PM 2.5 for two consecutive months. The concentrations and gas-to-particle ratios of carbonyls were determined, and a statistical method was used to evaluate the correlation among different carbonyls. It was observed that the total concentration of carbonyls, especially of multi-carbon carbonyls, increases with the level of air pollution. The level of isovaleraldehyde rises sharply and accounts for 37% of total carbonyls on days with extremely humid haze. The ratio of acetaldehyde to propionaldehyde (C2/C3) decreases with the duration and heaviness of haze conditions. Results indicate that anthropogenic emissions and the characteristics of the atmosphere (e.g. temperature, sunlight, and relative humidity) are the main factors that lead to abnormally high levels of isovaleraldehyde and other carbonyls in ambient PM 2.5. Graphical abstract Schematic of a method for the determination of carbonyl pollutants adsorbed on ambient fine particle of type PM2.5. Magnetic molecularly imprinted polymers (MMIPs) were synthesized to remove the excess derivatization reagent (2,4-DNPH) in air sample prior to CE separation.

  3. Providing Context for Ambient Particulate Matter and Estimates of Attributable Mortality.

    PubMed

    McClellan, Roger O

    2016-09-01

    Four papers on fine particulate matter (PM2.5 ) by Anenberg et al., Fann et al., Shin et al., and Smith contribute to a growing body of literature on estimated epidemiological associations between ambient PM2.5 concentrations and increases in health responses relative to baseline notes. This article provides context for the four articles, including a historical review of provisions of the U.S. Clean Air Act as amended in 1970, requiring the setting of National Ambient Air Quality Standards (NAAQS) for criteria pollutants such as particulate matter (PM). The substantial improvements in both air quality for PM and population health as measured by decreased mortality rates are illustrated. The most recent revision of the NAAQS for PM2.5 in 2013 by the Environmental Protection Agency distinguished between (1) uncertainties in characterizing PM2.5 as having a causal association with various health endpoints, and as all-cause mortality, and (2) uncertainties in concentration--excess health response relationships at low ambient PM2.5 concentrations below the majority of annual concentrations studied in the United States in the past. In future reviews, and potential revisions, of the NAAQS for PM2.5 , it will be even more important to distinguish between uncertainties in (1) characterizing the causal associations between ambient PM2.5 concentrations and specific health outcomes, such as all-source mortality, irrespective of the concentrations, (2) characterizing the potency of major constituents of PM2.5 , and (3) uncertainties in the association between ambient PM2.5 concentrations and specific health outcomes at various ambient PM2.5 concentrations. The latter uncertainties are of special concern as ambient PM2.5 concentrations and health morbidity and mortality rates approach background or baseline rates. © 2016 Society for Risk Analysis.

  4. Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing

    PubMed Central

    Huang, Lihui; Pu, Zhongnan; Li, Mu; Sundell, Jan

    2015-01-01

    Objective Ambient fine particulate matter (PM2.5) pollution is currently a major public health concern in Chinese urban areas. However, PM2.5 exposure primarily occurs indoors. Given such, we conducted this study to characterize the indoor-outdoor relationship of PM2.5 mass concentrations for urban residences in Beijing. Methods In this study, 24-h real-time indoor and ambient PM2.5 mass concentrations were concurrently collected for 41 urban residences in the non-heating season. The diurnal variation of pollutant concentrations was characterized. Pearson correlation analysis was used to examine the correlation between indoor and ambient PM2.5 mass concentrations. Regression analysis with ordinary least square was employed to characterize the influences of a variety of factors on PM2.5 mass concentration. Results Hourly ambient PM2.5 mass concentrations were 3–280 μg/m3 with a median of 58 μg/m3, and hourly indoor counterpart were 4–193 μg/m3 with a median of 34 μg/m3. The median indoor/ambient ratio of PM2.5 mass concentration was 0.62. The diurnal variation of residential indoor and ambient PM2.5 mass concentrations tracked with each other well. Strong correlation was found between indoor and ambient PM2.5 mass concentrations on the community basis (coefficients: r≥0.90, p<0.0001), and the ambient data explained ≥84% variance of the indoor data. Regression analysis suggested that the variables, such as traffic conditions, indoor smoking activities, indoor cleaning activities, indoor plants and number of occupants, had significant influences on the indoor PM2.5 mass concentrations. Conclusions PM2.5 of ambient origin made dominant contribution to residential indoor PM2.5 exposure in the non-heating season under the high ambient fine particle pollution condition. Nonetheless, the large inter-residence variability of infiltration factor of ambient PM2.5 raised the concern of exposure misclassification when using ambient PM2.5 mass concentrations as exposure surrogates. PM2.5 of indoor origin still had minor influence on indoor PM2.5 mass concentrations, particularly at 11:00–13:00 and 22:00–0:00. The predictive models suggested that particles from traffic emission, secondary aerosols, particles from indoor smoking, resuspended particles due to indoor cleaning and particles related to indoor plants contributed to indoor PM2.5 mass concentrations in this study. Real-time ventilation measurements and improvement of questionnaire design to involve more variables subject to built environment were recommended to enhance the performance of the predictive models. PMID:26397734

  5. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis.

    PubMed

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO₂, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m(-3) increase in NO₂ exposure was associated with lower levels of FEV₁ (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 μg·m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV₁ (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. Copyright ©ERS 2015.

  6. Heart rate variability and DNA methylation levels are altered after short-term metal fume exposure among occupational welders: a repeated-measures panel study.

    PubMed

    Fan, Tianteng; Fang, Shona C; Cavallari, Jennifer M; Barnett, Ian J; Wang, Zhaoxi; Su, Li; Byun, Hyang-Min; Lin, Xihong; Baccarelli, Andrea A; Christiani, David C

    2014-12-16

    In occupational settings, boilermakers are exposed to high levels of metallic fine particulate matter (PM2.5) generated during the welding process. The effect of welding PM2.5 on heart rate variability (HRV) has been described, but the relationship between PM2.5, DNA methylation, and HRV is not known. In this repeated-measures panel study, we recorded resting HRV and measured DNA methylation levels in transposable elements Alu and long interspersed nuclear element-1 (LINE-1) in peripheral blood leukocytes under ambient conditions (pre-shift) and right after a welding task (post-shift) among 66 welders. We also monitored personal PM2.5 level in the ambient environment and during the welding procedure. The concentration of welding PM2.5 was significantly higher than background levels in the union hall (0.43 mg/m3 vs. 0.11 mg/m3, p < 0.0001). The natural log of transformed power in the high frequency range (ln HF) had a significantly negative association with PM2.5 exposure (β = -0.76, p = 0.035). pNN10 and pNN20 also had a negative association with PM2.5 exposure (β = -0.16%, p = 0.006 and β = -0.13%, p = 0.030, respectively). PM2.5 was positively associated with LINE-1 methylation [β = 0.79%, 5-methylcytosince (%mC), p = 0.013]; adjusted for covariates. LINE-1 methylation did not show an independent association with HRV. Acute decline of HRV was observed following exposure to welding PM2.5 and evidence for an epigenetic response of transposable elements to short-term exposure to high-level metal-rich particulates was reported.

  7. Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China.

    PubMed

    An, R; Yu, H

    2018-03-19

    Poor air quality has become a national public health concern in China. This study examines the impact of ambient fine particulate matter (PM 2.5 ) air pollution on health behaviors among college students in Beijing, China. Prospective cohort study. Health surveys were repeatedly administered among 12,000 newly admitted students at Tsinghua University during 2012-2015 over their freshman year. Linear individual fixed-effect regressions were performed to estimate the impacts of ambient PM 2.5 concentration on health behaviors among survey participants, adjusting for various time-variant individual characteristics and environmental measures. Ambient PM 2.5 concentration was found to be negatively associated with time spent on walking, vigorous physical activity and sedentary behavior in the last week, but positively associated with time spent on nighttime/daytime sleep among survey participants. An increase in the ambient PM 2.5 concentration by one standard deviation (36.5 μg/m³) was associated with a reduction in weekly total minutes of walking by 7.3 (95% confidence interval [CI] = 5.3-9.4), a reduction in weekly total minutes of vigorous physical activity by 10.1 (95% CI = 8.5-11.7), a reduction in daily average hours of sedentary behavior by 0.06 (95% CI = 0.02-0.10) but an increase in daily average hours of nighttime/daytime sleep by 1.07 (95% CI = 1.04-1.11). Ambient PM 2.5 air pollution was inversely associated with physical activity level but positively associated with sleep duration among college students. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently called to reduce air pollution level in China's urban areas. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  8. Higher fine particulate matter and temperature levels impair exercise capacity in cardiac patients.

    PubMed

    Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D

    2015-08-01

    Fine particulate matter (PM2.5) air pollution and variations in ambient temperature have been linked to increased cardiovascular morbidity and mortality. However, no large-scale study has assessed their effects on directly measured aerobic functional capacity among high-risk patients. Using a cross-sectional observational design, we evaluated the effects of ambient PM2.5 and temperature levels over 7 days on cardiopulmonary exercise test results performed among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from January 2003 to August 2011) using multiple linear regression analyses (controlling for age, sex, body mass index). Peak exercise oxygen consumption was significantly decreased by approximately 14.9% per 10 μg/m(3) increase in ambient PM2.5 levels (median 10.7 μg/m(3), IQR 10.1 μg/m(3)) (lag days 6-7). Elevations in PM2.5 were also related to decreases in ventilatory threshold (lag days 5-7) and peak heart rate (lag days 2-3) and increases in peak systolic blood pressure (lag days 4-5). A 10°C increase in temperature (median 10.5°C, IQR 17.5°C) was associated with reductions in peak exercise oxygen consumption (20.6-27.3%) and ventilatory threshold (22.9-29.2%) during all 7 lag days. In models including both factors, the outcome associations with PM2.5 were attenuated whereas the effects of temperature remained significant. Short-term elevations in ambient PM2.5, even at low concentrations within current air quality standards, and/or higher temperatures were associated with detrimental changes in aerobic exercise capacity, which can be linked to a worse quality of life and cardiovascular prognosis among cardiac rehabilitation patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. The effect of composition, size, and solubility on acute pulmonary injury in rats following exposure to Mexico city ambient particulate matter samples.

    PubMed

    Snow, Samantha J; De Vizcaya-Ruiz, Andrea; Osornio-Vargas, Alvaro; Thomas, Ronald F; Schladweiler, Mette C; McGee, John; Kodavanti, Urmila P

    2014-01-01

    Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.

  10. Association of IL-6 with PM2.5 Components: Importance of Characterizing Filter-Based PM2.5 Following Extraction.

    PubMed

    Roper, Courtney; Chubb, Lauren G; Cambal, Leah; Tunno, Brett; Clougherty, Jane E; Fattman, Cheryl; Mischler, Steven E

    2017-01-01

    Filter-based toxicology studies are conducted to establish the biological plausibility of the well-established health impacts associated with fine particulate matter (PM 2.5 ) exposure. Ambient PM 2.5 collected on filters is extracted into solution for toxicology applications, but frequently, characterization is nonexistent or only performed on filter-based PM 2.5 , without consideration of compositional differences that occur during the extraction processes. To date, the impact of making associations to measured components in ambient instead of extracted PM 2.5 has not been investigated. Filter-based PM 2.5 was collected at locations ( n = 5) and detailed characterization of both ambient and extracted PM 2.5 was performed. Alveolar macrophages (AMJ2-C11) were exposed (3, 24, and 48 h) to PM 2.5 and the pro-inflammatory cytokine interleukin (IL)-6 was measured. IL-6 release differed significantly between PM 2.5 collected from different locations; surprisingly, IL-6 release was highest following treatment with PM 2.5 from the lowest ambient concentration location. IL-6 was negatively correlated with the sum of ambient metals analyzed, as well as with concentrations of specific constituents which have been previously associated with respiratory health effects. However, positive correlations of IL-6 with extracted concentrations indicated that the negative associations between IL-6 and ambient concentrations do not accurately represent the relationship between inflammation and PM 2.5 exposure. Additionally, seven organic compounds had significant associations with IL-6 release when considering ambient concentrations, but they were not detected in the extracted solution. Basing inflammatory associations on ambient concentrations that are not necessarily representative of in vitro exposures creates misleading results; this study highlights the importance of characterizing extraction solutions to conduct accurate health impact research.

  11. Ambient and laboratory evaluation of a low-cost particulate matter sensor.

    PubMed

    Kelly, K E; Whitaker, J; Petty, A; Widmer, C; Dybwad, A; Sleeth, D; Martin, R; Butterfield, A

    2017-02-01

    Low-cost, light-scattering-based particulate matter (PM) sensors are becoming more widely available and are being increasingly deployed in ambient and indoor environments because of their low cost and ability to provide high spatial and temporal resolution PM information. Researchers have begun to evaluate some of these sensors under laboratory and environmental conditions. In this study, a low-cost, particulate matter sensor (Plantower PMS 1003/3003) used by a community air-quality network is evaluated in a controlled wind-tunnel environment and in the ambient environment during several winter-time, cold-pool events that are associated with high ambient levels of PM. In the wind-tunnel, the PMS sensor performance is compared to two research-grade, light-scattering instruments, and in the ambient tests, the sensor performance is compared to two federal equivalent (one tapered element oscillating microbalance and one beta attenuation monitor) and gravimetric federal reference methods (FEMs/FRMs) as well as one research-grade instrument (GRIMM). The PMS sensor response correlates well with research-grade instruments in the wind-tunnel tests, and its response is linear over the concentration range tested (200-850 μg/m 3 ). In the ambient tests, this PM sensor correlates better with gravimetric methods than previous studies with correlation coefficients of 0.88. However additional measurements under a variety of ambient conditions are needed. Although the PMS sensor correlated as well as the research-grade instrument to the FRM/FEMs in ambient conditions, its response varies with particle properties to a much greater degree than the research-grade instrument. In addition, the PMS sensors overestimate ambient PM concentrations and begin to exhibit a non-linear response when PM 2.5 concentrations exceed 40 μg/m 3 . These results have important implications for communicating results from low-cost sensor networks, and they highlight the importance of using an appropriate correction factor for the target environmental conditions if the user wants to compare the results to FEM/FRMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impacts of rural worker migration on ambient air quality and health in China: From the perspective of upgrading residential energy consumption.

    PubMed

    Shen, Huizhong; Chen, Yilin; Russell, Armistead G; Hu, Yongtao; Shen, Guofeng; Yu, Haofei; Henneman, Lucas R F; Ru, Muye; Huang, Ye; Zhong, Qirui; Chen, Yuanchen; Li, Yufei; Zou, Yufei; Zeng, Eddy Y; Fan, Ruifang; Tao, Shu

    2018-04-01

    In China, rural migrant workers (RMWs) are employed in urban workplaces but receive minimal resources and welfare. Their residential energy use mix (REM) and pollutant emission profiles are different from those of traditional urban (URs) and rural residents (RRs). Their migration towards urban areas plays an important role in shaping the magnitudes and spatial patterns of pollutant emissions, ambient PM 2.5 (fine particulate matter with a diameter smaller than 2.5 μm) concentrations, and associated health impacts in both urban and rural areas. Here we evaluate the impacts of RMW migration on REM pollutant emissions, ambient PM 2.5 , and subsequent premature deaths across China. At the national scale, RMW migration benefits ambient air quality because RMWs tend to transition to a cleaner REM upon arrival at urban areas-though not as clean as urban residents'. In 2010, RMW migration led to a decrease of 1.5 μg/m 3 in ambient PM 2.5 exposure concentrations (C ex ) averaged across China and a subsequent decrease of 12,200 (5700 to 16,300, as 90% confidence interval) in premature deaths from exposure to ambient PM 2.5 . Despite the overall health benefit, large-scale cross-province migration increased megacities' PM 2.5 levels by as much as 10 μg/m 3 due to massive RMW inflows. Model simulations show that upgrading within-city RMWs' REMs can effectively offset the RMW-induced PM 2.5 increase in megacities, and that policies that properly navigate migration directions may have potential for balancing the economic growth against ambient air quality deterioration. Our study indicates the urgency of considering air pollution impacts into migration-related policy formation in the context of rapid urbanization in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. PM2.5 and mortality in long-term prospective cohort studies: cause-effect or statistical associations?

    PubMed Central

    Gamble, J F

    1998-01-01

    Concentrations of ambient PM2.5 (particulate matter <2.5 microm in aerodynamic diameter) were associated with increased mortality in two prospective cohort studies. In this paper, I assess whether the weight of the evidence supports a causal association. I assumed the study population in each city to have the same exposure; therefore, these are ecologic studies because exposure is at the group level. Health outcome and confounding data are at the individual level. Ambient PM concentrations are inadequate surrogates for personal exposure because they are at the group level and comprise only a small proportion of personal exposure, they change over time, and they constitute only a small proportion of a life span. The strength of association and exposure-response relationships cannot be determined because the ecologic group-level risks of PM2.5 are overestimated 150- to 300-fold based on an analogy with individual-level exposure to inhaled cigarette smoke. Risk estimates may also be high because of confounding from factors such as physical activity and lung function. The evidence is not coherent because the stronger associations are expected to be with morbidity, but instead are with mortality. For example, PM2.5 was associated with mortality but not with measurable reductions in lung function. Biological plausibility is lacking because lifetime exposure of rats to combustion products at concentrations two to three orders of magnitude higher than air pollution levels cause lung overloading but no consistent reduction in survival. Criteria for quantitative risk assessment are not met so the data are not useful for setting air quality standards. The weight of evidence suggests there is no substantive basis for concluding that a cause-effect relationship exists between long-term ambient PM2.5 and increased mortality. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9721253

  14. 77 FR 60904 - Air Quality Implementation Plans; Alabama; Attainment Plan for the Alabama Portion of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... available control technology (RACT) and reasonably available control measures (RACM); reasonable further... determination for PM 2.5 and nitrogen oxides (NO X ) for the mobile source contribution to ambient PM 2.5 levels..., an RFP plan, contingency measures, and an insignificance determination for mobile direct PM 2.5 and...

  15. Spatial and temporal variation in endotoxin and PM10 concentrations in ambient air in a livestock dense area.

    PubMed

    de Rooij, Myrna M T; Heederik, Dick J J; Borlée, Floor; Hoek, Gerard; Wouters, Inge M

    2017-02-01

    Several studies have reported associations between farming and respiratory health in neighboring residents. Health effects are possibly linked to fine dust and endotoxin emissions from livestock farms. Little is known about levels of these air pollutants in ambient air in livestock dense areas. We aimed to explore temporal and spatial variation of PM10 and endotoxin concentrations, and the association with livestock-related spatial and meteorological temporal determinants. From March till September 2011, one week average PM10 samples were collected using Harvard Impactors at eight sites (residential gardens) representing a variety of nearby livestock-related characteristics. A background site was included in the study area, situated at least 500m away from the nearest farm. PM10 mass was determined by gravimetric analysis and endotoxin level by means of Limulus-Amebocyte-Lysate assay. Data were analyzed using mixed models. The range between sites of geometric mean concentrations was for PM10 19.8-22.3µg/m 3 and for endotoxin 0.46-0.66EU/m 3 . PM10 concentrations and spatial variation were very similar for all sites, while endotoxin concentrations displayed a more variable pattern over time with larger differences between sites. Nonetheless, the temporal pattern at the background location was highly comparable to the sites mean temporal pattern both for PM10 and endotoxin (Pearson correlation: 0.92, 0.62). Spatial variation was larger for endotoxin than for PM10 (within/between site variance ratio: 0.63, 2.03). Spatial livestock-related characteristics of the surroundings were more strongly related to endotoxin concentrations, while temporal determinants were more strongly related to PM10 concentrations. The effect of local livestock-related sources on PM10 concentration was limited in this study carried out in a livestock dense area. The effect on endotoxin concentrations was more profound. To gain more insight in the effect of livestock-related sources on ambient levels of PM10 and endotoxin, measurements should be based on a broader set of locations. Copyright © 2016. Published by Elsevier Inc.

  16. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    NASA Astrophysics Data System (ADS)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  17. Exposure to Air Pollution Enhances the Generation of Vascular Microparticles

    EPA Science Inventory

    Epidemiological studies associate exposure to ambient levels of particulate matter (PM) with cardiovascular morbidity and mortality. The biological mechanisms by which PM exposure induces cardiovascular effects remain to be elucidated. One important limitation is the lack of sens...

  18. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    EPA Science Inventory

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...

  19. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    EPA Science Inventory

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM-exposure. The goal of this stud...

  20. Effect of ambient particulate matter expousre on hemostasis

    EPA Science Inventory

    Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...

  1. Short-term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection.

    PubMed

    Horne, Benjamin D; Joy, Elizabeth A; Hofmann, Michelle G; Gesteland, Per H; Cannon, John B; Lefler, Jacob S; Blagev, Denitza P; Korgenski, E Kent; Torosyan, Natalie; Hansen, Grant I; Kartchner, David; Pope Iii, C Arden

    2018-04-13

    Nearly 60% of U.S. children live in counties with PM2.5 concentrations above air quality standards. Understanding the relationship between ambient air pollution exposure and health outcomes informs actions to reduce exposure and disease risk. To evaluate the association between ambient PM2.5 levels and healthcare encounters for acute lower respiratory infection (ALRI). Using an observational case-crossover design, subjects (N=146,397) were studied if they had an ALRI diagnosis and resided on Utah's Wasatch Front. PM2.5 air pollution concentrations were measured using community-based air quality monitors between 1999 and 2016. Odds ratios (OR) for ALRI healthcare encounters were calculated after stratification by ages 0-2, 3-17, and 18+ years. Approximately 77% (n=112,467) of subjects were 0-2 years of age. The odds of ALRI encounter for these young children increased within 1 week of elevated PM2.5 and peaked after 3 weeks with a cumulative 28-day OR= 1.15 per +10 μg/m3 (95% CI= 1.12, 1.19). ALRI encounters with diagnosed and laboratory-confirmed RSV and influenza increased following elevated ambient PM2.5 levels. Similar elevated odds for ALRI were also observed for older children, although the number of events and precision of estimates were much lower. In this large sample of urban/suburban patients, short-term exposure to elevated PM2.5 air pollution was associated with greater healthcare utilization for ALRI in both young children, older children, and adults. Further exploration is needed of causal interactions between PM2.5 and ALRI.

  2. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China.

    PubMed

    Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen

    2018-01-01

    The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.

  3. The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam.

    PubMed

    Luong, Ly M T; Phung, Dung; Sly, Peter D; Morawska, Lidia; Thai, Phong K

    2017-02-01

    While the effects of ambient air pollution on health have been studied extensively in many developed countries, few studies have been conducted in Vietnam, where the population is exposed to high levels of airborne particulate matter. The aim of our study was to examine the short-term effects of PM 10 , PM 2.5 , and PM 1 on respiratory admissions among young children in Hanoi. Data on daily admissions from the Vietnam National Hospital of Paediatrics and daily records of PM 10 , PM 2.5 , PM 1 and other confounding factors as NO 2 , SO 2 , CO, O 3 and temperature were collected from September 2010 to September 2011. A time-stratified case-crossover design with individual lag model was applied to evaluate the associations between particulate air pollution and respiratory admissions. Significant effects on daily hospital admissions for respiratory disease were found for PM 10 , PM 2.5 and PM 1 . An increase in 10μg/m 3 of PM 10 , PM 2.5 or PM 1 was associated with an increase in risk of admission of 1.4%, 2.2% or 2.5% on the same day of exposure, respectively. No significant difference between the effects on males and females was found in the study. The study demonstrated that infants and young children in Hanoi are at increased risk of respiratory admissions due to the high level of airborne particles in the city's ambient air. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ambient particulate matter and lung function growth in Chinese children.

    PubMed

    Roy, Ananya; Hu, Wei; Wei, Fusheng; Korn, Leo; Chapman, Robert S; Zhang, Junfeng Jim

    2012-05-01

    Exposure to particulate matter (PM) has been associated with deficits in lung function growth among children in Western countries. However, few studies have explored this association in developing countries, where PM levels are often substantially higher. Children (n = 3273) 6-12 years of age were recruited from 8 schools in 4 Chinese cities. The lung function parameters of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were measured using computerized spirometers twice a year for up to 3 years (1993-1996). Dichotomous samplers placed in each schoolyard were used to measure PM2.5 and PM10 (PM with diameter ≤ 2.5 μm and ≤ 10 μm, respectively). Multivariable generalized estimating equations were used to examine the association between the quarterly average PM levels and lung function growth during the period of follow-up. Annual average PM2.5 and PM10 levels in the 4 cities ranged from 57 to 158 μg/m and 95 to 268 μg/m, respectively. In multivariable models, an increase of 10 μg/m of PM2.5 was associated with decreases of 2.7 mL FEV1 (95% confidence interval = -3.5 to -2.0), 3.5 mL FVC (-4.3 to -2.7), 1.4 mL/year FEV1 growth (-1.8 to -0.9), and 1.5 mL/year FVC growth (-2.0 to -1.0). Similar results were seen with PM10 exposure. Exposure to ambient particulate matter was associated with decreased growth in lung function among Chinese children.

  5. Characterization and Cytotoxicity of PM<0.2, PM0.2–2.5 and PM2.5–10 around MSWI in Shanghai, China

    PubMed Central

    Cao, Lingling; Zeng, Jianrong; Liu, Ke; Bao, Liangman; Li, Yan

    2015-01-01

    Background: The potential impact of municipal solid waste incineration (MSWI), which is an anthropogenic source of aerosol emissions, is of great public health concern. This study investigated the characterization and cytotoxic effects of ambient ultrafine particles (PM<0.2), fine particles (PM0.2–2.5) and coarse particles (PM2.5–10) collected around a municipal solid waste incineration (MSWI) plant in the Pudong district of Shanghai. Methods: Mass concentrations of trace elements in particulate matter (PM) samples were determined using ICP-MS (Inductively Coupled Plasma Mass Spectrometry). The cytotoxicity of sampled atmospheric PM was evaluated by cell viability and reactive oxygen species (ROS) levels in A549 cells. Result: The mass percentage of PM0.2–2.5 accounted for 72.91% of the total mass of PM. Crustal metals (Mg, Al, and Ti) were abundant in the coarse particles, while the anthropogenic elements (V, Ni, Cu, Zn, Cd, and Pb) were dominant in the fine particles. The enrichment factors of Zn, Cd and Pb in the fine and ultrafine particles were extremely high (>100). The cytotoxicity of the size-resolved particles was in the order of coarse particles < fine particles < ultrafine particles. Conclusions: Fine particles dominated the MSWI ambient particles. Emissions from the MSWI could bring contamination of anthropogenic elements (Zn, Cd and Pb) into ambient environment. The PM around the MSWI plant displayed an additive toxic effect, and the ultrafine and fine particles possessed higher biological toxicity than the coarse particles. PMID:25985309

  6. Use of Visual Range Measurements to Predict PM2.5 Exposures in Southwest Asia and Afghanistan

    PubMed Central

    Masri, Shahir; Garshick, Eric; Hart, Jaime; Bouhamra, Walid; Koutrakis, Petros

    2016-01-01

    Military personnel deployed to Southwest Asia and Afghanistan were exposed to high levels of ambient particulate matter (PM) indicating the potential for exposure-related health effects. However, historical quantitative ambient PM exposure data for conducting epidemiological health studies are unavailable due to a lack of monitoring stations. Since visual range is proportional to particle light extinction (scattering and absorption), visibility can serve as a surrogate for PM2.5 concentrations where ground measurements are not available. We used data on visibility, relative humidity (RH), and PM2.5 ground measurements collected in Kuwait from years 2004 to 2005 to establish the relationship between PM2.5 and visibility. Model validation obtained by regressing trimester average PM2.5 predictions against PM2.5 measurements in Kuwait produced an r2 value of 0.84. Cross validation of urban and rural sites in Kuwait also revealed good model fit. We applied this relationship to location-specific visibility data at 104 regional sites between years 2000 and 2012 to estimate monthly average PM2.5 concentrations. Monthly averages at sites in Iraq, Afghanistan, United Arab Emirates, Kuwait, Djibouti, and Qatar ranged from 10 to 365 µg/m3 during this period, while site averages ranged from 22 to 80 µg/m3, indicating considerable spatial and temporal heterogeneity in ambient PM2.5 across these regions. These data support the use of historical visibility data to estimate location-specific PM2.5 concentrations for use in future epidemiological studies in the region. PMID:27700621

  7. Ozone, Fine Particulate Matter, and Chronic Lower Respiratory Disease Mortality in the United States.

    PubMed

    Hao, Yongping; Balluz, Lina; Strosnider, Heather; Wen, Xiao Jun; Li, Chaoyang; Qualters, Judith R

    2015-08-01

    Short-term effects of air pollution exposure on respiratory disease mortality are well established. However, few studies have examined the effects of long-term exposure, and among those that have, results are inconsistent. To evaluate long-term association between ambient ozone, fine particulate matter (PM2.5, particles with an aerodynamic diameter of 2.5 μm or less), and chronic lower respiratory disease (CLRD) mortality in the contiguous United States. We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and temperature), with random effects at state and county levels to account for spatial heterogeneity and spatial dependence. We derived county-level average daily concentration levels for ambient ozone and PM2.5 for 2001-2008 from the U.S. Environmental Protection Agency's down-scaled estimates and obtained 2007-2008 CLRD deaths from the National Center for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD deaths, with a rate ratio of 1.05 (95% credible interval, 1.01-1.09) per 5-ppb increase in ozone; the association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant (rate ratio, 1.07; 95% credible interval, 0.99-1.14). This study links air pollution exposure data with CLRD mortality for all 3,109 contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from CLRD in the contiguous United States. Although we adjusted for selected county-level covariates and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of ecologic bias remains.

  8. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

    PubMed Central

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994

  9. Particulate matter air pollution and ambient temperature: opposing effects on blood pressure in high-risk cardiac patients.

    PubMed

    Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D

    2015-10-01

    Fine particulate matter air pollution (PM2.5) and extreme temperatures have both been associated with alterations in blood pressure (BP). However, few studies have evaluated their joint haemodynamic actions among individuals at high risk for cardiovascular events. We assessed the effects of short-term exposures during the prior week to ambient PM2.5 and outdoor temperature levels on resting seated BP among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from 2003 to 2011) using multiple linear regression analyses adjusting for age, sex, BMI, ozone and the same-day alternate environmental factor (i.e. PM2.5 or temperature). Mean PM2.5 and temperature levels were 12.6 ± 8.2 μg/m and 10.3 ± 10.4°C, respectively. Each standard deviation elevation in PM2.5 concentration during lag days 4-6 was associated with significant increases in SBP (2.1-3.5 mmHg) and DBP (1.7-1.8 mmHg). Conversely, higher temperature levels (per 10.4°C) during lag days 4-6 were associated with reductions in both SBP (-3.6 to -2.3 mmHg) and DBP (-2.5 to -1.8 mmHg). There was little evidence for consistent effect modification by other covariates (e.g. demographics, seasons, medication usage). Short-term exposures to PM2.5, even at low concentrations within current air quality standards, are associated with significant increases in BP. Contrarily, higher ambient temperatures prompt the opposite haemodynamic effect. These findings demonstrate that both ubiquitous environmental exposures have clinically meaningful effects on resting BP among high-risk cardiac patients.

  10. Respiratory hospitalizations in association with fine PM and its components in New York State.

    PubMed

    Jones, Rena R; Hogrefe, Christian; Fitzgerald, Edward F; Hwang, Syni-An; Özkaynak, Halûk; Garcia, Valerie C; Lin, Shao

    2015-05-01

    Despite observed geographic and temporal variation in particulate matter (PM)-related health morbidities, only a small number of epidemiologic studies have evaluated the relation between PM2.5 chemical constituents and respiratory disease. Most assessments are limited by inadequate spatial and temporal resolution of ambient PM measurements and/or by their approaches to examine the role of specific PM components on health outcomes. In a case-crossover analysis using daily average ambient PM2.5 total mass and species estimates derived from the Community Multiscale Air Quality (CMAQ) model and available observations, we examined the association between the chemical components of PM (including elemental and organic carbon, sulfate, nitrate, ammonium, and other remaining) and respiratory hospitalizations in New York State. We evaluated relationships between levels (low, medium, high) of PM constituent mass fractions, and assessed modification of the PM2.5-hospitalization association via models stratified by mass fractions of both primary and secondary PM components. In our results, average daily PM2.5 concentrations in New York State were generally lower than the 24-hr average National Ambient Air Quality Standard (NAAQS). Year-round analyses showed statistically significant positive associations between respiratory hospitalizations and PM2.5 total mass, sulfate, nitrate, and ammonium concentrations at multiple exposure lags (0.5-2.0% per interquartile range [IQR] increase). Primarily in the summer months, the greatest associations with respiratory hospitalizations were observed per IQR increase in the secondary species sulfate and ammonium concentrations at lags of 1-4 days (1.0-2.0%). Although there were subtle differences in associations observed between mass fraction tertiles, there was no strong evidence to support modification of the PM2.5-respiratory disease association by a particular constituent. We conclude that ambient concentrations of PM2.5 and secondary aerosols including sulfate, ammonium, and nitrate were positively associated with respiratory hospitalizations, although patterns varied by season. Exposure to specific fine PM constituents is a plausible risk factor for respiratory hospitalization in New York State. The association between ambient concentrations of PM2.5 components has been evaluated in only a small number of epidemiologic studies with refined spatial and temporal scale data. In New York State, fine PM and several of its constituents, including sulfate, ammonium, and nitrate, were positively associated with respiratory hospitalizations. Results suggest that PM species relationships and their influence on respiratory endpoints are complex and season dependent. Additional work is needed to better understand the relative toxicity of PM species, and to further explore the role of co-pollutant relationships and exposure prediction error on observed PM-respiratory disease associations.

  11. Respiratory and cardiovascular effects of metals in ambient particulate matter: a critical review.

    PubMed

    Gray, Deborah L; Wallace, Lance A; Brinkman, Marielle C; Buehler, Stephanie S; La Londe, Chris

    2015-01-01

    In this review, we critically evaluated the epidemiological and toxicological evidence for the role of specific transition metals (As. Cr. Cu. Fe. Mn. Ni. Sc. Ti. V and Zn) in causing or contributing to the respiratory and cardiovascular health effects associated with ambient PM. Although the epidemiologic studies arc suggestive. and both the in vivo and in vitro laboratory studies document the toxicity of specific metals (Fe. Ni. V and Zn). the overall weight of evidence does not convincingly implicate metals as major contributors to health effects. None of the epidemiology studies that we reviewed conclusively implicated specific transition metals as having caused the respiratory and cardiovascular effects associated with ambient levels of PM. However, the studies reviewed tended to be internal ly consistent in identifying some metals (Fe, Ni, V and Zn) more frequently than others (As, Cu, Mn and Sc) as having positive associations wi th health effects. The major problem wi th which the epidemiological studies were faced was classifying and quantifying exposure. Community and population exposures to metals or other components of ambient PM were inferred from centrally- located samplers that may not accurately represent individual level exposures. Only a few authors reported findings that did not support the stated premise of the study; indeed, statistic ally significant associations are not necessarily biologically significant. It is likely that ·'negative studies" are under-represented in the published literature, making it a challenge to achieve a balanced evaluation of the role of metals in causing health effects associated with ambient PM. Both the in vivo and in vitro study results demonstrated that individual metals (Cu. Fe. Ni. V and Zn) and extracts of metals from ambient PM sources can produce acute inflammatory responses. However. the doses administered to laboratory animals were many orders of magnitude greater than what humans experience from breathing ambient air. The studies that used intratracheal instillation have the advantage of delivering a known dose to a specific anatomical location. but arc not analogous to an inhaled dose that is distributed over the surface area of the respiratory tract. Studies. in which laboratory animals or human volunteers inhaled CAPs best represent exposures to the general human population. The in vivo and in vitro studies reviewed provide indications that the probable mechanisms involved in the respiratory and cardiac effects from high metal exposures include: an inflammatory response mediated by formation of ROS, upregulation of genes coding for inflammatory cytokines, altered expression of genes involved in cell signaling pathways and maintenance of metals homeostasis.The fact that doses of metals many orders of magnitude greater than those existing in ambient air were required to produce measurable adverse effects in animals makes it doubtful that metals play any major role in respiratory and cardiovascular effects produced from human exposure to ambient PM. We suggest that future research priorities should focus on testing at more environmentally relevant exposure levels and that any new toxicological studies be written to include dosages in units that can be easily compared to human exposure levels.

  12. Exposure measurement error in PM2.5 health effects studies: A pooled analysis of eight personal exposure validation studies

    PubMed Central

    2014-01-01

    Background Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. Methods Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’ homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. Results When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. Conclusions Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies. PMID:24410940

  13. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    NASA Astrophysics Data System (ADS)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  14. Characterization of the ambient air content of parent polycyclic aromatic hydrocarbons in the Fort McKay region (Canada).

    PubMed

    Wnorowski, Andrzej

    2017-05-01

    This study presents the characterization of the gas-particle partition and size distribution of seven parent polycyclic aromatic hydrocarbons (PAHs) in ambient air samples collected in the proximity of oil sands exploration and compares their time-integrated concentration levels with nineteen analogous oxidation products - quinones. Gas-phase (GP) and particle-phase (PM) ambient air aerosol samples that were collected separately in summer for either 24 h or 12 h (day and night) revealed a higher PAH partition in the GP than in the PM, with the distribution over tenfold higher for light over heavy PAHs. Diurnal/nocturnal samples demonstrated that night conditions lead to lower concentrations, linking some of the sources of these compounds with daytime activity emissions. PAHs were observed to transform more efficiently in the GP, and quinone levels increased in the PM with time. Correlation data indicated that parent PAHs originated from primary emission sources associated with oil sand activities and that quinone formation paralleled a reduction in PAH levels. The findings of this study shed new light on characterization of PAHs in the Athabasca oil sands region. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Long-term exposure to ambient PM2.5 associated with fall-related injury in six low- and middle-income countries.

    PubMed

    Guo, Yanfei; Lin, Hualiang; Shi, Yan; Zheng, Yang; Li, Xing; Xiao, Jianpeng; Liu, Tao; Zeng, Weilin; Vaughn, Michael G; Cummings-Vaughn, Lenise A; Nelson, Erik J; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2018-06-01

    Exposure to ambient air pollution has been linked with adverse health outcomes of the circulatory and nervous systems. Given that falls are closely related to circulatory and nervous health, we hypothesize that air pollution may adversely affect fall-related injury. We employed Wave 1 data from 36,662 participants aged ≥50 years in WHO's Study on Global AGEing and Adult Health in six low- and middle-income countries. Ambient annual concentration of PM 2.5 was estimated using satellite data. A three-level logistic regression model was applied to examine the long-term association between ambient PM 2.5 and the prevalence of fall-related injury, and associated disease burden, as well as the potential effect modification of consumption of fruit and vegetables. Ambient PM 2.5 was found to be significantly associated with the risk of fall-related injury. Each 10 μg/m 3 increase corresponded to 18% (OR = 1.18, 95% CI: 1.09, 1.28) increase in fall-related injury after adjusting for various covariates. The association was relatively stronger among participants with lower consumption of fruit (OR = 1.22, 95% CI: 1.12, 1.33) than higher consumption (OR = 1.06, 95% CI: 0.92, 1.23), and among those with lower vegetable consumption (OR = 1.18, 95% CI: 1.08, 1.28) than higher consumption (OR = 1.08, 95% CI: 0.91, 1.27). Our study suggests that ambient PM 2.5 may be one risk factor for fall-related injury and that higher consumption of fruit and vegetables could alleviate this effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Exposure to Diesel Exhaust Enhances the Generation of Vascular Microparticles

    EPA Science Inventory

    Introduction: In the study of the health impacts of traffic-related air pollution, diesel exhaust is a pollutant of particular interest, since it is a major source of particulate matter (PM). Epidemiological studies associate exposure to ambient levels of PM with cardiovascular m...

  17. RECRUITING AND RETAINING PARTICIPANTS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...

  18. US EPA Nonattainment Areas and Designations-PM10 (1987 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layer: PM10 Nonattainment Areas (1987 NAAQS). Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1987PM10/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The metho

  19. Behavior of the main sources that contribute to ambient PM2.5 in Santiago since 1998

    NASA Astrophysics Data System (ADS)

    Barraza, F.; Lambert, F.; Jorquera, H.; Villalobos, A. M.; Gallardo, L.

    2016-12-01

    Santiago's inhabitants have been exposed to high concentrations of fine particle matter (PM2.5) for decades. To contribute to a solution for this long-standing problem it is necessary to clearly identify and quantify the agents that contribute to ambient levels of PM2.5. We present an analysis of a long historical elemental concentrations database measured in air filter particles taken in central Santiago from April 1998 to August 2012 (1243 daily samples). We identify and quantify the main sources that contribute to PM2.5 levels using the source-receptor models PMF 5.0 and UNMIX 6.0. . The 6 main sources that contribute to outdoor PM2.5 levels were: vehicles (13.26±0.42 µg/m3), industrial sulfates (6.60±0.0.47 µg/m3), copper smelters (5.12±0.29 µg/m3), residential wood burning (4.38±0.36 µg/m3), marine aerosols (3.39±0.24 µg/m3), and urban dust (1.07±0.42 µg/m3). The unexplained fraction amounts to 1.76±0.90 µg/m3). The similar results obtained with both receptor models suggest a robust estimation of the main Santiago PM2.5 source apportionment. The analysis of the time series of these sources shows that their absolute contribution to PM2.5 levels has been decreasing during the last decade (except for urban dust which is increasing), and shows the effectiveness of government emission reduction policies. However, these improvements have not been sufficient to reduce PM2.5 concentrations to daily levels below the Chilean standard of 50 µg/m3, let alone the WHO standard of 25 µg/m3.

  20. Spatiotemporal analysis for the effect of ambient particulate matter on cause-specific respiratory mortality in Beijing, China.

    PubMed

    Wang, Xuying; Guo, Yuming; Li, Guoxing; Zhang, Yajuan; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan; Chen, Liangfu

    2016-06-01

    This study explored the association between particulate matter with an aerodynamic diameter of less than 10 μm (PM10) and the cause-specific respiratory mortality. We used the ordinary kriging method to estimate the spatial characteristics of ambient PM10 at 1-km × 1-km resolution across Beijing during 2008-2009 and subsequently fit the exposure-response relationship between the estimated PM10 and the mortality due to total respiratory disease, chronic lower respiratory disease, chronic obstructive pulmonary disease (COPD), and pneumonia at the street or township area levels using the generalized additive mixed model (GAMM). We also examined the effects of age, gender, and season in the stratified analysis. The effects of ambient PM10 on the cause-specific respiratory mortality were the strongest at lag0-5 except for pneumonia, and an inter-quantile range increase in PM10 was associated with an 8.04 % (95 % CI 4.00, 12.63) increase in mortality for total respiratory disease, a 6.63 % (95 % CI 1.65, 11.86) increase for chronic lower respiratory disease, and a 5.68 % (95 % CI 0.54, 11.09) increase for COPD, respectively. Higher risks due to the PM10 exposure were observed for females and elderly individuals. Seasonal stratification analysis showed that the effects of PM10 on mortality due to pneumonia were stronger during spring and autumn. While for COPD, the effect of PM10 in winter was statistically significant (15.54 %, 95 % CI 5.64, 26.35) and the greatest among the seasons. The GAMM model evaluated stronger associations between concentration of PM10. There were significant associations between PM10 and mortality due to respiratory disease at the street or township area levels. The GAMM model using high-resolution PM10 could better capture the association between PM10 and respiratory mortality. Gender, age, and season also acted as effect modifiers for the relationship between PM10 and respiratory mortality.

  1. Particulate oxidative burden associated with firework activity.

    PubMed

    Godri, Krystal J; Green, David C; Fuller, Gary W; Dall'Osto, Manuel; Beddows, David C; Kelly, Frank J; Harrison, Roy M; Mudway, Ian S

    2010-11-01

    Firework events are capable of inducing particulate matter (PM) episodes that lead to exceedances of regulatory limit values. As short-term peaks in ambient PM concentration have been associated with negative impacts on respiratory and cardiovascular health, we performed a detailed study of the consequences of firework events in London on ambient air quality and PM composition. These changes were further related to the oxidative activity of daily PM samples by assessing their capacity to drive the oxidation of physiologically important lung antioxidants including ascorbate, glutathione and urate (oxidative potential, OP). Twenty-four hour ambient PM samples were collected at the Marylebone Road sampling site in Central London over a three week period, including two major festivals celebrated with pyrotechnic events: Guy Fawkes Night and Diwali. Pyrotechnic combustion events were characterized by increased gas phase pollutants levels (NO(x) and SO(2)), elevated PM mass concentrations, and trace metal concentrations (specifically Sr, Mg, K, Ba, and Pb). Relationships between NO(x), benzene, and PM(10) were used to apportion firework and traffic source fractions. A positive significant relationship was found between PM oxidative burden and individual trace metals associated with each of these apportioned source fractions. The level of exposure to each source fraction was significantly associated with the total OP. The firework contribution to PM total OP, on a unit mass basis, was greater than that associated with traffic sources: a 1 μg elevation in firework and traffic PM fraction concentration was associated with a 6.5 ± 1.5 OP(T) μg(-1) and 5.2 ± 1.4 OP(T) μg(-1) increase, respectively. In the case of glutathione depletion, firework particulate OP (3.5 ± 0.8 OP(GSH) μg(-1)) considerably exceeded that due to traffic particles (2.2 ± 0.8 OP(GSH) μg(-1)). Therefore, in light of the elevated PM concentrations caused by firework activity and the increased oxidative activity of this PM source, there is value in examining if firework derived PM is related to acute respiratory outcomes.

  2. Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Viana, Mar; Salvador, Pedro; Sánchez de la Campa, Ana; Artiñano, Begoña; de la Rosa, Jesús; Gibbons, Wes

    The majority of the Spanish urban population breathe air containing inhalable ambient airborne particles at average concentrations of 30-46 μg m -3 (PM 10) and 20-30 μg m -3 (PM 2.5). Even though the average weight of inhaled urban aerosol is commonly similar, however, there can be large chemical differences between the ambient dusts from different towns, including the more bioreactive elements such as some metals. In this context, we compare the source-apportioned trace metal content of airborne PM 10 and PM 2.5 collected daily over a 1-year period from six population centres in Spain: Barcelona, Alcobendas, Llodio, Huelva, Tarragona and Las Palmas de Gran Canaria. Total average trace metal (ΣTM) PM 10 and PM 2.5 contents vary by up to a factor of around 3, reaching a maximum of ΣTM 10 811 ng m -3 and ΣTM 2.5 503 ng m -3 at Llodio, an industrial but humid site with the lowest PM 10 mass levels but high contamination by Zn, Pb, Mn, Sn, Ni and Cr. In contrast, pollution at Huelva, although another industrially influenced site, instead emphasises Cu and As, whereas Barcelona, where traffic emissions and resuspension contribute to some of the highest average PM 10 levels in Spain, has unusually raised levels of Ti, V and Ba. Such variations in both daily and annual average PM bulk chemistry, particularly in potentially toxic trace metals concentrated in the finer aerosols (such as Cd, As, Pb, Hg and Ni), predict that PM health effects on resident populations from different towns are unlikely to be the same.

  3. Exposure to air pollution and tobacco smoking and their combined effects on depression in six low- and middle-income countries.

    PubMed

    Lin, Hualiang; Guo, Yanfei; Kowal, Paul; Airhihenbuwa, Collins O; Di, Qian; Zheng, Yang; Zhao, Xing; Vaughn, Michael G; Howard, Steven; Schootman, Mario; Salinas-Rodriguez, Aaron; Yawson, Alfred E; Arokiasamy, Perianayagam; Manrique-Espinoza, Betty Soledad; Biritwum, Richard B; Rule, Stephen P; Minicuci, Nadia; Naidoo, Nirmala; Chatterji, Somnath; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2017-09-01

    Background Little is known about the joint mental health effects of air pollution and tobacco smoking in low- and middle-income countries. Aims To investigate the effects of exposure to ambient fine particulate matter pollution (PM 2.5 ) and smoking and their combined (interactive) effects on depression. Method Multilevel logistic regression analysis of baseline data of a prospective cohort study ( n = 41 785). The 3-year average concentrations of PM 2.5 were estimated using US National Aeronautics and Space Administration satellite data, and depression was diagnosed using a standardised questionnaire. Three-level logistic regression models were applied to examine the associations with depression. Results The odds ratio (OR) for depression was 1.09 (95% C11.01-1.17) per 10 μg/m 3 increase in ambient PM 2.5 , and the association remained after adjusting for potential confounding factors (adjusted OR = 1.10, 95% CI 1.02-1.19). Tobacco smoking (smoking status, frequency, duration and amount) was also significantly associated with depression. There appeared to be a synergistic interaction between ambient PM 2.5 and smoking on depression in the additive model, but the interaction was not statistically significant in the multiplicative model. Conclusions Our study suggests that exposure to ambient PM 2.5 may increase the risk of depression, and smoking may enhance this effect. © The Royal College of Psychiatrists 2017.

  4. Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China.

    PubMed

    Shen, Guo F; Yuan, Si Y; Xie, Yu N; Xia, Si J; Li, Li; Yao, Yu K; Qiao, Yue Z; Zhang, Jie; Zhao, Qiu Y; Ding, Ai J; Li, Bin; Wu, Hai S

    2014-01-01

    The deteriorating air quality in eastern China including the Yangtze River Delta is attracting growing public concern. In this study, we measured the ambient PM10 and fine PM2.5 in the mega-city, Nanjing at four different times. The 24-h average PM2.5 and PM10 mass concentrations were 0.033-0.234 and 0.042-0.328 mg/m(3), respectively. The daily PM10 and PM2.5 concentrations were 2.9 (2.7-3.2, at 95% confidence interval) and 4.2 (3.8-4.6) times the WHO air quality guidelines of 0.025 mg/m(3) for PM2.5 and 0.050 mg/m(3) for PM10, respectively, which indicated serious air pollution in the city. There was no obvious weekend effect. The highest PM10 pollution occurred in the wintertime, with higher PM2.5 loadings in the winter and summer. PM2.5 was correlated significantly with PM10 and the average mass fraction of PM2.5 in PM10 was about 72.5%. This fraction varied during different sampling periods, with the lowest PM2.5 fraction in the spring but minor differences among the other three seasons.

  5. Impacts of air cleaners on indoor air quality in residences impacted by wood smoke.

    PubMed

    Wheeler, Amanda J; Gibson, Mark D; MacNeill, Morgan; Ward, Tony J; Wallace, Lance A; Kuchta, James; Seaboyer, Matt; Dabek-Zlotorzynska, Ewa; Guernsey, Judith Read; Stieb, David M

    2014-10-21

    Residential wood combustion is an important source of ambient air pollution, accounting for over 25% of fine particulate matter (PM2.5) emissions in Canada. In addition to these ambient contributions, wood smoke pollutants can enter the indoor environment directly when loading or stoking stoves, resulting in a high potential for human exposure. A study of the effectiveness of air cleaners at reducing wood smoke-associated PM2.5 of indoor and outdoor origin was conducted in 31 homes during winter 2009-10. Day 1, the residents' wood burning appliance operated as usual with no air cleaner. Days 2 and 3, the wood burning appliance was not operational and the air cleaner was randomly chosen to operate in "filtration" or "placebo filtration" mode. When the air cleaner was operating, total indoor PM2.5 levels were significantly lower than on placebo filtration days (p = 0.0001) resulting in a median reduction of 52%. There was also a reduction in the median PM2.5 infiltration factor from 0.56 to 0.26 between these 2 days, suggesting the air cleaner was responsible for increased PM2.5 deposition on filtration days. Our findings suggest that the use of an air cleaner reduces exposure to indoor PM2.5 resulting from both indoor and ambient wood smoke sources.

  6. US EPA Nonattainment Areas and Designations-Annual PM2.5 (2012 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layer: PM2.5 Annual 2012 NAAQS State Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2012PM25Annual/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The me

  7. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing.

    PubMed

    Zuo, JinXing; Ji, Wei; Ben, YuJie; Hassan, Muhammad Azher; Fan, WenHong; Bates, Liam; Dong, ZhaoMin

    2018-05-19

    Due to time- and expense- consuming of conventional indoor PM 2.5 (particulate matter with aerodynamic diameter of less than 2.5 μm) sampling, the sample size in previous studies was generally small, which leaded to high heterogeneity in indoor PM 2.5 exposure assessment. Based on 4403 indoor air monitors in Beijing, this study evaluated indoor PM 2.5 exposure from 15th March 2016 to 14th March 2017. Indoor PM 2.5 concentration in Beijing was estimated to be 38.6 ± 18.4 μg/m 3 . Specifically, the concentration in non-heating season was 34.9 ± 15.8 μg/m 3 , which was 24% lower than that in heating season (46.1 ± 21.2 μg/m 3 ). A significant correlation between indoor and ambient PM 2.5 (p < 0.05) was evident with an infiltration factor of 0.21, and the ambient PM 2.5 contributed approximately 52% and 42% to indoor PM 2.5 for non-heating and heating seasons, respectively. Meanwhile, the mean indoor/outdoor (I/O) ratio was estimated to be 0.73 ± 0.54. Finally, the adjusted PM 2.5 exposure level integrating the indoor and outdoor impact was calculated to be 46.8 ± 27.4 μg/m 3 , which was approximately 42% lower than estimation only relied on ambient PM 2.5 concentration. This study is the first attempt to employ big data from commercial air monitors to evaluate indoor PM 2.5 exposure and risk in Beijing, which may be instrumental to indoor PM 2.5 pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evaluation of the Impact of Low Emission Zone and Heavy Traffic Ban in Munich (Germany) on the Reduction of PM10 in Ambient Air

    PubMed Central

    Fensterer, Veronika; Küchenhoff, Helmut; Maier, Verena; Wichmann, Heinz-Erich; Breitner, Susanne; Peters, Annette; Gu, Jianwei; Cyrys, Josef

    2014-01-01

    Concentrations of ambient fine particles (PM10: particles with an aerodynamic diameter ≤ 10 µm) are still exceeding current air quality standards in many European cities. In Munich (Germany), low emission zone and transit bans for heavy-duty vehicles were introduced in 2008 aiming at reduction of traffic emissions contribution to PM10. The effects of those measures on PM10 mass concentrations in Munich were investigated with a semiparametric regression model for modeling PM10 levels adjusted for time, background pollution, public holidays and wind direction. The reduction of PM10 concentration after the introduction of the measures was larger at a traffic monitoring site (13.0 %, 19.6 % in summer, and 6.8 % in winter) and smaller in urban background (4.5 %, 5.7 % in summer, and 3.2 % in winter). The effect was most pronounced on Fridays and on the weekends in summer. PMID:24828081

  9. Exposure chain of urban air PM 2.5—associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study

    NASA Astrophysics Data System (ADS)

    Kousa, Anu; Oglesby, Lucy; Koistinen, Kimmo; Künzli, Nino; Jantunen, Matti

    In the EXPOLIS study personal exposures and microenvironment levels of air pollutants from 50-201 urban adult (25-55 yr) participants were measured in six European cities during 1 yr from autumn 1996 to winter 1997-98. This paper presents the associations between the personal PM 2.5 exposures, microenvironment (residential indoor, residential outdoor and workplace indoor) and ambient fixed site concentrations measured in Helsinki (Finland), Basel (Switzerland), Prague (Czech Republic) and Athens (Greece). Considering the whole chain from ambient fixed site to residential outdoor, residential indoor and personal leisure time (non-working hours) exposure, the correlations were highest between personal leisure time exposures and residential indoor concentrations (non-environmental tobacco smoke (ETS): Pearson r=0.72-0.92, ETS included: r=0.82-0.86) except in Athens, where the correlation between residential indoor and outdoor air was highest (non-ETS: r=0.82, ETS included: r=0.68)). Unfortunately, ambient fixed site PM 2.5 concentrations were measured continuously only in Helsinki. Ambient fixed site PM 2.5 concentrations correlated quite well with residential outdoor concentrations ( r=0.90), and also with residential indoor (non-ETS) concentrations ( r=0.80), but concentrations measured at ambient fixed site monitors were poor predictors of personal exposures to PM 2.5. They were particularly poor predictors of personal workday exposures (non-ETS: r=0.34, ETS included: r=0.25), but considerably better for personal leisure time exposures (non-ETS: r=0.69, ETS included: r=0.54). According to log-linear regression models combined from all centres of non-ETS-exposed participants, residential indoor concentrations explained 76% of personal leisure time PM 2.5 exposure variation and workplace indoor concentrations explained 66% of the workday exposure variation.

  10. First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city.

    PubMed

    Rajsić, Slavica F; Tasić, Mirjana D; Novaković, Velibor T; Tomasević, Milica N

    2004-01-01

    As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.

  11. Components of Air Pollution and Cognitive Function in Middle-aged and Older Adults in Los Angeles

    PubMed Central

    Gatto, Nicole M.; Henderson, Victor W.; Hodis, Howard N.; St John, Jan A.; Lurmann, Fred; Chen, Jiu-Chiuan; Mack, Wendy J.

    2014-01-01

    While experiments in animals demonstrate neurotoxic effects of particulate matter (PM) and ozone (O3), epidemiologic evidence is sparse regarding the relationship between different constituencies of air pollution mixtures and cognitive function in adults. We examined cross-sectional associations between various ambient air pollutants [O3, PM2.5 and nitrogen dioxide (NO2)] and six measures of cognitive function and global cognition among healthy, cognitively intact individuals (n=1,496, mean age 60.5 years) residing in the Los Angeles Basin. Air pollution exposures were assigned to each residential address in 2000–06 using a geographic information system that included monitoring data. A neuropsychological battery was used to assess cognitive function; a principal components analysis defined six domain-specific functions and a measure of global cognitive function was created. Regression models estimated effects of air pollutants on cognitive function, adjusting for age, gender, race, education, income, study and mood. Increasing exposure to PM2.5 was associated with lower verbal learning (β = −0.32 per 10 ug/m3 PM2.5, 95% CI = −0.63, 0.00; p = 0.05). Ambient exposure to NO2 >20 ppb tended to be associated with lower logical memory. Compared to the lowest level of exposure to ambient O3, exposure above 49 ppb was associated with lower executive function. Including carotid artery intima-media thickness, a measure of subclinical atherosclerosis, in models as a possible mediator did not attenuate effect estimates. This study provides support for cross-sectional associations between increasing levels of ambient O3, PM2.5 and NO2 and measures of domain-specific cognitive abilities. PMID:24148924

  12. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles.

    PubMed

    Gatto, Nicole M; Henderson, Victor W; Hodis, Howard N; St John, Jan A; Lurmann, Fred; Chen, Jiu-Chiuan; Mack, Wendy J

    2014-01-01

    While experiments in animals demonstrate neurotoxic effects of particulate matter (PM) and ozone (O3), epidemiologic evidence is sparse regarding the relationship between different constituencies of air pollution mixtures and cognitive function in adults. We examined cross-sectional associations between various ambient air pollutants [O3, PM2.5 and nitrogen dioxide (NO2)] and six measures of cognitive function and global cognition among healthy, cognitively intact individuals (n=1496, mean age 60.5 years) residing in the Los Angeles Basin. Air pollution exposures were assigned to each residential address in 2000-06 using a geographic information system that included monitoring data. A neuropsychological battery was used to assess cognitive function; a principal components analysis defined six domain-specific functions and a measure of global cognitive function was created. Regression models estimated effects of air pollutants on cognitive function, adjusting for age, gender, race, education, income, study and mood. Increasing exposure to PM2.5 was associated with lower verbal learning (β=-0.32 per 10 μg/m(3) PM2.5, 95% CI=-0.63, 0.00; p=0.05). Ambient exposure to NO2 >20 ppb tended to be associated with lower logical memory. Compared to the lowest level of exposure to ambient O3, exposure above 49 ppb was associated with lower executive function. Including carotid artery intima-media thickness, a measure of subclinical atherosclerosis, in models as a possible mediator did not attenuate effect estimates. This study provides support for cross-sectional associations between increasing levels of ambient O3, PM2.5 and NO2 and measures of domain-specific cognitive abilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Source attribution and mitigation strategies for air pollution in Delhi

    NASA Astrophysics Data System (ADS)

    Kiesewetter, Gregor; Purohit, Pallav; Schoepp, Wolfgang; Liu, Jun; Amann, Markus; Bhanarkar, Anil

    2017-04-01

    Indian cities, and the megacity of Delhi in particular, have suffered from high air pollution for years. Recent observations show that ambient concentrations of fine particulate matter (PM2.5) in Delhi strongly exceed the Indian national ambient air quality standards as well as the World Health Organization's interim target levels. At the same time, India is experiencing strong urbanization, and both Delhi's emissions as well as the exposed population are growing. Therefore the question arises how PM2.5 concentrations will evolve in the future, and how they can be improved efficiently. In the past, typical responses of the Delhi government to high pollution episodes have been restrictions on motorized road traffic, on power plant operations and on construction activities. However, to design sustainable and efficient pollution mitigation measures, the contribution of different source sectors and spatial scales needs to be quantified. Here we combine the established emission calculation scheme of the Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model with regional chemistry-transport model simulations (0.5° resolution) as well as local particle dispersion (2 × 2 km resolution) to arrive at a source attribution of ambient PM2.5 in Delhi. Calculated concentrations compare well to observations. We find that roughly 60% of total population-weighted PM2.5 originates from sources outside the national capital territory of Delhi itself. Consequently, mitigation strategies need to involve neighboring states and address the typical sources there. We discuss the likely evolution of ambient concentrations under different scenarios which assume either current emission control legislation, or application of a Clean Air Scenario foreseeing additional regulations in non-industrial sectors which are often overlooked, such as phase-out of solid fuel cookstoves, and road paving. Only in the case where the Clean Air Scenario is applied both in Delhi as well as in surrounding states, a strong reduction in ambient concentrations is envisaged which would bring PM2.5 levels close to the WHO interim targets.

  14. Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus.

    PubMed

    Liu, Cuiqing; Bai, Yuntao; Xu, Xiaohua; Sun, Lixian; Wang, Aixia; Wang, Tse-Yao; Maurya, Santosh K; Periasamy, Muthu; Morishita, Masako; Harkema, Jack; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay

    2014-05-30

    Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (<2.5 μm in aerodynamic diameter, PM2.5) and development of insulin resistance/Type II diabetes mellitus. This study was designed to investigate whether inhalational exposure of concentrated PM2.5 in a genetically susceptible animal model would result in abnormalities in energy metabolism and exacerbation of peripheral glycemic control. KKay mice, which are susceptible to Type II DM, were assigned to either concentrated ambient PM2.5 or filtered air (FA) for 5-8 weeks via a whole body exposure system. Glucose tolerance, insulin sensitivity, oxygen consumption and heat production were evaluated. At euthanasia, blood, spleen and visceral adipose tissue were collected to measure inflammatory cells using flow cytometry. Standard immnunohistochemical methods, western blotting and quantitative PCR were used to assess targets of interest. PM2.5 exposure influenced energy metabolism including O2 consumption, CO2 production, respiratory exchange ratio and thermogenesis. These changes were accompanied by worsened insulin resistance, visceral adiposity and inflammation in spleen and visceral adipose depots. Plasma adiponectin were decreased in response to PM2.5 exposure while leptin levels increased. PM2.5 exposure resulted in a significant increase in expression of inflammatory genes and decreased UCP1 expression in brown adipose tissue and activated p38 and ERK pathways in the liver of the KKay mice. Concentrated ambient PM2.5 exposure impairs energy metabolism, concomitant with abnormalities in glucose homeostasis, increased inflammation in insulin responsive organs, brown adipose inflammation and results in imbalance in circulating leptin/adiponectin levels in a genetically susceptible diabetic model. These results provide additional insights into the mechanisms surrounding air pollution mediated susceptibility to Type II DM.

  15. RECRUITING AND RETAINING AFRICAN-AMERICANS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...

  16. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH PLASMINOGEN AND FIBRIOGEN LEVELS IN ADULT ASTHMATICS

    EPA Science Inventory

    Introduction: Recent reports indicate that the elderly and those with cardiovascular disease are susceptible to fine and coarse particulate matter (PM 2.5, PM 2.5-10) exposures. Asthmatics are thought to be primarily affected via airway inflammation. We investigated whether mark...

  17. Redox Toxicology of Ambient Air Pollution

    EPA Science Inventory

    Ambient air pollution is a leading global cause of morbidity and mortality. Millions of Americans live in areas in which levels of tropospheric ozone exceed air quality standards, while exposure to particulate matter (PM2.5) alone results in 3.2 million excess deaths annually wor...

  18. Gas/particle partitioning and particle size distribution of PCDD/Fs and PCBs in urban ambient air.

    PubMed

    Barbas, B; de la Torre, A; Sanz, P; Navarro, I; Artíñano, B; Martínez, M A

    2018-05-15

    Urban ambient air samples, including gas-phase (PUF), total suspended particulates (TSP), PM 10 , PM 2.5 and PM 1 airborne particle fractions were collected to evaluate gas-particle partitioning and size particle distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Clausius-Clapeyron equation, regressions of logKp vs logP L and logK OA, and human respiratory risk assessment were used to evaluate local or long-distance transport sources, gas-particle partitioning sorption mechanisms, and implications for health. Total ambient air levels (gas phase+particulate phase) of TPCBs and TPCDD/Fs, were 437 and 0.07pgm -3 (median), respectively. Levels of PCDD/F in the gas phase (0.004-0.14pgm -3 , range) were significantly (p<0.05) lower than those found in the particulate phase (0.02-0.34pgm -3 ). The concentrations of PCDD/Fs were higher in winter. In contrast, PCBs were mainly associated to the gas phase, and displayed maximum levels in warm seasons, probably due to an increase in evaporation rates, supported by significant and strong positive dependence on temperature observed for several congeners. No significant differences in PCDD/Fs and PCBs concentrations were detected between the different particle size fractions considered (TSP, PM 10 , PM 2.5 and PM 1 ), reflecting that these chemicals are mainly bounded to PM 1 . The toxic content of samples was also evaluated. Total toxicity (PUF+TSP) attributable to dl-PCBs (13.4fg-TEQ 05 m -3 , median) was higher than those reported for PCDD/Fs (6.26fg-TEQ 05 m -3 ). The inhalation risk assessment concluded that the inhalation of PCDD/Fs and dl-PCBs pose a low cancer risk in the studied area. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Short‐term Changes in Ambient Particulate Matter and Risk of Stroke: A Systematic Review and Meta‐analysis

    PubMed Central

    Wang, Yi; Eliot, Melissa N.; Wellenius, Gregory A.

    2014-01-01

    Background Stroke is a leading cause of death and long‐term disability in the United States. There is a well‐documented association between ambient particulate matter air pollution (PM) and cardiovascular disease morbidity and mortality. Given the pathophysiologic mechanisms of these effects, short‐term elevations in PM may also increase the risk of ischemic and/or hemorrhagic stroke morbidity and mortality, but the evidence has not been systematically reviewed. Methods and Results We provide a comprehensive review of all observational human studies (January 1966 to January 2014) on the association between short‐term changes in ambient PM levels and cerebrovascular events. We also performed meta‐analyses to evaluate the evidence for an association between each PM size fraction (PM2.5, PM10, PM2.5‐10) and each outcome (total cerebrovascular disease, ischemic stroke/transient ischemic attack, hemorrhagic stroke) separately for mortality and hospital admission. We used a random‐effects model to estimate the summary percent change in relative risk of the outcome per 10‐μg/m3 increase in PM. Conclusions We found that PM2.5 and PM10 are associated with a 1.4% (95% CI 0.9% to 1.9%) and 0.5% (95% CI 0.3% to 0.7%) higher total cerebrovascular disease mortality, respectively, with evidence of inconsistent, nonsignificant associations for hospital admission for total cerebrovascular disease or ischemic or hemorrhagic stroke. Current limited evidence does not suggest an association between PM2.5‐10 and cerebrovascular mortality or morbidity. We discuss the potential sources of variability in results across studies, highlight some observations, and identify gaps in literature and make recommendations for future studies. PMID:25103204

  20. 40 CFR 52.1678 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-CT fine particle (PM2.5) nonattainment area has attained the 1997 PM2.5 National Ambient Air Quality... particle (PM2.5) nonattainment area has attained the 2006 PM2.5 National Ambient Air Quality Standard. This...

  1. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    NASA Astrophysics Data System (ADS)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  2. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Sun, Qinghua; Yue, Peibin; Deiuliis, Jeffrey A.; Lumeng, Carey N.; Kampfrath, Thomas; Mikolaj, Michael B.; Cai, Ying; Ostrowski, Michael C.; Lu, Bo; Parthasarathy, Sampath; Brook, Robert D.; Moffatt-Bruce, Susan D.; Chen, Lung Chi; Rajagopalan, Sanjay

    2009-01-01

    Background There is a strong link between urbanization and type 2 diabetes mellitus. Although a multitude of mechanisms have been proposed, there are no studies evaluating the impact of ambient air pollutants and the propensity to develop type 2 diabetes mellitus. We hypothesized that exposure to ambient fine particulate matter (<2.5 μm; PM2.5) exaggerates diet-induced insulin resistance, adipose inflammation, and visceral adiposity. Methods and Results Male C57BL/6 mice were fed high-fat chow for 10 weeks and randomly assigned to concentrated ambient PM2.5 or filtered air (n=14 per group) for 24 weeks. PM2.5-exposed C57BL/6 mice exhibited marked whole-body insulin resistance, systemic inflammation, and an increase in visceral adiposity. PM2.5 exposure induced signaling abnormalities characteristic of insulin resistance, including decreased Akt and endothelial nitric oxide synthase phosphorylation in the endothelium and increased protein kinase C expression. These abnormalilties were associated with abnormalities in vascular relaxation to insulin and acetylcholine. PM2.5 increased adipose tissue macrophages (F4/80+ cells) in visceral fat expressing higher levels of tumor necrosis factor-α/interleukin-6 and lower interleukin-10/N-acetyl-galactosamine specific lectin 1. To test the impact of PM2.5 in eliciting direct monocyte infiltration into fat, we rendered FVBN mice expressing yellow fluorescent protein (YFP) under control of a monocyte-specific promoter (c-fms, c-fmsYFP) diabetic over 10 weeks and then exposed these mice to PM2.5 or saline intratracheally. PM2.5 induced YFP cell accumulation in visceral fat and potentiated YFP cell adhesion in the microcirculation. Conclusion PM2.5 exposure exaggerates insulin resistance and visceral inflammation/adiposity. These findings provide a new link between air pollution and type 2 diabetes mellitus. PMID:19153269

  3. Short-Term Exposure to Fine Particulate Matter and Risk of Ischemic Stroke.

    PubMed

    Matsuo, Ryu; Michikawa, Takehiro; Ueda, Kayo; Ago, Tetsuro; Nitta, Hiroshi; Kitazono, Takanari; Kamouchi, Masahiro

    2016-12-01

    There is a strong association between ambient concentrations of particulate matter (PM) and cardiovascular disease. However, it remains unclear whether acute exposure to fine PM (PM 2.5 ) triggers ischemic stroke events and whether the timing of exposure is associated with stroke risk. We, therefore, examined the association between ambient PM 2.5 and occurrence of ischemic stroke. We analyzed data for 6885 ischemic stroke patients from a multicenter hospital-based stroke registry in Japan who were previously independent and hospitalized within 24 hours of stroke onset. Time of symptom onset was confirmed, and the association between PM (suspended PM and PM 2.5 ) and occurrence of ischemic stroke was analyzed by time-stratified case-crossover analysis. Ambient PM 2.5 and suspended PM at lag days 0 to 1 were associated with subsequent occurrence of ischemic stroke (ambient temperature-adjusted odds ratio [95% confidence interval] per 10 μg/m 3 : suspended PM, 1.02 [1.00-1.05]; PM 2.5 , 1.03 [1.00-1.06]). In contrast, ambient suspended PM and PM 2.5 at lag days 2 to 3 or 4 to 6 showed no significant association with stroke occurrence. The association between PM 2.5 at lag days 0 to 1 and ischemic stroke was maintained after adjusting for other air pollutants (nitrogen dioxide, photochemical oxidants, or sulfur dioxide) or influenza epidemics and was evident in the cold season. These findings suggest that short-term exposure to PM 2.5 within 1 day before onset is associated with the subsequent occurrence of ischemic stroke. © 2016 American Heart Association, Inc.

  4. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand.

    PubMed

    Pengchai, Petch; Chantara, Somporn; Sopajaree, Khajornsak; Wangkarn, Sunanta; Tengcharoenkul, Urai; Rayanakorn, Mongkon

    2009-07-01

    Daily PM10 concentrations were measured at four sampling stations located in Chiang Mai and Lamphun provinces, Thailand. The sampling scheme was conducted during June 2005 to June 2006; every 3 days for 24 h in each sampling period. The result revealed that all stations shared the same pattern, in which the PM10 (particulate matters with diameter of less than 10 microm) concentration increased at the beginning of dry season (December) and reached its peak in March before decreasing by the end of April. The maximum PM10 concentration for each sampling station was in the range of 140-182 microg/m(3) which was 1.1-1.5 times higher than the Thai ambient air quality standard of 120 microg/m(3). This distinctly high concentration of PM10 in the dry season (Dec. 05-Mar. 06) was recognized as a unique seasonal pattern for the northern part of Thailand. PM10 concentration had a medium level of negative correlation (r = -0.696 to -0.635) with the visibility data. Comparing the maximum PM10 concentration detected at each sampling station to the permitted PM10 level of the national air quality standard, the warning visibility values for the PM10 pollution-watch system were determined as 10 km for Chiang Mai Province and 5 km for Lamphun Province. From the analysis of PM10 constituents, no component exceeded the national air quality standard. The total concentrations of PM10-bond polycyclic aromatic hydrocarbons (PAHs) are calculated in terms of total toxicity equivalent concentrations (TTECs) using the toxicity equivalent factors (TEFs) method. TTECs in Chiang Mai and Lamphun ambient air was found at a level comparable to those observed in Nagasaki, Bangkok and Rome and at a lower level than those reported at Copenhagen. The annual number of lung cancer cases for Chiang Mai and Lamphun Provinces was estimated at two cases/year which was lower than the number of cases in Bangkok (27 cases/year). The principal component analysis/absolute principal component scores (PCA/APCS) model and multiple regression analysis were applied to the PM10 and its constituents data. The results pointed to the vegetative burning as the largest PM10 contributor in Chiang Mai and Lamphun ambient air. Vegetative burning, natural gas burning & coke ovens, and secondary particle accounted for 46-82%, 12-49%, and 3-19% of the PM10 concentrations, respectively. However, natural gas burning & coke ovens as well as vehicle exhaust also deserved careful attention due to their large contributions to PAHs concentration. In the wet season and transition periods, 42-60% of the total PAHs concentrations originated from vehicle exhaust while 16-37% and 14-38% of them were apportioned to natural gas burning & coke ovens and vegetative burning, respectively. In the dry period, natural gas burning & coke ovens, vehicle exhaust, and vegetative burning accounted for 47-59%, 20-25%, and 19-28% of total PAHs concentrations. The close agreement between the measured and predicted concentrations data (R(2) > 0.8) assured enough capability of PCA/APCS receptor model to be used for the PM10 and PAHs source apportionment.

  5. MECHANISMS OF ZN2+-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR

    EPA Science Inventory

    Zn(2+) is a ubiquitous ambient air contaminant that is found as a constituent of airborne particulate matter (PM). Previous studies have associated Zn(2+) levels in PM with health effects in exposed populations and have shown proinflammatory properties of Zn(2+) exposure in vivo ...

  6. ASSOCIATIONS BETWEEN OUTDOOR PARTICULATE (PM2.5) CONCENTRATIONS AND GASEOUS CO-POLLUTANT EXPOSURE LEVELS FOR COPD AND MI COHORTS IN ATLANTA, GA

    EPA Science Inventory

    Epidemiological studies indicate that daily ambient particulate matter (PM2.5) concentrations are associated with increased mortality, hospital admissions, and respiratory and cardiovascular effects. It is possible that the observed significant associations are the result of c...

  7. PM2.5 concentrations observed and modeled for the 2016 southern Appalachian wildfire event

    EPA Science Inventory

    During November 2016, wildfires in the southern Appalachian region of the United States burned over 125,00 acres leading to a widespread outbreak of elevated levels of fine particulate matter (PM2.5). Daily average concentrations above the current National Ambient Air Quality Sta...

  8. Modeling individual exposures to ambient PM2.5 in the diabetes and the environment panel study (DEPS)

    EPA Science Inventory

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates, which can induce exposure error. The goal of this study was to improve ambient PM2.5 exposure assessments for a repeated measurements study with ...

  9. The Research Triangle Park particulate matter panel study: PM mass concentration relationships

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Suggs, Jack; Rea, Anne; Leovic, Kelly; Vette, Alan; Croghan, Carry; Sheldon, Linda; Rodes, Charles; Thornburg, Jonathan; Ejire, Ademola; Herbst, Margaret; Sanders, William

    The US Environmental Protection Agency has recently performed the Research Triangle Park Particulate Matter Panel Study. This was a 1-year investigation of PM and related co-pollutants involving participants living within the RTP area of North Carolina. Primary goals were to characterize the relationships between ambient and residential PM measures to those obtained from personal exposure monitoring and estimate ambient source contributions to personal and indoor mass concentrations. A total of 38 participants living in 37 homes were involved in personal, residential indoor, residential outdoor and ambient PM 2.5 exposure monitoring. Participants were 30 non-smoking hypertensive African-Americans living in a low-moderate SES neighborhood (SE Raleigh, NC) and a cohort of eight individuals having implanted cardiac defibrillators (Chapel Hill, NC). Residential and ambient monitoring of PM 10 and PM 10-2.5 (coarse by differential) was also performed. The volunteers were monitored for seven consecutive days during each of four seasons (summer 2000, fall 2000, winter 2001, spring 2001). Individual PM 2.5 personal exposure concentrations ranged from 4 to 218 μg m -3 during the study. The highest personal exposures were determined to be the result of passive environmental tobacco exposures. Subsequently, ˜7% of the total number of personal exposure trials were excluded to minimize this pollutant's effect upon the overall analysis. Results indicated that a pooled data set (seasons, cohorts, residences, participants) was appropriate for investigation of the basic mass concentration relationships. Daily personal PM 2.5 mass concentrations were typically higher than their associated residential or ambient measurements (mean personal=23.0, indoor=19.1, outdoor=19.3, ambient=19.2 μg m -3). Mean personal PM 2.5 exposures were observed to be only moderately correlated to ambient PM 2.5 concentrations ( r=0.39).

  10. Long-term Exposure to Fine Particulate Matter Air Pollution and Mortality Among Canadian Women.

    PubMed

    Villeneuve, Paul J; Weichenthal, Scott A; Crouse, Daniel; Miller, Anthony B; To, Teresa; Martin, Randall V; van Donkelaar, Aaron; Wall, Claus; Burnett, Richard T

    2015-07-01

    Long-term exposure to fine particulate matter (PM2.5) has been associated with increased mortality, especially from cardiovascular disease. There are, however, uncertainties about the nature of the exposure-response relation at lower concentrations. In Canada, where ambient air pollution levels are substantially lower than in most other countries, there have been few attempts to study associations between long-term exposure to PM2.5 and mortality. We present a prospective cohort analysis of 89,248 women who enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. We derived individual-level estimates of long-term exposure to PM2.5 from satellite observations. We linked cohort records to national mortality data to ascertain mortality between 1980 and 2005. We used Cox proportional hazards models to characterize associations between PM2.5 and several causes of death. The hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual and neighborhood-level characteristics. The cohort was composed predominantly of Canadian-born (82%) and married (80%) women. The median residential concentration of PM2.5 was 9.1 μg/m(3) (standard deviation = 3.4). In fully adjusted models, a 10 μg/m(3) increase in PM2.5 exposure was associated with elevated risks of nonaccidental (HR: 1.12; 95% CI = 1.04, 1.19), and ischemic heart disease mortality (HR: 1.34; 95% CI = 1.09, 1.66). The findings from this study provide additional support for the hypothesis that exposure to very low levels of ambient PM2.5 increases the risk of cardiovascular mortality.

  11. Hydrogen sulfide and particle matter levels associated with increased dispensing of anti-asthma drugs in Iceland's capital.

    PubMed

    Carlsen, Hanne Krage; Zoëga, Helga; Valdimarsdóttir, Unnur; Gíslason, Thórarinn; Hrafnkelsson, Birgir

    2012-02-01

    Air pollutants in Iceland's capital area include hydrogen sulfide (H2S) emissions from geothermal power plants, particle pollution (PM10) and traffic-related pollutants. Respiratory health effects of exposure to PM and traffic pollutants are well documented, yet this is one of the first studies to investigate short-term health effects of ambient H2S exposure. The aim of this study was to investigate the associations between daily ambient levels of H2S, PM10, nitrogen dioxide (NO2) and ozone (O3), and the use of drugs for obstructive pulmonary diseases in adults in Iceland's capital area. The study period was 8 March 2006 to 31 December 2009. We used log-linear Poisson generalized additive regression models with cubic splines to estimate relative risks of individually dispensed drugs by air pollution levels. A three-day moving average of the exposure variables gave the best fit to the data. Final models included significant covariates adjusting for climate and influenza epidemics, as well as time-dependent variables. The three-day moving average of H2S and PM10 levels were positively associated with the number of individuals who were dispensed drugs at lag 3-5, corresponding to a 2.0% (95% confidence interval [CI] 0.4, 3.6) and 0.9% (95% CI 0.1, 1.8) per 10 μg/m3 pollutant concentration increase, respectively. Our findings indicated that intermittent increases in levels of particle matter from traffic and natural sources and ambient H2S levels were weakly associated with increased dispensing of drugs for obstructive pulmonary disease in Iceland's capital area. These weak associations could be confounded by unevaluated variables hence further studies are needed. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Source investigation of personal particulates in relation to identify major routes of exposure among urban residentials

    NASA Astrophysics Data System (ADS)

    Gadkari, Neelima M.; Pervez, Shamsh

    Multiple 24-h average outdoor, indoor and personal respirable particulate matter (RPM) measurements were made in different urban residential colonies to determine major routes of personal exposure. The study area was Bhilai-Durg, District Durg, Chhattisgarh, India. About 100 residentials from each of two selected colonies have been surveyed for consent to participate in the study and for preparation of time-activity diary. On the basis of their time-activity diary, residentials have been categorized into three types: type-A, purely residential; type-B, residents who go out, and type-C, residence who go into work, specially in industrial area. A total of 28 adult participants (14 males and 14 females; mean age 40±15, range 21-61 years) were selected and monitored longitudinally during the summer (15 March-15 June) of 2004. Participants' residential indoor RPM level and also local ambient outdoor RPM levels were measured,and these are done simultaneous with personal monitoring. Residential indoor and ambient outdoors RPM monitoring sessions were throughout the year to obtain infiltration factor more precisely. To compare RPM levels with Indian National Ambient Air Quality Standards (NAAQS) of PM 10, simultaneous measurements of PM 10 were also done with the course of ambient outdoor RPM monitoring. RPM levels in indoors were higher compared to ambient outdoors. The annual average ratio RPM/PM 10 was found to vary significantly among residential sites due to variation in surroundings. Source contribution estimates (SCE) of personal exposure to RPM in selected 12 residences (six from each colony) have been investigated using chemical mass balance model CMB8. Ambient outdoors, residential indoors, soils and road-traffic borne RPM were identified as main routes and principal sources of personal RPM. Results of model output have shown that residential indoors and soil-borne RPM are the major routes of personal exposure.

  13. US EPA Nonattainment Areas and Designations-Annual PM2.5 (1997 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layers: PM2.5 Annual 1997 NAAQS State Level and PM2.5 Annual 1997 NAAQS National . It also contains the following tables: maps99.FRED_MAP_VIEWER.%fred_area_map_data and maps99.FRED_MAP_VIEWER.%fred_area_map_view. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997PM25Annual/MapServer) and viewing the layer description.These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there

  14. US EPA Nonattainment Areas and Designations

    EPA Pesticide Factsheets

    This web service contains the following state level layers:Ozone 8-hr (1997 standard), Ozone 8-hr (2008 standard), Lead (2008 standard), SO2 1-hr (2010 standard), PM2.5 24hr (2006 standard), PM2.5 Annual (1997 standard), PM2.5 Annual (2012 standard), and PM10 (1987 standard). Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NonattainmentAreas/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each

  15. Time series analysis of personal exposure to ambient air pollution and mortality using an exposure simulator.

    PubMed

    Chang, Howard H; Fuentes, Montserrat; Frey, H Christopher

    2012-09-01

    This paper describes a modeling framework for estimating the acute effects of personal exposure to ambient air pollution in a time series design. First, a spatial hierarchical model is used to relate Census tract-level daily ambient concentrations and simulated exposures for a subset of the study period. The complete exposure time series is then imputed for risk estimation. Modeling exposure via a statistical model reduces the computational burden associated with simulating personal exposures considerably. This allows us to consider personal exposures at a finer spatial resolution to improve exposure assessment and for a longer study period. The proposed approach is applied to an analysis of fine particulate matter of <2.5 μm in aerodynamic diameter (PM(2.5)) and daily mortality in the New York City metropolitan area during the period 2001-2005. Personal PM(2.5) exposures were simulated from the Stochastic Human Exposure and Dose Simulation. Accounting for exposure uncertainty, the authors estimated a 2.32% (95% posterior interval: 0.68, 3.94) increase in mortality per a 10 μg/m(3) increase in personal exposure to PM(2.5) from outdoor sources on the previous day. The corresponding estimates per a 10 μg/m(3) increase in PM(2.5) ambient concentration was 1.13% (95% confidence interval: 0.27, 2.00). The risks of mortality associated with PM(2.5) were also higher during the summer months.

  16. City-Level Adult Stroke Prevalence in Relation to Remote Sensing Derived PM2.5 Adjusting for Unhealthy Behaviors and Medical Risk Factors

    NASA Astrophysics Data System (ADS)

    Hu, Z.

    2018-04-01

    This research explores the use of PM2.5 gird derived from remote sensing for assessing the effect of long-term exposure to PM2.5 (ambient air pollution of particulate matter with an aerodynamic diameter of 2.5 μm or less) on stroke, adjusting for unhealthy behaviors and medical risk factors. Health data was obtained from the newly published CDC "500 Cities Project" which provides city- and census tract-level small area estimates for chronic disease risk factors, and clinical preventive service use for the largest 500 cities in the United States. PM2.5 data was acquired from the "The Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD), V1 (1998-2012)" datasets. Average PM2.5 were calculated for each city using a GIS zonal statistics function. Map data visualization and pattern comparison, univariate linear regression, and a multivariate linear regression model fitted using a generalized linear model via penalized maximum likelihood found that long-term exposure to ambient PM2.5 may increase the risk of stroke. Increasing physical activity, reducing smoking and body weight, enough sleeping, controlling diseases such as blood pressure, coronary heart disease, diabetes, and cholesterol, may mitigate the effect. PM2.5 grids derived from moderate resolution satellite remote sensing imagery may offer a unique opportunity to fill the data gap due to limited ground monitoring at broader scales. The evidence of raised stroke prevalence risk in high PM2.5 areas would support targeting of policy interventions on such areas to reduce pollution levels and protect human health.

  17. Circadian Rhythm of Ambient Noise Off the Southeast Coast of India

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Latha, G.; Prashanthi Devi, M.

    An ambient noise system consisting of a vertical linear hydrophone array was deployed in the shallow waters off Chennai, southeast coast of India from 1 August to 16 September 2013 to record ambient ocean noise of frequencies up to 10kHz. Biological sounds, which are broadband, short duration signals resulting from Terapon theraps, a native species, are a prominent feature of the ocean soundscape. Terapon activity peaks at 8pm and 11pm, and its presence is not observed after 12 midnight in both the months. In the other period, the ambient noise fluctuation is due to wind and vessel traffic. Hence, the present study focuses on the description of the ambient noise fluctuation over two 12h periods, i.e., 12 midnight-12 noon considered as period I, and 12 noon-12 midnight as period II in order to show the circadian rhythm of ambient noise. In this study area, Terapon vocalization reached 25dB above the ambient noise level and it dominates the short-term spectra records in the 0.4-4kHz range. All Terapon signals had daily patterns of sound production with highest levels of activity after dusk during the study period. The result shows that the circadian rhythm of ambient noise is mainly of biological sound generated by Terapon and it is reported first time in the shallow waters off the southeast coast of India.

  18. Characterization of particulate and gas exposures of sensitive subpopulations living in Baltimore and Boston.

    PubMed

    Koutrakis, Petros; Suh, Helen H; Sarnat, Jeremy A; Brown, Kathleen Ward; Coull, Brent A; Schwartz, Joel

    2005-12-01

    Personal exposures to particulate and gaseous pollutants and corresponding ambient concentrations were measured for 56 subjects living in Baltimore, Maryland, and 43 subjects living in Boston, Massachusetts. The 3 Baltimore cohorts consisted of 20 healthy older adults (seniors), 21 children, and 15 individuals with physician-diagnosed chronic obstructive pulmonary disease (COPD*). The 2 Boston cohorts were 20 healthy seniors and 23 children. All children were 9 to 13 years of age; seniors were 65 years of age or older; and the COPD participants had moderate to severe physician-diagnosed COPD. Personal exposures to particulate matter with aerodynamic diameters less than 2.5 microm (PM2.5), sulfate (SO(4)2-), elemental carbon (EC), ozone (03), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured simultaneously for 24 hours/day. All subjects were monitored for 8 to 12 consecutive days. The primary objectives of this study were (1) to characterize the personal particulate and gaseous exposures for individuals sensitive to PM health effects and (2) to assess the appropriateness of exposure assessment strategies for use in PM epidemiologic studies. Personal exposures to multiple pollutants and ambient concentrations were measured for subjects from each cohort from each location. Pollutant data were analyzed using correlation and mixed-model regression analyses. In Baltimore, personal PM2.5 exposures tended to be comparable to (and frequently lower than) corresponding ambient concentrations; in Boston, the personal exposures were frequently higher. Overall, personal exposures to the gaseous pollutants, especially O3 and SO2, were considerably lower than corresponding ambient concentrations because of the lack of indoor sources for these gases and their high removal rate on indoor surfaces. Further, the impact of ambient particles on personal exposure (the infiltration factor) and differences in infiltration factor by city, season, and cohort were investigated. No difference in infiltration factor was found among the cohorts, which suggests that all subjects were exposed to the same fraction of ambient PM2.5 for a given ambient concentration. In addition, the results show significant correlations between ambient PM2.5 concentrations and corresponding personal exposures over time and provide further indication that ambient gaseous pollutant concentrations may be better surrogates for personal PM2.5 exposures, especially personal exposures to PM2.5 of ambient origin, than their respective personal exposures. These results have important implications for PM health effects studies that use regression models including both ambient PM2.5 and gaseous pollutant concentrations as independent variables, because both parameters may be serving as surrogates for PM2.5 exposures.

  19. The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China.

    PubMed

    Guo, Yuming; Jia, Yuping; Pan, Xiaochuan; Liu, Liqun; Wichmann, H-Erich

    2009-08-15

    Because epidemiological studies have yielded different results, the association between exposure to fine particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)) and acute events of cardiovascular diseases (CVD) is unknown. Additionally, no research has been conducted to explore the association between PM(2.5) and hospital emergency room (ER) visits of cardiovascular diseases in Beijing, China. To explore the association between PM(2.5) and the hospital ER visits in Beijing, China for CVD {(International Classification of Diseases, 10th vision (ICD-10): I00-I99)}. We collected data for daily hospital ER visits for CVD from the Peking University Third Hospital, daily ambient PM(2.5) data from a fixed monitor site at Peking University, and data on the daily level of gaseous air pollutants {sulfur dioxide (SO(2)) and nitrogen dioxide (NO(2))} from the Beijing Municipal Environmental Monitoring Center between June 1, 2004 and December 31, 2006. A time-stratified case-crossover design was used to evaluate associations between CVD health outcomes and ambient air pollutants. 8377 hospital ER visits of CVD were collected in our study. After adjusting the temperature and the relative humidity, the associations for 10 microg/m(3) increases in levels of PM(2.5), SO(2), or NO(2) and hospital ER visits for cardiovascular diseases were statistically significant with odds ratios (ORs) of 1.005{95% confidence interval (CI): 1.001-1.009}, 1.014(95% CI: 1.004-1.024), and 1.016(95% CI: 1.003-1.029), respectively. These findings suggest that elevated levels of ambient air pollutants are associated with the increase in hospital ER visits for CVD in Beijing, China.

  20. Estimating personal exposures from ambient air-pollution measures: Using meta-analysis to assess measurement error

    PubMed Central

    Holliday, Katelyn M; Avery, Christy L; Poole, Charles; McGraw, Kathleen; Williams, Ronald; Liao, Duanping; Smith, Richard L; Whitsel, Eric A

    2014-01-01

    Background Although ambient concentrations of particulate matter ≤10μm (PM10) are often used as proxies for total personal exposure, correlation (r) between ambient and personal PM10 concentrations varies. Factors underlying this variation and its effect on health outcome-PM exposure relationships remain poorly understood. Methods We conducted a random-effects meta-analysis to estimate effects of study, participant and environmental factors on r; used the estimates to impute personal exposure from ambient PM10 concentrations among 4,012 non-smoking, diabetic participants in the Women’s Health Initiative clinical trial; and then estimated the associations of ambient and imputed personal PM10 concentrations with electrocardiographic measures such as heart rate variability. Results We identified fifteen studies (in years 1990-2009) of 342 participants in five countries. The median r was 0.46 (range = 0.13 to 0.72). There was little evidence of funnel-plot asymmetry but substantial heterogeneity of r, which increased 0.05 (95% confidence interval [CI]= 0.01 to 0.09) per 10 μg/m3 increase in mean ambient PM10 concentration. Substituting imputed personal exposure for ambient PM10 concentrations shifted mean percent changes in electrocardiographic measures per 10μg/m3 increase in exposure away from the null and decreased their precision, e.g. −2.0% (95% CI= −4.6% to 0.7%) versus −7.9% (−15.9% to 0.9%) for the standard deviation of normal-to-normal RR interval duration. Conclusions Analogous distributions and heterogeneity of r in extant meta-analyses of ambient and personal PM2.5 concentrations suggest that observed shifts in mean percent change and decreases in precision may be generalizable across particle size. PMID:24220191

  1. Exposure to particulate matter in India: A synthesis of findings and future directions.

    PubMed

    Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E

    2016-05-01

    Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Burden of Outdoor Air Pollution in Kerala, India—A First Health Risk Assessment at State Level.

    PubMed

    Tobollik, Myriam; Razum, Oliver; Wintermeyer, Dirk; Plass, Dietrich

    2015-08-28

    Ambient air pollution causes a considerable disease burden, particularly in South Asia. The objective of the study is to test the feasibility of applying the environmental burden of disease method at state level in India and to quantify a first set of disease burden estimates due to ambient air pollution in Kerala. Particulate Matter (PM) was used as an indicator for ambient air pollution. The disease burden was quantified in Years of Life Lost (YLL) for the population (30 + years) living in urban areas of Kerala. Scenario analyses were performed to account for uncertainties in the input parameters. 6108 (confidence interval (95% CI): 4150-7791) of 81,636 total natural deaths can be attributed to PM, resulting in 96,359 (95% CI: 65,479-122,917) YLLs due to premature mortality (base case scenario, average for 2008-2011). Depending on the underlying assumptions the results vary between 69,582 and 377,195 YLLs. Around half of the total burden is related to cardiovascular deaths. Scenario analyses show that a decrease of 10% in PM concentrations would save 15,904 (95% CI: 11,090-19,806) life years. The results can be used to raise awareness about air quality standards at a local level and to support decision-making processes aiming at cleaner and healthier environments.

  3. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea.

    PubMed

    Park, Jieun; Park, Eun Ha; Schauer, James J; Yi, Seung-Muk; Heo, Jongbae

    2018-05-16

    Substantial increase in level of particulate matter has raised concerns in South Korea recently. Ambient particulate matter is classified as Group I carcinogen (IARC, 2013) and multiple epidemiological studies has demonstrated adverse health effects due to exposure of particulate matter. Fine particulate matter (PM 2.5 ) which has a diameter <2.5 μm is likely to penetrate deeply into lung and is known to be eliciting adverse health effects. A number of epidemiological studies have been conducted on adverse health effects of PM-related diseases and mortality rate, yet particulate matter (PM)-induced reactive oxygen species (ROS) activity at the cellular level has not been actively studied in Korea. This study assessed PM-induced oxidative potential by exposure of collected ambient PM 2.5 samples to the rat alveolar macrophage cell line. The characteristics of PM 2.5 in Korea were further characterized by linking chemical constituents and contributing sources to ROS. PM 2.5 mass concentration during the cold season was relatively higher than mass concentration during the warm season and chemical constituents except for Secondary Organic Carbon (SOC) and SO 4 2- which both showed similar trends in both the cold and cold seasons. The concentration of crustal elements was especially high during the cold season which can be an indication of long range transport of Asian dust. Water soluble organic carbon and water soluble transition metals (Cr and Zn) were also shown to be correlated to oxidative potential and metals such as As and V were shown to have a high contribution to ROS activity according to stepwise multiple linear regression. Principal Component Analysis (PCA) results identified six factors that can be interpreted as soil, mobile, industry, secondary inorganic aerosol, secondary organic aerosol and oil combustion. Moreover, through Principal Component Regression (PCR), industry, soil, mobile and SIA were shown to be statistically significant sources in a relation to ROS activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    NASA Astrophysics Data System (ADS)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  5. Ambient Air Pollution and Atherosclerosis in Los Angeles

    PubMed Central

    Künzli, Nino; Jerrett, Michael; Mack, Wendy J.; Beckerman, Bernardo; LaBree, Laurie; Gilliland, Frank; Thomas, Duncan; Peters, John; Hodis, Howard N.

    2005-01-01

    Associations have been found between long-term exposure to ambient air pollution and cardiovascular morbidity and mortality. The contribution of air pollution to atherosclerosis that underlies many cardiovascular diseases has not been investigated. Animal data suggest that ambient particulate matter (PM) may contribute to atherogenesis. We used data on 798 participants from two clinical trials to investigate the association between atherosclerosis and long-term exposure to ambient PM up to 2.5 μm in aerodynamic diameter (PM2.5). Baseline data included assessment of the carotid intima-media thickness (CIMT), a measure of subclinical atherosclerosis. We geocoded subjects’ residential areas to assign annual mean concentrations of ambient PM2.5. Exposure values were assigned from a PM2.5 surface derived from a geostatistical model. Individually assigned annual mean PM2.5 concentrations ranged from 5.2 to 26.9 μg/m3 (mean, 20.3). For a cross-sectional exposure contrast of 10 μg/m3 PM2.5, CIMT increased by 5.9% (95% confidence interval, 1–11%). Adjustment for age reduced the coefficients, but further adjustment for covariates indicated robust estimates in the range of 3.9–4.3% (p-values, 0.05–0.1). Among older subjects (≥60 years of age), women, never smokers, and those reporting lipid-lowering treatment at baseline, the associations of PM2.5 and CIMT were larger with the strongest associations in women ≥60 years of age (15.7%, 5.7–26.6%). These results represent the first epidemiologic evidence of an association between atherosclerosis and ambient air pollution. Given the leading role of cardiovascular disease as a cause of death and the large populations exposed to ambient PM2.5, these findings may be important and need further confirmation. PMID:15687058

  6. RADIOCARBON MEASUREMENT OF THE BIOGENIC CONTRIBUTION TO SUMMERTIME PM 2.5 AMBIENT AEROSOL IN NASHVILLE, TN

    EPA Science Inventory

    Radiocarbon (14C) measurements performed on PM-2.5 samples collected near Nashville, TN from June 21 to July 13, 1999, showed high levels of modern carbon, ranging from 56 to 80% of the total carbon in the samples. Radiocarbon measurements performed on dichloromethane extracts of...

  7. DIESEL EXHAUST PARTICLES SUPRESS LPS-STIMULATED PRODUCTION OF PGE2 IN HUMAN ALVEOLAR MACHROPHAGES: ROLE OF P38 MAPK AND ERK PATHWAYS

    EPA Science Inventory

    Numerous studies have reported association between exposure to ambient levels of particulate matter (PM) and adverse health effects, which include respiratory and cardiovascular effects. Diesel exhaust particles (DEP) compose a significant fraction of PM in some areas. Alveolar m...

  8. Association between ambient air pollution and proliferation of umbilical cord blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, L., E-mail: novack@bgu.ac.il

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012–March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM{sub 2.5} (particles<2.5 µm in diameter) andmore » PM{sub 10} (particles<10 µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O{sub 3}) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM{sub 2.5} one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM{sub 2.5} levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM{sub 10} levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1 day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. - Highlights: • Ambient air pollutants were suggested to have an impact on cell proliferation (CP) of umbilical cord blood. • Ozone (O{sub 3}) and carbon monoxide (CO) levels days before delivery were associated with lower CP. • Particulate matter day before delivery was associated with increased CP levels; CP levels decreased for pollutants' levels more distant in time. • Change in directions of an association is likely to be related to different underlying pathophysiological mechanism of pollutants' effect on humans' body.« less

  9. Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia

    PubMed Central

    2014-01-01

    Background Air pollution is a major health challenge worldwide and has previously been strongly associated with adverse reproductive health. This study aimed to examine the association between spontaneous abortion and seasonal variation of air pollutants in Ulaanbaatar, Mongolia. Methods Monthly average O3, SO2, NO2, CO, PM10 and PM2.5 levels were measured at Mongolian Government Air Quality Monitoring stations. The medical records of 1219 women admitted to the hospital due to spontaneous abortion between 2009–2011 were examined retrospectively. Fetal deaths per calendar month from January-December, 2011 were counted and correlated with mean monthly levels of various air pollutants by means of regression analysis. Results Regression of ambient pollutants against fetal death as a dose–response toxicity curve revealed very strong dose–response correlations for SO2 r > 0.9 (p < 0.001) while similarly strongly significant correlation coefficients were found for NO2 (r > 0.8), CO (r > 0.9), PM10 (r > 0.9) and PM2.5 (r > 0.8), (p < 0.001), indicating a strong correlation between air pollution and decreased fetal wellbeing. Conclusion The present study identified alarmingly strong statistical correlations between ambient air pollutants and spontaneous abortion. Further studies need to be done to examine possible correlations between personal exposure to air pollutants and pregnancy loss. PMID:24758249

  10. The Associations between Types of Ambient PM2.5 and Under-Five and Maternal Mortality in Africa.

    PubMed

    Owili, Patrick Opiyo; Lien, Wei-Hung; Muga, Miriam Adoyo; Lin, Tang-Huang

    2017-03-30

    Exploring the effects of different types of PM 2.5 is necessary to reduce associated deaths, especially in low- and middle-income countries (LMICs). Hence we determined types of ambient PM 2.5 before exploring their effects on under-five and maternal mortality in Africa. The spectral derivate of aerosol optical depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) products from 2000 to 2015 were employed to determine the aerosol types before using Generalized Linear and Additive Mixed-Effect models with Poisson link function to explore the associations and penalized spline for dose-response relationships. Four types of PM 2.5 were identified in terms of mineral dust, anthropogenic pollutant, biomass burning and mixture aerosols. The results demonstrate that biomass PM 2.5 increased the rate of under-five mortality in Western and Central Africa, each by 2%, and maternal mortality in Central Africa by 19%. Anthropogenic PM 2.5 increased under-five and maternal deaths in Northern Africa by 5% and 10%, respectively, and maternal deaths by 4% in Eastern Africa. Dust PM 2.5 increased under-five deaths in Northern, Western, and Central Africa by 3%, 1%, and 10%, respectively. Mixture PM 2.5 only increased under-five deaths and maternal deaths in Western (incidence rate ratio = 1.01, p < 0.10) and Eastern Africa (incidence rate ratio = 1.06, p < 0.01), respectively. The findings indicate the types of ambient PM 2.5 are significantly associated with under-five and maternal mortality in Africa where the exposure level usually exceeds the World Health Organization's (WHO) standards. Appropriate policy actions on protective and control measures are therefore suggested and should be developed and implemented accordingly.

  11. The Associations between Types of Ambient PM2.5 and Under-Five and Maternal Mortality in Africa

    PubMed Central

    Owili, Patrick Opiyo; Lien, Wei-Hung; Muga, Miriam Adoyo; Lin, Tang-Huang

    2017-01-01

    Exploring the effects of different types of PM2.5 is necessary to reduce associated deaths, especially in low- and middle-income countries (LMICs). Hence we determined types of ambient PM2.5 before exploring their effects on under-five and maternal mortality in Africa. The spectral derivate of aerosol optical depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) products from 2000 to 2015 were employed to determine the aerosol types before using Generalized Linear and Additive Mixed-Effect models with Poisson link function to explore the associations and penalized spline for dose-response relationships. Four types of PM2.5 were identified in terms of mineral dust, anthropogenic pollutant, biomass burning and mixture aerosols. The results demonstrate that biomass PM2.5 increased the rate of under-five mortality in Western and Central Africa, each by 2%, and maternal mortality in Central Africa by 19%. Anthropogenic PM2.5 increased under-five and maternal deaths in Northern Africa by 5% and 10%, respectively, and maternal deaths by 4% in Eastern Africa. Dust PM2.5 increased under-five deaths in Northern, Western, and Central Africa by 3%, 1%, and 10%, respectively. Mixture PM2.5 only increased under-five deaths and maternal deaths in Western (incidence rate ratio = 1.01, p < 0.10) and Eastern Africa (incidence rate ratio = 1.06, p < 0.01), respectively. The findings indicate the types of ambient PM2.5 are significantly associated with under-five and maternal mortality in Africa where the exposure level usually exceeds the World Health Organization’s (WHO) standards. Appropriate policy actions on protective and control measures are therefore suggested and should be developed and implemented accordingly. PMID:28358348

  12. Study of temporal variation in ambient air quality during Diwali festival in India.

    PubMed

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter < or =10 microm (PM(10)), SO(2), and NO(2)] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  13. The Association between Ambient Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study.

    PubMed

    Gharibvand, Lida; Shavlik, David; Ghamsary, Mark; Beeson, W Lawrence; Soret, Samuel; Knutsen, Raymond; Knutsen, Synnove F

    2017-03-01

    There is a positive association between ambient fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM 2.5 ) and incidence and mortality of lung cancer (LC), but few studies have assessed the relationship between ambient PM 2.5 and LC among never smokers. We assessed the association between PM 2.5 and risk of LC using the Adventist Health and Smog Study-2 (AHSMOG-2), a cohort of health conscious nonsmokers where 81% have never smoked. A total of 80,285 AHSMOG-2 participants were followed for an average of 7.5 years with respect to incident LC identified through linkage with U.S. state cancer registries. Estimates of ambient air pollution levels at participants' residences were obtained for 2000 and 2001, the years immediately prior to the start of the study. A total of 250 incident LC cases occurred during 598,927 person-years of follow-up. For each 10-μg/m 3 increment in PM 2.5 , adjusted hazard ratio (HR) with 95% confidence interval (CI) for LC incidence was 1.43 (95% CI: 1.11, 1.84) in the two-pollutant multivariable model with ozone. Among those who spent > 1 hr/day outdoors or who had lived 5 or more years at their enrollment address, the HR was 1.68 (95% CI: 1.28, 2.22) and 1.54 (95% CI: 1.17, 2.04), respectively. Increased risk estimates of LC were observed for each 10-μg/m 3 increment in ambient PM 2.5 concentration. The estimate was higher among those with longer residence at enrollment address and those who spent > 1 hr/day outdoors. Citation: Gharibvand L, Shavlik D, Ghamsary M, Beeson WL, Soret S, Knutsen R, Knutsen SF. 2017. The association between ambient fine particulate air pollution and lung cancer incidence: results from the AHSMOG-2 study. Environ Health Perspect 125:378-384; http://dx.doi.org/10.1289/EHP124.

  14. Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles

    NASA Astrophysics Data System (ADS)

    Wang, Dongbin; Pakbin, Payam; Shafer, Martin M.; Antkiewicz, Dagmara; Schauer, James J.; Sioutas, Constantinos

    2013-10-01

    This study describes an investigation of the relative contributions of water-soluble and water-insoluble portions of ambient particulate matter (PM) to cellular redox activity. Size-fractionated ambient PM samples (coarse, PM2.5 and ultrafine PM) were collected in August-September of 2012 at an urban site in Los Angeles, using the Versatile Aerosol Concentration Enrichment System (VACES)/BioSampler tandem system. In this system, size-fractionated ambient PM was concentrated and collected directly into an aqueous suspension, thereby eliminating the need for solvent extraction required for PM collected on filter substrates. Separation of water-soluble and water-insoluble fractions of PM was achieved by 10 kilo-Delton ultra-filtration of the collected suspension slurries. Chemical analysis, including organic carbon, metals and trace elements, and inorganic ions, as well as measurement of macrophage reactive oxygen species (ROS) activity were performed on the slurries. Correlation between ROS activity and different chemical components of PM was evaluated to identify the main drivers of PM toxicity. Results from this study illustrate that both water-soluble and water-insoluble portions of PM play important roles in influencing potential cellular toxicity. While the water-soluble species contribute the large majority of the ROS activity per volume of sampled air, the highest intrinsic ROS activity (i.e. expressed per PM mass) is observed for the water-insoluble portions. Organic compounds in both water-soluble and water-insoluble portions of ambient PM, as well as transition metals, several with recognized redox activity (Mn, V, Cu and Zn), are highly correlated with ROS activity. These results may underscore the potential of these chemicals in driving the toxicity of ambient PM. Results from this study also suggest that collection of particles directly into a liquid suspension for toxicological analysis may be superior to conventional filtration by eliminating the need for extraction and by potentially reducing the losses of semi-volatile and redox active species such as organic compounds.

  15. Assessing Model Characterization of Single Source ...

    EPA Pesticide Factsheets

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

  16. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly

    PubMed Central

    Pan, Wen-Chi; Eliot, Melissa N.; Koutrakis, Petros; Coull, Brent A.; Sorond, Farzaneh A.; Wellenius, Gregory A.

    2015-01-01

    Background and Purpose Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. Methods We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. Results A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. Conclusions In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events. PMID:26258469

  17. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.

    PubMed

    Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A

    2015-01-01

    Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.

  18. Factors influencing variability in the infiltration of PM2.5 mass and its components

    NASA Astrophysics Data System (ADS)

    MacNeill, M.; Wallace, L.; Kearney, J.; Allen, R. W.; Van Ryswyk, K.; Judek, S.; Xu, X.; Wheeler, A.

    2012-12-01

    The infiltration of particles into homes can vary seasonally, between homes in a community and between communities. However, few studies have examined the day to day variability across multiple homes. We used continuous data collected from a 2-year (2005-2006) personal exposure study conducted in Windsor, ON to estimate daily infiltration factors (Finf) for fine particulate matter (PM2.5), Black Carbon (BC), and ultrafine particles (UFP) as well as the ambient personal exposure factor (Fpex) for PM2.5. In addition, the daily ambient and non-ambient generated components of indoor and personal concentrations were estimated. Median daily Finf estimates ranged from 0.26 to 0.36 across seasons for PM2.5; from 0.28 to 0.59 for BC; and from 0.15 to 0.26 for UFP. Median daily Fpex estimates ranged from 0.24 to 0.31 across seasons. Daily PM2.5 and UFP Finf and Fpex estimates were higher in summer than winter, although BC showed the opposite trend. Predictors of daily infiltration were typically related to window-opening behaviours, air conditioning, meteorological variables, and home age. In addition, use of electrostatic precipitators and stand alone air cleaners was associated with significantly reduced infiltration factors, indicating that these devices may provide a cost effective mechanism of reducing human exposures to particles of ambient origin. The majority of indoor PM2.5 (median 57-73%) and indoor BC (median 90-100%) was of ambient origin across seasons, while both personal PM2.5 and indoor UFPs had significant non-ambient contributions (median 60-65%). Factors that were found to increase non-ambient particle concentrations were typically related to cooking, candle use, supplemental heating, cleaning, and number of people in the home. Factors that were found to decrease non-ambient particle concentrations were open windows, and air cleaner use. This work has several implications to both epidemiologic studies and risk management. A better understanding of the factors influencing Finf and Fpex can improve exposure assessment and contribute to reduced exposure misclassification in epidemiologic studies. Furthermore, by increasing our knowledge of non-ambient and ambient exposures, risk associated with PM exposure can be managed more effectively.

  19. Geographic Variation in the Association between Ambient Fine Particulate Matter (PM2.5) and Term Low Birth Weight in the United States.

    PubMed

    Hao, Yongping; Strosnider, Heather; Balluz, Lina; Qualters, Judith R

    2016-02-01

    Studies on the association between prenatal exposure to fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) and term low birth weight (LBW) have resulted in inconsistent findings. Most studies were conducted in snapshots of small geographic areas and no national study exists. We investigated geographic variation in the associations between ambient PM2.5 during pregnancy and term LBW in the contiguous United States. A total of 3,389,450 term singleton births in 2002 (37-44 weeks gestational age and birth weight of 1,000-5,500 g) were linked to daily PM2.5 via imputed birth days. We generated average daily PM2.5 during the entire pregnancy and each trimester. Multi-level logistic regression models with county-level random effects were used to evaluate the associations between term LBW and PM2.5 during pregnancy. Without adjusting for covariates, the odds of term LBW increased 2% [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.03] for every 5-μg/m(3) increase in PM2.5 exposure during the second trimester only, which remained unchanged after adjusting for county-level poverty (OR = 1.02; 95% CI: 1.01, 1.04). The odds did change to null after adjusting for individual-level predictors (OR = 1.00; 95% CI: 0.99, 1.02). Multi-level analyses, stratified by census division, revealed significant positive associations of term LBW and PM2.5 exposure (during the entire pregnancy or a specific trimester) in three census divisions of the United States: Middle Atlantic, East North Central, and West North Central, and significant negative association in the Mountain division. Our study provided additional evidence on the associations between PM2.5 exposure during pregnancy and term LBW from a national perspective. The magnitude and direction of the estimated associations between PM2.5 exposure and term LBW varied by geographic locations in the United States.

  20. 77 FR 4510 - Air Quality Implementation Plans; Kentucky; Attainment Plan for the Kentucky Portion of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... and population based apportionment of the area and nonroad sectors to support the mobile source... and nitrogen oxides (NO X ) for the mobile source contribution to ambient PM 2.5 levels for the.... Attainment Date B. Insignificance Determination for the Mobile Source Contribution to PM 2.5 and NO X...

  1. Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol.

    EPA Science Inventory

    Communities along Utah’s Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime, persistent, multi-day stable atmospheric conditions or cold-air pools. Speciated PM2.5 data from the ...

  2. Associations among plasma metabolite levels and short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort.

    PubMed

    Breitner, Susanne; Schneider, Alexandra; Devlin, Robert B; Ward-Caviness, Cavin K; Diaz-Sanchez, David; Neas, Lucas M; Cascio, Wayne E; Peters, Annette; Hauser, Elizabeth R; Shah, Svati H; Kraus, William E

    2016-12-01

    Exposure to ambient particulate matter (PM) and ozone has been associated with cardiovascular disease (CVD). However, the mechanisms linking PM and ozone exposure to CVD remain poorly understood. This study explored associations between short-term exposures to PM with a diameter <2.5μm (PM 2.5 ) and ozone with plasma metabolite concentrations. We used cross-sectional data from a cardiac catheterization cohort at Duke University, North Carolina (NC), USA, accumulated between 2001 and 2007. Amino acids, acylcarnitines, ketones and total non-esterified fatty acid plasma concentrations were determined in fasting samples. Daily concentrations of PM 2.5 and ozone were obtained from a Bayesian space-time hierarchical model, matched to each patient's residential address. Ten metabolites were selected for the analysis based on quality criteria and cluster analysis. Associations between metabolites and PM 2.5 or ozone were analyzed using linear regression models adjusting for long-term trend and seasonality, calendar effects, meteorological parameters, and participant characteristics. We found delayed associations between PM 2.5 or ozone and changes in metabolite levels of the glycine-ornithine-arginine metabolic axis and incomplete fatty acid oxidation associated with mitochondrial dysfunction. The strongest association was seen for an increase of 8.1μg/m 3 in PM 2.5 with a lag of one day and decreased mean glycine concentrations (-2.5% [95% confidence interval: -3.8%; -1.2%]). Short-term exposures to ambient PM 2.5 and ozone is associated with changes in plasma concentrations of metabolites in a cohort of cardiac catheterization patients. Our findings might help to understand the link between air pollution and cardiovascular disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. ASSESSMENT OF HUMAN EXPOSURE TO AMBIENT PARTICULATE MATTER.

    EPA Science Inventory

    Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in mod...

  4. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  5. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies.

    PubMed

    Nhung, Nguyen Thi Trang; Amini, Heresh; Schindler, Christian; Kutlar Joss, Meltem; Dien, Tran Minh; Probst-Hensch, Nicole; Perez, Laura; Künzli, Nino

    2017-11-01

    Ambient air pollution has been associated with respiratory diseases in children. However, its effects on pediatric pneumonia have not been meta-analyzed. We conducted a systematic review and meta-analysis of the short-term association between ambient air pollution and hospitalization of children due to pneumonia. We searched the Web of Science and PubMed for indexed publications up to January 2017. Pollutant-specific excess risk percentage (ER%) and confidence intervals (CI) were estimated using random effect models for particulate matter (PM) with diameter ≤ 10 (PM 10 ) and ≤2.5 μm (PM 2.5 ), sulfur dioxide (SO 2 ), ozone (O 3 ), nitrogen dioxide (NO 2 ), and carbon monoxide (CO). Results were further stratified by subgroups (children under five, emergency visits versus hospital admissions, income level of study location, and exposure period). Seventeen studies were included in the meta-analysis. The ER% per 10 μg/m 3 increase of pollutants was 1.5% (95% CI: 0.6%-2.4%) for PM 10 and 1.8% (95% CI: 0.5%-3.1%) for PM 2.5 . The corresponding values per 10 ppb increment of gaseous pollutants were 2.9% (95% CI: 0.4%-5.3%) for SO 2 , 1.7% (95% CI: 0.5%-2.8%) for O 3 , and 1.4% (95% CI: 0.4%-2.4%) for NO 2 . ER% per 1000 ppb increment of CO was 0.9% (95% CI: 0.0%-1.9%). Associations were not substantially different between subgroups. This meta-analysis shows a positive association between daily levels of ambient air pollution markers and hospitalization of children due to pneumonia. However, lack of studies from low-and middle-income countries limits the quantitative generalizability given that susceptibilities to the adverse effects of air pollution may be different in those populations. The meta-regression in our analysis further demonstrated a strong effect of country income level on heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project.

    PubMed

    Andersen, Zorana J; Stafoggia, Massimo; Weinmayr, Gudrun; Pedersen, Marie; Galassi, Claudia; Jørgensen, Jeanette T; Oudin, Anna; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Aasvang, Gunn Marit; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Plusquin, Michelle; Key, Timothy J; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Fournier, Agnes; Boutron-Ruault, Marie-Christine; Baglietto, Laura; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2017-10-13

    Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM 2.5 , PM 10 , and PM coarse , respectively); PM 2.5 absorbance; nitrogen oxides (NO 2 and NO x ); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM 2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m 3 }, PM 10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m 3 ], PM coarse [1.20 (95% CI: 0.96, 1.49 per 5 μg/m 3 ], and NO 2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m 3 ], and a statistically significant association with NO x [1.04 (95% CI: 1.00, 1.08) per 20 μg/m 3 , p =0.04]. We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742.

  7. In Vitro Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Pathak, Rupak; Lu, Xiaoyan; Nzabarushimana, Etienne; Krager, Kimberly; Aykin-Burns, Nukhet; Hauer-Jensen, Martin; Demokritou, Philip; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including pulmonary and cardiovascular disease. Studies indicate that ambient PM originated from different sources may cause distinct biological effects. In this study, we sought to investigate the potential of various types of PM to cause epigenetic alterations in the in vitro system. RAW264.7 murine macrophages were exposed for 24 and 72 h to 5- and 50-μg/ml doses of the water soluble extract of 6 types of PM: soil dust, road dust, agricultural dust, traffic exhausts, biomass burning, and pollen, collected in January–April of 2014 in the area of Little Rock, Arkansas. Cytotoxicity, oxidative potential, epigenetic endpoints, and chromosomal aberrations were addressed. Exposure to 6 types of PM resulted in induction of cytotoxicity and oxidative stress in a type-, time-, and dose-dependent manner. Epigenetic alterations were characterized by type-, time-, and dose-dependent decreases of DNA methylation/demethylation machinery, increased DNA methyltransferases enzymatic activity and protein levels, and transcriptional activation and subsequent silencing of transposable elements LINE-1, SINE B1/B2. The most pronounced changes were observed after exposure to soil dust that were also characterized by hypomethylation and reactivation of satellite DNA and structural chromosomal aberrations in the exposed cells. The results of our study indicate that the water-soluble fractions of the various types of PM have differential potential to target the cellular epigenome. PMID:26342214

  8. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  9. A county-level estimate of PM2.5 related chronic mortality risk in China based on multi-model exposure data.

    PubMed

    Wang, Qing; Wang, Jiaonan; He, Mike Z; Kinney, Patrick L; Li, Tiantian

    2018-01-01

    Ambient fine particulate matter (PM 2.5 ) pollution is currently a serious environmental problem in China, but evidence of health effects with higher resolution and spatial coverage is insufficient. This study aims to provide a better overall understanding of long-term mortality effects of PM 2.5 pollution in China and a county-level spatial map for estimating PM 2.5 related premature deaths of the entire country. Using four sets of satellite-derived PM 2.5 concentration data and the integrated exposure-response model which has been employed by the Global Burden of Disease (GBD) to estimate global mortality of ambient and household air pollution in 2010, we estimated PM 2.5 related premature mortality for five endpoints across China in 2010. Premature deaths attributed to PM 2.5 nationwide amounted to 1.27million in total, and 119,167, 83,976, 390,266, 670,906 for adult chronic obstructive pulmonary disease, lung cancer, ischemic heart disease, and stroke, respectively; 3995 deaths for acute lower respiratory infections were estimated in children under the age of 5. About half of the premature deaths were from counties with annual average PM 2.5 concentrations above 63.61μg/m 3 , which cover 16.97% of the Chinese territory. These counties were largely located in the Beijing-Tianjin-Hebei region and the North China Plain. High population density and high pollution areas exhibited the highest health risks attributed to air pollution. On a per capita basis, the highest values were mostly located in heavily polluted industrial regions. PM 2.5 -attributable health risk is closely associated with high population density and high levels of pollution in China. Further estimates using long-term historical exposure data and concentration-response (C-R) relationships should be completed in the future to investigate longer-term trends in the effects of PM 2.5 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China.

    PubMed

    Qiu, Hang; Tan, Kun; Long, Feiyu; Wang, Liya; Yu, Haiyan; Deng, Ren; Long, Hu; Zhang, Yanlong; Pan, Jingping

    2018-03-11

    Evidence on the burden of chronic obstructive pulmonary disease (COPD) morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM) with aerodynamic diameter <10 μm (PM 10 ) and <2.5 μm (PM 2.5 ), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO) and ozone (O₃)) with risk of hospital admissions (HAs) for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM) with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM 2.5 , PM 10 and SO₂) and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years) and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19%) and 14.72% (95% CI: 10.38%, 19.06%) of COPD HAs were attributable to PM 2.5 and PM 10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO₂ on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  11. Ultrafine ambient particulate matter enhances cardiac ischemia and reperfusion injury

    EPA Science Inventory

    Epidemiological studies have demonstrated a consistent link between exposure to ambient particulate air pollutant (PM) and the incidence of cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of ambient PM. Mice were exposed to 1...

  12. 40 CFR 50.7 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.7 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary and...

  13. 40 CFR 50.13 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.13 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary...

  14. Identification of PM{sub 10} characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Den Heuvel, Rosette, E-mail: rosette.vandenheuvel@vito.be; Den Hond, Elly, E-mail: elly.denhond@wiv-isp.be; Govarts, Eva, E-mail: eva.govarts@vito.be

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM{sub 10} in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013–2014 PM{sub 10} was sampled (24 h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with differentmore » pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM{sub 10}, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM{sub 10} particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM{sub 10} (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM{sub 10} particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM{sub 10} characteristics and biological effects of PM{sub 10} were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM{sub 10} induced biological effects differ due to differences in PM{sub 10} characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses. - Highlights: • On an equal mass basis, PM{sub 10} sampled at an urban, rural and industrial site induced different cellular effects in Beas-2B. • Endotoxin levels and oxidative potential (OP) were analysed in the PM{sub 10} samples. • Black carbon, cadmium and lead were correlated with decreased cell viability. • Endotoxin levels explained the majority of the variance in il-8 induction. • Oxidatively damaged DNA was observed in all the samples.« less

  15. Personal Exposure to Particulate Matter and Endotoxin in California Dairy Workers

    NASA Astrophysics Data System (ADS)

    Garcia, Johnny

    The average number of cows per dairy has increased over the last thirty years, with little known about how this increase may impact occupational exposure. Thirteen California dairies and 226 workers participated in this study throughout the 2008 summer months. Particulate Matter (PM) and endotoxin concentrations were quantified using ambient area based and personal air samplers. Two size fractions were collected, Total Suspended Particulate matter (TSP) and PM 2.5. Differences across dairies were evaluated by placing area based integrated air samplers in established locations on the dairies, e.g. milking parlor, drylot corral, and freestall barns. The workers occupational exposure was quantified using personal air samplers. We analyzed concentrations along with the time workers spent conducting specific job tasks during their shift to identify high exposure job tasks. Biological and chemical analytical methods were employed to ascertain endotoxin concentrations in personal and area based air samples. Recombinant factor C assays (rFC) were used to analyze biologically active endotoxin and gas chromatography coupled with mass spectrometry in tandem (GC-MS/MS) was used to quantify total endotoxin. The PM2.5 concentrations ranged from 2-116 mug/m3 for ambient area concentration and 7-495 mug/m3 for personal concentrations while TSP concentrations ranged from 74-1690 mug/m3 for area ambient concentrations and 191-4950 mug/m3 for personal concentrations. Biologically active endotoxin concentrations in the TSP size fraction from ambient area based samples ranged from 11-2095 EU/m3 and 45-2061 EU/m3 for personal samples. Total endotoxin in the TSP size fraction ranged from 75-10,166 pmol/m3 for area based samples and 34-11,689 pmol/m3 for personal samples. Drylot corrals were found to have higher sample mean concentrations when compared to other locations on the dairies for PM and endotoxin. Re-bedding, of the freestalls, was found to consistently lead to higher personal sample mean concentrations when compared to other tasks performed on dairies for both endotoxin and PM. In mixed effect regression models, regional ambient concentrations of PM 2.5 helped account for variation in PM2.5 concentration outcomes. We found that while upwind and downwind mean concentrations were not significantly different, central mean concentrations were higher than upwind concentration. Variation in TSP levels was largely explained by dairy-level characteristics such as the age of the dairy and number of animals in the drylot corrals and freestall barns. The different locations within the dairy were found to differ in mean concentrations for TSP. Biologically active and total endotoxin concentration variation was explained by meteorological data, wind speed, relative humidity, and dairy waste management practices. Personal exposure levels where found to be higher than area based concentrations for PM and endotoxin. Endotoxin characteristics differed by particle size and location within the dairy. The chain length proportion for endotoxin in the PM 2.5 size fraction was dominated by C12 and C16 in the TSP size fraction.

  16. Burden of Outdoor Air Pollution in Kerala, India—A First Health Risk Assessment at State Level

    PubMed Central

    Tobollik, Myriam; Razum, Oliver; Wintermeyer, Dirk; Plass, Dietrich

    2015-01-01

    Ambient air pollution causes a considerable disease burden, particularly in South Asia. The objective of the study is to test the feasibility of applying the environmental burden of disease method at state level in India and to quantify a first set of disease burden estimates due to ambient air pollution in Kerala. Particulate Matter (PM) was used as an indicator for ambient air pollution. The disease burden was quantified in Years of Life Lost (YLL) for the population (30 + years) living in urban areas of Kerala. Scenario analyses were performed to account for uncertainties in the input parameters. 6108 (confidence interval (95% CI): 4150–7791) of 81,636 total natural deaths can be attributed to PM, resulting in 96,359 (95% CI: 65,479–122,917) YLLs due to premature mortality (base case scenario, average for 2008–2011). Depending on the underlying assumptions the results vary between 69,582 and 377,195 YLLs. Around half of the total burden is related to cardiovascular deaths. Scenario analyses show that a decrease of 10% in PM concentrations would save 15,904 (95% CI: 11,090–19,806) life years. The results can be used to raise awareness about air quality standards at a local level and to support decision-making processes aiming at cleaner and healthier environments. PMID:26343701

  17. Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India.

    PubMed

    Conibear, Luke; Butt, Edward W; Knote, Christoph; Arnold, Stephen R; Spracklen, Dominick V

    2018-02-12

    Exposure to ambient fine particulate matter (PM 2.5 ) is a leading contributor to diseases in India. Previous studies analysing emission source attributions were restricted by coarse model resolution and limited PM 2.5 observations. We use a regional model informed by new observations to make the first high-resolution study of the sector-specific disease burden from ambient PM 2.5 exposure in India. Observed annual mean PM 2.5 concentrations exceed 100 μg m -3 and are well simulated by the model. We calculate that the emissions from residential energy use dominate (52%) population-weighted annual mean PM 2.5 concentrations, and are attributed to 511,000 (95UI: 340,000-697,000) premature mortalities annually. However, removing residential energy use emissions would avert only 256,000 (95UI: 162,000-340,000), due to the non-linear exposure-response relationship causing health effects to saturate at high PM 2.5 concentrations. Consequently, large reductions in emissions will be required to reduce the health burden from ambient PM 2.5 exposure in India.

  18. EFFECT OF OZONE ON DIESEL EXHAUST PARTICLE TOXICITY

    EPA Science Inventory

    Ambient particulate matter (PM) concentrations have been associated with mortality and morbidity. Diesel exhaust particles (DEP) are present in ambient urban air PM. Coexisting with DEP (and PM) is ozone (O(3)), which has the potential to react with some components of DEP. Some r...

  19. Comparison of Highly Resolved Model-Based Exposure ...

    EPA Pesticide Factsheets

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low co

  20. Association between ambient air pollution and proliferation of umbilical cord blood cells.

    PubMed

    Novack, L; Yitshak-Sade, M; Landau, D; Kloog, I; Sarov, B; Karakis, I

    2016-11-01

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012-March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM 2.5 (particles<2.5µm in diameter) and PM 10 (particles<10µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O 3 ) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM 2.5 one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM 2.5 levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM 10 levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. Copyright © 2016. Published by Elsevier Inc.

  1. Use of visual range measurements to predict fine particulate matter exposures in Southwest Asia and Afghanistan.

    PubMed

    Masri, Shahir; Garshick, Eric; Hart, Jaime; Bouhamra, Walid; Koutrakis, Petros

    2017-01-01

    Military personnel deployed to Southwest Asia and Afghanistan were exposed to high levels of ambient particulate matter (PM). However, quantitative ambient exposure data for conducting health studies are limited due to a lack of PM monitoring stations. Since visual range (VR) is proportional to particle light extinction, VR can serve as a surrogate for PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) concentrations. We used data on VR, relative humidity (RH), and PM 2.5 ground measurements collected in Kuwait from years 2004-2005 to establish the relationship between PM 2.5 and VR. Model validation obtained by regressing trimester average PM 2.5 predictions against PM 2.5 measurements in Kuwait produced an r 2 value of 0.84. Cross validation of urban and rural sites in Kuwait also revealed good model fit. We applied this relationship to location-specific visibility data at 104 regional sites between years 2000-2012 to estimate monthly average PM 2.5 concentrations. Monthly averages at sites in Iraq, Afghanistan, United Arab Emirates, Kuwait, Djibouti, and Qatar ranged from 10 to 365 µg/m3 during this period, while site averages ranged from 22 to 80 µg/m3, indicating considerable spatial and temporal heterogeneity in ambient PM 2.5 across these regions. These data support the use of historical visibility data to estimate location-specific PM 2.5 concentrations for application in epidemiological studies. This study demonstrates the ability to use airport visibility to estimate PM 2.5 concentrations in Southwest Asian and Afghanistan. This supports the use of historical and ongoing visibility data to estimate PM 2.5 exposure in this region of the world, where PM exposure information is otherwise scarce. This is of high utility to epidemiologists investigating the relationship between chronic exposure to PM 2.5 and respiratory diseases among deployed military personnel stationed at various military bases throughout the region. Such information will enable the drafting of improved policies relating to military health.

  2. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China

    PubMed Central

    Kan, Haidong; London, Stephanie J.; Chen, Guohai; Zhang, Yunhui; Song, Guixiang; Zhao, Naiqing; Jiang, Lili; Chen, Bingheng

    2007-01-01

    The findings on health effects of ambient fine particles (PM2.5) and coarse particles (PM10-2.5) remain inconsistent. In China, PM2.5 and PM10-2.5 are not the criteria air pollutants, and their monitoring data are scarce. There have been no epidemiological studies of health effects of PM2.5 and PM10-2.5 simultaneously in China. We conducted a time series study to examine the acute effects of PM2.5 and PM10-2.5 on daily mortality in Shanghai, China from Mar. 4, 2004 to Dec. 31, 2005. We used the generalized additive model (GAM) with penalized splines to analyze the mortality, air pollution and covariate data. The average concentrations of PM2.5 and PM10-2.5 were 56.4µg/m3 and 52.3µg/m3 in our study period, and PM2.5 constituted around 53.0% of the PM10 mass. Compared with the Global Air Quality Guidelines set by World Health Organization (10µg/m3 for annual mean) and U.S. National Ambient Air Quality Standards (15µg/m3 for annual mean), the PM2.5 level in Shanghai was much higher. We found that PM2.5 was associated with the death rates from all causes and from cardio-respiratory diseases in Shanghai. We did not find a significant effect of PM10-2.5 on mortality outcomes. A10µg/m3 increase in the 2-day moving average (lag01) concentration of PM2.5 corresponded to 0.36% (95%CI 0.11%, 0.61%), 0.41% (95% CI 0.01%, 0.82%) and 0.95% (95% CI 0.16%, 1.73%) increase of total, cardiovascular and respiratory mortality. For PM10-2.5, the effects were attenuated and less precise. Our analyses provide the first statistically significant evidence in China that PM2.5 has an adverse effect on population health and strengthen the rationale for further limiting levels of PM2.5 in outdoor air in Shanghai. PMID:17229464

  3. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China.

    PubMed

    Xu, Meimei; Guo, Yuming; Zhang, Yajuan; Westerdahl, Dane; Mo, Yunzheng; Liang, Fengchao; Pan, Xiaochuan

    2014-12-12

    Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal analysis approach. We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during 2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287 township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the effects of averaged PM10 concentration as well. The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3. Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95% confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger response to PM10 exposure. Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.

  4. INTERPOLATING VANCOUVER'S DAILY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we develop a spatial predictive distribution for the ambient space- time response field of daily ambient PM10 in Vancouver, Canada. Observed responses have a consistent temporal pattern from one monitoring site to the next. We exploit this feature of the field b...

  5. The effects of ambient particulate matter on human alveolar machrophage oxidative and inflammatory responses

    EPA Science Inventory

    Epidemiologic and occupational studies demonstrate that ambient PM and DEP have deleterious effects on human cardiopulmonary health including exacerbation of pre-existing lung disease and development of respiratory infections. The effects of ambient PM on lung cell responsivenes...

  6. RADIOCARBON ANALYSIS OF PM 2.5 AMBIENT AEROSOL

    EPA Science Inventory

    The radiocarbon (14C) content of an ambient aerosol sample can be directly related to the fraction of the sample's total carbon mass contributed by natural (biogenic) sources. Such knowledge is difficult to determine by other means, and important for devising ambient PM contro...

  7. Variation in characteristics of ambient particulate matter at eight locations in the Netherlands - The RAPTES project

    NASA Astrophysics Data System (ADS)

    Strak, Maciej; Steenhof, Maaike; Godri, Krystal J.; Gosens, Ilse; Mudway, Ian S.; Cassee, Flemming R.; Lebret, Erik; Brunekreef, Bert; Kelly, Frank J.; Harrison, Roy M.; Hoek, Gerard; Janssen, Nicole A. H.

    2011-08-01

    Numerous epidemiological studies have shown health effects related to short- and long-term exposure to elevated levels of ambient particulate matter (PM). It is not clear however which specific characteristics (e.g., size, components) or sources of PM are responsible for the observed effects. The aim of RAPTES (Risk of Airborne Particles: a Toxicological-Epidemiological hybrid Study) was to investigate which specific physical, chemical or oxidative characteristics of ambient PM are associated with adverse effects of PM on health. This was done by performing experimental exposure of human volunteers to air pollution at several real-world settings that had high contrast and low correlation between several PM characteristics. For this goal, eight sites in the Netherlands that differed in local PM emission sources were chosen for extensive air pollution characterization. Measurement sites included an underground train station, three different road traffic sites, an animal farm, a sea harbor, a site located in the vicinity of steelworks, and an urban background site. Five- to six-hours average concentration measurements at each site were made between June 2007 and October 2009. We measured PM 10, PM 2.5, particle number concentration (PNC), oxidative potential of PM, absorbance, endotoxin content, as well as elemental and chemical composition of PM, and gaseous pollutants concentrations. This paper presents a detailed characterization of particulate air pollution at the sampling sites. We found significant differences in all PM characteristics between the sites. The underground train station, compared to each outdoor location, had substantially higher concentrations of nearly all PM characteristics. The average PM 10 and PM 2.5 mass concentrations at the underground train station were 394 μg m -3 and 137 μg m -3, respectively, which was 14.1 and 7.6 times higher than the urban background. The sum of the concentrations of trace metals in fine and coarse PM was nearly 20 times above the outdoor levels. Elemental carbon (EC) was elevated at the underground site in the fine but also in the coarse mode, in contrast to the traffic sites where EC was predominantly found in fine PM. The highest concentrations and contrasts in PNC were at the traffic sites (between 45,000 and 80,000 particles cm -3), which was several times higher than measured at any other site. Correlations of PNC with metals, PM 10, PM 2.5 and absorbance were low to moderate, while correlations between PM 10, PM 2.5 and the metals Cu and Fe were high. After excluding the underground train station data, correlations between PM10, EC and metals decreased whereas the correlation between PNC and EC increased. We conclude that we were able to successfully identify and characterize real-world situations with very different particle characteristics. High contrast and low correlations between PM characteristics, as well as consistency of these differences across sampling campaigns, provide a good basis for identifying health relevant PM characteristics in the upcoming analysis.

  8. Health and respirable particulate (PM10) air pollution: a causal or statistical association?

    PubMed Central

    Gamble, J F; Lewis, R J

    1996-01-01

    Numerous studies have reported weak but statistically significant acute health effects of particulate air pollution. The associations are observed at levels below the current U.S. standard of 150 micrograms/m3 (24 hr). Health effects include acute increased mortality from cardiopulmonary conditions and acute morbidity such as hospital admissions for related diseases. We reviewed recent epidemiology studies to evaluate whether criteria for causality are met, and we conclude that they are not. The weak associations are as likely to be due to confounding by weather, copollutants, or exposure misclassification as by ambient particulate matter (PM). The results from the same metropolitan areas are inconsistent, and PM explains such a small amount of the variability in mortality/morbidity that the association has little practical significance. Finally, experimental chamber studies of susceptible individuals exposed to PM concentrations well above 150 micrograms/m3 provide no evidence to support the morbidity/mortality findings. None of the criteria for establishing causality of the PM/mortality hypothesis are clearly met at ambient concentrations common in many U.S. cities. Images p838-a Figure 1. PMID:8875158

  9. EXPOSURE RELATIONSHIP OF PERSONAL EXPOSURE OF HIGH-RISK SUBPOPULATIONS TO AMBIENT CONCENTRATIONS OF FINE PARTICLES.

    EPA Science Inventory

    An association has been demonstrated between ambient particulate matter (PM 2.5 and PM 10) concentrations and human morbidity/mortality. However, little is known regarding the most important sources of PM exposure, interpersonal and intrapersonal variability in exposure, and the...

  10. LIVE CELL IMAGING OF THE OXIDATIVE EFFECTS OF EXPOSURE TO AN ORGANIC PM COMPONENT

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor of the fine and ultrafine PM burden in ambient air. Toxicological stud...

  11. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution.

    PubMed

    Ouyang, Yuhui; Xu, Zhaojun; Fan, Erzhong; Li, Ying; Miyake, Kunio; Xu, Xianyan; Zhang, Luo

    2018-04-20

    Particulate matter (PM) air pollution has been associated with an increase in the incidence of chronic allergic diseases; however, the mechanisms underlying the effect of exposure to natural ambient air pollution in chronic allergic diseases have not been fully elucidated. In the present study, we aimed to investigate the cellular responses induced by exposure to natural ambient air pollution, employing a mouse model of chronic allergy. The results indicated that exposure to ambient air pollution significantly increased the number of eosinophils in the nasal mucosa. The modulation of gene expression profile identified a set of regulated genes, and the Triggering Receptor Expressed on Myeloid cells1(TREM1) signaling canonical pathway was increased after exposure to ambient air pollution. In vitro, PM2.5 increased Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) and nuclear factor (NF)-κB signaling pathway activation in A549 and HEK293 cell cultures. These results suggest a novel mechanism by which, PM2.5 in ambient air pollution may stimulate the innate immune system through the PM2.5-Nod1-NF-κB axis in chronic allergic disease.

  12. Exposure to ambient PM2.5 concentrations and cognitive function among older Mexican adults.

    PubMed

    Salinas-Rodríguez, Aarón; Fernández-Niño, Julián Alfredo; Manrique-Espinoza, Betty; Moreno-Banda, Grea Litai; Sosa-Ortiz, Ana Luisa; Qian, Zhengmin Min; Lin, Hualiang

    2018-04-25

    Recent epidemiological research has shown that exposure to fine particulate pollution (PM 2.5 ) is associated with a reduction in cognitive function in older adults. However, primary evidence comes from high-income countries, and no specific studies have been conducted in low and middle-income countries where higher air pollution levels exist. To estimate the association between the exposure to PM 2.5 and cognitive function in a nationally representative sample of older Mexican adults and the associated effect modifiers. Data for this study were taken from the National Survey of Health and Nutrition in Mexico carried out in 2012. A total of 7986 older adults composed the analytical sample. Cognitive function was assessed using two tests: semantic verbal fluency and three-word memory. The annual concentration of PM 2.5 was calculated using satellite data. Association between exposure to PM 2.5 and cognitive function was estimated using two-level logistic and linear regression models. In adjusted multilevel regression models, each 10 μg/m 3 increase in ambient PM 2.5 raised the odds of a poorer cognitive function using the three-word memory test (OR = 1.37, 95% CI: 1.08, 1.74), and reduced the number of valid animal named in the verbal fluency test (β = -0.72, 95% CI: -1.05, -0.40). Stratified analyses did not yield any significant modification effects of age, sex, indoor pollution, urban/rural dwelling, education, smoking and other factors. This study supports an association between exposure to PM 2.5 concentrations and cognitive function in older adults. This is particularly relevant to low- and middle-income countries, which are marked by a rapid growth of their aging population and high levels of air pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. 'Enter at your own risk': a multimethod study of air quality and biological measures in Canadian waterpipe cafes.

    PubMed

    Zhang, Bo; Haji, Farzana; Kaufman, Pamela; Muir, Sarah; Ferrence, Roberta

    2015-03-01

    Tobacco and non-tobacco-based waterpipe smoking has increased exponentially in many countries in recent decades, particularly among youth and young adults. Although tobacco smoking is banned in many indoor public places, waterpipe smoking, ostensibly non-tobacco, continues in Ontario and other jurisdictions where only tobacco smoking is prohibited. This study assessed air quality and exposure in waterpipe cafes using multiple methods and markers. Indoor (n=12) and outdoor (n=5) air quality was assessed in Toronto, Canada waterpipe cafes from 30 August to 11 October 2012. Real-time measurements of air nicotine, fine particulate matter less than 2.5 microns in diameter (PM2.5) and ambient carbon monoxide (CO) were collected in 2 h sessions. Levels of CO in breath were collected in non-smoking field staff before entering and upon leaving venues. Observations of occupant behaviour, environmental changes and venue characteristics were also recorded. In indoor venues, mean values were 1419 µg/m(3) for PM2.5, 17.7 ppm for ambient CO, and 3.3 µg/m(3) for air nicotine. Levels increased with increasing number of active waterpipes. On outdoor patios, mean values were 80.5 µg/m(3) for PM2.5, 0.5 ppm for ambient CO, and 0.6 µg/m(3) for air nicotine. Air quality levels in indoor waterpipe cafes are hazardous for human health. Outdoor waterpipe cafes showed less harmful particulate levels than indoors, but mean PM2.5 levels (80.5 µg/m(3)) were still 'poor'. Staff and patrons of waterpipe cafes are exposed to air quality levels considered hazardous to human health. Results support eliminating waterpipe smoking in hospitality venues indoors and out. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Nitrogen Dioxide and Allergic Sensitization in the 2005–2006 National Health and Nutrition Examination Survey

    PubMed Central

    Weir, Charles H.; Yeatts, Karin B.; Sarnat, Jeremy A.; Vizuete, William; Salo, Päivi M.; Jaramillo, Renee; Cohn, Richard D.; Chu, Haitao; Zeldin, Darryl C.; London, Stephanie J.

    2014-01-01

    Background Allergic sensitization is a risk factor for asthma and allergic diseases. The relationship between ambient air pollution and allergic sensitization is unclear. Objective To investigate the relationship between ambient air pollution and allergic sensitization in a nationally representative sample of the US population. Methods We linked annual average concentrations of nitrogen dioxide (NO2), particulate matter ≤ 10 µm (PM10), particulate matter ≤ 2.5 µm (PM25), and summer concentrations of ozone (O3), to allergen-specific immunoglobulin E (IgE) data for participants in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). In addition to the monitor-based air pollution estimates, we used the Community Multiscale Air Quality (CMAQ) model to increase the representation of rural participants in our sample. Logistic regression with population-based sampling weights was used to calculate adjusted prevalence odds ratios per 10 ppb increase in O3 and NO2, per 10 µg/m3 increase in PM10, and per 5 µg/m3 increase in PM2.5 adjusting for race, gender, age, socioeconomic status, smoking, and urban/rural status. Results Using CMAQ data, increased levels of NO2 were associated with positive IgE to any (OR 1.15, 95% CI 1.04, 1.27), inhalant (OR 1.17, 95% CI 1.02, 1.33), and outdoor (OR 1.16, 95% CI 1.03, 1.31) allergens. Higher PM2.5 levels were associated with positivity to indoor allergen-specific IgE (OR 1.24, 95% CI 1.13, 1.36). Effect estimates were similar using monitored data. Conclusions Increased ambient NO2 was consistently associated with increased prevalence of allergic sensitization. PMID:24045117

  15. Comparison of source apportionment of PM2.5 using receptor models in the main hub port city of East Asia: Busan

    NASA Astrophysics Data System (ADS)

    Jeong, Ju-Hee; Shon, Zang-Ho; Kang, Minsung; Song, Sang-Keun; Kim, Yoo-Keun; Park, Jinsoo; Kim, Hyunjae

    2017-01-01

    The contributions of various PM2.5 emission sources to ambient PM2.5 levels during 2013 in the main hub port city (Busan, South Korea) of East Asia was quantified using several receptor modeling techniques. Three receptor models of principal component analysis/absolute principal component score (PCA/APCS), positive matrix factorization (PMF), and chemical mass balance (CMB) were used to apportion the source of PM2.5 obtained from the target city. The results of the receptor models indicated that the secondary formation of PM2.5 was the dominant (45-60%) contributor to PM2.5 levels in the port city of Busan. The PMF and PCA/APCS suggested that ship emission was a non-negligible contributor of PM2.5 (up to about 10%) in the study area, whereas it was a negligible contributor based on CMB. The magnitude of source contribution estimates to PM2.5 levels differed significantly among these three models due to their limitations (e.g., PM2.5 emission source profiles and restrictions of the models). Potential source contribution function and concentration-weighted trajectory analyses indicated that long-range transport from sources in the eastern China and Yellow Sea contributed significantly to the level of PM2.5 in Busan.

  16. PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations

    NASA Astrophysics Data System (ADS)

    Viana, M.; Querol, X.; Alastuey, A.; Gangoiti, G.; Menéndez, M.

    Levels of PM observed at the air quality network from the Basque Country in 1996-2000 ranged from 16 μg PM 10/m 3 at regional background sites, to 35-40 μg TSP/m 3 (equivalent to 25-30 μg PM 10/m 3) at urban background sites, to 40-48 μg TSP/m 3 (30-40 μg PM 10/m 3) at roadside sites; to 50-64 μg TSP/m 3 (35-50 μg PM 10/m 3) at industrial and heavy traffic sites. The EU daily and annual PM 10 limit values for 2005 are not equivalent for the Basque Country, and consequently only the mean 1996-2000 PM levels from one station would exceed the 2005 annual limit value but most of them surpass n=35 exceedances of the daily limit value. The equivalent n to the 2005 annual limit value is around 80. Four major processes exert an influence on PM levels throughout the Basque territory: local and regional anthropogenic contributions, precipitation, African dust and European transport. PM at Llodio (an urban background site under industrial influence and mean PM 10, PM 2.5 and PM 1 levels for 2001 of 34, 25 and 21 μg/m 3) is mainly distributed in the fine mode: 74% of PM 10 is constituted by PM 2.5, and 64% of PM 2.5 presents a diameter <1 μm. The particle size distribution of PM varies seasonally with the fine fractions prevailing in summer (PM 2.5/PM 10=80-90%) and the coarser increasing in winter (PM 2.5/PM 10=60-70%). Meso- and synoptic scale processes affecting global PM levels in the Basque Country have been identified (mainly pollution episodes, African, Atlantic and EU transport). The results obtained allowed us to evaluate the impact of the different types of PM episodes on ambient PM levels and particle size fractions.

  17. Exposure To An Organic PM Component Induces Inflammatory And Adaptive Gene Expression Through Mitochondrial Oxidative Stress

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor to the fine and ultrafine PM burden in ambient air. Toxicological studi...

  18. Cellular oxidative response from exposure to size-resolved ambient particulate matter

    EPA Science Inventory

    Recent studies suggest that particulate matter (PM) derived from different sources may differ in toxicity. The goal of this study was to characterize the in vitro effects of ambient PM and PM components from eight different locations in the U.S. and to investigate the effects of ...

  19. Source apportionment and a novel approach of estimating regional contributions to ambient PM2.5 in Haikou, China.

    PubMed

    Liu, Baoshuang; Li, Tingkun; Yang, Jiamei; Wu, Jianhui; Wang, Jiao; Gao, Jixin; Bi, Xiaohui; Feng, Yinchang; Zhang, Yufen; Yang, Haihang

    2017-04-01

    A novel approach was developed to estimate regional contributions to ambient PM 2.5 in Haikou, China. In this paper, the investigation was divided into two main steps. The first step: analysing the characteristics of the chemical compositions of ambient PM 2.5 , as well as the source profiles, and then conducting source apportionments by using the CMB and CMB-Iteration models. The second step: the development of estimation approaches for regional contributions in terms of local features of Haikou and the results of source apportionment, and estimating regional contributions to ambient PM 2.5 in Haikou by this new approach. The results indicate that secondary sulphate, resuspended dust and vehicle exhaust were the major sources of ambient PM 2.5 in Haikou, contributing 9.9-21.4%, 10.1-19.0% and 10.5-20.2%, respectively. Regional contributions to ambient PM 2.5 in Haikou in spring, autumn and winter were 22.5%, 11.6% and 32.5%, respectively. The regional contribution in summer was assumed to be zero according to the better atmospheric quality and assumptions of this new estimation approach. The higher regional contribution in winter might be mainly attributable to the transport of polluted air originating in mainland China, especially from the north, where coal is burned for heating in winter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Particulate air pollution and health inequalities: a Europe-wide ecological analysis.

    PubMed

    Richardson, Elizabeth A; Pearce, Jamie; Tunstall, Helena; Mitchell, Richard; Shortt, Niamh K

    2013-07-16

    Environmental disparities may underlie the unequal distribution of health across socioeconomic groups. However, this assertion has not been tested across a range of countries: an important knowledge gap for a transboundary health issue such as air pollution. We consider whether populations of low-income European regions were a) exposed to disproportionately high levels of particulate air pollution (PM10) and/or b) disproportionately susceptible to pollution-related mortality effects. Europe-wide gridded PM10 and population distribution data were used to calculate population-weighted average PM10 concentrations for 268 sub-national regions (NUTS level 2 regions) for the period 2004-2008. The data were mapped, and patterning by mean household income was assessed statistically. Ordinary least squares regression was used to model the association between PM10 and cause-specific mortality, after adjusting for regional-level household income and smoking rates. Air quality improved for most regions between 2004 and 2008, although large differences between Eastern and Western regions persisted. Across Europe, PM10 was correlated with low household income but this association primarily reflected East-West inequalities and was not found when Eastern or Western Europe regions were considered separately. Notably, some of the most polluted regions in Western Europe were also among the richest. PM10 was more strongly associated with plausibly-related mortality outcomes in Eastern than Western Europe, presumably because of higher ambient concentrations. Populations of lower-income regions appeared more susceptible to the effects of PM10, but only for circulatory disease mortality in Eastern Europe and male respiratory mortality in Western Europe. Income-related inequalities in exposure to ambient PM10 may contribute to Europe-wide mortality inequalities, and to those in Eastern but not Western European regions. We found some evidence that lower-income regions were more susceptible to the health effects of PM10.

  1. Particulate air pollution and health inequalities: a Europe-wide ecological analysis

    PubMed Central

    2013-01-01

    Background Environmental disparities may underlie the unequal distribution of health across socioeconomic groups. However, this assertion has not been tested across a range of countries: an important knowledge gap for a transboundary health issue such as air pollution. We consider whether populations of low-income European regions were a) exposed to disproportionately high levels of particulate air pollution (PM10) and/or b) disproportionately susceptible to pollution-related mortality effects. Methods Europe-wide gridded PM10 and population distribution data were used to calculate population-weighted average PM10 concentrations for 268 sub-national regions (NUTS level 2 regions) for the period 2004–2008. The data were mapped, and patterning by mean household income was assessed statistically. Ordinary least squares regression was used to model the association between PM10 and cause-specific mortality, after adjusting for regional-level household income and smoking rates. Results Air quality improved for most regions between 2004 and 2008, although large differences between Eastern and Western regions persisted. Across Europe, PM10 was correlated with low household income but this association primarily reflected East–West inequalities and was not found when Eastern or Western Europe regions were considered separately. Notably, some of the most polluted regions in Western Europe were also among the richest. PM10 was more strongly associated with plausibly-related mortality outcomes in Eastern than Western Europe, presumably because of higher ambient concentrations. Populations of lower-income regions appeared more susceptible to the effects of PM10, but only for circulatory disease mortality in Eastern Europe and male respiratory mortality in Western Europe. Conclusions Income-related inequalities in exposure to ambient PM10 may contribute to Europe-wide mortality inequalities, and to those in Eastern but not Western European regions. We found some evidence that lower-income regions were more susceptible to the health effects of PM10. PMID:23866049

  2. Assessment of Particulate Matter Levels in Vulnerable Communities in North Charleston, South Carolina prior to Port Expansion

    PubMed Central

    Svendsen, Erik R; Reynolds, Scott; Ogunsakin, Olalekan A; Williams, Edith M; Fraser-Rahim, Herb; Zhang, Hongmei; Wilson, Sacoby M

    2014-01-01

    INTRODUCTION The Port of Charleston, one of the busiest US ports, currently operates five terminals. The fifth terminal is being planned for expansion to accommodate container ships from the proposed Panama Canal expansion. Such expansion is expected to increase traffic within local vulnerable North Charleston neck communities by at least 7,000 diesel truck trips per day, more than a 70% increase from the present average rate of 10,000 trucks per day. Our objective was to measure the current particulate matter (PM) concentrations in North Charleston communities as a baseline to contrast against future air pollution after the proposed port expansion. METHODS Saturation study was performed to determine spatial variability of PM in local Charleston neck communities. In addition, the temporal trends in particulate air pollution within the region were determined across several decades. With the BGI sampler, PM samples were collected for 24 hours comparable to the federal reference method protocol. Gravimetric analysis of the PM filter samples was conducted following EPA protocol. RESULTS The range of the PM10 annual average across the region from 1982 to 2006 was 17.0–55.0 μg/m3. On only two occasions were the records of PM10 averaged above the 50.0 μg/m3 national standard. In the case of PM2.5, the annual average for 1999–2006 ranged from 11.0 to 13.5 μg/m3 and no annual average exceeded the 15.0 μg/m3 PM2.5 annual standard. CONCLUSIONS Although ambient PM levels have fallen in the Charleston region since the 1960s due to aggressive monitoring by the stakeholders against air pollution, local air pollution sources within the North Charleston neck communities have consistently contributed to the PM levels in the region for several decades. This baseline assessment of ambient PM will allow for comparisons with future assessments to ascertain the impact of the increased truck and port traffic on PM concentrations. PMID:24653648

  3. Mortality burden of ambient fine particulate air pollution in six Chinese cities: Results from the Pearl River Delta study.

    PubMed

    Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Guo, Lingchuan; Zhang, Yonghui; Xu, Yanjun; Tao, Jun; Xian, Hong; Syberg, Kevin M; Qian, Zhengmin Min; Ma, Wenjun

    2016-11-01

    Epidemiological studies have reported significant association between ambient fine particulate matter air pollution (PM 2.5 ) and mortality, however, few studies have investigated the relationship of mortality with PM 2.5 and associated mortality burden in China, especially in a multicity setting. We investigated the PM 2.5 -mortality association in six cities of the Pearl River Delta region from 2013 to 2015. We used generalized additive Poisson models incorporating penalized smoothing splines to control for temporal trend, temperature, and relative humidity. We applied meta-analyses using random-effects models to pool the effect estimates in the six cities. We also examined these associations in stratified analyses by sex, age group, education level and location of death. We further estimated the mortality burden (attributable fraction and attributable mortality) due to ambient PM 2.5 exposures. During the study period, a total of 316,305 deaths were recorded in the study area. The analysis revealed a significant association between PM 2.5 and mortality. Specifically, a 10μg/m 3 increase in 4-day averaged (lag 03 ) PM 2.5 concentration corresponded to a 1.76% (95% confidence interval (CI): 1.47%, 2.06%) increase in total mortality, 2.19% (95% CI: 1.80%, 2.59%) in cardiovascular mortality, and 1.68% (95% CI: 1.00%, 2.37%) in respiratory mortality. The results were generally robust to model specifications and adjustment of gaseous air pollutants. We estimated that 0.56% (95% CI: 0.47%, 0.66%) and 3.79% (95% CI: 3.14%, 4.45%) of all-cause mortalities were attributable to PM 2.5 using China's and WHO's air quality standards as the reference, corresponding to 1661 (95% CI: 1379, 1946) and 11,176 (95% CI: 9261, 13,120) attributable premature mortalities, respectively. This analysis adds to the growing body of evidence linking PM 2.5 with daily mortality, and mortality burdens, particularly in one Chinese region with high levels of air pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B).

    PubMed

    Van Den Heuvel, Rosette; Den Hond, Elly; Govarts, Eva; Colles, Ann; Koppen, Gudrun; Staelens, Jeroen; Mampaey, Maja; Janssen, Nicole; Schoeters, Greet

    2016-08-01

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM10 induced biological effects differ due to differences in PM10 characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro

    NASA Astrophysics Data System (ADS)

    Kam, Winnie; Cheung, Kalam; Daher, Nancy; Sioutas, Constantinos

    2011-03-01

    Elevated concentrations of particulate matter (PM) have been found in a number of worldwide underground transit systems, with major implications regarding exposure of commuters to PM and its associated health effects. An extensive sampling campaign was conducted in May-August 2010 to measure PM concentrations in two lines of the Los Angeles Metro system - an underground subway line (Metro red line) and a ground-level light-rail line (Metro gold line). The campaign goals were to: 1) determine personal PM exposure of commuters of both lines, and 2) measure and compare PM concentrations at station platforms and inside the train. Considering that a commuter typically spent 75% of time inside the train and 25% of time waiting at a station, subway commuters were exposed on average to PM 10 and PM 2.5 concentrations that were 1.9 and 1.8 times greater than the light-rail commuters. The average PM 10 concentrations for the subway line at station platforms and inside the train were 78.0 μg m -3 and 31.5 μg m -3, respectively; for the light-rail line, corresponding PM 10 concentrations were 38.2 μg m -3 and 16.2 μg m -3. Regression analysis demonstrated that personal exposure concentrations for the light-rail line are strongly associated with ambient PM levels ( R2 = 0.61), while PM concentrations for the subway line are less influenced by ambient conditions ( R2 = 0.38) and have a relatively stable background level of about 21 μg m -3. Our findings suggest that local emissions (i.e., vehicular traffic, road dust) are the main source of airborne PM for the light-rail line. The subway line, on the other hand, has an additional source of PM, most likely generated from the daily operation of trains. Strong inter-correlation of PM 10 between the train and station microenvironments shows that airborne PM at stations are the main source of PM inside the trains for both lines ( R2 = 0.91 and 0.81 for subway and light-rail line, respectively). In addition, PM 2.5 and coarse PM (PM 10-2.5) are also strongly correlated for the subway line ( R2 = 0.89) and the light-rail line ( R2 = 0.52-0.92), suggesting that PM 2.5 and coarse PM originate from a common source. Finally, in comparison to worldwide subway systems, the L.A. Metro system is relatively 'clean'. Since the system is comparatively new (in operation since 1993), its ventilation system and braking technology are probably more efficient and more advanced than older subway systems.

  6. Potential implications of mine dusts on human health: A case study of Mukula Mine, Limpopo Province, South Africa

    PubMed Central

    Momoh, Abuh; E. Mhlongo, Sphiwe; Abiodun, Olukoga; Muzerengi, Confidence; Mudanalwo, Matamela

    2013-01-01

    Objective: The purpose of this study was to estimate the levels of Suspended Particulate Matter (SPM) in ambient air within Mukula mine and the potential risks to mineworkers and inhabitants of the adjoining Mukula community’s health. Methods : An SPM was used to measure the levels of particulate matter (PM10) in and around the mining site. One-way Analysis of Variance (ANOVA) was used to determine significance level of PM10 in ambient air. Results: Suspended particulate matter in the air ranged from 60.25 to 1820.45 µg/m3. The lowest value of SPM was more than four times the required World Health Organisation’s allowable level in ambient air, which the mine workers and locals would be inhaling. Conclusion: Continuous inhalation of mine dusts by mine workers and locals could result in pulmonary fibrosis, silicosis and lung cancer. The findings from this study support the need to have in place the necessary control measures that will drastically reduce SPM in the air. Such measure includes wet drilling and blasting, sprinkling of water on the mine roads and planting of vegetation around the mines and neighbouring communities. PMID:24550971

  7. Potential implications of mine dusts on human health: A case study of Mukula Mine, Limpopo Province, South Africa.

    PubMed

    Momoh, Abuh; E Mhlongo, Sphiwe; Abiodun, Olukoga; Muzerengi, Confidence; Mudanalwo, Matamela

    2013-11-01

    Objective : The purpose of this study was to estimate the levels of Suspended Particulate Matter (SPM) in ambient air within Mukula mine and the potential risks to mineworkers and inhabitants of the adjoining Mukula community's health. Methods : An SPM was used to measure the levels of particulate matter (PM10) in and around the mining site. One-way Analysis of Variance (ANOVA) was used to determine significance level of PM10 in ambient air. Results : Suspended particulate matter in the air ranged from 60.25 to 1820.45 µg/m(3). The lowest value of SPM was more than four times the required World Health Organisation's allowable level in ambient air, which the mine workers and locals would be inhaling. Conclusion : Continuous inhalation of mine dusts by mine workers and locals could result in pulmonary fibrosis, silicosis and lung cancer. The findings from this study support the need to have in place the necessary control measures that will drastically reduce SPM in the air. Such measure includes wet drilling and blasting, sprinkling of water on the mine roads and planting of vegetation around the mines and neighbouring communities.

  8. Secondhand Smoke Exposure Levels in Outdoor Hospitality Venues: A Qualitative and Quantitative Review of the Research Literature

    PubMed Central

    LICHT, ANDREA S; HYLAND, ANDREW; TRAVERS, MARK J; CHAPMAN, SIMON

    2013-01-01

    Objective This paper considers the evidence on whether outdoor secondhand smoke (SHS) is present in high enough levels of hospitality venues to potentially pose health risks, particularly among employees of such establishments. Data Sources Search strings in PubMed and Web of Science included combinations of environmental tobacco smoke, secondhand smoke, or passive smoke AND outdoor, yielding 217 and 5,199 results, respectively through June, 2012. Study Selection Sixteen studies were selected based on abstract review that either entirely or partly measured outdoor SHS exposures (particulate matter (PM) or other SHS indicators). Data Extraction The methods used to measure SHS indicators, particularly PM, were assessed for inclusion of extraneous variables that may affect such measurements or the corroboration of ambient levels with known standards. Data Synthesis The magnitude of SHS exposure (PM2.5) is dependent on the number of smokers present, proximity to the measuring device, outdoor enclosures, and wind. Under specific conditions, peak outdoor PM2.5 levels can be comparable to those recorded in indoor smoky environments. Using data from both observational and experimental studies, annual excess PM2.5 exposure of full-time waitstaff at outdoor smoking environments could average 4.0 to 12.2 μg/m3 under variable smoking conditions. Conclusions Although highly transitory, outdoor SHS exposures could occasionally exceed annual ambient air quality exposure guidelines. However, such exposures are likely to be higher for occupationally exposed individuals compared to patrons due to repeated and cumulative outdoor SHS exposures. Personal monitoring studies of waitstaff are warranted to corroborate these modeled estimates. PMID:23220937

  9. Short-term exposures to ambient air pollution and risk of recurrent ischemic stroke.

    PubMed

    Wing, Jeffrey J; Adar, Sara D; Sánchez, Brisa N; Morgenstern, Lewis B; Smith, Melinda A; Lisabeth, Lynda D

    2017-01-01

    To investigate the association between short-term changes in ambient pollution (particulate matter <2.5µm in aerodynamic diameter (PM 2.5 ) and ozone (O 3 )) and the risk of recurrent ischemic stroke among individuals living in a bi-ethnic community. We identified recurrent ischemic stroke cases from the population-based Brain Attack Surveillance in Corpus Christi (BASIC) project between 2000 and 2012. Associations between PM 2.5 (mean 24-h) and O 3 (maximal 8-h) levels, measured on the previous day, and odds of ischemic stroke were assessed using a time-stratified case-crossover design and modeled using conditional logistic regression. There were 317 recurrent ischemic strokes after excluding 41 strokes that occurred on days with missing air pollution data. Mean age was 72 years (SD=12) and median time to stroke recurrence was 1.1 years (IQR: 0.2-2.8 years). Median levels of PM 2.5 and O 3 over the study period were 7.7μg/m 3 (IQR: 5.6-10.7μg/m 3 ) and 35.2 ppb (IQR: 25.0-46.1 ppb), respectively. We observed no associations between previous-day PM 2.5 and O 3 and odds of recurrent stroke (OR=0.95 per 10µg/m 3 of PM 2.5 , 95% CI: 0.71-1.28 and OR=0.97 per 10ppb of O 3 , 95% CI: 0.87-1.07) after adjusting for ambient temperature and relative humidity. Co-adjustment of both pollutants did not change the results. We found no evidence of associations between previous-day air pollution levels and recurrent ischemic stroke. Research on the influence of air pollutants on risk of stroke recurrence is still in its infancy, and more research is necessary in studies that are adequately powered to understand the relation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Ning, Zhi; Shen, Zhenxing; Li, Guoliang; Zhang, Junke; Lei, Yali; Xu, Hongmei; Sun, Jian; Zhang, Leiming; Westerdahl, Dane; Gali, Nirmal Kumar; Gong, Xuesong

    2017-10-01

    This study investigated the ;roadside-to-ambient; evolution of particle physicochemical and optical properties in typical urban atmospheres of Hong Kong through collection of chemically-resolved PM2.5 data and PM2.5 size distribution at a roadside and an ambient site. Roadside particle size distribution showed typical peaks in the nuclei mode (30-40 nm) while ambient measurements peaked in the Aitken mode (50-70 nm), revealing possible condensation and coagulation growth of freshly emitted particles during aging processes. Much higher levels of anthropogenic chemical components, i.e. nitrate, sulfate, ammonium, organic carbon (OC) and elemental carbon (EC), but lower levels of OC/EC and secondary inorganic aerosols (SIA)/EC ratios appeared in roadside than ambient particles. The high OC/EC and SIA/EC ratios in ambient particles implied high contributions from secondary aerosols. Black carbon (BC), a strong light absorbing material, showed large variations in optical properties when mixed with other inorganic and organic components. Particle-bound polycyclic aromatic hydrocarbons (p-PAHs), an indicator of brown carbon (BrC), showed significant UV-absorbing ability. The average BC and p-PAHs concentrations were 3.8 and 87.6 ng m-3, respectively, at the roadside, but were only 1.5 and 18.1 ng m-3 at the ambient site, suggesting BC and p-PAHs concentrations heavily driven by traffic emissions. In contrast, PM2.5 UV light absorption coefficients (babs-BrC,370nm) at the ambient site (4.2 Mm-1) and at the roadside site (4.1 Mm-1) were similar, emphasizing that particle aging processes enhanced UV light-absorbing properties, a conclusion that was also supported by the finding that the Absorption Ångström coefficient (AAC) value at UV wavelengths (AAC_UV band) at the ambient site were ∼1.7 times higher than that at the roadside. Both aqueous reaction and photochemically produced secondary organic aerosol (SOA) for ambient aerosols contributed to the peak values of babs-BrC,370nm in ambient particles at midnight and around noon, highlighting that secondary BrC had different sources and particle aging in the atmosphere affected BrC and BC properties and related aerosol light absorption.

  11. The impact of household cooking and heating with solid fuels on ambient PM2.5 in peri-urban Beijing

    NASA Astrophysics Data System (ADS)

    Liao, Jiawen; Zimmermann Jin, Anna; Chafe, Zoë A.; Pillarisetti, Ajay; Yu, Tao; Shan, Ming; Yang, Xudong; Li, Haixi; Liu, Guangqing; Smith, Kirk R.

    2017-09-01

    Household cooking and space heating with biomass and coal have adverse impacts on both indoor and outdoor air quality and are associated with a significant health burden. Though household heating with biomass and coal is common in northern China, the contribution of space heating to ambient air pollution is not well studied. We investigated the impact of space heating on ambient air pollution in a village 40 km southwest of central Beijing during the winter heating season, from January to March 2013. Ambient PM2.5 concentrations and meteorological conditions were measured continuously at rooftop sites in the village during two winter months in 2013. The use of coal- and biomass-burning cookstoves and space heating devices was measured over time with Stove Use Monitors (SUMs) in 33 households and was coupled with fuel consumption data from household surveys to estimate hourly household PM2.5 emissions from cooking and space heating over the same period. We developed a multivariate linear regression model to assess the relationship between household PM2.5 emissions and the hourly average ambient PM2.5 concentration, and a time series autoregressive integrated moving average (ARIMA) regression model to account for autocorrelation. During the heating season, the average hourly ambient PM2.5 concentration was 139 ± 107 μg/m3 (mean ± SD) with strong autocorrelation in hourly concentration. The average primary PM2.5 emission per hour from village household space heating was 0.736 ± 0.138 kg/hour. The linear multivariate regression model indicated that during the heating season - after adjusting for meteorological effects - 39% (95% CI: 26%, 54%) of hourly averaged ambient PM2.5 was associated with household space heating emissions from the previous hour. Our study suggests that a comprehensive pollution control strategy for northern China, including Beijing, should address uncontrolled emissions from household solid fuel combustion in surrounding areas, particularly during the winter heating season.

  12. Primary particulate matter from ocean-going engines in the Southern California Air Basin.

    PubMed

    Agrawal, Harshit; Eden, Rudy; Zhang, Xinqiu; Fine, Philip M; Katzenstein, Aaron; Miller, J Wayne; Ospital, Jean; Teffera, Solomon; Cocker, David R

    2009-07-15

    The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.

  13. Short-term exposure to high ambient air pollution increases airway inflammation and respiratory symptoms in chronic obstructive pulmonary disease patients in Beijing, China.

    PubMed

    Wu, Shaowei; Ni, Yang; Li, Hongyu; Pan, Lu; Yang, Di; Baccarelli, Andrea A; Deng, Furong; Chen, Yahong; Shima, Masayuki; Guo, Xinbiao

    2016-09-01

    Few studies have investigated the short-term respiratory effects of ambient air pollution in chronic obstructive pulmonary disease (COPD) patients in the context of high pollution levels in Asian cities. A panel of 23 stable COPD patients was repeatedly measured for biomarkers of airway inflammation including exhaled nitric oxide (FeNO) and exhaled hydrogen sulfide (FeH2S) (215 measurements) and recorded for daily respiratory symptoms (794person-days) in two study periods in Beijing, China in January-September 2014. Daily ambient air pollution data were obtained from nearby central air-monitoring stations. Mixed-effects models were used to estimate the associations between exposures and health measurements with adjustment for potential confounders including temperature and relative humidity. Increasing levels of air pollutants were associated with significant increases in both FeNO and FeH2S. Interquartile range (IQR) increases in PM2.5 (76.5μg/m(3), 5-day), PM10 (75.0μg/m(3), 5-day) and SO2 (45.7μg/m(3), 6-day) were associated with maximum increases in FeNO of 13.6% (95% CI: 4.8%, 23.2%), 9.2% (95% CI: 2.1%, 16.8%) and 34.2% (95% CI: 17.3%, 53.4%), respectively; and the same IQR increases in PM2.5 (6-day), PM10 (6-day) and SO2 (7-day) were associated with maximum increases in FeH2S of 11.4% (95% CI: 4.6%, 18.6%), 7.8% (95% CI: 2.3%, 13.7%) and 18.1% (95% CI: 5.5%, 32.2%), respectively. Increasing levels of air pollutants were also associated with increased odds ratios of sore throat, cough, sputum, wheeze and dyspnea. FeH2S may serve as a novel biomarker to detect adverse respiratory effects of air pollution. Our results provide potential important public health implications that ambient air pollution may pose risk to respiratory health in the context of high pollution levels in densely-populated cities in the developing world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter.

    PubMed

    de Kok, Theo M; Hogervorst, Janneke G; Briedé, Jacco J; van Herwijnen, Marcel H; Maas, Lou M; Moonen, Edwin J; Driece, Hermen A; Kleinjans, Jos C

    2005-08-01

    Exposure to ambient particulate matter (PM) has been linked to several adverse health effects. Since vehicular traffic is a PM source of growing importance, we sampled total suspended particulate (TSP), PM(10), and PM(2.5) at six urban locations with pronounced differences in traffic intensity. The mutagenicity, DNA-adduct formation, and induction of oxidative DNA damage by the samples were studied as genotoxicological parameters, in relation to polycyclic aromatic hydrocarbon (PAH) levels, elemental composition, and radical-generating capacity (RGC) as chemical characteristics. We found pronounced differences in the genotoxicity and chemical characteristics of PM from the various locations, although we could not establish a correlation between traffic intensity and any of these characteristics for any of the PM size fractions. Therefore, the differences between locations may be due to local sources of PM, other than traffic. The concentration of total (carcinogenic) PAHs correlated positively with RGC, direct and S9-mediated mutagenicity, as well as the induction of DNA adducts and oxidative DNA damage. The interaction between total PAHs and transition metals correlated positively with DNA-adduct formation, particularly from the PM(2.5) fraction. RGC was not associated with one specific PM size fraction, but mutagenicity and DNA reactivity after metabolic activation were relatively high in PM(10) and PM(2.5), when compared with TSP. We conclude that the toxicological characteristics of urban PM samples show pronounced differences, even when PM concentrations at the sample sites are comparable. This implies that emission reduction strategies that take chemical and toxicological characteristics of PM into account may be useful for reducing the health risks associated with PM exposure. Copyright 2005 Wiley-Liss, Inc.

  15. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios.

    PubMed

    Chowdhury, Sourangsu; Dey, Sagnik; Smith, Kirk R

    2018-01-22

    Premature mortality from current ambient fine particulate (PM 2.5 ) exposure in India is large, but the trend under climate change is unclear. Here we estimate ambient PM 2.5 exposure up to 2100 by applying the relative changes in PM 2.5 from baseline period (2001-2005) derived from Coupled Model Inter-comparison Project 5 (CMIP5) models to the satellite-derived baseline PM 2.5 . We then project the mortality burden using socioeconomic and demographic projections in the Shared Socioeconomic Pathway (SSP) scenarios. Ambient PM 2.5 exposure is expected to peak in 2030 under the RCP4.5 and in 2040 under the RCP8.5 scenario. Premature mortality burden is expected to be 2.4-4 and 28.5-38.8% higher under RCP8.5 scenario relative to the RCP4.5 scenario in 2031-2040 and 2091-2100, respectively. Improved health conditions due to economic growth are expected to compensate for the impact of changes in population and age distribution, leading to a reduction in per capita health burden from PM 2.5 for all scenarios except the combination of RCP8.5 exposure and SSP3.

  16. Ambient air pollution exposure and respiratory, cardiovascular and cerebrovascular mortality in Cape Town, South Africa: 2001–2006.

    PubMed

    Wichmann, Janine; Voyi, Kuku

    2012-11-05

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM(10), SO(2) and NO(2) levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001-2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM(10) (12 mg/m3) and NO(2) (12 mg/m3) significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO(2) and SO(2) (8 mg/m3). In the warm period, PM(10) was significantly associated with RD and CVD mortality. NO(2) had significant associations with CBD, RD and CVD mortality, whilst SO(2) was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  17. In Vitro Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Pathak, Rupak; Lu, Xiaoyan; Nzabarushimana, Etienne; Krager, Kimberly; Aykin-Burns, Nukhet; Hauer-Jensen, Martin; Demokritou, Philip; Kavouras, Ilias G; Koturbash, Igor

    2015-12-01

    Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including pulmonary and cardiovascular disease. Studies indicate that ambient PM originated from different sources may cause distinct biological effects. In this study, we sought to investigate the potential of various types of PM to cause epigenetic alterations in the in vitro system. RAW264.7 murine macrophages were exposed for 24 and 72 h to 5- and 50-μg/ml doses of the water soluble extract of 6 types of PM: soil dust, road dust, agricultural dust, traffic exhausts, biomass burning, and pollen, collected in January-April of 2014 in the area of Little Rock, Arkansas. Cytotoxicity, oxidative potential, epigenetic endpoints, and chromosomal aberrations were addressed. Exposure to 6 types of PM resulted in induction of cytotoxicity and oxidative stress in a type-, time-, and dose-dependent manner. Epigenetic alterations were characterized by type-, time-, and dose-dependent decreases of DNA methylation/demethylation machinery, increased DNA methyltransferases enzymatic activity and protein levels, and transcriptional activation and subsequent silencing of transposable elements LINE-1, SINE B1/B2. The most pronounced changes were observed after exposure to soil dust that were also characterized by hypomethylation and reactivation of satellite DNA and structural chromosomal aberrations in the exposed cells. The results of our study indicate that the water-soluble fractions of the various types of PM have differential potential to target the cellular epigenome. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice.

    PubMed

    Chen, Tian; Jia, Guang; Wei, Yongjie; Li, Jiucun

    2013-11-25

    Air pollution is associated with significant adverse health effects including increased cardiovascular morbidity and mortality. However research on the cardiovascular effect of "real-world" exposure to ambient particulate matter (PM) in susceptible animal model is very limited. In this study, we aimed to investigate the association between Beijing ambient particle exposure and the atherosclerosis development in the apolipoprotein E knockout mice (ApoE(-/-) mice). Two parallel exposure chambers were used for whole body exposure among ApoE knockout mice. One of the chambers was supplied with untreated ambient air (PM group) and the other chamber was treated with ambient air filtered by high-efficiency particulate air (HEPA) filter (FA group). Twenty mice were divided into two groups and exposed to ambient PM (n=10 for PM group) or filtered air (n=10 for FA group) for two months from January 18th to March 18th, 2010. During the exposure, the mass concentrations of PM2.5 and PM10 in the two chambers were continuously monitored. Additionally, a receptor source apportionment model of chemical mass balance using 19 organic tracers was applied to determine the contributions of sources on the PM2.5 in terms of natural gas, diesel vehicle, gasoline vehicle, coal burning, vegetable debris, biomass burning and cooking. At the end of the two-month exposure, biomarkers of oxidative stress, inflammation and lipid metabolism in bronchoalveolar lavage fluid (BAL) and blood samples were determined and the plaque area on the aortic endothelium was quantified. In the experiment, the concentrations of PM10 and PM2.5 in PM chamber were 99.45μg/m(3) and 61.0μg/m(3) respectively, while PM2.5 in FA chamber was 17.6μg/m(3). Source apportionment analysis by organic tracers showed that gasoline vehicle (39.9%) and coal burning (24.3%) emission were the two major sources contributing to the mass concentration of PM2.5 in Beijing. Among the ApoE knockout mice, the PM group were significantly higher than the FA group in terms of serum total cholesterol, low-density lipoprotein, tumor necrosis factor-alpha (TNF-alpha) and C-reactive protein as well as TNF-alpha and interleukin-6 in BAL. Also the total antioxidant capacity and oxidized low-density lipoprotein were significantly different between the two groups. In addition, pathological analysis of aortic arch reveals that the plaques area in the PM group increased significantly compared to the FA group. Our results demonstrated that ambient PM exposure could induce considerable oxidative stress and systemic inflammation in ApoE knockout mice and contribute to the progression of atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Addition of PM2.5 into the National Ambient Air Quality Standards of China and the Contribution to Air Pollution Control: The Case Study of Wuhan, China

    PubMed Central

    You, Mingqing

    2014-01-01

    PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly. PMID:24982994

  20. NAAQS Attainment and the PM2.5-Mortality Association ...

    EPA Pesticide Factsheets

    Background. Ambient air quality has been steadily improving since promulgation of National Ambient Air Quality Standards (NAAQS) by EPA in accordance with the Clean Air Act. In 1997, a standard for fine particulate matter (PM2.5) was promulgated for the first time. Although the impacts of this pollutant on health are well characterized, less is known whether the air pollution standards have resulted in improvements to public health. The objective of this study is to examine whether the attainment of the 1997 PM2.5 NAAQS improved cardiovascular mortality. Methods. We examined the impact of change in PM2.5 on change in cardiovascular mortality rate before and after 2005, when the 1997 standard designations were published (2000-2004 vs 2005-2010). We further examined how the association varied with respect to county-level NAAQS designations by stratifying in two ways: first, by the EPA Green Book status of attainment or nonattainment; second, by the county-level design values (DV) used for designation. We used linear regression and difference-in-difference models, adjusted for sociodemographic confounders. Results. Across the 619 U.S. counties with available PM2.5 data we observed a 1.21 µg/m3 mean decrease in the annual PM2.5 after 2005. Cardiovascular mortality rate, expressed as number of deaths/100,000 people, decreased by 63.1(95% CI 62.2, 64.1) in absolute terms after 2005 and by 1.10 (0.37, 1.82) for each 1 µg/m3 decrease in PM2.5. Nonattainment count

  1. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    PubMed

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air pollution levels in China.

  2. HEASD PM EXPOSURE FACTORS- IMPROVE UNDERSTANDING OF THE FACTORS WHICH DETERMINE HUMANS' EXPOSURE TO PARTICLES SMALLER THAN 2.5 MICRONS

    EPA Science Inventory

    In July 1997, the EPA Administrator issued a new Particulate Matter (PM-2.5) National Ambient Air Quality Standards (NAAQS) that had been developed largely on the basis of epidemiological studies. These studies found a consistent association between ambient PM concentrations and...

  3. Air Pollution Exposure Model for Individuals (EMI) in Health Studies: Evaluation for Ambient PM2.5

    EPA Science Inventory

    Health studies of fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates, which fail to account for indoor attenuation of ambient PM2.5 and time indoors. To address these limitations, we developed an air pollution exposure model for individuals (E...

  4. Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves.

    PubMed

    Tian, Ying-Ze; Chen, Jia-Bao; Zhang, Lin-Lin; Du, Xin; Wei, Jin-Jin; Fan, Hui; Xu, Jiao; Wang, Hai-Ting; Guan, Liao; Shi, Guo-Liang; Feng, Yin-Chang

    2017-12-01

    Source and ambient samples were collected in a city in China that uses considerable biofuel, to assess influence of biofuel combustion and other sources on particulate matter (PM). Profiles and size distribution of biofuel combustion were investigated. Higher levels in source profiles, a significant increase in heavy-biomass ambient and stronger correlations of K + , Cl - , OC and EC suggest that they can be tracers of biofuel combustion. And char-EC/soot-EC (8.5 for PM 2.5 and 15.8 for PM 10 of source samples) can also be used to distinguish it. In source samples, water-soluble organic carbon (WSOC) were approximately 28.0%-68.8% (PM 2.5 ) and 27.2%-43.8% (PM 10 ) of OC. For size distribution, biofuel combustion mainly produces smaller particles. OC1, OC2, EC1 and EC2 abundances showed two peaks with one below 1 μm and one above 2 μm. An advanced three-way factory analysis model was applied to quantify source contributions to ambient PM 2.5 and PM 10 . Higher contributions of coal combustion, vehicular emission, nitrate and biofuel combustion occurred during the heavy-biomass period, and higher contributions of sulfate and crustal dust were observed during the light-biomass period. Mass and percentage contributions of biofuel combustion were significantly higher in heavy-biomass period. The biofuel combustion attributed above 45% of K + and Cl - , above 30% of EC and about 20% of OC. In addition, through analysis of source profiles and contributions, they were consistently evident that biofuel combustion and crustal dust contributed more to cation than to anion, while sulfate & SOC and nitrate showed stronger influence on anion than on cation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications

    PubMed Central

    Roper, Courtney; Chubb, Lauren G.; Cambal, Leah; Tunno, Brett; Clougherty, Jane E.; Mischler, Steven E.

    2016-01-01

    Research on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.5 suspended on filters. Removal efficiency was found to be 98.0 ± 1.4% when measured using pre- and post-removal filter weights, however, this efficiency was significantly reduced to 80.2 ± 0.8% when measured based on particle mass in the extraction solution. Furthermore, only 47.2 ± 22.3% of metals and 24.8 ± 14.5% of organics measured on the ambient filter were found in the extraction solution. Individual metallic and organic components were extracted with varying efficiency, with many organics being lost entirely during extraction. Finally, extraction efficiencies of specific PM2.5 components were inversely correlated with total mass. This study details a method to assess compositional alterations resulting from extraction of PM2.5 from filters, emphasizing the need for standardized procedures that maintain compositional integrity of ambient samples for use in toxicology studies of PM2.5. PMID:26446919

  6. Characterization of traffic-related PM concentration distribution and fluctuation patterns in near-highway urban residential street canyons.

    PubMed

    Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard

    2009-12-01

    Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean concentration and number of concentration peaks above a certain threshold level-can possibly lead to different assessments of spatial concentration distribution patterns.

  7. On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Gani, Shahzad; Guttikunda, Sarath K.; Wilson, Daniel; Tiwari, Geetam

    2015-12-01

    PM2.5 pollution in Delhi averaged 150 μg/m3 from 2012 through 2014, which is 15 times higher than the World Health Organization's annual-average guideline. For this setting, we present on-road exposure of PM2.5 concentrations for 11 transport microenvironments along a fixed 8.3-km arterial route, during morning rush hour. The data collection was carried out using a portable TSI DustTrak DRX 8433 aerosol monitor, between January and May (2014). The monthly-average measured ambient concentrations varied from 130 μg/m3 to 250 μg/m3. The on-road PM2.5 concentrations exceeded the ambient measurements by an average of 40% for walking, 10% for cycle, 30% for motorised two wheeler (2W), 30% for open-windowed (OW) car, 30% for auto rickshaw, 20% for air-conditioned as well as for OW bus, 20% for bus stop, and 30% for underground metro station. On the other hand, concentrations were lower by 50% inside air-conditioned (AC) car and 20% inside the metro rail carriage. We find that the percent exceedance for open modes (cycle, auto rickshaw, 2W, OW car, and OW bus) reduces non-linearly with increasing ambient concentration. The reduction is steeper at concentrations lower than 150 μg/m3 than at higher concentrations. After accounting for air inhalation rate and speed of travel, PM2.5 mass uptake per kilometer during cycling is 9 times of AC car, the mode with the lowest exposure. At current level of concentrations, an hour of cycling in Delhi during morning rush-hour period results in PM2.5 dose which is 40% higher than an entire-day dose in cities like Tokyo, London, and New York, where ambient concentrations range from 10 to 20 μg/m3.

  8. SEM/EDS Characterization of Ambient PM during Agricultural Burns

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Wall, S.

    2010-12-01

    Ambient particulate matter (PM) samples were collected with UNC passive samplers during agricultural burns in Imperial Valley, California. Four Bermuda grass field burn events were sampled at 3-8 locations surrounding each burn. Sampling began at the start of each burn (30-60 min) and continued for 24-120 hours. During 3 of the 4 burn events, winds were calm and plumes were observed to travel straight up to the inversion layer. In one event, winds created a ground-level plume that enveloped two UNC samplers mounted on telephone poles very close to the field (0.2-0.3 miles away). Computer-controlled scanning electron microscopy / energy-dispersive x-ray spectroscopy (CCSEM/EDS) was used to measure particle sizes and elemental composition, from which mass concentrations and size distributions were calculated. The median PM2.5 and PM10 levels measured in this study were 3.4 and 20 ug/m3, respectively. To determine quantitative accuracy, UNC sampler PM2.5 results (PM< 2.5 um) were compared to PM2.5 results from four co-located, continuous-reading beta-attenuation monitors (EBAMs). The median agreement (EBAM - UNC) was 3.8 ug/m3. Manual SEM/EDS detected various distinctive species in these samples, including sea salt, spores, plant fragments, and large soot agglomerates. During the ‘plume event’, 24-hour PM2.5 exposures downwind were up to 17 times higher than that measured upwind. Numerous submicron combustion particles with carbon and oxygen only were directly observed by manual SEM/EDS in the two plume-impacted samples, along with larger ash particles enriched in potassium, sulfur, chlorine, calcium, sodium, and phosphorus. CCSEM/EDS data from this event was grouped into 5 particle classes to generate size-fraction-specific pie charts. Burn-related particle types contributed 95% of the PM2.5 in the location directly impacted by the ground-level plume, compared to only 12% in the upwind location. A sample of Imperial County Bermuda grass analyzed in bulk and partially-burned states was found to contain similar inorganic elements as the air samples impacted by the burn plume, as well as mold spores found at trace levels in various air samples.

  9. Short-term population-based non-linear concentration-response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis.

    PubMed

    Yu, Hwa-Lung; Chien, Lung-Chang

    2016-01-01

    Fine particulate matter <2.5 μm (PM2.5) has been associated with human health issues; however, findings regarding the influence of PM2.5 on respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (<6 years old) and schoolchildren (6-14 years old). In preschool children, same-day health risks rise when concentrations increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.

  10. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort.

    PubMed

    Pinault, Lauren; Tjepkema, Michael; Crouse, Daniel L; Weichenthal, Scott; van Donkelaar, Aaron; Martin, Randall V; Brauer, Michael; Chen, Hong; Burnett, Richard T

    2016-02-11

    Understanding the shape of the relationship between long-term exposure to ambient fine particulate matter (PM2.5) concentrations and health risks is critical for health impact and risk assessment. Studies evaluating the health risks of exposure to low concentrations of PM2.5 are limited. Further, many existing studies lack individual-level information on potentially important behavioural confounding factors. A prospective cohort study was conducted among a subset of participants in a cohort that linked respondents of the Canadian Community Health Survey to mortality (n = 299,500) with satellite-derived ambient PM2.5 estimates. Participants enrolled between 2000 and 2008 were followed to date of death or December 31, 2011. Cox proportional hazards models were used to estimate hazard ratios (HRs) for mortality attributed to PM2.5 exposure, adjusted for individual-level and contextual covariates, including smoking behaviour and body mass index (BMI). Approximately 26,300 non-accidental deaths, of which 32.5 % were due to circulatory disease and 9.1 % were due to respiratory disease, occurred during the follow-up period. Ambient PM2.5 exposures were relatively low (mean = 6.3 μg/m(3)), yet each 10 μg/m(3) increase in exposure was associated with increased risks of non-accidental (HR = 1.26; 95 % CI: 1.19-1.34), circulatory disease (HR = 1.19; 95 % CI: 1.07-1.31), and respiratory disease mortality (HR = 1.52; 95 % CI: 1.26-1.84) in fully adjusted models. Higher hazard ratios were observed for respiratory mortality among respondents who never smoked (HR = 1.97; 95 % CI: 1.24-3.13 vs. HR = 1.45; 95 % CI: 1.17-1.79 for ever smokers), and among obese (BMI ≥ 30) respondents (HR = 1.76; 95 % CI: 1.15-2.69 vs. HR = 1.41; 95 % CI: 1.04-1.91 for normal weight respondents), though differences between groups were not statistically significant. A threshold analysis for non-accidental mortality estimated a threshold concentration of 0 μg/m(3) (+95 % CI = 4.5 μg/m(3)). Increased risks of non-accidental, circulatory, and respiratory mortality were observed even at very low concentrations of ambient PM2.5. HRs were generally greater than most literature values, and adjusting for behavioural covariates served to reduce HR estimates slightly.

  11. Estimating Personal Exposures from Ambient Air Pollution Measures - Using Meta-Analysis to Assess Measurement Error

    EPA Science Inventory

    Although ambient concentrations of particulate matter ≤ 10μm (PM10) are often used as proxies for total personal exposure, correlation (r) between ambient and personal PM10 concentrations varies. Factors underlying this variation and its effect on he...

  12. Measuring concentrations of selected air pollutants inside California vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodes, C.; Sheldon, L.; Whitaker, D.

    1999-01-01

    This project measured 2-hour integrated concentrations of PM10, PM2.5, metals and a number of organic chemicals including benzene and MTBE inside vehicles on California roadways. Using continuous samplers, particle counts, black carbon, and CO were also measured. In addition to measuring in-vehicle levels, the investigators measured pollutant levels just outside the vehicle, at roadside stations, and ambient air monitoring stations. Different driving scenarios were designed to assess the effects of a number of factors on in-vehicle pollutant levels. These factors included roadway type, carpool lanes, traffic conditions, geographical locations, vehicle type, and vehicle ventilation conditions. The statewide average in-vehicle concentrationsmore » of benzene, MTBE, and formaldehyde ranged from 3--22 {micro}g/m{sup 3}, 3--90 {micro}g/m{sup 3}, and 0---22 {micro}g/m{sup 3}, respectively. The ranges of mean PM10 and PM2.5 in-vehicle levels in Sacramento were 20--40 {micro}g/m{sup 3} and 6--22 {micro}g/m{sup 3}, respectively. In general, pollutant levels inside or just outside the vehicles were higher than those measured at the roadside stations or the ambient air stations. In-vehicle pollutant levels were consistently higher in Los Angeles than Sacramento. Pollutant levels measured inside vehicles traveling in a carpool lane were much lower than those in the right-hand, slower lanes. Under the study conditions, factors such as vehicle type and ventilation and little effect on in-vehicle pollutant levels. Other factors, such as roadway type, freeway congestion level, and time-of-day had some influence on in-vehicle pollution levels.« less

  13. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China.

    PubMed

    Yang, Shaoping; Tan, Yafei; Mei, Hui; Wang, Fang; Li, Na; Zhao, Jinzhu; Zhang, Yiming; Qian, Zhengmin; Chang, Jen Jen; Syberg, Kevin M; Peng, Anna; Mei, Hong; Zhang, Dan; Zhang, Yan; Xu, Shunqing; Li, Yuanyuan; Zheng, Tongzhang; Zhang, Bin

    2018-04-01

    Recent studies suggest that ambient air pollution exposure during pregnancy is associated with stillbirth occurrence. However, the results on the associations between ambient air pollutants and stillbirths are inconsistent and little is known about the gestational timing of sensitive periods for the effects of ambient air pollutants exposure on stillbirth. This study aimed to examine whether exposure to high levels of ambient air pollutants in a Chinese population is associated with an increased risk of stillbirth, and determine the gestational period when the fetus is most susceptible. We conducted a population-based cohort study in Wuhan, China, involving 95,354 births between June 10, 2011 and June 9, 2013. The exposure assessments were based on the daily mean concentrations of air pollutants obtained from the exposure monitor nearest to the pregnant women's residence. Logistic regression analyses were performed to determine the associations between stillbirths and exposure to each of the air pollutants at different pregnancy periods with adjustment for confounding factors. Stillbirth increased with a 10 μg/m 3 increase in particulate matter 2.5 (PM 2.5 ) in each stage of pregnancy, and a significant association between carbon monoxide (CO) exposure and stillbirth was found during the third trimester (adjusted odds ratio (aOR): 1.01, 95% confidence interval (CI): 1.00-1.01) and in the entire pregnancy (aOR: 1.18, 95% CI: 1.04-1.34). Furthermore, an increased risk of stillbirth in the third trimester was associated with a 10 μg/m 3 increase in PM 10 (aOR: 1.08, 95% CI: 1.04-1.11), nitrogen dioxide (NO 2 ) (aOR: 1.13, 95% CI: 1.07-1.21) and sulfur dioxide (SO 2 ) (aOR: 1.26, 95% CI: 1.16-1.35). However, no positive association was observed between ozone exposure and stillbirth. In the two-pollutant models, PM 2.5 and CO exposures were found to be consistently associated with stillbirth. Our study revealed that exposure to high levels of PM 2.5 , PM 10 , SO 2 , NO 2 and CO increases the risk of stillbirth and the most susceptible gestational period to ambient air pollution exposure was in the third trimester. Further toxicological and prospective cohort studies with improved exposure assessments are needed to confirm the causal link between air pollutants and stillbirth. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Short-term effects of ozone air pollution on hospital admissions for myocardial infarction: A time-stratified case-crossover study in Taipei.

    PubMed

    Chiu, Hui-Fen; Weng, Yi-Hao; Chiu, Ya-Wen; Yang, Chun-Yuh

    2017-01-01

    This study was undertaken to determine whether there was a correlation between ambient ozone (O 3 ) levels and number of hospital admissions for myocardial infarction (MI) in Taipei, Taiwan. Hospital admissions for MI and ambient air pollution data for Taipei were obtained for the period from 2006 to 2010. The relative risk (RR) of hospital admissions for MI was estimated using a time-stratified case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single-pollutant model (without adjustment for other pollutants), increased RR for a number of MI admissions was significantly associated with higher O 3 levels both on warm days (>23°C) and on cool days (<23°C). This observation was accompanied by an interquartile range elevation correlated with a 7% (95% CI = 2%-12%) and 17% (95% CI = 11%-25%) rise in number of MI admissions, respectively. In the two-pollutant models, no significant associations between ambient O 3 concentrations and number of MI admissions were observed on warm days. However, on cool days, correlation between ambient O 3 after inclusion of each of the other five pollutants, particulate matter (PM 10 or PM 2.5 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) or carbon monoxide (CO), and number of MI admissions remained significant. This study provides evidence that higher levels of ambient O 3 increase the RR of number of hospital admissions for MI.

  15. Health impact assessment of ambient fine particulate matter exposure in impacts by different vehicle control measures in China

    NASA Astrophysics Data System (ADS)

    LI, S.; Wang, H.; Jiang, F.; Zhang, S.

    2017-12-01

    Road transportation is the one of the largest emission sources contributing to ambient PM2.5 pollution in China. Since the 1990s, China has adopted comprehensive control measures to mitigate vehicle emissions. However, the effects of these measures on reducing emissions, improving air quality and avoiding negative health impacts have not been systematically evaluated. In this study, we combine emissions inventory, air quality modeling, and IER model to evaluate the effect of various vehicle control measures on premature deaths attributable to ambient PM2.5 at a spatial resolution of 36 km × 36 km across China. Our results show that, comparing to no control scenarios, the total vehicular emissions with the actual vehicle emission controls implemented have reduced the emissions of NOX, HC, CO, PM2.5 by 57%, 69%, 75%, 71% respectively; and reduced the national annual mean PM2.5 concentration by 2.5ug/m³ across China by 2010. The number of avoidable deaths associated with reducing PM2.5 level is 150 thousands (95% Confidence interval: 66 thousand - 212 thousand). The geographic distribution of the absolute number of avoidable deaths presents a distinct regional feature and is particularly evident in several regions. The most influential areas are mainly concentrated in Beijing and its south part, which formed a large area of continuous high value. Our results have important policy implications on prioritizing vehicular emission control strategy in China.

  16. 40 CFR 81.320 - Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Coburn Street northwest to Mechanic Street, Mechanic Street west to Judd Street, Judd Street northeast to... circumscribe the area of high emission densities and ambient PM10 levels. (60 FR 2885, January 12, 1995) Maine...

  17. Air Pollution Exposure Model for Individuals (EMI) in Health Studies: Evaluation for Ambient PM2.5 in Central North Carolina

    EPA Science Inventory

    Air pollution health studies of fine particulate matter (diameter ≤2.5 μm, PM2.5) often use outdoor concentrations as exposure surrogates. Failure to account for variability of indoor infiltration of ambient PM2.5 and time indoors can induce exposure errors. We developed an...

  18. Source Apportionment of Ambient Fine Particulate Matter in Dearborn, Michigan, using Hourly Resolved PM Chemical Composition Data

    EPA Science Inventory

    High time-resolution aerosol sampling was conducted for one month during July–August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite o...

  19. THE RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY: MODELING AMBIENT SOURCE CONTRIBUTION TO PERSONAL AND RESIDENTIAL PM MASS CONCENTRATIONS

    EPA Science Inventory

    The Research Triangle Park (RTP) Particulate Matter (PM) Panel Study represented a one-year investigation of personal, residential and ambient PM mass concentrations across distances as large as 70 km in central North Carolina. One of the primary goals of this effort was to est...

  20. California wildfires of 2008: coarse and fine particulate matter toxicity.

    PubMed

    Wegesser, Teresa C; Pinkerton, Kent E; Last, Jerold A

    2009-06-01

    During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM(10-2.5) (particulate matter with mass median aerodynamic diameter > 2.5 mum to < 10 mum; coarse ) and PM(2.5) (particulate matter with mass median aerodynamic diameter < 2.5 mum; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected. These observations prompt a number of questions about the health impact of exposure to elevated levels of PM(10-2.5) and PM(2.5) and about the specific toxicity of PM arising from wildfires in this region. Toxicity of PM(10-2.5) and PM(2.5) obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007. Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung. We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season.

  1. Spatial Analysis of Ambient PM2.5 Exposure and Bladder Cancer Mortality in Taiwan

    PubMed Central

    Yeh, Hsin-Ling; Hsu, Shang-Wei; Chang, Yu-Chia; Chan, Ta-Chien; Tsou, Hui-Chen; Chang, Yen-Chen; Chiang, Po-Huang

    2017-01-01

    Fine particulate matter (PM2.5) is an air pollutant that is receiving intense regulatory attention in Taiwan. In previous studies, the effect of air pollution on bladder cancer has been explored. This study was conducted to elucidate the effect of atmospheric PM2.5 and other local risk factors on bladder cancer mortality based on available 13-year mortality data. Geographically weighted regression (GWR) was applied to estimate and interpret the spatial variability of the relationships between bladder cancer mortality and ambient PM2.5 concentrations, and other variables were covariates used to adjust for the effect of PM2.5. After applying a GWR model, the concentration of ambient PM2.5 showed a positive correlation with bladder cancer mortality in males in northern Taiwan and females in most of the townships in Taiwan. This is the first time PM2.5 has been identified as a risk factor for bladder cancer based on the statistical evidence provided by GWR analysis. PMID:28489042

  2. Development of an approach to correcting MicroPEM baseline drift.

    PubMed

    Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan

    2018-07-01

    Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed has the potential for use with data generated from other types of PM sensors that contain a filter for weighing as well. In addition, this approach can be applied in many other regions, given widely available ambient PM data from monitoring networks, especially in urban areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts.

    PubMed

    Pedersen, Marie; Stafoggia, Massimo; Weinmayr, Gudrun; Andersen, Zorana J; Galassi, Claudia; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Eriksen, Kirsten T; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Vermeulen, Roel; Eeftens, Marloes; Plusquin, Michelle; Key, Timothy J; Jaensch, Andrea; Nagel, Gabriele; Concin, Hans; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Cesaroni, Giulia; Forastiere, Francesco; Tamayo, Ibon; Amiano, Pilar; Dorronsoro, Miren; Stayner, Leslie T; Kogevinas, Manolis; Nieuwenhuijsen, Mark J; Sokhi, Ranjeet; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2018-01-01

    Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. To evaluate the association between long-term exposure to ambient air pollution and BC incidence. We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N=303431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO 2 and NO x ), particulate matter (PM) with diameter <10μm (PM 10 ), <2.5μm (PM 2.5 ), between 2.5 and 10μm (PM 2.5-10 ), PM 2.5 absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project. We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRs) for BC incidence. During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-μg/m 3 increase in NO 2 and 5-μg/m 3 increase in PM 2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure. There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  4. Ambient PM2.5 Exposure in India: Burden, Source-Apportionment and Projection Under Climate Change

    NASA Astrophysics Data System (ADS)

    Dey, S.; Chowdhury, S.; Upadhyay, A. K.; Smith, K. R.

    2017-12-01

    Air pollution has been identified as one of the leading factors of premature death in India. Absence of adequate in-situ monitors led us to use satellite retrieved aerosol optical depth (AOD) data to infer surface fine particulate matter (PM2.5). Annual premature mortality burden due to ambient PM2.5 exposure is estimated to be 1.17 (0.42-2.7) million for India. A chemical transport model WRF-Chem is utilized to estimate source-apportioned PM2.5 exposure. We estimate the exposure for four major sources - transport, residential, energy and industrial and found that the largest contribution to ambient PM2.5 exposure in India is contributed by residential sources. We estimate that if all the solid fuel use at households is replaced by clean fuel, ambient PM2.5 exposure would reduce by 30-45%, leading to 170,000 (14.5% of total burden) averted premature deaths annually. To understand how the air quality is projected to change under climate change scenarios, we analyze 13 CMIP5 models. We calculate the relative changes in PM2.5 (ensemble mean) in future relative to the baseline period (2001-2005) and apply the factor to satellite-derived PM2.5 exposure in baseline period to project future PM2.5 exposure. Ambient PM2.5 is expected to reach a maxima in 2030 under RCP4.5 (15.5% rise from baseline period) and in 2040 (25.5% rise) under RCP8.5 scenario. The projected exposure under RCP4.5 and RCP8.5 scenarios are further used to estimate premature mortality burden till the end of the century by considering population distribution projections from five shared socio-economic pathways (SSP) scenarios. We separate the burden due to ambient PM2.5 exposure in future attributable to change in meteorology due to climate change and change in demographic and epidemiological transitions. If all-India average PM2.5 exposure meets WHO interim target 1 (35 µg/m3) by 2031-40, 28000-38000 and 41100-60100 premature deaths can be averted every year under RCP4.5 and RCP8.5 respectively. Even if India fails to meet various standards, any progress towards achieving better air quality will have substantial health benefits.

  5. 77 FR 66927 - Approval and Promulgation of Implementation Plans; Florida 110(a)(1) and (2) Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental Protection... particulate matter (PM 2.5 ) national ambient air quality standards (NAAQS). Section 110(a) of the CAA...) for the 1997 8-Hour Ozone and PM 2.5 National Ambient Air Quality Standards.'' and September 25, 2009...

  6. Determinants of the Associations between Ambient Concentrations and Personal Exposures to Ambient PM2.5, NO2, and O3 during DEARS

    EPA Science Inventory

    In this analysis, ambient concentrations and personal exposures to PM2.5, O3, and NO2, air exchange rates, meteorological parameters, and questionnaire survey responses collected during the Detroit Exposure and Aerosol Research Study (DEARS) are used: 1) to evaluate different met...

  7. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project

    PubMed Central

    Stafoggia, Massimo; Weinmayr, Gudrun; Pedersen, Marie; Galassi, Claudia; Jørgensen, Jeanette T.; Oudin, Anna; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Marit Aasvang, Gunn; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L.; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T.; Tjønneland, Anne; Peeters, Petra H.; Bueno-de-Mesquita, Bas; Plusquin, Michelle; Key, Timothy J.; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Fournier, Agnes; Boutron-Ruault, Marie-Christine; Baglietto, Laura; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2017-01-01

    Background: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. Objective: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. Methods: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts - Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse [1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04]. Conclusions: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742 PMID:29033383

  8. Translocation and potential neurological effects of fine and ultrafine particles a critical update

    PubMed Central

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-01-01

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration. Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants. PMID:16961926

  9. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    PubMed

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration. Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.

  10. Study on an Air Quality Evaluation Model for Beijing City Under Haze-Fog Pollution Based on New Ambient Air Quality Standards

    PubMed Central

    Li, Li; Liu, Dong-Jun

    2014-01-01

    Since 2012, China has been facing haze-fog weather conditions, and haze-fog pollution and PM2.5 have become hot topics. It is very necessary to evaluate and analyze the ecological status of the air environment of China, which is of great significance for environmental protection measures. In this study the current situation of haze-fog pollution in China was analyzed first, and the new Ambient Air Quality Standards were introduced. For the issue of air quality evaluation, a comprehensive evaluation model based on an entropy weighting method and nearest neighbor method was developed. The entropy weighting method was used to determine the weights of indicators, and the nearest neighbor method was utilized to evaluate the air quality levels. Then the comprehensive evaluation model was applied into the practical evaluation problems of air quality in Beijing to analyze the haze-fog pollution. Two simulation experiments were implemented in this study. One experiment included the indicator of PM2.5 and was carried out based on the new Ambient Air Quality Standards (GB 3095-2012); the other experiment excluded PM2.5 and was carried out based on the old Ambient Air Quality Standards (GB 3095-1996). Their results were compared, and the simulation results showed that PM2.5 was an important indicator for air quality and the evaluation results of the new Air Quality Standards were more scientific than the old ones. The haze-fog pollution situation in Beijing City was also analyzed based on these results, and the corresponding management measures were suggested. PMID:25170682

  11. Impacts of coal burning on ambient PM2.5 pollution in China

    NASA Astrophysics Data System (ADS)

    Ma, Qiao; Cai, Siyi; Wang, Shuxiao; Zhao, Bin; Martin, Randall V.; Brauer, Michael; Cohen, Aaron; Jiang, Jingkun; Zhou, Wei; Hao, Jiming; Frostad, Joseph; Forouzanfar, Mohammad H.; Burnett, Richard T.

    2017-04-01

    High concentration of fine particles (PM2.5), the primary concern about air quality in China, is believed to closely relate to China's large consumption of coal. In order to quantitatively identify the contributions of coal combustion in different sectors to ambient PM2. 5, we developed an emission inventory for the year 2013 using up-to-date information on energy consumption and emission controls, and we conducted standard and sensitivity simulations using the chemical transport model GEOS-Chem. According to the simulation, coal combustion contributes 22 µg m-3 (40 %) to the total PM2. 5 concentration at national level (averaged in 74 major cities) and up to 37 µg m-3 (50 %) in the Sichuan Basin. Among major coal-burning sectors, industrial coal burning is the dominant contributor, with a national average contribution of 10 µg m-3 (17 %), followed by coal combustion in power plants and the domestic sector. The national average contribution due to coal combustion is estimated to be 18 µg m-3 (46 %) in summer and 28 µg m-3 (35 %) in winter. While the contribution of domestic coal burning shows an obvious reduction from winter to summer, contributions of coal combustion in power plants and the industrial sector remain at relatively constant levels throughout the year.

  12. The Association of Ambient Air Pollution and Physical Inactivity in the United States

    PubMed Central

    Roberts, Jennifer D.; Voss, Jameson D.; Knight, Brandon

    2014-01-01

    Background Physical inactivity, ambient air pollution and obesity are modifiable risk factors for non-communicable diseases, with the first accounting for 10% of premature deaths worldwide. Although community level interventions may target each simultaneously, research on the relationship between these risk factors is lacking. Objectives After comparing spatial interpolation methods to determine the best predictor for particulate matter (PM2.5; PM10) and ozone (O3) exposures throughout the U.S., we evaluated the cross-sectional association of ambient air pollution with leisure-time physical inactivity among adults. Methods In this cross-sectional study, we assessed leisure-time physical inactivity using individual self-reported survey data from the Centers for Disease Control and Prevention's 2011 Behavioral Risk Factor Surveillance System. These data were combined with county-level U.S. Environmental Protection Agency air pollution exposure estimates using two interpolation methods (Inverse Distance Weighting and Empirical Bayesian Kriging). Finally, we evaluated whether those exposed to higher levels of air pollution were less active by performing logistic regression, adjusting for demographic and behavioral risk factors, and after stratifying by body weight category. Results With Empirical Bayesian Kriging air pollution values, we estimated a statistically significant 16–35% relative increase in the odds of leisure-time physical inactivity per exposure class increase of PM2.5 in the fully adjusted model across the normal weight respondents (p-value<0.0001). Evidence suggested a relationship between the increasing dose of PM2.5 exposure and the increasing odds of physical inactivity. Conclusions In a nationally representative, cross-sectional sample, increased community level air pollution is associated with reduced leisure-time physical activity particularly among the normal weight. Although our design precludes a causal inference, these results provide additional evidence that air pollution should be investigated as an environmental determinant of inactivity. PMID:24598907

  13. Validity of ambient levels of fine particles as surrogate for personal exposure to outdoor air pollution--results of the European EXPOLIS-EAS Study (Swiss Center Basel).

    PubMed

    Oglesby, L; Künzli, N; Röösli, M; Braun-Fahrländer, C; Mathys, P; Stern, W; Jantunen, M; Kousa, A

    2000-07-01

    To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

  14. Validity of Ambient Levels of Fine Particles as Surrogate for Personal Exposure to Outdoor Air Pollution-Results of the European EXPOLIS-EAS Study (Swiss Center Basel).

    PubMed

    Oglesby, Lucy; Künzli, Nino; Röösli, Martin; Braun-Fahrländer, Charlotte; Mathys, Patrick; Stern, Willem; Jantunen, Matti; Kousa, Anu

    2000-07-01

    To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM 25 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM 2.5 mass were not correlated to corresponding home outdoor levels (n = 44, r S (S) =r o v ' Spearman (Sp) 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, r Sp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, r Sp = 0.53; Br: n = 44, r Sp = 0.21) and crustal (Ca: n = 44, r Sp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM 2.5 levels may be more appropriate exposure estimates than total personal PM 2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

  15. Blue Skies Bluer?

    PubMed

    Marshall, Julian D; Apte, Joshua S; Coggins, Jay S; Goodkind, Andrew L

    2015-12-15

    The largest U.S. environmental health risk is cardiopulmonary mortality from ambient PM2.5. The concentration-response (C-R) for ambient PM2.5 in the U.S. is generally assumed to be linear: from any initial baseline, a given concentration reduction would yield the same improvement in health risk. Recent evidence points to the perplexing possibility that the PM2.5 C-R for cardiopulmonary mortality and some other major endpoints might be supralinear: a given concentration reduction would yield greater improvements in health risk as the initial baseline becomes cleaner. We explore the implications of supralinearity for air policy, emphasizing U.S. If C-R is supralinear, an economically efficient PM2.5 target may be substantially more stringent than under current standards. Also, if a goal of air policy is to achieve the greatest health improvement per unit of PM2.5 reduction, the optimal policy might call for greater emission reductions in already-clean locales-making "blue skies bluer"-which may be at odds with environmental equity goals. Regardless of whether the C-R is linear or supralinear, the health benefits of attaining U.S. PM2.5 levels well below the current standard would be large. For the supralinear C-R considered here, attaining the current U.S. EPA standard, 12 μg m(-3), would avert only ~17% (if C-R is linear: ∼ 25%) of the total annual cardiopulmonary mortality attributable to PM2.5.

  16. Implementation and evaluation of PM2.5 source contribution ...

    EPA Pesticide Factsheets

    Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambient levels and deposited amounts of primary and secondary inorganic PM2.5. Confidence in this approach is established by comparing ISAM source contribution estimates to emissions zero-out simulations recognizing that these approaches are not always expected to provide the same answer. The comparisons are expected to be most similar for more linear processes such as those involving primary emissions of PM2.5 and most different for non-linear systems like ammonium nitrate formation. Primarily emitted PM2.5 (e.g. elemental carbon), sulfur dioxide, ammonia, and nitrogen oxide contribution estimates compare well to zero-out estimates for ambient concentration and deposition. PM2.5 sulfate ion relationships are strong, but nonlinearity is evident and shown to be related to aqueous phase oxidation reactions in the host model. ISAM and zero-out contribution estimates are less strongly related for PM2.5 ammonium nitrate, resulting from instances of non-linear chemistry and negative responses (increases in PM2.5 due to decreases in emissions). ISAM is demonstrated in the context of an annual simulation tracking well characterized emissions source sectors and boundary conditions shows source contri

  17. 76 FR 41075 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Indiana; Michigan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... 1997 fine particle national ambient air quality standards (1997 PM 2.5 NAAQS). The infrastructure... Particle (PM 2.5 ) National Ambient Air Quality Standards (NAAQS),'' from William T, Harnett, Director Air...

  18. 77 FR 65478 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Indiana; Michigan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... particle national ambient air quality standards (2006 PM 2.5 NAAQS). The infrastructure requirements are... 24- Hour Fine Particle (PM 2.5 ) National Ambient Air Quality Standards (NAAQS)'' (2009 Memo). The...

  19. The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) field study methodology.

    PubMed

    Richmond-Bryant, Jennifer; Hahn, Intaek; Fortune, Christopher R; Rodes, Charles E; Portzer, Jeffrey W; Lee, Sangdon; Wiener, Russell W; Smith, Luther A; Wheeler, Michael; Seagraves, Jeremy; Stein, Mark; Eisner, Alfred D; Brixey, Laurie A; Drake-Richman, Zora E; Brouwer, Lydia H; Ellenson, William D; Baldauf, Richard

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) field study examined indoor and outdoor exposure to traffic-generated air pollution by studying the individual processes of generation of traffic emissions, transport and dispersion of air contaminants along a roadway, and infiltration of the contaminants into a residence. Real-time instrumentation was used to obtain highly resolved time-series concentration profiles for a number of air pollutants. The B-TRAPPED field study was conducted in the residential Sunset Park neighborhood of Brooklyn, NY, USA, in May 2005. The neighborhood contained the Gowanus Expressway (Interstate 278), a major arterial road (4(th) Avenue), and residential side streets running perpendicular to the Gowanus Expressway and 4(th) Avenue. Synchronized measurements were obtained inside a test house, just outside the test house façade, and along the urban residential street canyon on which the house was located. A trailer containing Federal Reference Method (FRM) and real-time monitors was located next to the Gowanus Expressway to assess the source. Ultrafine particulate matter (PM), PM(2.5), nitrogen oxides (NO(x)), sulfur dioxide (SO(2)), carbon monoxide (CO), carbon dioxide (CO(2)), temperature, relative humidity, and wind speed and direction were monitored. Different sampling schemes were devised to focus on dispersion along the street canyon or infiltration into the test house. Results were obtained for ultrafine PM, PM(2.5), criteria gases, and wind conditions from sampling schemes focused on street canyon dispersion and infiltration. For comparison, the ultrafine PM and PM(2.5) results were compared with an existing data set from the Los Angeles area, and the criteria gas data were compared with measurements from a Vancouver epidemiologic study. Measured ultrafine PM and PM(2.5) concentration levels along the residential urban street canyon and at the test house façade in Sunset Park were demonstrated to be comparable to traffic levels at an arterial road and slightly higher than those in a residential area of Los Angeles. Indoor ultrafine PM levels were roughly 3-10 times lower than outdoor levels, depending on the monitor location. CO, NO(2), and SO(2) levels were shown to be similar to values that produced increased risk of chronic obstructive pulmonary disease hospitalizations in the Vancouver studies.

  20. Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou.

    PubMed

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Chan, Chuen-Yu

    2017-02-15

    Total personal exposures can differ from the concentrations measured at stationary ambient monitoring sites. To provide further insight into factors affecting exposure to particles, chemical tracers were used to separate total personal exposure into its ambient and non-ambient components. Simultaneous measurements of ambient and personal exposure to fine particles (PM 2.5 ) were conducted in eight districts of Guangzhou, a megacity in South China, during the winter of 2011. Considerable significant correlations (Spearman's Rho, r s ) between personal exposures and ambient concentrations of sulfate (SO 4 2- ; r s >0.68) were found in contrast to elemental carbon (EC; r s >0.37). The average fraction of personal SO 4 2- to ambient SO 4 2- resulting in an adjusted ambient exposure factor of α=0.72 and a slope of 0.73 was determined from linear regression analysis when there were minimal indoor sources of SO 4 2- . From all data pooled across the districts, the estimated average ambient-generated and non-ambient-generated exposure to PM 2.5 were 55.3μg/m 3 (SD=23.4μg/m 3 ) and 18.1μg/m 3 (SD=29.1μg/m 3 ), respectively. A significant association was found between ambient-generated exposure and ambient PM 2.5 concentrations (Pearson's r=0.51, p<0.001). As expected, the non-ambient generated exposure was not related to the ambient concentrations. This study highlights the importance of both ambient and non-ambient components of total personal exposure in the megacity of Guangzhou. Our results support the use of SO 4 2- as a tracer of personal exposure to PM 2.5 of ambient origin in environmental and epidemiological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006-2015.

    PubMed

    Faridi, Sasan; Shamsipour, Mansour; Krzyzanowski, Michal; Künzli, Nino; Amini, Heresh; Azimi, Faramarz; Malkawi, Mazen; Momeniha, Fatemeh; Gholampour, Akbar; Hassanvand, Mohammad Sadegh; Naddafi, Kazem

    2018-05-01

    The main objectives of this study were (1) investigation of the temporal variations of ambient fine particulate matter (PM 2.5 ) and ground level ozone (O 3 ) concentrations in Tehran megacity, the capital and most populous city in Iran, over a 10-year period from 2006 to 2015, and (2) estimation of their long-term health effects including all-cause and cause-specific mortality. For the first goal, the data of PM 2.5 and O 3 concentrations, measured at 21 regulatory monitoring network stations in Tehran, were obtained and the temporal trends were investigated. The health impact assessment of PM 2.5 and O 3 was performed using the World Health Organization (WHO) AirQ+ software updated in 2016 by WHO European Centre for Environment and Health. Local baseline incidences in Tehran level were used to better reveal the health effects associated with PM 2.5 and O 3 . Our study showed that over 2006-2015, annual mean concentrations of PM 2.5 and O 3 varied from 24.7 to 38.8 μg m -3 and 35.4 to 76.0 μg m -3 , respectively, and were significantly declining in the recent 6 years (2010-2015) for PM 2.5 and 8 years (2008-2015) for O 3 . However, Tehran citizens were exposed to concentrations of annual PM 2.5 exceeding the WHO air quality guideline (WHO AQG) (10 μg m -3 ), U.S. EPA and Iranian standard levels (12 μg m -3 ) during entire study period. We estimated that long-term exposure to ambient PM 2.5 contributed to between 24.5% and 36.2% of mortality from cerebrovascular disease (stroke), 19.8% and 24.1% from ischemic heart disease (IHD), 13.6% and 19.2% from lung cancer (LC), 10.7% and 15.3% from chronic obstructive pulmonary disease (COPD), 15.0% and 25.2% from acute lower respiratory infection (ALRI), and 7.6% and 11.3% from all-cause annual mortality in the time period. We further estimated that deaths from IHD accounted for most of mortality attributable to long-term exposure to PM 2.5 . The years of life lost (YLL) attributable to PM 2.5 was estimated to vary from 67,970 to 106,706 during the study period. In addition, long-term exposure to O 3 was estimated to be responsible for 0.9% to 2.3% of mortality from respiratory diseases. Overall, long-term exposure to ambient PM 2.5 and O 3 contributed substantially to mortality in Tehran megacity. Air pollution is a modifiable risk factor. Appropriate sustainable control policies are recommended to protect public health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A case study of development and application of a streamlined control and response modeling system for PM2.5 attainment assessment in China.

    PubMed

    Long, Shicheng; Zhu, Yun; Jang, Carey; Lin, Che-Jen; Wang, Shuxiao; Zhao, Bin; Gao, Jian; Deng, Shuang; Xie, Junping; Qiu, Xuezhen

    2016-03-01

    This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM2.5 attainment assessment in China. This method is capable of significantly reducing the dimensions required to establish a response surface model, as well as capturing more realistic response of PM2.5 to emission changes with a limited number of model simulations. The newly developed module establishes a data link between the system and the Software for Model Attainment Test-Community Edition (SMAT-CE), and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface. The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta (YRD) in China. Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality (CMAQ) model simulation results with maximum mean normalized error<3.5%. It is also demonstrated that primary emissions make a major contribution to ambient levels of PM2.5 in January and August (e.g., more than 50% contributed by primary emissions in Shanghai), and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM2.5 National Ambient Air Quality Standard. The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM2.5 (and potentially O3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments. Copyright © 2015. Published by Elsevier B.V.

  3. Socioeconomic disparities and sexual dimorphism in neurotoxic effects of ambient fine particles on youth IQ: A longitudinal analysis

    PubMed Central

    Younan, Diana; Franklin, Meredith; Lurmann, Fred; Wu, Jun; Baker, Laura A.; Chen, Jiu-Chiuan

    2017-01-01

    Mounting evidence indicates that early-life exposure to particulate air pollutants pose threats to children’s cognitive development, but studies about the neurotoxic effects associated with exposures during adolescence remain unclear. We examined whether exposure to ambient fine particles (PM2.5) at residential locations affects intelligence quotient (IQ) during pre-/early- adolescence (ages 9–11) and emerging adulthood (ages 18–20) in a demographically-diverse population (N = 1,360) residing in Southern California. Increased ambient PM2.5 levels were associated with decreased IQ scores. This association was more evident for Performance IQ (PIQ), but less for Verbal IQ, assessed by the Wechsler Abbreviated Scale of Intelligence. For each inter-quartile (7.73 μg/m3) increase in one-year PM2.5 preceding each assessment, the average PIQ score decreased by 3.08 points (95% confidence interval = [-6.04, -0.12]) accounting for within-family/within-individual correlations, demographic characteristics, family socioeconomic status (SES), parents’ cognitive abilities, neighborhood characteristics, and other spatial confounders. The adverse effect was 150% greater in low SES families and 89% stronger in males, compared to their counterparts. Better understanding of the social disparities and sexual dimorphism in the adverse PM2.5–IQ effects may help elucidate the underlying mechanisms and shed light on prevention strategies. PMID:29206872

  4. A panel study of airborne particulate matter concentration and impaired cardiopulmonary function in young adults by two different exposure measurement

    NASA Astrophysics Data System (ADS)

    Hu, Li-Wen; Qian, Zhengmin (Min); Bloom, Michael S.; Nelson, Erik J.; Liu, Echu; Han, Bin; Zhang, Nan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Komppula, Mika; Leskinen, Ari; Hirvonen, Maija-Riitta; Roponen, Marjut; Jalava, Pasi; Bai, Zhipeng; Dong, Guang-Hui

    2018-05-01

    This study sought to clarify the correlation of individual exposure measurements and PM2.5 measurements collected at regulatory monitoring sites in short-term panel study settings. To achieve this goal, 30 young, healthy adult participants were assigned to three groups with 4 samplers in each group to collect individual exposures during four weekends in March 2016. Participants also completed cardiopulmonary function tests during the same periods. For comparison, ambient air pollution data were obtained from the Air Pollution Surveillance Network in Guangzhou, China. The 8-h ambient pollutant averages and group sampler concentrations were used as separate indicators of air pollution exposure. Results showed that the 8-h mean concentration of personal PM2.5 exposure was 65.09 ± 22.18 μg/m3, which was 24.34 μg/m3 statistically higher than the ambient concentrations over the same period (p < 0.05). However, these concentrations were strongly correlated (Spearman's r = 0.937, p < 0.01). Separate mixed-effect models were fit for ambient and personal exposures to estimate their associations with cardiopulmonary outcomes. Higher PM2.5 and PM10 exposures were related to lower lung function of maximal mid-expiratory flow (MMEF). A 10 μg/m3 higher PM was associated with 0.11 L/S to 0.52 L/S lower MMEF. No effects on cardiovascular function were found. In conclusion, personal PM2.5 exposure might be higher than ambient concentrations. Young, healthy adults in urban areas may experience reduced lung function (lower MMEF), even after just 8 h of exposure to PM2.5 and PM10.

  5. PM levels in urban area of Bejaia

    NASA Astrophysics Data System (ADS)

    Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2017-04-01

    Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.

  6. REINVENTING PERSONAL EXPOSURE TO PARTICULATE MATTER

    EPA Science Inventory

    Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...

  7. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)<2.5μm) and coarse PM or PM2.5+ (AD between 2.5μm and 50μm). The iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. [Study of relationship between atmospheric fine particulate matter concentration and one grade a tertiary hospital emergency room visits during 2012 and 2013 in Beijing].

    PubMed

    Wang, Xuying; Li, Guoxing; Jin, Xiaobin; Mu, Jing; Pan, Jie; Liang, Fengchao; Tian, Lin; Chen, Shi; Guo, Qun; Dong, Wentan; Pan, Xiaochuan

    2016-01-01

    To explore the concentration-response relationship between ambient concentration of PM2.5 and daily total hospital emergency room visits in Beijing during 2012 and 2013. This study also examined the effects of ambient PM2.5 during heavy polluted days on emergency room visits compared with the light polluted days. We collected the daily meteorological factors monitoring data and concentrations of air pollutants in Beijing during October 1, 2012 to December 31, 2013. We also collected the daily emergency room visits from a tertiary hospital in Beijing in the same time period. Generalized additive model was fitted to estimate the association between the ambient PM2.5 and the hospital emergency room visits, by using the smooth function to adjust long term trend of time, public holidays and day of week. In addition, constrained piecewise linear function was then used to estimate the excess risk for different segment of concentration-response function. The annual average concentration of PM2.5 was 90.9 µg/m(3) during October 1, 2012 and December 31, 2013. There were total 64 260 cases for total emergency room visits, of which respiratory disease had 9 849 cases and cardiovascular disease had 11 168 cases. PM2.5 was positive related with PM10, NO2 and SO2. The corresponding correlation coefficients were 0.87, 0.78 and 0.62, respectively (P<0.05). And PM2.5 was positively related with relative humidity, with correlation coefficient 0.45 (P<0.05). But PM2.5 was negatively related with mean temperature (r=-0.17, P< 0.05) and wind speed (- 0.32, P<0.05). In the single polluted model, after adjusting the effects of temperature, relative humidity and wind, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits was 0.25% (95% CI: 0.07-0.43). In the two-pollutant model PM2.5+SO2 and PM2.5+NO2, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits were 1.07% (95%CI:0.83-1.30) and 0.56% (95%CI: 0.32-0.80) respectively, which were higher than the effect in single pollutant model. Average concentration of ambient particulate matters (PM2.5) was 204.16 µg/m(3) during heavy pollution, higher than control period (85.24 µg/m(3)). When PM2.5 as the primary air pollutants during heavy polluted days, we observed a significant increase in emergency room visits, and the odd ratios was 1.16 (95% CI:1.09-1.22). There were positive correlation between high concentration of ambient particulate matters (PM2.5) and increasing daily emergency room visits. Especially during the heavy polluted days, the effects of elevated concentration of PM2.5 on hospital emergency room visits were much larger.

  9. Particulate pollution -- a biological dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrack, D.

    Human epidemiological data from multiple studies on USA. and European populations have been reviewed extensively. The consensus supports a weak association between PM-10 particulate matter and cardio-pulmonary morbidity and mortality. It is consistent with factors in the particles comprising PM-10 causing the biological effects. PM-10 is treated as a precisely defined entity, which it is not! Ambient PM-10 particles have multiple sources, sizes 10m m, chemistry and surface area. The medical and biological effects are seen with the inhalation of a multi-media matrix of pollutants, often at elevated levels, a medical and biological problem. This paper addresses this biology, predominantlymore » determined by size and sources of PM reflecting particle chemistry and surface area, describing one mechanism by which inhaled fine particles provoke heart muscle dysfunction. Combustion-PM-2.5m m (C-PM-2.5) reach the alveoli with 70% + retention and are engulfed by pulmonary alveolar macrophages. These particles trigger chain reactions that lead to cardio-pulmonary morbidity. Their structure includes high absorptive capacity carbon, transition metal plaques, and silica components. PAH`s (Polyaromatic hydrocarbons) and other potentially toxic chemicals are extensively absorbed on them and are piggy-backed into macrophages without dilution by blood. PM-2.5`s trace amounts of soluble transition metal salts are important in the molecular and biological events leading to heart damage. Animal inhalation studies of C-PM-2.5 cause little cellular reaction in normal lungs. In lungs already irritated by other agents, C-PM-2.5 inhalation greatly aggravates the inflammatory response. The soluble transition-metals (Fe Salts) are the effector. The data are impressive and provides a robust scientific basis for more stringent regulations of ambient C-PM-2.5.« less

  10. Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals

    PubMed Central

    2010-01-01

    Background and Objective Exposure to fine airborne particles (PM2.5) has been shown to be responsible for cardiovascular and hematological effects, especially in older people with cardiovascular disease. Some epidemiological studies suggest that individuals with diabetes may be a particularly susceptible population. This study examined effects of short-term exposures to ambient PM2.5 on markers of systemic inflammation, coagulation, autonomic control of heart rate, and repolarization in 22 adults (mean age: 61 years) with type 2 diabetes. Methods Each individual was studied for four consecutive days with daily assessments of plasma levels of blood markers. Cardiac rhythm and electrocardiographic parameters were examined at rest and with 24-hour ambulatory ECG monitors. PM2.5 and meteorological data were measured daily on the rooftop of the patient exam site. Data were analyzed with models adjusting for season, weekday, meteorology, and a random intercept. To identify susceptible subgroups, effect modification was analyzed by clinical characteristics associated with insulin resistance as well as with oxidative stress and by medication intake. Results Interleukin (IL)-6 and tumor necrosis factor alpha showed a significant increase with a lag of two days (percent change of mean level: 20.2% with 95%-confidence interval [6.4; 34.1] and 13.1% [1.9; 24.4], respectively) in association with an increase of 10 μg/m3 in PM2.5. Obese participants as well as individuals with elevated glycosylated hemoglobin, lower adiponectin, higher ferritin or with glutathione S-transferase M1 null genotype showed higher IL-6 effects. Changes in repolarization were found immediately as well as up to four days after exposure in individuals without treatment with a beta-adrenergic receptor blocker. Conclusions Exposure to elevated levels of PM2.5 alters ventricular repolarization and thus may increase myocardial vulnerability to arrhythmias. Exposure to PM2.5 also increases systemic inflammation. Characteristics associated with insulin resistance or with oxidative stress were shown to enhance the association. PMID:20525188

  11. Influence of Human Activity Patterns, particle composition, and residential air exchange rates on modeled distributions of PM 2.5 exposure compared with central-site monitoring data

    EPA Science Inventory

    Central-site monitors do not account for factors such as outdoor-to-indoor transport and human activity patterns that influence personal exposures to ambient fine-particulate matter (PM2.5). We describe and compare different ambient PM2.5 exposure estimation...

  12. Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations

    PubMed Central

    2015-01-01

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007

  13. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    PubMed

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  14. Ambient Air Pollution Exposures and Risk of Parkinson Disease

    PubMed Central

    Liu, Rui; Young, Michael T.; Chen, Jiu-Chiuan; Kaufman, Joel D.; Chen, Honglei

    2016-01-01

    Background: Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). Objective: We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. Methods: Our nested case–control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995–1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. Results: We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. Conclusions: Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient air pollution exposures and risk of Parkinson disease. Environ Health Perspect 124:1759–1765; http://dx.doi.org/10.1289/EHP135 PMID:27285422

  15. Ambient Air Pollution Exposures and Risk of Parkinson Disease.

    PubMed

    Liu, Rui; Young, Michael T; Chen, Jiu-Chiuan; Kaufman, Joel D; Chen, Honglei

    2016-11-01

    Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. Our nested case-control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995-1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient air pollution exposures and risk of Parkinson disease. Environ Health Perspect 124:1759-1765; http://dx.doi.org/10.1289/EHP135.

  16. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    NASA Astrophysics Data System (ADS)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  17. Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-08-01

    Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m-3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.

  18. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction

    PubMed Central

    Quan, Chunli; Sun, Qinghua; Lippmann, Morton; Chen, Lung-Chi

    2011-01-01

    Ambient air PM2.5 (particulate matter less than 2.5 μm in diameter) has been associated with cardiovascular diseases (CVDs), but the underlying mechanisms affecting CVDs are unknown. The authors investigated whether subchronic inhalation of concentrated ambient PM2.5 (CAPs), whole diesel exhaust (WDE), or diesel exhaust gases (DEGs) led to exacerbation of atherosclerosis, pulmonary and systemic inflammation, and vascular dysfunction; and whether DEG interactions with CAPs alter cardiovascular effects. ApoE−/− mice were simultaneously exposed via inhalation for 5 hours/day, 4 days/week, for up to 5 months to one of five different exposure atmospheres: (1) filtered air (FA); (2) CAPs (105 μg/m3); (3) WDE (DEP = 436 μg/m3); (4) DEG (equivalent to gas levels in WDE group); and (5) CAPs+DEG (PM2.5: 113 μg/m3; with DEG equivalent to WDE group). After 3 and 5 months, lung lavage fluid and blood sera were analyzed, and atherosclerotic plaques were quantified by ultrasound imaging, hematoxylin and eosin (H&E stain), and en face Sudan IV stain. Vascular functions were assessed after 5 months of exposure. The authors showed that (1) subchronic CAPs, WDE, and DEG inhalations increased serum vascular cell adhesion molecule (VCAM)-1 levels and enhanced phenylephrine (PE)-induced vasoconstriction; (2) for plaque exacerbation, CAPs > WDE > DEG = FA, thus PM components (not present in WDE) were responsible for plaque development; (3) atherosclerosis can exacerbated through mechanistic pathways other than inflammation and vascular dysfunction; and (4) although there were no significant interactions between CAPs and DEG on plaque exacerbation, it is less clear whether the effects of CAPs on vasomotor dysfunction and pulmonary/systemic inflammation were enhanced by the DEG coexposure. PMID:20462391

  19. Associations between ambient air pollution and prevalence of stroke and cardiovascular diseases in 33 Chinese communities

    NASA Astrophysics Data System (ADS)

    Dong, Guang-Hui; Qian, Zhengmin (Min); Wang, Jing; Chen, Weiqing; Ma, Wenjun; Trevathan, Edwin; Xaverius, Pamela K.; DeClue, Richard; Wiese, Andrew; Langston, Marvin; Liu, Miao-Miao; Wang, Da; Ren, Wan-Hui

    2013-10-01

    Inconsistent results have been reported that long-term exposure to ambient air pollution contributes to the increased prevalence of stroke and cardiovascular diseases (CVDs). In order to examine whether the exposure to ambient air pollution was associated with the prevalence of stroke and CVDs among people living in a heavy industrial province of northeast China, we conducted a cross-sectional study of 24,845 Chinese adults, ages 18-74 years old, from 33 communities in the 11 districts of the three Northeastern Chinese Cities during 2009. Three-year (2006-2008) average concentrations of particles with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2), and Ozone (O3) were calculated from monitoring stations in each of the 11 districts. We used two-level logistic regressions models to examine the effects of yearly variations in exposure to each pollutant, controlling for important covariates. We found significant associations between PM10 and SO2 levels and stroke prevalence after accounting for important covariates: the adjusted odds ratio for stroke increased by 1.16 (95% confidence interval [CI], 1.03-1.30) per 19 μg m-3 increase in PM10, and 1.14 (95%CI, 1.01-1.29) per 20 μg m-3 increase in SO2, respectively. When stratified analysis by gender, these associations were significant only in men, but not in women. In conclusion, this study shows the association between long-term exposure to PM10 and SO2 and increased stroke prevalence, and the associations were more apparent in men than in women.

  20. Association of short-term increases in ambient air pollution and timing of initial asthma diagnosis among Medicaid-enrolled children in a metropolitan area.

    PubMed

    Wendt, Judy K; Symanski, Elaine; Stock, Thomas H; Chan, Wenyaw; Du, Xianglin L

    2014-05-01

    We investigated associations of short-term changes in ambient ozone (O3), fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations and the timing of new-onset asthma, using a large, high-risk population in an area with historically high ozone levels. The study population included 18,289 incident asthma cases identified among Medicaid-enrolled children in Harris County Texas between 2005-2007, using Medicaid Analytic Extract enrollment and claims files. We used a time-stratified case-crossover design and conditional logistic regression to assess the effect of increased short-term pollutant concentrations on the timing of asthma onset. Each 10 ppb increase in ozone was significantly associated with new-onset asthma during the warm season (May-October), with the strongest association seen when a 6-day cumulative average period was used as the exposure metric (odds ratio [OR]=1.05, 95% confidence interval [CI], 1.02-1.08). Similar results were seen for NO2 and PM2.5 (OR=1.07, 95% CI, 1.03-1.11 and OR=1.12, 95% CI, 1.03-1.22, respectively), and PM2.5 also had significant effects in the cold season (November-April), 5-day cumulative lag (OR=1.11. 95% CI, 1.00-1.22). Significantly increased ORs for O3 and NO2 during the warm season persisted in co-pollutant models including PM2.5. Race and age at diagnosis modified associations between ozone and onset of asthma. Our results indicate that among children in this low-income urban population who developed asthma, their initial date of diagnosis was more likely to occur following periods of higher short-term ambient pollutant levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM Sampler...

  2. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m 3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m 3) PM 2.5/PM 10 Ratio FRM Sampler...

  3. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM Sampler...

  4. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM Sampler...

  5. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM 2.5/PM 10 Ratio FRM Sampler...

  6. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols.

    PubMed

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Krouzek, Jiri; Hovorka, Jan

    2013-06-14

    Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1

  7. Gestational exposure to urban air pollution related to a decrease in cord blood vitamin d levels.

    PubMed

    Baïz, Nour; Dargent-Molina, Patricia; Wark, John D; Souberbielle, Jean-Claude; Slama, Rémy; Annesi-Maesano, Isabella

    2012-11-01

    Vitamin D deficiency has been implicated in the increased risk of several diseases. Exposure to air pollution has been suggested as a contributor to vitamin D deficiency. However, studies that have examined the effects of air pollution on vitamin D status are few and have never focused on prenatal life as an exposure window. Our aim was to investigate the associations between gestational exposure to urban air pollutants and 25-hydroxyvitamin D [25(OH)D] cord blood serum level in 375 mother-child pairs of the EDEN birth cohort. The Atmospheric Dispersion Modelling System (ADMS-Urban) pollution model, a validated dispersion model combining data on traffic conditions, topography, meteorology, and background pollution, was used to assess the concentrations of two major urban pollutants, particulate matter less than 10 μm in diameter (PM(10)) and nitrogen dioxide (NO(2)), at the mother's home address during pregnancy. Cord blood samples were collected at birth and were analyzed for levels of 25(OH)D. Maternal exposure to ambient urban levels of NO(2) and PM(10) during the whole pregnancy was a strong predictor of low vitamin D status in newborns. After adjustment, log-transformed 25(OH)D decreased by 0.15 U (P = 0.05) and 0.41 U (P = 0.04) for a 10-μg/m(3) increase in NO(2) and PM(10) pregnancy levels, respectively. The association was strongest for third-trimester exposures (P = 0.0003 and P = 0.004 for NO(2) and PM(10), respectively). Gestational exposure to ambient urban air pollution, especially during late pregnancy, may contribute to lower vitamin D levels in offspring. This could affect the child's risk of developing diseases later in life.

  8. Wood burning pollution in southern Chile: PM2.5 source apportionment using CMB and molecular markers.

    PubMed

    Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J

    2017-06-01

    Temuco is a mid-size city representative of severe wood smoke pollution in southern Chile; i.e., ambient 24-h PM 2.5 concentrations have exceeded 150 μg/m 3 in the winter season and the top concentration reached 372 μg/m 3 in 2010. Annual mean concentrations have decreased but are still above 30 μg/m 3 . For the very first time, a molecular marker source apportionment of ambient organic carbon (OC) and PM 2.5 was conducted in Temuco. Primary resolved sources for PM 2.5 were wood smoke (37.5%), coal combustion (4.4%), diesel vehicles (3.3%), dust (2.2%) and vegetative detritus (0.7%). Secondary inorganic PM 2.5 (sulfates, nitrates and ammonium) contributed 4.8% and unresolved organic aerosols (generated from volatile emissions from incomplete wood combustion), including secondary organic aerosols, contributed 47.1%. Adding the contributions of unresolved organic aerosols to those from primary wood smoke implies that wood burning is responsible for 84.6% of the ambient PM 2.5 in Temuco. This predominance of wood smoke is ultimately due to widespread poverty and a lack of efficient household heating methods. The government has been implementing emission abatement policies but achieving compliance with ambient air quality standards for PM 2.5 in southern Chile remains a challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies

    PubMed Central

    Liu, Qian; Xu, Cheng; Ji, Guixiang; Liu, Hui; Shao, Wentao; Zhang, Chunlan; Gu, Aihua; Zhao, Peng

    2017-01-01

    The International Agency for Research on Cancer and the World Health Organization have designated airborne particulates, including particulates of median aerodynamic diameter ≤ 2.5 μm (PM2.5), as Group 1 carcinogens. It has not been determined, however, whether exposure to ambient PM2.5 is associated with an increase in respiratory related diseases. This meta-analysis assessed the association between exposure to ambient fine particulate matter (PM2.5) and the risk of respiratory tract diseases, using relevant articles extracted from PubMed, Web of Science, and Embase. In results, of the 1,126 articles originally identified, 35 (3.1%) were included in this meta-analysis. PM2.5 was found to be associated with respiratory tract diseases. After subdivision by age group, respiratory tract disease, and continent, PM2.5 was strongly associated with respiratory tract diseases in children, in persons with cough, lower respiratory illness, and wheezing, and in individuals from North America, Europe, and Asia. The risk of respiratory tract diseases was greater for exposure to traffic-related than non-traffic-related air pollution. In children, the pooled relative risk (RR) represented significant increases in wheezing (8.2%), cough (7.5%), and lower respiratory illness (15.3%). The pooled RRs in children were 1.091 (95%CI: 1.049, 1.135) for exposure to <25 μg/m3 PM2.5, and 1.126 (95%CI: 1.067, 1.190) for exposure to ≥ 25 μg/m3 PM2.5. In conclusion, exposure to ambient PM2.5 was significantly associated with the development of respiratory tract diseases, especially in children exposed to high concentrations of PM2.5. PMID:28808195

  10. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies.

    PubMed

    Liu, Qian; Xu, Cheng; Ji, Guixiang; Liu, Hui; Shao, Wentao; Zhang, Chunlan; Gu, Aihua; Zhao, Peng

    2017-01-19

    The International Agency for Research on Cancer and the World Health Organization have designated airborne particulates, including particulates of median aerodynamic diameter ≤ 2.5 μm (PM 2.5 ), as Group 1 carcinogens. It has not been determined, however, whether exposure to ambient PM 2.5 is associated with an increase in respiratory related diseases. This meta-analysis assessed the association between exposure to ambient fine particulate matter (PM 2.5 ) and the risk of respiratory tract diseases, using relevant articles extracted from PubMed, Web of Science, and Embase. In results, of the 1,126 articles originally identified, 35 (3.1%) were included in this meta-analysis. PM 2.5 was found to be associated with respiratory tract diseases. After subdivision by age group, respiratory tract disease, and continent, PM 2.5 was strongly associated with respiratory tract diseases in children, in persons with cough, lower respiratory illness, and wheezing, and in individuals from North America, Europe, and Asia. The risk of respiratory tract diseases was greater for exposure to traffic-related than non-traffic-related air pollution. In children, the pooled relative risk (RR) represented significant increases in wheezing (8.2%), cough (7.5%), and lower respiratory illness (15.3%). The pooled RRs in children were 1.091 (95%CI: 1.049, 1.135) for exposure to <25 μg/m 3 PM 2.5 , and 1.126 (95%CI: 1.067, 1.190) for exposure to ≥ 25 μg/m 3 PM 2.5 . In conclusion, exposure to ambient PM 2.5 was significantly associated with the development of respiratory tract diseases, especially in children exposed to high concentrations of PM 2.5 .

  11. PRIMARY AND SECONDARY CONTRIBUTIONS TO AMBIENT PM IN THE MIDWESTERN UNITED STATES

    EPA Science Inventory

    Ambient PM2.5 samples were collected in five Midwestern US cities throughout 2004: East St. Louis, Illinois; Detroit, Michigan; Cincinnati, Ohio; Bondville, Illinois; and Northbrook, Illinois. Monthly composites were analyzed using chemical derivatization coupled with ...

  12. Integration of Air Quality & Exposure Models for Health Studies

    EPA Science Inventory

    The presentation describes a new community-scale tool called exposure model for individuals (EMI), which predicts five tiers of individual-level exposure metrics for ambient PM using outdoor concentrations, questionnaires, weather, and time-location information. In this modeling ...

  13. Association of Ambient Air Pollution with Depressive and Anxiety Symptoms in Older Adults: Results from the NSHAP Study.

    PubMed

    Pun, Vivian C; Manjourides, Justin; Suh, Helen

    2017-03-01

    Ambient fine particulate matter (PM 2.5 ) is among the most prevalent sources of environmentally induced inflammation and oxidative stress, both of which are implicated in the pathogenesis of most mental disorders. Evidence, however, concerning the impact of PM 2.5 on mental health is just emerging. We examined the association between PM 2.5 and current level of depressive and anxiety symptoms using a nationally representative probability sample ( n = 4,008) of older, community-dwelling individuals living across the United States (the National Social Life, Health and Aging project). Mental health was evaluated using validated, standardized questionnaires and clinically relevant cases were identified using well-established cutoffs; daily PM 2.5 estimates were obtained using spatiotemporal models. We used generalized linear mixed models, adjusting for potential confounders, and explored effect modification. An increase in PM 2.5 was significantly associated with anxiety symptoms, with the largest increase for 180-days moving average (OR = 1.61; 95% CI: 1.35, 1.92) after adjusting for socioeconomic measures (SES); PM 2.5 was positively associated with depressive symptoms, and significantly for 30-day moving average (OR = 1.16; 95% CI: 1.05, 1.29) upon SES adjustment. The observed associations were enhanced among individuals who had low SES and history of comorbidity. When considering mental health as chronic conditions, PM 2.5 was significantly associated with incident depressive symptoms for all exposure windows examined, but with incident anxiety symptoms only for shorter exposure windows, which may be due to a drop in power resulting from the decreased between-subject variability in chronic PM 2.5 exposure. PM 2.5 was associated with depressive and anxiety symptoms, with associations the strongest among individuals with lower SES or among those with certain health-related characteristics. Citation: Pun VC, Manjourides J, Suh H. 2017. Association of ambient air pollution with depressive and anxiety symptoms in older adults: results from the NSHAP study. Environ Health Perspect 125:342-348; http://dx.doi.org/10.1289/EHP494.

  14. Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies.

    PubMed

    de Kok, Theo M C M; Driece, Hermen A L; Hogervorst, Janneke G F; Briedé, Jacob J

    2006-01-01

    Particulate air pollution (PM) is an important environmental health risk factor for many different diseases. This is indicated by numerous epidemiological studies on associations between PM exposure and occurrence of acute respiratory infections, lung cancer and chronic respiratory and cardiovascular diseases. The biological mechanisms behind these associations are not fully understood, but the results of in vitro toxicological research have shown that PM induces several types of adverse cellular effects, including cytotoxicity, mutagenicity, DNA damage and stimulation of proinflammatory cytokine production. Because traffic is an important source of PM emission, it seems obvious that traffic intensity has an important impact on both quantitative and qualitative aspects of ambient PM, including its chemical, physical and toxicological characteristics. In this review, the results are summarized of the most recent studies investigating physical and chemical characteristics of ambient and traffic-related PM in relation to its toxicological activity. This evaluation shows that, in general, the smaller PM size fractions (

  15. Trivalent chromium solubility and its influence on quantification of hexavalent chromium in ambient particulate matter using EPA method 6800.

    PubMed

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K; Shin, Jin Young; Fan, Zhihua

    2014-12-01

    Measurement of carcinogenic Cr(VI) in ambient PM is challenging due to potential errors associated with conversion between Cr (VI) (a carcinogen) and Cr(III) (an essential nutrient). Cr(III) conversion is a particular concern due to its > 80% atomic abundance in total Cr. US. Environmental Protection Agency (EPA) method 6800 that uses water-soluble isotope spikes can be used to correct the interconversion. However, whether the enriched Cr(III) isotope spikes can adequately mimic the Cr(III) species originally in ambient PM is unknown. This study examined the water solubility of Cr(III) in ambient PM and discussed its influence on Cr(VI) measurement. Ambient PM10 samples were collected on Teflon filters at four sites in New Jersey that may have different Cr emission sources. The samples were ultrasonically extracted with 5 mL DI-H2O (pH 5.7) at room temperature for 40 min, and then analyzed by ion chromatography-inductively coupled plasma mass spectrometry (IC-ICPMS). Cr(III) was below detection limit (0.06 ng/m3) for all samples, suggesting water-soluble Cr(III) species, such as CrCl3, Cr(NO3)3, and amorphous Cr(OH)3, in the ambient PM were negligible. Therefore, the enriched 50Cr(III) isotope spike (in the form of Cr(NO3)3) could not mimic the original ambient Cr(III). Only the conversion of 53Cr(VI) (in the form of K2CrO4) was taken into account when correcting the interconversion. We then used NaHCO3-pretreated MCE filters (prespiked with enriched isotope species) to measure Cr(VI) in the ambient PM10. The samples were ultrasonically extracted at 60 C pH 9 solutions for 40 min followed by IC-ICPMS analysis. Due to the correction of Cr(VI) reduction, the Cr(VI) concentrations determined by EPA method 6800, 0.26 ± 0.16 (summer) and 0.16 ± 0.11(winter) ng/m3 (n = 64), were significantly greater than those by the external standard curve, 0.21 ± 0.17 (summer) and 0.10 ± 0.07 (winter) ng/m3 (n = 56) (p < 0.01, Student's t-test). Our study revealed that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species in ambient PM. Implications: Accurate measurement of carcinogenic Cr(VI) in ambient PM is challenging due to conversion between Cr(VI) (a human carcinogen) and Cr(III) (a human essential nutrient). The conversion of CR(III) is of particular concern due to its dominant presence in total Cr (>80%). This study examined the water solubility of Cr(III) in ambient PM that was collected at four locations in New Jersey. Then we discussed the influence of Cr(III) solubility on the application of EPA method 6800, which utilizes enriched isotope spikes to correct the interconversion. Our results suggested that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species.

  16. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans

    PubMed Central

    Chen, Zhanghua; Salam, Muhammad T.; Toledo-Corral, Claudia; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Wilson, John P.; Trigo, Enrique

    2016-01-01

    OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae. PMID:26868440

  17. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    PubMed

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

    PubMed

    Cohen, Aaron J; Brauer, Michael; Burnett, Richard; Anderson, H Ross; Frostad, Joseph; Estep, Kara; Balakrishnan, Kalpana; Brunekreef, Bert; Dandona, Lalit; Dandona, Rakhi; Feigin, Valery; Freedman, Greg; Hubbell, Bryan; Jobling, Amelia; Kan, Haidong; Knibbs, Luke; Liu, Yang; Martin, Randall; Morawska, Lidia; Pope, C Arden; Shin, Hwashin; Straif, Kurt; Shaddick, Gavin; Thomas, Matthew; van Dingenen, Rita; van Donkelaar, Aaron; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H

    2017-05-13

    Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM 2·5 ) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure-response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure-response functions spanning the global range of exposure. Ambient PM 2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM 2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM 2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000-422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM 2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Bill & Melinda Gates Foundation and Health Effects Institute. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  19. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    NASA Astrophysics Data System (ADS)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability in exposure concentration, including ventilation air source, window status, fan setting, AC utilization, vehicle speed, road type, travel direction, and time of day. Another field data collection measured PM2.5 exposure concentrations on pre-selected routes across transportation modes of pedestrian, bus, and car to quantify the variability in the transportation mode concentration ratios, and identify factors affecting variability in traffic-related concentrations. In general, population daily average exposure to ambient PM2.5 is less than the ambient concentration by approximately half. The ratio of PM2.5 ambient exposure to ambient concentration (Ea/C) varies by individual, geographic area and season, as a result of regional differences in housing stock and seasonal differences in air exchange rates (ACH). For the indoor residence, the single-zone assumption is biased when any non-ambient source is presented. Bias correction factors are developed for cooking and smoking scenarios, separately, to improve the concentration estimates. Correction factors are most sensitive to changes in ACH but relatively insensitive to variations in source emission rate and duration. In a SHEDS-PM case study, the population daily average total exposure increased by 17% after applying correction factors. Transportation mode exposure concentrations are sensitive to mode, and are affected by factors such as vehicle ventilation and proximity to on-road emission sources. The in-vehicle to outside vehicle concentration (I/O) ratio is highly sensitive to whether windows are open or, for closed windows, to whether fresh air or recirculating air is used. Both model simulations and field studies are needed to inform better understanding of human exposure. Exposure, and not just concentration, should be considered in developing risk management strategies to reduce uncertainty in health effect estimates, and to identify highly exposed groups and possible exposure reduction strategies.

  20. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh R.; Shaw, Marvin; Pound, Ryan; Kramer, Louisa J.; Price, Robin; Young, Stuart; Lewis, Alastair C.; Pope, Francis D.

    2018-02-01

    A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.

  1. RECEPTOR MODELING OF AMBIENT PARTICULATE MATTER DATA USING POSITIVE MATRIX FACTORIZATION REVIEW OF EXISTING METHODS

    EPA Science Inventory

    Methods for apportioning sources of ambient particulate matter (PM) using the positive matrix factorization (PMF) algorithm are reviewed. Numerous procedural decisions must be made and algorithmic parameters selected when analyzing PM data with PMF. However, few publications docu...

  2. RELATIVE TOXICITY OF SIZE-FRACTIONATED PARTICULATE MATTER OBTAINED AT DIFFERENT DISTANCES FROM A HIGHWAY

    EPA Science Inventory

    Epidemiological studies have reported an association between proximity to highway traffic and increased respiratory symptoms. This study was initiated to determine the contribution of ambient particulate matter (PM) to these observed effects. Ambient PM was collected for 2 weeks ...

  3. Relationship between chemical composition and pulmonary toxicity of source-specific ambient particulate matter

    EPA Science Inventory

    Epidemiological studies have reported incidence of cardio-pulmonary disease associated with increase in particulate matter (PM) exposure. In this study, the pulmonary toxicity potential of combustion and ambient PM were investigated using data from animal studies at the US EPA....

  4. Cardiovascular Effects of Concentrated Ambient Fine and Ultrafine Particulate Matter Exposure in Healthy Older Volunteers

    EPA Science Inventory

    Rationale: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Advanced age is among the factors identified as conferring susceptibility to PM inhalation. In order to characteri...

  5. Impact of road traffic emissions on ambient air quality in an industrialized area.

    PubMed

    Garcia, Sílvia M; Domingues, Gonçalo; Gomes, Carla; Silva, Alexandra V; Almeida, S Marta

    2013-01-01

    Several epidemiological studies showed a correlation between airborne particulate matter(PM) and the incidence of several diseases in exposed populations. Consequently, the European Commission reinforced the need and obligation of member-states to monitor exposure levels of PM and adopt measures to reduce this exposure. However, in order to plan appropriate actions, it is necessary to understand the main sources of air pollution and their relative contributions to the formation of the ambient aerosol. The aim of this study was to develop a methodology to assess the contribution of vehicles to the atmospheric aerosol,which may constitute a useful tool to assess the effectiveness of planned mitigation actions.This methodology is based on three main steps: (1) estimation of traffic emissions provided from the vehicles exhaust and resuspension; (2) use of the dispersion model TAPM (“The Air Pollution Model”) to estimate the contribution of traffic for the atmospheric aerosol; and(3) use of geographic information system (GIS) tools to map the PM10 concentrations provided from traffic in the surroundings of a target area. The methodology was applied to an industrial area, and results showed that the highest contribution of traffic for the PM10 concentrations resulted from dust resuspension and that heavy vehicles were the type that most contributed to the PM10 concentration.

  6. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California.

    PubMed

    Delamater, Paul L; Finley, Andrew O; Banerjee, Sudipto

    2012-05-15

    There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)), particulate matter<10 μm (PM(10)), particulate matter<2.5 μm (PM(2.5)), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO(2), were significant and positively correlated with asthma hospitalizations. PM(2.5) also had a positive, significant association with asthma hospitalizations. PM(10), relative humidity, and maximum temperature produced mixed results, whereas O(3) was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO(2), and PM(2.5). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential - the RAPTES project

    PubMed Central

    2011-01-01

    Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity. Conclusion The response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro. PMID:21888644

  8. Ambient air pollution, weather changes, and outpatient visits for allergic conjunctivitis: A retrospective registry study

    NASA Astrophysics Data System (ADS)

    Hong, Jiaxu; Zhong, Taoling; Li, Huili; Xu, Jianming; Ye, Xiaofang; Mu, Zhe; Lu, Yi; Mashaghi, Alireza; Zhou, Ying; Tan, Mengxi; Li, Qiyuan; Sun, Xinghuai; Liu, Zuguo; Xu, Jianjiang

    2016-04-01

    Allergic conjunctivitis is a common problem that significantly impairs patients’ quality of life. Whether air pollution serves as a risk factor for the development of allergic conjunctivitis remains elusive. In this paper, we assess the relationship between air pollutants and weather conditions with outpatient visits for allergic conjunctivitis. By using a time-series analysis based on the largest dataset ever assembled to date, we found that the number of outpatient visits for allergic conjunctivitis was significantly correlated with the levels of NO2, O3, and temperature, while its association with humidity was statistically marginal. No associations between PM10, PM2.5, SO2, or wind velocity and outpatient visits were seen. Subgroup analyses showed that sex seemed to modify the effects of humidity on outpatient visits for allergic conjunctivitis, but not for NO2, O3, or temperature. People younger than 40 were found to be susceptible to changes of all four parameters, while those older than 40 were only consistently affected by NO2 levels. Our findings revealed that higher levels of ambient NO2, O3, and temperature increase the chances of outpatient visits for allergic conjunctivitis. Ambient air pollution and weather changes may contribute to the worsening of allergic conjunctivitis.

  9. Ambient air pollution, weather changes, and outpatient visits for allergic conjunctivitis: A retrospective registry study.

    PubMed

    Hong, Jiaxu; Zhong, Taoling; Li, Huili; Xu, Jianming; Ye, Xiaofang; Mu, Zhe; Lu, Yi; Mashaghi, Alireza; Zhou, Ying; Tan, Mengxi; Li, Qiyuan; Sun, Xinghuai; Liu, Zuguo; Xu, Jianjiang

    2016-04-01

    Allergic conjunctivitis is a common problem that significantly impairs patients' quality of life. Whether air pollution serves as a risk factor for the development of allergic conjunctivitis remains elusive. In this paper, we assess the relationship between air pollutants and weather conditions with outpatient visits for allergic conjunctivitis. By using a time-series analysis based on the largest dataset ever assembled to date, we found that the number of outpatient visits for allergic conjunctivitis was significantly correlated with the levels of NO2, O3, and temperature, while its association with humidity was statistically marginal. No associations between PM10, PM2.5, SO2, or wind velocity and outpatient visits were seen. Subgroup analyses showed that sex seemed to modify the effects of humidity on outpatient visits for allergic conjunctivitis, but not for NO2, O3, or temperature. People younger than 40 were found to be susceptible to changes of all four parameters, while those older than 40 were only consistently affected by NO2 levels. Our findings revealed that higher levels of ambient NO2, O3, and temperature increase the chances of outpatient visits for allergic conjunctivitis. Ambient air pollution and weather changes may contribute to the worsening of allergic conjunctivitis.

  10. SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE

    EPA Science Inventory

    Respiratory morbidity and mortality associated with increases in ambient levels of particulate matter (PM) may be dependent on particle elemental composition. Particle-associated metals such as copper may catalyze formation of reactive oxygen species leading to inflammation and l...

  11. 2016 Targeted AirShed Grant Program - Closed Announcement FY 2016

    EPA Pesticide Factsheets

    Targeted Air Shed Grant Program proposal for FY 2016. The overall goal of the program is to reduce air pollution in the Nation’s areas with the highest levels of ozone and PM2.5 ambient air concentrations.

  12. 2015 Targeted AirShed Grant Program Grant - Closed Announcement FY 2015

    EPA Pesticide Factsheets

    Targeted Air Shed Grant Program proposal for FY 2015. The overall goal of the program is to reduce air pollution in the Nation’s areas with the highest levels of ozone and PM2.5 ambient air concentrations.

  13. Impact of Diwali celebrations on urban air and noise quality in Delhi City, India.

    PubMed

    Mandal, Papiya; Prakash, Mamta; Bassin, J K

    2012-01-01

    A study was conducted in the residential areas of Delhi, India, to assess the variation in ambient air quality and ambient noise levels during pre-Diwali month (DM), Diwali day (DD) and post-Diwali month during the period 2006 to 2008. The use of fireworks during DD showed 1.3 to 4.0 times increase in concentration of respirable particulate matter (PM(10)) and 1.6 to 2.5 times increase in concentration of total suspended particulate matter (TSP) than the concentration during DM. There was a significant increase in sulfur dioxide (SO(2)) concentration but the concentration of nitrogen dioxide (NO(2)) did not show any considerable variation. Ambient noise level were 1.2 to 1.3 times higher than normal day. The study also showed a strong correlation between PM(10) and TSP (R (2) ≥ 0.9) and SO(2) and NO(2) (R (2) ≥ 0.9) on DD. The correlation between noise level and gaseous pollutant were moderate (R (2) ≥ 0.5). The average concentration of the pollutants during DD was found higher in 2007 which could be due to adverse meteorological conditions. The statistical interpretation of data indicated that the celebration of Diwali festival affects the ambient air and noise quality. The study would provide public awareness about the health risks associated with the celebrations of Diwali festival so as to take proper precautions.

  14. Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods

    PubMed Central

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-01-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005–2007. PMID:21776223

  15. Estimation of fine particulate matter in Taipei using landuse regression and bayesian maximum entropy methods.

    PubMed

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-06-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.

  16. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  17. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis

    PubMed Central

    McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579

  18. Quantitative assessment of source contributions to PM2.5 on the west coast of Peninsular Malaysia to determine the burden of Indonesian peatland fire

    NASA Astrophysics Data System (ADS)

    Fujii, Yusuke; Tohno, Susumu; Amil, Norhaniza; Latif, Mohd Talib

    2017-12-01

    Almost every dry season, peatland fires occur in Sumatra and Kalimantan Inlands. Dense smoke haze from Indonesian peatland fires (IPFs) causes impacts on health, visibility, transport and regional climate in Southeast Asian countries such as Indonesia, Malaysia, and Singapore. Quantitative knowledge of IPF source contribution to ambient aerosols in Southeast Asia (SEA) is so useful to make appropriate suggestions to policy makers to mitigate IPF-induced haze pollution. However, its quantitative contribution to ambient aerosols in SEA remains unclarified. In this study, the source contributions to PM2.5 were determined by the Positive Matrix Factorization (PMF) model with annual comprehensive observation data at Petaling Jaya on the west coast of Peninsular Malaysia, which is downwind of the IPF areas in Sumatra Island, during the dry (southwest monsoon: June-September) season. The average PM2.5 mass concentration during the whole sampling periods (Aug 2011-Jul 2012) based on the PMF and chemical mass closure models was determined as 20-21 μg m-3. Throughout the sampling periods, IPF contributed (on average) 6.1-7.0 μg m-3 to the PM2.5, or ∼30% of the retrieved PM2.5 concentration. In particular, the PM2.5 was dominantly sourced from IPF during the southwest monsoon season (51-55% of the total PM2.5 concentration on average). Thus, reducing the IPF burden in the PM2.5 levels would drastically improve the air quality (especially during the southwest monsoon season) around the west coast of Peninsular Malaysia.

  19. METHODOLOGY FOR SITING AMBIENT AIR MONITORS AT THE NEIGHBORHOOD SCALE

    EPA Science Inventory

    In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region in order to achieve monitor siting objectives.

    We p...

  20. Linking Different Exposure Patterns to Internal Lung Dose for Heterogeneous Ambient Aerosols

    EPA Science Inventory

    Particulate matter (PM) in the ambient air is a complex mixture of particles with different sizes and chemical compositions. Because potential health effects are known to be different for different size particles, specific dose of size-fractionated PM under realistic exposure con...

  1. Refined ambient PM2.5 exposure surrogates and the risk of myocardial infarction

    EPA Science Inventory

    Using a case-crossover study design and conditional logistic regression, we compared the relative odds of transmural (full-wall) myocardial infarction (MI) calculated using exposure surrogates that account for human activity patterns and the indoor transport of ambient PM2....

  2. NAAQS Attainment and the PM2.5-Mortality Association

    EPA Science Inventory

    Background. Ambient air quality has been steadily improving since promulgation of National Ambient Air Quality Standards (NAAQS) by EPA in accordance with the Clean Air Act. In 1997, a standard for fine particulate matter (PM2.5) was promulgated for the first time. Although the ...

  3. Aerosol chemical composition and light scattering during a winter season in Beijing

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Zhang, Leiming; Gao, Jian; Wang, Han; Chai, Faihe; Wang, Shulan

    2015-06-01

    To evaluate PM2.5 contributions to light scattering under different air pollution levels, PM2.5 and its major chemical components, PM10, size-segregated water-soluble ions, and aerosol scattering coefficient (bsp) under dry conditions were measured at an urban site in Beijing in January 2013 when heavy pollution events frequently occurred. Measurements were categorized into three pollution levels including heavy-polluted (Air Quality Index (AQI) ≥ 200), light-polluted (200 > AQI ≥ 100) and clean periods (AQI < 100). The average PM2.5 mass concentration was 248 μg m-3 during the heavy-polluted period, which was 2.4 and 5.6 times of those during the light-polluted (104 μg m-3) and clean (44 μg m-3) periods, respectively. The concentrations of SO42-, NO3- and NH4+ increased much more than those of OC and EC during the heavy-polluted period compared with those during the light-polluted and clean periods. Good correlations between PM2.5 and bsp were found (R2 > 0.95) during the different pollution levels. The mass scattering efficiency (MSE) of PM2.5 was 4.9 m2 g-1 during the heavy-polluted period, which was higher than those during the light-polluted (4.3 m2 g-1) and clean periods (3.6 m2 g-1). To further evaluate the impact of individual chemical components of PM2.5 on light scattering, a multiple linear regression equation of measured bsp against the mass concentration of (NH4)2SO4, NH4NO3, Organic Matter (OM), EC, Fine Soil (FS), Coarse Matter (CM) and Other chemical compounds were performed. (NH4)2SO4, NH4NO3 and OM were the dominant species contributing to bsp under both dry and ambient conditions. OM contributed more to bsp than the sum of (NH4)2SO4 and NH4NO3 did under the dry condition during all the pollution periods and this was also the case under the ambient condition during the light-polluted and clean periods. However, the total contributions of (NH4)2SO4 and NH4NO3 to bsp under the ambient condition was 55%, much more than the 29% contribution from OM during the heavy-polluted period. High (NH4)2SO4 and NH4NO3 concentrations and their hygroscopicity were the main reasons causing visibility degradation during the heavy-polluted period, and the effect can be enhanced under high RH conditions.

  4. Indoor air quality in Latino homes in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Escobedo, Luis E.; Champion, Wyatt M.; Li, Ning; Montoya, Lupita D.

    2014-08-01

    Indoor concentrations of airborne pollutants can be several times higher than those found outdoors, often due to poor ventilation, overcrowding, and the contribution of indoor sources within a home. Americans spend most of their time indoors where exposure to poor indoor air quality (IAQ) can result in diminished respiratory and cardiovascular health. This study measured the indoor air quality in 30 homes of a low-income Latino community in Boulder, Colorado during the summer of 2012. Participants were administered a survey, which included questions on their health conditions and indoor air pollution sources like cigarette smoke, heating fuel, and building materials. Twenty-four hour samples of fine particulate matter (PM2.5) from the indoor air were collected in each home; ambient PM2.5 samples were collected each day as well. Concurrent air samples were collected onto 47 mm Teflo and Tissuquartz filter at each location. Teflo filters were analyzed gravimetrically to measure PM2.5 and their extracts were used to determine levels of proteins and endotoxins in the fine fraction. The Tissuquartz filters were analyzed for elemental and organic carbon content (EC/OC). Results indicated that the indoor air contained higher concentrations of PM2.5 than the ambient air, and that the levels of OC were much higher than EC in both indoor and outdoor samples. This community showed no smoking in their homes and kept furry pets indoors at very low rates; therefore, cooking is likely the primary source of indoor PM. For responders with significant exposure to PM, it appeared to be primarily from occupational environments or childhood exposure abroad. Our findings indicate that for immigrant communities such as this, it is important to consider not only their housing conditions but also the relevant prior exposures when conducting health assessments.

  5. Chemical characterization and receptor modeling of PM10 in the surroundings of the opencast lignite mines of Western Macedonia, Greece.

    PubMed

    Samara, Constantini; Argyropoulos, George; Grigoratos, Theodoros; Kouras, Αthanasios; Manoli, Εvangelia; Andreadou, Symela; Pavloudakis, Fragkiskos; Sahanidis, Chariton

    2018-05-01

    The Western Macedonian Lignite Center (WMLC) in northwestern Greece is the major lignite center in the Balkans feeding four major power plants of total power exceeding 4 GW. Concentrations of PM 10 (i.e., particulate matters with diameters ≤10 μm) are the main concern in the region, and the high levels observed are often attributed to the activities related to power generation. In this study, the contribution of fugitive dust emissions from the opencast lignite mines to the ambient levels of PM 10 in the surroundings was estimated by performing chemical mass balance (CMB) receptor modeling. For this purpose, PM 10 samples were concurrently collected at four receptor sites located in the periphery of the mine area during the cold and the warm periods of the year (November-December 2011 and August-September 2012), and analyzed for a total of 26 macro- and trace elements and ionic species (sulfate, nitrate, chloride). The robotic chemical mass balance (RCMB) model was employed for source identification/apportionment of PM 10 at each receptor site using as inputs the ambient concentrations and the chemical profiles of various sources including the major mine operations, the fly ash escaping the electrostatic filters of the power plants, and other primary and secondary sources. Mean measured PM 10 concentrations at the different sites ranged from 38 to 72 μg m -3 . The estimated total contribution of mines ranged between 9 and 22% in the cold period increasing to 36-42% in the dry warm period. Other significant sources were vehicular traffic, biomass burning, and secondary sulfate and nitrate aerosol. These results imply that more efficient measures to prevent and suppress fugitive dust emissions from the mines are needed.

  6. Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan

    NASA Astrophysics Data System (ADS)

    Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.

    2018-04-01

    Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).

  7. Ambient air pollution, traffic noise and adult asthma prevalence: a BioSHaRE approach.

    PubMed

    Cai, Yutong; Zijlema, Wilma L; Doiron, Dany; Blangiardo, Marta; Burton, Paul R; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Elliott, Paul; Hansell, Anna L; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank).Residential exposures to ambient air pollution (particulate matter with aerodynamic diameter ≤10 µm (PM 10 ) and nitrogen dioxide (NO 2 )) were estimated by a pan-European Land Use Regression model for 2007. Traffic noise for 2009 was modelled at home addresses by adapting a standardised noise assessment framework (CNOSSOS-EU). A cross-sectional analysis of 646 731 participants aged ≥20 years was undertaken using DataSHIELD to pool data for individual-level analysis via a "compute to the data" approach. Multivariate logistic regression models were fitted to assess the effects of each exposure on lifetime and current asthma prevalence.PM 10 or NO 2 higher by 10 µg·m -3 was associated with 12.8% (95% CI 9.5-16.3%) and 1.9% (95% CI 1.1-2.8%) higher lifetime asthma prevalence, respectively, independent of confounders. Effects were larger in those aged ≥50 years, ever-smokers and less educated. Noise exposure was not significantly associated with asthma prevalence.This study suggests that long-term ambient PM 10 exposure is associated with asthma prevalence in western European adults. Traffic noise is not associated with asthma prevalence, but its potential to impact on asthma exacerbations needs further investigation. Copyright ©ERS 2017.

  8. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    EPA Science Inventory

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  9. Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans

    EPA Science Inventory

    Exposure to single pollutants such as ambient particulate matter (PM) is associated with adverse health effects. It is unclear, however, if simultaneous exposure to multiple air pollutants (e.g. PM and ozone or nitrogen dioxide), a more real world scenario, results in non-additiv...

  10. TLR-2 IS INVOLVED IN AIRWAY EPITHELIAL CELL RESPONE TO AIR POLLUTION PARTICLES

    EPA Science Inventory

    Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of a number of oxidant stress response genes. Components of ambient air PM responsible for stim...

  11. Cardiovascular Effects Caused by Increasing Concentrations of Diesel Exhaust in Middle-Aged Healthy GSTM1 Null Human Volunteers

    EPA Science Inventory

    ABSTRACT Objectives: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust (DE) is a major contributor to ambient PM in urban areas. This study was designed to e...

  12. ZN2+ INDUCES CYTOKINE EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH THE ACTIVATION OF MULTIPLE SIGNALING PATHWAYS

    EPA Science Inventory

    A number of studies have implicated the metallic content of ambient particulate matter (PM) with various indices of pulmonary and cardiovascular morbidity. Among the ambient PM metals, zinc is a ubiquitous contaminant known to cause adverse health effects. To assess its potential...

  13. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  14. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data.

    PubMed

    Meng, Qing Yu; Turpin, Barbara J; Korn, Leo; Weisel, Clifford P; Morandi, Maria; Colome, Steven; Zhang, Junfeng Jim; Stock, Thomas; Spektor, Dalia; Winer, Arthur; Zhang, Lin; Lee, Jong Hoon; Giovanetti, Robert; Cui, William; Kwon, Jaymin; Alimokhtari, Shahnaz; Shendell, Derek; Jones, Jennifer; Farrar, Corice; Maberti, Silvia

    2005-01-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to investigate residential indoor, outdoor and personal exposures to several classes of air pollutants, including volatile organic compounds, carbonyls and fine particles (PM2.5). Samples were collected from summer, 1999 to spring, 2001 in Houston (TX), Los Angeles (CA) and Elizabeth (NJ). Indoor, outdoor and personal PM2.5 samples were collected at 212 nonsmoking residences, 162 of which were sampled twice. Some homes were chosen due to close proximity to ambient sources of one or more target analytes, while others were farther from sources. Median indoor, outdoor and personal PM2.5 mass concentrations for these three sites were 14.4, 15.5 and 31.4 microg/m3, respectively. The contributions of ambient (outdoor) and nonambient sources to indoor and personal concentrations were quantified using a single compartment box model with measured air exchange rate and a random component superposition (RCS) statistical model. The median contribution of ambient sources to indoor PM2.5 concentrations using the mass balance approach was estimated to be 56% for all study homes (63%, 52% and 33% for California, New Jersey and Texas study homes, respectively). Reasonable variations in model assumptions alter median ambient contributions by less than 20%. The mean of the distribution of ambient contributions across study homes agreed well for the mass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.

  15. Exposure to Concentrated Ambient PM2.5 Shortens Lifespan and Induces Inflammation-Associated Signaling and Oxidative Stress in Drosophila.

    PubMed

    Wang, Xiaoke; Chen, Minjie; Zhong, Mianhua; Hu, Ziying; Qiu, Lianglin; Rajagopalan, Sanjay; Fossett, Nancy G; Chen, Lung-Chi; Ying, Zhekang

    2017-03-01

    Exposure to ambient PM 2.5 is associated with human premature mortality. However, it has not yet been toxicologically replicated, likely due to the lack of suitable animal models. Drosophila is frequently used in longevity research due to many incomparable merits. The present study aims to validate Drosophila models for PM 2.5 toxicity study through characterizing their biological responses to exposure to concentrated ambient PM 2.5 (CAP). The survivorship curve demonstrated that exposure to CAP markedly reduced lifespan of Drosophila. This antilongevity effect of CAP exposure was observed in both male and female Drosophila, and by comparison, the male was more sensitive [50% survivals: 20 and 48 days, CAP- and filtered air (FA)-exposed males, respectively; 21 and 40 days, CAP- and FA-exposed females, respectively]. Similar to its putative pathogenesis in humans, CAP exposure-induced premature mortality in Drosophila was also coincided with activation of pro-inflammatory signaling pathways including Jak, Jnk, and Nf-κb and increased systemic oxidative stress. Furthermore, like in humans and mammals, exposure to CAP significantly increased whole-body and circulating glucose levels and increased mRNA expression of Ilp2 and Ilp5 , indicating that CAP exposure induces dysregulated insulin signaling in Drosophila. Similar to effects on humans exposure to CAP leads to premature mortality likely through induction of inflammation-associated signaling, oxidative stress, and metabolic abnormality in Drosophila, strongly supporting that it can be a useful model organism for PM 2.5 toxicity study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Saccharide Composition in Fine and Coarse Particulate Matter and Soils in Central Arizona and Use of Saccharides as Molecular Markers for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Clements, A.; Fraser, M.

    2009-04-01

    The desert southwestern United States routinely exceeds health-based standards for coarse particulate matter [1]. PM10 concentrations are high in both urban and rural areas and are believed to originate from fugitive dust emissions from agricultural fields and roads and soil erosion from the surrounding desert locations. Soil together with its associated biota contains a complex mixture of biogenic detritus, including plant detritus, airborne microbes comprised of bacteria, viruses, spores of lichens and fungi, small algae, and protozoan cysts [4][5], which can mostly become airborne when winds are strong enough and soil dry enough to be re-entrained into the atmosphere [3]. Other potential sources to PM10 may include primary biological aerosol particles (PBAPs), given a multitude of flower, grass, and fungal species that thrive in the Sonoran desert and actively release pollens and spores throughout the year [2]. However, because soil and fugitive dust is also believed to contain a large number of these biological particles and is considered as a secondary host of PBAPs [3] [4], the role and contribution of PBAPs as a direct ambient PM source in the desert southwest have not been clearly stated or investigated. In an effort to identify and assess the relative contribution of these and other major PM sources in the southwestern US region, and particularly to assess the contribution from soil and fugitive dust, a series of ambient PM samples and soil samples were collected in Higley, AZ, USA, a suburb of the Phoenix metropolitan area which has seen rapid urban sprawl onto agricultural lands. Because of their suggested ability to track biologically important organic materials from natural environment [4][6][7][8][9][10], saccharides were chosen as the key compounds to trace the release of soil dusts into the atmosphere, and to elucidate other major sources that contribute to the PM levels in this location in the arid southwestern US. To this end, saccharide compounds were analyzed in size segregated soil and ambient PM samples at Higley; intra- and inter- comparisons were made between the ambient PM and three types of soil dust samples (agricultural soil, native soil, road dust) based on the particle size (fine vs. coarse), seasonality, and relative composition of 12 saccharide compounds. Based on the ambient concentrations of major saccharides and a number of other specific compounds (including elemental and organic carbon, ions, metals, alkanes, organic acids, and polycyclic aromatic hydrocarbons) that are simultaneously resolved in Higley PM samples, a Positive Matrix Factorization (PMF) model was performed to determine the key contributors to PM10 and PM2.5 levels. Six distinct factors were isolated, with two factors dominated by the enrichment of saccharide compounds. There was not consistency between the source profiles of these two saccharide rich source factors with the saccharide composition of the local size-segregated soil samples, which implies that there may be other major sources contributing to ambient PM saccharides. One possible alternative is that PBAPs that are injected directly into the atmosphere instead of residing in the surface soil and being re-entrained through soil erosion or agricultural processing. To our knowledge, this study is the first of its kind to compare the saccharide composition between the fine and coarse fraction of different soils types in two seasons, and to relate the contribution from soil dust to ambient PM using saccharide species. REFERENCE [1] AirData: Access to Air Pollution data. [cited 2009 Jan 11, 2009]; Available from: http://www.epa.gov/air/data/index.html [2] Allergy and Asthma in the Southwestern United States. [cited 2009 Jan 11, 2009]; Available from: http://allergy.peds.arizona.edu/southwest/swpollen.html [3] Cox, C.S., Wathes, C.M., 1995. Bioaerosols Handbook, Lewis Publishers, NY [4] Simoneit, B.R.T., Elias, V.O., et al., 2004. "Sugars - Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter", Environmental Science and Technology (38): 5939-5949. [5] Simoneit, B.R.T., Mazurek, M.A., 1981. "Air Pollution - the Organic-Components", Crc Critical Reviews in Environmental Control (11): 219-276. [6] Medeiros, P.M., Simoneit, B.R.T, 2007. "Analysis of sugars in environmental samples by gas chromatography-mass spectrometry", Jouranl of Chromatography A (1141): 271-278. [7] Rogge, W.F., Medeiros, P.M, et al., 2007. ‘Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study", Atmospheric Environment (41): 8183-8204. [8] Bauer, H., Claeys, M., et al., 2008. "Arabitol and mannitol as tracers for the quantification of airborne fungal spores", Atmospheric Environment (42): 588-593. [9] Elbert, W., Taylor, P.E., et al., 2007. "Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions", Atmospheric Chemistry and Physics (7): 4569-4588. [10] Graham, B., Guyon, P., et al., 2003. "Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry", Journal of Geophysical Research (108): 4766, doi:10.1029/2003JD003990.

  17. Maternal exposure to ozone and PM2.5 and the prevalence of orofacial clefts in four U.S. states

    PubMed Central

    Zhou, Ying; Gilboa, Suzanne M.; Herdt, Michele L.; Lupo, Philip J.; Flanders, W. Dana; Liu, Yang; Shin, Mikyong; Canfield, Mark A.; Kirby, Russell S.

    2017-01-01

    Background While there is some evidence that maternal exposure to ambient air pollution is associated with orofacial clefts in offspring, the epidemiologic studies have been largely equivocal. We evaluated whether maternal exposure to elevated county-level ambient fine particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) and ozone during early gestation was associated with a higher prevalence of orofacial clefts. Methods Birth data consisting of 4.7 million births from 2001 to 2007 were obtained from National Birth Defects Prevention Network for four states — Arizona, Florida, New York (excluding New York City), and Texas. The air pollution exposure assessment for gestational weeks 5–10 was based on county-level average concentrations of PM2.5 and ozone data generated using a Bayesian fusion model available through CDC's Environmental Public Health Tracking Network. Two outcomes were analyzed separately: cleft lip with or without cleft palate, cleft palate alone. In logistic regression analyses, we adjusted for factors that were suspected confounders or modifiers of the association between the prevalence of orofacial clefts and air pollution, i.e., infant sex, race-ethnicity, maternal education, smoking status during pregnancy, whether this was mother's first baby, maternal age. Results Each 10 μg/m3 increase in PM2.5 concentration was significantly associated with cleft palate alone (OR =1.43, 95% CI: 1.11–1.86). There was no significant association between PM2.5 concentration and cleft lip with or without cleft palate. No associations were observed between ozone exposure and the two outcomes of orofacial clefts. Conclusions Our study suggests that PM2.5 significantly increased the risk of cleft palate alone, but did not change the incidence of cleft lip with or without palate. Ozone levels did not correlate with incidence of orofacial clefts. PMID:27888746

  18. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication.

    PubMed

    Li, Qing; Jiang, Jingkun; Wang, Shuxiao; Rumchev, Krassi; Mead-Hunter, Ryan; Morawska, Lidia; Hao, Jiming

    2017-01-15

    This review briefly introduces current status of indoor and ambient air pollution originating from household coal and biomass combustion in mainland China. Owing to low combustion efficiency, emissions of CO, PM 2.5 , black carbon (BC), and polycyclic aromatic hydrocarbons have significant adverse consequences for indoor and ambient air qualities, resulting in relative contributions of more than one-third in all anthropogenic emissions. Their contributions are higher in less economically developed regions, such as Guizhou (61% PM 2.5 , 80% BC), than that in more developed regions, such as Shanghai (4% PM 2.5 , 17% BC). Chimneys can reduce ~80% indoor PM 2.5 level when burning dirty solid fuels, such as plant materials. Due to spending more time near stoves, housewives suffer much more (~2 times) PM 2.5 than the adult men, especially in winter in northern China (~4 times). Improvement of stove combustion/thermal efficiencies and solid fuel quality are the two essential methods to reduce pollutant emissions. PM 2.5 and BC emission factors (EFs) have been identified to increase with volatile matter content in traditional stove combustion. EFs of dirty fuels are two orders higher than that of clean ones. Switching to clean ones, such as semi-coke briquette, was identified to be a feasible path for reducing >90% PM 2.5 and BC emissions. Otherwise, improvement of thermal and combustion efficiencies by using under-fire technology can reduce ~50% CO 2 , 87% NH 3 , and 80% PM 2.5 and BC emissions regardless of volatile matter content in solid fuel. However, there are still some knowledge gaps, such as, inventory for the temporal impact of household combustion on air quality, statistic data for deployed clean solid fuels and advanced stoves, and the effect of socioeconomic development. Additionally, further technology research for reducing air pollution emissions is urgently needed, especially low cost and clean stove when burning any type of solid fuel. Furthermore, emission-abatement oriented policy should base on sound scientific evidence to significantly reduce pollutant emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Exploring variability in pedestrian exposure to fine particulates (PM 2.5) along a busy road

    NASA Astrophysics Data System (ADS)

    Greaves, Stephen; Issarayangyun, Tharit; Liu, Qian

    In August 2006, pedestrian exposure to PM 2.5 was monitored along a busy roadway in Sydney, Australia. The objective of the campaign was to assess the factors affecting exposure at both an inter- and intra-trip level. PM 2.5 measurements were made at second-by-second intervals using a portable aerosol monitor, while simultaneously recording location with a personal GPS device. A digital voice recorder was used to record any events or circumstances, perceived to notably increase potential PM 2.5 levels. The average PM 2.5 concentration for the 39 trips conducted was 12.8 μg m -3, which while 40% higher than concurrent ambient measurements was well within proposed daily standards for Australia. Multivariate time-series methods were then applied to study the effects of various interventions on PM 2.5 at an intra-trip level while controlling for autocorrelation. Wind speed, traffic volumes and clearway operations (independent of traffic volumes) were found to be significant predictors in addition to the previous PM 2.5 concentrations. Sensitivity analysis showed doubling traffic volumes increased PM 2.5 concentrations by 26%, while each 5 km h -1 increase in wind speed increased PM 2.5 concentrations by 10%. Several PM 2.5 hotspots were identified where concentrations exceeded 100 μg m -3. These were attributed to specific traffic (intersections, trucks, buses) and non-traffic sources (pedestrians smoking), typically only lasting a few seconds.

  20. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    NASA Technical Reports Server (NTRS)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; hide

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level.

  1. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    PubMed Central

    Butland, Barbara K.; van Donkelaar, Aaron; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.; One, ISAAC Phase

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 µm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1° × 0.1° and modeled estimates of ozone at a resolution of 1° × 1° to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001–2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was –0.043 [95% confidence interval (CI): –0.139, 0.053] and 0.017 (95% CI: –0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was –0.116 (95% CI: –0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was –0.139 (95% CI: –0.347, 0.068). The corresponding association with ozone (per ppbV) was –0.171 (95% CI: –0.275, –0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level. PMID:22548921

  2. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information.

    PubMed

    Chen, Gongbo; Knibbs, Luke D; Zhang, Wenyi; Li, Shanshan; Cao, Wei; Guo, Jianping; Ren, Hongyan; Wang, Boguang; Wang, Hao; Williams, Gail; Hamm, N A S; Guo, Yuming

    2018-02-01

    PM 1 might be more hazardous than PM 2.5 (particulate matter with an aerodynamic diameter ≤ 1 μm and ≤2.5 μm, respectively). However, studies on PM 1 concentrations and its health effects are limited due to a lack of PM 1 monitoring data. To estimate spatial and temporal variations of PM 1 concentrations in China during 2005-2014 using satellite remote sensing, meteorology, and land use information. Two types of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) data, Dark Target (DT) and Deep Blue (DB), were combined. Generalised additive model (GAM) was developed to link ground-monitored PM 1 data with AOD data and other spatial and temporal predictors (e.g., urban cover, forest cover and calendar month). A 10-fold cross-validation was performed to assess the predictive ability. The results of 10-fold cross-validation showed R 2 and Root Mean Squared Error (RMSE) for monthly prediction were 71% and 13.0 μg/m 3 , respectively. For seasonal prediction, the R 2 and RMSE were 77% and 11.4 μg/m 3 , respectively. The predicted annual mean concentration of PM 1 across China was 26.9 μg/m 3 . The PM 1 level was highest in winter while lowest in summer. Generally, the PM 1 levels in entire China did not substantially change during the past decade. Regarding local heavy polluted regions, PM 1 levels increased substantially in the South-Western Hebei and Beijing-Tianjin region. GAM with satellite-retrieved AOD, meteorology, and land use information has high predictive ability to estimate ground-level PM 1 . Ambient PM 1 reached high levels in China during the past decade. The estimated results can be applied to evaluate the health effects of PM 1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Annual average ambient particulate matter exposure estimates, measured home particulate matter, and hair nicotine are associated with respiratory outcomes in adults with asthma.

    PubMed

    Balmes, John R; Cisternas, Miriam; Quinlan, Patricia J; Trupin, Laura; Lurmann, Fred W; Katz, Patricia P; Blanc, Paul D

    2014-02-01

    While exposure to outdoor particulate matter (PM) has been associated with poor asthma outcomes, few studies have investigated the combined effects of outdoor and indoor PM (including secondhand tobacco smoke). To examine the associations between PM and asthma outcomes. We analyzed data from a cohort of adults with asthma and rhinitis (n=302; 82% both conditions; 13% asthma only; 5% rhinitis alone) including measures of home PM, tobacco smoke exposure (hair nicotine and self-report), ambient PM from regional monitoring, distance to roadway, and season (wet or dry). The outcomes of interest were frequent respiratory symptoms and forced expiratory volume in 1 second (FEV1) below the lower limit of normal (NHANES reference values). Multivariable regression analyses examined the associations (Odds Ratio [OR] and 95% Confidence Interval [95%CI]) between exposures and these outcomes, adjusted by sociodemographic characteristics. In adjusted analyses of each exposure, the highest tertile of home PM and season of interview were associated with increased odds for more frequent respiratory symptoms (OR=1.64 95%CI: [1.00, 2.69] and OR=1.66 95%CI: [1.09, 2.51]). The highest tertile of hair nicotine was significantly associated with FEV1 below the lower limit of normal (OR=1.80 95%CI: [1.00, 3.25]). In a model including home PM, ambient PM, hair nicotine, and season, only two associations remained strong: hair nicotine with FEV1 below the lower limit of normal and season of measurement (dry, April-October) with increased respiratory symptoms (OR=1.85 95%CI: [1.00, 3.41] and OR=1.54 95%CI: [1.0, 2.37]). When that model was stratified by sex, the highest tertiles of ambient PM and hair nicotine were associated with FEV1 below the lower limit of normal among women (OR=2.23 95%CI: [1.08, 4.61] and OR=2.90 95%CI: [1.32, 6.38]), but not men. The highest tertile of hair nicotine was also associated with increased respiratory symptoms in women but not men (OR=2.38 95%CI: [1.26, 4.49]). When stratified by age, the middle quartile of ambient PM and the highest hair nicotine tertile were associated with increased respiratory symptoms (OR=2.07 95%CI: [1.01, 4.24] and OR=2.55 95%CI: [1.21, 5.36]) in those under 55 but not in the older stratum. Exposure to PM from both home and ambient sources is associated with increased symptoms and lower lung function in adults with asthma, although these associations vary by type of PM, the respiratory outcome studied, sex and age. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Indoor-outdoor relationships of PM2.5 in four residential dwellings in winter in the Yangtze River Delta, China.

    PubMed

    Wang, Fang; Meng, Dan; Li, Xiuwei; Tan, Junjie

    2016-08-01

    Indoor and outdoor air PM2.5 concentrations in four residential dwellings characterized with different building envelope air tightness levels and HVAC-filter configurations in Yangtze River Delta (YRD) were measured during winter periods in 2014-2015. Steady-state models for indoor PM2.5 were developed for each of the tested dwellings, based on mass balance equation. The indoor air PM2.5 concentrations in the four tested apartments were significantly different. The lowest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D3 with high air tightness and without HVAC-filter system (26.0 μg/m(3), 0.197, and 0.167, respectively), while the highest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D1 (64.9 μg/m(3), 0.876, and 0.867, respectively). For apartment D1 with normal air tightness and without any HVAC-filter system, indoor air PM2.5 concentrations were significantly correlated with outdoor PM2.5 concentrations, especially in severe ambient pollution days, when closed windows can only play a very weak role on the decline of indoor PM2.5 concentrations. With the enhancement of building air tightness, the indoor air PM2.5 concentrations can be decreased effectively and don't vary as much in response to fluctuations in ambient concentrations. For buildings with normal air tightness, the use of HVAC-filter combinations will decrease the indoor PM2.5 significantly. However, for buildings with enhanced air tightness, the only use of fresh makeup air supply system with filter may increase the indoor PM2.5 concentrations. The improvement of filter efficiency for both fresh makeup air and indoor recirculated air are very important. However, purifiers for indoor recirculated air were highly recommended for all buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Maternal exposure to ozone and PM{sub 2.5} and the prevalence of orofacial clefts in four U.S. states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ying, E-mail: yzhou2@cdc.gov

    Background: While there is some evidence that maternal exposure to ambient air pollution is associated with orofacial clefts in offspring, the epidemiologic studies have been largely equivocal. We evaluated whether maternal exposure to elevated county-level ambient fine particulate matter with aerodynamic diameter ≤2.5 µm (PM{sub 2.5}) and ozone during early gestation was associated with a higher prevalence of orofacial clefts. Methods: Birth data consisting of 4.7 million births from 2001 to 2007 were obtained from National Birth Defects Prevention Network for four states — Arizona, Florida, New York (excluding New York City), and Texas. The air pollution exposure assessment formore » gestational weeks 5–10 was based on county-level average concentrations of PM{sub 2.5} and ozone data generated using a Bayesian fusion model available through CDC's Environmental Public Health Tracking Network. Two outcomes were analyzed separately: cleft lip with or without cleft palate, cleft palate alone. In logistic regression analyses, we adjusted for factors that were suspected confounders or modifiers of the association between the prevalence of orofacial clefts and air pollution, i.e., infant sex, race-ethnicity, maternal education, smoking status during pregnancy, whether this was mother's first baby, maternal age. Results: Each 10 µg/m{sup 3} increase in PM{sub 2.5} concentration was significantly associated with cleft palate alone (OR =1.43, 95% CI: 1.11–1.86). There was no significant association between PM{sub 2.5} concentration and cleft lip with or without cleft palate. No associations were observed between ozone exposure and the two outcomes of orofacial clefts. Conclusions: Our study suggests that PM{sub 2.5} significantly increased the risk of cleft palate alone, but did not change the incidence of cleft lip with or without palate. Ozone levels did not correlate with incidence of orofacial clefts. - Highlights: • This is a large study with about 4.7 million births and 7000 orofacial cleft cases. • PM{sub 2.5} significantly increased the risk of cleft palate alone. • PM{sub 2.5} did not change the incidence of cleft lip with or without palate. • Ozone levels did not correlate with incidence of orofacial clefts.« less

  6. African dust contribution to mean ambient PM10 across the Mediterranean Basin: A quantitative approach to investigate spatial and seasonal patterns

    NASA Astrophysics Data System (ADS)

    Querol, X.; Pandolfi, M.; Pey, J.; Alastuey, A.; Cusack, M.; Pérez, N.; Amato, F.; Moreno, T.; Viana, M.; Mihalopoulos, N.

    2009-04-01

    The aim of the present study is quantifying African dust contributions to mean PM10 levels recorded across the Mediterranean basin (2001-2008, 1995-2008 in one case) and evidencing spatial variations and seasonal trends. To this end the same methodology has been applied to a number of data sets on PM levels recorded in aerosol research monitoring sites (Montseny-EUSAAR, Spain, Finokalia-EUSAAR, Greece) and from a number of regional background (RB) monitoring sites from the Co-operative Program for Monitoring and Evaluation of the Long-Range Transmission of Air pollutants in Europe (EMEP) and regional air quality monitoring networks available from Airbase-EEA data set. Around 20 data series spread across the whole Mediterranean and bordering regions have been selected and analyzed in the present study. Once the PM data were obtained the days under the influence of African dust outbreaks were identified (using HYSPLIT, DREAM-BSC, SKIRON and NAAPS tools) for each receptor site. Subsequently, a method (Escudero et al., 2007) based on the statistical data treatment of time series of PM levels, without a need of chemical analysis, was used for the quantification of the daily African PM load during dust outbreaks at each site. Finally, PM speciation data available at MSY and FKL were used to differentiate the local/regional from the African mineral contributions across the Mediterranean Basin. Results show a clear W to E and N to S increasing gradients, both on annual PM levels and annual African dust load. In the Eastern Mediterranean the episodes are more intense and are relatively frequent in spring and summer period. However in the western side of the basin, African dust outbreaks are more frequent in summer and winter. In the N, NW and NE sides of the basin 1-2 µgPM10/m3 of mean annual dust contribution was quantified, whereas in the S, SE, SW this annual contribution ranges from 6 to 10 µgPM10/m3. The number of exceedances of the PM10 daily limit value attributable to the African dust contributions was also evaluated fro the whole Mediterranean. Comparison of the African dust annual load with PM10 speciation allowed quantifying regional dust contributions. Thus, in urban areas we are able to discriminate the contribution of African, regional, urban and road dust. References Escudero M. et al., (2007). Atmos. Environ., 41, 5516- 5524. Acknowledgements This study was supported by the Ministry of Science and Innovation (CGL2005-03428-C04-03/CLI, CGL2007-62505/CLI, GRACCIE- CSD2007-00067), the European Union (6th framework CIRCE IP, 036961, EUSAAR RII3-CT-2006-026140). Finally, we would like to express our gratitude to Airbase-EEA for allowing free access to ambient PM levels recorded at a large number of sites in Europe.

  7. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    PubMed

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS). Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009. 414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model. At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at workplace associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD. Ambient air pollution is correlated with AECOPD hospitalizations spatially. A 10 μg/m(3) increase of PM10 at workplace was associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD in Jinan, 2009. As a spatial data processing tool, GIS has novel and great potential on air pollutants exposure assessment and spatial analysis in AECOPD research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. PM SUPERSITES PROGRAM

    EPA Science Inventory

    In 1997, the EPA administrator published National Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM) that included new standards for PM2.5 (PM with diameters less than 2.5 um). These revised standards stimulated national concern over uncertainties regarding the ex...

  9. Ambient air pollution and racial/ethnic differences in carotid intima-media thickness in the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Jones, Miranda R; Diez-Roux, Ana V; O'Neill, Marie S; Guallar, Eliseo; Sharrett, A Richey; Post, Wendy; Kaufman, Joel D; Navas-Acien, Ana

    2015-12-01

    In the USA, ethnic disparities in atherosclerosis persist after accounting for known risk factors. Ambient air pollution is associated with increased levels of atherosclerosis and differs in the USA by race/ethnicity. We estimated the influence of ambient air pollution exposure to ethnic differences in common carotid intima-media thickness (IMT). We cross-sectionally studied 6347 Caucasian-American, African-American, Hispanic and Chinese adults across 6 US cities in 2000-2002. Annual ambient air pollution concentrations (fine particulate matter [PM2.5] and oxides of nitrogen [NOX]) were estimated at each participant's residence. IMT was assessed by ultrasound. The mean IMT was 19.4 and 37.6 μm smaller for Hispanic women and men, 53.6 and 7.1 μm smaller for Chinese women and men, and 23.4 and 38.7 μm higher for African-American women and men compared with Caucasian-American women and men. After adjustment for PM2.5, the differences in IMT remained similar for Hispanic and African-American participants but was even more negative for Chinese participants (mean IMT difference of -58.4 μm for women and -15.7 μm for men) compared with Caucasian-American participants. The IMT difference in Chinese participants compared with Caucasian-American participants related to their higher PM2.5 exposures was 4.8 μm (95% CI 0.2 to 10.8) for women and 8.6 μm (95% CI 3.4 to 15.3) for men. NOX was not related to ethnic differences in IMT. The smaller carotid IMT levels in Chinese participants were even smaller after accounting for higher PM2.5 concentrations in Chinese participants compared with Caucasian-American participants. Air pollution was not related to IMT differences in African-American and Hispanic participants compared with Caucasian-American participants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    PubMed

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM 10 (50.0 μg/m 3 ) and O 3 (53.0 μg/m 3 ) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM 10 and 2.77 (95% CI, 1.94-3.95) for O 3 . Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM 10 and O 3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO 2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort.

    PubMed

    Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B

    2016-04-01

    Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484-490; http://dx.doi.org/10.1289/ehp.1509676.

  12. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...

  13. The Effect of Composition, Size, and Solubility on Acute Pulmonary Injury in Rats Following Exposure to Mexico City Ambient Particulate Matter Samples

    EPA Science Inventory

    Particulate matter (PM) associated metals contribute to the adverse cardiopulmonary effects following exposure to air pollution. Here, we investigated how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity d...

  14. Chemical Characterization of Ambient Coarse Particulate Matter in Rural Areas of Arizona Impacted by Significant Population Growth

    EPA Science Inventory

    Characterization of PMc is critical to the understanding of recently observed adverse health effects (e.g., asthma, reduced cardiac variability, etc) from coarse particles in ambient air. PMc mass an (PMc, particles between PM2.5 and PM10) in a rural area of increasing populati...

  15. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    EPA Science Inventory

    2003 AAR PM Meeting
    Particulate Matter: Atmospheric Sciences,
    Exposure and the Fourth Colloquium on PM and Human Health

    LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  16. Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA

    EPA Science Inventory

    Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). Presented in this study are organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmon. EC exhibited signifi...

  17. 78 FR 882 - Approval and Promulgation of Air Quality Implementation Plans; Delaware, New Jersey, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...)(2).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control... 2011 ambient air quality data, the Philadelphia-Wilmington, PA-NJ-DE fine particulate matter (PM 2.5... 2011 ambient air quality data, the Philadelphia-Wilmington, PA-NJ-DE fine particulate matter (PM 2.5...

  18. 78 FR 23492 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air Quality Standards AGENCY... submission contains the 24-hour fine particle (PM 2.5 ) National Ambient Air Quality Standards (NAAQS..., ``National primary and secondary ambient air quality standards for PM 2.5 .'' In the submission, IDEM has...

  19. CONTENDING WITH SPACE-TIME INTERACTION IN THE SPATIAL PREDICTION OF POLLUTION: VANCOUVER'S HOURLY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we describe an approach for predicting average hourly concentrations of ambient PM10 in Vancouver. We know our solution also applies to hourly ozone fields and believe it may be quite generally applicable. We use a hierarchal Bayesian approach. At the primary ...

  20. Methods for Characterizing the Distribution of Exhaust Emissions from Light-Duty, Gasoline-Powered Motor Vehicles in the U.S. Fleet

    EPA Science Inventory

    Mobile sources significantly contribute to ambient concentrations of airborne particulate matter. Source apportionment studies for PMlO and PM2.5 indicate that mobile sources can be responsible for over half of the ambient PM measured in an urban area. Recent source apportionment...

  1. PARTICLE DEPOSITION IN SPONTANEOUSLY HYPERTENSIVE RATS EXPOSED VIA WHOLE-BODY INHALATION: MEASURED AND ESTIMATED DOSE

    EPA Science Inventory

    A plethora of epidemiological studies have shown that exposure to elevated levels of ambient particulate matter (PM) can lead to adverse health outcomes, including cardiopulmonary-related mortality. Subsequent animal toxicological studies have attempted to mimic these cardiovascu...

  2. EFFECTS OF INSTILLED COMBUSTION-DERIVED ENVIRONMENTAL PARTICLES IN SPONTANEOUSLY HYPERTENSIVE RATS. PART 1: CARDIOVASCULAR RESPONSES

    EPA Science Inventory

    Epidemiological studies have reported a robust correlation between levels of ambient particulate matter (PM) and the incidence of morbidity and mortality, particularly among persons with cardiopulmonary disease. While similar effects have been demonstrated in animals, the mechan...

  3. Impact of Biogenic Emission Uncertainties on the Simulated Response of Ozone and Fine Particulate Matter to Anthropogenic Emission Reductions

    PubMed Central

    Hogrefe, Christian; Isukapalli, Sastry S.; Tang, Xiaogang; Georgopoulos, Panos G.; He, Shan; Zalewsky, Eric E.; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1–0.25 μg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1–2% of the value of the annual PM2.5 NAAQS of 15 μg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions. PMID:21305893

  4. Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India

    NASA Astrophysics Data System (ADS)

    Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.

    2015-12-01

    India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5­­ in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in India.

  5. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study.

    PubMed

    Chen, Gongbo; Zhang, Wenyi; Li, Shanshan; Williams, Gail; Liu, Chao; Morgan, Geoffrey G; Jaakkola, Jouni J K; Guo, Yuming

    2017-07-01

    China's rapid economic development has resulted in severe particulate matter (PM) air pollution and the control and prevention of infectious disease is an ongoing priority. This study examined the relationships between short-term exposure to ambient particles with aerodynamic diameter ≤2.5µm (PM 2.5 ) and measles incidence in China. Data on daily numbers of new measles cases and concentrations of ambient PM 2.5 were collected from 21 cities in China during Oct 2013 and Dec 2014. Poisson regression was used to examine city-specific associations of PM 2.5 and measles, with a constrained distributed lag model, after adjusting for seasonality, day of the week, and weather conditions. Then, the effects at the national scale were pooled with a random-effect meta-analysis. A 10µg/m 3 increase in PM 2.5 at lag 1day, lag 2day and lag 3day was significantly associated with increased measles incidence [relative risk (RR) and 95% confidence interval (CI) were 1.010 (1.003, 1.018), 1.010 (1.003, 1.016) and 1.006 (1.000, 1.012), respectively]. The cumulative relative risk of measles associated with PM 2.5 at lag 1-3 days was 1.029 (95% CI: 1.010, 1.048). Stratified analyses by meteorological factors showed that the PM 2.5 and measles associations were stronger on days with high temperature, low humidity, and high wind speed. We provide new evidence that measles incidence is associated with exposure to ambient PM 2.5 in China. Effective policies to reduce air pollution may also reduce measles incidence. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. PM2.5 Monitors in New England | Air Quality Planning Unit ...

    EPA Pesticide Factsheets

    2017-04-10

    The New England states are currently operating a network of 58 ambient PM2.5 air quality monitors that meet EPA's Federal Reference Method (FRM) for PM2.5, which is necessary in order for the resultant data to be used for attainment/non-attainment purposes. These monitors collect particles in the ambient air smaller than 2.5 microns in size on a filter, which is weighed prior and post sampling to produce a 24-hour sample concentration.

  7. ANALYZE EXISTING DATA ON PM COMPOSITION TO IDENTIFY KEY FACTORS WHICH INFLUENCE HUMAN EXPOSURES TO PM CONSTITUENTS

    EPA Science Inventory

    An association has been demonstrated between ambient particulate matter (PM 2.5 and PM 10) concentrations and human morbidity/mortality. However, little is known regarding the most important sources of PM exposure, interpersonal and intrapersonal variability in exposure, and the...

  8. SCIENCE VERSION OF PM CHEMISTRY MODEL

    EPA Science Inventory

    PM chemistry models containing detailed treatments of key chemical processes controlling ambient concentrations of inorganic and organic compounds in PM2.5 are needed to develop strategies for reducing PM2.5 concentrations. This task, that builds on previous research conducted i...

  9. OUTDOOR VS. HUMAN EXPOSURE: NERL PM EXPOSURE PANEL STUDIES

    EPA Science Inventory

    An association has been demonstrated between ambient particulate matter (PM 2.5 and PM 10) concentrations and human morbidity/mortality. However, little is known regarding the most important sources of PM exposure, interpersonal and intrapersonal variability in exposure, and the...

  10. Particulate matter and preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  11. Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study

    PubMed Central

    Sanchez-Guerra, Marco; Zheng, Yinan; Osorio-Yanez, Citlalli; Zhong, Jia; Chervona, Yana; Wang, Sheng; Chang, Dou; McCracken, John P; Díaz, Anaite; Bertazzi, Pier Alberto; Koutrakis, Petros; Kang, Choong-Min; Zhang, Xiao; Zhang, Wei; Byun, Hyang-Min; Schwartz, Joel; Hou, Lifang; Baccarelli, Andrea A

    2015-01-01

    Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components—black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)—on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation. PMID:25970091

  12. Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts

    PubMed Central

    2012-01-01

    Background Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias. Methods We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM2.5) levels during pregnancy in Massachusetts for a 9-year period (2000–2008). Building on a novel method we developed for predicting daily PM2.5 at the spatial resolution of a 10x10km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM2.5 exposure and birth weight (among full term births) and PM2.5 exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health. Results Birth weight was negatively associated with PM2.5 across all tested periods. For example, a 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI) = −21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI) = 1.01–1.13) for each 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy period. Conclusions The presented study suggests that exposure to PM2.5 during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in infants. PMID:22709681

  13. Cause-specific premature death from ambient PM2.5 exposure in India: Estimate adjusted for baseline mortality.

    PubMed

    Chowdhury, Sourangsu; Dey, Sagnik

    2016-05-01

    In India, more than a billion population is at risk of exposure to ambient fine particulate matter (PM2.5) concentration exceeding World Health Organization air quality guideline, posing a serious threat to health. Cause-specific premature death from ambient PM2.5 exposure is poorly known for India. Here we develop a non-linear power law (NLP) function to estimate the relative risk associated with ambient PM2.5 exposure using satellite-based PM2.5 concentration (2001-2010) that is bias-corrected against coincident direct measurements. We show that estimate of annual premature death in India is lower by 14.7% (19.2%) using NLP (integrated exposure risk function, IER) for assumption of uniform baseline mortality across India (as considered in the global burden of disease study) relative to the estimate obtained by adjusting for state-specific baseline mortality using GDP as a proxy. 486,100 (811,000) annual premature death in India is estimated using NLP (IER) risk functions after baseline mortality adjustment. 54.5% of premature death estimated using NLP risk function is attributed to chronic obstructive pulmonary disease (COPD), 24.0% to ischemic heart disease (IHD), 18.5% to stroke and the remaining 3.0% to lung cancer (LC). 44,900 (5900-173,300) less premature death is expected annually, if India achieves its present annual air quality target of 40μgm(-3). Our results identify the worst affected districts in terms of ambient PM2.5 exposure and resulting annual premature death and call for initiation of long-term measures through a systematic framework of pollution and health data archive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Assessment on personal exposure to particulate compounds using an empirical exposure model in an elderly community in Tianjin, China.

    PubMed

    Xu, Jia; Zhang, Nan; Han, Bin; You, Yan; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Liu, Yating; He, Fei; Ding, Xiao; Bai, Zhipeng

    2016-12-01

    Using central site measurement data to predict personal exposure to particulate matter (PM) is challenging, because people spend most of their time indoors and ambient contribution to personal exposure is subject to infiltration conditions affected by many factors. Efforts in assessing and predicting exposure on the basis of associated indoor/outdoor and central site monitoring were limited in China. This study collected daily personal exposure, residential indoor/outdoor and community central site PM filter samples in an elderly community during the non-heating and heating periods in 2009 in Tianjin, China. Based on the chemical analysis results of particulate species, mass concentrations of the particulate compounds were estimated and used to reconstruct the PM mass for mass balance analysis. The infiltration factors (F inf ) of particulate compounds were estimated using both robust regression and mixed effect regression methods, and further estimated the exposure factor (F pex ) according to participants' time-activity patterns. Then an empirical exposure model was developed to predict personal exposure to PM and particulate compounds as the sum of ambient and non-ambient contributions. Results showed that PM mass observed during the heating period could be well represented through chemical mass reconstruction, because unidentified mass was minimal. Excluding the high observations (>300μg/m 3 ), this empirical exposure model performed well for PM and elemental carbon (EC) that had few indoor sources. These results support the use of F pex as an indicator for ambient contribution predictions, and the use of empirical non-ambient contribution to assess exposure to particulate compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    NASA Astrophysics Data System (ADS)

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of London commuters.

  16. Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen.

    PubMed

    Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R

    2010-01-01

    Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter

  17. Chemical reactivities of ambient air samples in three Southern California communities

    PubMed Central

    Eiguren-Fernandez, Arantza; Di Stefano, Emma; Schmitz, Debra A.; Guarieiro, Aline Lefol Nani; Salinas, Erika M.; Nasser, Elina; Froines, John R.; Cho, Arthur K.

    2015-01-01

    The potential adverse health effects of PM2.5 and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT) and dihydrobenzoic acid (DHBA) based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities with higher levels in the winter whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air. PMID:25947123

  18. Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques.

    PubMed

    Yatera, Kazuhiro; Hsieh, Joanne; Hogg, James C; Tranfield, Erin; Suzuki, Hisashi; Shih, Chih-Horng; Behzad, Ali R; Vincent, Renaud; van Eeden, Stephan F

    2008-02-01

    Epidemiologic studies have shown an association between exposure to ambient particulate air pollution <10 microm in diameter (PM(10)) and increased cardiovascular morbidity and mortality. We previously showed that PM(10) exposure causes progression of atherosclerosis in coronary arteries. We postulate that the recruitment of monocytes from the circulation into atherosclerotic lesions is a key step in this PM(10)-induced acceleration of atherosclerosis. The study objective was to quantify the recruitment of circulating monocytes into vessel walls and the progression of atherosclerotic plaques induced by exposure to PM(10). Female Watanabe heritable hyperlipidemic rabbits, which naturally develop systemic atherosclerosis, were exposed to PM(10) (EHC-93) or vehicle by intratracheal instillation twice a week for 4 wk. Monocytes, labeled with 5-bromo-2'-deoxyuridine (BrdU) in donors, were transfused to recipient rabbits as whole blood, and the recruitment of BrdU-labeled cells into vessel walls and plaques in recipients was measured by quantitative histological methodology. Exposure to PM(10) caused progression of atherosclerotic lesions in thoracic and abdominal aorta. It also decreased circulating monocyte counts, decreased circulating monocytes expressing high levels of CD31 (platelet endothelial cell adhesion molecule-1) and CD49d (very late antigen-4 alpha-chain), and increased expression of CD54 (ICAM-1) and CD106 (VCAM-1) in plaques. Exposure to PM(10) increased the number of BrdU-labeled monocytes adherent to endothelium over plaques and increased the migration of BrdU-labeled monocytes into plaques and smooth muscle underneath plaques. We conclude that exposure to ambient air pollution particles promotes the recruitment of circulating monocytes into atherosclerotic plaques and speculate that this is a critically important step in the PM(10)-induced progression of atherosclerosis.

  19. Long-term exposure to ambient air pollution and incidence of brain tumor: the European Study of Cohorts for Air Pollution Effects (ESCAPE)

    PubMed Central

    Pedersen, Marie; Weinmayr, Gudrun; Stafoggia, Massimo; Galassi, Claudia; Jørgensen, Jeanette T; Sommar, Johan N; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Aasvang, Gunn Marit; Schwarze, Per; Pyko, Andrei; Pershagen, Göran; Korek, Michal; Faire, Ulf De; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T; Poulsen, Aslak H; Tjønneland, Anne; Bräuner, Elvira Vaclavik; Peeters, Petra H; Bueno-de-Mesquita, Bas; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2018-01-01

    Abstract Background Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5–10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89–3.14 per 10–5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38–2.71 per 10–5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors. Conclusion We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors. PMID:29016987

  20. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization.

    PubMed

    Castañeda, Alejandro R; Pinkerton, Kent E; Bein, Keith J; Magaña-Méndez, Alfonso; Yang, Houa T; Ashwood, Paul; Vogel, Christoph F A

    2018-08-01

    The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR -/- ) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR -/- BMDCs with autologous naive T cells. PM 2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM 2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Associations between Ambient Particulate Matter and Nitrogen Dioxide and Chronic Obstructive Pulmonary Diseases in Adults and Effect Modification by Demographic and Lifestyle Factors

    PubMed Central

    Leem, Jong Han; Kim, Hwan Cheol

    2018-01-01

    This study was undertaken to investigate the associations between chronic exposure to particulate matter of medium aerodynamic diameter ≤10 or ≤2.5 µm (PM10 or PM2.5) and nitrogen dioxide (NO2) levels and lung function and to examine a possible change in these relationships by demographic and lifestyle factors. Chronic obstructive pulmonary disease (COPD) was defined using the Global Initiative for COPD criteria (forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) of <70%). Associations of lung function and COPD with PM10 or PM2.5 or NO2 were examined using linear and logistic regression analyses among 1264 Korean adults. The highest tertiles of PM2.5 (≥37.1 μg/m3) and NO2 (≥53.8 μg/m3) exposure were significantly associated with COPD (highest versus lowest tertile of PM2.5: adjusted odds ratio (OR) = 1.79, 95% CI: 1.02–3.13; highest versus lowest tertile of NO2: adjusted OR = 1.83, 95% CI: 1.04–3.21). A 10 μg/m3 increase in PM10 concentration was associated with a 1.85 L (95% CI –3.65 to –0.05) decrease in FEV1 and a 1.73 L (95% CI –3.35 to –0.12) decrease in FVC, with the strongest negative association among older people and those with less education. Reduced lung function was associated with PM2.5 exposure in subjects with no physical activity. This study provides evidence that exposure to ambient air pollution has adverse effects on lung function in adults. PMID:29463050

  2. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis.

    PubMed

    Senthil Kumar, S; Muthuselvam, P; Pugalenthi, V; Subramanian, N; Ramkumar, K M; Suresh, T; Suzuki, T; Rajaguru, P

    2018-08-01

    Toxicoproteomic analysis of steel industry ambient particulate matter (PM) that contain high concentrations of PAHs and metals was done by treating human lung cancer cell-line, A549 and the cell lysates were analysed using quantitative label-free nano LC-MS/MS. A total of 18,562 peptides representing 1576 proteins were identified and quantified, with 196 proteins had significantly altered expression in the treated cells. Enrichment analyses revealed that proteins associated to redox homeostsis, metabolism, and cellular energy generation were inhibited while, proteins related to DNA damage and repair and other stresses were over expressed. Altered activities of several tumor associated proteins were observed. Protein-protein interaction network and biological pathway analysis of these differentially expressed proteins were carried out to obtain a systems level view of proteome changes. Together it could be inferred that PM exposure induced oxidative stress which could have lead into DNA damage and tumor related changes. However, lowering of cellular metabolism, and energy production could reduce its ability to overcome these stress. This kind of disequilibrium between the DNA damage and ability of the cells to repair the DNA damage may lead into genomic instability that is capable of acting as the driving force during PM induced carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    PubMed

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  4. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century.

    PubMed

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-12-01

    Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM 2.5 ) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM 2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM 2.5 . In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.

  5. 77 FR 28782 - Approval and Promulgation of Air Quality Implementation Plans; Delaware, New Jersey, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ...EPA is making two determinations regarding the Philadelphia- Wilmington, PA-NJ-DE fine particulate (PM2.5) nonattainment area (the Philadelphia Area). First, EPA is making a determination that the Philadelphia Area has attained the 1997 annual PM2.5 national ambient air quality standard (NAAQS) by its attainment date of April 5, 2010. This determination is based upon quality assured and certified ambient air monitoring data that show the area monitored attainment of the 1997 annual PM2.5 NAAQS for the 2007-2009 monitoring period. Second, EPA is making a clean data determination, finding that the Philadelphia Area has attained the 1997 PM2.5 NAAQS, based on quality assured and certified ambient air monitoring data for the 2007-2009 and 2008-2010 monitoring periods. In accordance with EPA's applicable PM2.5 implementation rule, this determination suspends the requirement for the Philadelphia Area to submit an attainment demonstration, reasonably available control measures/reasonably available control technology (RACM/RACT), a reasonable further progress (RFP) plan, and contingency measures related to attainment of the 1997 annual PM2.5 NAAQS for so long as the area continues to attain the 1997 annual PM2.5 NAAQS. These actions are being taken under the Clean Air Act (CAA).

  6. Airborne Particulate Threat Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. governmentmore » agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.« less

  7. Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2.

    PubMed

    Liu, Cuiqing; Xu, Xiaohua; Bai, Yuntao; Zhong, Jixin; Wang, Aixia; Sun, Lixian; Kong, Liya; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay

    2017-03-03

    Chronic exposure to fine ambient particulate matter (PM 2.5 ) induces insulin resistance. CC-chemokine receptor 2 (CCR2) appears to be essential in diet-induced insulin resistance implicating an important role for systemic cellular inflammation in the process. We have previously suggested that CCR2 is important in PM 2.5 exposure-mediated inflammation leading to insulin resistance under high fat diet situation. The present study assessed the importance of CCR2 in PM 2.5 exposure-induced insulin resistance in the context of normal diet. C57BL/6 and CCR2 -/- mice were subjected to exposure to concentrated ambient PM 2.5 or filtered air for 6 months. In C57BL/6 mice, concentrated ambient PM 2.5 exposure induced whole-body insulin resistance, macrophage infiltration into the adipose tissue, and upregulation of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. While CCR2 deficiency reduced adipose macrophage content in the PM 2.5 -exposed animals, it did not improve systemic insulin resistance. This lack of improvement in insulin resistance was paralleled by increased hepatic expression of genes in PEPCK and inflammation. CCR2 deletion failed to attenuate PM 2.5 exposure-induced insulin resistance in mice fed on normal diet. The present study indicates that PM 2.5 may dysregulate glucose metabolism directly without exerting proinflammatory effects.

  8. [Time-series analysis of ambient PM₁₀ pollution on residential mortality in Beijing].

    PubMed

    Xue, Jiang-li; Wang, Qi; Cai, Yue; Zhou, Mai-geng

    2012-05-01

    To explore the short-term impact of ambient PM(10) on daily non-accidental death, cardiovascular and respiratory death of residents in Beijing. Mortality data of residents in Beijing during 2006 to 2009 were obtained from public health surveillance and information service center of Chinese Center for Disease Control and Prevention, contemporaneous data of average daily air concentration of PM(10), SO(2), NO(2) were obtained from Beijing Environment Protection Bureau (year 2005 - 2006) and public website of Beijing environmental protection (year 2007 - 2009), respectively, contemporaneous meteorological data were obtained from china meteorological data sharing service system. Generalized addictive model (GAM) of time serial analysis was applied. In additional to the control of confounding factors such as long-term trend, day of the week effect, meteorological factors, lag effect and the effects of other atmospheric pollutants were also analyzed. During year 2006 to 2009, the number of average daily non-accidental death, respiratory disease caused death, cardiovascular and cerebrovascular diseases caused death among Beijing residents were 140.1, 15.0, 65.8, respectively;contemporaneous medians of average daily air concentration of PM(10), SO(2), NO(2) were 123.0, 26.0, 58.0 µg/m(3), respectively;contemporaneous average atmosphere pressure, temperature and relative humidity were 10.1 kPa, 13.5°C and 51.9%, respectively. An exposure-response relationship between exposure to ambient PM(10) and increased daily death number was found as every 10 µg/m(3) increase in daily average concentration of PM(10), there was a 0.1267% (95%CI: 0.0824% - 0.1710%) increase in daily non-accidental death of residents, 0.1365% (95%CI: 0.0010% - 0.2720%) increase in respiratory death and 0.1239% (95%CI: 0.0589% - 0.1889%) increase in cardiovascular death. Ambient PM(10) had greatest influence on daily non-accidental and cardiovascular death of the same day, while its greatest influence on respiratory death occurred 5 days later. The ambient PM(10) pollution increased daily non-accidental, respiratory disease caused, cardiovascular and cerebrovascular diseases caused deaths among residents in Beijing, and lag effect existed as for the effect of ambient PM(10) pollution on respiratory disease caused death.

  9. EFFECTS OF INHALED COMBUSTION-DERIVED PARTICULATE MATTER ON INDICES OF CARDIAC, PULMONARY, AND THERMOREGULATORY FUNCTION IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    Epidemiological studies have shown a positive relationship between elevated levels of ambient particulate matter (PM) and rates of morbidity and mortality; these correlations are further strengthened when limited to individuals with preexisting cardiopulmonary diseases. While si...

  10. Why is particulate matter produced by wildfires toxic to lung macrophages?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzi, Lisa M.; Bratt, Jennifer M.; Williams, Keisha M.

    The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM is about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfiremore » PM in vitro. Our data implicate NF-{kappa}B signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and 'normal' PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we cannot rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin. -- Highlights: Black-Right-Pointing-Pointer Wildfire coarse PM kills macrophages at lower doses than coarse. Black-Right-Pointing-Pointer Wildfire coarse PM activates the NF-kB pathway at lower doses than ambient. Black-Right-Pointing-Pointer Wildfire coarse PM in vitro and in vivo kill macrophages by oxidative stress.« less

  11. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    PubMed

    Mukherjee, Arideep; Agrawal, Madhoolika

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles <2.5 μm in aerodynamic diameter), its exceedance of national and international standards, sources, mechanism of toxicity, and harmful health effects of PM 2.5 and its components. PM 2.5 levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  12. Source apportionment of ambient PM10 and PM2.5 in Haikou, China

    NASA Astrophysics Data System (ADS)

    Fang, Xiaozhen; Bi, Xiaohui; Xu, Hong; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang

    2017-07-01

    In order to identify the sources of PM10 and PM2.5 in Haikou, 60 ambient air samples were collected in winter and spring, respectively. Fifteen elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb), water-soluble ions (SO42 - and NO3-), and organic carbon (OC) and elemental carbon (EC) were analyzed. It was clear that the concentration of particulate matter was higher in winter than in spring. The value of PM2.5/PM10 was > 0.6. Moreover, the proportions of TC, ions, Na, Al, Si and Ca were more high in PM10 and PM2.5. The SOC concentration was estimated by the minimum OC/EC ratio method, and deducted from particulate matter compositions when running CMB model. According to the results of CMB model, the resuspended dust (17.5-35.0%), vehicle exhaust (14.9-23.6%) and secondary particulates (20.4-28.8%) were the major source categories of ambient particulate matter. Additionally, sea salt also had partial contribution (3-8%). And back trajectory analysis results showed that particulate matter was greatly affected by regional sources in winter, while less affected in spring. So particulate matter was not only affected by local sources, but also affected by sea salt and regional sources in coastal cities. Further research could focuses on establishing the actual secondary particles profiles and identifying the local and regional sources of PM at once by one model or analysis method.

  13. [Effects of vitamin E and ω-3 fatty acids on protecting ambient PM_(2. 5)-induced cardiovascular injury].

    PubMed

    Du, Xihao; Jiang, Shuo; Bo, Liang; Liu, Jie; Zeng, Xuejiao; Jiang, Rongfang; Song, Weimin; Zhao, Jinzhuo

    2017-07-01

    To observe whether vitamin E( Ve) and ω-3 polyunsaturated fatty acids( ω-3 FA) could prevent the fine particulate matter( PM_(2. 5))-induced cardiovascular injury and explore the potential mechanism. The SD rats were assigned randomly to 8 groups, those were control group, PM_(2. 5)group, Ve treatment groups( 3, 10, 30 mg/( kg·d)) and ω-3 FA treatment groups( 10, 30 and 90 mg/( kg·d)). The rats were pretreated with different concentration of Ve and ω-3 FA separately for 14 days, then were exposed to ambient PM_(2. 5) by intratracheal instillation( 10 mg/kg BW). All the rats were sacrificed after the last PM_(2. 5) exposure, then the arterial blood, lungs and cardiac tissues were collected. The expressions of tumor necrosis factor-α( TNF-α), interleukin-1β( IL-1β), interleukin-6( IL-6) in serum, bronchoalveolar lavage fluid and supernatant of cardiac tissue were detected by ELISA kits. The levels of malondialdehyde( MDA), superoxide dismutase( SOD) and glutathione-peroxidase( GSH-Px) in serum and myocardium were also measured. Compared with the severe injury of rats in PM_(2. 5) exposure group, the rats in Ve or ω-3 FA groups had a slighter injury in lung and cardiac tissue with the increase of Ve and ω-3 FA. Similarly, the levels of IL-1β, IL-6 in bronchoalveolar lavage fluid had a decreasing trend with the increase of Ve and ω-3 FA compared with the PM_(2. 5) exposure groups. Meanwhile, the expressions of TNF-α in Ve and ω-3 FA high dose groups were significantly reduced when compared with the PM_(2. 5) exposure group( P <0. 05). In addition, the MDA levels in serum were markedly decreased and the activities of SOD were significantly increased compared with the PM_(2. 5)exposure group( P < 0. 05 or P < 0. 01) whereas the SOD activities were elevated only in the ω-3 FA high dose groups( P < 0. 05). Meanwhile, the levels of IL-6 and TNF-α in serum had an obvious decrease compared with the PM_(2. 5) exposure group( P < 0. 01). Similarly, compared with the PM_(2. 5)exposure group, the expressions of MDA were markedly decreased and the activities of SOD and GSH-Px in myocardium were significantly increased( P < 0. 05 or P < 0. 01) in the Ve treatment group. In addition, the activities of GSH-Px was found higher only in the ω-3 FA high treatment group compared with the PM_(2. 5)exposure group( P < 0. 05). Meanwhile, the levels of IL-1β and TNF-α in cardiac tissue had an obvious decrease trend with the increase of Ve and ω-3 FA. PM_(2. 5) exposure may increase inflammatory response and oxidative stress, supplementation with Ve and ω-3 FA could prevent the PM_(2. 5)-induced inflammatory reaction and oxidative stress damage by increasing the activities of SOD and GSH-Px.

  14. Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor.

    PubMed

    Shi, Shanshan; Chen, Chen; Zhao, Bin

    2017-01-01

    Numerous epidemiological studies explored health risks attributed to outdoor particle pollution. However, a number of these studies routinely utilized ambient concentration as a surrogate for personal exposure to ambient particles. This simplification ignored the difference between indoor and outdoor concentrations of outdoor originated particles and may bias the estimate of particle-health associations. Intending to avoid the bias, particle infiltration factor (F inf ), which describes the penetration of outdoor particles in indoor environment, and ambient exposure factor (α), which represents the fraction of outdoor particles people are truly exposed to, are utilized as modification factors to modify outdoor particle concentration. In this study, the probabilistic distributions of annually-averaged and seasonally-averaged F inf and α were assessed for residences and residents in Beijing. F inf of a single residence and α of an individual was estimated based on the mechanisms governing particle outdoor-to-indoor migration and human time-activity pattern. With this as the core deterministic model, probabilistic distributions of F inf and α were estimated via Monte Carlo Simulation. Annually-averaged F inf of PM 2.5 and PM 10 for residences in Beijing tended to be log-normally distributed as lnN(-0.74,0.14) and lnN(-0.94,0.15) with geometric mean value as 0.47 and 0.39, respectively. Annually-averaged α of PM 2.5 and PM 10 for Beijing residents also tended to be log-normally distributed as lnN(-0.59,0.12) and lnN(-0.73,0.13) with geometric mean value as 0.55 and 0.48, respectively. As for seasonally-averaged results, F inf and α of PM 2.5 and PM 10 were largest in summer and smallest in winter. The obvious difference between these modification factors and unity suggested that modifications of ambient particle concentration need to be considered in epidemiological studies to avoid misclassifications of personal exposure to ambient particles. Moreover, considering the inter-individual difference of F inf and α may lead to a brand new perspective of particle-health associations in further epidemiological study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. INCREASED AIRWAYS INFLAMMATION AND MODIFIED BAL CELL SURFACE PHENOTYPES IN ASTHMATICS EXPOSED TO COARSE SIZE (PM2.5-10) CONCENTRATED AMBIENT PARTICLES (CAPS)

    EPA Science Inventory

    Although associations between inhalation of PM10 and disease morbidity and mortality appear stronger for fine (PM2.5) vs coarse (PM2.5-10) or ultrafine/UF (PM<0.1) PM. In vitro studies suggest that PM2.5-10 are more potent in inducing pro-inflammatory cytokine responses from alve...

  16. SEASONAL VARIATIONS IN AIR POLLUTION PARTICLE-INDUCED INFLAMMATORY MEDIATOR RELEASE AND OXIDATIVE STRESS

    EPA Science Inventory

    Normal human bronchial epithelial (NHBE) cells and alveolar macrophages (AMs) were exposed to equal mass of coarse [PM with aerodynamic diameter of 2.510 �m (PM2.510)], fine (PM2.5), and ultrafine (PM < 0.1) ambient PM from Chapel Hill, North Carolina, during October 2001 (f...

  17. Modeling Exposures to the Oxidative Potential of PM10

    PubMed Central

    2012-01-01

    Differences in the toxicity of ambient particulate matter (PM) due to varying particle composition across locations may contribute to variability in results from air pollution epidemiologic studies. Though most studies have used PM mass concentration as the exposure metric, an alternative which accounts for particle toxicity due to varying particle composition may better elucidate whether PM from specific sources is responsible for observed health effects. The oxidative potential (OP) of PM < 10 μm (PM10) was measured as the rate of depletion of the antioxidant reduced glutathione (GSH) in a model of human respiratory tract lining fluid. Using a database of GSH OP measures collected in greater London, U.K. from 2002 to 2006, we developed and validated a predictive spatiotemporal model of the weekly GSH OP of PM10 that included geographic predictors. Predicted levels of OP were then used in combination with those of weekly PM10 mass to estimate exposure to PM10 weighted by its OP. Using cross-validation (CV), brake and tire wear emissions of PM10 from traffic within 50 m and tailpipe emissions of nitrogen oxides from heavy-goods vehicles within 100 m were important predictors of GSH OP levels. Predictive accuracy of the models was high for PM10 (CV R2=0.83) but only moderate for GSH OP (CV R2 = 0.44) when comparing weekly levels; however, the GSH OP model predicted spatial trends well (spatial CV R2 = 0.73). Results suggest that PM10 emitted from traffic sources, specifically brake and tire wear, has a higher OP than that from other sources, and that this effect is very local, occurring within 50–100 m of roadways. PMID:22731499

  18. Air pollution and emergency department visits for depression in Edmonton, Canada.

    PubMed

    Szyszkowicz, Mieczysław

    2007-01-01

    Depression is a common cause of morbidity. Sufferers are very sensitive to many external factors. Emergency department (ED) visits for this condition can be associated with the concentration of ambient air pollutants. The study objective was to examine and assess the associations between ED visits for depression and ambient air pollution. The present study analyzed 15,556 ED visits for depression (ICD-9: 311) at Edmonton hospitals between 1992 and 2002. The data were clustered based on the triplet {year, month, day of the week}. The generalized linear mixed models (GLMM) technique was used to regress the logarithm of the clustered counts for ED visits for depression on the levels of air pollutants (CO, NO2, SO2, O3, PM10 and PM2.5) and the meteorological variables. The number of ED visits for depression was analyzed separately for all patients, and males and females. An analysis by season was also conducted: for the whole year (I-XII), warm season (IV-IX), and cold season (X-III). After adjusting for temperature and relative humidity, the following increments in daily depression-related ED visits could be noted: 6.9% (95% CI: 1.3, 12.9) for carbon monoxide (CO) for all patients in warm season; 7.4% (95% CI: 0.5, 14.8) for nitrogen dioxide (NO2) for female patients in warm season; 4.5% (95% CI: 0.1, 9.1) for sulphur dioxide (SO2) for female patients in warm season; 6.9% (95% CI: 0.6, 13.6) for ground level ozone (O3, 1-day lagged) for female patients in warm season; 7.2% (95% CI: 2.7, 12.0) for particulate matter (PM10) for females in cold season; and 7.2% (95% CI: 2.0, 12.8) for particulate matter (PM2.5) for females in cold season. The findings provide support for the hypothesis that ED visits for depression are associated with exposure to ambient air pollution.

  19. Source apportionment studies on particulate matter (PM10 and PM2.5) in ambient air of urban Mangalore, India.

    PubMed

    Kalaiarasan, Gopinath; Balakrishnan, Raj Mohan; Sethunath, Neethu Anitha; Manoharan, Sivamoorthy

    2018-07-01

    Particulate matter (PM 10 and PM 2.5 ) samples were collected from six sites in urban Mangalore and the mass concentrations for PM 10 and PM 2.5 were measured using gravimetric technique. The measurements were found to exceed the national ambient air quality standards (NAAQS) limits, with the highest concentration of 231.5 μg/m 3 for PM 10 particles at Town hall and 120.3 μg/m 3 for PM 2.5 particles at KMC Attavar. The elemental analysis using inductively coupled plasma optical emission spectrophotometer (ICPOES) revealed twelve different elements (As, Ba, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Sr and Zn) for PM 10 particles and nine different elements (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn) for PM 2.5 particles. Similarly, ionic composition of these samples measured by ion chromatography (IC) divulged nine different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , K + , Mg 2+ and Ca 2+ ) for PM 10 particles and ten different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , NH 4 + , K + , Mg 2+ and Ca 2+ ) for PM 2.5 particles. The source apportionment study of PM 10 and PM 2.5 for urban Mangalore in accordance with these six sample sites using chemical mass balance model (CMBv8.2) revealed nine and twelve predominant contributors for both PM 10 and PM 2.5 , respectively. The highest contributor of PM 10 was found to be paved road dust followed by diesel and gasoline vehicle emissions. Correspondingly, PM 2.5 was found to be contributed mainly from two-wheeler vehicle emissions followed by four-wheeler and heavy vehicle emissions (diesel vehicles). The current study depicts that the PM 10 and PM 2.5 in ambient air of Mangalore region has 70% of its contribution from vehicular emissions (both exhaust and non-exhaust). Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegesser, Teresa C.; Last, Jerold A.

    Coarse and fine particulate matter (PM{sub 2.5-10} and PM{sub 2.5}, respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM{sub 2.5-10} and PM{sub 2.5} emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM{sub 2.5-10} was more pro-inflammatory on an equal weight basis than was PM{sub 2.5}; both fractions elicited a predominantly neutrophilic response. The inflammatory responsemore » was reversible, with a peak response to PM{sub 2.5-10} observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM{sub 2.5-10}, but not in whole PM{sub 2.5}, is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM{sub 2.5-10} as measured by Limulus bioassay is identical. The active material in both PM{sub 2.5-10} and PM{sub 2.5} remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM{sub 2.5-10} or PM{sub 2.5} showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM{sub 2.5-10}; however, in contrast with PM{sub 2.5-10} isolated from ambient air in the Central Valley of California, the active components in the insoluble fraction were heat-labile.« less

  1. The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China.

    PubMed

    Archer-Nicholls, Scott; Carter, Ellison; Kumar, Rajesh; Xiao, Qingyang; Liu, Yang; Frostad, Joseph; Forouzanfar, Mohammad H; Cohen, Aaron; Brauer, Michael; Baumgartner, Jill; Wiedinmyer, Christine

    2016-09-06

    Exposure to air pollution is a major risk factor globally and particularly in Asia. A large portion of air pollutants result from residential combustion of solid biomass and coal fuel for cooking and heating. This study presents a regional modeling sensitivity analysis to estimate the impact of residential emissions from cooking and heating activities on the burden of disease at a provincial level in China. Model surface PM2.5 fields are shown to compare well when evaluated against surface air quality measurements. Scenarios run without residential sector and residential heating emissions are used in conjunction with the Global Burden of Disease 2013 framework to calculate the proportion of deaths and disability adjusted life years attributable to PM2.5 exposure from residential emissions. Overall, we estimate that 341 000 (306 000-370 000; 95% confidence interval) premature deaths in China are attributable to residential combustion emissions, approximately a third of the deaths attributable to all ambient PM2.5 pollution, with 159 000 (142 000-172 000) and 182 000 (163 000-197 000) premature deaths from heating and cooking emissions, respectively. Our findings emphasize the need to mitigate emissions from both residential heating and cooking sources to reduce the health impacts of ambient air pollution in China.

  2. Improved population exposure factors in the meta-analysis of air pollution health effects

    EPA Science Inventory

    Numerous time-series studies have reported significant associations between ambient PM2.5 levels and increased mortality and morbidity. A recent mortality study conducted by Franklin et al. 2007 in 27 U.S. cities has reported significant heterogeneity among city-specific effect e...

  3. PARTICLE DEPOSITION IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS EXPOSED VIA WHOLE-BODY INHALATION: MEASURED VS. ESTIMATED DOSE.

    EPA Science Inventory

    It has been well documented by epidemiological studies that exposure to elevated levels of ambient particulate matter (PM) can lead to adverse health outcomes, including cardiopulmonary-related morbidity and mortality. As a result of these findings, many animal toxicological stud...

  4. Analyses of biomass burning contribution to aerosol in Zhengzhou during wheat harvest season in 2015

    NASA Astrophysics Data System (ADS)

    Chen, Hongyang; Yin, Shasha; Li, Xiao; Wang, Jia; Zhang, Ruiqin

    2018-07-01

    Ambient PM2.5 samples were collected in suburban area of Zhengzhou, China to investigate the impact of straw open burning on local aerosol during wheat harvest season in 2015. Secondary formation and accumulation processes were found under unfavorable meteorological conditions through the chemical composition analysis in PM2.5. And spatial and temporal variation of the agricultural activities were observed through MODIS fire spots data combined with back trajectory analysis. Results showed elevated levoglucosan was affected directly during biomass burning episodes and transportation periods. In order to estimate the contribution, levoglucosan/K+ combined with levoglucosan/mannosan were analyzed to identify biomass burning sources. And the results showed that levoglucosan were emitted from straw burning mixing with softwood combustion during the study period, emphasizing that wood combustion for households was non-negligible which consists part of the levoglucosan background in Zhengzhou aerosol. Based on emission factors (levoglucosan/OC or levoglucosan/PM2.5) summarized by laboratory simulation experiments, the study period was divided into 7 depending on the former characteristics to estimate the contribution of biomass burning to aerosol, and the average contributions of biomass burning emission to OC and PM2.5 were 46% and 13% relatively, indicating biomass burning have a significant impact on ambient aerosol levels during harvest season.

  5. Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.

    PubMed

    Chang, Howard H; Peng, Roger D; Dominici, Francesca

    2011-10-01

    In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.

  6. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis.

    PubMed

    An, Ruopeng; Zhang, Sheng; Ji, Mengmeng; Guan, Chenghua

    2018-03-01

    This study systematically reviewed literature regarding the impact of ambient air pollution on physical activity among children and adults. Keyword and reference search was conducted in PubMed and Web of Science to systematically identify articles meeting all of the following criteria - study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies, and case-control studies; subjects: adults; exposures: specific air pollutants and overall air quality; outcomes: physical activity and sedentary behaviour; article types: peer-reviewed publications; and language: articles written in English. Meta-analysis was performed to estimate the pooled effect size of ambient PM 2.5 air pollution on physical inactivity. Seven studies met the inclusion criteria. Among them, six were conducted in the United States, and one was conducted in the United Kingdom. Six adopted a cross-sectional study design, and one used a prospective cohort design. Six had a sample size larger than 10,000. Specific air pollutants assessed included PM 2.5 , PM 10 , O 3 , and NO x , whereas two studies focused on overall air quality. All studies found air pollution level to be negatively associated with physical activity and positively associated with leisure-time physical inactivity. Study participants, and particularly those with respiratory disease, self-reported a reduction in outdoor activities to mitigate the detrimental impact of air pollution. Meta-analysis revealed a one unit (μg/m 3 ) increase in ambient PM 2.5 concentration to be associated with an increase in the odds of physical inactivity by 1.1% (odds ratio = 1.011; 95% confidence interval = 1.001, 1.021; p-value < .001) among US adults. Existing literature in general suggested that air pollution discouraged physical activity. Current literature predominantly adopted a cross-sectional design and focused on the United States. Future studies are warranted to implement a longitudinal study design and evaluate the impact of air pollution on physical activity in heavily polluted developing countries.

  7. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    PubMed

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    NASA Astrophysics Data System (ADS)

    Chambliss, S. E.; Silva, R.; West, J. J.; Zeinali, M.; Minjares, R.

    2014-10-01

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m-3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants.

  9. The inflammatory response in lungs of rats exposed on the airborne particles collected during different seasons in four European cities.

    PubMed

    Halatek, Tadeusz; Stepnik, Maciej; Stetkiewicz, Jan; Krajnow, Aleksander; Kur, Barbara; Szymczak, Wieslaw; Rydzynski, Konrad; Dybing, Erik; Cassee, Fleming R

    2011-01-01

    Epidemiological studies have reported associations of ambient particulate air pollution, especially particulate matter (PM) less than 10 μm with exacerbations of asthma and chronic obstructive pulmonary disease. In an in vivo model, we have tested the toxicity of urban airborne particles collected during spring, summer, and winter seasons in four cities (Amsterdam, Lodz, Oslo, and Rome) spread across Europe. The seasonal differences in inflammatory responses were striking, and almost all the study parameters were affected by PM. Coarse fractions of the urban particle samples were less potent per unit mass than the fine fractions in increasing cytokine [macrophage inflammatory protein (MIP)-2 and tumor necrosis factor (TNF)-α] levels and in reducing Clara-cell secretory protein (CC16) levels. This study shows that PM collected at 4 contrasting sites across Europe and during different seasons have differences in toxic potency. These differences were even more prominent between the fine and coarse fractions of the PM.

  10. Impact of smoking on in-vehicle fine particle exposure during driving

    NASA Astrophysics Data System (ADS)

    Sohn, Hongji; Lee, Kiyoung

    2010-09-01

    Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 μm (PM 2.5) concentration in moving cars with different window opening conditions. The PM 2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM 2.5 concentrations were 16-17 μg m -3. Regardless of different window opening conditions, the PM 2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM 2.5 levels were 506-1307 μg m -3 with different window opening conditions. When smoking was ceased, the average PM 2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 μg m -3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM 2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy.

  11. Cardiovascular Depression in Rats Exposed to Inhaled Particulate Matter and Ozone: Effects of Diet-Induced Metabolic Syndrome

    PubMed Central

    Allen, Katryn; Yang, Hui-yu; Nan, Bin; Morishita, Masako; Mukherjee, Bhramar; Dvonch, J. Timothy; Spino, Catherine; Fink, Gregory D.; Rajagopalan, Sanjay; Sun, Qinghua; Brook, Robert D.; Harkema, Jack R.

    2013-01-01

    Background: High ambient levels of ozone (O3) and fine particulate matter (PM2.5) are associated with cardiovascular morbidity and mortality, especially in people with preexisting cardiopulmonary diseases. Enhanced susceptibility to the toxicity of air pollutants may include individuals with metabolic syndrome (MetS). Objective: We tested the hypothesis that cardiovascular responses to O3 and PM2.5 will be enhanced in rats with diet-induced MetS. Methods: Male Sprague-Dawley rats were fed a high-fructose diet (HFrD) to induce MetS and then exposed to O3, concentrated ambient PM2.5, or the combination of O3 plus PM2.5 for 9 days. Data related to heart rate (HR), HR variability (HRV), and blood pressure (BP) were collected. Results: Consistent with MetS, HFrD rats were hypertensive and insulin resistant, and had elevated fasting levels of blood glucose and triglycerides. Decreases in HR and BP, which were found in all exposure groups, were greater and more persistent in HFrD rats compared with those fed a normal diet (ND). Coexposure to O3 plus PM2.5 induced acute drops in HR and BP in all rats, but only ND rats adapted after 2 days. HFrD rats had little exposure-related changes in HRV, whereas ND rats had increased HRV during O3 exposure, modest decreases with PM2.5, and dramatic decreases during O3 plus PM2.5 coexposures. Conclusions: Cardiovascular depression in O3- and PM2.5-exposed rats was enhanced and prolonged in rats with HFrD-induced MetS. These results in rodents suggest that people with MetS may be prone to similar exaggerated BP and HR responses to inhaled air pollutants. Citation: Wagner JG, Allen K, Yang HY, Nan B, Morishita M, Mukherjee B, Dvonch JT, Spino C, Fink GD, Rajagopalan S, Sun Q, Brook RD, Harkema JR. 2014. Cardiovascular depression in rats exposed to inhaled particulate matter and ozone: effects of diet-induced metabolic syndrome. Environ Health Perspect 122:27–33; http://dx.doi.org/10.1289/ehp.1307085 PMID:24169565

  12. Associations between respiratory illness and PM{sub 10} air pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, A.H.; Gordian, M.E.; Morris, S.S.

    In this study, the association between daily morbidity and respirable particulate pollution (i.e., particles with a mass median aerodynamic diameter of {le} 10 microns [PM{sub 10}]) was evaluated in the general population of Anchorage, Alaska. Using insurance claims data for state employees and their dependents who lived in Anchorage, Alaska, the authors determined the number of medical visits for asthma, bronchitis, and upper respiratory infections. The number of visits were related to the level of particulate pollution in ambient air measured at air-monitoring sites. 17 refs., 2 figs., 4 tabs.

  13. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS RECOVERY BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  14. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS HOGGED FUEL BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  15. Challenges in evaluating PM concentration levels, commuting exposure, and mask efficacy in reducing PM exposure in growing, urban communities in a developing country.

    PubMed

    Patel, Disa; Shibata, Tomoyuki; Wilson, James; Maidin, Alimin

    2016-02-01

    Particulate matter (PM) contributes to an increased risk of respiratory and cardiovascular illnesses, cancer, and preterm birth complications. This project assessed PM exposure in Eastern Indonesia's largest city, where air quality has not been comprehensively monitored. We examined the efficacy of wearing masks as an individual intervention effort to reduce in-transit PM exposures. Handheld particulate counters were used to investigate ambient air quality for spatial analysis, as well as the differences in exposure to PM2.5 and PM10 (μg/m(3)) by different transportation methods [e.g. motorcycle (n=97), pete-pete (n=53), and car (n=55); note: n=1 means 1m(3) of air sample]. Mask efficacy to reduce PM exposure was evaluated [e.g. surgical masks (n=39), bandanas (n=52), and motorcycle masks (n=39)]. A Monte Carlo simulation was used to provide a range of uncertainty in exposure assessment. Overall PM10 levels (91±124 μg/m(3)) were elevated compared to the World Health Organization (WHO)'s 24-hour air quality guideline (50 μg/m(3)). While average PM2.5 levels (9±14 μg/m(3)) were below the WHO's guideline (25 μg/m(3)), measurements up to 139 μg/m(3) were observed. Compared to cars, average motorcycle and pete-pete PM exposures were four and three times higher for PM2.5, and 13 and 10 times higher for PM10, respectively. Only surgical masks were consistent in lowering PM2.5 and PM10 (p<0.01). Young children (≤5) were the most vulnerable age group, and could not reach the safe dosage even when wearing surgical masks. Individual interventions can effectively reduce individual PM exposures; however, policy interventions will be needed to improve the overall air quality and create safer transportation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. ADVANCES IN CONTROL OF PM2..5 AND PM2..5 PRECURSORS GENERATED BY THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    Particulate matter smaller than 2.5 micrometers in aerodynamic diameter (PM2.5) is of concern due to adverse health effects associated with elevated ambient mass concentrations of PM2.5. PM2.5 from coal-fired utility boilers is composed of directly emitted (primary) particles and...

  17. AMBIENT PARTICULATE MATTER EXPOSURES: A COMPARISON OF SHEDS-PM EXPOSURE MODEL PREDICTIONS AND ESTIMATES DERIVED FROM MEASUREMENTS COLLECTED DURING NERL'S RTP PM PANEL STUDY

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) is currently refining and evaluating a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribu...

  18. Characterization of particulate matter size distributions and indoor concentrations from kerosene and diesel lamps.

    PubMed

    Apple, J; Vicente, R; Yarberry, A; Lohse, N; Mills, E; Jacobson, A; Poppendieck, D

    2010-10-01

    Over one-quarter of the world's population relies on fuel-based lighting. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel-based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM(2.5) concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM(2.5) and PM(10) concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM(2.5) and PM(10), but will be exposed to elevated 0.02-0.3 μm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM(2.5) mass if they switched from a simple wick lamp to an electric lighting technology. Changing lighting technologies to achieve increased efficiency and energy service levels can provide ancillary health benefits. The cheapest, crudest kerosene lamps emit the largest amounts of PM(2.5). Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.

  19. SYSTEMIC TRANSLOCATION OF PARTICULATE MATTER (PM)-ASSOCIATED METALS FOLLOWING A SINGLE INTRATRACHEAL (IT) INSTILLATION IN WKY RATS

    EPA Science Inventory

    Ambient PM contains transition metals with differing water solubilities. Epidemiological studies show a link between PM exposure and an increased risk of cardiovascular disease. Direct translocation of PM-associated metals from the lung into systemic circulation may be partly res...

  20. 40 CFR 52.2527 - Determination of attainment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., EPA determined that the Steubenville-Weirton fine particle (PM2.5) nonattainment area attained the... 3-year period 2007-2009, EPA determined that the Charleston fine particle (PM2.5) nonattainment area... fine particle (PM2.5) nonattainment areas attained the 1997 annual PM2.5 National Ambient Air Quality...

  1. 40 CFR 52.2527 - Determination of attainment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., EPA determined that the Steubenville-Weirton fine particle (PM2.5) nonattainment area attained the... 3-year period 2007-2009, EPA determined that the Charleston fine particle (PM2.5) nonattainment area... fine particle (PM2.5) nonattainment areas attained the 1997 annual PM2.5 National Ambient Air Quality...

  2. 40 CFR 52.2527 - Determination of attainment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., EPA determined that the Steubenville-Weirton fine particle (PM2.5) nonattainment area attained the... 3-year period 2007-2009, EPA determined that the Charleston fine particle (PM2.5) nonattainment area... fine particle (PM2.5) nonattainment areas attained the 1997 annual PM2.5 National Ambient Air Quality...

  3. LUNG INJURY IS INDUCED BY INSOLUBLE AND TOTAL BUT NOT SOLUBLE PARTICULATE MATTER (PM) COLLECTED IN MEXICO CITY

    EPA Science Inventory

    Exposure to ambient air PM has been associated with adverse cardiopulmonary health effects; however, causative components have not been identified. The solubility of PM constituents and their bioavalability may influence their toxicity. Chemically characterized PM10 an...

  4. Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996–2005: a time-series study

    PubMed Central

    Hanigan, Ivan C; Johnston, Fay H; Morgan, Geoffrey G

    2008-01-01

    Background Air pollution in Darwin, Northern Australia, is dominated by smoke from seasonal fires in the surrounding savanna that burn during the dry season from April to November. Our aim was to study the association between particulate matter less than or equal to 10 microns diameter (PM10) and daily emergency hospital admissions for cardio-respiratory diseases for each fire season from 1996 to 2005. We also investigated whether the relationship differed in indigenous Australians; a disadvantaged population sub-group. Methods Daily PM10 exposure levels were estimated for the population of the city from visibility data using a previously validated model. We used over-dispersed Poisson generalized linear models with parametric smoothing functions for time and meteorology to examine the association between admissions and PM10 up to three days prior. An interaction between indigenous status and PM10 was included to examine differences in the impact on indigenous people. Results We found both positive and negative associations and our estimates had wide confidence intervals. There were generally positive associations between respiratory disease and PM10 but not with cardiovascular disease. An increase of 10 μg/m3 in same-day estimated ambient PM10 was associated with a 4.81% (95%CI: -1.04%, 11.01%) increase in total respiratory admissions. When the interaction between indigenous status and PM10 was assessed a statistically different association was found between PM10 and admissions three days later for respiratory infections of indigenous people (15.02%; 95%CI: 3.73%, 27.54%) than for non-indigenous people (0.67%; 95%CI: -7.55%, 9.61%). There were generally negative estimates for cardiovascular conditions. For non-indigenous admissions the estimated association with total cardiovascular admissions for same day ambient PM10 and admissions was -3.43% (95%CI: -9.00%, 2.49%) and the estimate for indigenous admissions was -3.78% (95%CI: -13.4%, 6.91%), although ambient PM10 did have positive (non-significant) associations with cardiovascular admissions of indigenous people two and three days later. Conclusion We observed positive associations between vegetation fire smoke and daily hospital admissions for respiratory diseases that were stronger in indigenous people. While this study was limited by the use of estimated rather than measured exposure data, the results are consistent with the currently small evidence base concerning this source of air pollution. PMID:18680605

  5. Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

    PubMed

    Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W

    2013-07-01

    Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.

  6. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century

    PubMed Central

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-01-01

    Abstract Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM2.5) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM2.5. In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future. PMID:28649460

  7. Impact of smoke from biomass burning on air quality in rural communities in southern Australia

    NASA Astrophysics Data System (ADS)

    Reisen, Fabienne; Meyer, C. P. (Mick); McCaw, Lachie; Powell, Jennifer C.; Tolhurst, Kevin; Keywood, Melita D.; Gras, John L.

    2011-08-01

    In rural towns of southern Australia, smoke from biomass burning such as prescribed burning of forests, wildfires and stubble burning is often claimed to be the major source of air pollution. To investigate the validity of this claim, ambient measurements of PM 2.5 and ozone were made in two rural locations in southern Australia between 2006 and 2008. In order to distinguish PM 2.5 associated with smoke from other sources of particulate pollution, PM 2.5 samples were analysed for specific smoke tracers, levoglucosan, non sea-salt potassium (nssK +) and oxalate. Monitoring was also undertaken in four homes to determine the extent to which ambient pollutants from prescribed burning penetrate indoors into houses. Monitoring clearly showed that, on occasions, air quality in rural areas is significantly affected by smoke from biomass combustion with PM 2.5 showing the greatest impact. Concentrations of PM 2.5 increased significantly above background levels at both sites during periods of wildfire and prescribed fire leading to exceedences of the 24-h PM 2.5 Air National Environment Protection Measure (NEPM) Advisory standard. The 1-h and 4-h ozone NEPM standards were exceeded only during protracted forest wildfires. The impact of prescribed burning on the indoor air quality of residences depended on the duration of the smoke event and the ventilation rate of the houses. During short-duration events indoor air quality was determined by household activities. During events that persisted for several days, indoor air quality was determined by external conditions coupled with management of household ventilation rate.

  8. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan

    NASA Astrophysics Data System (ADS)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2016-03-01

    A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4-), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March-April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and "siliceous dust" were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of ;EC + OM; in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5.

  9. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  10. Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain).

    PubMed

    López, J M; Callén, M S; Murillo, R; García, T; Navarro, M V; de la Cruz, M T; Mastral, A M

    2005-09-01

    An assessment of the air quality of Zaragoza (Spain) was performed by determining the trace element content in airborne PM10 in a sampling campaign from July 2001 to July 2002. Samples were collected in a heavy traffic area with a high volume air sampler provided with a PM10 cutoff inlet. The levels of 16 elements (Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) were quantified after collecting the PM10 on Teflon-coated glass fiber filters (GFF). Regarding the PM10, 32% exceedance of the proposed PM10 daily limit was obtained, some of them corresponding to summer and autumn periods. The limit values of toxic trace elements from US-EPA, WHO, and EC were not exceeded, considering Zaragoza as a moderately polluted city under the current air quality guidelines. The contribution of anthropogenic sources to atmospheric elemental levels was reflected by the high values of enrichment factors for Zn, Pb, and Cu compared to the average crustal composition. Statistical analyses also determined the contribution of different sources to the PM10, finding that vehicle traffic and anthropogenic emissions related to combustion and industrial processes were the main pollutant sources as well as natural sources associated with transport of dust from Africa for specific dates. Regarding the influence of meteorological conditions on PM10 and trace elements concentrations, it was found that calm weather conditions with low wind speed favor the PM10 collection and the pollution for trace elements, suggesting the influence of local sources.

  11. Particulate Matter 2.5 Exposure and Self-Reported Use of Wood Stoves and Other Indoor Combustion Sources in Urban Nonsmoking Homes in Norway.

    PubMed

    Wyss, Annah B; Jones, Anna Ciesielski; Bølling, Anette K; Kissling, Grace E; Chartier, Ryan; Dahlman, Hans Jørgen; Rodes, Charles E; Archer, Janet; Thornburg, Jonathan; Schwarze, Per E; London, Stephanie J

    2016-01-01

    Few studies have examined particulate matter (PM) exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5) for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04) for the 14 homes with wood stove use (15.6 μg/m3) than for the 22 homes without (12.6 μg/m3). Moreover, mean hourly PM2.5 was higher (p = 0.001) for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3), when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3) which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country.

  12. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000-2011

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.

    2015-12-01

    Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.

  13. Chemical Signature of Biomass Burning Emitted PM2.5 as Revealed by a C/N/S Multi- Elemental Scanning Thermal Analysis (MESTA) Technique

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Bugna, G.

    2006-12-01

    Uncertainty of black carbon (BC) research is often plagued by the analytical difficulty associated with separating carbon components in solid samples. A rapid and sensitive multi-elemental scanning thermal analysis (MESTA), originally developed for organic matter analysis in solid samples, was applied to this study. The objective was to identify the chemical signature of biomass burning emitted PM2.5 (aerosols less than 2.5 micron) for tracing purposes. We collected PM2.5 from the burning of various biomass of a pine forest and from the ambient air of an urban campus using a PM sampler. The MESTA provides simultaneous C, N and S thermograms of the PM2.5 samples that can be used for characterization and identification purposes. This study showed that the PM2.5 samples produced from the burning of forest biomass can be characterized by a high temperature (greater than 350 oC) volatile organic component with high C/N ratio and no S content while those produced from the ambient air can be characterized by a low temperature (less than 350 oC) volatile organic component with low C/N ratio and high S content. Burning of the soaked woody debris, however, produced significant amount of the low-temperature volatile organic component similar to that of the ambient air in C/N ratio but different in S content. Most PM2.5 samples have a very low temperature (less than 110 oC) volatile N component that is identified as absorbed ammonia. The absorbed ammonia is most significant in the PM2.5 of the ambient air and the burning of soaked woody debris. All PM2.5 samples have significant amount of BC which volatilized above 500 oC with very high C/N ratio. This study also shows that MESTA can provide an objective means to present the chemical signature of the whole spectrum of OC/BC in the PM2.5 samples.

  14. Determinants of indoor and personal exposure to PM 2.5 of indoor and outdoor origin during the RIOPA study

    NASA Astrophysics Data System (ADS)

    Meng, Qing Yu; Spector, Dalia; Colome, Steven; Turpin, Barbara

    2009-12-01

    Effects of physical/environmental factors on fine particle (PM 2.5) exposure, outdoor-to-indoor transport and air exchange rate ( AER) were examined. The fraction of ambient PM 2.5 found indoors ( F INF) and the fraction to which people are exposed ( α) modify personal exposure to ambient PM 2.5. Because F INF, α, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM 2.5 exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in F INF and α, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in F INF and α, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict F INF and α. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ. Total personal exposures to PM 2.5 mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R2 = 30-70%) and the largest contributor to (20-90%) indoor and personal exposures for PM 2.5 mass and most species. Several activities had a dramatic impact on personal PM 2.5 mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM 2.5) improved the predictive power of the personal activity model for PM 2.5 mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.

  15. The effect of ambient exposure to PM2.5 on the transfusion usage of blood components and adverse transfusion reactions in the haze weather.

    PubMed

    Chang, Chih-Chun; Lin, Hui-Jung; Sun, Jen-Tang; Li, Pei-Yu; Lee, Tai-Chen; Su, Ming-Jang; Yen, Tzung-Hai; Chu, Fang-Yeh

    2016-10-01

    Accumulating evidence has shown that ambient exposure to PM 2.5 , especially in the haze weather, increased the risk of various diseases. However, the association of air pollution status with blood transfusion utilization and the prevalence and severity of adverse transfusion reactions remain to be clarified. The data of monthly transfusion usage of blood components, adverse transfusion reactions, as well as PM 2.5 and PM 10 levels from 2013 to 2015 were obtained. During the study interval, both PM 2.5 and PM 10 levels were significantly increased in the haze weather when compared with the non-haze weather. The utilization of total blood components per patient-month in the haze weather was prone to be increased when compared with that in the non-haze weather (13.28 ± 1.66 vs. 12.33 ± 1.30, p = 0.068). The usage of RBC products per patient-month in the haze weather was significantly increased when compared with that in the non-haze weather (4.39 ± 0.39 vs. 4.07 ± 0.30, p = 0.009). There was no obvious difference between the haze and non-haze weathers for the usage of platelet and plasma products per patient-month. Besides, no definite differences of the prevalence and severity of transfusion-associated adverse reaction were observed between the haze and non-haze weathers. Our study first indicated that transfusion utilization, particularly the RBC products, was significantly increased in the haze weather when compared with that in the non-haze weather. There was no obvious association of air pollution with the prevalence and severity of adverse transfusion reactions and further research is required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    PubMed

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  17. Combined effects of vitamin E and omega-3 fatty acids on protecting ambient PM2.5-induced cardiovascular injury in rats.

    PubMed

    Du, Xihao; Jiang, Shuo; Bo, Liang; Liu, Jie; Zeng, Xuejiao; Xie, Yuquan; He, Qing; Ye, Xingwang; Song, Weiming; Zhao, Jinzhuo

    2017-04-01

    This study aims to observe whether the combined treatment with vitamin E (vit E) and omega-3 polyunsaturated fatty acids (Ω-3 FA) could prevent the fine particulate matter (PM 2.5 )-induced cardiovascular injury through alleviating inflammation and oxidative stress. At the same time, the appropriate combination dosage of vit E and Ω-3 FA was explored to find an optimized protective dose to protect the injury induced by PM 2.5 . The SD rats were pretreated with different concentration of vit E and Ω-3 FA separately or jointly. Then the rats were exposed to ambient PM 2.5 by intratracheal instillation for three times. The expression of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) in serum and supernatant of cardiac tissue were detected by ELISA kits. The levels of malondialdehyde (MDA), superoxide Dismutase (SOD) and glutathione-peroxidase (GSH-Px) in myocardium and the level of MDA in serum were measured. Meanwhile, the cardiac injury was evaluated by histopathological examination. Compared with the severe injury of rats in PM 2.5 exposure group, the rats in vit E or Ω-3 FA-pretreated groups had a slighter injury in heart. Meanwhile, pretreatment with vit E or Ω-3 FA induced a significantly alleviation of the inflammatory cytokines (TNF-α, IL-1β, IL-6) and the elevation of the anti-oxidative activity especially in the rats pretreated with combined vit E and Ω-3 FA. In addition, the combined protecting effects of vit E and Ω-3 FA showed a dose-dependent manner. Supplementation with vit E and Ω-3 FA could protect the PM 2.5 -induced injury, and the combination of vit E and Ω-3 FA might produce more effective effects than the separate nutrient did. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Source identification of coarse particles in the Desert ...

    EPA Pesticide Factsheets

    The Desert Southwest Coarse Particulate Matter Study was undertaken to further our understanding of the spatial and temporal variability and sources of fine and coarse particulate matter (PM) in rural, arid, desert environments. Sampling was conducted between February 2009 and February 2010 in Pinal County, AZ near the town of Casa Grande where PM concentrations routinely exceed the U.S. National Ambient Air Quality Standards (NAAQS) for both PM10 and PM2.5. In this desert region, exceedances of the PM10 NAAQS are dominated by high coarse particle concentrations, a common occurrence in this region of the United States. This work expands on previously published measurements of PM mass and chemistry by examining the sources of fine and coarse particles and the relative contribution of each to ambient PM mass concentrations using the Positive Matrix Factorization receptor model (Clements et al., 2014). Highlights • Isolation of coarse particles from fine particle sources. • Unique chemical composition of coarse particles. • Role of primary biological particles on aerosol loadings.

  19. Evaluation of Field-deployed Low Cost PM Sensors

    EPA Science Inventory

    Background Particulate matter (PM) is a pollutant of high public interest regulated by national ambient air quality standards (NAAQS) using federal reference method (FRM) and federal equivalent method (FEM) instrumentation identified for environmental monitoring. PM is present i...

  20. Ambient air concentrations exceeded health-based standards for fine particulate matter and benzene during the Deepwater Horizon oil spill.

    PubMed

    Nance, Earthea; King, Denae; Wright, Beverly; Bullard, Robert D

    2016-02-01

    The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters. Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.

  1. The gains in life expectancy by ambient PM2.5 pollution reductions in localities in Nigeria.

    PubMed

    Etchie, Tunde O; Etchie, Ayotunde T; Adewuyi, Gregory O; Pillarisetti, Ajay; Sivanesan, Saravanadevi; Krishnamurthi, Kannan; Arora, Narendra K

    2018-05-01

    Global burden of disease estimates reveal that people in Nigeria are living shorter lifespan than the regional or global average life expectancy. Ambient air pollution is a top risk factor responsible for the reduced longevity. But, the magnitude of the loss or the gains in longevity accruing from the pollution reductions, which are capable of driving mitigation interventions in Nigeria, remain unknown. Thus, we estimate the loss, and the gains in longevity resulting from ambient PM 2.5 pollution reductions at the local sub-national level using life table approach. Surface average PM 2.5 concentration datasets covering Nigeria with spatial resolution of ∼1 km were obtained from the global gridded concentration fields, and combined with ∼1 km gridded population of the world (GPWv4), and global administrative unit layers (GAUL) for territorial boundaries classification. We estimate the loss or gains in longevity using population-weighted average pollution level and baseline mortality data for cardiopulmonary disease and lung cancer in adults ≥25 years and for respiratory infection in children under 5. As at 2015, there are six "highly polluted", thirty "polluted" and one "moderately polluted" States in Nigeria. People residing in these States lose ∼3.8-4.0, 3.0-3.6 and 2.7 years of life expectancy, respectively, due to the pollution exposure. But, assuming interventions achieve global air quality guideline of 10 μg/m 3 , longevity would increase by 2.6-2.9, 1.9-2.5 and 1.6 years for people in the State-categories, respectively. The longevity gains are indeed high, but to achieve them, mitigation interventions should target emission sources having the highest population exposures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A spatiotemporal land-use regression model of winter fine particulate levels in residential neighbourhoods.

    PubMed

    Smargiassi, Audrey; Brand, Allan; Fournier, Michel; Tessier, François; Goudreau, Sophie; Rousseau, Jacques; Benjamin, Mario

    2012-07-01

    Residential wood burning can be a significant wintertime source of ambient fine particles in urban and suburban areas. We developed a statistical model to predict minute (min) levels of particles with median diameter of <1 μm (PM1) from mobile monitoring on evenings of winter weekends at different residential locations in Quebec, Canada, considering wood burning emissions. The 6 s PM1 levels were concurrently measured on 10 preselected routes travelled 3 to 24 times during the winters of 2008-2009 and 2009-2010 by vehicles equipped with a GRIMM or a dataRAM sampler and a Global Positioning System device. Route-specific and global land-use regression (LUR) models were developed using the following spatial and temporal covariates to predict 1-min-averaged PM1 levels: chimney density from property assessment data at sampling locations, PM2.5 "regional background" levels of particles with median diameter of <2.5 μm (PM2.5) and temperature and wind speed at hour of sampling, elevation at sampling locations and day of the week. In the various routes travelled, between 49% and 94% of the variability in PM1 levels was explained by the selected covariates. The effect of chimney density was not negligible in "cottage areas." The R(2) for the global model including all routes was 0.40. This LUR is the first to predict PM1 levels in both space and time with consideration of the effects of wood burning emissions. We show that the influence of chimney density, a proxy for wood burning emissions, varies by regions and that a global model cannot be used to predict PM in regions that were not measured. Future work should consider using both survey data on wood burning intensity and information from numerical air quality forecast models, in LUR models, to improve the generalisation of the prediction of fine particulate levels.

  3. Ambient air quality at the wider area of an industrial mining facility at Stratoni, Chalkidiki, Greece.

    PubMed

    Gaidajis, Georgios; Angelakoglou, Komninos; Gazea, Emmy

    2012-01-01

    To assess ambient air quality at the wider area of a mining-industrial facility in Chalkidiki, Greece, the particulate matter with an aerodynamic diameter of 10 μm (PM(10)) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn were monitored for a period of three years (2008-2010). Gravimetric air samplers were employed for the particulate matter sampling at three sampling stations located in the immediate vicinity of the industrial facility and at a neighbouring residential site. Monitoring data indicated that the 3-year median PM(10) concentrations were 23.3 μg/m(3) at the residential site close to the facility and 28.7 μg/m(3) at the site within the facility indicating a minimal influence from the industrial activities to the air quality of the neighbouring residential area. Both annual average and median PM(10) concentration levels were below the indicative European standards, whereas similar spatial and temporal variation was observed for the PM(10) constituents. The average Pb concentrations measured for the three sampling sites were 0.2, 0.146 and 0.174 μg/m(3) respectively, well below the indicative limit of 0.5 μg/m(3). The quantitative and qualitative comparison of PM(10) concentrations and its elemental constituent for the three sampling stations did not indicate any direct influence of the mining-industrial activities to the air quality of the Stratoni residential area.

  4. Residential indoor and personal PM10 exposures of ambient origin based on chemical components.

    PubMed

    Xu, Jia; Bai, Zhipeng; You, Yan; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Liu, Yating; Zhang, Nan; He, Fei; Ding, Xiao

    2014-07-01

    Many studies have focused on the relationships of particulate matter between indoor, outdoor and personal exposure; however, considerable uncertainties remain regarding the portion of indoor particles and personal exposure of ambient origin. As part of the Particle Exposure Assessment for Community Elderly (PEACE) study in Tianjin, China, we have further interpreted the relationships between personal, residential indoor, outdoor and community PM10 (particulate matter with aerodynamic diameters of less than 10 μm). Comparisons of the chemical compositions of PM10 samples were performed using the coefficient of divergence (COD). A robust regression method, least-trimmed squared (LTS) regression, was used to estimate the infiltration factors of PM10 from residential outdoor to indoor environments based on the particulate component concentrations. Personal exposures of ambient origin were also estimated. A relatively good correlation was found between the personal and indoor PM10 samples with respect to chemical composition. The infiltration factors (Finf) of the residential indoor-outdoor PM10 were 0.74±0.31 (mean±SD) in summer and 0.44±0.22 in winter, with medians of 0.98 and 0.48, respectively. The residential outdoor contributions to the indoor environments were 87±55 μg/m(3) in summer and 80±54 μg/m(3) in winter, with medians of 75 μg/m(3) and 61 μg/m(3), respectively. The personal exposures of ambient origin were 92±44 μg/m(3) in summer and 89±47 μg/m(3) in winter, with medians of 81 μg/m(3) and 80 μg/m(3), respectively. This study indicated that the infiltrations in an urbanized area in North China exhibited a seasonal difference: the residential outdoor contributions to residential indoor environments were larger in summer due to the higher use of natural ventilation. The personal exposures of ambient origin were comparable during the different seasons, whereas those of non-ambient origin were higher in summer than in winter.

  5. Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey

    PubMed Central

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)

    2015-01-01

    Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324

  6. Particulate matter dynamics in naturally ventilated freestall dairy barns

    NASA Astrophysics Data System (ADS)

    Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E. L.

    2013-04-01

    Particulate matter (PM) concentrations and ventilation rates, in two naturally ventilated freestall dairy barns, were continuously monitored for two years. The first barn (B1) housed 400 fresh lactating cows, while the second barn (B2) housed 835 non-fresh lactating cows and 15 bulls. The relationships between PM concentrations and accepted governing parameters (environmental conditions and cattle activity) were examined. In comparison with other seasons, PM concentrations were lowest in winter. Total suspended particulate (TSP) concentrations in spring and autumn were relatively higher than those in summer. Overall: the concentrations in the barns and ambient air, for all the PM categories (PM2.5, PM10, and TSP), exhibited non-normal positively skewed distributions, which tended to overestimate mean or average concentrations. Only concentrations of PM2.5 and PM10 increased with ambient air temperature (R2 = 0.60-0.82), whereas only concentrations of TSP increased with cattle activity. The mean respective emission rates of PM2.5, PM10, and TSP for the two barns ranged between 1.6-4.0, 11.9-15.0, and 48.7-52.5 g d-1 cow-1, indicating similar emissions from the two barns.

  7. Association of Short-Term Exposure to Ambient Fine Particulate Matter with Skin Symptoms in Schoolchildren: A Panel Study in a Rural Area of Western Japan.

    PubMed

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Iwata, Kyoko; Hantan, Degejirihu; Tohda, Yuji; Shimizu, Eiji

    2017-03-13

    Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM 2.5 ) on health. However, epidemiologic evidence focusing on the effects of PM 2.5 on skin health remains limited. An important aspect of Asian dust (AD) in relationship to health is the amount of PM 2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM 2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM 2.5 and AD particles. Increases in the levels of PM 2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m³ in PM 2.5 and 0.01 km -1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM 2.5 and AD does not impact skin symptoms in schoolchildren.

  8. High concentrations of heavy metals in PM from ceramic factories of Southern Spain

    NASA Astrophysics Data System (ADS)

    Sánchez de la Campa, Ana M.; de la Rosa, Jesús D.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío; Alastuey, Andrés; Querol, Xavier; Pio, Casimiro

    2010-06-01

    In this study, physicochemical characterization of Atmospheric Particulate Matter (PM) was performed in an urban-industrial site background (Bailén, Southern Spain), highly influenced by the impact of emission plumes from ceramic factories. This area is considered one of the towns with the highest PM 10 levels and average SO 2 concentration in Spain. A three stages methodology was used: 1) real-time measurements of levels of PM 10 and gaseous pollutants, and sampling of PM; 2) chemical characterization using ICP-MS, ICP-OES, CI and TOT, and source apportionment analysis (receptor modelling) of PM; and 3) chemical characterization of emission plumes derived from representative factories. High ambient air concentrations were found for most major components and trace elements compared with other industrialized towns in Spain. V and Ni are considered fingerprints of PM derived from the emissions of brick factories in this area, and were shown to be of particular interest. This highlights the high V and Ni concentrations in PM 10 (122 ngV/m 3 and 23.4 ngNi/m 3), with Ni exceeding the 2013 annual target value for the European Directive 2004/107/EC (20 ng/m 3). The methodology of this work can be used by Government departments responsible for Environment and Epidemiology in planning control strategies for improving air quality.

  9. Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation.

    PubMed

    Bravo, Mercedes A; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J; Bell, Michelle L

    2012-07-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM(2.5)) and ozone (O(3)) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM(2.5) and O(3), respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O(3) (annual normalized mean bias=4.30%), while modeled PM(2.5) had an annual normalized mean bias of -2.09%, although bias varied seasonally, from 32% in November to -27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Hsiao-Man; Rao, Carol Y.; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Liu, Chi-Ming; Chao, H. Jasmine

    Characteristics and determinants of ambient aeroallergens are of much concern in recent years because of the apparent health impacts of allergens. Yet relatively little is known about the complex behaviors of ambient aeroallergens. To address this issue, we monitored ambient fungal spores in Hualien, Taiwan from 1993-1996 to examine the compositions and temporal variations of fungi, and to evaluate possible determinants. We used a Burkard seven-day volumetric spore trap to collect daily fungal spores. Air pollutants, meteorological factors, and Asian dust events were included in the statistical analyses to predict fungal levels. We found that the most dominant fungal categories were ascospores, followed by Cladosporium and Aspergillus/Penicillium. The majority of the fungal categories had significant diurnal and seasonal variations. Total fungi, Cladosporium, Ganoderma, Arthrinium/Papularia, Cercospora, Periconia, Alternaria, Botrytis, and PM 10 had significantly higher concentrations ( p<0.05) during the period affected by Asian dust events. In multiple regression models, we found that temperature was consistently and positively associated with fungal concentrations. Other factors correlated with fungal concentrations included ozone, particulate matters with an aerodynamic diameter less than 10 μm (PM 10), relative humidity, rainfall, atmospheric pressure, total hydrocarbons, carbon monoxide, nitrogen dioxide, and sulfur dioxide. Most of the fungal categories had higher levels in 1994 than in 1995-96, probably due to urbanization of the study area. In this study, we demonstrated complicated interrelationships between fungi and air pollution/meteorological factors. In addition, long-range transport of air pollutants contributed significantly to local aeroallergen levels. Future studies should examine the health impacts of aeroallergens, as well as the synergistic/antagonistic effects of weather, and local and global-scale air pollutions.

  11. Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic-Mediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components

    NASA Astrophysics Data System (ADS)

    Pérez, Noemí; Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Bhatia, Ravinder; Spiro, Baruch; Hanvey, Melanie

    2010-07-01

    We report on ambient atmospheric aerosols present at sea during the Atlantic-Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM 10, PM 2.5, and PM 1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM 10 levels <10 μg m -3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM 10 daily mean levels averaged 40-60 μg m -3 (30-40 μg m -3 PM 2.5; c. 20 μg m -3 PM 1), peaking briefly to >120 μg m -3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM 1/PM 10 ratios ranged from very low during desert dust intrusions (0.3-0.4) to very high during anthropogenic pollution plume events (0.8-1).

  12. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain.

    PubMed

    Menéndez, Inmaculada; Derbyshire, Edward; Carrillo, Teresa; Caballero, Elena; Engelbrecht, Johann P; Romero, Lidia E; Mayer, Pablo L; Rodríguez de Castro, Felipe; Mangas, José

    2017-04-01

    Gran Canaria Island is frequently impacted by Saharan dust, a health hazard of particular concern to the island population and health agencies. Airborne mineral dust has the severest impact on the higher age groups of the population, and those with respiratory conditions; despite that, on average, the ambient particulate matter (PM) concentrations fall within international PM guidelines. During 2010 and 2011, an epidemiological survey, in parallel with an air quality study, was conducted at the Dr Negrín hospital in Gran Canaria. This included the quarterly monitoring of outpatients and recording of emergency patients with respiratory diseases, together with the measurement of aerosol, meteorological, and PM-related air quality levels. The finer more toxic particles were collected with PM 2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) aerosol samplers. The filter samples were gravimetrically and chemically analyzed for their elemental, water-soluble ions, carbon, and mineralogical contents. Individual particle morphology was measured by Scanning Electron Microscopy. Statistical analysis of the chemical and clinical data included the analysis of variance and calculation of Spearman correlation coefficients. No statistically significant relations were found between the allergic control group, the emergency room admissions, pulmonary conditions, medication, and elevated Saharan dust levels. However, changing environmental conditions, such as an increase in humidity or a reduction in ambient air temperature made a significant difference to the outcomes recorded on the health statements of the allergic and respiratory illness groups of the Gran Canary population.

  13. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms.

    PubMed

    Yadav, Ravi; Sahu, L K; Beig, G; Tripathi, Nidhi; Jaaffrey, S N A

    2017-06-01

    Continuous measurements of PM 2.5 , PM 10 and CO were conducted at an urban site of Udaipur in India from April 2011 to March 2012. The annual mean concentrations of PM 2.5, PM 10 and CO were 42 ± 17 μg m -3 , 114 ± 31 μg m -3 and 343 ± 136 ppbv, respectively. Concentrations of both particulate and CO showed high values during winter/pre-monsoon (dry) period and lowest in the monsoon season (wet). Local anthropogenic emission and long-range transport from open biomass burning sources along with favourable synoptic meteorology led to elevated levels of pollutants in the dry season. However, higher values of PM 10 /PM 2.5 ratio during pre-monsoon season were caused by the episodes of dust storm. In the monsoon season, flow of cleaner air, rainfall and negligible emissions from biomass burning resulted in the lowest levels of pollutants. The concentrations of PM 2.5 , PM 10 and CO showed highest values during morning and evening rush hours, while lowest in the afternoon hours. In winter season, reductions of PM 2.5, CO and PM 10 during weekends were highest of 15%, 13% and 9%, respectively. In each season, the highest PM 2.5 /PM 10 ratio coincided with the highest concentrations of pollutants (CO and NO X ) indicating predominant emissions from anthropogenic sources. Exceptionally high concentrations of PM 10 during the episode of dust storm were due to transport from the Arabian Peninsula and Thar Desert. Up to ∼32% enhancements of PM 10 were observed during strong dust storms. Relatively low levels of O 3 and NO x during the storm periods indicate the role of heterogeneous removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang.

    PubMed

    Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling

    2015-09-01

    Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 78 FR 3085 - National Ambient Air Quality Standards for Particulate Matter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ...., 24-hour and annual PM 2.5 standards and a 24-hour PM 10 standard). Non-visibility welfare effects are.... Related Technical Analysis 2. Other (Non-Visibility) PM-related Welfare Effects a. Evidence of Other... Proposed Decision Regarding Non-Visibility Welfare Effects D. Conclusions on Secondary PM Standards 1...

  16. Emissions Inventory of PM2.5 Trace Elements across the United States

    EPA Science Inventory

    This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM 2.5 emissions in ...

  17. CARDIOVASCULAR TOXICITY OF PM: SOLUBLE COMPONENTS OR SOLID PARTICLES?

    EPA Science Inventory

    Since strong suggestion of cardiac-related deaths has arisen from epidemiological studies of ambient PM, a major effort is required to identify PM components and mechanisms responsible for observed cardiac impairments. Unfortunately, it has been difficult to elucidate causality w...

  18. IN VIVO MECHANISMS OF PARTICULATE MATTER (PM)-INDUCED LUNG AND VASCULAR INJURY

    EPA Science Inventory

    Insight into the mechanisms by which ambient particulate matter (PM) mediates its adverse cardiopulmonary effects can provide biological plausibility to epidemiological associations between PM exposure and health effects. Current information on mechanisms of pulmonary injury have...

  19. Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions.

    PubMed

    Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D

    2018-08-01

    This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Ground-level air pollution changes during a boreal wildland mega-fire

    Treesearch

    Andrzej Bytnerowicz; Yu-Mei Hsu; Kevin Percy; Allan Legge; Mark E. Fenn; Susan Schilling; Witold Frączek; Diane Alexander

    2016-01-01

    The 2011 Richardson wildland mega-fire in the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada had large effects on air quality. At a receptor site in the center of the AOSR ambient PM2.5, O3, NO, NO2, SO2, NH3, HONO, HNO3...

  1. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans.

    PubMed

    Clemens, Tom; Turner, Steve; Dibben, Chris

    2017-10-01

    Maternal ambient air pollution exposure is associated with reduced birthweight. Few studies have examined the effect on growth in utero and none have examined the effect of exposure to particulates less than 2.5µm (PM 2.5 ) and possible effect modification by smoking status. Examine the effect of maternal exposure to ambient concentrations of PM 10 , PM 2.5 and nitrogen dioxide (NO 2 ) for in utero fetal growth, size at birth and effect modification by smoking status. Administratively acquired second and third trimester fetal measurements (bi-parietal diameter, femur length and abdominal circumference), birth outcomes (weight, crown heel length and occipito-frontal circumference) and maternal details were obtained from routine fetal ultrasound scans and maternity records (period 1994-2009). These were modelled against residential annual pollution concentrations (calendar year mean) adjusting for covariates and stratifying by smoking status. In the whole sample (n=13,775 pregnancies), exposure to PM 10 , PM 2.5 and NO 2 was associated with reductions in measurements at birth and biparietal diameter from late second trimester onwards. Among mothers who did not smoke at all during pregnancy (n=11,075), associations between biparietal diameter and pollution exposure remained significant but were insignificant among those who did smoke (n=2700). Femur length and abdominal circumference were not significantly associated with pollution exposure. Fetal growth is strongly associated with particulates exposure from later in second trimester onwards but the effect appears to be subsumed by smoking. Typical ambient exposures in this study were relatively low compared to other studies and given these results, it may be necessary to consider reducing recommended "safe" ambient air exposures. Copyright © 2017. Published by Elsevier Ltd.

  2. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    PubMed

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-06-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects.

  3. Are EPA's proposed revisions to the PM standards appropriate?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucinda Minton Langworthy

    2006-06-15

    In 1997 then-US Environmental Protection Agency (EPA) Administrator Carol Browner adopted new National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM2.5). Browner recognized that 'there is uncertainty in the characterization of health effects attributable to exposure to ambient PM.' As a result, President Clinton promised to review the scientific basis for those standards prior to their implementation. Recently, before EPA has even promulgated rules concerning implementation of those standards, the agency proposed to revise those standards to make them significantly more stringent. Are the proposed revisions to the standards appropriate? The author argues. 41 refs.

  4. Neighborhood walkability and particulate air pollution in a nationwide cohort of women.

    PubMed

    James, Peter; Hart, Jaime E; Laden, Francine

    2015-10-01

    Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Using data from the Nurses' Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) µg/m(3) higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary from region to region that allow for walkable neighborhoods with low levels of air pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women

    PubMed Central

    James, Peter; Hart, Jaime E.; Laden, Francine

    2015-01-01

    Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775

  6. 78 FR 63878 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...] Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air Quality... State Implementation Plan (SIP). The revisions add ambient air quality standards and associated... Ambient Air Quality Standards (NAAQS) for PM 2.5 . EPA is approving these revisions in accordance with the...

  7. 78 FR 63933 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...] Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air Quality... of Virginia adding ambient air quality standards and associated reference conditions for Fine Particulate Matter (PM 2.5 ) that are consistent with the 2013 National Ambient Air Quality Standards (NAAQS...

  8. Association of atmospheric concentrations of polycyclic aromatic hydrocarbons with their urinary metabolites in children and adolescents.

    PubMed

    Poursafa, Parinaz; Amin, Mohammad Mehdi; Hajizadeh, Yaghoub; Mansourian, Marjan; Pourzamani, Hamidreza; Ebrahim, Karim; Sadeghian, Babak; Kelishadi, Roya

    2017-07-01

    This study aims to determine the atmospheric concentrations of particulate matter 2.5 (PM 2.5 )-bounded polycyclic aromatic hydrocarbons (PAHs) and their association with their urinary metabolites in children and adolescents. This study was conducted from October 2014 to March 2016 in Isfahan, Iran. We measured 16 species of PAHs bounded to PM 2.5 by gas chromatography mass spectrometry (GC/MS) from 7 parts of the city. Moreover, PAH urinary metabolites were measured in 186 children and adolescents, randomly selected from households. Urinary metabolites consisted of 1-hydroxy naphthalene (1-naphthol), 2-hydroxy naphthalene (2-naphthol), 9-hydroxy phenanthrene (9-phenanthrol), and 1-hydroxy pyrene using GC/MS. Considering the short half-lives of PAHs, we measured the metabolites twice with 4 to 6 months of time interval. We found that the ambient concentrations of PAHs were significantly associated with their urinary metabolites. 1-hydroxy naphthalene and 2-hydroxy naphthalene concentrations showed an increase of 1.049 (95% CI: 1.030, 1.069) and 1.047 (95% CI: 1.025, 1.066) for each unit increase (1 ng/m 3 ) in ambient naphthalene. Similarly, 1-hydroxy pyrene showed an increase of 1.009 (95% CI: 1.006-1.011) for each unit increase (1 ng/m 3 ) in ambient pyrene concentration after adjustment for body mass index, physical activity level, urinary creatinine, age, and sex. The association of urinary 9-hydroxyphenanthrene and ambient phenantherene was significant in the crude model; however after adjustment for the abovementioned covariates, it was no more significant. We found significant correlations between exposure to ambient PM 2.5 -bounded PAHs and their urinary excretion. Considering the adverse health effects of PAHs in the pediatric age group, biomonitoring of PAHs should be underscored; preventive measures need to be intensified.

  9. MASS CONCENTRATION RELATIONSHIPS FROM THE NERL RTP PARTICULATE MATTER PANEL STUDY

    EPA Science Inventory

    The National Exposure Research Laboratory's (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study has completed a one-year investigation of personal, residential and ambient PM-related mass concentrations in two potentially susceptible subpopulations. PM2.5, P...

  10. Ischemic heart disease and ambient air pollution of particulate matter 2.5 in 51 counties in the U.S.

    PubMed

    Balluz, Lina; Wen, Xiao-Jun; Town, Machell; Shire, Jeffrey D; Qualter, Judy; Mokdad, Ali

    2007-01-01

    Ischemic heart disease (IHD) is one of the most common health threats to the adult population of the U.S. and other countries. The objective of this study was to examine the association between exposure to elevated annual average levels of Particulate matter 2.5 (PM2.5) air quality index (AQI) and IHD in the general population. We combined data from the Behavioral Risk Factor Surveillance System and the U.S Environmental Protection Agency air quality database. We analyzed the data using SUDAAN software to adjust the effects of sampling bias, weights, and design effects. The prevalence of IHD was 9.6% among respondents who were exposed to an annual average level of PM2.5 AQI > 60 compared with 5.9% among respondents exposed to an annual average PM2.5 AQI < or = 60. The respondents with higher levels of PM2.5 AQI exposure were more likely to have IHD (adjusted odds ratio = 1.72, 95% confidence interval 1.11, 2.66) than respondents with lower levels of exposure after adjusting for age, gender, race/ethnicity, education, smoking, body mass index, diabetes, hypertension, and hypercholesterolemia. Our study suggested that exposure to relatively higher levels of average annual PM2.5 AQI may increase the likelihood of IHD. In addition to encouraging health-related behavioral changes to reduce IHD, efforts should also focus on implementing appropriate measures to reduce exposure to unhealthy AQI levels.

  11. High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique

    NASA Astrophysics Data System (ADS)

    Xiao, Lu; Lang, Yichao; Christakos, George

    2018-01-01

    With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.

  12. Effects of Airborne Particulate Matter on Respiratory Health in a Community near a Cement Factory in Chilanga, Zambia: Results from a Panel Study

    PubMed Central

    Nkhama, Emmy; Ndhlovu, Micky; Dvonch, J. Timothy; Lynam, Mary; Mentz, Graciela; Siziya, Seter; Voyi, Kuku

    2017-01-01

    We conducted a panel study to investigate seasonal variations in concentrations of airborne PM2.5 and PM10 and the effects on respiratory health in a community near a cement factory; in Chilanga; Zambia. A panel of 63 and 55 participants aged 21 to 59 years from a community located at the edge of the factory within 1 km and a control community located 18 km from the factory respectively; were followed up for three climatic seasons July 2015 to February 2016. Symptom diary questionnaires were completed and lung function measurements taken daily for 14 days in each of the three climatic seasons. Simultaneously, PM2.5 and PM10 concentrations in ambient air were monitored at a fixed site for each community. Mean seasonal concentrations of PM2.5 and PM10 ranged from 2.39–24.93 μg/m3 and 7.03–68.28 μg/m3 respectively in the exposed compared to the control community 1.69–6.03 μg/m3 and 2.26–8.86 μg/m3. The incident rates of reported respiratory symptoms were higher in the exposed compared to the control community: 46.3 vs. 13.8 for cough; 41.2 vs. 9.6 for phlegm; 49.0 vs.12.5 for nose; and 13.9 vs. 3.9 for wheeze per 100 person-days. There was a lower performance on all lung indices in the exposed community compared to the control; overall the mean FEV1 (forced expiratory volume in one second) and FVC (forced vital capacity) predicted percentage for the exposed was six and four percentage points lower than the control. Restriction of industrial emissions coupled with on-going monitoring and regulatory enforcement are needed to ensure that PM (airborne particulate matter) levels in the ambient air are kept within recommended levels to safeguard the respiratory health of nearby community residents. PMID:29113101

  13. The effects of transported Asian dust on the composition and concentration of ambient fungi in Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, H. Jasmine; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Chuang, Ying-Chih; Chiu, Yueh-Hsiu; Hsu, Hsiao-Hsien; Wu, Yi-Hua

    2012-03-01

    This study was conducted to evaluate the effects of transported Asian dust and other environmental parameters on the levels and compositions of ambient fungi in the atmosphere of northern Taiwan. We monitored Asian dust events in Taipei County, Taiwan from January 2003 to June 2004. We used duplicate Burkard portable air samplers to collect ambient fungi before, during, and after dust events. Six transported Asian dust events were monitored during the study period. Elevated concentrations of Aspergillus ( A. niger, specifically), Coelomycetes, Rhinocladiella, Sporothrix and Verticillium were noted ( p < 0.05) during Asian dust periods. Botryosporium and Trichothecium were only recovered during dust event days. Multiple regression analysis showed that fungal levels were positively associated with temperature, wind speed, rainfall, non-methane hydrocarbons and particulates with aerodynamic diameters ≤10 μm (PM10), and negatively correlated with relative humidity and ozone. Our results demonstrated that Asian dust events affected ambient fungal concentrations and compositions in northern Taiwan. Ambient fungi also had complex dynamics with air pollutants and meteorological factors. Future studies should explore the health impacts of ambient fungi during Asian dust events, adjusting for the synergistic/antagonistic effects of weather and air pollutants.

  14. Acute effects of ambient particulate matter pollution on hospital admissions for mental and behavioral disorders: A time-series study in Shijiazhuang, China.

    PubMed

    Song, Jie; Zheng, Liheng; Lu, Mengxue; Gui, Lihui; Xu, Dongqun; Wu, Weidong; Liu, Yue

    2018-04-25

    Until now, few epidemiological studies have focused on the association between ambient particulate matter pollution and mental and behavioral disorders, especially in developing countries. Thus, a time-series study on the short-term association between both fine and inhalable particles (PM 2.5 and PM 10 ) and daily hospital admissions for mental and behavioral disorders in Shijiazhuang, China was conducted, from 2014 to 2016. An over-dispersed, generalized additive model was used to analyze the associations after controlling for time trend, weather conditions, day of the week, and holidays. In addition, the modification effects of age, sex, and season were estimated. A total of 9156 cases of hospital admissions for mental and behavioral disorders were identified. A 10 μg/m 3 increase in a 3-day average concentration (lag02) of PM 2.5 and PM 10 correspond to an increase of 0.48% (95% confidence interval (CI): 0.18-0.79%) and 0.32% (95% CI: 0.03-0.62%) in daily hospital admission for mental and behavioral disorders, respectively. We found stronger associations of PM 2.5 and PM 10 with mental and behavioral disorders in male and elder individuals (≥45 years) than in female and younger individuals (<45 years). Further, results indicated a generally stronger association of PM 2.5 with mental and behavioral disorders in the cool season than in the warm season. This research found a significant association between ambient PM 2.5 and PM 10 and hospital admission for mental and behavioral disorders in Shijiazhuang, China. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET)

    PubMed Central

    Maluf, Mariangela; Czeresnia, Carlos Eduardo; Januário, Daniela Aparecida Nicolosi Foltran; Saldiva, Paulo Hilário Nascimento

    2010-01-01

    Purpose To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Methods Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q1: ≤30.48 µg/m3, Q2: 30.49–42.00 µg/m3, Q3: 42.01–56.72 µg/m3, and Q4: >56.72 µg/m3). Results Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q4 period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04–25.51) when compared to women exposed to Q1–3 periods. Conclusion Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed. PMID:20405197

  16. Association between long-term exposure to ambient air pollution and diabetes mortality in the US.

    PubMed

    Lim, Chris C; Hayes, Richard B; Ahn, Jiyoung; Shao, Yongzhao; Silverman, Debra T; Jones, Rena R; Garcia, Cynthia; Thurston, George D

    2018-05-17

    Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM 2.5 , NO 2 , and O 3 . Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. Diabetes mortality was significantly associated with increasing levels of both PM 2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m 3 ) and NO 2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. We found that long-term exposure to PM 2.5 and NO 2 , but not O 3 , is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Particulate Matter (PM) Pollution

    EPA Pesticide Factsheets

    Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.

  18. Particulate matter in the rural settlement during winter time

    NASA Astrophysics Data System (ADS)

    Olszowski, Tomasz

    2017-10-01

    The objective of this study was to analyzed the variability of the ambient particulates mass concentration in an area occupied by rural development. The analysis applied daily and hourly PM2.5 and PM10 levels. Data were derived on the basis of measurement results with the application of stationary gravimetric samplers and optical dust meter. The obtained data were compared with the results from the urban air quality monitoring network in Opole. Principal Component Analysis was used for data analysis. Research hypotheses were checked using U Mann-Whitney. It was indicated that during the smog episodes, the ratio of the inhalable dust fraction in the rural aerosol is greater than for the case of the urban aerosol. It was established that the principal meteorological factors affecting the local air quality. Air temperature, atmospheric pressure, movement of air masses and occurrence of precipitation are the most important. It was demonstrated that the during the temperature inversion phenomenon, the values of the hourly and daily mass concentration of PM2.5 and PM10 are very improper. The decrease of the PM's concentration to a safe level is principally relative to the occurrence of wind and precipitation.

  19. PM: RESEARCH METHODS FOR PM TOXIC COMPOUNDS - PARTICLE METHODS EVALUATION AND DEVELOPMENT

    EPA Science Inventory

    The Federal Reference Method (FRM) for Particulate Matter (PM) developed by EPA's National Exposure Research Laboratory (NERL) forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the National Ambient Air Quality Standard...

  20. EPA Summaries and Reports on Several State and Local PM Control Measures

    EPA Pesticide Factsheets

    A sample of existing control measures and their effectiveness, along with recommendations for improvement, can help states develop better control measures for reducing PM2.5 in order to attain 2012 PM2.5 National Ambient Air Quality Standards (NAAQS).

Top